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Abstract

A family of velocity-based lineaisations is proposed for a nonlinea system. In contrast to the
conventional series expansion lineaisation, a member of the family of velocity-based lineaisations is
valid in the vicinity of any operating point, not just an equili brium operating point. The velocity-based
lineaisations fadlitate dynamic analysis far from the eguilibrium operating points and enable the
transient behaviour of the nonlinea system to be investigated. Using velocity-based lineaisations,
stability conditions are derived for both smooth and non-smoath nonlinea systems which avoid the
restrictions, to trgjedories lying within an unnecessarily, perhaps excessively, small neighbourhood
about the eguili brium operating pdnts, inherent in existing frozen-input theory. For systems where
there is no restriction on the rate of variation, the velocity-based lineaisation analysis is global in
nature. The analysis techniques developed, whil st quite general, are motivated by the gain-scheduling
design approach and have the potential for dired applicdion to the analysis of gain-scheduled systems.

1. Introduction

Whilst nonlinea dynamic systems are widespread, the analysis and design of such systems remains
relatively difficult. In contrast, techniques for the analysis and design of linea time-invariant systems
are rather better developed even though systems with genuinely linea time-invariant dynamics do not,
in redity, exist. It is, therefore, attradive to adopt a divide and conquer strategy whereby the
analysis/design of a nonlinea system is decomposed into the analysis/design of a family of linea time-
invariant systems. This type of strategy forms the basis of one of the most widely, and successfully,
applied techniques for the design of nonlinea controll ers; namely, gain-scheduling.

Gain-scheduled controllers are linked by the design approach employed, whereby a nonlinea
controller is constructed by interpolating, in some manner, between the members of a family of linea
time-invariant controllers. In the cnventional, and most common, gain-scheduling design approach
(see for example, Astrom & Wittenmark 1989 Hyde & Glover 1993, ead linea controller is
typicdly asociated with a spedfic eguili brium operating point of the plant and is designed to ensure
that, locdly to the equili brium operating point, the performance requirements are met. (The existence
of afamily of equilibrium operating points, which spans the envelope of plant operation, is central to
most gain-scheduling arrangements and it is not sufficient to restrict consideration to a single, isolated,
equili brium operating point). By employing a first-order linea approximation which, locdly to the
equili brium operating point, has $milar dynamics to the plant, linea techniques may be gplied to this
locd designtask. However, whilst nonlinea controll ers designed by this gain-scheduling approach are
widely employed, the theoreticd todls for the analysis and design of gain-scheduled controllers are
rather poaly developed.

In this paper, the analysis of nonlinea dynamic systems in terms of assciated velocity-based
famili es of linea systemsisinvestigated. Emphasisis placel on establishing a consistent, unified and
conceptualy clea framework for the locd and nontlocd dynamic analysis of nonlinea systems.
Whilst motivated by the gain-scheduling design methoddogy, the analysisis quite general. The paper
is organised as follows. In sedion 2, the existing theory regarding the relationships between the
dynamics of nonlinea systems and associated linea systems is reviewed. In sedion 3, velocity-based
lineaisation families are derived for a broad classof nonlinea systems and the aility of the former to
approximate the latter isinvestigated. In sedion 4, the relationship between the stabili ty properties of a
nonlinea system and those of its associated family of velocity-based lineaisationsisinvestigated. The
conclusions are summarised in sedion 5.

2. Extended Review



There eists awide variety of longstanding theoreticd results which, for a broad classof nonlinea
systems, relate the dynamic charaderistics of a member of the dassto those of an asciated family of
linea systems. However, many of these results have been developed in spedfic contexts, often
independently of one another. Moreover, despite this diversity, there is a notable @sence from the
literature of aformal survey which considers the relationships between these results. It is appropriate,
therefore, to present in this ssdion a somewhat extended review. In sedions 2.1 and 2.2, the primary
results from, respedively, series expansion lineaisation theory and frozen-time theory are reviewed.
The theory concerning the analysis of the dynamics relative to a family of equili brium operating points
isreviewed in sedion 2.3.

Before proceeding, the foll owing two stability definitions are stated.

Definition  Exponential Stability (see for example, Khalil 1992 p58)
Anunforced dynamic system,
x=F(x, )
where x 0 0", islocaly exponentially stable if there exist strictly positive wnstantsy, aand ¢ such that
X®)< ve? ) Ix(to) | Dt=t, 20, [X(t,) ke
where |Jldenotes an appropriate norm. The system is globally exponentially stable if this inequality is
satisfied with ¢ unbounded.

Definition  Bounded Input-Bounded Output (BIBO) Sability
A forced dynamic system

X=F(,r,t), y=G(xr,t)
wherer O 0™ y 0 0P, x 0 0O islocdly BIBO stable if there exist positive constantsy, ¢ and d, with
y<oo, such that, for r OL,",

Yo < VIrls + B(IX(to)]. 1) Ot=t>0, x(t)|<c, [r()]<d
where pO[1,e], |f} denotes the p-norm, L," denotes the normed linea spaceof functions r:[0,c0) - O™
with finite p-norm and B(x(t,)|, t) is a dassKL function (B is strictly increasing with resped to [x(t,)|
for ead fixed t and zero when |x(t,)| is zero, and B is grictly deaeasing with resped to t for ead fixed
[X(t;)| and B -0 ast - ). The system isglobally BIBO stableif thisinequality is stisfied with ¢ and d
unbounded. This definition of BIBO stability is closely related to that of input-to-state stability
(Sontag 1989 and differs dightly from other definitions of BIBO stability (Desoer & Vidyasagar 1975
Vidyasagar & Vannelli 1982 which require x(t,) to be zeo.

In the context of the present paper, all referencesto BIBO stabili ty denote systems where 3 is of the
exponential form ye®"to)|x(t, )|, a>0. It is noted that such systems are exponentially stable when the

input, r, is zero. Hence, this form of BIBO stability may be interpreted as a dired generalisation of
exponential stability.

2.1 Seriesexpansion linearisation theory

Consider the nonlinea system,

X=F(x,r,1t) (18

y=G(xr,1) (1b)
where r O O™ y O O, x O O" F(-,-,) and G(,-,) are differentiable with bounded, Lipschitz
continuous derivatives. Let (X (t), T (t), Y (t)) denote aspedfic tragjedory of the nonlinea system, (1);
that is,

X=F(X, 7,1, §=G(X,T,1 @)
Thetragjedory, (X (t), T (1), ¥ (1)), could smply be an equili brium operating point of (1), in which case
F(X, r,t)isidenticdly zero and X is a cmnstant. The nonlinea system, (1),can be reformulated,
relative to the trgjedory (X (t), T (1), ¥ (1), as,

Ox=0F(X, T, t)dox+ OF(X, 7, t)0r +¢& (3a)

oy =O,G(X, T, t)dx + O,G(X, T, 1)or + &g (3b)

or=r-r, y=dy+y, OX=x-X (3c)



where,
g=FXx,r,t)-F(X, r,t)-0F(X, ,0)0x-0F(X, r,t)or (4a)
€6=G(X,r,1)-G(X, r,t)-0O0,G(X, r,t)ox- 0,G(X, r,t)dr (4b)
The dynamics, (3a) and (3b), cannot be mnsidered in isolation but must be considered together with the
input, output and state transformations, (3c), in order to maintain the relationship between (3) and (1).
However, the transformations, (3c), are fixed when consideration is confined to a spedfic trgjedory,
(X (@), T (), Y(). Hence the nonlinea system, (1), is table provided the linea time-varying

dynamics,
Ox=0F(X, T, )ox +OF(X, r,t)or (59)
oy =0,G(X, 1 ,1)0x +OG(X, 1, t)or (5b)

are robustly stable with resped to the perturbation terms, - and €. Consequently, analysis of the
nonlinea system, (1), may be reformulated as the analysis of the robust stabili ty of the associated linea
system, (5), which is simply the first-order Taylor series expansion of the nonlinea system, (1),
relative to the trajedory, (X (t), 1 (1), ¥ (©).

From Lyapunov theory, when &r is zero the internal nonlinea dynamics, (3a), are locdly
exponentially stable if and only if the unforced linea time-varying system,

Ox=[F(X, T, 10X (6)
is gable (see for example, Khalil 1992p184). When &r is non-zero, the nonlinea dynamics, (3), are
locdly BIBO stable provided (6) is gable, dx is initially zero, or is aufficiently smal and the
derivatives [0,F, 0,G, O0,G are uniformly bounded (Vidyasagar & Vanrelli 1982 Vidyasagar 1993
sedion 6). Sincethis holds for al time, it is straightforward to show that the initial conditi ons need not
be restricted to be zro and the result may be extended to encompassother initial conditions, provided
that they are sufficiently close to the origin. Of course, for the spedal case when the system, (6), isin
fad linea time-invariant, simple necessary and sufficient conditions for its gability are well-known
(see for example, Vidyasagar 1993. However, in the time-varying case, the stabili ty analysis of (6) is,
in general, not so straightforward.

In addition, the pe&k absolute difference between the solution, 8% , of the gproximate system, (5a),
and the solution, dx, of the nonlinea system, (3a), is bounded provided the gproximate system, (5a), is
stable, or is sufficiently small and the initial conditions, x(0) and &% (0), are zeo (Desoer & Wong,
1968 Desoer & Vidyasagar 1975sedion 4.9). Once ajain, it is draightforward to extend this result to
encompass non-zero initial conditions which are sufficiently close to the origin. Nonetheless even
with this extension, this result is quite week and is, esentially, a restatement of locd BIBO stability;
that is, simply that the solutions of (3a) and (5a) bath remain within a bounded region enclosing the
origin provided the input and the initial conditions are sufficiently small. If the dynamics, (5a), are a
genuine gproximation to the nonlinea dynamics, (3a), then it might be expeded that, when starting
from the same initial conditions, the solutions of (3a) and (5a) remain correlated for some time; that is,
the difference grows, in some sense, gradually over time. However, despite the fundamental nature,
and considerable importance, of series expansion approximations, it is emphasised that there do not
appea to be any published results regarding this anticipated stronger property.

2.2Frozen-timetheory

Whilst series expansion theory enables a relationship between the stability properties of the
nonlinea system, (1), and the asciated linea time-varying system, (6), to be establi shed, frozen-time
theory enables the stability of abroad classof the linea time-varying systems, (6), to be analysed in a
relatively straightforward manner.

Consider the unforced linea time-varying system,

x=A(t)x @
where x 0 O". Let the cnstant matrix, A., denote the value of A(t) at time, T. Assume that A() is
bounded, differentiable and the égenvalues of A; lie in the left-half complex plane and are uniformly
bounded away from the imaginary axis for every value of 1, then the linea time-varying system, (7), is
globally exponentially stable providedsup |A(t)] is sufficiently small (Desoer 1969. It should be
t=0
noted that this result only establi shes a sufficient condition for stability. The differentiability condition

on A(-) may be relaxed to a requirement for Lipschitz continuity and the restriction on sup |A(t)] may
t=0



be replacal by a restriction on the moving average, % jt“TlA(s)lds(see for example, Ilchmann et al.
1987 Khalil 1992sedion 4.5). Furthermore, the requirement for the cntinuity of A(t) may be relaxed
provided that any discontinuitiesin A(t) occur sufficiently infrequently (Zhang 1993 Morse 1995 p97).
However, referring badk to sedion 2.1, it should be noted the avail able results relating the stabili ty of
the nonlinea system, (1), to that of the unforced system, (5), require Lipschitz continuity of CF.

The analysis is extended by Barman (1973 to unforced smoothly-nonlinea time-varying systems
with a single equilibrium operating point (see &so Desoer & Vidyasagar 1975sedion 4.8, Vidyasagar
1993sedion 5.8.2). By applying thisresult to the perturbations

X=F(x,1) 8
of the family of linea time invariant systems,
X = AX 9

where the frozen-time nonlinea systems, (8), are uniformly exponentially stable and F(0, T) is zero (so
that the eguilibrium paoint is uniformly the origin), it follows immediately that the time-varying
perturbed system,

X=F(X,1) (20
is also exponentialy stable provided the rate of time variation is aufficiently slow (in an appropriate
sense). Consequently, provided the rate of variation is sufficiently slow, the linea time-varying
system, (7), inherits the stability robustness of the family of linea time invariant systems, (8), to
smocth nonlinea dynamic perturbations of arbitrary finite dimension which preserve the origin as the
equili brium point. In addition, it is giown by Shamma & Athans (1991 that, provided the rate of
variation is sufficiently slow, the linea time-varying system, (7), inherits the stahili ty robustnessof the
linea time-invariant systems, (8), to infinite dimensiona linea time-invariant perturbations in the
dynamics.

The foregoing results can be gplied to the system, (6), which has the same form as (7). Provided
0,F, 0,G and 00,G are uniformly bounded, locd exponential stability of the unforced system ensures
locd BIBO stability when the system is forced; that is, BIBO stability for or and dx(0) sufficiently
small (see for example, Vidyasagar & Vannelli, 1982 Vidyasagar 1993 sedion 6). Consequently,
provided the rate of variation is sufficiently slow, the linea time-varying system, (5), inherits certain
stabili ty properties of the members of the family of linea time-invariant systems,

3% = O,F(X,, T, 1)3% + OF(X,, T, , T)dr (11a)

0y = 0G(X,, Ty, T)OX +0,G(X,, T, T)Or (11b)
whereT = 0 isa onstant, X, = X (1), I = 7 (1). The family, (11), consists of the so-cdled frozen-
time lineaisations of the linea time-varying dynamics, (5).

2.3Frozen-input theory

A relationship between certain locd stability properties of the nonlinea system, (1), and the
stabili ty properties of the assciated family of linea time-invariant systems, (11), is establi shed by the
results of sedions 2.1 and 22. However, the results are confined to the dynamic behaviour locd to a
single trgjedory or equili brium operating point, which is a significant limitation of the series expansion
lineaisation theory . In particular, within a gain-scheduling context, it is almost always required to
consider the behaviour of a system relative to afamily of operating points, which spans the envel ope of
operation, rather than relative to a single operating point. The existing theory regarding the behaviour
relative to a family of equilibrium operating points, rather than just the behaviour relative to a single
equili brium operating point, stems primarily from an ealy lemma by Hoppensteadt (1966 originaly
derived in the context of singular perturbation theory. The cnditions required for this result are
satisfied by various combinations of assumptions; the statement of the result presented below is based
onthat of Khalil (1992 sedion 5.3).

Consider the smooth nonlinea system,

X=F(x,r) (12
where r O 'O O™, x O O" F(-,) is continuously differentiable on Mx(0" and has a family of
equili brium operating paints, (X,, ro), for which

Xo=H(ro), F(H(ro), ro) =0 Orear (13
Assume that there exists an open ball, X, about the origin in 0", such that eady member of the family of
frozen-input nonlinea systems,

x=F(x, ro), roar (19



isuniformly exponentially stable for initial conditions, x(0), which satisfy x(0)-H(r,) O X. In addition,
assume that H(:) is differentiable with OH uniformly bounded on I' and that OyF(z+H(r),r),
O,F(z+H(r),r) are uniformly bounded for all r0r, zOX. It follows that there eists a neighbourhood,
Xo O X, such that the forced nonlinea system, (12), is locdly BIBO stable for initial conditions
satisfying x(0)-H(r (0)) O X, and inputs, r ()0, provided r is differentiable andsup |r | is sufficiently
t20

small (Khalil 1992 sedion 5.3). It should be noted that the restrictions on the rate of variation of the
input and on the initial condition play two roles: firstly, they restrict the rate & which the frozen-input
systems, (14), are traversed and, secondly, they ensure that the state trgjedories remain uniformly
within the neighbourhood X.

Clealy, the foregoing stability analysis is not confined to the behaviour in the vicinity of a single
trajedory or equilibrium operating point. However, the members of the family of frozen-input

systems, (14), are nonlinear. From series expansion theory, there exists a neighbourhood, X (rg), such
that, for initial conditions stisfying x(0)-H(ro) O X (ro), the trgjedories of a member of the family of
frozen-input nonlinea systems, (14), are locdly exponentialy stable if and only if the @rresponding
series expansion lineaisation,

OX = O,F(H(ro), ro)dX (15
is gable. The neighbourhoods, X (ro), may be different for eadn member of the family of frozen-input
nonlinea systems. Select a region, X, which is sufficiently small that it is encompassed by every
X (r); for example, let X be the intersetion over all 10 of the X (r,). Some alditional conditions
are required to ensure that X contains an open ball about the origin and, thereby, establish a
relationship between the locd stability properties of the nonlinea system, (12), and the stability of the
family of unforced linea time-invariant systems, (15) (Lawrence & Rugh 199Q Khalil & Kokotovic
1991). The aditional conditions are relatively mild; for example, I is bounded and O,F(H(r), ro) is
differentiable for al r O (Lawrence & Rugh 1990, or the somewhat wedker requirement that
OF(H(ro), ro) is uniformly Lipschitz (Khalil 1992 sedion 4.5.1). Having imposed sufficient
additional conditions that X contains an open ball, a relationship between certain locd stability
properties of the nonlinea system, (12), and the stabili ty of the family of unforced linea time-invariant
systems, (15), can be established (Lawrence & Rugh 1990 Khalil & Kokotovic 1991), for example, by
diredly applying the result of Hoppensteadt (1966. (Also, it isimmediately evident that, provided the
input varies sufficiently slowly and the initial conditions of the state ae suitably restricted, the
nonlinea system, (12), inherits the stability robustness of the frozen-input systems, (15), to smooth
nonlinea dynamic perturbations of arbitrary finite dimension).

The foregoing stability result requires the family of equilibrium operating points to be
parameterised by the system input, r, but thisis not unduly restrictive in an analysis context (although
it is undesirable in the gain-scheduling design context, where it is more natural to parameterise the
equili brium operating points by the scheduling variable). However, the systems are dso required to be
smoath, thereby excluding discontinuous dynamics. In addition, conditions on the rate of variation of
the input and on the initial condition are required in order to restrict the rate & which the frozen-input
systems are traversed and also to ensure that the state trgjedories remain wiformly within X. The
latter constraint is required becaise the information about the plant dynamics employed in the analysis
is derived from the family of series expansion lineaisations, (15), relative to the equili brium operating

points. Furthermore, X can be no larger than the smallest of the neighbourhoods, X (r), within which
the series expansion lineaisations, (15), are valid. The analysis is, therefore, inherently confined to a
small, perhaps excessively small, neighbourhood enclosing the equilibrium operating points and
conseguently is quite conservative.

Shamma & Athans (1990sedion 4) apparently attempt to extend this type of analysis to a dassof
systems with a particular feedbadk structure and for which the family of equili brium operating pointsis
parameterised by the system output, y, rather than the input, r. The output, y, and the system dynamics
mutually interad with one another whereas the input, r, is independent of the system dynamics.
Consequently, the analysis of an output-scheduled nonlinea system is more difficult than the input-
scheduled case. Shamma & Athans (1990 establish stability conditions requiring that |y | is
sufficiently small and, in addition, that the magnitude of the inpu, r, and initial condition of a cetain
transformed state vedor, &, are sufficiently small. The latter conditions confine the anaysis, in
genera, to trgjecories, (&(t), r(t)) which lie within a small region enclosing the origin (see for
example, Shamma & Athans 199Q theorem 4.4). Since y, which parameterises the equili brium
operating point, is a subset of the transformed states, &, it foll ows that y(t) is also confined to a region



enclosing the origin. Hence the analysis cannot be gplied to an extended family of equilibrium
operating paints.

3. Velocity-based linearisation families

It is evident from the foregoing survey that the existing theory, relating the dynamic properties of a
nonlinea system to those of an associated family of linea time-invariant systems, is rather poaly
developed. Series expansion lineaisation theory is well established but is drictly confined to the
dynamic analysis, locdly to a single trgjedory or equili brium operating point, of smocth nonlinea
systems. Frozen-input techniques caer for the analysis of smooth nonlinea systems relative to a
family of equili brium operating pdnts and relate the stability of a nonlinea system to the stability of a
family of frozen-input nonlinea systems. A slow variation requirement is necessary which seemsto be
inherent to this type of analysis, implicitly restricting the dass of allowable inputs and initial
conditions; that is, implicitly restricting the trgjecories to remain sufficiently close to the eguili brium
operating points. In order to relate the stability of the nonlinea system to the properties of a family of
linear time-invariant systems, a further explicit restriction on the dlowable trgjecories is necessary to
ensure they remain sufficiently close to the equilibrium operating points that series expansion
lineaisations are valid. Thislatter restriction is not a priori necessary yet may be very strong since the
neighbourhoods within which the series expansion lineaisations are valid may, in genera, be
excessively small. The utility of frozen-input theory is, thus, somewhat diminished sinceit may imply
a high degreeof unnecessary conservativeness. Series expansion lineaisation theory and frozen-input
theory consider only the stabili ty properties of the nonlinea system and provide littl e dired insight into
other dynamic properties, such as the transient resporse. When the scheduling is not continuous, few
techniques, other than extensive simulation testing, appea to be available for analysing the dynamic
behaviour of the antrolled system.

The requirement is to develop techniques for the dynamic analysis of nonlinea and gain-scheduled
systems which addressthe main deficiencies of the existing theory. In particular, the mnservativeness
of the analysis techniques should be minimal. Although, a slow variation requirement of some sort
seems inevitable, it should be & weak as possble; that is, there should be no unnecessary restriction to
small neighbourhoods of the eguili brium operating points. In addition, whil st stabili ty is essential, other
dynamics properties are dso usually important. Hence the analysis should apply to cther aspeds of
the dynamic behaviour, such as the transient response. Motivated by the requirement to accoommodate
gain-scheduled systems which switch between locd controller designs, the analysis should not be
confined to smooth nonlinea systems but should also cater for discontinuous nonlinea systems.

In this sdion, velocity-based lineaisation families are proposed with the am of developing an
appropriate framework for addressng these issues. Nonlinea systems with dynamics,

X=F(x,r), y =G(x,r) (16)
are mnsidered, where F(-,) and G(-,) are continuous with Lipschitz continuous first derivatives, r [
O™ denotes the input to the system, y O 0P the output and x O 0" the states. The set of equilibrium
operating points of the nonlinea system, (16), consists of those paints, (Xo, Yo, I'o), fOr which

F(Xo, o) =0, Yo = G(Xo, I'0) (17)
Let ®:0"x0O™ denote the space onsisting of the union of the states, x, with the inputs, r. Assume [[,F
OF0OF ...(OF)™0,F] is rank n Ox,r. The set of equilibrium operating points of the nonlinea
system, (16), forms a locus of paints, (Xo, ), in @ and the response of the system to a genera time-
varying input, r(t), is depicted by atrgjedory in ®.

3.1 Approximation by first-order series expansion about an equilibrium operating point

When the dynamic behaviour of a nonlinea system is investigated by analysing an associated
family of linea time-invariant systems, the family is most commonly chosen to consist of the first-
order series expansions relative to the equili brium operating points of the nonlinear system. In this
sedion. the extent, to which the solutions of the nonlinea system are gproximated by the solutions of
the members of this family, isinvestigated.

3.1.1 Local to asingle gquilibrium operating point



Consider the situation when the solutions to the nonlinea system, (16), are restricted to the vicinity
of a single equilibrium operating point, (Xo, ro). Employing a standard series expansion approach
relative to (Xo» o), the nonlinea system, (20), can be gproximated by the linea dynamics

OX = O4F(Xo, o) OX + L F(Xo, I o) OF (189)

0y = [04G(Xe, o) 0K + 0, G(Xo, Io) OF (18b)
together with the dgebraic input, output and state transformation

OF =r-Ty, ¥ =Yo+0y, X =0X +X0,X—5X (18c)

provided x,+0x O Ny ro+0r 0 N;, where the neighbourhoods, Ny and N,, of, respedively, x, and r,, are
sufficiently small. Since the transformations, (18c), are fixed, the system dynamics are, locdly,
completely described by the linea time-invariant dynamics, (18a,b). Asobserved in sedion 2.1, even
though the stability of the nonlinea system, (16), can be determined from the linea system, (18) ((16)
being locdly exponentially stable if and only if (18) is gable), no indication is given of the extent to
which the solution, X (t), of (18) approximate the solution, x(t), of (16).

Expanding, with resped to time, x(t) relative to aninitial time, t;,

X(t) = X(ty) + X ()3t + YoX (t)30 + £, St=t-t, (1%)
where,

&= X() - {X(t) + X (t)t + %X (t)t} (190

X (ty) = F(X(t), r(to)) (19)

X (t2) = OxF(X(te), r(t)) X (to) + O:F(X(ta), r(ty) 1 (t) (199

It should be noted that the goproximate series expansion, X(t) , obtained when €, is negleded in (19a),
satisfies,
X(t) = x(ty), X(t;) =x(t,), X(t,) =X(t,) (20)
and is, therefore, a second-order approximation to (19).
The solution, X (t), to (18) may also be expanded with resped to time &,

R (t) = X (t) + X ()3t + Yok (t)O2 + £, (21a)
where,

£ = R() - {R (1) + X (Wt + %X (L)) (21D
When X (t;) equals x(t;) so that both (16) and (18) have the same initial conditions, it is evident from
(18) that,

% (t) = OxF(Xo, o) (X(t2)-Xo) *+ LiF(Xo, o) (r(ta)-ro) (224)
x(tl) OxF(Xo 0) x(tl) + O0F(Xo, o) T (t1) (22b

Clealy, the derivatives, x(tl) and x(tl) are not equal to x (t;) and X (t;). Consequently, the solutions
to (16) and (18) are not tangentlal at time zeo. Indead, when there is no restriction on t , the

difference between X (t;) and X (t;) may be unbounded. Therefore, X (t) only provides a zeoeth- order
approximation to x(t). Thereason isthat, in contrast to X(t) , the expansion is carried out relative to the
equili brium operating point, (Xo, '), rather than the adual initial condition of the system, (x(ty), r(ty)).
Hence whilst indicating stability, (18) provides, in general, a somewhat poa indication of the time
response of (16).

This result is perhaps a littl e surprising since the series expansion linearisation relative to a single
equili brium operating point has been in widespread use by control engineas for many yeas and this
body of experienceindicates that it is of grea utility. Of course, the gpproximation error depends on
the strength of the system nonlineaity. When the nonlineaity is weak, the gproximation error may be
small even for system trajedories which do not remain particularly close to a spedfic eguili brium
operating point. In this stuation, the series expansion lineaisation relative to an equili brium operating
point may be quite alequate. Indeed, since linea controller designs are often very successful, it
follows that many systems are, in the foregoing sense, weakly nonlinear. When the nonlinedaity is
stronger, the gproximation error also remains bounded and relatively small provided the system
trgjedories are for the most part confined to a sufficiently small neighbourhood about the spedfic
equili brium operating point, (Xo, ro). Hence, despite its relatively poar approximation ability, the first
order series expansion, (18), about a single equili brium operating point isindeed of utility, particularly
sinceit has the virtue of beinglinea.

3.1.2 Local to afamily of equilibrium operating points



In the mntext of gain-scheduling it is not sufficient to consider the stability behaviour in the
vicinity of asingle equili brium operating point. Instead, the input and initial condition are assumed to
be restricted such that the solutions to (16) tracetrgjecories in @ which remain within a neighbourhood
about the locus of equili brium operating points but are not confined to a neighbourhood about a single
equili brium point; thet is, the solution, x(t), to the nonlinea system moves from the vicinity of one
equili brium operating point to the vicinity of another astime evolves.

Since the solution, x(t), to the nonlinea system does not stay in the vicinity of a single eguili brium
operating point, it is necessary to consider a family of associated first-order expansions relative to the
equilibrium operating points. By combining the solutions to the members of this family in an
appropriate manner, an approximation to x(t) can be obtained that does not involve solving the
nonlinea dynamics. Over a time interval, [t,t;], an approximation is obtained by partitioning the
interval into a number of short sub-intervals. Over ead sub-interval, the gproximate solution is just
the locd solution of the series expansion lineaisation corresponding to a neaby equili brium operating
point (with the initial conditions chosen to ensure antinuity of the gproximate solution). As the
durations of the sub-intervals are reduced, a greaer number of loca solutions are used and it might be
expeded that, as the sub-intervals become smaller and the number of locd solutions employed
increases, the resulting piece-wise @ntinuous approximation might converge to the exad solution, x(t),
of the nonlinea system. However, from the analysis of sedion 3.1.1, the locd solutions are only
acarrate to zeroeth order; that is, the goproximation error over eat sub-interval is propartiona to its
duration. Hence athough the goproximation error for ead locd solution deaeases as the duration of
the sub-intervals is deaeased, it is counter-balanced by the arresponding increase in the number of
locd approximate solutions employed and the overal approximation error need not deaeesse (see
Appendix A). In contrast to the situation considered in sedion 3.1.1, both the exad solution to the
nonlinea system and the gproximate solution are not confined to a small neighbourhood about a
single euilibrium operating point. Hence, a large difference between them can develop and the
solutions to the family of first-order series expansions relative to the equili brium operating points are,
therefore, a poar approximation to the solution to the nonlinea system (16).

Moreover, the input, output and state transformations, (18c), vary with the eguili brium operating
point. Hence when the solution to (16) traces a trgjectory which is not confined to a neighbourhood
about a single equili brium operating point, the relationship between the non-locd dynamics of the
nonlinea system, (16), and the locd linea dynamics, (18ab), is, in fad, no longer straightforward.
Inded, the first-order series expansion systems, (18), may be reformulated as,

X = '{ DXF(Xm ro)xo + DrF(XOy ro)ro}"' DXF(Xm ro) X+ DrF(Xm ro) r (233-)

y= '{ DXG(XO! ro)xo + DTG(XO! ro)ro}"' DXG(Xm ro) X+ DI’G(XO! ro) r (23b)
Each member of the family of first-order representations, (23), now has the same input, output and state
at every equilibrium operating point and the input, output and state transformations are no longer
required. However, they are no longer linea owing to the presence of an inhomogeneous term. The
main advantage of the first-order series expansions relative to the equili brium operating points, namely
the lineaisation of the nonlinea dynamics, is, therefore, lost.

3.2 Firgt-order series expansion about a general operating point

When the solutions to the nonlinea system are not confined to the vicinity of a single eguili brium
operating point (such as in gain-scheduling applicaions), it is evident that the family of first-order
series expansions relative to the equilibrium operating points, (18), or equivaently, (23), offers neither
an acarate gproximation to the solution of the nonlinea system nor the benefits of lineaity. An
dternative gproad to locd representation of the nonlinea system is, therefore, required.

Consider the behaviour of the nonlinea system, (16), when there ae no restrictions on the dassof
allowable inputs and initial conditions. The solutions to (16) may tracetrajedories anywhere in ® and
are not confined to the vicinity of either asingle equili brium operating point or the locus of equili brium
operating points. Suppaose that the nonlinea system is evolving along atrgjecory, (x(t), r(t)), in ® and
at time, t;, the trgjedory has readed the paint, (X, ). It isemphasised that the point, (x4, r1), need not
be an equili brium operating point and, indeed, may lie far from the locus of equili brium operating
points. From Taylor series expansion theory, the subsequent behaviour of the nonlinea system, (16),
can be gproximated, locdly to (x, ry), by the first order representation,

OX = F(Xq, r1) + OF(Xq, r1) 0X + O F(Xy, rq) Or (249)
69 = DXG(X]_, r]_) OX + DrG(Xl, r]_) or (24b)

=r-ry, §=yi+38y, X =8K% +xg, X =X (24c)



provided x;+0X [ Ny rq+8r O N;, where the neighbourhoods, Ny and N, of, respedively, x; andr; are
sufficiently small.
When (24) and (16) have the same initial conditions, (Xy, r1), the solution to (24) satisfies,

X (t) = F(xq, r1) = X (ta) (259)

X (t) = OxF(Xq, r1) X (t) + O F (X, ra) t(t) = X (ty) (25b
Hence, the solution to (24) is, initialy, tangential to the solution of (16) and, indeed, locdly to time t;,
provides a first-order approximation to X (t) and a second-order approximation to x(t). The reason is
that, in contrast to the series expansion lineaisation, (18), the series expansion, (24), is performed
relative to the adual initial operating point, (xy, 1), rather than an adjacent equili brium operating point.

The solution to the first-order series expansion, (24), provides a valid approximation only while the
solution, x(t), to the nonlinea system remainsin the vicinity the operating point, (x4, r1). However, the
solution, x(t), to the nonlinea system nead not stay in the vicinity of a single operating point and so it
is necessary to consider a family of first-order series expansions relative to all operating points.
Following a similar approach to that described in sedion 3.1.2, consider an approximation to x(t) over
atime interval, [ty,t;], obtained by partitioning the interval into a number of short sub-intervals. Over
ead sub-interval, the goproximate solution is the solution to the first-order series expansion relative to
the operating point readed at the initial time for the sub-interval (with the initial conditions chosen to
ensure antinuity of the gproximate solution). As before, the number of locd solutions employed is
dependent on the duration of the sub-intervals. However, the locd solutions are now accurate to
seoond order; that is, the goproximation error is proportional to the duration of the sub-interval cubed.
Hence as the number of sub-intervals increases, the gproximation error asociated with each rapidly
deaeases and the overall approximation error reduces. Indeed, the overal approximation error tends to
zero as the number of sub-intervals becomes unbounded (see Appendix A). Hence in contrast to the
series expansion relative to an equili brium operating point, the first-order series expansion, (24), can
provide an acarate gproximation to the solution of the nonlinea system. Moreover, this
approximation property holds throughout @ and is not confined to the vicinity of a single euili brium
operating point or even of the locus of equili brium operating points. Provided some cae is taken, in
many circumstances the potential clealy exists with the family of first-order series expansions, (24),
(but not with the family of series expansion lineaisations, (18)) to infer the transient response of the
nonlinea system, (16), from the responses to a few members, sometimes one member, of the family.

Combining (24a,b) with the locd input, output and state transformations, (24c), ead member of the
family of first-order representations, (24), may be reformulated as,

X ={F(Xg, r1) - OxF(Xq, r1) Xg - O F(Xg, ro) roi} + O4F(Xq, 1) X + O F(Xg, ) 1 (26a)

¥ ={G(Xq, 1) - 0xG(Xq, r1) X1 + 0,G(Xg, rdr1 } + OG(Xq, r1) X + 0:G(Xq, o) r (26b)
where the state, input and output is the same & every paoint in ®. It is evident that (26) subsumes the
family of systems, (23), and, also, (18). Whilst the first-order series expansions, (26), are a better
approximation than (23), their degreeof nonlineaity is no greder.

3.3Velocity-based linearisation

The first limitation of first-order series expansions relative to the eguili brium operating points,
spedficdly the inability to provide an acaurate locd approximation to the solution of the nonlinea
system, (16), is overcome by the first-order series expansions, (26).. However, the second limitation,
namely itslack of lineaity, isnot. Thisdifficulty may be resolved by appropriate transformation of the
system. By differentiating, (26) may be reformulated in the equivalent velocity-based form,

~

X =W (274)

W= OF(Xq, ) W+ O;F(Xq, 1) P (27b)

¥ = 06Xy, r) W + 0,G(xq, 1) (270)
With appropriate initial conditions, namely,

R (t) = x(t), W (t) = X (t) = X (1) = F(xs, 1), ¥ (t) = y(tz) = G(xq, 1) (27d)

the transformed system, (27), is dynamicdly equivalent to the original system, (26). In contrast to (26),
the transformed system, (27), is linea. Associated with every point in @ is a velocity-based
lineaisation, (27). Hence, avelocity-based lineaisation family, with members defined by (27), can be
asciated with the nonlinea system, (16).
Differentiating (20), an alternative representation of the nonlinea systemis
X =w (283)



w = OF(x, r)w + O.F(x, r) ¢ (28b)

y = OG(x, r)w + O,G(x, r) f (28c)
Dynamically, (28), with appropriate initial conditions corresponding to (27d), and (16) are equivalent.
It should be noted that the transformation relating the system, (28), to the system, (16), maps the locus
of equilibrium points, (X, ro) ONnto the origin, w = 0 = . The relationship between (28) and the
members, (27), of the ssociated velocity-based lineaisation family is dired; indeed, (27) is mply the
frozen form of (28) at the operating paint, (X1, r1). (Whenw =F(x, r),y = G(x, r) isinvertible & every
operating point, (X, r), in an appropriate neighbourhood enclosing the locus of equilibrium operating
points, so that x may be expressed as a function of w, r and y, then the transformation relating (28) to
(16) is, in fad, algebraic). Similarly to the discussion in sedion 3.2, the solutions to the members of
the family of velocity-based lineaisations, (27), can be pieceal together to approximate the solution to
the nonlinea system, (28). In this case, the X (t) are till second-order approximations to the x(t) but
the W (t) are first-order approximations to the w(t). However, with minor amendments to the analysis
of Appendix A, it is graightforward to show that the piecewise gproximation converges to the exad
solution.

The members of the family of conventional series expansion lineaisations, (18), are individually
only valid in the vicinity of an equilibrium operating point. In contrast, a member of the family of
velocity-based lineaisations, (27), is valid in the vicinity of any operating point. Moreover, the time-
evolution of the solution of the nonlinea system is indicaed by the solution to the velocity-based
lineaisations. Hence, by means of lineaisation at any operating point, the family of velocity-based
lineaisations, in addition to fadlitating ron-locd dynamic analysis far from the eguili brium operating
points, enables the transient behaviour to be investigated .

4. Stability analysis of gain-scheduled & nonlinear systems

In the previous sdion, the aility of the velocity-based lineaisations to provide an indication of
the transient behaviour of a nonlinea system is investigated. However, the relationship of the stabili ty
of the nonlinea system, (16), to the family of velocity-based lineaisations, (27), is yet to be
established. In particular, it is required to develop stability results which are not unnecessarily
conservative; that is, which do not restrict the trgjedories to an unnecessarily, perhaps excessively,
small neighbourhood about the locus of equilibrium operating pants. Since the velocity-based
lineaisation is valid at any operating point, not just equilibrium operating points, it might be expeded
to be of asdstance in achieving this objedive. In this dion, the relationship between the stabili ty
properties of the nonlinea system and those of its asociated family of velocity-based lineaisations is
investigated.

The velocity states, w, are related to the states, x, by the nonlinea function, F:(x, r) > w. It is
assumed that the inverse mapping from w to (x, r) is bounded; that is, x is bounded when w and r are
bounded. Provided |w(t)| is sufficiently small, it follows that the states, x(t), remain close to the locus
of equilibrium operating points and stability of the full nonlinear system, (28), is guarantead by
stability of the internal dynamics, (28h). It is, therefore, sufficient to confine mnsideration to the
behaviour of the dynamics, (27) and (28b). The assumption, that the inverse mapping is bounded, is
quite wedk, particularly in a gain-scheduling context. For example, when OiF(X, r) exists and is
uniformly invertible, then by the mean value theorem (see for example, Khalil 1992,

IF(X, r) - F(x1, 1)k =|0F(z, 1) (X-X1) |2 = M[X-X|> (293)
where z lies on the line segment joining x and x; and M, the minimum singuar value of OyF(z, r),
satisfies

M >0 (29b)
Hence,

X(t) - Xo(r (1)) 2 < W(t) /M (30)
where Xq(r (1)) isthe state associated with the equilibrium operating point at which the input equalsr (t).

As noted in sedion 3.3, the transformation relating the system, (28), to the system, (16), maps the
locus of equilibrium paints, (X,, o) onto the origin, w = 0 = 1 ; that is, onto a single equili brium
operating point in the transformed co-ordinates. Moreover, the velocity-based lineaisation is smply
the frozen form of the nonlinea system. Hence, the analysis framework reduces to a form which is
similar to that employed in conventional frozen-time/frozen-input theory (sedion 2). Consequently, it
might be expeded that, by employing the velocity transformation, frozen-time/frozen-input theory,
albeit appropriately modified, might be extended to resolve the mnservativeness of conventional
theory. As expeded, the Lyapunov-based analysis employed in frozen-time/frozen-input theory can,



indead, be extended in this manner (Appendix B). A slow variation condition is required which has the
form of arestriction on theinitial velocity conditions, w(0), and rate of variation, r (t), of theinputs. It
is clea from (28) that this condition also implicitly restricts the rate of variation of the state, x(t), and
input, r(t). Equivalently, the condition ensures that the state trajedories are cnfined to an appropriate
region enclosing the locus of equilibrium operating points. However, in contrast to the results
discussed in section 2.3, thisrestriction is purely a mnsequence of the slow variation requirement, with
no additional requirement to constrain the trajedories to be sufficiently close to the eguili brium
operating points that series expansion lineaisations relative to them are valid. In this nsg, it is as
weak as possble. Indeed, when, for example, a single Lyapunov function exists which is common to
every member of the velocity-based lineaisation family, there is no restriction on the rate of variation
of the system. In this case, the analysis is global in nature and indicates that the nonlinea system is
stable for any input and initial condition.

However, the Lyapunov-based anaysis requires that the nonlinea system is smocth and therefore
excludes, for example, gain-scheduled systems which switch discontinuously between locd controll er
designs. Moreover, the stability analysis approadc is conceptually quite different from the piecewise-
approximation approach uilised transient analysisin sedion 3. To resolve these issues, it is necessary
to adopt an alternative stability analysis approad; in particular, an approach which, in philosophy, is
similar to the piecewise gproximation methods of sedion 3 is attradive

4.1 Approximation over an interval

In sedion 3, a piecewise temporal approximation by the family of velocity-based lineaisations,
(27), of the nonlinea system, (16), is investigated. However, this approac is not appropriate for
analysis of stability properties. Insteald, a spatial piecewise gproximation is required. Consider the
nonlinea dynamics, (28h), and assume that the initial conditions are,

X(ty) = Xy, r(ty) =ry, w(ty) =wy = F(Xy, rq) 31
The mrresponding velocity-based lineaisation is (27b) and theinitial conditions are,
X(t) =%, W(t)=w; (32

Let a; denote a positive finite constant and ||, denote both the p-norm, p=1,2,...0, and, where
appropriate, the induced p-norm. The p subscript is dropped when any p-norm may be employed. In

addition, let ||, denote sup p|.

tt,,t,+T)
The solution to the velocity-based lineaisation, (270), may be eplicitly written as

W(t) = e MO IE(L) + f eI Ry, r)F (9)ds (33
The nonlinea dynamics, (28b), may be reformulated as the perturbed linea dynamics,

W= OxF(Xg, rw + O F(Xg, 1) |+ €6 (349)
where,

er = {OF(X, 1) - OxF(Xg, r)}w + {TF(X, 1) - OF(Xq, ro)} ¢ (34b)
It foll ows that the solution to the nonlinea dynamics may be expressed as,

w(t) = e et (t, ) + [ @D F(x,,ry)i(s)+ ex(9)ds (35

However, owing to the perturbation, &g, the solution to the nonlinea dynamics might exhibit
charaderistics which are quite different from the solution, (33); for example, ¢ might be unbounded,
in which case the solution to the nonlinea dynamicsis aso unbounded and the nonlinea dynamics are
unstable. In order to investigate the dcharaderistics of the solution to the nonlinea dynamics, it is
necessary to investigate the charaderistics of .
Consider the time interval, [t;, t;+T), and assume that for any o, there exists a & (which can
depend on T) such that provided
[l +[f[-, <25 (364)

then
lecl, < o Cwly, *lfll, } < ast g, +ll 3 with oC(0,5,,) (36b)
where T,[0, T]. Note, X, and so w=X, is arbitrary here and not necessarily a solution to the nonlinea

dynamics. Whilst a If’ may depend on T,, it is emphasised that the d and a; are uniform bounds which

may depend on T but are required to be independent of T,. The condition, (36), is esentialy a
smoathnessrequirement on COyF(x, r) and O,F(X, r). Inthe cntext of series expansion analysis, this



type of reguirement seems unavoidable. In fad, the condition, (36), is rather we&k; for example,
when[,F and [0,F are locally Lipschitz continuous,

IOF(x, 1) - OF(R, £ )< L{x-X|+r-F [} O, r), (%, )0 ® (373)
IOF(x, 1) - OF(R, £ )< L{x-X|+r-F [} O, r), (%, )0 @ (37b)
where,
D ={(X, r): [X-Xq| < 28T, |r-r4| < 28T} (372)
then it foll ows from (34b) that,
ler()] < L{X(R)-Xa| + Ir (©)-raH{ O]+ |1 ©)} Ot Oty ty+To) (39
<L{|wly, To+ [l T WOI+ 1 O Ot Oty ty+To) (39
< 2ToLo{w(R)] + T (O Ot Oty ty+To) (40)
< 2TL3{jw(t)| + |t (®)} Ot O [ty, t+To) (41)

and so, provided & is sufficiently small (lessthan 8, /2TL), (36) is stisfied.

In addition, it is assumed that the solutions to the nonlinea dynamics, (28h), are continuous over
the time interval, [t;, t;#T). Once aain, this is a weak smoothness requirement onOcF(x, r) and
OrF(x,r) and, from standard theory (see for example, theorem 2.5, Khalil 1992), it is stisfied by, for
example, the locd Lipschitz condition, (37). Also, assume that |J,F(Xy, r1)| and |O,F(xy, ri)| are
uniformly bounded and the @genvalues of [,F(xy, ry) lie in the left-half complex plane and are
uniformly bounded away from the imaginary axis; that is,

[OxF(xq, r)| < 0z, Ref{ eig [LkF(xy, r)] } <-03<0, I (Xq, )] < 0g, O Xq, 14 (42
Under these aonditions, the dynamics of the velocity-based lineaisation, (31b), are uniformly stable
and (Desoer 1969),

Ie'DxF(Xlurl)(t'tl) |<a 5e'ue(t't1) (43)
where the amplificdion fador, as, is greder than or equal to one and the exponent, ag, is grictly
greder than zero. However, it is noted once gain that there is no assumption that €r is bounded and
S0, at this point in the analysis, the nonlinea dynamics, (34), may be unstable. (The requirement that
the solutions are mntinuous over any finite interval excludes pathologicd instabilities, such as finite
escgpe-time behaviour, associated with non-smooth dynamics. However, as noted previoudly, in a
series expansion theory context some degreeof restriction to smoaoth behaviour seems unavoidable).

Finally, it is assumed that &, ischosen such that

Oq, < 005 (449)
and that the inputs and initial conditions are restricted to the dass stisfying

o W(ty) |+ -2 (a, + )],
GG

- <Sp<d (44b)
1-—2aq,
GG
and

Il <3, (a40)
It is noted that (44) implies that,

w(t)] <9, ||r||T <o (49
Aninterval, [ty, t;+T,), is ®leded with T,0(0, T], for which|w/|, islessthan3. The existenceof such
atime interval is guaranteed by (45) and the continuity of w(t). On this interval,|w|, +|f|; is less
than 20 and so, substituting (36) and (43) into (35),

[, < astw(t)] + ag/ase |, + s, su<s (46)

Since p is independent of the time interval, T,, the analysis may be repeded to oltain successively
larger intervals, T;, for which [wl; +fl; is less than 25 and||w||Ti is less than or equal to p.
Consequently,

[wly <u<3 (47
and

lee], <2a, (48)



The bound, (47), is not particularly tight. However, it guaranteesthat |w/, + ||, isless than 25 and
S0, on substituting (36) and (43) into (35),

WOk ose o) w(t)ras(agta) (1-e W) fag ]+ f ase e Dayw(g)lds OOt t+T)

I+

(49
Applying the Bellman-Gronwall inequality to (49),
(g ta)(a-e )
(O] a5 @ [+ 28 . [y OO [t T (50)
Og

The inequality, (50), is a much tighter bound than (47) and, in particular, indicates that, under the
foregoing assumptions, when the input, r, is constant, the solution, w, of the nonlinea dynamics, (28h),
is contained within an envelope which decays exponentially over the interval, [ty, t;+T).

It foll ows from (27b) and (28b) that,

W -W= DXF(X]_, rl)( W 'W) + & (51a)
with theinitial conditions,
W (ty) - w(ty) =0, (51b)

Hence the diff erence between the solution to the velocity-based lineaisation, (27h), and the solution to
the nonlinea dynamics, (28h), is smply the residud, €, filtered by the lineaised dynamics; that is,

W O-w) = [ eFF e (g9ds (52
It is assumed that the inputs and initial conditions belong to the dass stisfying (44). Substituting (36)
and (43) into (52),

« a ,
W -w; < G—S oz (Il +[ffl; ), 0T,0[0, T] (53)
6 o]
and,
A a .
¥ -wil < —=au(wl +ffl) < (54)
6
where A equals 22—5 0:0. The upper bound on the pegk difference between the solution to the
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velocity-based lineaisation and the solution to the exad nonlinea dynamicsis propartional to the pegk
value of the exaa solution but can be made abitrarily small by suitably restricting the inputs and initial
conditions (and thereby ).

4.2 Stability analysis

It is established by the analysis of sedion 4.1 that, over a time-interval of length, T, the solution to
the nonlinea dynamics is approximated by the solution to the velocity-based lineaisation with an
acaracy which depends on the initial conditions and the rate of variation of the input; that is, on the
rate of change of the input and the state. Consider, firstly, the situation when the input is zero; that is,
the unforced case. Provided that the dynamics of the velocity-based lineaisation are stable, then over a
sufficiently long time interval the solution to the lineaisation, relative to a spedfic operating point,
must deaesse in magnitude. Hence owing to the aility of the velocity-based lineaisation to
approximate the nonlinea system, when the length of the time interval, T, is aufficiently gred, the
solution to the nonlinea dynamics must also deaeese over the interval. In other words, over the time-
interval, T, the ‘gain’ of the nonlinea system is lessthan unity. Consequently, over a sequence of such
time-intervals, the solutions to the nonlinea dynamics must decy towards the origin; that is, the
nonlinea system is gable. This argument may be generalised to the forced situation athough the
solution to the nonlinea dynamics converges to a region enclosing the origin rather than to the origin
itself. Similarly to the Lyapunov-based analysis, the foregoing analysis requires a restriction an the
inputs and initial conditions (to ensure that the interval, T, is sufficiently long) which is smply a slow
variation condition. This restriction is purely a cnsequence of the slow variation requirement and, in
the same sense @ in the precaling discussion of the Lyapunov-based analysis, is as weak as possble.
Indeed, when, for example, the magnitude of the solution to the lineaisation uniformly deaeases
monotonically with time (in which case as is unity), the length, T, of the time interval may be zeo and
thereis no restriction on the rate of variation of the system; that is, the analysisis global in nature.



The foregoing argument employs a piecewise-approximation to relate the stability properties of the
nonlinea system to those of the aswciated velocity-based lineaisation family. The crresponding
rigorous derivation is presented in Appendix C for the situation when the nonlinea system is smooth
(in the sense that F(-,-,) is differentiable with bounded, Lipschitz continuous, derivatives), and in
Appendix D, for the situation when the nonlinea system contains discontinuities (OyF and O;F need
only be piecewise @ntinuous with resped to time dong trajedories of the nonlinea system). The
latter analysis acoommodates switched and ather, discontinuous, forms of scheduling as required. The
asped of the analysis of Appendices C and D which primarily differentiates it from previous work is
the use of the lineaised dynamics along the solution trgjedory of the nonlinea system and not the
lineaised dynamics at the eguili brium operating points.

The analysis may be extended to investigate stability robustnessby suitably augmenting the system
to include anonlinea dynamic perturbation. It then follows immediately from the foregoing analysis
that, provided the input and initial condition are gpropriately restricted, the nonlinear system is
robustly stable with resped to finite-dimensional dynamic perturbations for which the members of the
family of velocity-based lineaisations of the perturbed system are uniformly stable. Moreover, the
robustness extends to a broad class of distributed/infinite-dimensional dynamic perturbations (by
straightforward application of the results of Appendix E to the analysis of Appendices C and D). Of
course, this robustnessanalysisis confined to dynamic perturbations which are smooth or for which the
discontinuities occur sufficiently slowly. It may be extended to more general perturbations by
employing the small gain theorem. The analysis in Appendices C and D indicates that the induced
norm, or ‘gain’, of the nonlinea dynamics is less than or equal toy (as defined by (D.5h), Appendix
D). Consequently, from the small gain theorem, the dynamics are robustly stable with resped to

general perturbations with induced norm lessthat 1/y . Moreover, it is noted that as the restriction on

the dass of inputs and initial conditions is tightened (3 reduced), y tends to a,05/0¢ which is simply

the uniform bound on the induced norm of the family of velocity-based lineaisations; that is, the
nonlinea system inherits the robustness of the linear family to general perturbations. (Of course, the
small gain theorem only provides sufficient conditions for stability and bah the nonlinear system and
the members of the linea family may well be robust to a wider classof perturbations).

5. Conclusions

The existing theory, relating the dynamic properties of a nonlinea system to those of an associated
family of linea time-invariant systems, is rather poaly developed. Series expansion lineaisation
theory is well established but is grictly confined to the dynamic analysis, locdly to a single trajecory
or equili brium operating point, of smooth nonlinea systems. Frozen-inpu tedchniques caer for the
stability analysis of smooth rnonlinea systems relative to a family of equili brium operating points but
are onfined to an unnecessarily, perhaps excessively, small neighbourhood about the equili brium
operating points. Series expansion theory and frozen-input theory consider only the stability properties
of the nonlinea system, providing little dired insight into ather dynamic properties sich as the
transient response.

In this paper, a family of velocity-based lineaisations for a nonlinea system is propcsed. In
contrast to the mnventional series expansion lineaisation, a member of the family of velocity-based
lineaisations is valid in the vicinity of any operating point, not just an equilibrium operating point.
Moreover, unlike series expansion lineaisations relative to equili brium operating points, the solutions
to the members of the family of velocity-based lineaisations can be pieced together to approximate the
solution to a nonlinea system. Hence, the velocity-based lineaisations, in addition to facilitating
dynamic analysis far from the equilibrium operating points, also enable the transient behaviour of the
nonlinea system to be investigated.

The family of velocity-based lineaisations is utilised to derive a stability condition for smooth
nonlinea systems which avoids the restrictions, to trgedories lying within an unnecessary, perhaps
excessively, small neighbourhood about the eguili brium operating points, inherent in existing frozen-
input theory. A dow variation condition is required; that is, a restriction on the dlowable rate of
change of the input and initial condition. However, in contrast to previous results, it is emphasised that
thisrestriction is purely a consequence of the slow variation requirement and, in this nse, isawe& as
posshle. Inded, for systemswhere there is no restriction on the rate of variation, the analysisis global
in neture. The stability analysis is extended to include nonlinea systems with non-smooth dynamics,
and the corresponding conditions for stabili ty are derived.



The analysis techniques developed, whilst quite general, are motivated by the gain-scheduling
design approach and clealy have the patential for dired applicaion to the analysis gain-scheduled
systems.
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Appendix A — Piecewise approximation

Consider the solution, x(t), to the nonlinea system, (16), over atime interval [0, T], T>0. Divide
this interval into n smaller sub-intervals, [T;.1, Ti], i=1,2,..n, T;=iT/n, and consider the piecewise
approximation, X (t),
3K (1) = F(X (Ti-0), 1 (Ti0)) + OGF(X (Tica), 1(Ti-0)) X (B) + OrF(X (Tiog), r(Ti0)) Or (1) tO[Tiog, Ti](A. 1)

or(t) =r(®)—r(Tiy), X(t)=08X(t)+ X(Tiy), X(t) =3X(t) tO[Ti1, Ti]  (A.lb)
with theinitial condition
% (0) = x(0) (A.1c)

Let x;(t) denote the state solution to the nonlinea dynamics, (16), starting from time, T;_;, and with the
initial condition,

Xi(Ti-2) = X (Tia) (A.2)
Integrating (A.1a), it foll ows that



5\((t) = Xi(-l—i-l)+Xi(-|—i-l)(t_-|—i-1)+%Xi(Ti-l)(t_Ti-l)2 +E tI:l[Ti—la Ti] (A-3a)
where,
=1 ( OFR(T.L), 1(T0) (SRS BR(T,u)s) + O, FR(T,,), 1(T.1)) (3 (s) = & (T,,)s))ds (A.3b)

Assume that F(e,*) is twice ontinuously differentiable. From Taylor series expansion theory, there
exists afinite onstant, k,, such that

|%(S) - R(T )< Ko(s-Ton)?, 18 (9) = & (T,)sl< K, (s-Toy)? (A.4)
Hence, there exists afinite constant, k;, such that
le(t)] < ky(t-Tip)? tO[Ti, ] (A5)

From Taylor series expansion theory, the solution obtained by truncating (A.3a) before € is a second
order approximation to Xi(t). Hence it follows from (A.5) that X (t) is aso a second-order
approximation to x;(t); that is, there exists afinite anstant, k, such that

[Xi()- X (B)] < ka(t-Ti0)? (A.6)
SinceF(+,*) iscontinuous and dfferentiable, the solutions to the nonlinea system depend continuously
on the initial conditions and, for some pasitive finite mnstant K (see for example, Khalil 1992
Theorem 2.5),

Xi(t)- X()] < Xi(Ti0)-X(Tip)| €T tU[Tiq, T (A7)
Hence, applying inequalities, (A.6) and (A.7), to the reaursive definition, (A.1),

|X (T)-X(T)| < ko(T/n)3(1-€<T)/(1-€T") (A.8)
Since

lim ko(T/N)3(2-e<M)/(1-e" =0 (A.9)
it follows that,

lim |X(T)-x(T) [=0 (A.10)

and so the piecewise gproximation, (A.1), can be made abitrarily acarate by increasing the number
of sub-intervals employed.

In comparison, consider the situation when a zeoeth-order approximation is employed over eath
sub-interval, [Ti1, Ti] (eg. when the series expansion lineaisation about an adjacent equilibrium
operating point is employed); that is,

Xi(t)- X ()] < k(t-Ti.y) tO[ i1, Ti (A.11)
Inthis case,

|X (T)-x(T)| < k(T/n)(1-€<T)/(1-<T") (A.12)
and since,

lim k(T/n)(1-e<T)/(1-e") = k(T-1)/K 20 (A.13)

n-— oo
it follows that the gproximation error need not converge to zero as the number of sub-intervals is
increased.

Appendix B - Lyapunov-based analysis

When the solution, w, to the nonlinea system, (28), is continuous, Lyapunov theory may be
employed to analyse the stability. Consider the andidate Lyapunov function, V,

V = w'P(x,r)w (B.1a)
with P(x,r) positive definite and
P(x, r) OF(x, r) + OFT(x, 1) P(x, r) =-I Oxr (B.1b)

Provided the (linea time-invariant) members of the velocity-based lineaisation family, (27), are stable,
the existence of P(x, r) satisfying (B.1b) for ead (x, r) is guaranteed (see for example, theorem 3.6 in
Khalil 1992. Let (3; denote apositive finite mnstant. Assume OyF(X, r) is continuous, uniformly
bounded and that the @genvalues of [,F(X, r) are uniformly bounded away from the imaginary axis,
that is,

||:|XF(X1 r)l S Bl! Re{)\ [DXF(XI r)]} S -BZ < O DXI r (Bz)
These monditions ensure that
|eBFx NI < B, ePet Ot>0 (B.3)

for some finite constants s=1, $,>0 which are independent of X, r (Desoer 1969). It follows that
P(x,r) isuniformly bounded and V is positive definite, deaescent,



IP(x,r)l < Bs Ox,r (B.4a)

Belwl® < V < Brwl* (B.4b)
with Bs > 0. When P(x, r) is differentiable, the derivative of V with respea to time, along the
tragj ector.iesof (28),is

V =-w'(l -P)w +wW'P(x, r)O,F(x, r) £ +0,F"(x, r) f "P(x, r)w (B.5)
Expand P as
P=3 O, PXrw; +3 O,PXr)i (B.6)
i i ]

and assume that the partial derivatives of P with resped to the dements of the state vedor, x, and input
vedor, r, are uniformly bounded,

sup |Uy P(x,1)lz <Bg,  sup [0, P(X,1)l2 < By uxr (B.79)
i I

and that[, F(x, r) isuniformly bounded,

|0 F (X, 1)l < Bro ax,r (B.7b)
It foll ows that,

V < Beiwl’ - (1-Belt ) wl” + 2BsPaglf 2 W (B.9)
which, using (B.4b) and letting W denote V**, may be reformulated as

W < Be/(2B6%%) W2 - (1-Bol t |2)/2B7W + BsPBaol t /Bs™ (B.9)
where it is assumed, for the moment, that 1-B¢| I |, ispositive. Provided

It k< Buas (1-4B7A)/Bo (B.109)

|t |2 < Bua< 2\*Be”?/(BsBaBro) (B.10b)

W(0) < 2\ Be¥?IBs (B.10c)
for some AJ[0, 1/4[3;), then 1-B¢| T |, ispositive and , from (B.9),

W < Be/(2B6¥) W? - 2AW + BeBuol I |/Bs™> < -AW + BsB1oP14/B6™ (B.11)

Conditions (B.10a) and (B.10c) may be interpreted as restricting the rate of variation of the system
trajedories, (x(t), r(t)), to ensure the existence within some region enclosing the origin, of stable
solutions to the dynamics, (B.8), with the parameter, A, quantifying the relationship between the size of
the region and the rate of variation of the input (qualitatively, as the input varies more rapidly the
region becomes smaller, and vice versa). Condition (B.10b) is required to ensure that the input does
not drive the state trajedories outside this gabili ty region.

It follows from (B.11) that,

W< WO + (L Ipp 8,/ Bedss W(O)e™ + PPicbu (B.12)
ABs
and, therefore,
|wh < ye ™ |w(0), +3 Ot>0 (B.13)

with y = (B+/Be)"?, 5=PsP1oB1/ABs"> Hence, provided the family of linea systems, (27), satisfies the
mild conditions, (B.2) and (B.7), and the system inputs and initial conditions are restricted to the dass
satisfying condition (B.10), the states of the nonlinea system, (28), are uniformly ultimately bounded.
Moreover, the ultimate bound, 9, is proportional to the rate of change, f , of the input and the system
is, therefore, exponentially stable for constant inputs. It is noted that a similar approach to that of
Appendix D may be employed to extend this analysis to encompassnon-smooth scheduling.

Appendix C Stability of smooth nonlinear systems

Assume that the nonlinea system satisfies the conditions of section 4.1. The analysis of sedion 4.1
then establi shes abound on the solution to the nonlinea system over atimeinterval, T; namely,

(of _ - .
WD) < ose el wity)|+ =2 (a, +a,) (1-e %) ||

OtO[t, t4+T)  (C.1)
a 7

I+

where,

07 =0g- 05 01
provided theinitia conditions and inputs stisfy (44). Sincethe solution, w(t), of the nonlinea system
is continuous; (C.1) holdsfor t [ [ty,t;+T].

Let
Inag

0g—No

T=2

(C.2)



for some n,0(0, ag). Assume that the inputs and initial conditions stisfy,
[Fl<&<8  WO)<d, -y (C.39)
denotes sup|e |) with
t

(where

o (1 _ e—EXGT/Z

as — 5 ) —_
a_7(a66w +(0, +0,)5,)<d, y= a—7(0‘4 +0‘1)—(1_T)—1ﬂ = ¥4(No-a10s) (C.3b)

and 9, &, are chosen sufficiently small that,

Oq, <NJ0s, o, -yd 20 (C.30)
It is noted that, with these choices, for any T, [T/2, T],
n>0, J,<adds,  3,<3, a,e® <e <1 (C.49)
k-1 i
e ™ lW(O)+y3, (1-eT) S (e'”T)' < By Ok >0 (C.4b)
i=0

where in (C.4b) the following identity is employed,
Ty T kT
vo,(1-e™ )Z(e” ) :yér(l—e” ) Ok>0 (C.40)
i=0
The mnditions, (C.3), ensure that the inputs and initial conditions satisfy (44) for tO[0,T]. Hence,

forany T,O [T/2, T],

W(TYI< ase™™ [w(@)[+Vff|a-e™) < e ()] + ¥8, (L-¢") <3, (C5)
and |w], < 8. Itfollow that the conditions, (44), are dso satisfied for t 0 [T, 2T] and

MW(@To)l< age™™ [W(T,) |+ vil-e™ Ji| < &7 (o) v8, (1-e ) (1+&™T) < 8, (C.6)
Repeding this analysis for further time intervals, it follows that

W(KTo)| < by Ok=0 (C.7)
and, consequently,

WD)l < age KD jw(KT,)| +y{i-e %™ )| 0t 0 [KTo, (k+1)Tc], k=0 (C.8)
Let k denote the largest integer such that t-kT/2 is positive. When t islessthan T/2, k is zero and

Wl < age™ [w(o) [+ vii-e™ )| 00<t<T/2 (C.9)
Otherwise, k is greaer than zero. Seleding T, equal to t/k ensures that T, lies in the interval [T/2,T]
and
|W(t) |S ase-tl?(kTo-(k-l)To) ((X Se-cl?((k-l)To-(k-Z)To) |W((k — 2)T0) | +y||r'||(1— e—nT))+ y||r'||(1— e—nT)

_ i C.10
<age™ " [w(0) | +y|e[d- e'”T)kzl(aSe'“?T‘)) <e |w(0) |+y(1— e'”‘)|r'|| Ot=T/2 (€10
i=0

Employing (C.9) and (C.10), it follows that,
lw(t)l< ase™™ [w(O)l+y (1-€™)||f| 0t=0 (C.11)

and the nonlinea dynamics, (28b), are, under the foregoing conditions, BIBO stable. Moreover, the
nonlinea dynamics are exponentially stable for constant inputs, r.

Appendix D Stability of non-smooth nonlinear systems

In Appendix C, it is assumed that the nonlinea system is smocth, in the sense that F(-,-,) is
differentiable with bounded, Lipschitz continuous, derivatives. The stability analysis is extended in
this appendix to encompass non-smooth nonlinea systems for which OxF and O,F need only be piece
wise Lipschitz continuous with resped to time dong the trgjedories of the nonlinear system. Hence,
switched and ather, discontinuous, forms of scheduling may be acommodated.

Assume that w(t) is continuous and [O,F(x(t),r (t)) and OF(x(t),r(t)) are uniformly bounded and
piecewise Lipschitz continuous with resped to time, t. Moreover, assume that the @genvalues of
OxF(x(t),r (1)) lie in the left-half complex plane ad are uniformly bounded away from the imaginary
axis. Let {t,} denote the sequence of times, with t,.; > ti, a which O,F(x(t),r (t)) and O.F(x(t),r (t)) are
discontinuous. In addition, assume that, when w(t) and f (t) are of finite magnitude, the intervals
satisfy,

t1-t= 0ag>0 Ok (Dl)



Condition (D.1) prevents infinite discontinuities occurring in finite time and ensures the existence of
solutions to (28b) when w(t) and 1 (t) are finite. Moreover, it is assumed that the minimum interval,
g, increases as the magnitudes of w(t) and  (t) become smaller, with ag — 0 asw(t),r (t) - O; that is,
Og increases as x(t)and r(t) vary more slowly. In a gain-scheduling context, these conditions are quite
mild; for example, when non-smocoth scheduling is achieved by switching between linea time-
invariant cortrollers as me scheduling variable aosses different thresholds, the conditions are
satisfied when the thresholds are spacel afinite distance agart, the switching incorporates hysteresis to
prevent chatter and the scheduling variable is a cntinuous function of the inputs, r, and/or states, X, of
the system.

Under the foregoing assumptions, C,F(X(t),r (t)), OF(x(t),r (t)) are Lipschitz continuous only over
ead open time interval, (ty, tk.1). Nevertheless, sincethe nonlinea and approximate systems have the
same initial conditions at the state of ead interval, the residual, ex(ty), is zero at the start of eath
interval and the condition, (36), is stisfied. Consequently, by similar analysis to that of Appendix C,
the system states are bounded over ead interval, [ty, ty+1], by.

[w(t) ks ase™™ ) Jw(ty ) [ +yL-e )| D0 [t ] (D2)
provided the input and initial condition are restricted to the dass stisfying (C.3). For the dass of
nonlinea systems considered in this section, there exist constants, oy and a4, such that

Inag
g 2 ~
n-n
for any fj 0(0, n) provided,
[w] < @, |F][< a0 (D4)

Employing a similar approacd to that of Appendix C, it is graightforward to show that, provided the
inputs and initial conditionsjointly satisfy (C.3) and,

(D.3)

6SG91 6rsa101 M(O)lsaw'vara 6W _var 20 (Dsa)
where,

~_y(l-e"%)
then,

w(t)|<ose™ [w(0) [+y(dL-e ™)|| Ot=0 (D.6)

and the dass of non-smooth nonlinea systems considered is, under the foregoing conditions, BIBO
stable. Moreover, the nonlinea dynamics are exponentially stable for constant inputs, r.

Appendix E Infinite dimensional dynamics

Although the analysis of sedion 4.1 is restricted to systems with finite dimensional dynamics, it
may be eaily extended to encompassdistributed/infinite dimensional dynamics. In this appendix, the
notation, in particular the subscripts for the mnstants, q;, is €leded to indicate the dose relationship
between the analysis here and that of sedion 4.1. However, in order to encompassinfinite dimensional
systems the constants are defined somewhat differently from those in sedion 4.1.

Suppcse that the velocity-based lineaisation is linea time-invariant but may be infinite
dimensiond; that is, the lineaised dynamics can be represented as the convolution operator,

W(t) = [ @(t-9)F (S)ds (E.1)
where W is the output of the linea dynamics (and need no longer be the state), (E.1) is readable.
Consider the time interval, [t;, t;+T), and assume that nonlinea dynamics are sufficiently smocth that
forany &, there existsad such that,

w(t) = j(t, Q(t-9)(r(s) +&(9)ds Ot O[ty, t1+T ) (E.29)
provided

[l +[¢l-, < 25 (E2)
with theresidua satisfying,

ler ()] = agle®)] < a{ WO+ F (O} with oy 0[0,8,,) Ot Oty, ti+T(] (E-20)

The foregoing requirement is similar to that in sedion 4.1 and is $mply a secnd-order condition on
the gproximation residual which ensures that



lecl, = ot Iwl, +[Fll, } (E2)
Assume that @(*) is exponentially bounded,
QD) < 0,057 (E4)
It then foll ows from (E.2a) that
w(t) < o5e D wh+ a0 (1-e %) fag ]+ ) ose Ve p(9)]ds D[ty ti+To] (E.58)
where,
wh= fhoe e 9|r (9+e(s)l}ds (E5b)
embod es the dependence of the present solution on the previous behaviour (owing to the ‘memory’ of

the dynamics) and, essentially, provides abound on the initial conditions of the dynamics.
Hence,

(E.6)

and so, employing a similar approach to that in sedion 4.1, it may therefore be shown that, provided
the inputs and initial conditions are suitably restricted, the wnditions, (E.2b), is stisfied over the
interval [ty, t;+T). Consequently, substituting (E.2c) into (E.5),

w(t) < oge % wh+ ag(agray) (1-e %) fog|i|, + f ase®o I w(glds  DtO[ty,t,+T) (E.7)
which has the same form as (49). Applying the Bellman-Gronwall i nequality to (E.7), an expresson
similar to (50) is obtained and the solution, w, of the nonlinea dynamics, (E.2a), is bounded and
deca/s exponentially when 1 iszero; that is, for constant inputs, r.

Furthermore, it follows from (E.1) and (E.2) that,

W (t)-w(t) = Jfl Q(t-9)&(9)ds OtO[ty,t4+T) (E.8)
Hence, similarly to the analysis of sedion 4.2 for finite dimensional dynamics, it may be seen that in
the infinite dimensional case the eror between the solution to the gproximate dynamics, (E.1), and the
exad dynamics, (E.2), isalso smply theresidual, &, filtered by the lineaised dynamics.

I, < asw’ + ol |+ o]



