
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. 8, NO. 3, JUNE 2000 297

On the Interpretation and Identification of Dynamic
Takagi–Sugeno Fuzzy Models

Tor A. Johansen, Member, IEEE, Robert Shorten, Member, IEEE, and Roderick Murray-Smith

Abstract—Dynamic Takagi-Sugeno fuzzy models are not
always easy to interpret, in particular when they are identified
from experimental data. Ideally, it is desirable that a dynamic
Takagi-Sugeno fuzzy model should give accurate global non-
linear prediction and at the same time that its local models are
close approximations to the local linearizations of the nonlinear
dynamic system. The latter is important in many applications
where the constituent local models are used individually and
aids validation and interpretation of the model considerably.
This defines a multi-objective identification problem, namely, the
construction of a dynamic model that is a good approximation
of both local and global dynamics of the underlying system.
While these objectives are often conflicting, it is shown that there
exists a close relationship between dynamic Takagi-Sugeno fuzzy
models and dynamic linearization when using affine local model
structures, which suggests that a solution to the multi-objective
identification problem exists. However, it is also shown that the
affine local model structure is a highly sensitive parameterization
when applied in transient operating regimes, i.e., far away from
equilibrium. The reason is essentially that the constant term in
the affine local model tends to dominate over the linear term
during transients. In addition, it is inherently more difficult to
design informative experiments in transient regions compared to
near-equilibrium regions. Due to the multi-objective nature of the
identification problem studied here, special considerations must
be made during model structure selection, experiment design, and
identification in order to meet both objectives. Some guidelines
for experiment design are suggested and some robust nonlinear
identification algorithms are studied. These include constrained
and regularized identification and locally weighted identification.
Their usefulness in the present context is illustrated by examples.

Index Terms—Dynamic analysis, fuzzy models, linearization,
system identification, transient dynamics.

I. INTRODUCTION

CONSIDER the nonlinear dynamic system

(1)

where and . A Takagi–Sugeno fuzzy
model will approximate this system by smoothly interpolating
affine local models [34]. Each local model contributes to the
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global model in a fuzzy subset of . This fuzzy set is
characterized by a membership function ,
and leads to the Takagi–Sugeno fuzzy model

(2)

where the weighting functions are given
by the fuzzy inference

(3)

This equation assumes that for all
.

The Takagi–Sugeno fuzzy model has recently found wide ap-
plicability in fuzzy model based control, e.g., [4], [9], [27], [35],
[36]. The reason for this is that its consequence part is an affine
dynamic model rather than a fuzzy set or constant value, which
has several advantages.

• From a control engineering perspective the use of local
affine (or local linear) models bridges the gap between
fuzzy control and conventional control. Many existing
tools and theories in linear systems theory can be partially
applied to Takagi–Sugeno fuzzy models and controllers.
The relationships to gain scheduling, e.g., [5], [8], and
piecewise linear systems are evident.

• The relatively complex consequence part allows the
number of fuzzy rules (local models) to be quite small
in many applications. Consequently, the Takagi–Sugeno
fuzzy model is less prone to the curse of dimensionality
than other fuzzy models.

• The model structure (partitioning of the state–space and
local model structure) and local model properties can, in
some applications, be easily related to the physics of the
system. This simplifies model development and valida-
tion.

One typically attempts to select the local state–space param-
eters , the constant term , and the membership func-
tions such that the fuzzy model (2) is a good approximation to
the nonlinear dynamic system (1) in some appropriate sense.
For many applications it is important that the global behavior
of the nonlinear model (2) is similar to the global behavior of
the nonlinear system (1). For example, this is typically the case
when the global model is used for nonlinear prediction or when
the global model is used as an internal model in a controller as
in, e.g, [9], [36]. On the other hand, it is sometimes required
and often desirable that the local linear models in (2) are accu-
rate approximations to the local linearizations of (1). This is the
case when the dynamic Takagi–Sugeno fuzzy model is used as a
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basis for a fuzzy gain-scheduled controller since the local linear
models are used to design local linear controllers [5], [8]. This
property is also very useful when validating and analyzing the
dynamic model (2), [30].

It has widely been observed that it is often nontrivial to iden-
tify dynamic local models which are close approximations to
linearizations of the nonlinear system [14], [24], [25], [30], [38].
It has been argued that this problem is a consequence of exces-
sive degrees of freedom in the affine local model structure when
it is applied to transient operating regimes [30]. Another impor-
tant reason is that the algorithm of choice for many practitioners
(the least squares algorithm) is often employed with the explicit
objective of selecting the local model parameters in order to
optimize global prediction performance. This is often achieved
with local models that are significantly different from the local
linearizations [24], [25], [38]. The problems are, in most prac-
tical applications, amplified by constraints on the experiment
design which restrict the amount of information in the transient
data, as exemplified in [14]. A consequence is that one may
quite easily determine a Takagi–Sugeno fuzzy model, which
provides a good global nonlinear model of the nonlinear system,
but with local models that have little in common with local lin-
earizations. Furthermore, it is generally more difficult to under-
stand the meaning and properties of the off-equilibrium local
models than equilibrium local models in the Takagi–Sugeno
fuzzy model [30]. Most of the above mentioned problems are
unique to dynamic modeling and identification problems (as
opposed to modeling and identification of static mappings) al-
though the tradeoff between local and global approximation ac-
curacy also appears in static modeling problems considered in
[25] and [38]. The present paper explicitly focuses on dynamic
systems, which are considerably more challenging than static
function approximation. The aim is to present anoverviewof
some problems and solutions related to identification and in-
terpretation of dynamic Takagi–Sugeno fuzzy models, and this
paper continues the work of [30]. The main message in [30] is
that local affine dynamic models in Takagi–Sugeno fuzzy dy-
namic models contain excessive degrees of freedom and must
be interpreted carefully. The interpretability problem is also dis-
cussed in [20], where a velocity-based linearization approach is
suggested as an alternative. Here we provide a theoretical foun-
dation for understanding how identified Takagi–Sugeno fuzzy
models might be interpreted by relating them to dynamic lin-
earization about trajectories. Furthermore, the interpretation and
identification problems are illustrated by simple yet practically
relevant and illustrative examples. Finally, guidelines for ex-
periment design and robust system identification are given in
order to improve the interpretability and accuracy of the identi-
fied fuzzy model. The suggested system identification methods
are based on well-known ideas originally developed for the pur-
pose of robust nonlinear system identification without having
the particular problems related to transient operating regimes or
interpretability in mind [10], [12], [25].

The outline of this paper is as follows. In Section II, it is
shown that a dynamic Takagi–Sugeno fuzzy model can form
an approximation to dynamic linearization about arbitrary
trajectories. In Section III, it is illustrated that there are various
interpretability problems associated with the Takagi–Sugeno

fuzzy model structure. In particular, when the constituent
local models are identified from experimental data there is
a risk of missing interpretability for the sake of accuracy.
Identification algorithms that combine high accuracy with high
interpretability are discussed in Section IV. A simplified simu-
lation example considering dynamic modeling of the nonlinear
longitudinal dynamics of a vehicle is used to illustrate the ideas
throughout the paper. Some additional aspects are illustrated
by a pendulum dynamics modeling problem. Conclusions are
given in Section V.

II. EXISTENCE OFINTERPRETABLETAKAGI –SUGENO FUZZY

MODELS

The ability of the Takagi–Sugeno fuzzy model to approxi-
mate arbitrary smooth static functions on compact domains to
arbitrary accuracy are well known. Local constant models were
considered in [37], while the theory was developed for local
polynomial models (including affine) in [13]. Finally, in [28] it
was shown that the parameters of local affine model can be se-
lected to guarantee that the derivative of the right-hand side of
the Takagi–Sugeno fuzzy model (2) could be an arbitrarily good
approximation to the derivative of the nonlinear system function

in (1). This property is closely related to the ability of local
affine models to represent the linearized dynamics. However,
notice that the approximation result of [28] concerns the accu-
racy of the linearization of the nonlinear Takagi–Sugeno fuzzy
model rather than the accuracy of its constituent local affine
models.

It was shown in [15] that the finite set of linearizations about
a finite number of points (equilibria and transient points) can
be used to accurately approximate dynamic linearization about
arbitrary trajectories using an interpolated multiple model struc-
ture with local affine dynamic models. The result of [15] con-
siders autonomous systems, and an extension to systems with
exogenous inputs is given below.

A. Dynamic Linearization

The dynamic Takagi–Sugeno fuzzy model (2) is composed
of multiple local affine dynamic models. It would be desirable
for the purpose of interpretation, analysis, and application that
these local affine models can be related to linearizations of the
nonlinear system. In order to gain some understanding of the
relationship between the local affine models and linearizations
we continue with a brief review of dynamic linearization about
trajectories of nonlinear systems of the quite general form (1),
where is assumed to be smooth.

At an equilibrium point (an equilibrium point satis-
fies , i.e. ) the local linearization of (1) is
given by

(4)

by neglecting the higher order terms (denoted by h.o.t.) in the
Taylor series expansion (4). In deviation coordinates

, (4) becomes

h.o.t. (5)
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where we have defined the functionsand as follows:

(6)

(7)

The local linearization (5) of the nonlinear system (1) describes
thelinearized dynamicsof the nonlinear system subject to small
perturbations near the equilibrium point .

Next, consider the more general case when the linearization
of (1) is made about a point on some arbitrary trajec-
tory. Hence, it need not be an equilibrium point. The trajec-
tory is defined by an initial state and sat-
isfies . The dynamic linearization of (1) about
the (time-varying) point on some arbitrary trajectory is
given by

(8)

Introducing deviation coordinates
we get thelinearized dynamics

(9)

that describes the response to small perturbations about a point
on the nominal trajectory . In addition,

the nominal trajectory itself (trend) is locally approximated by
the equation

h.o.t. (10)

which approximates the flow of the state by a constant vector
near the point on the nominal trajectory .
Obviously, the higher order terms in (10) and (8) are of different
order.

B. Approximation Theorem

Assume a continuous trajectory that satisfies
is given, and

. By neglecting the higher order dynamics, the
dynamic linearization about the trajectory is now the
linear time-varying (LTV) system

(11)

(12)

where the functions and are defined in (6) and (7). An
approximation to the dynamic linearization is given by the
Takagi–Sugeno fuzzy system scheduled on the state/input, c.f.
(2)

(13)

(14)

We will continue with developing an approximation re-
sult that shows the closeness between (11) and (13). Let

be the set of linearization points and define deviations from
the nominal trajectory by

, and . Intuitively,

one would expect that the system (13) approximates (11) when
“ covers densely,” for example, in the sense that the
maximum distance between neighboring elements of

(15)

is sufficiently small and denotes the support of the
function , i.e. . Thus,
notice that if . This is formalized
in the following theorem.

Theorem 1: Assume is a compact set, is smooth with
bounded Lipschitz constant, and is a given trajectory
of (1) in . Then

(16)

(17)

where satisfies

(18)

means that the limit of exists (is finite) when
. The proof is given in the Appendix. The above theorem

shows that the dynamic Takagi–Sugeno fuzzy model where the
local affine dynamic models are local linearizations (including
linearizations about transient points) leads to an arbitrary close
approximation to the LTV dynamic system resulting from
dynamic linearization about the trajectory because when the
number of rules (and the local models are sensibly
located in and with sensible membership functions with
compact support), then . The discussion in [20] provides
additional insight into the relationship between the constituent
local linear models and the dynamic linearization.

III. I NTERPRETABILITY PROBLEMS IN TAKAGI –SUGENOFUZZY

MODELS

In this section, it is illustrated that it is not straightforward
to identify constituent local models of Takagi–Sugeno fuzzy
models that can be interpreted as local linearizations of the non-
linear system even though we proved in Theorem 1 that such
local models exist. Furthermore, we show that even if local
models that closely approximate local linearizations exist, they
are still not easy to interpret in transient operating regimes.

A. Off-Equilibrium Local Models and Stability

Off-equilibrium local models have by definition no equilib-
rium point within their region of validity. Such local models
still have equilibrium points, but the local models are not valid at
their equilibrium points. Such equilibrium points are called “vir-
tual equilibrium points” in [30] because they need not have any-
thing to do with the equilibrium points of the nonlinear system.
Consequently, the most common linear system analysis tools
are not directly suitable for off-equilibrium local affine models
since they focus on characterizing the dynamic behavior in the
neighborhood of equilibria. For example, the eigenvalues of the

matrix will provide information about the stability of
the virtual equilibrium point. But this is of little interest since
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the virtual equilibrium point has no meaning for the underlying
nonlinear system. We therefore conclude that the eigenvalues
of off-equilibrium local models need not provide any informa-
tion about local stability of equilibrium points of the nonlinear
system.

Stability of equilibrium points is a special case of stability of
trajectories (the special case when the trajectory stays at equilib-
rium at all time).1 Stability of a trajectory essentially means that
a trajectory that can be considered as a small perturbation from
the nominal trajectory will stay close to the nominal trajectory
(or approach the nominal trajectory as time goes to infinity in
the case of asymptotic stability). In the local model context, the
notion of stability means that if a perturbed trajectory will stay
in the region of validity of the local model for a long time, then
the perturbed trajectories will approach the nominal trajectory.
However, no trajectory will stay in a transient region for a long
time so such a local analysis of stability of trajectories need not
provide any relevant information about the system. Even if the
trajectory moves through a sequence of operating regions with
different (but stable) local models, it is still not possible to argue
anything about stability of trajectories, cf. the theory on stability
of time-varying linear systems, e.g., [17]. Stronger conditions
are necessary (see, for example, [22] for some contraction con-
ditions that ensure that neighboring trajectories of nonlinear sys-
tems are attracted toward each other). Also, if a local off-equilib-
rium model has unstable modes, a perturbed trajectory passing
through its region of validity may still approach the nominal tra-
jectory during some part of the transient. Notice that in transient
regions with local models ,
the constant term may dominate the system behavior and both
the and terms may be of secondary im-
portance. Considering and alone should therefore not be
expected to give much information. To conclude, it is difficult
to make any generally valid statements about the qualitative be-
havior of the system from off-equilibrium affine local model
analysis.

Example: Unforced Pendulum, Dynamic Lineariziation:To
illustrate the effects in a simple system we consider an unforced
pendulum of unit mass, on a rigid string of length, with an
angle and angular velocity , leading to state-equations

(19)

(20)

which are simple yet provide some features of interest for this
investigation. Here , the friction coefficient , and
the gravitational constant .

Linearization of the nonlinear equations (19) and (20) about
an arbitrary point leads to the following linearized
system:

(21)

(22)

1The concept of stability of trajectories and paths, denoted Lyapunov stability
and Poincare stability, respectively, is treated in [16].

which can be simplified and written in the matrix form

(23)

where

(24)

(25)

The flow of the nonlinear pendulum system is illustrated in
Fig. 1 [the flow is the velocity of the state-vector at each state,
i.e., the vector field defined by the right-hand side (r.h.s.) of
the differential equation for the system (1)]. Three different tra-
jectories for the system are shown in the figure, starting from
somewhat different initial conditions. We observe that two of
these trajectories are attracted toward each other and a common
equilibrium point as time increases, while the third trajectory
diverges and ends up in a different equilibrium point (the pen-
dulum starts rotating the opposite way due to lower initial ki-
netic energy). In the part of the illustrated state–space where

, the local linearizations has an ma-
trix with at least one positive eigenvalue. In the context of dy-
namic linearization, this means that trajectories with slightly dif-
ferent initial conditions may diverge. Considering the trajectory
starting at as the nominal trajectory, we see that the other
two trajectories both diverge from this one initially. However,
while the trajectory starting at continues to diverge from
the nominal trajectory, the trajectory starting at eventu-
ally converges toward the nominal trajectory and later moves
into the region where . Thus, knowledge of
the eigenvalues of does not allow us to make any pre-
diction on the qualitative behavior of the system in transient op-
erating regimes.

B. Loss of Identifiability

In Section II-B, we argued that under general conditions there
exist Takagi–Sugeno model parameters such that

• the global fuzzy model (2) accurately approximates the
global behavior of the nonlinear system (1);

• at the same time, the local affine models of the
Takagi–Sugeno fuzzy model admit valid interpreta-
tion as local linearizations of the nonlinear system about
points on trajectories as described in Section II-A.

In other words, the Takagi–Sugeno model might be both accu-
rate and with a useful interpretation of the local models as local
linearizations. However, in this section, we argue that the local
affine model structure applied in transient operating regimes
(where no equilibrium exist) contains excessive degrees of
freedom and may be poorly identifiable in the sense that large
perturbations of some combinations of affine local model
parameters may only have a small effect on the identification
criterion.2 This has serious consequences in particular for the

2Lack of identifiability is characterized by nonuniqueness of the model
structure, i.e., two different parameter vectors yields the same input/output
behavior. Poor identifiability is (informally) defined as a somewhat relaxed
property, namely, that two significantly different parameter vectors give very
similar input/output behavior.
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Fig. 1. The flow of the nonlinear pendulum system together with three trajectories starting a somewhat different initial conditions:(4;�2), (4;�3), (4;�4).

interpretation, applicability and accuracy of the individual local
affine models when identified from experimental data, but also
for the accuracy of the global nonlinear fuzzy model in some
cases.3 Furthermore, the poor identifiability of the local models
gives rise to an ill-conditioned system identification problem
which we shall discuss in depth in Section IV.

Suppose we seek local affine models of the form

(26)

to be approximately valid in a small neighborhood of a point
. The structure (26) sometimes contain excessive de-

grees of freedom when the point is far away from equi-
librium. The reason for this is that in many cases the constant
term (trend) will dominate (26), while varying some elements
of and may only have a minor effect on the local model
accuracy. In order to motivate this claim, suppose

which is an exact model of (1) at the point and a rea-
sonable approximation in a small neighborhood of this point,
especially if it is far from equilibrium. The additional degrees
of freedom available in the parameters and can be used
in different ways.

• and can be selected to accurately represent
the linearized dynamics, i.e., and

. This is advantageous in terms of in-
terpretation, analysis and applicability of the model in
control systems design, but has the disadvantage that

3The reason why we may insist on using locally affine models even though
they are poorly identifiable is that the interpretation in terms of linearizations
is useful in terms of system analysis and local control design for example in
gain-scheduled control.

it may lead to a smaller region of validity of the local
model. Furthermore, the problem of estimating the poorly
identifiable parameters and remains
difficult.

• and can be selected to increase the region of validity
of the local affine approximation (26) and/or to improve
the accuracy of the global model (2). In this case these
parameters may be completely different from the true lin-
earization parameters and and serves
only the purpose of providing a richer class of function ap-
proximators. Consequently, the local affine model cannot
always be interpreted in terms of a local linearization in
this case. It is well known that and are
often suboptimal choices for and when only consid-
ering global approximation accuracy [1], [24], [25].

Poor identifiability is a problem that is particularly pronounced
with off-equilibriumaffine local models. The reason for this is
simply that at equilibrium the constant trend termvanishes
and the dynamics must be fully captured by the -pa-
rameters. Thus, near equilibrium the dynamics are captured by
the parameters and there is no problem.

Example: Unforced Pendulum, Poor Identifiability:
Consider the point , which is a transient
state of the autonomous system. Fig. 2 shows the flow of
the nonlinear system (upper left), the flow of the local
linearization about (upper right), and the flow of two
alternative local affine models (lower) that were selected
manually by trial and error to match the local dynamics near

. We observe that the local linearization and both the
two local affine models are quite accurate models of the
nonlinear system in their assumed region of validity (shaded
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Fig. 2. The flow of the nonlinear pendulum system, local linearization, and two accurate local affine models.

region in the figure) with very similar flow field, while outside
this region they are all more or less invalid models and their
flow fields differ considerably. Hence, when applied as local
models in a dynamic Takagi–Sugeno fuzzy model, they would
all lead to more or less equally accurate global approximations
to the nonlinear dynamic system.

The numerical values of the local linearization and the two
local affine models are

(27)

(28)

(29)

respectively. The eigenvalues of are ,
which corresponds to a stable underdamped linear system. The
eigenvalues of are 0 and 0.8, which correspond to an un-
stable linear system. Both the eigenvalues ofare 0, which
also corresponds to an unstable linear system. The example il-

lustrates that local affine models with very different parameters
and structural properties can lead to dynamic Takagi–Sugeno
fuzzy models with very similar global properties at this transient
point. This is made possible by excessive degrees of freedom in
the affine local model.

Alternatively, consider the equilibrium point . At this
point, the drift term must be close to zero in order for the
local model to have an equilibrium point close to zero. There
are, therefore, no additional degrees of freedom available since
in order for the local affine model to be accurate, the parameters
in must necessarily be similar to the parameters of the local
linearization.

More examples of nonunique off-equilibrium local models
can be found in [30].

C. Local Models: Constant, Linear, or Affine?

The most common choices of dynamic Takagi–Sugeno fuzzy
models, are local linear models, affine linear models, and local
constants. In this section, we examine the consequences of
model choice for model interpretability and identifiability.
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Fig. 3. Engine force.

Example: Longitudinal Speed Dynamics, Different Local
Model Structures:As an example, consider the longitudinal
speed dynamics of a vehicle with massand speed . The
vehicle is powered by an engine which generates a longitudinal
force , where is the throttle angle. The vehicle is
subject to a disturbance force. A simple first-order model of
the vehicle is given by the force balance

(30)

which can be written

(31)

In the example, we set N, kg, and the
engine characteristic is given by

(see Fig. 3). With this characteristic engine curve (which cor-
responds to a fixed gear ratio), the engine operates in a speed
interval between 2 and 20 m/s.4

Linearization of the engine model (31) leads to the fol-
lowing characteristic parameters: Pole , gain

and trend . These parameters are illus-
trated in Fig. 4.

Assume that the state–space partitioning of the
Takagi–Sugeno fuzzy model is such that a valid local model
in a neighborhood of the point , is required.
Consider the following alternative local model structures:

(32)

(33)

(34)

Local models with these structures that are exact models at the
point , are shown in Fig. 5. The local linear
and affine models have equilibria at and

, respectively. All these equi-
librium points are located far outside the region of validity of
their corresponding local models and are, therefore, not equilib-

4This example is motivated by the experimental vehicle speed control
problem considered in [15]. The model is simplified, but contains the relevant
aspects of the experimental vehicle in order to illustrate the main ideas.

rium points for the nonlinear model. We can thus conclude that
the point is a transient point, which can be
confirmed simply by observing that the acceleration is nonzero
at this point. The location of the equilibrium points of the local
linear and affine models therefore has no relevance when the
local model is a transient model. Moreover, it is clear that only
the local affine model results in an accurate local model with a
valid interpretation as a local linearization (in the sense that the
local model parameters and corresponds approximately
to the pole and gain of the linearization of the nonlinear system).

Notice that with the local linear model (where the plane is
restricted to go through the origin and cannot therefore always
be a tangent plane), it is possible to select theand
parameters in different ways. In Fig. 5 the pole is chosen
equal to the pole of the local linearization, which leads to

which is different from the gain of the local
linearization because we require
that the local model is exact at the point .
Hence, although it cannot be interpreted as a local lineariza-
tion, it is still an accurate model of the trend near the point

. Another alternative is to select the and
parameters of the local linear model exactly equal to the pole

and gain of the local linearization. In this case the local model
parameters can be interpreted as a local linearization about a
trajectory passing through , but because the
constant term is zero, the model cannot be used to give accurate
global nonlinear predictions. Hence, with local linear models,
one can achieve accurate approximation of either the linearized
dynamics or the trend, but not both simultaneously. With the
local affine model structure there are no such limitations, while
the local constant model structure, by its nature, contains trend
information, but no information on the linearization dynamics.
Note that we only discuss the information contained in the
constituent local models when interpretedindividually. Some
results on the ability of theglobalTakagi–Sugeno fuzzy model
with constituent local linear models to approximate local
linearizations can be found in [7].

It is particularly difficult to interpret local models that cor-
respond to transient operating regimes (where no equilibrium
points exist), as opposed to local models corresponding to equi-
librium operating regimes. This is true even if the transient local
model has a valid interpretation as a local linearization. Con-
sider for example the point of the vehicle mod-
eling example. The local linearization is given by

(35)

The model gain is given by 0.2978. Naive control design
based upon this model might interpret the model gain as
meaning that in order to decrease the speed, the throttle angle
must be increased. This is an incorrect interpretation. The cause
of the misinterpretation is that the trend (constant1.4248)
has not been taken into account. At this point the vehicle will
have an acceleration of1.4248 with zero throttle angle and
this is, in fact, the dominating dynamics in this region since
a throttle angle varying in the interval , leading
to a force corresponding to an acceleration in the interval

. The gain is so small that any perturbation
of the throttle angle is of minor importance compared to the
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Fig. 4. Linearized engine model (pole, gain, trend).

trend. Hence, it is clear that little information about the local
dynamics can be inferred from the linearization parameters

and alone without taking into
consideration the trend. This concerns only off-equilibrium
local models since equilibrium local models by definition have
zero trend and are in general much easier to interpret. The above
example illustrates that interpretation problems exist even when
the transient local model has a completely valid interpretation
as a local linearization. The interpretation problems are even
more severe when this interpretation is invalid.

So far we have argued by means of theoretical constructs,
and practical examples, that Takagi–Sugeno fuzzy models,
with all three local model structures, are capable of accurately
representing global nonlinear dynamics. However, as we have
seen, even with a locally affine model structure, not all of
these local affine models have a valid interpretation as a local
linearization. If the local model parameters are identified from
data (rather than resulting from an explicit linearization of a
nonlinear model), one has no guarantee that the obtained affine
local models have a valid interpretation as local linearizations.
If this is important, special care must be taken during experi-
ment design and identification to achieve this.

It is also evident that the identifiability problems are due to
the use of affine local models in transient operating regions. If
local linear or constant local models are applied, the problems

due to excessive degrees of freedom may be avoided, but such
local models will not be valid local linearizations of the system.

D. Minimizing the Number of Premise Variables

A common modeling objective is to obtain a parsimonious
parameterization of the system dynamics. In the context of
local model structures, parsimonious representations of the
system are sometimes difficult to obtain due to the curse of
dimensionality. Consequently, to reduce the complexity of the
Takagi–Sugeno fuzzy model, it is common (where possible) to
restrict the membership functions to depend on a subset of the
variables . If depends affinely on some of these vari-
ables, it is known that it is not necessary to partition along these
axes [13]. In cases where the nonlinearities are not too strong,
one tends to minimize the number of premise variables in order
to keep the model complexity to a minimum. Similar methods
are employed in gain scheduled control where it is common to
restrict the number of scheduling variables to the number that
is necessary in order to characterize the equilibrium manifold,
e.g., [29], [19] (even though it has been argued that this may
restrict the transient performance of the control system [15]). In
any case, practical considerations usually necessitate keeping
the number of scheduling/premise variables as low as possible
to reduce the effects of the curse of dimensionality.
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Fig. 5. The flow of the nonlinear system and local models (affine, linear, and constant) at the pointv = 10, u = 0:1.

Example: Exploiting the Affine Functional Form of
: Consider the very simple nonlinear system

(36)

At the point the local linearization is

(37)

Observing that the system (36) is bilinear, it is clear that it is suf-
ficient to use either or in the premise of the Takagi–Sugeno
fuzzy model [13]. Selecting as the premise variable, we get an
alternative local model

(38)

valid in some neighborhood of , i.e.,
for some small . The Takagi–Sugeno fuzzy model

(39)

is an arbitrary close approximation to the system (36) on
any compact set by appropriate selection of the points

.
Clearly, the local models (38) leads to an accurate global

model, but with and they do not have a valid
interpretation as local linearization. The reason for this is that

we have left out the input variablefrom the premise due to the
bilinearity. Hence, the number of premise (scheduling) variables
is reduced without reducing the accuracy, but by sacrificing the
interpretability of the local model as local linearizations. Notice
that at equilibrium or , both approaches to con-
struction of local models lead to similar results, emphasizing
that they have excessive degrees of freedom only in transient
operating regions.

Another consequence of reduction of the number of sched-
uling/premise variables is that a single local model may be used
both in transient and equilibrium operating regimes. If the dy-
namics are significantly different in the transient and equilib-
rium operating regimes corresponding to a single local model,
this obviously leads to difficulties.

Example: Longitudinal Speed Dynamics—Continued:In the
longitudinal vehicle speed model, the equilibrium points are
given by the curve in Fig. 6. This curve can be parameterized
by a single variable, for example either speed or throttle angle.
If one wants to restrict the number of premise variables to only
one, it is natural to select either speed or throttle angle. Sup-
pose we select speed. For a nominal speed m/s the
correspondingassumedregion of validity is the shaded region
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Fig. 6. Equilibrium curve for vehicle model.

in Fig. 6. When the system is operating far away from equi-
librium, but with a speed in the interval , this
local model contributes to the Takagi–Sugeno fuzzy model, c.f.
Fig. 6. Within the shaded region corresponding to both equilib-
rium and transient operating conditions

and . When only
considering equilibrium operating conditions corresponding to

, we get and
. It is clear that the local affine

model is reasonably accurate at the equilibrium operating con-
ditions corresponding to the interval , but when the
transient operating conditions corresponding to this interval are
included, the dynamics are too varied over the operating range
for a single local affine model to be valid.

Although this example may seem trivial, it is included be-
cause this problem has been experienced to be relevant in prac-
tical applications, especially when no special attention has been
given to the distinction between equilibrium and off-equilibrium
operating conditions during experiment design and model struc-
ture selection.

E. The Role of the Membership Functions

We have argued that the global Takagi–Sugeno fuzzy model
can provide a satisfactory approximation of the underlying non-
linear system, even when the constituent affine local models
are not conventional linearizations. In practice Takagi–Sugeno
models are constructed by interpolating the parameters of the
constituent local models using fuzzy inference (see also, [1]).
The choice of membership functions is of crucial importance
in this procedure [20]. To illustrate some of the issues which
arise when choosing membership functions, we consider the fol-
lowing example. Let

(40)

be the linearization of some autonomous nonlinear system about
the equilibrium point . Similarly, let

(41)

be the linearization of the same nonlinear system about the equi-
librium point . The Takagi–Sugeno model of the nonlinear

system constructed from these local models defined above is of
the form

(42)

(43)

where , and where , and where
and are interpolation functions. If these linearizations are
sufficiently close together it can be assumed that this model ap-
proximates the nonlinear system in some fashion between these
equilibrium points. The model predicts a manifold of equilibria
given by

(44)

Furthermore, if we assume that the model also describes
the transitions between the equilibrium points, then model
linearizations along (44) are given by

(45)

where

(46)

Let us consider the meaning of the above equations. Equation
(44) suggests that the manifold of equilibria is described as a
function of the interpolation functions, the matrices and
and the endpoints and . This may or may not be a rea-
sonable assumption. Furthermore, (46) suggests that the system
linearization along this manifold cannot be obtained by simple
interpolation of the matrices and ; the membership func-
tions themselves contribute to the linearization. In fact, (46) con-
tains two terms; a term which is the interpolation of the ma-
trices and and a term that is a function of the deriva-
tives of the interpolation functions. The interpolation functions
appear in both of these terms. It is clear that the membership
functions should be chosen to provide as accurate a representa-
tion of the system dynamics as possible. However, membership
functions chosen to approximate the global dynamics may be
inadequate when the model is linearized. In many applications
this may not be an issue. However, for control applications re-
quiring linearization of the plant model, model fidelity in the
neighborhood of plant equilibria is of paramount importance.
In our context we must ensure that (46) provides as accurate an
approximation to the system linearization as possible. However,
there are several difficulties associated with the approximation
method in (46). First, there is no guarantee that the qualitative
nature of the locii of eigenvalues constructed by interpolating
between the matrices and is consistent with the quali-
tative nature of these matrices. In addition, we must also select
our membership functions whose first derivatives not only exist,
but also satisfy certain properties. From these observations it can
be seen that the choice of membership functions is by no means
a trivial matter, affecting not only the global model dynamics,
but also the manifold of equilibria and the system linearizations
along the equilibria.
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In general, for a globally accurate fuzzy model consisting of
constant, linear, or affine local models, a locally valid lineariza-
tion may be generated by linearizing (2)

(47)

where

(48)

(49)

(50)

As discussed above, the linearization will depend on the
membership functions, and it usually assumed that they pro-
vide an accurate smooth interpolation of the local models.
In practice, verification of this assumption is carried out
experimentally.

IV. I DENTIFICATION OF TAKAGI –SUGENOFUZZY MODELS

The purpose of this section is to illustrate the poor results one
might get when identifying off-equilibrium affine local models
using standard identification methods such as least squares and
suggest alternative methods with better robustness and perfor-
mance.

Example: Longitudinal Vehicle Dynamics, Least Squares
Identification: For the identification of a Takagi–Sugeno fuzzy
model of the vehicle we have generated by simulation a data
sequence with 1000 noise-free samples with a sampling interval

s. The experiment design takes the vehicle to several
equilibrium states through some transient states and perturbs
the system by a pseudorandom binary signal (PRBS) signal at
each equilibrium, c.f. Fig. 7.

The operating region is then parti-
tioned into five equilibrium regions and four transient regions,
each of which is characterized by a membership function. The
corresponding affine local models are identified from data se-
quence 1. A discrete-time dynamic Takagi–Sugeno fuzzy model
with constituent local models of the form

(51)

is first identified using the least squares algorithm. Using exact
discretization of the continuous time first-order local model

and zero-order hold of the input signal

(52)

Fig. 7. Identification data sequence 1.

this discrete-time model is converted into a continuous-time
model by the following parameter transformation (derived from
(51) and (52)):

(53)

(54)

(55)

Let us define the pole, zero, and trend that results when we in-
terpolate the local model parameters

(56)

(57)

(58)

If the local model parameters are valid linearizations, then the
interpolated local model parameters should be similar to the
parameters resulting from dynamic linearization. The plots of

, , and in Fig. 8 shows that this is not the
case. First, there is some bias because the model structure is not
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Fig. 8. Comparison of the pole (left column), gain (middle column) and trend (right column) as a function of throttle and speed of the linearized systemand the
interpolated local model pole/gain/trend of the Takagi–Sugeno fuzzy models identified using various identification methods and data sequences.

sufficiently rich to exactly model the system. But the most in-
teresting feature of the identified model is the large difference
between the identified parameters and the parameters of the lin-
earized system in the off-equilibrium regions. In this case, this
is due to both poor identifiability of the off-equilibrium local
models and because off-equilibrium identification data are rel-
atively sparse.

Identification of the parameters of (26), using for example,
a standard least squares criterion and some experimental data,

will only treat local models as approximators and thus not nec-
essarily lead to local model parametersand with a valid
interpretation as local linearizations. This was illustrated above
and also in some application studies ([30], [14]). The core of
the problem is poor identifiability. These problems are ampli-
fied when there is very sparse information about the response
to perturbations in transient operating regimes available in the
data, which is a very typical situation in real-world applications.
The reasons for this are diverse: The system typically spends
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little time in transient conditions compared to stationary oper-
ating conditions. Further, in transient regions, the trend compo-
nent in the data will have larger amplitude and, therefore, more
influence in the identification criterion than perturbation com-
ponents. Furthermore, in such regions, operational constraints
often limit the amount of perturbations and the time the system
should spend in transient states. Hence, our practical experience
is that carefully planned experiments are required in order to get
even a modest amount of perturbation information in transient
operating regimes. Furthermore, prior knowledge should be ap-
plied as far as possible in the identification in order to make
it more robust. Next, we consider experiment design and con-
tinue with a discussion of various identification methods that
can help improve the interpretability and accuracy of the iden-
tified model.

A. Experiment Design

In nonlinear system identification, both the amplitude and fre-
quency contents of the input signals are of major importance.
For identifying Takagi–Sugeno fuzzy models containing both
equilibrium and off-equilibrium local affine models, it is our ex-
perience that input signals designed according to the following
guidelines are useful if the model is intended for control design.

• The system should be brought through a sequence of equi-
libria that includes the equilibria of the local models. At
each equilibrium the system should be excited by super-
positioned small-amplitude PRBS signals. The PRBS sig-
nals should have a frequency content that covers an in-
terval from the inverse rise time to above the bandwidth
of the closed-loop system.

• Several transient trajectories should be generated for each
off-equilibrium local model. The corresponding input sig-
nals should contain both large-amplitude steps and pertur-
bations in order to determine both the trend and pertur-
bation dynamics of the off-equilibrium local models. The
frequency contents should typically be higher compared
to the frequency content of the equilibrium data to prevent
the system from settling at some equilibrium.

Of course, there are practical constraints that will often limit the
number of transitions, length of the experiment, frequency con-
tent, and amplitudes. The requirements in terms of accuracy of
the off-equilibrium local models will depend strongly on the ap-
plication. Sometimes, equilibrium local models can be extrapo-
lated into transient operating regions without significant loss of
accuracy.

Example: Longitudinal Vehicle Dynamics, Improved Experi-
ment Design:The data sequence 2, shown in Fig. 9, is gener-
ated according to the above guidelines. The first 1000 samples
of this data sequence is identical to data sequence 1, which ex-
citates the equilibrium behavior of the system. The second 1000
samples contains a high-frequency large-amplitude input signal
that will take the system through its transient states.

Identification of the Takagi–Sugeno fuzzy model, with ex-
actly the same structure as the models considered above, is now
carried out using the least squares algorithm and this data se-
quence. The results are shown in Fig. 8. Clearly, these depict a
more accurate model, both in terms of global accuracy and the

Fig. 9. Identification data sequence 2.

closeness of the local affine models to the linearization of the
system.

B. Constrained and Regularized Identification

Poor identifiability leads to an ill-conditioned identification
problem where certain parameters (or combinations of parame-
ters) can be chosen more or less arbitrarily. Constrained and reg-
ularized system identification is a general method for improving
the robustness and accuracy of the system identification algo-
rithm when the model structure is poorly identifiable ([11], [12],
[31], [32]). The general idea is to explicitly constrain the model
parameters using hard or soft constraints such that the model
is consistent with some prior knowledge or desired properties.
Regularization (which can be seen as soft constraints) may be
implemented by adding a penalty function to the least squares
criterion. This penalty will attract the model parameters toward
some set ofa priori desirable parameters.

It is assumed that the identification is carried out using
discrete-time input/output data and a discrete-time dynamic
Takagi–Sugeno fuzzy model that admits the one-step ahead
predictor to be written in the form

(59)

where is a vector that contains the local model parameters
and is an information vector that may depend

on the current and past inputs and outputs. Note that similar to
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the example above, one may transform (at least approximately)
a discrete-time model into a continuous-time state-space model,
which is being assumed in previous sections of this paper. Also
note that only in special cases (e.g., when all states are mea-
sured or the state space realization is chosen in a convenient
way) it is natural to formulate the one-step ahead predictor (59)
as a linear function of the parameter vector, admitting a simple
least squares normal solution. In the general case, the predictor
might contain a state observer that whose parameters will typ-
ically depend in a nonlinear manner on the model parameters,
e.g., [21].

The common least squares identification method will mini-
mize the least squares criterion

(60)

where is the length of the data sequence. Constraints are nor-
mally added in terms of a set of linear equalities and inequalities
that incorporates some form of prior knowledge

(61)

(62)

where , , , and are constant matrices and vectors. When
the predictor (59) is a linear function of the parameters, mini-
mizing the least squares criterion (60) subject to the constraints
(61) and (62) is a convex optimization problem that can be
solved using quadratic programming [23]. In the general case,
it is a nonlinear programming problem.

We have found that an approximate Tikhonov regularization
stabilizer may be useful for improving both the accuracy and
interpretability of the identified local models. This stabilizer
(penalty function) is given by [10]

(63)

where is a measure of how close the fuzzy sets with indices
and are. Hence, is close to one for a neighboring pair

of fuzzy sets and close to zero for a distant pair of fuzzy sets.
The matrix is a positive definite diagonal weighting ma-
trix that ensures that the different local model parameters have
sensible relative weights in the stabilizer. The interpretation of
(63) is that the local model parametersand corresponding
to neighboring regions are expected to be similar, while there
should not be any such constraint on local model parameters
of regions that are far apart. The definition of the weighting
factor should depend on the parameterization of the mem-
bership functions for the fuzzy sets. Let us give an example of
how it may be defined, using tensor product Gaussian member-
ship functions

where is the center point of the fuzzy set
with index and is the average “standard deviation” of the

membership functions defining the fuzzy sets along theth di-
mension.

Combining the approximate Tikhonov stabilizer with the
least squares criterion and the constraints leads to a problem of
minimizing

(64)

subject to the constraints (61) and (62). The scalar regularization
parameter defines the weight on the penalty function
relative to the least squares penalty on the prediction error. This
parameter can be selected on the basis of both subjective and
objective criteria. Further details on some objective statistical
criteria can be found in [11].

Example: Longitudinal Vehicle Dynamics, Constrained Iden-
tification: Suppose we restrict the gains of the local models
to be nonnegative, i.e., , and the poles of the local
models to be nonpositive, i.e., and use the constrained
least squared identification algorithm with data sequence 1.
Equations (53)–(55) are used to convert between continuous
and discrete time model parameterizations and a quadratic
programming algorithm is applied to compute the estimate. The
results are shown in Fig. 8. The equilibrium local models are
almost unchanged since their poles and gains were consistent
with the constraints also in the unconstrained identification
experiment. The off-equilibrium local models are now more
accurate, which one should expect due to the introduction
of prior knowledge that was violated in the unconstrained
identification experiment.

Example: Longitudinal Vehicle Dynamics, Regulariza-
tion: Next, we apply the approximate Tikhonov stabilizer (63)
without any constraints. The identification results using data
sequence 1 are shown in Fig. 8. The equilibrium local models
are almost unchanged since they were easily identifiable also
with the pure least squares algorithm. The off-equilibrium local
models are now somewhat more accurate, even though the
Tikhonov stabilizer was based on the invalid prior assumption
that the local off-equilibrium models were similar to neigh-
boring local equilibrium models. In this particular example,
this assumption is clearly violated (notice that the gain and pole
are significantly larger near the equilibrium manifold than in
transient regions). The reason why better results are achieved
is that the increased bias introduced by the incorrect prior
assumption is less than the reduction in variance that always
accompanies the regularization. A study of bias and variance as
a result of regularization can be found in [12] (see also [31]).

The structure identification problem becomes somewhat
more complicated when constraints and regularization are
introduced. However, well-known criteria such as the final
prediction error criterion (FPE) have been generalized to these
cases [11], [18].

C. Locally Weighted Identification

The least squares objective (60) explicitly aims at deter-
mining the parameters of the local models that gives the
best global model prediction. As we have already discussed,
this objective will often be in conflict with the objective of
determining local models that are accurate linearizations of the
nonlinear system. This motivates the use of parametric locally
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weighted identification where this is the explicit objective of
the identification [24], [25]. Individual criteria are defined for
each local model

(65)

where is a vector containing the premise variables. The
data are weighted according to their relevance to the local model
with index and this relevance is measured by the interpola-
tion function . The one-step ahead predictor based on the
local model with index is assumed to be given in the form

. The resulting identifica-
tion problem is linear in the parameters and can be solved ex-
plicitly if the predictor is linear with respect to . The im-
plicit regularization effect of locally weighted least squares has
been studied in detail in [25]. Notice that locally weighted least
squares can be combined with explicit regularization and con-
straints, still leading to a convex quadratic program for the local
parametric identification problem with a linearly parameterized
predictor. In [38] it was suggested to combine the local criteria
(65) with the global criterion (60) in order to address the tradeoff
between local accuracy and global performance.

Example: Longitudinal Vehicle Dynamics, Locally Weighted
Identification: Parameter identification results using locally
weighted least squares are shown in Fig. 8 for the cases when
data sequences 1 and 2 are applied. It can be seen that the inter-
polated pole/gain/trend of the identified local models are close
approximations to the linearization of the nonlinear system,
even with data sequence 1 in the off-equilibrium regions. The
reduction in global prediction performance compared to the
global least squares is not significant.

Recently, there has been some interest in the use of locally
weighted least squares identification [6] to determine local
linear dynamic models ([3], [33]). In these approaches the local
models are determined online at each sample and there is no
underlying nonlinear model structure. On the other hand, it has
also been proposed to use nonparametric offline identification
methods based on a probabilistic multivariate Gaussian process
prior model of the underlying nonlinear function [26]. This
approach has a high computational load, but appears to be
very robust with respect to poor identifiability. Local affine
models, which are close to linearizations can easily be derived
analytically from the nonparametric model, with analytic
estimates of their variance.

V. CONCLUSIONS

We have illustrated fundamental interpretability and identi-
fiability limitations of dynamic Takagi–Sugeno fuzzy models
with constituent affine local models. The major problem is that
in transient operating regimes (where the nonlinear system has
no equilibrium points) the local affine model is poorly iden-
tifiable. Further, practical limitations exist that restrict the de-
sign of informative experiments for many systems. A theoret-
ical understanding of the problems is developed by relating the
dynamic Takagi–Sugeno fuzzy model with local affine models

to dynamic linearization. Differences between local constants,
linear and affine models are pointed out, the effect of mini-
mizing the number of variables is the premise of the fuzzy rules
are investigated and the role of the membership functions are
studied. Finally, suggestions are presented, that potentially al-
leviate or reduce some of these problems through suitable ex-
periment design and use of robust identification methods. In
particular, it is shown how constrained and regularized identi-
fication methods may improve the interpretability of the con-
stituent local models as local linearizations. Furthermore, lo-
cally weighted least squares identification is shown to explic-
itly address the tradeoff between local and global accuracy of
the Takagi–Sugeno fuzzy model.

The practical importance of the problems is illustrated by
very simple examples. Still, one may expect that the problems
related to interpretability and identifiability will be much more
pronounced when more complex higher order and multivariable
examples are considered.

The present results are not only relevant to dynamic
Takagi–Sugeno fuzzy models, but also related model repre-
sentation with constituent local models, such as local model
networks (e.g., [13], [25]) and piecewise linear models (e.g.,
[2]).

APPENDIX A
PROOF OFTHEOREM 1

From (13) and the property that for all
it follows that:

(66)

(67)

(68)

(69)

(70)
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where

(71)

Application of the triangle inequality on (71) leads to

(72)

For the point that is closest to it holds that
and for points that are more than

a distance away from it holds that , i.e.,
if . Since there is always

a within a distance from any ,
only terms with contributes to (72).
Due to the Lipschitz property

(73)

and the result follows.
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