
J
H
E
P
0
8
(
2
0
2
1
)
0
1
0

Published for SISSA by Springer

Received: March 23, 2021
Revised: June 23, 2021

Accepted: July 12, 2021
Published: August 2, 2021

Duality and modular symmetry in the quantum Hall
effect from Lifshitz holography

Brian P. Dolan
Department of Theoretical Physics, Maynooth University,
Main St., Maynooth, Co. Kildare, Ireland
School of Theoretical Physics, Dublin Institute for Advanced Studies,
10 Burlington Rd., Dublin, Co. Dublin, Ireland

E-mail: bdolan@thphys.nuim.ie

Abstract: The temperature dependence of quantum Hall conductivities is studied in the
context of the AdS/CMT paradigm using a model with a bulk theory consisting of (3+1)-
dimensional Einstein-Maxwell action coupled to a dilaton and an axion, with a negative
cosmological constant. We consider a solution which has a Lifshitz like geometry with a
dyonic black-brane in the bulk. There is an Sl(2,R) action in the bulk corresponding to
electromagnetic duality, which maps between classical solutions, and is broken to Sl(2,Z) by
Dirac quantisation of dyons. This bulk Sl(2,Z) action translates to an action of the modular
group on the 2-dimensional transverse conductivities. The temperature dependence of
the infra-red conductivities is then linked to modular forms via gradient flow and the
resulting flow diagrams show remarkable agreement with existing experimental data on
the temperature flow of both integral and fractional quantum Hall conductivities.

Keywords: Discrete Symmetries, Duality in Gauge Field Theories, Field Theories in
Lower Dimensions, Holography and condensed matter physics (AdS/CMT)

ArXiv ePrint: 2103.07900

Open Access, c© The Authors.
Article funded by SCOAP3. https://doi.org/10.1007/JHEP08(2021)010

mailto:bdolan@thphys.nuim.ie
https://arxiv.org/abs/2103.07900
https://doi.org/10.1007/JHEP08(2021)010


J
H
E
P
0
8
(
2
0
2
1
)
0
1
0

Contents

1 Introduction 1

2 Einstein-Maxwell-dilaton-axion Lagrangian with a cosmological constant 3

3 Static, spherically symmetric solutions 4
3.1 Hawking temperature 5
3.2 Dyonic solutions 6

4 Dirac-Schwinger-Zwanziger quantisation 8

5 Conductivities 11
5.1 DC conductivity 13
5.2 AC conductivity 14

5.2.1 Analysis of the conductivity 15

6 Temperature flow in the infra-red 18
6.1 Retain S but keep T ≤ T∗ 19

6.1.1 Gradient flow for Γ(1) 21
6.2 Eliminate S 27

6.2.1 Gradient flow for Γ0(2) 27

7 Discussion 31

A Conventions 33

B Conductivities in linear response theory 34
B.1 RG equation for the conductivities 36
B.2 Sl(2, R) transformation of conductivity 40

C Properties of Jacobi ϑ-functions and modular forms 42

1 Introduction

The quantum Hall effect (QHE) is a fascinating phenomenon involving a strongly inter-
acting system that exhibits an extensive hierarchy of quantum phase transitions. As a
strongly interacting quantum system it is a candidate for testing the ideas of the AdS/CFT
correspondence [1] in the context of a (3+1)-dimensional bulk space-time with a (2+1)-
dimensional boundary and there has already been a substantial body of work exploring this
possibility [4]–[27]. Although the original AdS/CFT conjecture was for large N supersym-
metric theories with 4-dimensional boundary it has been applied to non-supersymmetric
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theories in condensed matter (for a review see [28]). The QHE is not relativistic nor are the
different quantum phases of the system described by conformal field theories (CFT’s), but
the phase transition between the Hall plateaux are second order and non-relative systems
have been considered in the more general framework of geometries with Lifshitz scaling [8]
in the AdS/CMT (Condensed Matter Theory) approach (for a review of Lifshitz hologra-
phy see [9]).

It was observed in [29]–[31] that the QHE has an emergent infra-red modular sym-
metry relating the different QHE phases and this should be incorporated into any at-
tempt to model the QHE in the AdS/CMT picture.1 Some steps have already been taken
in this direction [10, 11, 18, 33] and these ideas will be explored further here. In this
work gradient flow for the β-functions for the conductivity will be considered within the
AdS/CMT framework. Gradient flow in the QHE compatible with modular symmetry was
proposed in [34, 35] with potentials that were quasi-holomorphic in the complex conduc-
tivity σ = σxy + iσxx. An anti-holomorphic potential using modular forms was suggested
in [36]–[38] and holomorphic potentials were considered in [39]. For a review of the status
of modular symmetry in the QHE see [40].

The starting point will be a bulk theory with a dilaton and an axion that enjoys
Sl(2,R) symmetry of the classical solutions derived from electromagnetic duality [41]. The
strength of the coupling between the dilaton φ and the axion χ to the electromagnetic field is
determined by a parameter λ and they can be combined into a complex field τ = λχ+ie−λφ
which we shall call the dilaxion. It will be shown that the infra-red conductivity arising from
a bulk solution which contains a dyonic black-brane is related to the complex conjugate
of the value of the dilaxion at the event horizon, σ = −τh. Quantum effects then break
Sl(2,R) to Sl(2,Z), resulting in rational filling fractions, [33]. The black-brane has a
Hawking temperature which allows the temperature dependence of the conductivity to be
determined from the classical solution and a flow diagram is generated.

Assuming anti-holomorphic gradient flow, with a potential that is holomorphic in σ,
and a viable potential function with only one free parameter is constructed using modular
invariants. There is a second order phase transition between quantum Hall states with
a critical exponent that depends on the free parameter in the potential. The resulting
temperature flow of the 2-dimensional conductivity tensor is shown in figure 6, which
compares very favourably with the available experimental data [42–44].

The layout of the paper is as follows. Section 2 describes the background bulk action
and dyonic solutions of the equations of motion are presented in section 3. The Dirac
quantisation in the bulk, and how it relates to fractional filling factors on the boundary,
is discussed in section 4. The RG equation for the conductivity is discussed in section 5
where it is shown that the DC conductivity is determined by the value of the dilaxion at
the event horizon. A discussion of the temperature flow of the DC conductivity is given in
section 6 and implications of the results are discussed in section 7. Some technical details
required in the main body of the text are given in three appendices.

1The same symmetry was found independently at almost the same time in [32], though these authors
expressed the transformations for the Ohmic and the Hall conductivities separately, complex conductivities
were not used.
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2 Einstein-Maxwell-dilaton-axion Lagrangian with a cosmological con-
stant

The starting point is Einstein-Maxwell theory in four dimensional space-time with a dilaton,
an axion and a negative cosmological constant. This is interpreted as an effective action
after any charged matter is integrated out and it will suffice for a preliminary investigation
of the resulting 2-point correlators. The Lagrangian is

L = 1
2κ2

(
R− 2Λ− ∂µφ∂µφ− e2λφ∂µχ∂µχ

)
−1

4e
−λφFµνF

µν + 1
4λχFµνF̃

µν (2.1)

where κ2 = 8πG, c = 1, λ is a dimensionless parameter, and F̃µν = 1
2
εµνρσ√
−g Fρσ. In terms of

the dilaxion field
τ = λχ+ ie−λφ

and
Gµν = e−λφFµν − λχF̃µν

the Lagrangian is

L = 1
2κ2 (R− 2Λ) + 2

κ2λ2
∂µτ ∂µτ

(τ − τ)2 −
1
4G

µνFµν . (2.2)

Gibbons and Rasheed [41] have shown that, given any solution of the equations of motion
of (2.1), new solutions can be generated by applying an Sl(2,R) symmetry transformation.2
Define the complex fields

Fµν = Fµν + iF̃µν , Gµν = −iGµν + G̃µν = τFµν

then an Sl(2,R) action is defined on the fields by(
G
F

)
−→

(
G′

F ′

)
=
(
a b

c d

)(
G
F

)

with
τ −→ τ ′ = aτ + b

cτ + d
(2.3)

where a, b, c and d are real and ad − bc = 1, while the metric gµν is left invariant. If(
Fµν , τ, gµν

)
is a solution then this Sl(2,R) action generates a new solution

(
(F ′)µν , τ ′, gµν

)
.

The transformation properties of the electric and magnetic fields can be succinctly
written using an orthonormal basis {e0, ei}, with i = 1, 2, 3, in which

Ei = −F0i and Bi = 1
2ε

ijkFjk = −1
2ε

0ijkFjk

(ε0123 = −e0123 = +1). The complex field

Ei = Ei + iBi

2There are no conserved charges associated with this symmetry, it is not a symmetry of the action.
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transforms as
Ei → E′i = (cτ + d)Ei. (2.4)

The electric charge and total magnetic flux,

Qe =
∫
T 2
∗G, Qm =

∫
T 2
F, (2.5)

transform as (
Qe
Qm

)
→

(
a b

c d

)(
Qe
Qm

)
(2.6)

which is a generalisation of the Witten effect [45].

3 Static, spherically symmetric solutions

It was shown in [46] that there are no static, spherically symmetric solutions of (2.1) when
the cosmological constant is positive, but the present focus will be on the negative case,
Λ = − 3

L2 . A black-brane solution, with a planar event horizon and negative cosmological
constant, was found in [47]. It is a purely electric solution with the metric3

ds2 = −
(
r

l

)2z
(

1−
(
rh
r

)z+2
)
dt2 +

(
l

r

)2 dr2(
1−

( rh
r

)z+2
) + r2(dϑ2 + dϕ2) (3.1)

where rh, l and z are constants. This metric gives non-relativistic holography with z

a temporal scaling exponent. Such Lifshitz-like geometries were proposed in [48, 49] as
AdS/CFT models for non-relativistic systems Constant r hypersurfaces at large r are then
conformal to 3-dimensional space-times on which the speed of light is

(
r
l

)z−1, [50]. We will
use periodic boundary conditions on surfaces of constant t and r, in order to keep their
area finite, giving them the topology of a torus with area

Ar = r2
∫
T 2
dϑ ∧ dϕ. (3.2)

The equations of motion for the action (2.1) are then satisfied by

Ftr = −q0

(
r

l

)z+1
(3.3)

e−λφ = e−λφ0

(
l

r

)4
(3.4)

χ = χ0, (3.5)

with q0, φ0 and χ0 constants, provided

z = 1 + 8
λ2 (3.6)

l2 = (z + 1)(z + 2)L2

6 (3.7)

q2
0e
−λφ0 = 6

κ2L2
(z − 1)
(z + 1) . (3.8)

3Equation (3.8) in [47] with some changes in notation.
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z and l are not free, they are fixed in term of λ and L, and q0 and φ0 are not independent.
The Lifshitz scaling symmetry is broken by the r-dependence of φ, [51]. For large r the
Ricci tensor is

Rµν →
1
l2


z(z + 2)

(
r
l

)2z 0 0 0
0 −(z2 + 2)

(
l
r

)2
0 0

0 0 −(z + 2)r2 0
0 0 0 −(z + 2)r2


and the metric is only asymptotically AdS if z = 1.

Although Ftr and φ diverge asymptotically

Gtr = −q0e
−λφ0

(
r

l

)z−3
, Gtr = q0e

−λφ0

(
r

l

)−(z+1)
,

the energy density
−GµνFµν = 2q2

0e
−λφ0

is finite. The pre-factor e−λφ(r) is like a background electric permittivity,4 which dies off
asymptotically so as to render the energy density in the electric field finite at large r,
although the electric field itself diverges there.

The total electric charge on the torus can be calculated using Gauss’ law and is inde-
pendent of r,

Qe = −q0e
−λφ0 l2

∫
T 2
dϑ ∧ dϕ (3.9)

(the normal to the torus is taken to be in the direction of decreasing r). There is no
magnetic charge and this will be called the electric solution.

3.1 Hawking temperature

The Hawking temperature associate with the metric (3.1) is

T = (z + 2)~
4πl

(
rh
l

)z
. (3.10)

Thus T → 0 smoothly as rh → 0 and there is no Hawking-Page phase transition associated
with this geometry.

The solution fixes l in terms of the Lagrangian parameters λ and L, but rh is a free
parameter which is related to the mass of the black-brane. The area of the event horizon is

Ah = r2
h

l2
Al, (3.11)

where
Al = l2

∫
T 2
dϑ ∧ dϕ (3.12)

4At the same time it is an inverse background magnetic susceptibility — it does not affect the speed of
light.
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is a fixed fiducial area, in terms of which the Bekenstein-Hawking entropy is

S = Ah
4G~ = 2πAlr2

h

κ2~ l2
= 2πAl

κ2~

( 4πlT
(z + 2)~

)2/z
.

From the first law of black hole thermodynamics

dM = TdS = T

(4πAlrh
κ2~ l2

drh

)
= (z + 2)rz+1

h Al
lz+3κ2 drh = d

(
Alrz+2

h

lz+3κ2

)
,

so
M = Al

κ2l

(
rh
l

)z+2
. (3.13)

The heat capacity is

Cp = T
∂M

∂T
= (z + 2)

z
M = (z + 2)

z

Al
κ2l

( 4πlT
(z + 2)~

)(z+2)/z
> 0

and the system is thermodynamically stable for any T > 0, in agreement with the obser-
vation above that there is no Hawking-Page phase transition.

For the classical solution to be valid we must ensure that both l and rh are well above
the Planck length L2

Pl = ~κ2

8π ,
l2

κ2 � ~,
r2
h

κ2 � ~,

but this in itself does not restrict rh
l . Nevertheless

T = (z + 2)
4π

(
LPl
l

)(
rh
l

)z
TPl,

where TPl = ~
LPl

is the Plank temperature so demanding that T � TPl imposes the extra
condition (

rh
l

)z
� l

LPl
. (3.14)

3.2 Dyonic solutions

The Sl(2,R) action can now be used to generate static, spherically symmetric dyonic
solutions from (3.1)–(3.5). It is convenient to first change co-ordinates: let t̃ =

( rh
l

)z
t,

u = rh
r , x = rhdϑ, and y = rhdϕ, so 0 ≤ u ≤ 1 and event horizon is at u = 1, the

asymptotic region is u→ 0. Then (3.1) becomes

ds2 = −
(
1− uz+2

) dt̃ 2

u2z + l2

(1− uz+2)
du2

u2 + dx2

u2 + dy2

u2 . (3.15)

In these variables the electric solution (3.3), (3.4) and (3.5) is

Ft̃u = q0

(
rh
l

)2 l

uz+3 (3.16)

Gt̃u = q0e
−λφ0

(
l

rh

)2 l

uz−1 , (3.17)

e−λφ = e−λφ0

(
l

rh

)4
u4. (3.18)
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In terms of orthonormal 1-forms

e0 =
√

1− uz+2

uz
dt̃, e1 = l

u
√

1− uz+2
du, e2 = dx

u
, e3 = dy

u
,

this purely electric configuration is

F =
(
rh
l

)2 q0
u2 e

01, G = q0

(
rh
l

)2
ζu2e01, τ = λχ0 + iζu4 (3.19)

where e01 = e0 ∧ e1 and
ζ = e−λφ0

(
l

rh

)4
. (3.20)

Under a Sl(2,R) transformation
(
a b

c d

)
the metric is unchanged and, from (2.4), the

purely electric configuration (3.19) is mapped to a configuration with a constant magnetic
component,

F = q0

(
rh
l

)2 ( d

u2 e
01 − c ζu2e23

)
(3.21)

G = q0

(
rh
l

)2 (
a ζu2e01 + b

u2 e
23
)
, (3.22)

while the dilaxion becomes

τ = iaζu4 + b+ aλχ0
icζu4 + d+ cλχ0

= iaζu4 + bχ0

icζu4 + dχ0
(3.23)

where bχ0 = b + aλχ0 and dχ0 = d + cλχ0 (with adχ0 − bχ0c = 1). The dilaton and axion
fields are separately

e−λφ = ζu4

d2
χ0 + c2ζ2u8 , λχ = bχ0dχ0 + a c ζ2u8

d2
χ0 + c2ζ2u8 . (3.24)

Defining q = q0d and m = −q0 c e
−λφ0 the Maxwell field strength is

F =
(
rh
l

)2 q

u2 e
01 +

(
l

rh

)2
mu2e23, (3.25)

and the full set of coupled equations of motion with (3.25) and (3.24) are satisfied in the
metric (3.15) provided

κ2l2e−λφ0q2 = (z − 1)(z + 2) d2, (3.26)
κ2l2eλφ0m2 = (z − 1)(z + 2) c2, (3.27)

e−λφ0qc+md = 0. (3.28)

If φ0 = 0 in the electric solution a non-zero φ0 can be generated by choosing b = c = 0
and a = d−1 = eλφ0/2, and if χ0 = 0 a constant non-zero topological susceptibility is
generated by choosing c = 0 and b 6= 0. Apart from rh there are four parameters in the
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solution: physically these are q, φ0, m and χ0, equivalent to a, b, c and d, but only three
of these are independent since ad− bc = 1.

The total magnetic flux of the solution is

Qm =
∫
T 2
F = m

(
l

rh

)2
Ah = ml2A0 (3.29)

where A0 =
∫
T 2 dϑ ∧ dϕ is dimensionless. The electric charge is

Qe =
∫
T 2
∗G = −e−λφ0

(
l

rh

)2 qa

d
Ah = ma

c
Al, (3.30)

where the second equality follows from (3.28).
If the total charges Qm and Qe are kept constant the magnetic field and charge density

are functions of u
B(u) = Qm

Ah
u2 and ρ(u) = Qe

Ah
u2.

At the event horizon

Bh = Qm
Al

l2

r2
h

= Qm
Al

((z + 2)~
4πlT

)2/z
(3.31)

and

ρh = Qe
Al

l2

r2
h

= Qe
Al

((z + 2)~
4πlT

)2/z
. (3.32)

In the quantum Hall effect, with electric charge e0 and unit of magnetic flux Φ0, the
filling factor is defined to be

ν = ρ

e0

Φ0
B

= Qe
Qm

Φ0
e0

= a

c

Φ0
e0

(3.33)

and is independent of u.

4 Dirac-Schwinger-Zwanziger quantisation

It was observed in [33] that the Dirac-Schwinger-Zwanziger quantisation condition on dyons
in the bulk translates to a rational filling factor on the boundary. In the AdS/CFT corre-
spondence gauge symmetries in the bulk correspond to global symmetries on the boundary
and the authors of [33] identify the global U(1) on the boundary arising from the bulk
U(1) gauge field as being associated with the conservation of composite fermion number
in the QHE on the boundary. In Jain’s composite fermion picture of the QHE [52, 53] the
statistical gauge field generates a ‘fictitious’ background magnetic field which is quantised
and concentrated in δ-function magnetic vortices.

For the general dyonic solution (3.25)–(3.28) the total magnetic flux through the torus
T 2, at fixed t and u, is (3.29). If there is a quantum unit of magnetic flux Φ0 then Qm will
be integer multiple of Φ0

Qm = NmΦ0, Nm ∈ Z.

– 8 –
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Mathematically one could set Φ0 = 2π so that

Nm = 1
2π

∫
T 2
F

is the first Chern number of a U(1) line bundle over the torus. In physical units Φ0 = 2π~
e ,

where e is the charge of the electron, might seem natural and indeed this would be correct
for a quantum Hall system, but there are other possibilities. In a superconductor, for
example, Cooper pairs have charge e0 = 2e and the unit of magnetic flux is h

2e . Of course
Φ0
e0

is dimensionless and in the following we shall use units with e20
h = n2e2

h = 1, where n = 1
for quantum Hall systems and n = 2 for superconductors. The unit of electric charge is
then e0 = ne and the unit of magnetic flux is Φ0 = h

ne , with e0Φ0 = h and e0
Φ0

= 1, in these
units e0 = Φ0 =

√
2π~.

The total electric charge Qe is a multiple of e0

Qe = Nee0, Ne ∈ Z,

and, from the Dirac quantisation condition,

QeQm
2π~ = NeNm ∈ Z.

Eliminating q andm in favour of d and c using (3.26)–(3.28), equations (3.29) and (3.30)
give

Qm = −c e
−λφ0/2

η
, Qe = −a e

−λφ0/2

η
, (4.1)

where
η = κl

Al
1√

(z − 1)(z + 2)
. (4.2)

Let N be the greatest common divisor of Ne and Nm, where the sign chosen so that
Ne = −Na and Nm = −Nc, with a and c mutually prime. Then

Qm = −NcΦ0, Qe = −Na e0

with
a = ae−λφ0/2

√
2π~

( 1
ηN

)
, c = ce−λφ0/2

√
2π~

( 1
ηN

)
.

If we further define

b = beλφ0/2ηN
√

2π~, d = deλφ0/2ηN
√

2π~ (4.3)

then (
a b

c d

)
=
(

a b
c d

)(
eλφ0/2ηN

√
2π~ 0

0
(
eλφ0/2ηN

√
2π~

)−1

)
(4.4)

with ad− bc = 1. Setting
(

a b
c d

)
=
(

1 0
0 1

)
in (4.4) equation (3.23) then gives the electric

dilaxion field to be
τ = 2π~N2η2eλφ0(λχ0 + iζu4),

– 9 –



J
H
E
P
0
8
(
2
0
2
1
)
0
1
0

so we set

e−λφ0 = 2π~N2η2 = 2π~κ2

(z − 1)(z + 2)l2
(
N

A0

)2
, (4.5)

this is does not reduce the number of parameters in the solution, we are just trading φ0
for N

A0
. The dilaxion associated with any magnetic monopole or dyon solution compatible

with the Dirac quantisation condition is now obtained from

τ = λχ0 + iζu4

by acting on it by a general element of Γ(1).
Note that an immediate consequence of Dirac-Schwinger-Zwanziger quantisation is

that the filling fraction
ν = a

c
= a

c (4.6)

is a rational number.
In summary the general quantised dyonic solution in terms of the integers a, b, c and

d satisfying ad− bc = 1, is

Qe = −Na e0, Qm = −NcΦ0, (4.7)

Ft̃u =
(
rh
l

)2 q l

uz+3 , Fxy = m

(
l

rh

)2
, (4.8)

q = d
((z − 1)(z + 2)

2π~κ2l2
Al
N

)
e0, m = −c

(
NΦ0
Al

)
, (4.9)

τ =
(

a(λχ0 + iζu4) + b
c(λχ0 + iζu4) + d

)
e0
Φ0
, (4.10)

with ζ = 2π~N2η2
(
l
rh

)4
and e0 = Φ0 =

√
2π~.

The full solution is acted on by Sl(2,Z) but, apart from the sign of Fµν , the dyon
solution is invariant under a b

c d

→ −
a b

c d

 ,
and the dilaxion transforms under the modular group Γ(1) ≈ Sl(2,Z)/Z2. Note also that,
while m is proportional to c and q is proportional to d, the electric charge is determined
by a and not by d, because of the Witten effect.

The dimensionless parameter ζ depends on the Hawking temperature of the sys-
tem (3.10). Since

rh
l

=
{ 4πlT

(z + 2)~

}1/z

we can write

ζ =
(
T∗
T

)4/z
= Θ−4/z with Θ = T

T∗

– 10 –
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where

T∗ =
((z + 2)~

4πl

)(
2π~N2η2

)z/4
=
(
z + 2

4π

)(
N2

4A 2
0 (z − 1)(z + 2)

)z/4 (
LPl
l

)(z+2)/2
TPl.

In the next section T∗ will be related to the critical temperature of a second order phase
transition and, if it is to be interpreted as a physical temperature, we should therefore
ensure that T∗ � TPl which requires

N2

A 2
0
�
(

l

LPl

)2(z+2)/z
.

At the same time T � TPl implies that

Θ4/z � A 2
0

N2

(
l

LPl

)2(z+2)/z
.

5 Conductivities

In the AdS/CMT paradigm the boundary of space-time is associated with a 2 + 1 di-
mensional system which we shall interpret in the present context as a strongly coupled
electron system. This is perhaps rather radical for the classical dyon solution presented in
the previous section, as the bulk space-time is not even asymptotically AdS, but we shall
see that interesting results emerge notwithstanding (our model can be viewed as the near
horizon limit of an asymptotically AdS model [10]). The presence of temporal scaling, with
z > 1, results in a boundary theory which is non-relativistic and the non-zero magnetic
field generated by the dyon sets the stage for the analysis of the quantum Hall effect.

The conductivity tensor is obtained in linear response from a variation

δEα(t̃, u) = e−iω̃t̃δẼα(u), δB(t̃, u)α = e−iω̃t̃δB̃α(u) (5.1)

in the transverse electric and magnetic fields (α = x, y) which satisfies the linearised equa-
tions of motion in the chosen background. We work in a gauge in which the potential for
the field variation is

δAα(t̃, u) = e−iω̃t̃δÃα(u),

where it is understood that δÃα(u) depends on ω̃. A static electric field can be modelled
either with

δAα(t̃, u) = −(δE0
α)t̃+ δÃα(u), (5.2)

provided δE0
α is independent of u, or by allowing δÃα to have a pole at ω̃ = 0 with residue

−iδE0
α.
The electric field generates a current

δJα = σαβδEα ⇒ σαβ = δJα

δEβ
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where

δEα = −δFt̃α = iω̃δÃα, δBα = εt̃uαβ√
−g

δFuβ = −1
l
uz+3εαβδÃ′β .

The current at any given u is obtained from the action by varying δÃα(u) keeping the
potential at the event horizon fixed,

J̃α(u) = δS[A]
δÃα(u)

from which the transverse conductivity tensor is [55]

σαβ(ω̃, u) = 1
iω̃

δ2S[A]
δÃα(u)δÃβ(u)

, (5.3)

If we wish to take quantum corrections into account the classical action S[A] should
be replaced by an effective quantum action Seff [A], but the philosophy of the AdS/CFT
correspondence is that a classical solution in the bulk corresponds to a strongly interacting
quantum theory on the boundary so this conductivity will be interpreted as the conductivity
of a strongly interacting quantum system at scale r = rh

u . Bulk quantum corrections would
be a further refinement.

It will be convenient to use complex co-ordinates and define

σ± = σxy ± iσxx (5.4)
δJ± = δJx ± iδJy (5.5)
δE± = δEx ± iδEy (5.6)

δB± = δBx ± iδBy = (1− uz+2)
u2(z+1) (δBx ± iδBy). (5.7)

The pre-factor in (5.7) ensures that, in an orthonormal basis, where the electric and mag-
netic fields have components δEi and δBi with i = 2, 3,

δE± =
√

1− uz+2

uz+1 (δE2 ± iδE3), δB± =
√

1− uz+2

uz+1 (δB2 ± iδB3), (5.8)

so δE± and δB± have the same weight.
Adapting the analysis in [55] to include the dilaxion it is shown in appendix B that

the conductivity is5

σ±(u) = e−λφ
δB±
δE±

− λχ, (5.9)

in units with e20
h = 1.

5The pre-factors in (5.8) cancel in this definition and σ± is a ratio of two quantities evaluated in an
orthonormal basis, unlike (5.3) this definition is independent of how the time co-ordinate is scaled, it does
not matter whether t or t̃ is used.
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5.1 DC conductivity

When ω̃ = 0 the DC conductivity (5.9) can be obtained directly from Maxwell’s equations
for δFµν in the dyon background,

∂µ
(√
−g e−λφδFµν

)
− λ

2 ε
µνσλ(∂µχ)δFσλ = 0. (5.10)

For static, homogeneous variations all fields are independent of time and independent of
x, and y so, we only need consider transverse co-ordinates ν = α = x or y for which(√

−g e−λφδF uα
)′ + λεαβχ′δFt̃β = 0

where ′ = d
du . For the DC conductivity

δFt̃β = −δE0
β

are constant and Maxwell’s equations reduce to(
e−λφδB± − λχδE0

±
)′ = 0. (5.11)

We use ingoing boundary conditions at the event horizon (this is the source of dissi-
pation in the AdS/CFT paradigm [54]). With Eddington-Finkelstein co-ordinates

v± = t̃±
∫ √

guu
−gt̃t̃

du = t̃± l
∫

uz−1du

(1− uz+2)

ingoing boundary conditions at u = 1 require that

∂v+(δA±)
∣∣
u=1 = 0 (5.12)

so, near u = 1,

∓ iuz−1lδB± = (1− uz+2)δA′± ≈ −l∂t̃(δA±) = l(δE0
±) (5.13)

where δA± = δAx ± iδAy.
Integrating Maxwell’s equations (5.11)

e−λφ
(
1− uz+2)
luz−1 (δA±)′ ± iλχ(δE0

±) = C± (5.14)

⇔ e−λφ(δB±)− λχ(δE0
±) = ±iC± (5.15)

with C± = Cx ± iCy constants. Hence the DC conductivity

σ± = e−λφ
δB±
δE0
±
− λχ = ±i C±

δE0
±
.

is independent of u. The constants C± can be obtained from Maxwell’s equations in the
dyon background,

ζ(1− uz+2)δÃ′± =
{
C±(d2

χ0 + c2ζ2u8)∓ i(bχ0dχ0 + acζ2u8)(δE0
±)
}
luz−5 (5.16)
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and the ingoing boundary condition (5.13) enforces

C± = ±i
(
bχ0dχ0 + acζ2

d2
χ0 + c2ζ2

)
δE0
± +

(
ζ

d2
χ0 + c2ζ2

)
δE0
±

⇒ C+ = C∗− = i τhδE0
+.

where τh is the dilaxion at the event horizon. Hence the DC conductivities are given by
the value of the dilaxion field at the horizon,

σ+ = −τh, σ− = −τh. (5.17)

Maxwell’s equations can also be solved to give δB±(u) explicitly in the static case,

(1− uz+2)δÃ′± = (dχ0 ± iζc)(dχ0 ∓ icζu8)
(d2
χ0 + ζ2c2) uz−5l(δE0

±)

⇒ δB± = ±i (dχ0 ± iζc)(dχ0 ∓ icζu8)
u4(d2

χ0 + c2ζ2) (δE0
±). (5.18)

Note that, although equation (5.18) implies that δB± diverges as 1/u4 as u→ 0, in an
orthonormal basis (5.8)

δBi ∼ uz−3,

which is finite for z ≥ 3. Demanding that the energy density in the magnetic field pertur-
bation

e−λφ

2 (δBi)2 ≈ u4u2(z−3)

is finite as u→ 0 in a local inertial reference frame gives the weaker condition z ≥ 1.

5.2 AC conductivity

For oscillating perturbations Maxwell’s equations (5.10) give us

± ω̂uz−1

(1− uz+2)(δE±) + (e−λφδB±)′ − λχ′(δE±) = 0, (5.19)

where ω̂ = lω̃.
Consequently the conductivity is no longer independent of u, but instead

σ′± = −e−λφ
(
δB±δE ′±
δE2
±

)
∓ ω̂uz−1

(1− uz+2) = − (σ± + λχ)
(
δE ′±
δE±

)
∓ ω̂uz−1

(1− uz+2) .

However δE ′± can be determined from the equations of motion and a radial RG equation for
σ± can be derived. The technical details are left to an appendix, B.1, where the equation
in a general dyonic background is derived using the techniques of [55, 56] and [57]. The
result is given in equation (B.39),

±ω̂u4−z(1− uz+2)udσ±
du

= 4ζ(z − 1)(z + 2)u2(4−z)(1− uz+2) (cσ± + a)2

− ω̂2(d2
χ0 + c2ζ2u8)

(
σ± + τ

)(
σ± + τ) (5.20)
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(recall that ζ = e−λφ0 l
4

r4
h
, for SL(2,R)). Although χ0 can be absorbed into a re-definition

of b and d for Sl(2,R) this is not the case for Sl(2,Z) after Dirac quantisation).
Interpreting the classical radial equation of motion as an RG equation was suggested

in [58, 59] and the relation to the c-theorem was studied in [60, 61]. This version of
the RG equation is obtained by expressing the radial equation of motion as a Riccati
equation, [62]–[68]. An alternative formulation uses the radial Hamilton-Jacobi equa-
tion [69]–[71] (for the Hamilton-Jacobi equation in the context of Lifshitz geometry see [9])
and a Wilsonian approach was developed in [72]–[75] (it was argued in [76] that the classical
radial equation of motion and the Wilsonian method are equivalent). For our purposes the
Riccati equation is the most convenient form.

Ingoing boundary conditions at the event horizon give the same constraint as in the
DC case (5.13),

δB± = ±iδE±,

at u = 1, so σ±|u=1 = −τ̄h , but equation (5.20) already has this boundary condition
encoded into it when ω̂ 6= 0, the boundary condition at u = 1 is no longer at our discretion
for ω̂ > 0, inflowing boundary conditions are necessarily required.

Note however that equation (5.20) implies that σ± → −a
c = −ν as ω̂ → 0, for 0 < u <

1, the limits u→ 1 and ω̂ → 0 do not commute and the ω̂ → 0 limit of the AC conductivity
determine by (5.20) is not the same as the DC conductivity derived in section 5.1.

5.2.1 Analysis of the conductivity

The solutions of the general equation (5.20) are related by

σ+(−b,−c) = −σ−(b, c),

which generalises an observation in [55], so the Hall conductivity is

σH = σxy = 1
2(σ+ + σ−) = 1

2
(
σ+(b, c)− σ+(−b,−c)

)
and the Ohmic conductivity is

σΩ = σxx = 1
2i(σ+ − σ−) = 1

2i
(
σ+(b, c) + σ+(−b,−c)

)
.

A full analysis of the solutions of (5.20) requires numerical integration which will not
be pursued here, but certain limits are amenable to an analytic approach:

• We expect a cyclotron resonance with damping, [55, 57]. An approximation to the
cyclotron resonance can be found provided ω̂ is small and the second term on the
right-hand side of (5.20) can be ignored. The analytic solution in this approximation
is immediate,

1
c(cσ± + a) = ∓4ζ(z − 1)(z + 2)u4−z

(4− z)ω̂ + const, z 6= 4.
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For σ+ the boundary condition at u = 1 is

σ+|u=1 = −τh = −
(
bχ0 − iaζ
dχ0 − icζ

)
,

(recall bχ0 = b+ aλχ0 and dχ0 = d+ cλχ0). The solution is

σ+ = (4− z)i(aζ + ibχ0)ω̂ − 4aζ(z − 1)(z + 2)(1− u4−z)
(4− z)(dχ0 − icζ)ω̂ + 4cζ(z − 1)(z + 2)(1− u4−z) , z 6= 4 (5.21)

(for z = 4, limz→4
(1−u4−z

4−z
)

= − ln u).

To check the range of validity of the approximation, substitute the solution (5.21)
into the right-hand side of (5.20) and check when the first term dominates the second.
Near u = 1 let u = 1 − ε and 1 − u4−z ≈ (4 − z)ε then the approximation is good
provided ζε� 1 and ζω̂ � 1.

There is a resonance at

ω̂∗ = −4cζ(z − 1)(z + 2)(1− u4−z)
(4− z)(dχ0 − icζ) .

The Hawking temperature (3.10) was calculated in section 3.1 in terms of t in (3.1),
so eiωt = eiω̃t̃ with ω = 4πlω̃T

(z+2)~ and

ω̂ = (z + 2)~ω
4πT ,

so the resonance corresponds to

ω∗ = −16πTcζ(z − 1)(1− u4−z)
~(4− z)(dχ0 − icζ) = ω0 − iΓ.

with frequency and damping

ω0 = −16πcdχ0Tζ(z − 1)(1− u4−z)
~(4− z)(d2

χ0 + c2ζ2) (5.22)

Γ = 16πc2Tζ2(z − 1)(1− u4−z)
~(4− z)(d2

χ0 + c2ζ2) . (5.23)

Since Γ < 0 for z > 4 there is an instability in the system for such values of z and
we shall therefore assume that 1 ≤ z ≤ 4 from now on.

Furthermore ζ ∝ T−4/z so both ω0 and Γ vanish as T → 0 but the Q-factor

Q = |ω0|
2Γ = 1

2ζ

∣∣∣∣dχ0

c

∣∣∣∣ ,
which is independent of u, decreases as the temperature is decreased, because ω0
vanishes faster than Γ.
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A similar phenomenon is seen by continuing to Euclidean time. The Hawking tem-
perature can be derived by requiring that there is no conical singularity in the ge-
ometry in Euclidean time which in turn imposes an imaginary periodicity in real
time, t → t → + i~

T . But a magnetic system with cyclotron frequency ωB also has
periodicity 2π

ωB
in real time and combining these gives periodicity6

t → t+ 2π
ωB

+ i~
T
.

This suggests defining a complex frequency ω∗ via

2π
ω∗

= 2π
ωB

+ i~
T

⇒ ω∗
2π = ωB

2π

1− i
(
~ωB
2πT

)
1 +

(
~ωB
2πT

)2

 (5.24)

giving frequency and damping

ω0 = ωB

1 +
(
~ωB
2πT

)2 , Γ =

(
~ω2
B

2πT

)
1 +

(
~ωB
2πT

)2 (5.25)

with Q-factor
Q = 2πT

~ωB
.

The damping decreases as the temperature is lowered, as one would expect, but Q
also decreases as T is lowered is because the resonance frequency falls faster than the
damping.
Going back to (5.22) and (5.23) the situation near the event horizon is rather similar,
at least at small temperatures where ζ is large. If the magnetic field is held fixed7

c ζ ∝ ωB
T 2/z .

Let
c ζ

d
= K

2π
~ωB
T 2/z ,

with K a constant, and approach the event horizon by choosing
ε ≈ 1−u4−z

4−z = πlT 2/z

2K~(z−1)(z+2) and lowering the temperature. Then

ω0 = ωB

1 +K2
(

~ωB
2πT 2/z

)2 , Γ =
K
( ~ω2

B

2πT 2/z

)
1 +K2

(
~ωB

2πT 2/z

)2 (5.26)

the same as (5.25) if z = 2 and K = 1.
6The periodicity in t̃ =

(
rh
l

)z
t is t̃→ t̃+ 4πil

(z+2) .
7In terms of the magnetic field, using (4.1)

Qm = BAh = BAl
(
rh
l

)2
= − c e

−λφ0

η
⇒ c = −ηeλφ0BAl

(
rh
l

)2
.

Also, since ζ = e−λφ0
(

l
rh

)4
, c ζ = −ηBAl

(
l
rh

)2
∝ ωB

T2/z .
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• For small ω̂ � ω̂0 an approximate solution of (5.20) is (see [57] for more details)

σ+ =


−(bχ0dχ0+acζ2)+iζ

d2
χ0+c2ζ2 , u = 1;

−a
c , u < 1.

and this is an increasingly better approximation as ω̂ → 0.

• Exactly at u = 1 it is immediate from (5.20) that, for any non-zero ω̂, the AC
conductivity is8

σ+ = −τh = −(bχ0dχ0 + acζ2) + iζ

d2
χ0 + c2ζ2 ,

the same as the DC conductivity (5.17).

• As u→ 0, if z < 4,
σ+ → −τu=0 = − bχ0

dχ0

for any finite non-zero ω̂.

In summary the DC conductivity is independent of u,

σDC+ =
(
−acζ2 − bχ0dχ0 + iζ

c2ζ2 + d2
χ0

)
. (5.27)

In general the AC conductivity will depend on u and will require numerics to analyse, but
for ω̂ � ω̂0 it reduces to a step function

σAC+ =
(
−acζ2 − bχ0dχ0 + iζ

c2ζ2 + d2
χ0

)
, for u = 1 (5.28)

σAC+ =− a

c
, for 0 < u < 1 (5.29)

σAC+ =− bχ0

dχ0
, for u = 0. (5.30)

6 Temperature flow in the infra-red

Since the infra-red conductivity is σ+ = −τ |u=1 the conductivity transforms the same way
as the dilaxion under an Sl(2,R) transformation9

σ± = −τh → −
(
aτh + b

cτh + d

)
=
(
aσ± − b
−cσ± + d

)
. (6.1)

Invoking the Dirac quantisation condition in the bulk

σ = −τ |u=1 = (b + aλχ0)Θ4/z − ia
ic− (d + cλχ0)Θ4/z (6.2)

8The solution σ+ = −τ is rejected because the Ohmic conductivity cannot be negative.
9While this is the case at the event horizon it is not true for u < 1 (see appendix B.2), but in this

subsection we focus on u = 1.
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at the event horizon (we can drop the ± subscript when ω̂ = 0, since then σ = σ+ and
σ = −σ− and the only difference between σ+ and σ− is the sign of the Hall conductivity
σH , in the following σ is σ+). In the purely electric case, a = d = 1, b = c = 0,

σ = −λχ0 + iΘ−4/z, (6.3)

with −1
2 ≤ λχ0 ≤ 1

2 , and the Ohmic conductivity diverges as T → 0, which would be
normal behaviour of a conductor in the absence of impurities. When T is increased the
Ohmic resistance grows as T 4/z, giving a power law with exponent 1 ∼ 4 for 4 ≥ z ≥ 1.
Conversely in the purely magnetic case, a = d = 0, b = −c = 1,

σ = λχ0Θ8/z + iΘ4/z

1 + λ2χ2
0Θ8/z , (6.4)

both the Ohmic and the Hall conductivities tend to zero as T → 0.
Sl(2,Z) is generated by S : σ → −1/σ and T : σ → σ+ 1. In particular Θ = 1, χ0 = 0

is a fixed point under S-duality, with critical temperature T∗, and in the dual phase σ → 0
as T → 0 for a background with a magnetic charge but no electric charge. This fixed point
is similar to the one discussed in [77, 78], in [79, 80] it was interpreted as being due to
a superconductor-insulator phase transition arising from Bose condensation of vortices, in
which the insulating phase is a Hall insulator.

For −1
2 ≤ λχ0 ≤ 1

2 , S-duality places the critical temperature on the boundary of
the fundamental domain, where |σ| = 1, at Θ =

(
1

1−λ2χ2
0

)z/4
, so the maximum critical

temperature is at λχ0 = ±1
2 where T =

(4
3
)z/4

T∗.
However we now have an apparent paradox. In the classical solution the metric is

not affected by Sl(2,R) transformations, in particular rh and hence T are invariant. They
should therefore be invariant under Γ(1) and yet S interchanges large and small tempera-
tures. To resolve this we note that T →∞ is not accessible to the classical solution as we
must constrain T � TPl and we consider two possible strategies:

• Eliminate S and only allow sub-groups of Γ(1) that do not contain S.

• Retain S but keep T ≤ T∗.

We shall examine these two possibilities in turn, exploring the second one first.

6.1 Retain S but keep T ≤ T∗
With the superconductor-insulator transition in mind use the electric solution (a = d = 1,
b = c = 0, σ = −λχ0 + iΘ−4/z, −1

2 ≤ χ0 ≤ 1
2) above the green semi-circular arc bounding

the lower edge of the fundamental domain in figure 1, which flows up to the superconductor
as T → 0, and use the magnetic solution (a = d = 0, −b = c = 1, σ = λχ0Θ8/z+iΘ4/z

1+λ2χ2
0Θ8/z )

below the green arc, flowing to the Hall insulator as T → 0. This point of view resonates
with the introduction of the complex frequency in (5.24). Continuing time into the complex
plane, complex periodicity suggests defining

T = T∗

( 2π
ωB

+ i~
T
,

)
(6.5)
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Figure 1. Temperature flow of the conductivity on the event horizon obtained from tiling the
upper-half conductivity plane, replicating the fundamental domain using Γ(1) symmetry (arrows
in direction of decreasing temperature). The green lines indicate phase boundaries, blue circles are
saddle points and the red circles are purely repulsive fixed points. Green circles are purely attractive
fixed points as T → 0 (there are attractive fixed points at every rational number on the real axis,
but only half-integral values are shown in the figure). The vertical strip − 1

2 ≤ σxy ≤ 1
2 above the

green circular arc between e−iπ/3 and eiπ/3, bounded by the vertical blue lines, is a fundamental
domain of Γ(1).

as a Teichmüller parameter for a torus. There is then an Sl(2,Z) action

T → aT + b
cT + d

on this temporal torus. If T � ~ωB (a necessary condition to access the hierarchy of phases
in the QHE) then T ≈ i~

T and S : T → −T has a fixed point at the critical temperature
Θ = 1.

The idea is then that different filling fractions a
c label different quantum phases and

the flow lines in the fundamental domain (a = d = 1, c = b = 0) are mapped between
different phases by the action of Γ(1). Temperature flow lines, arising from varying rh in the
fundamental domain, with −1

2 ≤ λχ0 ≤ 1
2 fixed, are shown in figure 1. As the temperature

is reduced there are repulsive fixed points at σ = eiπ/3, and its images under Γ(1) (red
circles); attractive fixed points at all rational numbers on the real axis (half-integral values
are shown in green), as well as at Im(σ)→ i∞; and saddle points at σ = i, and its images
(blue). The flow looks a little confused on the green lines, which are phases boundaries,
but this will be resolved momentarily.

Of course the other flow direction could have been chosen, nothing in the mathematical
analysis dictates which direction to use: the direction is chosen on physical grounds, to
make the superconductor in the electric phase attractive as T → 0. Different classical bulk
solutions are being used to represent different phases of the 2-dimensional quantum system.
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6.1.1 Gradient flow for Γ(1)
We now take up the suggestion in [36] that this flow might be derivable as gradient flow
with an anti-holomorphic potential. In a conductor or a superconductor the temperature
flow of the conductivity is driven by the fact that there is an underlying electron coherence
length that depends on the temperature and the conductivity depends on the temperature
via the coherence length. In general we can define a flow function resulting from changing
the electron coherence length via a change in the temperature as

T
dσ

dT
= T

dξ

dT

dσ

dξ
.

Changes in the coherence length generate a vector field in the conductivity plane

β(σ, σ̄) = ξ
dσ

dξ

and, under a modular transformation10 σ → aσ+b
cσ+d ,

β(σ, σ̄)→ β(σ, σ̄)
(cσ + d)2 . (6.6)

If this flow is derivable from a potential V (σ, σ̄) then

β(σ, σ̄) = Gσσ̄∂σ̄V (σ, σ̄) (6.7)

with Gσσ̄ a hermitian metric on the conductivity plane. There is of course a natural
candidate for an Sl(2,R) invariant metric and that is

Gσσ̄ = 1
(Imσ)2 .

The proposal in [36] is that the potential be anti-holomorphic V (σ̄). Under a modular
transformation

Imσ → Imσ

|cσ + d|2
so

Gσσ̄ → Gσσ̄

|cσ + d|4

and (6.7) will have the transformation property (6.6) if

V (σ̄)→ (cσ̄ + d)2 V (σ̄), (6.8)

i.e. 1/V (σ), the complex conjugate of 1/V (σ̄), is a modular form of weight −2.
This severely restricts the form of the potential as there is a theorem [81] that any

modular form Φ−2(σ) of weight -2 can be written in terms of Klein’s J-invariant as11

Φ−2(σ) = P (J)
Q(J)

1
J ′

10The sign of b and c have been changed compared to (6.1) to avoid cluttering subsequent formulae with
minus signs — this is still a modular transformation, it is equivalent to changing the sign of Re(σ).

11Relevant properties of modular forms are summarised in appendix C for convenience.
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where P (J) and Q(J) are polynomials in J and J ′ = dJ
dσ . We shall therefore investigate

using V (σ) = {Φ−2(φ)}−1 as a potential.
Under this assumption the flow commutes with the Γ(1) action and fixed points of

Γ(1), i.e. points in the σ-plane that are left invariant by at least one non-trivial element of
Γ(1), are necessarily fixed points of the flow,

σ∗ = aσ∗ + b
cσ∗ + d ⇒ β(σ∗, σ̄∗) = β(σ∗, σ̄∗)

(cσ∗ + d)2 ⇒ β(σ∗, σ̄∗) = 0 or ∞.

There are three points in the fundamental domain that are left invariant by some element
of Γ(1): σ1,∗ = i∞, σ2,∗ = eiπ/2 and σ3,∗ = eiπ/3, with J taking values +∞, 1 and 0,
respectively at these three points. In fact J is real and monotonically increasing from 0 to
1 as σ goes from eiπ/3 to eiπ/2, along the unit circular arc, and then increases from 1 to ∞
along the vertical line as σ runs from i to i∞.

There can be more fixed points though, a zero of Q(J) would give β = 0 and a zero of
P (J) would give a divergent β. The simplest assumption is that there are no fixed points
of the flow other than the fixed points of Γ(1). A property of J is that it takes all possible
complex values once and only once in the fundamental domain of Γ(1), so if P (J) and Q(J)
are to have no zeros other than at eiπ/3, i and i∞ it must be the case that

Q(J)
P (J) = −CJm(J − 1)n

for some pair of if integers m and n, with C a constant. Furthermore m and n are restricted
by the form of the classical solution of the equations of motion.

Consider the purely electric solution (6.3) with χ0 = 0 and

σ = iΘ−4/z,

above the fixed point Θ = i with Θ ≤ 1. The metric on this line is

Gσσ̄ = Θ8/z

so
β = −CJ

m(J − 1)n
Θ8/z

d J

dσ̄
= ξ

dσ

dξ
.

Now consider the three types of fixed point:

• σ∗,1, σ→ i∞: in terms of q = eiπσ, J has the small q expansion

J = 1
1728

(
q−2 + 744 + 196884q2 + 21493760 q4 +O

(
q6))

so as Θ→ 0
β ≈ − 2πiCΘ−8/z

(1728)m+n+1 e
2π(m+n+1)

Θ4/z

giving

ξ
dΘ−4/z

dξ
≈ − 2πCΘ−8/z

(1728)m+n+1 e
2π(m+n+1)

Θ4/z

(clearly C must be real for ξ to be real).
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If the β-function is to be analytic as T → 0, m and n must be restricted by the
constraint m+ n+ 1 = 0. This gives

ξ ≈ ξ0 exp
(

Θ4/z

2πC

)
→ ξ0 as Θ→ 0 (6.9)

and the coherence length is a non-zero constant as T → 0.

• σ∗,2 = i: for σ = i+ ε with ε small

J ≈ 1− kε2,

with k = 3
64π4

{
Γ
(

1
4

)}8
≈ 14.37, so

β ≈ 2Ckε̄(−kε̄2)n,

since Gσσ̄ = 1 +O(ε). Demanding that β is finite at σ = i restricts us to n ≥ 0. Now
let t =1−Θ be the reduced temperature near the critical point, with 0 ≤ t ≤ 1, then

ε̄ = −4it
z

and
β ≈ −2iCkn+1

(4t
z

)2n+1
.

Together with
β = ξ

dt
dξ

dσ

dt
= 4i

z

(
ξ
dt
dξ

)
this gives

1
ξ

dξ

dt
≈ − 1

2Ckn+1

(
z

4

)2n
t−(2n+1)

⇒ ln ξ ≈


1

4nC
(
z
4
)2n

k−(n+1)t−2n, n 6= 0;
− 1

2kC ln t, n = 0.

n = 0 gives the scaling behaviour

ξ ≈ At−ν
′

with A a constant and critical exponent

ν ′ = 1
2kC = 32π4

3C
{
Γ(1

4)
}8 .

• σ∗,3 = eiπ/3: what of the third fixed point at σ3,∗ = eiπ/3? Near eiπ/3, with
σ = eiπ/3 + ε′, J vanishes as

J ≈ −ik′(ε′)3
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with k′ a positive constant.12 The metric takes the value Gσσ̄ = 4
3 giving

β ≈ 9C
4 (−1)n+1(eiπ/2k′)m+1(ε̄ ′)3m+2.

Demanding that β is finite at ε′ = 0 would constrain m to be positive, but requiring
β to be analytic at all three fixed points gives three incompatible conditions, m+n =
−1, n ≥ 0 and m ≥ 0. We do not yet have a physical interpretation of ε′ so we shall
keep m+n+1 = 0 and n ≥ 0 and allow m < 0. The marginal case is n = 0, m = −1,
in which case there is a simple pole in β at σ∗,3.

On the unit circular arc from σ∗,2 to σ∗,3, σ = ei(
π
3 +ψ) with 0 ≤ ψ ≤ π

6 , J is real and
lies in the range 1 ≥ J ≥ 0. Close to eiπ/3, where ψ � 1,

ε′ ≈ e5iπ/6ψ

and
ξ
dψ

dξ
≈ −9C

4ψ ⇒ ξ ≈ ξ̃0e
− 2ψ2

9C .

In summary the behaviour of ξ near the fixed points is

ξ ∼


ξ0 exp

(
Θ4/z

2πC

)
, Θ→ 0;

At−ν
′
, Θ→ 1, with ν ′ = 32π4

3C
{

Γ( 1
4 )
}8 ;

ξ̃0 exp
(
−2ψ2

9C

)
, σ = ei(π/3+ψ) → eiπ/3.

(6.10)

The classical solution in the bulk does not give us ψ as a function of T , but a consistent
picture emerges if ψ is monotonic in T and T increases monotonically from T∗ to infinity
along the circular arc connecting the two fixed points eiπ/2 and eiπ/3. The hypothesis of
gradient flow has resolved the ambiguity across the green arc of points in figure 1 and
replaced it with a separatrix between the two adjoining phases.

On the upper segment of the imaginary axis, σ = iΘ−4/z for Θ in the range 1 ≥ Θ ≥ 0
while J is real and lies in the range 1 ≤ J(σ) <∞ and we can invert the explicit formula
for J(σ), (C.11) in appendix C) to plot Θ in this range as a function of J (this is shown in
figure 2). Now the temperature, and hence Θ, depends only on the metric and not on any
Sl(2,R) transformation of the classical solution, and so Θ should be modular invariant.
Suppose therefore that Θ can be extended to a real function Θ(J, J) over the whole of the
fundamental domain, and by extension using Γ(1) to the whole upper-half complex plane.
If Θ is a monotonic function of |J | everywhere then flow lines can be obtained by varying
|J |, keeping its argument Ψ fixed. With J = |J |eiΨ and m = −1, n = 0

ξ
dσ

dξ
= −C(σxx)2d ln J

dσ
= −C2

d(ln |J |2)
dσ

+ iC(σxx)2ξ
dΨ
dξ
.

12k′ = 28

(
√

3π)3

{
K
(
sin
(
π
12

))}6 ≈ 26.47, with K the elliptic integral of the second kind, but we shall not
need its explicit value.
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Figure 2. Temperature as a function of |J | for |J | ≥ 1 along the imaginary axis, with Γ(1)
flow. Θ drops monotonically from unity at |J | = 1 to zero as |J | → ∞. Asymptotically Θ4/z ≈

2π
ln |J| . This assumes that the classical solution gives the correct temperature dependence along the
imaginary axis.

Now
Ψ = tan−1

{
i(J − J)
(J + J)

}
⇒ dΨ

dσ
= − i

2J
dJ

dσ

and

ξ
dΨ
dξ

= ξ
dσ

dξ

dΨ
dσ

+ ξ
d σ

dξ

dΨ
d σ

= −C(σxx)2
{
d ln J
dσ

(
− i

2J

)(
dJ

dσ

)
+ d ln J

dσ

(
i

2J

)(
dJ

dσ

)}
= 0

if C is real. Thus for real C the argument of J is indeed constant along the flow lines.
Furthermore

ξ
d|J |2

dξ
= ξ

dσ

dξ

d|J |2

dσ
+ ξ

dσ

dξ

d|J |2

dσ

= −C(σxx)2
{
d ln J
dσ

d|J |2

dσ
+ d ln J

dσ

d|J |2

dσ

}

= −2C
(
σxx

∣∣∣∣dJdσ
∣∣∣∣)2

⇒ ξ
d ln |J |
dξ

= −C
(
σxx

∣∣∣∣d ln |J |
dσ

∣∣∣∣)2
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Figure 3. Temperature flow of the conductivity on the event horizon for Γ(1) symmetry, assuming
it is generated by varying |J |, keeping arg(J) fixed. The diagram is obtained simply by plotting
lines of constant arg(J), which are represented by different colours from red (Ψ = 0) through black
(Ψ = π) to yellow.

hence |J | is indeed a monotonically decreasing function of ln ξ. The temperature flow can
therefore be visualised as lines of constant Ψ in the conductivity plane and these are plotted
in figure 3 (this figure is obtained using the logic in [39, 82]).13

J is real on the segment of the unit circle centered on the origin that connects these
two fixed points and decreases from 1 at σ∗,2 to 0 at σ∗,3, as Θ rises from 1 to infinity.
Thus the full temperature range 0 ≤ Θ < ∞ is re-instated in a self-consistent flow. The
fixed point at eiπ/3 is a sink in the high temperature direction that takes the theory out
of its domain of validity as the temperature is increased, in the AdS/CMT paradigm this
would suggest that quantum effects become significant in the bulk and the 2-D quantum
system becomes weakly coupled at σiπ/3.

It is not necessary to know the function Θ(J, J) explicitly in order to plot figure 3, it
can be any monotonic function of |J |. The classical solution only gives Θ for arg(J) = 0,
and even then only for J ≥ 1. It is a strong assumption that Θ(|J |,Ψ) is monotonic in
|J | everywhere and that the temperature flow is obtained by varying |J |, but the picture
that emerges under these assumptions is at least consistent. In the next section similar
assumption are made for the sub-group Γ0(2) ⊂ Γ(1) and give very good agreement with
experimentally measured flows.

13ξ need not be precisely the same as electron coherence length for deriving the temperature flow diagram,
all that is necessary is that T (ξ) is a monotonic function of ξ in the fundamental domain and same diagram
would ensue.
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6.2 Eliminate S

Another way of obtaining a consistent temperature flow is to eliminate S and consider
a subgroup of Γ(1). For example we could consider the set of elements generated by
repeated application of STS and T , but (ST )3 = 1 so (STS)T (STS) = S and S re-
appears. However ST 2S and T do generate a group — the subgroup Γ0(2) of Γ(1), and
this is one option, but there are others [11, 83] (appendix C collects together some relevant
facts about level 2 subgroups of Γ(1) and their modular forms).

The group Γ0(2) has two fixed points on the imaginary axis, at σ = i∞ and σ = 0, but
the Γ(1) fixed point at σ2,∗ is gone. The temperature flow diagram generated by taking
the purely magnetic solution

σ = −λχ0 + iΘ4/z

in the fundamental domain of Γ0(2), with −1 ≤ λχ0 ≤ 0 fixed, and mapping it around
with elements of Γ0(2) is shown in figure 4. Γ0(2) has a third fixed point at σ∗ = 1

2(1 + i),

left invariant by
(

1 −1
2 −1

)
which reflects the green arc bounding the fundamental domain

in figure 4 about the vertical line σxy = 1
2 . Again there is confusion along the green semi-

circular arc that constitutes the lower boundary of the fundamental domain in the figure,
and modifying the flow to a gradient flow resolves this to a separatrix with a saddle point
at σ = 1+i

2 .

6.2.1 Gradient flow for Γ0(2)
For Γ0(2) there is a parallel theorem about modular forms to that used for Γ(1) in sec-
tion 6.1, [81]: any modular form of weight -2 for Γ0(2) can be written as

Φ̃−2(σ) = P̃ (f)
Q̃(f)

1
f ′

where f(σ) is the Γ0(2) invariant function

f(σ) = − 1
256q2

∞∏
n=1

(1− q4n−2)8

(1 + q2n)16 ,

with q = eiπσ and P̃ (f) and Q̃(f) polynomials in f . So we can investigate Ṽ (σ̄) = {Φ̃−2}−1

as a potential. On the vertical line in figure 4, associated with the magnetic solution with
χ0, σ = iΘ4/z, q = e−πΘ4/z is real and hence f is real on this line, it is in fact negative and
runs monotonically down from 0 to −∞ as Θ increases from 0 to ∞. Since f is invariant
under Γ0(2) transformations it is real and negative on the blue semi-circles in figure 4,
which images of the imaginary axis under Γ0(2).

However Γ0(2) has another fixed point at σ∗ = 1+i
2 , and its images, and f = 1

4 at σ∗.
Just as J does for Γ(1), f takes all complex values once and only once in the fundamental
domain of Γ0(2). With the same assumption as in section 6.1, that there are no fixed points
of β other than the fixed points of Γ0(2), the form of P̃ (f) and Q̃(f) are then constrained
so that

Q̃(f)
P̃ (f)

= Cfm
(1

4 − f
)n

– 27 –



J
H
E
P
0
8
(
2
0
2
1
)
0
1
0

Figure 4. Temperature flow of the conductivity on the event horizon for the group Γ0(2). The
fundamental domain can be taken to be the vertical strip 0 ≤ σxy ≤ 1 above the green semi-circular
arc of radius one-half, spanning 0 and 1, the pattern repeats for σxy → σxy + n for any integer n.
The temperature flow of the purely magnetic solution in the fundamental domain is shown together

with one other copy obtained by applying the Γ0(2) transformation
(

1 −1
2 −1

)
∈ Γ0(2) which leaves

σ∗ = 1
2 (1 + i) fixed.

and

β = CΘ8/z f̄m
(
f̄ − 1

4

)n df̄
dσ̄

for the purely magnetic solution, with C a constant. The reasoning now follows along the
same lines as for Γ(1), except the purely magnetic solution is used on the imaginary axis
bounding the fundamental domain (χ0 = 0) instead of the electric one.

• σ∗,1, σ → i∞: for the purely magnetic solution σ = iΘ4/z → i∞ at large T and it
is known (see appendix C) that f ≈ − e2πΘ4/z

256 , f̄ ′ ≈ 2πif̄ , so

β ≈ 2πi(−1)m+n+1CΘ8/z e
2π(m+n+1)Θ4/z

(256)m+n+1 .

For β to be analytic as Θ → ∞, n and m must be restricted to ensure that
m+ n+ 1 < 0, but there are three fixed points in the fundamental domain and, as
before, it will not be possible have β analytic at all three so β will not be constrained
to be analytic as T →∞. The least extreme case is the marginal one, m+n+ 1 = 0,
for which

ξ
dΘ4/z

dξ
= 2πCΘ8/z ⇒ ξ ≈ ξ0 exp

(
− 1

2πCΘ4/z

)
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and the coherence length increase with increasing T if C > 0 tending to a constant
as Θ→∞.

• σ → 0: in the opposite limit, for Θ → 0, f vanishes as f ≈ −16e−π/Θ4/z and
f̄ ′ ≈ − 16πi

Θ8/z e
−π/Θ4/z so

β ≈ (−1)m+n+14(2m−n+2)iCπe−π(m+1)/Θ4/z
.

Only m = −1 gives analytic behaviour for β and, for n = 0,

ξ
dΘ4/z

dξ
≈ (−1)nπC

4n ⇒ ξ ≈ ξ̃0 exp
(

(−1)n22nΘ4/z

πC

)
.

• σ∗ = 1+i
2 : lastly there are the new fixed points at σ∗ = 1+i

2 and its images. For
σ = σ∗ + ε,

f ≈ 1
4 −

Γ(1/4)8

64π4 ε2

and the metric contributes a factor of 1
4 . With m = −1

β ≈ (−1)n2C
{

Γ(1/4)8

64π4

}n+1

ε̄2n+1.

Analyticity requires n ≥ 0 andm+ n+ 1 = 0 imposes n = 0, giving scaling behaviour

β ≈ −Γ(1/4)8

32π4 Cε̄. (6.11)

In contrast to the Γ(1) case the temperature dependence of ε̄ near σ∗ for Γ0(2) can be
determined by going back to the full Γ(1) configuration in section 6.1 and mapping
its template flow (i.e. the positive imaginary axis together with its fixed point at
σ∗,2 = i) to the semi-circle that is the lower bound of the fundamental domain of
Γ0(2) in figure 4 (i.e. the semi-circular arc of radius one-half spanning the two points

σ = 0 and σ = 1). This is achieved by using the Γ(1) transformation
(

0 1
−1 1

)
,

which is not in Γ0(2), and sends σ∗,2 to σ∗ = 1+i
2 . The semi-circle can then be

mapped around the upper half-plane using Γ0(2).

To apply equation (6.11) in this topology observe that
(

0 1
−1 1

)
sends

iΘ4/z → 1 + iΘ4/z

1 + Θ8/z and iΘ−4/z → 1 + iΘ−4/z

1 + Θ−8/z

with 0 ≤ Θ ≤ 1. Near the critical point σ∗,2 = i, where Θ = 1− t, the image is(1 + i

2

)
± 2t

z

with positive t just below σ∗,2 in the Γ(1) template mapped to the right-hand half of
the semi-circle (+ sign) and positive t just above σ∗,2 mapped to the left-hand half
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Figure 5. ξ along the imaginary axis σ = iΘ4/z for the purely magnetic solution as a function of
Θ4/z. Γ0(2) symmetry determines the behaviour near Θ = 0, via (6.13), and (6.12) is numerically
integrated to determine ξ

(
Θ4/z). The red curve is the numerical result for the specific choice

ξ̃0 = C = 1. The dashed blue curve is the asymptotic form ξ = eΘ4/z/π near Θ = 0 and the
dashed green curve is the asymptotic value for ξ̃0 = C = 1, which numerically is ξ0 ≈ 1.540.
Again this assumes that the classical solution gives the correct temperature dependence along the
imaginary axis.

(− sign), with ε̄ = ±2t
z when t is small. In either case the sign in (6.11) makes 1+i

2
a repulsive fixed point if C is positive and

ξ ∼ t−ν
′

with critical exponent

ν ′ = 32π4

C{Γ(1/4)}8 .

In summary the Γ0(2) flow with m = −1 and n = 0 has β-function

β = C{Im(σ)}2d ln |f̄ |
dσ̄

(6.12)

with C > 0 and the fixed point behaviour of the coherence length is

ξ ∼


ξ0 exp

(
− 1

2πCΘ4/z

)
, Θ→∞, σ → i∞;

ξ̃0 exp
(

Θ4/z

πC

)
, Θ→ 0, σ → 0;

At−ν
′
, Θ→ 1, σ → 1+i

2 , with ν ′ = 32π4

C
{

Γ( 1
4)
}8 .

(6.13)

ξ(T ) is plotted in figure 5.
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Figure 6. Temperature flow of the conductivity on the event horizon for Γ0(2) symmetry, assuming
it is generated by varying |f |, keeping arg(f) fixed. The diagram is obtained simply by plotting
lines of constant arg(f) as in [39].

Extending the temperature into the whole fundamental domain by assuming that
Θ(f, f̄) is a real modular invariant function that increases monotonically as |f | increases
the flow can be obtained by plotting lines of constant arg(f) in the conductivity plane. The
result is shown in figure 6 which is taken from the review [84] and has the same topology
as the Γ0(2) flow originally suggested in [85, 86]. Flow lines in the conductivity plane, in
terms of electron coherence length, were suggested for the integer QHE in [87] and the
hierarchical structure of modular symmetry extends this to the fractional effect.

Note that it is not being assumed that Θ is independent of arg(f), only that the
temperature flow is obtained by varying |f |, keeping arg(f) fixed. For σ = iΘ4/z, f is
real and negative, so arg(f) = π, while on the semi-circle passing through σ∗, f is real
and positive, so arg(f) = 0. The anti-holomorphic β-function in (6.12) was first proposed
in [36–38].

Figure 6 should be compared to the experimental plots in [42] and [43] (similar exper-
imental plots have been obtained by other groups [44]). The agreement is remarkable.

7 Discussion

There are two distinct aspects to the discussion presented here: the AdS/CMT paradigm
and gradient flow. They are woven together in the analysis but are a priori independent
concepts.

The idea of gradient flow β-functions for the QHE is motivated by the c-theorem in
2-dimensions and was first used in the context of modular symmetry more than 20 years
ago [34, 35]. In that work the function f ′/f was considered14 but rejected it because it

14Denoted by ET2 in [34, 35].
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did not match perturbation theory for large values of the Ohmic conductivity.15 In the
context of the AdS/CMT correspondence that is not a reason to reject it as the perturbative
limit of the boundary theory is not accessible from the classical bulk theory, analysing the
perturbative limit would require understanding quantum gravity effects in the bulk.

As mentioned in the introduction a number of authors have considered describing the
QHE within the framework of AdS/CMT, including in particular [10] where the Gibbons-
Rasheed action was used near the horizon to analyse the conductivity associated with a
dyonic solution in the bulk and [33] where the Dirac quantisation condition in the bulk was
used to argue for fractional filling factors. The new ingredients here are the observation
that the infra-red DC conductivity at u→ 1 is identified with the value of the dilaxion on
the horizon and that this is consistent with gradient flow.

The assumption that Θ is a monotonic function of |f | and that the flow lines are
given by varying |f | keeping arg(f) fixed needs some discussion (we shall discuss Γ0(2)
here, as that is more relevant to experiment, a similar discussion can be given for Γ(1)
with f replaced by J). Θ is a monotonic function of |f | on the positive imaginary axis,
where arg(f) = π, and extending this into the interior of the fundamental domain requires
turning on a non-zero χ0 and changing arg(f), so that arg(f) is correlated in some way
with χ0 in the classical solution. Experimentally [42]–[44] this can be achieved in the QHE
by varying the magnetic field away from its critical value B∗. In the composite fermion
picture B∗ corresponds to the situation when the statistical gauge field exactly cancels the
applied field, the 2DEG is a composite fermi liquid [33]. In our scenario B∗ corresponds to
λχ0 = 1/2 and deviations from B∗ arise not from varying the dyon magnetic charge, which
relates to a global U(1) on the boundary, but from varying χ0 (in [33] χ0 is set to zero).
Exactly how χ0 might be related to the deviation of the external field from its critical value
would depend on the details of the underlying matter and an investigation of this would
require numerical analysis of an underlying fermionic matter action. But the basic idea
that varying T and B independently is equivalent to varying ζ and χ0, or |f | and arg(f),
is not obviously inconsistent and seems at least plausible.

Lastly we comment on possible sub-groups of Γ(1). Two scenarios have been presented
involving Γ(1) and Γ0(2) flow with very different topologies, but there are other possibilities.
For example Γ(2), generated by ST 2S and T 2, was studied in [88] in the context of the
QHE and is relevant for spin-degenerate quantum Hall systems [89]. Another level 2 sub-
group, Γθ (see appendix C), was suggested as being relevant for bosonic charge carriers in
a superconductor in a magnetic field in [11]. The possibility of T versus T2 was discussed
in [83] where it was related to whether or not the Euclidean version of the bulk theory is
formulated on a 4-manifold admitting a spin structure. There is nothing in the classical
solutions presented here that picks out any preferred level 2 sub-group associated with
any particular kind of matter, the dilaton is not charged and merely plays the rôle of an

15Holomorphic modular forms of weight -2 for Γ0(2) were used in [39] in a discussion of how the conduc-
tivity changes between quantum Hall plateaux as the magnetic field is varied at fixed temperature, where
the same problem was noted. This also gave a pole at σ = 1+i

2 and a mechanism was proposed to tame
the pole and obtain smooth crossovers between plateaux at finite T , well away from the perturbative limit.
This was based on a holomorphic rather than an anti-holomorphic ansatz.
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effective background electric susceptibility after any matter fields have been integrated out.
Presumably a more detailed bulk model, included matter, is needed to pick out a specific
level 2 sub-group. For example fermionic matter in the bulk would be expected to give
Γ0(2) and bosonic matter Γθ. The full group Γ(1) might require supersymmetric matter,
though a phase diagram with Γ(1) symmetry was proposed for a 2-dimensional Abelian
lattice model in [90] (to the author’s knowledge this was actually the first suggestion of
Sl(2,Z) duality transformations between different phases) but this is left as a subject for
future investigation.

A Conventions

The conventions used in the text for the computation of the conductivity in appendix B
are collected here for convenient reference.

Our signature is (−,+,+,+) with line element

ds = 1
u2

(
−f2dt̃ 2 + l2

h2du
2 + dx2 + dy2

)
, (A.1)

where u = rh
r and f has a single zero at u = 1, with asymptotic infinity at u → 0. The

magnetic field tensor Fµν decomposes into electric and magnetic fields as

Eα = −Ft̃α, Bα = −F̃ t̃α = −1
2
εt̃αβγ√
−g

Fβγ

with α, β, γ = u, x, y and εt̃uxy = −εt̃uxy = 1. Under a perturbations homogeneous in the
transverse directions, the transverse field variations are

δEα = −δFt̃α, δBα = −δF̃ t̃α = −u
4h

lf
εαβ(δFuβ) = −u

4h

lf
εαβ(δA′β)

with εxy = −εyx = 1 and α, β restricted to x, y.
Conductivities are calculated in a local inertial frame and we need these expressions

in an orthonormal basis. With transverse orthonormal indices i, j = 2, 3 the orthonormal
components of E and B are

δEi = u2

f
δi
α(δEα − m̂εαβδGβ), δBi = f

u2 δ
i
α(δBα) = −u

2h

l
εαβ(δA′β),

where the metric variation is δgt̃α = 1
u2 δGα and m̂ is related to the magnetic charge m in

equation (3.25) by m̂ =
(
l
rh

)2
m. It is convenient to combine these into the complex fields

δE± = f

u2 (δE2 ± iδE3), δB± = f

u2 (δB2 ± iδB3) = f2

u4 (δBx ± iδBy).

The Hodge star used in (2.5) is

∗1 =
√
−g d4x = l

uz+3 (dt̃ ∧ du ∧ dx ∧ dy),

thus ∗G =
√
−g
2 εµνρσG

µνdxρ ∧ dxσ = 1
2G̃ρσdx

ρ ∧ dxσ.
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B Conductivities in linear response theory

Conductivities in the boundary theory can be determined using the techniques in [56]
and [55]. The idea is to make a perturbation of the fields that is independent of the
transverse co-ordinates x and y and demand that this is a solution of the bulk equations
of motion at second order in the perturbation. This generates differential equations that
the perturbations must satisfy which can be used to determine response functions for the
boundary theory, in particular the conductivities.

Let
δgt̃x = δGx(t̃, u)

u2 δgt̃y = δGy(t̃, u)
u2

be perturbations of the bulk metric

ds2 = 1
u2

(
−f2(u)dt̃ 2 + l2du2

h2(u) + dx2 + dy2
)
.

These are not general perturbations but are chosen to be independent of x and y so they
are homogeneous in the transverse directions, which is sufficient for our needs. We shall
also assume oscillatory time dependence and set

Gx(t̃, u) = e−iω̃t̃δG̃x(u), Gy(t̃, u) = e−iω̃t̃δG̃y(u).

For the explicit dyon solution in section 3.2 the functions f(u) and h(u) are

f2(u) = (1− uz+2)
u2(z−1) , h2(u) = 1− uz+2

but the analysis will be kept more general and these explicit forms only used at the end.
Perturbations of the dilaton and axion fields take a similar form

δφ(t̃, u) = e−iω̃t̃δφ̃(u), δχ(t̃, u) = e−iω̃t̃δχ̃(u), (B.1)

though demanding that the perturbations satisfy the linearised equations of motion forces
δφ̃(u) = δχ̃(u) = 0 at this order.

A similar perturbation of a dyonic configuration, with Maxwell 2-form16

F = dA = q̂ lf(u)
u4h(u)dt̃ ∧ du+ m̂dx ∧ dy,

is
δA = δAα(t̃, u)dxα = e−iω̃t̃

(
δÃx(u)dx+ δÃy(u)dy

)
. (B.2)

This generates a transverse electric field

δEα = −δFt̃α = iω̃δAα (B.3)
16In the solution presented in section 3.2, equation (3.25),

q̂ =
(
rh
l

)2
q, m̂ =

(
l

rh

)2
m.
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and a transverse magnetic field

δBα = εt̃uαβ√
−g

δFuβ = −u
4h

lf
εαβδA′β , (B.4)

where α and β label x and y, εt̃uxy = −1, εxy = +1 and ′ denotes differentiation with
respect to u. For static fields

δAα(t̃, u) = (δE0
α)t̃+ δÃα(u) (B.5)

with δE0
α constants.

In an orthonormal basis the electric and magnetic field variations are

δE2 = u2

f
(δEx − m̂δGy), δE3 = u2

f
(δEy + m̂δGx), (B.6)

δB2 = −u
2h

l
δA′y = f

u2 δB
x, δB3 = u2h

l
δA′x = f

u2 δB
y. (B.7)

These perturbations will induce a transverse current

δJ i = σijδEj

with σij the transverse conductivity tensor (i, j = 2.3 are orthonormal indices). In a
co-ordinate basis (

δJx

δJy

)
= u

(
δJ2

δJ3

)
,

(
σxx σxy

σyx σyy

)
= u2

(
σ22 σ23

σ32 σ33

)

and
δJα = σαβδEβ

where
δEα = δEα − m̂εαβδGβ . (B.8)

With the complex combinations

δE± = δEx ± iδEy, δJ± = δJx ± iδJy, σ± = σxy ± iσxx (B.9)

this is [55]
σ± = ±i δJ±

δE±
. (B.10)

In AdS/CMT correlations functions are derived from the boundary action. With any
fixed value of δAα|u=1 at the event horizon we can cut the bulk theory off at a finite value
of u < 1 to find that the variation of the action is

δS[δA(u), δG(u)] =
∫
dt̃ dx dy

[
δAα

(
−1

2e
−λφδF uα

√
−g + λχ

2 εuαt̃βδFt̃β

)]1

u

= 1
2

∫
dt̃ dx dy

{
δAα

(
e−λφδF uα

√
−g − λχεuαt̃βδFt̃β

)}∣∣∣
u

+ const.
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(the Einstein action gives no contribution at O(δG2
α) ). The current is then

δJα(u) = δS

δAα
= e−λφδF uα

√
−g − λχεt̃uαβδFt̃β (B.11)

= e−λφ

u4 δαβ
{
f2εβγ(δBγ)− q̂ (δGβ)

}
− λχεαβ(δEβ) (B.12)

where we have used

δF uα = δαβ
(
u4h4

l2
δAβ −

q̂ h

lf
δGα

)
,

√
−g = lf

u4h
,

and (B.4). This can be re-expressed as

δJα = e−λφδαβεβγ(δBγ)− λχεαβδEβ + δαβ
(
λm̂χ− q̂e−λφ

u4

)
δGβ

where, following [55], we define

δBα = f2

u4 δB
α = f

u2 δ
α
i (δBi)

in analogy with

δEα = f

u2 δ
i
α(δEi).

From these the transverse conductivity, ignoring the back-reaction on the metric, is

σαβ = δJα

δEβ

∣∣∣∣∣
δG±=0

= e−λφ
(
εαγδBγ

δEβ

)
− λχεαβ (B.13)

or
σ± = e−λφ

δB±
δE±

− λχ, (B.14)

which is central to the analysis in the text.
We note in passing that

δJα

δGβ

∣∣∣∣∣
δE±=0

=
(
λm̂χ− q̂e−λφ

u4

)
δαβ = m̂a

c
δαβ = Qe

Ah
δαβ , (B.15)

where the final two equalities are specifically for the dyon solution (3.24) with electric
charge (3.30). Qe

Ah is of course the charge density at the event horizon and u2 δJα
δGβ

=<
JαT t̃β > is piezoelectric tensor for the deformation δgt̃β .

B.1 RG equation for the conductivities

To obtain more detailed information about the conductivity we need a relation between δBα

and δEα and this comes from requiring that these variations are solutions of the linearised
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equations of motion. These are Einstein’s equations

fh

4κ2l2

(
h

f

δG′x
u2

)′
+ e−λφ

(
−fh

l

q̂

u4 δA
′
x − m̂(iω̃δAy + m̂δGx)

)
= 0, (B.16)

fh

4κ2l2

(
h

f

δG′y
u2

)′
+ e−λφ

(
−fh

l

q̂

u4 δA
′
y + m̂(iω̃δAx − m̂δGy)

)
= 0, (B.17)

iω̃

4κ2

(
δG′x
u2

)
+ e−λφ

(
− lf
h

q̂

u4 (iω̃δAx − m̂δGy)− m̂f2δA′y

)
= 0, (B.18)

iω̃

4κ2

(
δG′y
u2

)
+ e−λφ

(
− lf
h

q̂

u4 (iω̃δAy + m̂δGx) + m̂f2δA′x

)
= 0, (B.19)

and Maxwell’s equation

∂µ
(√
−g e−λφδFµν

)
− λ

2 ε
µνσλ(∂µχ)δFσλ = 0 ⇒

− iω̃l
fh

e−λφ
(
iω̃δAα − m̂εαβδGβ

)
+
(
fh

l
e−λφ(δAα)′ − q̂

u4 δGα

)′
= iω̃λχ′εβαδAβ , (B.20)

while the dilaton and axion equations of motion impose

δφ = δχ = 0 (B.21)

(see [56], the only new ingredient here is the dilaton and axion for which a perturbation of
the form (B.1) is constrained to vanish by the equations of motion).

In terms of

δEx = iω̃δAx − m̂δGy, (B.22)
δEy = iω̃δAy + m̂δGx, (B.23)

δBx = −fh
l
δA′y, (B.24)

δBy = fh

l
δA′x, (B.25)

equations (B.16)–(B.19) can be re-cast as

fh

4κ̂2

(
h

f

δG′x
u2

)′
= e−λφ

(
m̂δEy + q̂

u4 δB
y
)
, (B.26)

fh

4κ̂2

(
h

f

δG′y
u2

)′
= e−λφ

(
−m̂δEx −

q̂

u4 δB
x
)
, (B.27)

iω̂

4κ̂2
h

f

(
δG′x
u2

)
= e−λφ

(
q̂

u4 δEx − m̂δB
x
)
, (B.28)

iω̂

4κ̂2
h

f

(
δG′y
u2

)
= e−λφ

(
q̂

u4 δEy − m̂δB
y
)
, (B.29)

with κ̂ = κl and ω̂ = ω̃l while (B.20) is

− iω̂
fh
e−λφ(δE±) +

(
εα
βδBβ −

q̂

u4 δGα
)′ = iω̂λχ′εβα(δEβ + m̂εβ

γδGβ).
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Now differentiate (B.28) and (B.29) and equate the result to (B.26) and (B.27) giving{
e−λφ

(
− q̂

u4 δE± + m̂δB±
)}′

= ∓ ω̂e
−λφ

fh

(
m̂δE± + q̂

u4 δB±
)
. (B.30)

A second equation relating δE ′± to δE± and δB± is obtained from (B.22) and (B.23),

δGx = 1
m̂

(−iω̃δAy + δEy), δGy = 1
m̂

(iω̃δAx − δEx), (B.31)

from which

δG′x = 1
m̂

(
iω̂

fh
δBx + δE ′y

)
, δG′y = 1

m̂

(
iω̂

fh
δBy − δE ′x

)
. (B.32)

Now using these to eliminate δG′α in (B.28) and (B.29) leads to

ω̂

4κ̂2u2

(
∓δE ′± + ω̂

fh
δB±

)
= e−λφ

f

h

(
− q̂m̂
u4 δE± + m̂2δB±

)
. (B.33)

Equations (B.30) and (B.33) here are the analogues of equations (17) and (18) in [55].
It is convenient to define

Q = e−λφq̂

u4 , M = e−λφm̂, δG± = δGx ± iδGy, (B.34)

in terms of which (B.30), (B.32) and (B.33) can be written as a matrix equation
−Q M 0

∓ ω̂
4κ̂2u2 0 0

1 0 ∓im̂




δE ′±

δB′±

δG′±

 =


Q′ ∓ ω̂

fhM −M′ ∓ ω̂
fhQ 0

−fm̂
h Q

fm̂
h M−

ω̂2

4κ̂2u2fh 0

−4iκ̂2u2f
ω̂h
Q 4iκ̂2u2f

ω̂h
M 0




δE±

δB±

δG±



⇒


δE ′±

δB′±

δG′±

 =


S11 S12 0

S21 S22 0

S31 S32 0




δE±

δB±

δG±

 (B.35)

with

S11 = ±4κ̂2u2

ω̂

fm̂

h
Q

S12 = ∓4κ̂2u2

ω̂

fm̂

h
M± ω̂

fh

S21 = ±4κ̂2u2

ω̂

fm̂

h

Q2

M
+ Q

′

M
∓ ω̂

fh

S22 = ∓4κ̂2u2

ω̂

fm̂

h
Q− M

′

M
(B.36)

S31 = −4iκ̂2u2f

ω̂h
Q

S32 = 4iκ̂2u2f

ω̂h
M.
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From these we get

(
δB±
δE±

)′
= ±4κ̂2u2

ω̂

f

h

m̂

M

{
−Q+M

(
δB±
δE±

)}2
∓ ω̂

fh

{
1+
(
δB±
δE±

)2}
− M

′

M

(
δB±
δE±

)
+ Q

′

M
.

(B.37)

A renormalisation group equation for the conductivity tensor follows from this [57]. Again
with

Σ± = e−λφ
δB±
δE±

using (B.34) gives
(

Σ± −
q̂e−λφ

m̂u4

)′
= ±4κ̂2u2

ω̂

f

h

(
m̂Σ± −

q̂e−λφ

u4

)2

∓ ω̂e−λφ

fh

(
1 + e2λφΣ2

±

)
Putting the dyon solution

f(u) =
√

1− uz+2

uz−1 , h(u) =
√

1− uz+2, e−λφ = u4

d2 + c2ζ2u8

into this results in

± ω̂

m̂

(
m̂Σ± −

q̂e−λφ

u4

)′
= 4κ̂2

uz−3

(
m̂Σ± −

q̂e−λφ

u4

)2

− ω̂2e−λφuz−1

(1− uz+2)
(
1 + e2λφΣ2

±
)
. (B.38)

This will lead immediately to the radial RG for the conductivity but before finally
deriving that we pause to note that δG± has disappeared from the analysis, because it does
not contribute to Einstein’s equations. It does appear in Maxwell’s equation

± ω̂

fh
e−λφδE± +

{
e−λφδB± ∓ i

q̂

u4 δG±
}′

= λχ′(δE± ∓ im̂δG±)

and if we try to use this, together with (B.35), to determine δG± we get

m̂(Q′ − m̂λχ′)δG± = ∓i(Q′m̂− λχ′)δE±,

but this does not mean m̂δG± = ∓iδE± because in the dyonic solution (3.24)

Q− m̂λχ = q̂a

c

is constant in the dyon background. Although δG′± is determined by Einstein’s equations,
δG± itself is not and it can be changed by any constant without affecting the analysis.

Using the dyonic solution in section 3.2 we can now write (B.38) as an equation for
σ±. From (B.14)

σ± = Σ± − λχ
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and

Σ± −
q̂

m̂

e−λφ

u4 = Σ± −
q̂

m̂

ζ

(d2
χ0 + c2ζ2u8)

= σ± −
q̂

m̂

ζ

(d2
χ0 + c2ζ2u8) + λχ

= σ± + dχ0

c

1
(d2
χ0 + c2ζ2u8) + bχ0dχ0 + acζ2u8

d2
χ0 + cζ2u8

= σ± + a

c
= σ± + a

c .

Also
1 + e2λφΣ2

± = e2λφ(e−2λφ + (σ± + λχ)2) = e2λφ(σ± + τ)(σ± + τ).

Using (3.26) to express m̂ =
(
l
rh

)2
m in terms of c, (B.38) finally results in the following

first order differential equation for σ±,

±ω̂(1− uz+2)uz−3σ′± = 4ζ(z − 1)(z + 2)(1− uz+2) (cσ± + a)2 (B.39)
− ω̂2u2z−8(d2

χ0 + c2ζ2u8)(σ± + τ)(σ± + τ),

which is equation (5.20) in the text.

B.2 Sl(2, R) transformation of conductivity

Using (2.3) and (2.4) in (B.14) we can determine how the conductivity transforms under
Sl(2,R). In an orthonormal basis

δEi = δEi + iδBi −→ (cτ + d)δEi

from which

δE± + iδB± → (cτ + d)(δE± + iδB±)
δE± − iδB± → (cτ + d)(δE± − iδB±)

⇒ δE± →
{
c

(
τ + τ

2

)
+ d

}
δE± + ic

(
τ − τ

2

)
δB±

δB± → −ic
(
τ − τ

2

)
δE± +

{
c

(
τ + τ

2

)
+ d

}
δB±.

Hence
δB±
δE±

→
c
(
τ−τ
2i

)
+
{
c
(
τ+τ

2

)
+ d

}(
δB±
δE±

)
{
c
(
τ+τ

2

)
+ d

}
− c

(
τ−τ
2i

) (
δB±
δE±

) .
With

Σ± = e−λφ
δB±
δE±

the Sl(2,R) transformation (2.3)

e−λφ = τ − τ
2i −→ 1

|cτ + d|2
(
τ − τ

2i

)
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leads to

Σ± −→ 1
|cτ + d|2


{
c
(
τ+τ

2

)
+ d

}
Σ± + c

(
τ−τ

2

)2

cΣ± +
{
c
(
τ+τ

2

)
+ d

}
 . (B.40)

Now
Σ± = σ± + λχ = σ± +

(
τ + τ

2

)
and using this on the right hand side of (B.40) gives

Σ± −→
1

|cτ + d|2


{
c
(
τ+τ

2

)
+ d

}
σ± + c

(
τ2+τ2

2

)
+ d

(
τ+τ

2

)
c(σ± + τ + τ) + d

 .
Lastly

τ + τ

2 →
acττ + 1

2(ad+ bc)(τ + τ) + bd

|cτ + d|2

and, after some algebra,

σ± = Σ± −
(
τ + τ

2

)
−→ Aσ± +B

Cσ± +D
(B.41)

with

A = c(τ + τ) + d− a|cτ + d|2 + d

|cτ + d|2
,

B =

{
c(τ + τ) + d

}{
c(τ + τ) + d− a|cτ + d|2 + d

}
− |cτ + d|2

c|cτ + d|2
,

C = c,

D = c(τ + τ) + d. (B.42)

Some further algebra shows that AD −BC = 1, this is in fact an Sl(2,R) transformation
(since τ depends continuously on u it is not Sl(2,Z) for general u).

On the event horizon, with τ1 = τh, A1 = Au=1, etc., and σ+ = −τ1,

C1σ+ +D1 = −C1τ1 +D1 = cτ1 + d,

A1σ+ +B1 = −A1τ1 +B1 = (cτ1 + d)A1 − 1
c

⇒ σ+ → A1σ+ +B1
C1σ+ +D1

= −A1τ1 +B1
−C1τ1 +D1

= −
(
aτ1 + b

cτ1 + d

)

and similarly

σ− = −τ1 → −
(
aτ1 + b

cτ1 + d

)
.
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C Properties of Jacobi ϑ-functions and modular forms

We collect together some useful properties of ϑ-functions. The definitions are those of [91]
and most of the formulae here are proven in that reference. The three Jacobi ϑ-functions
relevant to the analysis are defined as

ϑ2(σ) = 2
∞∑
n=0

q(n+ 1
2 )2 = 2q

1
4

∞∏
n=1

(
1− q2n)(1 + q2n)2, (C.1)

ϑ3(σ) =
∞∑

n=−∞
qn

2 =
∞∏
n=1

(
1− q2n)(1 + q2n−1)2, (C.2)

ϑ4(σ) =
∞∑

n=−∞
(−1)nqn2 =

∞∏
n=1

(
1− q2n)(1− q2n−1)2, (C.3)

where q := eiπσ.
These three ϑ-functions are not independent but are related by

ϑ4
3(σ) = ϑ4

2(σ) + ϑ4
4(σ). (C.4)

The following relations can be used to determine their properties under modular transfor-
mations:

ϑ2(σ + 1) = eiπ/4ϑ2(σ), ϑ3(σ + 1) = ϑ4(σ), ϑ4(σ + 1) = ϑ3(σ), (C.5)

ϑ2(−1/σ) =
√
−iσ ϑ4(σ),

ϑ3(−1/σ) =
√
−iσ ϑ3(σ), (C.6)

ϑ4(−1/σ) =
√
−iσ ϑ2(σ).

At the special points σ = eiπ/2 and σ = eiπ/3 the ϑ-functions have the values

ϑ2
3(eiπ/2)) =

√
2ϑ2

2(eiπ/2)) =
√

2ϑ2
4(eiπ/2)) = 2

π
K

(
sin
(
π

4

))
, (C.7)

e−iπ/4ϑ2
2(eiπ/3) = e−iπ/12ϑ2

3(eiπ/3) = eiπ/12ϑ2
4(eiπ/3) = 2

π
K

(
sin
(
π

12

))
, (C.8)

where K(k) is the complete elliptic of the second kind: K
(
sin(π/4)

)
= 1

4
√
π

(Γ(1/4))2, with
Γ(1/4) ≈ 3.6256 the Euler Γ-function evaluated at 1/4, and K

(
sin(π/12)

)
≈ 1.5981.

The ϑ-functions have the following asymptotic forms

σ → i∞ : ϑ2(σ) ≈ 2 e
iπσ
4 → 0, ϑ3(σ)→ 1, ϑ4(σ)→ 1; (C.9)

σ → 0 : ϑ2(σ) ≈
√
i

σ
, ϑ3(σ) ≈

√
i

σ
, ϑ4(σ) ≈ 2

√
i

σ
e−

iπ
4σ → 0.

In addition they satisfy the following differential equations (see [81], p. 231, eq. (7.2.17)),
ϑ′3
ϑ3
− ϑ′4
ϑ4

= iπ

4 ϑ
4
2,

ϑ′2
ϑ2
− ϑ′3
ϑ3

= iπ

4 ϑ
4
4, (C.10)

ϑ′2
ϑ2
− ϑ′4
ϑ4

= iπ

4 ϑ
4
3.
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Klein’s J-invariant is defined as

J = (ϑ8
2 + ϑ8

3 + ϑ8
4)3

54ϑ8
2ϑ

8
3ϑ

8
4

, (C.11)

with the small q expansion

J = 1
123

(
q−2 + 744 + 196884q2 + 21493760 q4 +O

(
q6)).

J takes all complex values once and only once in the fundamental domain for Γ(1).
Apart from q = 0 there are two other fixed points of Γ(1) in the fundamental domain,

at σ = eiπ/2 and eiπ/3, and near these J has the expansions

J(eiπ/2 + ε) = 1− 3
64π4

{
Γ
(1

4

)}8
ε2 + · · · , (C.12)

J(eiπ/3 + ε) = 256
(
√

3π)3

{
K

(
sin
(
π

12

))}8
ε3 + · · · (C.13)

(the co-efficients can be calculated using (C.7), (C.8) and (C.10)).
The derivative of J yields

1
2πiJ

dJ

dσ
= (ϑ4

2 + ϑ4
3)(ϑ4

2 − ϑ4
4)(ϑ4

3 + ϑ4
4)

(ϑ8
2 + ϑ8

3 + ϑ8
4) , (C.14)

which transforms as J ′/J → (cσ + d)2J ′/J , it is the inverse of a modular from of weight
−2. Since Γ(1) is generated by

S =
(

0 −1
1 0

)
: σ → − 1

σ
and T =

(
1 1
1 0

)
: σ → σ + 1

the invariance of J under Γ(1) can be proven by using (C.5) and (C.6) while equation (C.14)
follows from (C.10).

If
γ =

(
a b
c d

)
∈ Γ(1) ≈ Sl(2,Z)/Z2

then the set of matrices

Γ(2) =
{(

1 0
0 1

)
mod 2

}
: (a,d both odd; b, c both even)

is a normal subgroup of Γ(1). A proper subgroup of Γ(1) that contains Γ(2) is called a level
2 subgroup and there are four of these, apart from Γ(2) itself, three of which are referred
to in the text,

Γ0(2) =
{(

1 ∗
0 1

)
mod 2

}
: (c even),

Γ0(2) =
{(

1 0
∗ 1

)
mod 2

}
: (b even).

Γθ =
{(

1 0
0 1

)
mod 2

}
∪
{(

0 1
1 0

)
mod 2

}
: (ac even).
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where ∗ denotes either parity (the notation is that of [92]). A fifth level 2 subgroup,
generated by ST and TS, is not used.

The subgroup Γ0(2) is generated by ST 2S and T and the function

f = −ϑ
4
3ϑ

4
4

ϑ8
2

= − 1
256q2

∞∏
n=1

(1− q4n−2)8

(1 + q2n)16

is invariant under Γ0(2) and plays the same role for Γ0(2) as J does for Γ(1). It has the
small q expansion

f = − 1
28

(
q−2 − 24 + 276 q2 − 2048q4 +O

(
q6
))
.

As σ runs from 0 to i∞ vertically up the imaginary axis f decreases monotonically from 0
to −∞. Near σ = 0 (an indeed σ equal to any integer)

f(ε) ≈ −16e−iπ/ε.

The fundamental domain for Γ0(2) can be taken to be the vertical strip above the
semi-circular arc of radius 1

2 spanning σ = 0 and σ = 1 and f takes all complex values once
and only once in this fundamental domain.

There are fixed points of Γ0(2) at σ∗ = 1+i
2 and its images, where

f(σ∗ + ε) = 1
4 −

1
64π4

{
Γ
(1

4

)}8
ε2 + · · · .

The invariant f has the property that

i

πf

df

dσ
= ϑ4

3 + ϑ4
4

transforms as f ′/f → (cσ + d)2f ′/f , it is the inverse of a modular form of weight −2
for Γ0(2).
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