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A B S T R A C T

Sensor nodes in a wireless sensor Network are assigned for different operational modes to
perfume application-specific objectives. The decision to assign operational modes to nodes is a
challenging problem in the presence of multiple criteria including energy-efficient, maintaining
network connectivity, and fulfilling application goals. Several metaheuristic methods are
introduced in the literature to address this NP-hard problem, however, these methods require
further improvements in execution-time and finding the optimum solution. In this research,
we propose an improved version of a metaheuristic method called Quadri-valent Quantum-
Inspired Gravitational Search Algorithm (QQIGSA) to solve Quadri-valent problems by applying
a Not Q-Gate and paralleling QQIGSA method on the graphics processing unit. The proposed
method employs a heterogeneous platform and justifies its parameters. The experimental results
show that the performance enhancement from 1.8 to 2.25 compared to the previous parallel
implementations. Moreover, we achieve the speedup of 8 by using the proposed heterogeneous
paralleling technique.

. Introduction

Wireless sensor networks (WSN) play an influential role in different areas such as smart city, industry 4.0 based factories,
recision agriculture, and smart hospitals. They provide valuable information by sensing the surrounding environment and sending
hem toward a base-station for further analysis and actions. The design of a WSN is a challenging task for various reasons. First, the
ife cycle of these resource-constrained sensor nodes is tightly coupled with their energy consumption which raises energy efficiency
s one of the most important design aspects. Second, the network has to maintain the connectivity of all the nodes to prevent network
artitioning. Finally, WSN applications may assign specific modes (e.g., cluster head, coordinator) to sensor nodes according to their
ission. Although considering these aspects (i.e., energy efficiency, network connectivity, and application-specific roles) makes a
SN design a challenging and complex task, it boosts their performance and dependability [1,2].
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To model the assignment of different operation modes to sensor nodes, we consider a network area of the size 𝑟 × 𝑐, where
all sensors are deployed in a grid shape (on all 𝑟 × 𝑐 junctions). These sensor nodes are identical and are capable to be in one of
the four supported operational states, including inactive (Off), Cluster Head (CH), the sensor with Low Signal Range (LSR), or the
sensor with a High Signal Range (HSR). The problem is to assign a proper operational mode to these nodes while maintaining the
network connectivity, specific-application requirements, and energy efficiency. In other words, the problem is to find the operation
modes of the sensors at each point in time, like a dynamic sequence, to increase the network lifetime according to the number of
sensing/data collection cycles. Therefore, the algorithm needs to run repeatedly while dynamically considering the latest energy
level of the sensors after each cycle [1]. This problem is reported as NP-hard [1] and metaheuristic algorithms are considered as
potential approaches to solve it.

Metaheuristic algorithms are population-based and non-deterministic optimization approaches that address the computability
challenge of NP-hard problems. They are successful methods that can provide near-optimum solutions in a reasonable time for
complex and NP-hard problems. Genetic Algorithms (GA), Simulated Annealing (SA), Ant Colony Optimization (ACO), Particle
Swarm Optimization (PSO), Imperialist Competitive Algorithm (ICA), and Gravitational Search Algorithm (GSA) are some of the
well-known metaheuristic algorithms that are used frequently in different applications [3].

Although metaheuristic methods can solve NP-hard problems faster compared to the traditional deterministic methods, in some
cases, they suffer from long computation time. Another limitation of metaheuristic methods is that by increasing the search space
of the problem, they may not converge toward finding the sub-optimal or optimal solutions. In some cases, increasing the size of
the population may enhance the quality of solutions but, it can lead to increasing the running time. To mitigate this limitation,
the parallel execution of metaheuristic methods are suggested by researchers that helps to enhance the quality of the solutions
as well as reducing the run-time. Considering both the Central Processing Unit (CPU) and Graphics Processing Unit (GPU) as
the processing units in a computer and their unique advantages and limitations, the collaboration between CPU and GPU can
provide a high-performance computing environment. A combination of CPU and GPU platforms creates a new platform known
as a Heterogeneous Computing (HC) platform which has higher computational gains than multi-core systems. This platform aims to
employ task paralleling on CPU and data paralleling on GPU. Therefore, many researchers are motivated to use this heterogeneous
computing technique in different applications. Mittal et al. [4] present an exhaustive survey of heterogeneous computing approaches.

Several works introduce solutions to the aforementioned WSN problem using parallel metaheuristic methods. A Binary Genetic
lgorithm (BGA) is developed by Ferentinos et al. [1] to solve the problem in WSNs. Hojjatoleslami et al. [2] use Binary Particle Swarm

Optimization (BPSO) to address the problem. A modified version of BQIGSA is developed and adopted for the optimal design of WSN
in [5]. The current problem is a problem with four states; so, a new version of the quantum GSA is called Quadri-valent Quantum-
Inspired Gravitational Search Algorithm (QQIGSA). It is suitable for four-state problems or Quadri-valent encoded problems which
is proposed in [6]. This approach has better achievements compared to BGA [1] and BPSO [2]. It is worth noting that to enhance
the speed of this algorithm, a parallel implementation of improved QQIGSA, using Open-MP was suggested in [7].

This paper is an extension of work [7] initially presented in TopHPC 2019. In [7], the speed of the improved QQIGSA (IQQIGSA)
is increased by paralleling some part of the algorithm, using a multi-core CPU. In this paper, we offer the paralleling technique using
the CPU–GPU heterogeneous to have a higher speed-up on the execution time of the algorithm. This lets us increase the population
size which leads to the improvement of the quality of results. Moreover, in this paper, parameters related to the proposed IQQIGSA
have been justified. Besides, in this paper following the previous works [1,2,5,6], an improved version of QQIGSA [6] is developed
by applying a Not Q-Gate. This work leads to an increase in the diversity of the population to find better results. To deal with a large
earching space, we require a larger population to find more acceptable accuracy of the results. However, based on the limitation
f resources, we may not be able to satisfy this requirement. Furthermore, for problems that need more complex computations, the
unning time of the algorithm may increase and may become intolerable. Therefore, we use the parallelism technique to accelerate
he speed and enhance the accuracy of the method.

We propose applying a heterogeneous platform for parallel processing using both CPUs and GPUs to accelerate the speed of the
roposed improved QQIGSA. The main problem is divided into three partial problems; one of them is executed on the CPU, and the
thers are executed on the GPU. The proposed heterogeneous parallelism technique of the QQIGSA can enhance the speed and the
uality of results in the WSN problem. The main contributions of this paper are summarized as:

• A modified version of the QQIGSA is proposed by applying a Not Q-Gate.
• The main parameters of the suggested IQQIGSA are justified using the Taguchi method.
• The proposed IQQIGSA uses a parallelism technique based on the CPU–GPU heterogeneous technique to increase the speed of

the algorithm.
• The algorithm is developed to handle the design of WSNs with four operational states of sensors.

The performance and the speed of the parallel and improved QQIGSA in the WSN optimization problem are investigated, and a
comprehensive comparison between state-of-the-art ones including BGA [1], BPSO [2], the improved BQIGSA [5], and QQIGSA [6]
are performed. Moreover, the dynamic optimal design algorithm is applied. The results show that the proposed method surpasses
the previous approaches in terms of speed, accuracy, and the lifespan of the network as well as the base station energy consumption.

The rest of this paper is organized as follows. Section 2 describes related work followed by preliminaries in Section 3. Section 4
presents the suggested algorithm and, two paralleling techniques. Section 5 gives the experimental results of adapting the proposed
2

algorithm to the WSN problem, and Section 6 concludes the paper.
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2. Related works

Metaheuristic methods potentially can solve NP-hard problems in an acceptable time compared to exact methods. However, in
ome cases, they may suffer from the time-consuming exploration of large solution spaces. To mitigate the limitation, paralleling
etaheuristic methods can be an option to decrease the execution time. Crainic [8] presents a comprehensive review of parallel

metaheuristic methods. It is considered that some parallel metaheuristic methods can achieve super-linear performance.
Several metaheuristic methods are provided by researchers to solve the described problem of optimal design of a WSN. Ferentinos

et al. [1] used a binary genetic algorithm (BGA) to solve this problem. Hojjatoleslami et al. [2] introduced the binary particle swarm
optimization (BPSO) method to address the problem, however, the quality of their results requires more improvements. To improve
the quality, a modified version of BQIGSA [5] and QQIGSA [6] were devised by the researchers. Later, to increase the speed of the
QQIGSA, a parallel implementation using Open-MP was suggested in [7]. The work of this paper is a continuation of our previous
work in [7] to accelerate the speed of the algorithm.

Gravitational Search Algorithm (GSA) is the metaheuristic base in our work. Two parallel versions of GSA by GPU implementation
are presented in [9] and [10]. GSA is one of the recently introduced metaheuristic methods with acceptable exploration ability. This
algorithm is inspired by the motion and gravity laws of Newtonian [11]. Recently, several quantum versions of GSA suitable for
binary-valued problems are introduced in [12,13]. The comparative results indicate that BQIGSA [12] can be considered as one of
the most efficient methods in solving the binary optimization problem. Furthermore, the Quadri-valent version of quantum-inspired
GSA called QQIGSA was proposed in [6] for dealing with Quadri-valent problems.

In GSA, only one parameter must be adjusted which is an advantage compared to other metaheuristic methods that have multiple
adjustable parameters. Gravitational constant or 𝐺0 has an important role in GSA and its versions. Several works are published to
address how to adjust this constant. For example, Ibrahim et al. [14] use chaotic neural oscillators (CNO) to set the gravitational
constant. In [15], Aggregative Learning Gravitational Search Algorithm (ALGSA) and in [16], Hierarchical GSA (HGSA) are suggested
to address the problems of premature convergence and low search performance of GSA. In ALGSA, each particle adapts its own
gravitational constant to enhance the search performance. Also, HGSA studies the problem from the population topology viewpoint
and apply an effective gravitational constant.

Another method to improve the performance of GSA is proposed in [17]. This method, which is called chaotic gravitation search
algorithms, combines the GSA and chaos to take advantages of both techniques. To balance the exploitation and exploration abilities,
a self-adaptive method is developed in [18] for setting the gravitation constant. Some other methods can be found in [19].

One of the paralleling methods frequently used by researchers is to apply the multi-core platform and Open-MP to implement
the algorithms. Open-MP supports parallel programming on shared-memory multiprocessor systems. Numerous algorithms are
converted to parallel using Open-MP to obtain acceptable speedup. This is besides its simple implementation in comparison with
other parallelism techniques such as Compute Unified Device Architecture (CUDA) programming implemented on GPU. Moreover,
Open-MP gives results with an accuracy equivalent to the sequential implementation [20].

3. Preliminaries

3.1. CUDA for GPU and Open-MP for multicore systems

Compute Unified Device Architecture (CUDA) is a programming model used for parallel programming on many-core NVIDIA
GPUs. Here, the problem is divided into sub-problems, which are computed using blocks of threads in parallel. A block is defined
as a batch of threads that can collaborate by synchronizing and sharing data via shared memory. The instructions of CUDA are
implemented in a function called, Kernel.

Fig. 1 shows a Kernel that is called by defining a grid of blocks and the block is specified by a unique pair of indices (in the case
of two-dimensional). Moreover, threads in blocks can be organized as a two-dimensional grid with unique indices set. All threads
involved in a kernel have access to global memory. Furthermore, each thread has several registers with limitations in the size, and
to cooperate with the threads of a block, they have to access through a fast shared memory [10,21].

It is worth noting that Open-MP is a library for the implementation of parallel programs for shared memory multi-core processors.
It is composed of a set of instructions that can be embedded in a program written by C, C++, or Fortran languages. Recently, many
programs are implemented in parallel using Open-MP, achieving proper speedup in addition to its simple implementation [22,23]

3.2. Preliminaries on QQIGSA

QIEAs or Quantum-inspired evolutionary algorithms are a class of metaheuristic methods that are produced by a combination of
evolutionary algorithms and quantum computing. QQIGSA proposed in [7] is made by merging GSA [11] and quantum computing
to solve Quadri-valent problems. This section describes the procedure of QQIGSA.

In QQIGSA, each Qubit is composed of a pair of (𝛼, 𝛽) which is capable to be found in the states ‘‘0’’, ‘‘1’’, ‘‘2’’, ‘‘3’’ and even
in a combination of them at the same time. |𝛼|2 and |𝛽|2 determine the chance of finding the Qubit in each state. In QQIGSA, an
agent is demonstrated as a vector composed of 𝑛 Qubits (Eq. (1)).

𝑞𝑏𝑖(𝑡) = [𝑞𝑏1𝑖 (𝑡), 𝑞𝑏
2
𝑖 (𝑡),… , 𝑞𝑏𝑛𝑖 (𝑡)] =

[

𝛼1𝑖 (𝑡) 𝛼2𝑖 (𝑡) ... 𝛼𝑛𝑖 (𝑡)
𝛽1𝑖 (𝑡) 𝛽2𝑖 (𝑡) ... 𝛽𝑛𝑖 (𝑡)

]

(1)
3

𝑖 = 1, 2,… , 𝑁𝑝𝑜𝑝
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Fig. 1. Illustration of the GPU architecture [10].

where 𝑛 is the dimension size of search space which depends on the problem, 𝑁𝑝𝑜𝑝 is the size of the population and each pair of
[

𝛼𝑑𝑖 (𝑡)
𝛽𝑑𝑖 (𝑡)

]

should meet Eq. (2).

|𝛼𝑑𝑖 |
2 + |𝛽𝑑𝑖 |

2 = 1 (2)

Firstly, an initial population 𝑄(𝑡), consisting of 𝑁𝑝𝑜𝑝 objects in an 𝑛-dimensional searching space, is generated randomly. Then,
the observation function is performed using Alg. 1 to collapse the quantum state of Q-bits into a single value. This process makes
𝑆𝑊 (𝑡) = {𝑋1(𝑡), 𝑋2(𝑡),… , 𝑋𝑁𝑝𝑜𝑝(𝑡)}, in which 𝑋𝑖(𝑡) =

(

𝑥1𝑖 (𝑡), 𝑥
2
𝑖 (𝑡),… , 𝑥𝑛𝑖 (𝑡)

)

.

Algorithm 1: Observation function

if (rand [0,1] <
(

𝛼𝑑𝑖 (𝑡)
)2

) then

if (𝛼𝑑𝑖 (𝑡) < 0) then

𝑥𝑑𝑖 (𝑡) = 0 ;

else
𝑥𝑑𝑖 (𝑡) = 2 ;

end if
else
if (𝛽𝑑𝑖 (𝑡) < 0) then

𝑥𝑑𝑖 (𝑡) = 1 ;

else
𝑥𝑑𝑖 (𝑡) = 3 ;

end if
end if

Later, the fitness amount of each solution 𝑋 (𝑡) is evaluated. The set
4

𝑖
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Fig. 2. Representation as a vector (on the right), and WSN design (on the left) [7].

𝑆𝐵(𝑡) = {𝐵1(𝑡), 𝐵2(𝑡),… , 𝐵𝑁𝑝𝑜𝑝(𝑡)} where, 𝐵𝑖(𝑡) =
(

𝑏1𝑖 (𝑡), 𝑏
2
𝑖 (𝑡),… , 𝑏𝑛𝑖 (𝑡)

)

, collects the best solutions found during the iterations 𝑡. If
𝑋𝑖(𝑡) has a better fitness value, the 𝐵𝑖(𝑡) ∈ 𝑆𝐵(𝑡) is replaced by 𝑋𝑖(𝑡) ∈ 𝑆𝑊 (𝑡); regarding 𝑆𝐵(0) = 𝑆𝑊 (0). Then, the mass 𝑀𝑖(𝑡) for
𝑖 = 1, 2,… , 𝑁𝑝𝑜𝑝 is computed for solutions collected in 𝑆𝐵(𝑡), using Eq. (3).

𝑀𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) −𝑤𝑜𝑟𝑠𝑡(𝑡)

∑𝑁𝑝𝑜𝑝
𝑗=1 (𝑓𝑖𝑡𝑗 (𝑡) −𝑤𝑜𝑟𝑠𝑡(𝑡))

(3)

Then, the angular velocity specifies the movement value toward ‘‘0’’, ‘‘1’’, ‘‘2’’ or ‘‘3’’ by applying the rotational quantum gate
(RQ-gate) on Qubits. The angular velocity of each Q-bit is calculated using Eqs. (4) and (5).

𝜔𝑑
𝑖 (𝑡 + 1) = 𝑟𝑎𝑛𝑑𝑖 × 𝜔𝑑

𝑖 (𝑡) + 𝑎𝑑𝑖 (𝑡) (4)

𝑎𝑑𝑖 (𝑡) =
∑

𝑗∈𝑘𝑏𝑒𝑠𝑡

𝐺(𝑡)
𝑀𝑗 (𝑡)

𝑅𝑖𝑗 (𝑡) + 𝜖

(

𝑏𝑑𝑗 (𝑡) − 𝑥𝑑𝑖 (𝑡)
)

(5)

In these relations, 𝜔𝑑
𝑖 (𝑡) and 𝑎𝑑𝑖 (𝑡) respectively denote the angular velocity and acceleration of object 𝑖 in dimension 𝑑 at iteration

𝑡. Also, 𝐺(𝑡) refers to the gravitational constant in iteration 𝑡, which initialized to 𝐺0 at the first iteration and is decreased during
iterations as 𝐺(𝑡) = 𝐺0(1− 0.95 𝑡

𝐼𝑇𝐸 ), in which 𝐼𝑇𝐸 is the iteration number of the procedure. Moreover, 𝑀𝑗 (𝑡) is the mass of object 𝑗
at iteration 𝑡. The set of 𝑘𝑏𝑒𝑠𝑡 includes 𝑘 best-found solutions in 𝑆𝐵(𝑡). The size of 𝑘𝑏𝑒𝑠𝑡 is linearly decreased by iterations. 𝑥𝑑𝑖 (𝑡) and
𝑏𝑑𝑗 (𝑡) are respectively the value of solutions 𝑋𝑗 (𝑡) ∈ 𝑆𝑊 and 𝐵𝑗 (𝑡) ∈ 𝑆𝐵(𝑡) at dimension 𝑑 in iteration 𝑡. 𝑅𝑖𝑗 (𝑡) computes the distance
between objects 𝑖 and 𝑗 as Eq. (6). Also, 𝜖 is a very small value to prevent dividing into zero.

𝑅𝑖𝑗 (𝑡) =

∑𝑛
𝑙=1 |𝑥

𝑙
𝑖(𝑡) − 𝑥𝑙𝑗 (𝑡)

3 × 𝑛
(6)

The rotation angle of Qubit 𝑖 at dimension 𝑑 is calculated by Eq. (7). Then, each Qubit is updated independently using Eq. (8).
Moreover, the iteration 𝑡 is increased by one. The procedure is repeated until the condition of a predefined number of iterations is
met [7].

𝛥𝜃𝑑𝑖 =

⎧

⎪

⎨

⎪

⎩

−𝜔𝑑
𝑖 (𝑡 + 1), 𝑖𝑓 |𝑏𝑑𝑗 (𝑡) − 𝑥𝑑𝑖 (𝑡)| = 3

𝜔𝑑
𝑖 (𝑡 + 1), 𝑖𝑓 |𝑏𝑑𝑗 (𝑡) − 𝑥𝑑𝑖 (𝑡)| = 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(7)

[

𝛼𝑑 (𝑡 + 1)
𝛽𝑑 (𝑡 + 1)

]

=
[

cos(𝛥𝜃𝑑 ) sin(𝛥𝜃𝑑 )
− sin(𝛥𝜃𝑑 ) cos(𝛥𝜃𝑑 )

] [

𝛼𝑑 (𝑡)
𝛽𝑑 (𝑡)

]

𝑑 = 1, 2,… , 𝑛
(8)

3.3. Problem of optimal design for WSNs in precision agriculture

WSNs have the ability of sensing, sending, and managing data. In a precision agriculture application, these data include
temperature, humidity, soil moisture, and solar radiation to provide precise farm management. Here, the approach based on QQIGSA
is described to design a WSN topology to enhance the lifetime of the network while the connectivity constraints, energy-related,
and specific application parameters are met. underneath, it is described how to encode objects, and how to formulate the fitness
function to evaluate objects.

3.3.1. Representation of object
The design objective of a WSN is to assign the sensors’ operational states (including inactive (Off), cluster head (CH), the sensor

with low signal range (LSR), and the sensor with high signal range (HSR)) so that the fitness value is maximized. In the proposed
IQQIGSA, each WSN design is considered as a possible solution encoded as a vector composing the operational state of sensors. The
size of the vector is equal to the number of located sensors on the area. The elements of the vector can get the value 0 for OFF, 1
5

for LSR, 2 for HSR, or 3 for CH operational states. Fig. 2 shows As an example of a WSN design and its representation as a vector.
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3.3.2. Fitness evaluation
A fitness function is applied to evaluate the quality of each solution in a WSN design. In this application, three sets of

arameters are considered including connectivity, energy-related, and application-specific parameters. These parameters that have
o be minimized, are combined to form a single objective function. This weighted fitness function is defined by Eq. (9) where, 𝑤1,
𝑤2, . . . and 𝑤7 are the weighting coefficients indicating the importance of each parameter.

𝑓𝑖𝑡 = 1
(𝑤1.𝑀𝑅𝐷 +𝑤2.𝑆𝐷𝐸 +𝑤3.𝑆𝐶𝐸 +𝑤4.𝑆𝑂𝑅𝐸 +𝑤5.𝑂𝐸 +𝑤6.𝐶𝐸 +𝑤7.𝐵𝐶𝑃 )

(9)

In this function, MRD, SDE and SCE are application-specific parameters, referring to uniformity of nodes, Spatial Density error,
nd Sensors-per-Cluster-head Error, respectively. Moreover, SORE or ‘‘Sensor-Out-of-Range Error’’ is a connectivity parameter. This
arameter, which depends on the sensor’s signal board, ensures that each active sensor can communicate with its related cluster
ead. OE or Operational Energy as an energy-related parameter computes the energy consumed by active sensors along with a time. It
ighly depends on the operational state of sensors. CE or Communication Energy is another energy-related parameter. This parameter
hows the energy consumed for communication between active sensors and their related CH. Parameter BCP or Battery Capacity
enalty as an energy-related parameter with an essential role in increasing the lifetime of the WSN. For more details regarding these
arameters, the interested readers may refer to [1,2,5,6].

. The proposed improved and parallel QQIGSA

QQIGSA is a QIEA well suitable for Quadri-valent optimization problems. To enhance the performance of this algorithm and
void local optimum solutions, it is necessary to allow the algorithm to make the population and have new unprecedented solutions.
lso, a large number of function evaluations and algorithm operators results in high CPU execution time. Therefore, an attempt to
ccelerate QQIGSA is necessary.

In this paper, the performance of the QQIGSA is enhanced by adding a new quantum operator namely Not Q-Gate. The effect of
his operator in QQIGSA is similar to the effect of the mutation in the genetic algorithm to avoid the local optimum and introduce
iversity to the population. The Not Q-Gate avoids minimum/ maximum by avoiding the population from getting too similar to each
ther. This reason also explains that IQQIGSA may avoid taking only the fittest solutions in making the next population by adding
ot Q-Gate. It is rather a semi-random selection toward the fitter solutions.
Not Q-Gate selects one or more objects from the current population with a predefined probability and then alters its present state.

t can lead to a complete change of the object. In this case, the diversity of the population is increased and may lead to finding more
ptimal solutions. This change can occur in all or some iterations of the algorithm according to the user-defined probability. The
alue of this probability should be set to a low value between 0 and 1, otherwise, the algorithm may become a primitive random
earch. A typical approach for implementing Not Q-Gate can be selecting an object and changing its 𝛼 and 𝛽. If object 𝑖 is selected

andomly, this object is turned from 𝑞𝑏𝑖(𝑡) =

[

𝛼1𝑖 (𝑡) 𝛼2𝑖 (𝑡) ... 𝛼𝑛𝑖 (𝑡)
𝛽1𝑖 (𝑡) 𝛽2𝑖 (𝑡) ... 𝛽𝑛𝑖 (𝑡)

]

to 𝑞𝑏𝑖(𝑡) =

[

𝛽1𝑖 (𝑡) 𝛽2𝑖 (𝑡) ... 𝛽𝑛𝑖 (𝑡)
𝛼1𝑖 (𝑡) 𝛼2𝑖 (𝑡) ... 𝛼𝑛𝑖 (𝑡)

]

. It helps to promote

he diversity in QQIGSA and may preserve the algorithm from the local optimum.
The experimental results indicate that the suggested IQQIGSA can produce better solutions to solve the optimal WSN design

ssue, compared to the BGA [1], BPSO [2], QQIGSA [6] and improved BQIGSA [5] but it still needs an accelerate in the execution
peed. After executing the algorithm on the network and determining the optimal operational modes of sensors, the battery charges
f sensors are changed, and the program has to be executed again on WSN with updated battery charges in the next measuring
ycle. So, the execution time of the algorithm needs to be decreased to have fast decisions.

Parallelism is an efficient approach to decrease the running time of the algorithm. For this purpose, we use two approaches. The
irst is using Open-MP programming, and the other is using both Open-MP and CUDA programming. By experimenting with the
urrent WSN problem, we identify that re-evaluating the fitness of agents is the most time-consuming section. Moreover, computing
he fitness function is well suitable to be run on a multi-core platform, and the other sections involving matrix computations are
uitable for running on GPU.

Parallel QQIGSA by Open-MP is down by partitioning the population into sub-populations and computing the fitness function of
bjects independently. In each iteration, all objects are separate from each other and can be easily computed in parallel. It is worth
oting that no communication between cores is required [7].

The pseudocode of the suggested IQQIGSA is converted to parallel for Open-MP and is presented in Alg. 2. The only difference
etween the sequential code of QQIGSA and IQQIGSA is adding the pragma statement, containing the private and shared variables,
efore the for-loop, and applying the Not Q-Gate at the end. The pragma statement instructs Open-MP to the parallel execution of
he for-loop block.

The other approach is to compute the fitness values by multi-core platform and compute other sections by GPU. This can be
mplemented by assigning one block to one agent. All threads should be able to retrieve the position, Q-bit, angular velocity, and
cceleration of agents with a unique pair as [𝐴𝑔𝑒𝑛𝑡𝐼𝐷,𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝐼𝐷]. Threads of block access to the dimension values using an index
y 𝐴𝑔𝑒𝑛𝑡𝐼𝐷 × 𝑛 +𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝐼𝐷 where 𝐴𝑔𝑒𝑛𝑡𝐼𝐷 is 𝑏𝑙𝑜𝑐𝑘𝐼𝑑.𝑥 and 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛𝐼𝐷 is 𝑡ℎ𝑟𝑒𝑎𝑑𝐼𝑑.𝑥.

Alg. 3 presents the pseudocode of the proposed and parallel algorithm by CPU–GPU heterogeneous computing technique. Each
tep is described in the following. Moreover, Fig. 3 shows the data and vector organization in global memory in the GPU. For matrix
n the size 𝑁𝑝𝑜𝑝 × 𝑛, each agent is assigned to a block and each dimension is assigned to a thread which is demonstrated by an
6

rrow. Besides, in this figure the expression in the form of ⋘ 𝐺𝑠,𝐵𝑠 ⋙ between the kernel name and the parenthesized arguments
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Algorithm 2: The pseudocode of the proposed improved and parallel QQIGSA using Open-MP
1: Input: 𝐼𝑇𝐸, 𝑁 , 𝑝𝑁 , 𝐺0;
2: Output: a topology from 𝑆𝐵 with the best fitness value
3: 𝑡 = 0;
4: 𝑆𝐵(𝑡) = {};
5: Initialize Q(t);
6: while (𝑡 < 𝐼𝑇𝐸) do
7: Make 𝑆𝑊 (𝑡) by observing 𝑄(𝑡) using Alg. 1
8: #Pragma for each object i {run in parallel}
9: Evaluate 𝑆𝑊 (𝑡, 𝑖) by Eq. (9);

10: Updating SB(t,i);
11: Update_mass 𝑀𝑖(𝑡), i=1,2,. . . ,N by Eq. (3);
12: Update_Qbit Q(t) by RQ-gate to make 𝑄(𝑡 + 1) by Eqs. (4), (5), (7), (8);
13: Apply Not Q-Gate on 𝑄(𝑡 + 1) by probability 𝑝𝑁
14: t=t+1;
15: end while

Algorithm 3: The pseudocode of the proposed improved and parallel QQIGSA using Open-Mp
1: Input: 𝐼𝑇𝐸, 𝑁 , 𝑝𝑁 , 𝐺0;
2: Output: a topology from 𝑆𝐵 with the best fitness value
3: 𝑡 = 0;
4: 𝑆𝐵(𝑡) = {};
5: Initialize ⋘ 𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑄(𝑡), 𝑉 (𝑡));
6: while (𝑡 < 𝐼𝑇𝐸) do
7: Observation ⋘ 𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑄(𝑡), 𝑆𝑊 (𝑡)) using Alg. 1
8: Pragma for each agent i {run in parallel}
9: Evaluate 𝑆𝑊 (𝑡, 𝑖) by Eq. (9);

10: Updating_SB⋘ 𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡), 𝑆𝑊 (𝑡), 𝑆𝐵(𝑡));
11: Update_Mass⋘ 1, 𝑛 ⋙ (𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑡),𝑀(𝑡)) by Eq. (10).
12: Update_distances⋘ 𝑁𝑝𝑜𝑝 ×𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑆𝐵(𝑡), 𝑅(𝑡)) using Eq. (6)
13: Update_Velosity⋘ 𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑆𝑊 (𝑡), 𝑆𝐵(𝑡), 𝑅(𝑡),𝑀(𝑡), 𝐺(𝑡), 𝑉 (𝑡)) using Eqs. (4), (5)
14: Update_Qbits⋘ 𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑄(𝑡), 𝑉 (𝑡), 𝑆𝐵(𝑡), 𝑆𝑊 (𝑡), 𝑄(𝑡 + 1)) by Eqs. (7), (8)
15: Not_Q-Gate⋘ 1, 𝑛 ⋙ (𝑄(𝑡 + 1), 𝑝𝑁 )
16: cudaTreadSynchronize();
17: t=t+1;
18: end while

shows that 𝐺𝑠 is the grid size or the number of blocks, and 𝐵𝑠 specifies the block size or the number of threads per block. Both 𝐺𝑠
and 𝐵𝑠 are of type 𝑑𝑖𝑚3.

Initialization step: Initialize ⋘ 𝑁𝑝𝑜𝑝, 𝑛 ⋙ 𝑄(𝑡), 𝑉 (𝑡): In this step, the Q-bits of all agents assigned randomly satisfying Eq. (2).
𝑄(𝑡) is a 3D matrix in the size of 𝑁𝑝𝑜𝑝×𝑛×2, we split that into two 2D matrices 𝑄𝛼(𝑡) and 𝑄𝛽 (𝑡), both in the size of 𝑁𝑝𝑜𝑝×𝑛. Firstly,

𝛼(𝑡) and 𝑄𝛽 (𝑡) get random numbers and they are normalized to get a value between [−1, 1] to satisfy Eq. (2). Furthermore, the
elocity matrix 𝑉 (𝑡) is initialized to zero.

The random values are generated by a high-performance NVIDIA CUDA Random Number Generation library called cuRAND, All
imensions are initialized independently. To avoid producing repetitious values in a different part of running the algorithm, the
eed of the random generator has been set to the time of the system. In this kernel, 𝑄(𝑡) and 𝑉 (𝑡) is placed in the global memory
nd the number of blocks is the same as the size of the population (𝑁𝑝𝑜𝑝), and the number of threads is set to the dimension 𝑛.
Observation step: Observation ⋘ 𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑄(𝑡), 𝑆𝑊 (𝑡)) ∶ The observation process is done by Alg. 1 on GPU. This kernel gets

(𝑡) as input and collapses the Q-bit states into a single state 𝑥1𝑖 (𝑡) with value 0, 1, 2, or 3 regarding 𝛼𝑑𝑖 and 𝛽𝑑𝑖 as probabilities. This
ernel makes possible solution set 𝑆𝑊 (𝑡) = {𝑋1(𝑡), 𝑋2(𝑡),… , 𝑋𝑁𝑝𝑜𝑝(𝑡)} where, 𝑋𝑖(𝑡) =

(

𝑥1𝑖 (𝑡), 𝑥
2
𝑖 (𝑡),… , 𝑥𝑛𝑖 (𝑡)

)

. Like the initialization

tep, each agent is assigned to a block and each dimension is assigned to a thread. Therefore, the number of blocks and threads are
𝑝𝑜𝑝 and 𝑛 respectively.
Fitness evaluation: The matrix 𝑆𝑊 (𝑡) is sent to the CPU, and the fitness values are computed by cores on the CPU using Eq. (9).

ince computations of the fitness function involve clustering and using linked list structures, it seems to be more suitable to run on
PU cores by using Open-MP. The output of this function is 𝑣𝑒𝑐𝑡𝑜𝑟𝑓 𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) which is sent to GPU.
Updating SB: Update_SB ⋘ 𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡), 𝑆𝑊 (𝑡), 𝑆𝐵(𝑡)): In this step, if the fitness of agent 𝑖 at iteration 𝑡 is better

han its fitness value in iteration 𝑡 − 1, it will be replaced in 𝑆𝐵. That is, 𝑆𝐵 saves the best value seen by each agent. At the first
7
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Fig. 3. The organization of the vectors in global memory.

iteration, 𝑆𝑊 (0) = 𝑆𝐵(0). This kernel reads 𝑆𝑊 (𝑡) and 𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) from the global memory and writes 𝑆𝐵(𝑡) on it. Similar to the last
two kernels, the number of blocks and the block dimensions are equal to 𝑁𝑝𝑜𝑝 and 𝑛 respectively.

Updating masses: Update_Mass ⋘ 1, 𝑘 ⋙ (𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑡),𝑀(𝑡)): Regarding Eq. (3), updating masses involves computing the best,
worst, and summation of the fitness values in iteration 𝑡. This kernel, which gets 𝐹 𝑖𝑡𝑛𝑒𝑠𝑠(𝑡) from the global memory and writes 𝑀(𝑡)
on it, is called by a single block containing 𝑛 threads to perform the reduction. The following relation can be used to calculate the
mass of the agent 𝑖, which is equal to Eq. (3) [10].

𝑀𝑖(𝑡) =
𝑓𝑖𝑡𝑖(𝑡) −𝑤𝑜𝑟𝑠𝑡(𝑡)

∑𝑁𝑝𝑜𝑝
𝑗=1 (𝑓𝑖𝑡𝑗 (𝑡) −𝑁𝑝𝑜𝑝 ×𝑤𝑜𝑟𝑠𝑡(𝑡))

(10)

Updating distances: Update_distances ⋘ 𝑁𝑝𝑜𝑝 × 𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑆𝐵(𝑡), 𝑅(𝑡)): This kernel is used by 𝑁𝑝𝑜𝑝 × 𝑁𝑝𝑜𝑝 blocks with 𝑛
threads, to calculate the agents’ distance matrix by Eq. (5). Each block updates 𝑅𝑖𝑗(𝑡) that 𝑖 and 𝑗 correspond 𝑏𝑙𝑜𝑐𝑘𝐼𝑑.𝑥 and 𝑏𝑙𝑜𝑐𝑘𝐼𝑑.𝑦
respectively. Since 𝑅𝑖𝑗 (𝑡) = 𝑅𝑗𝑖(𝑡), for blocks with 𝑏𝑙𝑜𝑐𝑘𝐼𝑑.𝑥 ≤ 𝑏𝑙𝑜𝑐𝑘𝐼𝑑.𝑦, the kernel copies 𝑅𝑗𝑖(𝑡) while updating 𝑅𝑖𝑗 (𝑡).

Updating angular velocity: Update_Velosity ⋘ 𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑆𝑊 (𝑡), 𝑆𝐵(𝑡), 𝑅(𝑡),𝑀(𝑡), 𝐺(𝑡), 𝑉 (𝑡)): The kernel is called to calculate
acceleration to update angular velocity using Eqs. (4) and (5). It reads 𝑆𝑊 (𝑡), 𝑆𝐵(𝑡), 𝑀(𝑡), 𝑅(𝑡), and 𝐺(𝑡) from the global memory
and computes the acceleration by Eq. (5), then updates velocity matrix 𝑉 (𝑡) using achieved acceleration regarding Eq. (4). The
number of blocks and the number of threads are 𝑁𝑝𝑜𝑝 and 𝑛 respectively.

Updating Q-bits: Update_Qbits ⋘ 𝑁𝑝𝑜𝑝, 𝑛 ⋙ (𝑄(𝑡), 𝑉 (𝑡), 𝑆𝐵(𝑡), 𝑆𝑊 (𝑡), 𝑄(𝑡+1)): This kernel update Q-bits using rotational angle
as Eqs. (7) and (8). The inputs of this kernel are 𝑄(𝑡), 𝑉 (𝑡), 𝑆𝐵(𝑡), 𝑆𝑊 (𝑡) to calculate and update 𝑄(𝑡 + 1). Like the last kernel, the
number of blocks and the block dimensions are 𝑁𝑝𝑜𝑝 and 𝑛, respectively.

Applying Not Q-Gate: QGate ⋘ 1, 𝑛 ⋙ (𝑄(𝑡+ 1), 𝑝𝑁 ): In this step, the proposed Not Q-Gate with the probability 𝑝𝑁 is applied.
In this kernel, an agent of 𝑄(𝑡) is selected randomly with the probability 𝑝𝑁 and change the amount of its 𝛼 and 𝛽 in all dimensions
to promote more diversity to the population. This kernel uses one block with 𝑛 threads.

This procedure is repeated until the termination criterion such as the maximum number of iterations (equal to ITE) is met. Not
only parallelism can accelerate the algorithm, but also it can enhance the quality of results by increasing the size of the population.
Besides, it helps to use the algorithm for a problem with a larger search space. Since the running time of the algorithm is declined
by parallelism, the algorithm can be executed on more extensive networks at a reasonable time. Therefore, the parallel solving of
the WSN problem can lead to scalability.

5. Experimental results

To evaluate the effectiveness and the speed of the proposed method, several tests are conducted on a WSN consisting of 900
sensors deployed in a grid-shaped area in the size of 30 × 30 square units. The goal is to assign the operational state of each sensor
to optimize the energy consumption regarding the connectivity and specific-application considerations. The experiments performed
on a computer with Intel©Core(TM) i7 CPU 1.80 GHz, 8.00 GB RAM and operating system Windows 10, 64-bit.
8
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Table 1
The weighting coefficients related to the fitness function [1,2,6,7].
𝑤1 𝑤2 𝑤3 𝑤4 𝑤5 𝑤6 𝑤7

102 104 106 105 10 10−2 10−2

Table 2
The mean fitness value of IQQIGSA by two parameter setting: trial and error, and the Taguchi method for different size of the
population.

Method IQQIGSA (𝑁𝑝𝑜𝑝 = 20) IQQIGSA (𝑁𝑝𝑜𝑝 = 50) IQQIGSA (𝑁𝑝𝑜𝑝 = 100) IQQIGSA (𝑁𝑝𝑜𝑝 = 200)

Trial and error 0.0209 0.021 0.0243 0.028
Taguchi method 0.0213 0.0218 0.0252 0.0288

Table 3
Parameter adjustment of the comparative algorithms [7].

Algorithm Parameter value

BGA [1] 𝑝𝑚 = 0.005, 𝑝𝑐 = 0.8
BPSO [2] 𝑤 = 1, 𝑐1 , 𝑐2 = 2
Improved BQIGSA [6] 𝐺 = (1 − 0.95 × 𝑡

𝐼𝑇𝐸
) × 𝐺0 and 𝐺0 = 3.78, kbest is linearly relation decreasing from 𝑁𝑝𝑜𝑝 to 1

QQIGSA [7] 𝐺 = (1 − 0.95 × 𝑡
𝐼𝑇𝐸

) × 𝐺0 and 𝐺0 = 0.125, kbest is linearly function decreasing from 𝑁𝑝𝑜𝑝 to 1.
The Suggested IQQIGSA by Taguchi method 𝐺0 = 0.2, 𝛼 = 0.95, 𝑝𝑁 = 0.07 kbest is linearly function decreasing from 𝑁𝑝𝑜𝑝 to 1.

5.1. Parameter settings

5.1.1. The related parameters to the fitness function
In the evolution of the fitness function and applying metaheuristic methods, there are several parameters to be adjusted that

re described in this section. The weight coefficients notated by 𝑤1, 𝑤2, . . . , and 𝑤7, used in Eq. (9) show the importance of each
parameter in the fitness function. Table 1 presents the amount of each coefficient. The other parameters of the fitness function are
set as follows. In SCE, the maximum number of active sensors that can communicate with CH is 15. 𝜌𝑑 is set to 0.2 in SDE. In the
SORE parameter, the signal range of LSR and HSR are considered 5 and 10 units, respectively. In OE, the proportion 𝑥 ∶ 𝑦 ∶ 𝑧 is
considered as 20 ∶ 2 ∶ 1 showing the energy consumption rate. In the CE parameter, 𝜇 is considered 1, and 𝑘 is set to 3. In BCP,
𝑃𝐹 [𝑡]

𝑖 is computed by the proportion 20 ∶ 2 ∶ 1 for the operational modes of CH, HSR, and LSR. Besides, BRR (the battery reduction
rates) of inactive, LSR, HSR, and CH modes are considered as 0, 0.01, 0.02 and 0.2, respectively.

5.1.2. The related parameters to the algorithms
The parameter setting of metaheuristics has an important role in the performance of the algorithm. Examining all possible

parameter values is so time-consuming and complex. Therefore, for the proposed IQQIGSA we use the Taguchi method [24] for
the design of the experiment (DOE) to find the best configuration of parameters. This method can decrease the required time
to investigate the effects of multi parameters on performance to find the best one [18,25]. In this method, we firstly determine
the effective parameters and their level. Then, we design the orthogonal array and execute the experiments and choose the best
parameter configuration, based on the achieved results.

The main parameters of the proposed IQQIGSA are 𝑝𝑁 as the probability of selecting an agent to be changed by Not Q-
Gate, and parameters 𝐺0 and 𝛼 in relation 𝐺 = (1 − 𝛼 × 𝑡

𝐼𝑇𝐸 ) × 𝐺0 used in Eq. (5). For each parameter, four levels of interest
are determined in our DOE. The parameters and their levels are chosen as follows: four levels for 𝐺0 ∈ {0.1, 0.2, 0.3, 0.4}; four
levels for 𝛼 ∈ {0.8, 0.85, 0.9, 0.95}; and four levels for 𝑝𝑁 = {0.02, 0.05, 0.07, 0.09}. The full parameter exploration for all possible
combinations requires 43 = 64 experiments, while the Taguchi method, using the orthogonal arrays, significantly reduces the
number of executions. An orthogonal array 𝐿16(43) involves only 16 experiments is applied. Meanwhile, all the experiments with
various parameter combinations are repeated 10 times and the best combination of parameters is reported base on the best-
averaged fitness value. Regarding the experimental results among 16 examined combination by Taguchi’s method combination
(𝐺0 = 0.2, 𝛼 = 0.95, 𝑝𝑁 = 0.07) performs better than the others to have the greatest averaged fitness value. Table 2 compare the
averaged fitness value of IQQIGSA using parameter setting by trial and error (by fixing 𝐺0 = 0.125 as QQIGSA [6] and gradual
changing 𝑝𝑁 ) and the Taguchi method for different size of the population as 𝑁𝑝𝑜𝑝 = 20, 50, 100, and 200. The trial and error finds
the most appropriate combination as 𝐺0 = 0.125, 𝛼 = 0.95, 𝑝𝑁 = 0.05, and the Taguchi method suggests 𝐺0 = 0.2, 𝛼 = 0.95, 𝑝𝑁 = 0.07.
Table 2 shows that the quality of results can improve by justifying parameters using the Taguchi design method.

The related parameters of the BGA, BPSO, QQIGSA, improved BQIGSA, and the suggested IQQIGSA are set as shown in Table 3,
referring to the best values reported in the previous studies [1,2,5,6]. In all used algorithms the maximum number of iterations is
set to 100.
9
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Table 4
Comparison of the suggested IQQIGSA with the state-of-the-art ones during 100 iterations of the algorithms. The results are averaged on ten executions of the
algorithms.

Parameter BGA BPSO QQIGSA Improved IQQIGSA IQQIGSA IQQIGSA IQQIGSA
BQIGSA 𝑁𝑝𝑜𝑝 = 20 𝑁𝑝𝑜𝑝 = 50 𝑁𝑝𝑜𝑝 = 100 𝑁𝑝𝑜𝑝 = 200

Max fitness 0.135 0.0158 0.017 0.0207 0.0215 0.0221 0.0254 0.0291
Mean fitness 0.0124 0.0152 0.0162 0.0202 0.0213 0.0218 0.0252 0.0288
OE 5.0397 4.597 3.6017 3.0562 5.202 5.116 4.87 2.81
MRD 0.0166 0.0192 0.0215 0.0147 0.019 0.0165 0.021 0.014
CE 1259.26 1363.43 2985.45 2252.93 1158.51 1131.87 1186.93 2245.33
BCP 1064.1 1099.1 1194.53 554.86 1050.32 1028.71 971.22 519.602
SCE 0 0 0 0 0 0 0 0
SORE 0 0 0 0 0 0 0 0
SDE 0 0 0 0 0 0 0 0
CH 192 171.6 113.8 105.6 207.4 203.1 182.2 101.7
HSR 231.2 235.4 316.4 233.6 175.5 167.8 188.5 147.9
LSR 233.4 234.6 332.8 231.4 246.8 249.3 246.1 229.5

5.2. Comparative study

In this section, the performance of the suggested parallel IQQIGSA is studied in comparison with the adopted BGA [1], BPSO [2],
QIGSA [6] and improved BQIGSA [5] on WSN explained before. The near-optimal operational state of sensors is determined to
aximize the fitness value formulated by Eq. (9). The average results of ten independent runs of the algorithm through 100 iterations

re reported. Table 4 compares the algorithms based on the maximal and minimal value of the fitness as well as parameters like
perational energy (OE), Mean Relative Deviation (MRD), Battery Capacity Penalty (BCP), Communication Energy (CE), Sensors-
er-Cluster-head Error (SCE), Spatial Density Error (SDE), Sensor-Out-of-Range Error (SORE), and the average number of active
ensors in operational modes of CH, HSR, and LSR.

Maximization of the fitness and minimization of the mentioned parameters are desired. It is observable that the suggested
QQIGSA with a population size of 20 has better results than previous methods including BGA [1], BPSO [2], QQIGSA [6] and
mproved BQIGSA [5]. By increasing the size of the population as 𝑁𝑝𝑜𝑝 = 50, 100, 200, it is observable that the quality of the

produced solutions by the proposed method has been grown. The last column of Table 4 is related to the suggested IQQIGSA
with 200 agents. This column shows the best results compared to the others in terms of all the mentioned parameters except the
communication energy (CE). This is for the trade-off of the operational energy (OE) and CE. The suggested algorithm decreases OE
by reducing the number of CHs (cluster heads) that itself increases the CE parameter.

Fig. 4 compares the average progress of the fitness value of BGA, BPSO, QQIGSA, improved BQIGSA, and the suggested IQQIGSA
during 100 iterations. It can be seen that the proposed IQQIGSA has the best progress compared to other algorithms. Furthermore,
by increasing the population size (NP) the quality of solutions has been improved.

After using the proposed algorithm on WSN, the battery capacities are updated. Then, the dynamic optimal design algorithms
(DODA) are executed on the WSN to study the effect of the used algorithms on the lifetime of the network. Fig. 5 illustrates the
progress of the fitness for BGA, BPSO, Improved BQIGSA, QQIGSA and the suggested IQQIGSA along with 15 measuring cycles.

In WSN design, the measuring cycle is defined as a period for data collection with a specified operational mode. At the next
measuring cycle, the operational mode of each sensor can be changed by the algorithm. To draw this figure, each algorithm
runs repeatedly during 15 measuring cycles, considering the updated energy level of sensors at the end of each measuring cycle.
Undoubtedly, the fitness value for all algorithms is decreased by time but the fitness value of the proposed method is at the top of
the others. It shows that the proposed method can keep the network alive for more measuring cycles and the proposed IQQIGSA
can increase the lifespan of the network better than others. The suggested IQQIGSA is the best method to keep the network alive
and increase the lifetime of the network.

Increasing the number of agents may lead to enhancing the quality of solutions, but it increases the run time of the algorithm.
Parallelism techniques can be used to manage this problem. The speedup is defined as Eq. (11) and parallel efficiency as Eq. (12),
which are important measures to evaluate the quality of pluralization. In these equations, 𝑇 (𝑛𝑝) is the execution time to run the
lgorithm on 𝑛𝑝 processors.

𝑆(𝑛𝑝) =
𝑇 (1)
𝑇 (𝑛𝑝)

(11)

𝐸(𝑛𝑝) =
𝑆(𝑛𝑝)
𝑛𝑝

(12)

Tables 5 and 6 respectively report the speedup and efficiency of the parallel IQQIGSA using Open-MP (presented in Alg. 2) for a
ifferent number of cores varying from 2 to 8 ones. The effectiveness of the parallel implementation of the suggested algorithm by
pen-MP in the WSN problem is observable in these tables. Regarding Table 5, the speedup averagely enhances from 1.83 to 4.24
y varying the number of threads from 2 to 8 ones. The reported speedup and efficiency values are evaluated based on the average
f ten runs.

The reported results of these tables show that by increasing the number of CPU cores from 1 to 8, the speedup is increased and
he efficiency is decreased. Although there is no significant difference among the results of columns for different sizes of populations.
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Fig. 4. The performance evaluation of the proposed IQQIGSA in comparison with other methods along 100 iterations in terms of the fitness values. The results
are averaged over ten executions.

Fig. 5. The Performance evaluation of the DODA by BGA, BPSO, QQIGSA, improved BQIGSA, and the proposed IQQIGSA during 15 measuring cycles in terms
of fitness values.

Table 5
Speedup of the suggested parallel IQQIGSA using Open-MP by changing the size of the population
and the number of cores.

Num of cores 2 3 4 5 6 7 8

𝑁𝑝𝑜𝑝 = 20 1.84 2.41 3.06 3.33 3.46 3.92 3.97
𝑁𝑝𝑜𝑝 = 50 1.80 2.45 3.11 3.24 3.68 4.04 4.35
𝑁𝑝𝑜𝑝 = 100 1.84 2.35 2.71 2.89 3.60 4.01 4.28
𝑁𝑝𝑜𝑝 = 200 1.86 2.44 3.14 3.36 3.60 4.04 4.38

Table 7 shows the results of applying the proposed CPU–GPU heterogeneous paralleling technique on IQQIGSA for the optimal
design of WSN which is presented in Alg. 3 in comparison with using just a multi-core CPU to compute the fitness values. The
results show the fitness function of the algorithm in Alg. 2 is the most time-consuming section of the algorithm. Parallel computing
by Open-MP implemented of the algorithm is averagely 4.24 times faster than the serial version on an 8-core CPU. The CPU–GPU
heterogeneous implementation in which the computation of the fitness function is done by CPU and the other sections are executed
on GPU, improves the speedup about 8.06 times more than the sequential method and about 2 times faster than the first algorithm.
The results indicate that by increasing the population size the speedup has been improved using the GPU.

Comparison of the speedup for parallel IQQIGSA on WSN by Multi-Core and the CPU–GPU heterogeneous implementation
11
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Table 6
The efficiency of the suggested parallel IQQIGSA using Open-MP by changing the size of the
population and the number of cores.

Num of cores 2 3 4 5 6 7 8

𝑁𝑝𝑜𝑝 = 20 0.92 0.80 0.76 0.67 0.58 0.56 0.50
𝑁𝑝𝑜𝑝 = 50 0.9 0.82 0.78 0.65 0.61 0.58 0.54
𝑁𝑝𝑜𝑝 = 100 0.92 0.78 0.68 0.58 0.60 0.57 0.53
𝑁𝑝𝑜𝑝 = 200 0.93 0.81 0.79 0.67 0.60 0.57 0.54

Table 7
Comparison of the speedup for parallel IQQIGSA on WSN by Multi-Core and the CPU–GPU
heterogeneous implementation.

Population Multi-Core CPU CPU–GPU
size (Alg. 2) Heterogeneous (Alg. 3)

𝑁𝑝𝑜𝑝 = 20 3.97 7.52
𝑁𝑝𝑜𝑝 = 50 4.35 8.43
𝑁𝑝𝑜𝑝 = 100 4.28 9.02
𝑁𝑝𝑜𝑝 = 200 4.38 9.45

The results show that not only the parallel implementation of the proposed IQQIGSA help to decrease the execution time of the
lgorithm, but also it can help to enhance the quality by allowing the increment in the number of agents. Furthermore, the parallel
mplementation of multi-core architecture can help to decrease the power consumption in the mentioned WSN. Because this is
he nature of multicore platforms where several low-power cores are on the chip. This architecture which is using parallelism by
ultiple cores can enhance the throughput without increasing the power of the processor. Besides, parallelism allows the methods

o be used on more extensive networks which compose more sensors and run in a reasonable time.

. Conclusion

In this study, a modified version of Quadri-valent Quantum-Inspired Gravitational Search Algorithm (QQIGSA) was introduced
y a Not Quantum-Gate (Not Q-Gate). To enhance the speed of this algorithm, we used parallel platforms including a multi-core

platform and a heterogeneous one using the central processing unit and graphical processing unit called Central Processing Unit-
Graphic Processing Unit (CPU–GPU) platform. The parallel improved QQIGSA was adopted on a wireless sensor network to specify
the operational mode of sensors, as the connectivity, specific application parameters and energy-related parameters are minimized.
The sensor of this network can operate in one of the four possible operational states including low signal range, high signal range,
and cluster head and inactive. This is the reason that a Quadri-valent algorithm has been developed.

The results report a satisfactory performance of the suggested method based on the quality of the solutions in comparison with
the state-of-the-art ones. Moreover, parallelism based on using a multi-core platform enhanced the speedup over 4 times. Besides,
the speedup was more than 8 times, when the CPU–GPU heterogeneous platform was employed. Paralleling this algorithm on the
optimal design of wireless sensor Networks is helpful considering four aspects. The first one is decreasing the execution time of
the code. The second one is the possibility of applying the algorithm in more extensive wireless sensor Networks. The third one
is increasing the quality of results by allowing an increase in the number of agents, and the last one is effective usage of the base
station power by applying a multi-core processor.
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