Centre for O!/ Ma_ynoo.th
@ raning | Fousichon Sfi University

Ireland For what's next National University
of Ireland Maynooth

Hamilton Institute

Analysing the Impacts of Dynamically
Evolving Selection Policies
in Monte Carlo Tree Search

Through Evolutionary Algorithms

Fred Valdez Ameneyro Dr. Edgar Galvan-Lépez

Author Supervisor

A thesis submitted in fulfillment of the requirements
for the Ph.D. degree in Data Science

at the
Hamilton Institute
Maynooth University
Maynooth, Co. Kildare, Ireland
Department head: Andrew Parnell

April 2024

This thesis has been prepared in accordance with the PhD regulations of Maynooth
University and is subject to copyright. For more information see PhD regulations
(December 2022).






Abstract

This thesis presents an innovative exploration into the synergy between Monte Carlo Tree
Search (MCTS) and Evolutionary Algorithms (EAs), focusing on the evolution of selection
policies within MCTS. MCTS, a powerful and versatile algorithm, has seen widespread
adoption in various domains, from strategic gaming to robotics, due to its ability to
effectively navigate large and complex decision spaces. However, the adaptability of its
selection policy, a critical factor in its performance, remains a challenging aspect that
demands further research.

The primary aim of this work is to investigate how evolutionary processes can be
harnessed to adaptively evolve MCTS’s selection policies online, thus enhancing the al-
gorithm’s efficiency and robustness in different problem landscapes, as well as in different
stages of the search. By integrating EAs into MCTS, this thesis explores the dynamic and
context-aware exploration of the search space, potentially surpassing the performance of
traditional approaches.

The thesis lays the groundwork for understanding the fundamentals of MCTS and
EA embeddings for online decision-making. It offers a detailed survey on the integration
of MCTS and EAs, particularly focusing on enhancing MCTS’s selection policy without
prior exposure to the domain.

A series of test problems, including the Function Optimisation Problem and proposed
simplifications of the board game Carcassonne, provide a platform to evaluate the in-
teraction between MCTS’s tree policy and game tree characteristics. Empirical analyses
of evolved selection policies are presented, comparing them with traditional MCTS and
Minimax approaches and assessing their performance.

The thesis aims to contribute significantly to Al and decision-making algorithms by
advancing the integration of evolutionary strategies within MCTS. It focuses on devel-
oping adaptable and effective selection policies, examining the role of every aspect of
the evolutionary processes, and refining EA integration for enhanced decision-making
efficiency in MCTS.




Declaration

I, Fred Valdez Ameneyro, declare that this thesis titled, “Analysing the Impacts of

Dynamically Evolving Selection Policies in Monte Carlo Tree Search Through

Evolutionary Algorithms” and the work presented in it are my own. I confirm that

m This work was done wholly or mainly while in candidature for a Ph.D. degree in Data
Science at the Maynooth University.

m Where any part of this thesis has previously been submitted for a degree or any other
qualification at this University or any other institution, this has been clearly stated.

m Where I have consulted the published work of others, this has been clearly attributed.

m Where I have quoted from the work of others, the source is always given. Except for
such quotations, all the text in this thesis is original and of my authorship.

m [ used external tools (Grammarly, ChatGPT 4) for assistance strictly limited to gram-
mar, syntax, and spelling checks, as well as for identifying potential ambiguities or
difficult-to-read sentences. At no point did these tools contribute to the original re-
search, ideas, analytical conclusions, or text body presented within this thesis.

m All the figures in this thesis were generated by me using Python’s Plotly library or
Google Drawings. Where any figure has not been generated by me, it is clearly stated.

m | have acknowledged all main sources of help.

Signed:

Date:

ii




Acknowledgements

This thesis is the product of many years of hard work, and I would like to express my
gratitude to the people who have supported me throughout this journey. First, I would
like to thank my supervisor, Edgar Galvan, for his patience, his time spent, and his
willingness to provide all the experience and guidance I could possibly need. I also want
to take the time to appreciate Ken, David, Janet, Rosemary and Kate for their disposition
to provide me and my colleagues with all the support we needed.

I want to especially thank my family, Susana, Fred, Danae and Yerik, for their invalu-
able support and love, which surpassed the distance barriers and gave me the strength
and motivation to accomplish everything I have set out to do, even if it means being apart
from each other for long periods of time.

I am very grateful to my friends too, a list that grew very large over the years, and 1
cannot possibly name all of them here. First, Maira, for her company and infinite support
and affection, which I could never be grateful enough to have. Déire, Kevin and Anna
for the countless experiences together, sharing the same office and the same struggles.
Osvaldo, Candela, Margarita, Laura, Nuria, Pablo and Esther, for becoming my new
family in this strange country. Kanishka, Neli and Anna for being those friends that you
know are always there for you. Amin, Niloufar, Aoife, Cormac and Conor for making the
office environment happier and friendlier. Prabhleen for always sharing the best moments
of her life with me and always being a great colleague and friend. Fergal for listening to
my ideas and supporting me. And of course, Estevito for motivating me to never give up
the gym. I also want to thank my friends from Mexico, Manuel, Blanca, Coral, Manuel
(the other one), Claudio, Jafet, Ariel and many others, for keeping in touch with me and
being there for me even when I did not reply as often as I should have.

Finally, I am very grateful to have had the opportunity to live in this beautiful country
(except for the weather), and I am very proud to have been able to contribute to the
scientific community in Ireland.

This thesis has emanated from research conducted with the financial support of Sci-
ence Foundation Ireland under Grant number 18/CRT/6049. For the purpose of Open
Access, the author has applied a CC BY public copyright licence to any Author Accepted

Manuscript version arising from this submission

iii




List of publications

Peer-reviewed Journal articles

e Edgar Galvan, Gavin Simpson, and Fred Valdez Ameneyro. “Evolving the MCTS
Upper Confidence Bounds for Trees Using a Semantic-inspired Evolutionary Algorithm
in the Game of Carcassonne”. In: IEEE Transactions on Games (2022) , vol. 15, no.
3, pp. 420-429, Sept. 2023, doi: 10.1109/TG.2022.3203232.
https://ieeexplore.ieee.org/document /9872022

e Edgar Galvén, Fred Valdez Ameneyro. “An Analysis on the Effects of Evolving the
Monte Carlo Tree Search Upper Confidence for Trees Selection Policy on Unimodal,
Multimodal and Deceptive Landscapes”. In: Information Sciences Journal, 2024. Un-

der review

Peer-reviewed Conference papers

e Fred Valdez Ameneyro, Edgar Galvan, and Angel Fernando Kuri Morales. “Playing
carcassonne with monte carlo tree search”. In: 2020 IEEE Symposium Series on Com-
putational Intelligence (SSCI). IEEE. 2020, pp. 2343-2350

e Fred Valdez Ameneyro and Edgar Galvan. “Towards Understanding the Effects of
Evolving the MCTS UCT Selection Policy”. In: 2022 IEEE Symposium Series on
Computational Intelligence (SSCI). IEEE. 2022, pp. 1683-1690

iv




Contents

1 Introduction 2
1.1 Introduction and Motives . . . . . . . . .. ... . L 0. 2
1.2 Research Goals . . . . . . . . . . . . 3
1.3 Scope and limitations . . . . . . . ... ... ... ... o 3
1.4 Thesis Structure . . . . . . . . . . 4

2 Background 6
2.1 Introduction . . . . . . . . . . . . . e 6
2.2 Decision theory . . . . . . .. .. L 6
2.3 Gametheory . . . . . . . .. 8

2.3.1 Game trees . . . . . . ... 9
2.3.2 Game trees in multi-agent adversarial domains with uncertainty 9
2.4 Monte Carlo Tree Search . . . . . . . . . . . ... ... ... ... ..... 10
2.4.1 Monte Carlo simulations . . . . . . ... ... ... 0L, 12
242 Thetreepolicy . . . . . . . . . . . . 13
2.5 Classic tree search algorithms: Minimax . . . . . . ... .. .. ... ... 15
2.5.1 Expectimax . . . . . . .. ... 16
2.6 Evolutionary Algorithms . . . . . . .. ... ... ... ... 16
2.6.1 Genetic Programming . . . . ... ... ... 00 17
2.6.2 Evolution Strategies . . . . . . . . .. ... oL 22

3 Surveying synergies: Monte Carlo Tree Search and Evolutionary Algo-
rithms 24
3.1 Evolutionary Algorithms in Monte Carlo Tree Search . . . . . . . . .. .. 24

3.1.1 Evolutionary Algorithms in Monte Carlo Tree Search’s simulation
phase . . . . . . 25
3.1.2 Evolutionary Algorithms in Monte Carlo Tree Search’s selection phase 27
3.2 Monte Carlo Tree Search in Evolutionary Algorithms . . . . . ... .. .. 29

3.2.1 Monte Carlo Tree Search in Rolling Horizon Evolutionary Algorithms 29
3.2.2 Generating EA offspring using Monte Carlo Tree Search . . . . . . 30




CONTENTS

3.3 Multi-Armed Bandits in Evolutionary Algorithms . . . . . .. ... .. ..
3.3.1 Evaluation of EA individuals using Multi-Armed Bandits . . . . .
3.3.2 Generating EA offspring using Multi-Armed Bandits . . . . . . . .

3.4 Online evolutionary-based planning in games . . . . .. .. .. ... ...

3.5 Artificial Intelligence-based decision-making in games . . . . . . . ... ..

3.5.1 Games used for research in Artificial Intelligence . . . . . . .. ..

Test problems and their analysis

4.1 Introduction . . . . . . . . . . .. e

4.2 The tree policy and its interaction with the game tree properties . . . . .

4.3 Test problem: Function Optimisation Problem . . . . . . . ... ... ...
4.3.1 Test Functions . . . . .. . ... oo oo

4.4 Definition of the Functions and their analysis . . . . . .. ... ... ...

4.5 Test problem: The Game of Carcassonne . . . . . . . ... ... ......
4.5.1 Carcassonne base game description . . . . . .. .. ... ... ...
4.5.2 Carcassonne fitness landscape analysis . . . . . .. ... ... ...

4.5.3 Carcassonne proposed variants . . . . . .. ... ... ..

Empirical Analysis of Evolving Selection Policies in MCTS
5.1 Introduction . . . . . . . . . . . . ..
5.2  Evolving selection policies in MCTS using EAs . . . . . . ... ... ...
5.3 Evolving selection policies in MCTS using EAs and semantics . . . . . . .
5.3.1 Extending semantics to work with selection policies in MCTS . . .
5.4 FOP experimental setup . . . . . . . . . . . ...
55 FOPresults . . . . . . ..
5.5.1 FOP fyresults . . .. . . . . . . . ...
5.5.2 FOP fyresults . ... ... .. . . ... ...
553 FOPfyresults . .. ... . ... ... . ... ... ... . ...,
5.5.4 FOP fyresults . . .. . .. . . . . . . ...
555 FOPfsresults . .. ... . ... ... .. .. ... ...
5.5.6 Integrated analysis of FOP results . . . . .. .. ... ... ....
5.6 Single-player Carcassonne experimental setup . . . . . . . . .. ... ...
5.6.1 Expectimax in Carcassonne . . . . . . . . . ... ... .......
5.7 Single-player Carcassonne Results. . . . . . ... ... ... .. ......
5.8 Analysis of the evolved selection policies . . . . . . . ... ... ... ...

5.8.1 Summary of findings . . . . . ... ..o

41
41
42
46
47
50
55
56
59
69

vi




CONTENTS

6 Evolutionary MCTS in the base game of Carcassonne 114
6.1 Introduction . . . . . . . . . . . . ... 114
6.2 Performance of vanilla Monte Carlo Tree Search in the base game of Car-

CASSONTIE .« o v v v v v e e e et e e e e e e e e e e e e 114

6.3 Round-robin tournament between vanilla MCTS variants in the base game

of Carcassonne . . . . . . . . . . . e e 117

6.4 EA-MCTS and SIEA-MCTS in the base game of Carcassonne . . . . . . . 119
6.4.1 Summary of findings . . . . . .. .. oo oL 124

7 Conclusions 125
7.1 Evolutionary Algorithms-inspired Monte Carlo Tree Search: Strengths . . 125

7.2 Evolutionary Algorithms-inspired Monte Carlo Tree Search: Challenges . 126
7.3 Evolutionary Algorithms-inspired Monte Carlo Tree Search: Conclusions . 126

7.4 Taxonomy and transferability . . . . . . . ... ... ... ... ...... 128
7.5 Future Work . . . . . . . .. e 129
References 132
Acronyms 146

vii




21
2.2
2.3
2.4
2.5
2.6

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15
4.16
4.17
4.18

4.19

List of Figures

Decision tree . . . . . . . . Lo 7
Regular *-minimax tree . . . . . . . . .. ... 10
MCTS algorithm . . . . . .. .. . 11
Generic Evolutionary Algorithm . . . . . .. . ... ... ... ... 17
Syntax tree . . . . ... 19
Syntax tree subtree crossover . . . . . . . . . ... ..o 20
Branching factor influence . . . . . . .. ... oo 43
Function Optimisation Problem . . . . . . .. ... ... ... ....... 48
Plots of the functions used in the Function Optimisation Problem . . . . . 49
Initial belief value. . . . . . . .. ... 50
Initial belief values of the game tree of f1 . . . . . . ... ... ... ... 51
Initial belief values of the game tree of 2 . . . . . . ... .. ... .... 52
Initial belief values of the game tree of f3 . . . . . . ... ... ... ... 53
Initial belief values of the game tree of f4 . . . . . . ... ... ... ... 54
Initial belief values of the game tree of f5 . . . . . . ... ... ... ... 55
Carcassonne base game tiles . . . . . . . . ... ... L. 56
Carcassonne state sample . . . . . . . . ... Lo oo 57
State-space complexity and game-tree complexities of games . . . . . . . . 59
Carcassonne city completion tiles . . . . . . . . ... oL 62
Chess position with erroneous Monte Carlo evaluation . . . . ... .. .. 64
Carcassonne final scores by Turn 1 meeple usage . . . . .. .. ... ... 65
Carcassonne Turn 1 sample game states . . . . . . .. . ... ... .... 66
Carcassonne final scores by Turn 2 meeple usage . . . . .. .. ... ... 67

Difference of final scores by meeple usage and turn in the base game of
Carcassonne . . . . .. ..o e e e e e e 68
Single-player Carcassonne variant with 3 initial meeples, final scores by

Turn 1 meeple usage . . . . . . .« . oL Lo e 71

viii




LIST OF FIGURES

4.20 Final scores by meeple usage and turn for the single-player Carcassonne
variant with 3 initial meeples. . . . . . . .. .. Lo oL 72
4.21 Single-player Carcassonne variant with 1 initial meeple, final scores by Turn
I meeple usage . . . . . . . . ..o 74

4.22 Final scores by meeple usage and turn of play for the single-player Carcas-

sonne variant with 1 initial meeple . . . . . .. .. ... ..o 75
5.1 EA-MCTS and algorithm diagram . . . . ... ... ... ... ...... 7
5.2 Histogram of node locations’ generation . . . . . . ... ... ... .... 84
5.3 Statistical tree analysis description . . . . . . ... ..o 85
5.4 Histogram of node locations for f1 . . . . .. ... ... ... ... ..., 87
5.5 Histogram of node locations for f2 . . . . .. ... ... ... 90
5.6 Histogram of node locations for f3 . . . . . . . . ... ... ... ..... 93
5.7 Histogram of node locations for f4 . . . . . .. .. ... ... 96
5.8 Histogram of node locations for f5 . . . . . . .. ... ... ... ..... 98
5.9 Distribution of the most visited node-based result by MCTS variant and

FOP function . . . . . . . . . . . . . e 100
5.10 Average leaf node depth by MCTS variant and FOP function . . . .. .. 101
5.11 Carcassonne for one player: Score breakdown . . . . . . .. .. ... ... 104
5.12 Carcassonne for one player: Meeples on farms . . . . . . . . ... ... .. 106
5.13 Carcassonne for one player: Total Meeples Played . . . . . . . ... .. .. 107
5.14 Carcassonne for one player: Most visited node’s visit count . . . . . . .. 109
6.1 EA-MCTS’s average number of nodes in Carcassonne . . . ... ... .. 122
6.2 SIEA-MCTS’s average number of nodes in Carcassonne . . . . . ... .. 123

ix




21

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4

5.1
5.2
5.3
5.4
9.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2
6.3
6.4
6.5
6.6

List of Tables

Game characteristics . . . . . . . . . ... e

Approaches with Evolutionary Algorithms in Monte Carlo Tree Search . .
Approaches with Monte Carlo Tree Search in Evolutionary Algorithms . .
Multi-Armed Bandit approaches in Evolutionary Algorithms . . . . ..

Machines defeating humans . . . . . . . . .. ... ... .. ...

Game tree characteristics that interact with the tree policy of MCTS . . .
Function Optimisation Problem definition . . . . . .. ... .. ... ..
Carcassonne features completion and scoring rules. . . . . . . . .. ...

Carcassonne variant . . . . . . . . . .. ...

Vanilla MCTS parameters used in the Function Optimisation Problem . .
SIEA-MCTS and EA-MCTS parameters used in FOP . . . .. .. ...
Function Optimisation Problem parameters . . . . . .. ... ... ...
flresults . . . . . . . . e
f2results . . . ...
f3results . . ...
fAdresults . . . . . e
fhresults . . ...
Expectimax parameters . . . . . . . .. .o
Carcassonne for one player: scores and meeple usage statistics . . . . . .

Evolved formulae . . . . . . . . ..

MCTS parameters for reward comparison . . . . . ... ... ... ...
Results of 100 games of MCTS with different reward types. . . . . . ..
Vanilla MCTS versus random uniform. . . . . . .. ... ... ... ...
Carcassonne’s vanilla MCTS round-robin matches . . . . ... .. ...
League points (LP) awarded to each agent after a Carcassonne match. . .

Carcassonne’s vanilla MCTS round-robin tournament results . . . . . .

28
31
35
37

42
47
58
69

82
82
83
88
91
94
97
99
103
108
111

115
115
116
118
118




LIST OF TABLES

6.7
6.8
6.9

7.1
7.2

Parameters of the agents for the base game of Carcassonne . . . ... .. 120
Carcassonne’s round-robin matches . . . . . . . . . ... ... 121
Carcassonne’s round-robin tournament results . . . . . . . . .. ... ... 122
Problem characteristics . . . . . . . . .. .. 129
Reward characteristics . . . . . . . . . . .. 130

xi




Part |

Motives, Background and Literature Review




Introduction

1.1 Introduction and Motives

A key area of interest within Artificial Intelligence (AI) is the development of efficient
decision-making strategies, particularly in complex, uncertain environments. Monte Carlo
Tree Search (MCTS) [99], a versatile and powerful algorithm, stands out as a prominent
approach in this domain. Its ability to make informed decisions based on statistical sam-
pling has led to its widespread adoption in various applications [27], including but not
limited to game playing [45], energy [65], and optimisation tasks [162].

Despite its success, a critical aspect of MCTS, the selection policy, has been a subject
of continuous research. The selection policy, which guides the exploration-exploitation
balance in the search process, is crucial for the correct performance of MCTS. Traditional
approaches, such as the Upper Confidence Bounds (UCB1) [10], have demonstrated effec-
tiveness in several domains. However, the one-size-fits-all nature of these policies limits
their adaptability to diverse problems.

This thesis takes a deep dive into the performance of MCTS in various problem do-
mains, focusing on the interaction between the tree policy and the game tree’s charac-
teristics. It analyses the impact of dynamically evolving selection policies in MCTS via
Evolutionary Algorithms (EAs) [48]. Then, it elaborates on the concept of evolving se-
lection policies in MCTS using Genetic Programming (GP) [103]. By incorporating EAs
into MCTS, we aim to adaptively tailor the selection policy to specific problem character-
istics. This approach is an initial stepping stone towards the online evolution of dynamic
and context-aware tree policies, potentially leading to superior versatility and increased

performance in various applications. This thesis is structured as follows.
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1.2 Research Goals

The primary objectives of this thesis are to:

(1) Investigate the interaction between MCTS’s tree policy and game tree characteristics
in model problems.

(2) Develop and analyse EAs that evolve selection policies within MCTS, focusing on
their adaptability and effectiveness.

(3) Compare the performance of evolved selection policies with traditional approaches in
MCTS.

(4) Explore the role of semantics in the evolutionary process and its impact on the evo-
lution of selection policies in MCTS.

(5) To study in depth the consequences of evolving selection policies in MCTS through
EAs in real-world complex problems, such as the game of Carcassonne.
By addressing these objectives, this thesis aims to contribute to the field of artificial

intelligence and decision-making algorithms, particularly in the context of MCTS and

EAs.

1.3 Scope and limitations

The focus of this thesis is on analysing the integration of EAs into the MCTS algo-
rithm, specifically in evolving selection policies for online decision-making. To this end,
we surveyed and identified key problem characteristics that allow effective comparison of
different tree policies, spanning from problem definition to decision tree structure and
the reward landscape. We first selected the Function Optimisation Problem (FOP), a
toy problem that lets us visualise the location and intensity of the search performed by
MCTS. FOP has a fixed branching factor and a fixed depth in all the branches of its
tree, thus simplifying the behavioural comparison of tree policies while remaining chal-
lenging to the algorithm. On the other hand, the game of Carcassonne was chosen as a
real-world problem that allows us to evaluate the performance of the evolved tree poli-
cies in a more complex and strategic environment that offers distinctive playstyles and
scalability. Similar to FOP, the game of Carcassonne also has a fixed depth in all the
branches of its tree, but has a variable branching factor and can feature stochastic events
that further complicate the decision-making process and make it serve as an excellent
benchmark. Furthermore, we provide a methodology for determining the game’s maxi-
mum score, essential for normalizing tree search method rewards and standardising their
usage in decision-making research related to Carcassonne.

The thesis analyses empirical experimentation of the vanilla MCTS algorithm with var-

ious exploration-exploitation balances, alongside our two proposed EA-inspired MCTS ex-
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tensions: Evolutionary Algorithm Monte Carlo Tree Search (EA-MCTS) and Semantically-
Inspired Evolutionary Algorithm Monte Carlo Tree Search (SIEA-MCTS). EA-MCTS
embeds a GP within MCTS to evolve its selection policy dynamically, without previous
exposure to the problem or domain knowledge. SIEA-MCTS extends EA-MCTS with
semantics, a concept that describes the behaviour of solutions within their operational
contexts, to help guide the evolutionary process and ensure behavioural diversity in its
small population size. The presented results are limited to the parameters defined for our
algorithms and the selected problems, with an aim to provide a deep and comprehensive
analysis of MCTS and the performance of the evolved selection policies in the chosen

problems.

1.4 Thesis Structure

e Chapter 2 Background - This chapter introduces foundational concepts for under-
standing MCTS, including decision theory and game theory. It provides a detailed de-
scription of MCT'S and its components, as well as its usage in adversarial and stochastic
domains. To further the description of MCT'S, the chapter introduces the Multi-Armed
Bandit (MAB) problem, a fundamental concept in decision-making under uncertainty.
With it, we discuss the UCBI1 policy, and its adaptation for trees, the Upper Confi-
dence Bounds for Trees (UCT), which is the most commonly adopted selection policy
in MCTS. The chapter then delves into classical tree search strategies, such as Minimax
and its extensions. Lastly, it explores evolutionary algorithms, particularly focusing on
GP and Evolution Strategy (ES), to then wrap up with the introduction of seman-
tics, a useful concept that describes the behaviour of solutions within their operational
contexts.

o Chapter 3 Surveying synergies between Monte Carlo Tree Search and Evolu-
tionary Algorithms - This chapter presents a survey of integrations between MCTS
and EAs in the context of game playing and online decision-making, describing the
multiple approaches found in the literature and taking a deep dive into how each im-
plementation works. The chapter first delves into various ways EAs were embedded
into MCT'Ss, with a special focus on how the selection and simulation phases of MCTS
have been altered. Conversely, the chapter offers an analogous survey of instances where
MCTS is used to modify multiple aspects of EAs, like the allocation of fitness resources
or offspring generation. The survey is extended to include works where the EAs are
modified with notions of the MAB problems, arguing that MABs are a crucial aspect
in MCTS and hence, by extension, relevant to our research. The chapter concludes with
a list of approaches where EAs are used for online decision-making in games, describing
the difficulty of the problem and the potential of EAs to solve it.
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e Chapter 4 Test Problems - This chapter delves into the attributes of game trees that
are pivotal for the efficiency of MCTS, focusing particularly on the structural charac-
teristics and reward distributions of these trees. It conducts an in-depth examination of
specific test problems, namely, the FOP [87] and the game of Carcassonne, which serve
as benchmarks for evaluating and improving the selection policies of MCTS. We intro-
duce five unique functions within the FOP domain, each exemplifying a distinct reward
distribution, and analyse the challenges they might present to MCTS. The chapter then
discusses the game of Carcassonne, a game with deep strategic elements and unique
playing styles, making it a prime subject for tree search.

e Chapter 5 Empirical Analysis of Evolving Selection Policies in MCTS -
This chapter, introduces EA-MCTS and SIEA-MCTS, two EA-inspired variants of
the MCTS algorithm that use GP to evolve their selection policies on the go. It then
presents the results of experimental comparisons between EA-MCTS, SIEA-MCTS,
and the traditional MCTS algorithm, for the test problems FOP and Carcassonne. The
chapter takes a deep dive into the construction process and structure of the statisti-
cal trees produced by each MCTS algorithm, analysing their performance across the
different FOP functions, and focusing on the influence of the inclusion of semantics
in the evolutionary process. Then, it offers a quantitative comparison of the agents in
the single-player variants of Carcassonne, assessing the performance and playing-styles
of the MCTS-based agents in contrast to four minimax-based variants. The chapter
concludes with an analysis of the selection policies evolved by EA-MCTS and STEA-
MCTS, highlighting the key characteristics of the evolved policies and their impact on
the algorithm’s performance.

e Chapter 6 Evolutionary MCTS in the base game of Carcassonne - This chap-
ter, analyses applying MCTS, as well as our proposed EA-based MCTS agents, EA-
MCTS and SIEA-MCTS, in the base game of Carcassonne for two players. The chapter
describes the results of a series of matches between MCTS and other state-of-the-art
Carcassonne agents. First, it analyses the performance of five vanilla MCTS variants
with distinct exploration versus exploitation balances against a random uniform agent,
to then determine the best vanilla MCTS variant with a round-robin tournament among
them. Next, the chapter confronts the EA-based MCTS variants against the best vanilla
MCTS variant, the best Expectimax agents, and a random uniform agent in another
round-robin tournament. The chapter concludes with a discussion of the results and
the implications of the findings.

e Chapter 7 Conclusions and Future Work - The final chapter concludes this thesis,
summarising the results, and elaborating on our key findings regarding using EAs in
MCTS. It also discusses the problems and potential avenues for improving EA-MCTS
and SIEA-MCTS building upon the insights gained from our experiments.




Background

2.1 Introduction

Monte Carlo Tree Search (MCTS) [99] is a versatile decision-making algorithm that
has had a great impact in the field of Artificial Intelligence (AI), with applications ranging
from energy-based problems [65, 67], the design of Deep Neural Network (DNN) architec-
tures [173] to tasks on the track of General Artificial Intelligence (GAI) like the General
Video Game AI (GVGAI) competition [130, 131], where MCTS serves as the foundational
algorithm for most of the most successful contestant agents. As a testament to its ver-
satility, MCTS has been extended with a very diversified collection of modifications [27,
162].

In this chapter, we begin by introducing concepts that are relevant to the understand-
ing of MCTS, discussing decision theory in Section 2.2 and game theory in Section 2.3. We
then provide an overview of MCTS and its components in Section 2.4. Minimax and its
extension for stochastic games are discussed in Section 2.5. Finally, an overview of Evo-
lutionary Algorithms (EAs) is offered in Section 2.6, focusing on Genetic Programming
(GP) in Section 2.6.1 and Evolution Strategy (ES) in Section 2.6.2.

2.2 Decision theory

Decision theory, under the context of AI and Machine Learning (ML), is a field that
studies the optimal or near-optimal decision-making of agents in complex and uncertain
environments. The goal of decision theory is to provide a mathematical foundation to
understand and develop algorithms that can help agents make decisions that maximise
their expected utility. A decision-making process often involves a state space, an action
space, a transition model, and a reward function [171]. The state space is the set of all
possible states that the agent can be in, with the action space being the set of all possible

actions that can be taken from those states. The transition model is a function that maps
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Figure 2.1: Decision tree example.

a state and an action to a new state. Finally, the reward function quantifies the desirability
of states and/or outcomes, allowing the system to evaluate the quality of its decisions.
Decision theory-related problems are complex and often involve uncertainty, which
can be modelled in different ways. For example, in a stochastic (random) environment,
the outcome of an action is not always deterministic, and the agent must consider the
probability of each possible outcome. In a partially observable environment, the agent does
not have access to the full state of the environment and must make decisions based on
limited information. In a multi-agent environment, the agent must consider the actions of
other agents, which can be adversarial or cooperative [152]. Existing games are commonly
used as benchmarks to test and develop decision-making algorithms on more complex

problems.

Decision trees in decision theory

Under the context of decision theory, decision trees are tools for modelling decision-making
scenarios. They are directed graphs that display decisions and their possible outcomes,
structured in nodes and edges (see Figure 2.1). Each node in a decision tree represents a
point of decision or chance, leading to edges that show the actions that can be taken or
the events that might occur. This setup allows for a clear representation of the decision
process, where the root node indicates the initial state or decision to be made, and
leaf nodes represent the final outcomes or states that can be reached following certain
decisions.

Decision trees help in breaking down the decision-making process into hierarchical
series of choices, making it easier to analyse the consequences of each action [47]. The goal
of using decision trees in decision theory within Al and ML is to aid in the development
of algorithms that can navigate through these decision spaces effectively, seeking to make

choices that lead to the maximisation of expected utility.
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Table 2.1: Game characteristics

Characteristic

Description

Real-time / Turn-based

Events and decision-making occur in real-time or in
turns.

Atomic turns / Complex
turns

An atomic turn requires a single decision, whereas a
complex turn asks for multiple decisions before the
turn ends.

Simultaneous / Sequential

The players make their decisions simultaneously or
sequentially, one after the other.

Perfect information /
Imperfect information

The players have access to the full state of the game at
all times or not.

Complete information /
Incomplete information

The players know the possible moves and outcomes
available to all players at all times or not.

Stochastic / Deterministic

A game is stochastic if there is randomness involved

that can potentially alter its course. Otherwise, it is
deterministic.

Zero-sum / Non-zero-sum In a zero-sum game, each player’s wins equal the losses
of the other player. In other words, the total amount of
any currency in the game from a player’s perspective is

constantly zero.

Symmetric / Asymmetric A symmetric has the same rules or conditions for every

player, while asymmetric games do not.

2.3 Game theory

A game is an environment where one or more decision-making agents, also called play-
ers, compete or collaborate to achieve a goal. Games are attractive in Al research for
several reasons. Firstly, their complexity can be scaled, making them excellent bench-
marks. Secondly, they are controlled environments that can be shaped by rules to meet
specific requirements. Thirdly, games can be played indefinitely under any desired cir-
cumstances, providing an endless source of data. Lastly, games can be played by human
beings, allowing for measurement and interpretation of the machine’s abilities through
direct confrontation with the algorithm.

Al players require different skill sets that vary according to the characteristics of the
game. Games show different characteristics presented in Table 2.1 according to game
theory [76, 171].

In this work, we focus on turn-based games with atomic turns, sequential decision-
making, and with perfect and complete information. These games are particularly inter-
esting for Al research, as they are more tractable and can be used to develop and test

decision-making algorithms. Carcassonne is a game that fits this description and possesses
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characteristics that make it particularly appealing for research. A detailed analysis of the

game of Carcassonne will be provided in Chapter 4.

2.3.1 Game trees

Game trees model sequential decisions and interactions between players in games of perfect
information, where every move made is known to all participants. Game trees are used
to analyse possible outcomes and strategies. Although primarily associated with game
theory, game trees are conceptually linked to Markov Decision Processes (MDPs) [135],
which model decision-making in environments where outcomes can be influenced by both
agent actions and stochastic factors.

To navigate the tree, Al agents often have access to a forward model that can simulate
actions and generate accurate hypothetical future states. Importantly, the forward model
is independent and does not alter the original current state. The game-tree complexity and
the state-space complexity are two measurements useful for evaluating the navigational
and computational challenges that Al agents face when making decisions within these
environments.

e The game-tree complexity measures the number of unique full sequences of events that
can be followed. In terms of game theory, it reflects the number of full games that can
be played. It quantifies all possible paths from the root to the leaves of the game tree.

e The state-space complexity measures the number of legal states that can be represented
with the model and that can be reached from the initial state. It quantifies the number
of total nodes in the game tree, ignoring duplicates.

Calculating the exact state-space complexity and game-tree complexity of a domain
is a challenging task in itself [78]. Therefore, lower bounds are often approximated for
complex domains. For example, the game-tree complexity of Chess is estimated to be
around 1023 [150], while the state-space complexity of the game of Go is approximately
10170 [168]. It is worth noting that both the state-space complexity and the game-tree
complexity are correlated to the average branching factor of the tree, which tends to be

larger in domains with stochastic events.

2.3.2 Game trees in multi-agent adversarial domains with uncertainty

A stochastic event in a domain is represented in its decision tree with a chance node,
also called *node (pronounced as “star node”). With *nodes, the decision tree becomes
an Expectimax tree or *-Minimax tree that distinguishes between *nodes and decision
nodes. Stochastic events add complexity to the decision tree by requiring the consideration
of their potential outcomes. Non-determinism in games can manifest in various ways,

but a common scenario involves alternating between a random event and a decision,
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Figure 2.2: Regular *-minimax tree example. *Nodes are diamond-shaped, while
decision nodes are circle-shaped.

as seen in games like Backgammon and Carcassonne. For example, in Backgammon,
two six-sided dice are rolled at the beginning of each player’s turn, and then the player
chooses which checkers to move. These types of games exhibit regular *-minimax trees [15],
where a layer of chance nodes alternates with a layer of decision nodes throughout the
tree. This structure is illustrated in Figure 2.2, where directed edges emanating from
*nodes represent unique outcomes of the stochastic events, and edges from decision nodes
represent available actions. Note that each layer of *nodes is alternated with a layer of
decision nodes, and the sum of event probabilities within each *node is equal to 1.
Figure 2.2 also illustrates the tree of a domain where two agents with opposite ob-
jectives alternate actions. In adversarial domains, decision nodes are classified as max or
min nodes if the decision-maker seeks to maximise or minimise the reward, respectively.
However, there are games where a player can have multiple actions, or multiple stochas-
tic events can occur in the same turn. For example, in the game of Risk, a player’s turn
consists of several phases. The attack phase allows the player to perform multiple attacks,
each consisting of choosing the source and target territories of the attack and then rolling
the dice to determine the outcome. The player can repeat this cycle to convenience, only
limited by the availability of the troops. In this case, the alternation of random events
and player decisions still occurs, however, the game tree is not a regular *-minimax tree

as the decision nodes are not necessarily at the same depth.

2.4 Monte Carlo Tree Search

MCTS is a decision-making technique that offers the flexibility to be stopped at any time
to obtain the best current estimated action. This attribute extends the applicability of
MCTS to both strategic, slow-paced domains, as well as real-time scenarios. MCTS also

employs a policy-driven approach for tree expansion, with Monte Carlo simulations used
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Figure 2.3: Illustration of an iteration of the MCTS algorithm.

to evaluate the nodes and inform decision-making.

The MCTS algorithm takes a current state as input and returns the action it believes
is the best available. Given enough time, vanilla MCTS converges to minimax search
in adversarial domains. The vanilla version of MCTS consists of four steps or phases,
explained next:

e Selection phase: Starting from the root node, the tree policy is used to select child
nodes iteratively until an expandable node is reached. That node becomes the selected
node.

e FEzxpansion phase: Chosen by the expansion policy, a new state is simulated from the
selected node. The new node is added to the statistical tree as a child of the selected
node. That node becomes the expanded node.

o Simulation phase: A series of rollouts, also called playouts, are executed from the ex-
panded node to obtain its approximate evaluation. Each rollout simulates actions ac-
cording to the default policy until a terminal state is reached to collect its outcome.
The results are averaged and returned as the evaluation of the expanded node.

e Backpropagation phase: The collected information from the current iteration is back-
propagated to the tree. Typically, only the nodes that connect the expanded node and
the root node are updated. The nodes updated, information, and aggregation methods
are determined by the backup operator

A complete run of these steps is called an iteration. With each iteration, MCTS builds
a statistical tree that stores information in every node. Starting with only the current
state as the root node, MCTS uses the forward model to simulate future game states and
expand its statistical tree, meaning that the statistical tree is a subset of the game tree
that grows as states are discovered. Each node in the statistical tree keeps track of its
visit count and reward. The vanilla version of MCTS is illustrated in Fugure 2.3.

The tree policy, expansion policy, and default policy define the behaviour of the selec-
tion, expansion and simulation steps in MCTS, respectively. A different policy, called the

recommendation policy, determines which action to return when the algorithm terminates.
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Vanilla MCTS usually returns the action that has been visited the most, referred to as
the robust action, as its recommendation policy. Other recommendation policies include
the max action (the action with the highest rewards), the robust-max action (the action
with both the largest visits and rewards, requiring additional iterations while none of the
actions suffices) [42], and the secure child (the action that maximises a lower confidence
bound) [35].

We identify three primary approaches to apply MCTS in games, each offering distinct
advantages depending on the context of use: (a) Online isolated decision-making is the
most direct form to deploy MCTS to determine the best possible action in response to
a specific situation within an unknown environment. This application is typically seen
in scenarios where a singular decision is required. (b) Online sequential decision-making,
on the other hand, facilitates decision-making throughout the entire duration of a game.
This approach benefits from the algorithm’s capability to build upon knowledge acquired
from previous decisions if the information gathered is relevant for subsequent decisions.
For instance, MCTS can reuse parts of its previously generated statistical tree, setting
the current state as the new root and discarding the rest of the tree [126]. The search
then begins with a statistical tree that has been already partially explored [27]. (¢) Offline
deployment, or preparatory learning, allows the algorithm to optimise its strategies in a
specific domain through self-play and iterative improvement [33]. This approach enables
MCTS to learn and refine its decision-making capabilities based on early exposure to the
domain, thereby improving its performance in actual game situations by having developed
a repertoire of strategies before engaging in live play [154]. In this work, we are inter-
ested in the adaptability and potential of MCTS variants, which can be more effectively

measured in scenarios where the algorithm is used for online isolated decision-making.

2.4.1 Monte Carlo simulations

Every search algorithm needs a heuristic evaluation of the nodes within the game tree
of any complex game. While hand-made evaluations tailored for specific games are com-
monly used, there is also a widely adopted heuristic that requires no human knowledge
and has demonstrated reasonable robustness [85]: Monte Carlo simulations. Monte Carlo
simulations, within the context of games, obtain numerical results by repeatedly sam-
pling the outcomes of games using random play. The accuracy of these results improves
as more simulations are executed. The Monte Carlo simulations, often referred to as roll-
outs, playouts, or simulations, are used in the MCTS algorithm to evaluate any state.
This approach allows the algorithm to assess the potential value of a move based on the
aggregated outcomes of these simulations, rather than relying on detailed, game-specific

knowledge or complex strategic evaluation. By averaging numerous results from a given
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state to the end of the game, MCTS can estimate the expected utility of making a certain
move, guiding the selection of the most promising paths through the game tree. This
method’s strength lies in its simplicity and versatility, making it applicable to a broad
range of games and scenarios where traditional heuristic evaluations might not be feasible

or effective.

2.4.2 The tree policy

One of the most impactful, hence most researched aspects of MCTS is its selection step.
The selection step in MCTS is centred around the tree policy, which determines which
nodes are deserving of resource allocation. The tree policy aims to strike a balance between
acquiring new knowledge (exploration) and making decisions based on existing knowledge
(exploitation). It is employed to iteratively select the action that leads to the most in-
teresting node based on the information accumulated in the statistical tree. Whenever
the tree policy selects an action, it effectively addresses a Multi-Armed Bandit (MAB)

problem in which each available action can be viewed as an arm of the bandit.

Multi Armed Bandits

A stochastic MAB is a model that characterises decision-making problems in the face
of uncertainty. It serves as an analogy to a gambler who is presented with multiple slot
machines and aims to maximise their overall reward. In a MAB problem, an agent is
confronted with a set of k arms, each associated with an unknown reward distribution
D. The agent is tasked with collecting the reward r; from one arm at each discrete time
step t € {0,1,...,n}. The primary objective of the agent is to acquire knowledge about
the reward distributions of the arms in order to make more informed decisions over time
and maximise his cumulative reward. The MAB problem exemplifies the fundamental
trade-off between exploration and exploitation.

In the context of MAB, exploration refers to the act of gathering information about
the potential rewards of each arm. This typically entails choosing arms that may seem
to have lower rewards in order to increase certainty about their reward distribution. On
the other hand, exploitation involves selecting the arm that the decision-maker believes,
based on the accumulated information, will yield the highest immediate reward.

Several conditions and assumptions are associated with a MAB problem. Within the
context of tree search, the reward distributions are assumed to be stochastic and indepen-
dent of one another [159]. Additionally, in certain domains, the rewards are considered to
be non-stationary. The distributions of each arm can change over time in a non-stationary
MAB, such as when a search algorithm discovers an optimal strategy in a branch of the

tree that significantly alters the rewards of a node.
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There are several approaches to addressing MAB problems, and the literature has
proposed multiple policies [8, 9, 28]. Each policy presents unique characteristics that
influence the behaviour of the agent. These policies are categorised in [122] as follows.

e The bayesian exploration approach assumes that the agent holds a prior belief about
the reward distributions of the arms. The agent then utilises the information gathered
from the arms to update its beliefs. An important example in this category is Thompson
Sampling (TS) [163], where the agent samples from the assumed prior distribution of
rewards and selects the arm with the best outcome from those samples. The assumed
distributions are then updated based on the observed reward obtained from trying the
arm. TS has been extensively studied [95], its effectiveness has been empirically demon-
strated [34, 74, 149], and its asymptotic optimality has been theoretically proven [2].

e The e-greedy exploration chooses the best arm with a 1-e probability, and a random arm
otherwise. This approach is simple and effective, but it does not guarantee asymptotic
optimality [10].

e The soft-max exploration chooses the best arm with a probability proportional to its
estimated value, like the EXP3 algorithm [11].

e Last, the optimistic exploration refers to policies optimistic in the face of uncertainty,
with the main exponent being the Upper Confidence Bounds (UCB1) [10].

In a MAB problem, the regret refers to the total loss incurred by trying suboptimal
arms. In other words, regret represents the difference between the reward that could have
been obtained by always selecting the best arm and the reward actually achieved by the
agent. The UCBI1 policy, discussed next, constrains the regret to grow logarithmically,
making it asymptotically optimal. UCB1 is the most widely used policy in MCTS, and it
is the one employed in the original version of MCTS [99].

Upper Confidence Bounds

Upper Confidence Bounds(UCBL1) is a strategy used to address MAB problems, guaran-
teeing convergence to the best arm by limiting regret. UCB1 adopts an optimistic in the
face of uncertainty approach, ensuring that every arm always has a probability of being

chosen greater than zero. UCBI1 is formally described in Equation 2.1.

2-In(N)

UCBIJ' = Qj +C
nj

(2.1)

where @); is the average reward of arm j and n; is its number of tries. N is the total
number of tries among all the alternative arms and C' is a constant that balances explo-
ration and exploitation. UCB1 has been modified and adapted to various scenarios. For

instance, there are adaptations of the UCB1 policy for non-stationary MAB problems,
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such as Discounted Upper Confidence Bounds (D-UCB) [100] where the significance of
the oldest attempts for each arm diminishes over time, and Sliding Window Upper Con-
fidence Bounds (SW-UCB) [70] which considers only the most recent set of rewards to
compute the current distributions of the arms. The UCB1 used as part of the tree policy
in MCTS is the Upper Confidence Bounds for Trees (UCT), described in the next section.

Upper Confidence Bounds for Trees

UCT employs the UCB1 strategy to select a node at each level of the tree until a node
that can be expanded is encountered. The hypothesis is that the most promising node
to allocate resources to is the one with the highest UCBI1 value, as this value effectively
balances the trade-off between exploration and exploitation potential for each node. UCT
represents the edges of the game tree as arms of a bandit to identify the most promising
nodes within the tree, beginning from the root node.

In scenarios where there are two adversarial decision-makers, the tree is explored
using a minimax approach: Player 1 aims to maximise the outcome, while Player 2 tries
to minimise it. In this context, when selecting an action corresponding to the opponent’s
turn, (); in the UCBI1 formula is swapped to —@Q);. Consequently, UCT works as a minimax
algorithm, expressing interest in the optimal action available to the opponent during their
turn.

To implement UCT in a statistical tree built by MCTS, it is necessary to store the
reward @; and the number of visits n; for each node. The reward @); represents the average
of the rewards obtained by the agent in all the simulations that traversed the node, while
n; denotes the number of times the node has been selected by the tree policy. Naturally,
most adaptations of the UCB1 formula can be extended to UCT at the expense of storing

additional information in the statistical tree if needed.

2.5 Classic tree search algorithms: Minimax

Tree search agents expand subsets of the decision tree as part of their decision-making
process in order to acquire and store information. One commonly used tree search al-
gorithm in multi-agent domains, especially in adversarial scenarios, is Minimax. This
algorithm categorises nodes as either max nodes or min nodes depending on whether the
decision-maker at that node seeks to maximise or minimise the reward from the perspec-
tive of the current decision-maker. Minimax exhaustively expands nodes, assuming that
the opponent will always make the best available move. Techniques such as alpha-beta
pruning [98] and forward pruning [23] can help reduce the number of states that need to
be evaluated in the Minimax algorithm. Despite the use of pruning techniques, exhaustive

search becomes intractable in complex domains given the exponential growth of the states
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that need to be searched. To stop the algorithm, the search depth is generally restricted.
When a time limit is given instead of a maximum depth, an effective way to manage
the uncertainty of the number of states at different depths is to progressively deepen the
search using iterative deepening until a time limit is reached, a strategy known as Iterative
Deepening Depth-First Search (IDDFS) [101].

2.5.1 Expectimax

Expectimax, also known as Expectiminimax, is an adaptation of the Minimax algorithm
designed for non-deterministic games. Similar to Minimax, Expectimax explores the game
tree in a width-first manner. However, instead of making deterministic choices at chance
nodes, it calculates the values of these nodes as the weighted average evaluation of their
successors.

To improve the Expectimax algorithm in regular expectimax trees, the *-minimax
family of algorithms, including Starl, Star2, and Star2.5, have been proposed in [15].
These algorithms use bounds to prune the tree, similar to how alpha-beta pruning works
for Minimax, but taking into account the probabilities associated with each chance node.
Consequently, the *minimax algorithms can efficiently prune the tree, particularly when

the actions can be sorted by quality based on prior knowledge of the domain.

2.6 Evolutionary Algorithms

EAs [48] are versatile optimisation techniques that excel in solving problems with large
search spaces. They explore the space of possible solutions using evolution-inspired oper-
ations, including selection, crossover, and mutation. A selection mechanism gives priority
to the fittest individuals in the population, increasing their chances of passing on their
genetic material to future generations. This iterative process improves the quality of the
population until certain stopping criteria are satisfied. Figure 2.4 illustrates a general EA.

Ideally, an EA should be able to simultaneously explore the search space extensively
and exploit the most promising regions. However, controlling the exploration-exploitation
dilemma poses a non-trivial challenge in EAs due to the complexity of the interactions
of its components. Prioritising exploration can significantly slow down the convergence
speed of the algorithm or even prevent it altogether. Conversely, a focus on exploitation
may lead to a loss of population diversity or premature convergence, hindering further
improvement, a phenomenon known as stagnation [43].

To ensure the exploration of the search space, EAs must maintain a diverse population.
This diversity allows the evolutionary process to have options to escape local optima and
explore the entire search space, and is typically achieved through mutation, which can

potentially produce novel genetic material. On the other hand, crossover operators aim
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Figure 2.4: Generic steps in an Evolutionary Algorithm.

to preserve and recombine genetic material. The selection mechanism determines how
often the best individuals can produce offspring, determining the influence on the genetic
material of the next generation.

EAs typically offer a high degree of flexibility in their design and contain multiple ad-
justable parameters. Besides the definition of the genetic operators, the balance between
exploration and exploitation within the search space is also influenced by the representa-
tion of individuals, fitness evaluation, population size, population structure (steady state
or generational) and the allocated computational resources. The field of EAs encompasses
four notable methods [12]: Genetic Algorithm (GA) [72, 80], ES [22, 139], Evolutionary
Programming (EP) [56, 117], and GP [103]. In this thesis we focus on GP and ES, de-

scribed next.

2.6.1 Genetic Programming

GP [103] is a type of automated programming in which individuals are commonly rep-
resented as syntax trees. The tree structure is typically used to represent mathematical
expressions, but it can also be used to represent other types of solutions, such as com-
puter programs, behavioural trees or decision trees. The GP procedure commences by
generating a population of programs using an initialisation method. This population is
subsequently assessed, and the most promising individuals are chosen as parents for the
next generation. The selection process determines which individuals will contribute to
producing offspring. In the tournament selection, one of the most common selection ap-
proaches in GP, a random subset of the population is chosen and the best individual from
the subset is designated as a parent.

The selected parents undergo modifications through genetic operators, such as crossover
and mutation, to generate offspring. The fittest individuals are combined with the off-

spring to complete the population of the next generation. This process continues until
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specific stopping criteria are met, and the GP eventually returns the best individual from
the final population. These steps align with the general stages of the EA illustrated in
Figure 2.4.

The design of a GP includes the definition of a terminal set, a function set, a fitness
measure, an initialisation method, a selection method, genetic operators, and termination
criteria, each with its respective parameters. Additionally, constraints are necessary to
regulate the representation, such as a maximum depth restriction, to prevent phenomena
like bloat. Bloat is a phenomenon in GP where syntax trees tend to gradually increase
in depth throughout generations without necessarily increasing their performance. This
growth often produces introns, which are internal nodes that do not influence the output
of the individual. Introns are believed to emerge in GP as an evolutionary mechanism to
safeguard valuable structures by preserving multiple instances of them, as most genetic
operators are thought to possess some degree of destructive nature [114].

To simplify our discourse, we make the distinction between the three types of trees
we have defined thus far. First, the game tree represents all potential actions (edges)
and states (nodes) within a game. Next, the statistical tree is a subset of the game tree
created and used by the search algorithm to store the information it finds. Lastly, the
syntax tree, is the tree-like structure representing a mathematical formula, which is also

an individual in the GP population, explained next.

Genetic Programming individual representation

A syntax tree is a data structure that represents the flow of information from the leaves
to the root of a tree. Various forms of GP have been proposed in the literature, with
the tree-like structure being the most common representation [103]. In this structure,
functions are represented by internal nodes, while terminals are represented by leaves.
Each internal node takes its children as inputs and applies its function to them. The
syntax tree is evaluated recursively, starting from the root node and proceeding until the
terminal nodes are reached. Figure 2.5 provides an example of a syntax tree.

A syntax tree does not guarantee mathematical correctness when representing math-
ematical expressions. Therefore, it is common practice to incorporate safety rules in the
functions. These rules ensure that the execution does not crash when evaluating a tree.
For instance, one such rule is to take the absolute value of the input in any square root
operation. Another rule is to return the numerator in a division if the denominator is
zero, which can cause several discontinuities. These rules are typically implemented as
a set of if-else statements that are evaluated before the function is executed. Under this
context, the genotype of an individual in GP is the syntax tree, while the phenotype is

the output of the syntax tree when evaluated.
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The fitness measure, function set, and terminal set are chosen to align with the specific
problem being addressed. The fitness measure is typically a function that evaluates the
performance of the syntax tree on the problem at hand. For example, in a problem
involving the approximation of a given dataset, variables from the dataset could serve as
terminals, while mathematical operators can be employed as functions, with the fitness
measure being the Mean Squared Error (MSE) between the output of the syntax tree and

the target values.

Population initialisation

Regarding the initial population in GP, there are several standard initialisation methods
available, including grow, full, and half-and-half as described by Koza [103]. The full
method grows a symmetrical tree with the same maximum depth for all branches, with the
maximum depth being a user-defined parameter. In this method, functions are randomly
selected for each node until the maximum depth is reached and terminals are added
instead. The grow method is similar to the full method but terminals can be randomly
added at any depth, meaning that the depth is not enforced for every branch of the
tree. The half-and-half method mixes both full and grow in a proportion defined by an

additional parameter.

Genetic operators

There is a vast variety of genetic operators in GP, with the most common ones being
crossover and mutation. Crossover involves combining two or more individuals to produce
offspring. In GP, the subtree crossover, illustrated in Figure 2.6, swaps subtrees between

parents. Other crossover variants have been proposed in the literature, such as the Context
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Figure 2.6: Syntax tree subtree crossover. The dashed nodes are the cut-off points
for the crossover. The subtrees are swapped between the parents (P1 and P2, at the
top) to produce offspring (O1 and O2, at the bottom).

Aware Crossover (CAC) [114], Semantics Aware Crossover (SAC) [170] and Semantic
Similarity-based Crossover (SSC) [170]. These variants aim to generate offspring that are
more informed and potentially better solutions.

Mutation, on the other hand, entails randomly altering an individual to produce off-
spring. It serves as a source of novel genetic material for the population. In the case of
syntax trees, the mutation operator is typically implemented by replacing a subtree with
a newly generated subtree (subtree mutation). Alternatively, it may involve swapping the
content of a randomly chosen node with another valid function or terminal (point muta-
tion). The mutation operator plays a crucial role in exploration by introducing potential
changes to the genetic makeup of individuals. However, modifications in the genotype can
have unpredictable effects on the overall performance of a solution. There are metrics that
can help us understand how the evolutionary process navigates the search space and how
challenging it may be to find optimal solutions. For instance, locality [68] describes the
correlation between small changes in an individual’s genotype and small differences in its
phenotype. The Fitness Distance Correlation (FDC) [89], on the other hand, measures
the correlation of the fitness of the solutions and their distance to the optimum solution.
Finally, it is common practice to perform a Fitness Landscape Analysis (FLA) [175] be-
tween the problem domain and the proposed solution representation. This analysis helps

assess the efficiency of the genetic operators by examining whether they produce solu-

20




2.6. EVOLUTIONARY ALGORITHMS

tions that exhibit similar behaviours to their parent solutions. If the genetic operators fail
to maintain behavioural similarities, the evolutionary search may perform on par with

random search [141].

Semantics

Diversity, which refers to the differences between individuals, can be assessed by exam-
ining their genotypes. Several metrics can be used for this purpose, such as the Edit
Distance (ED) [49], the Alignment Distance [167] and the Normalised Compression Dis-
tance (NCD) [40]. The NCD, for instance, employs the Kolmogorov complexity [107] to
compare how differently a program would generate the structure of one individual com-
pared to another. This makes NCD applicable to any type of individual representation.
It was initially tested on the syntax trees of GP in [68]. However, these approaches have
a key limitation: they solely consider the genotype of individuals and do not take into
account their actual behaviour, also referred to as semantics in GP.

According to Galvan et al. [60] and inspired by [124], rather than focusing on its
genotype, the behaviour of each individual, based on the outputs when provided with the
relevant fitness cases as inputs, can be used as a diversity measure. The actual behaviour of
a solution exists within the semantic space S. This semantic space represents all possible
behaviours of the solution for all considered inputs. Let p and ¢ be programs from a

language P. When p is applied to an input i € I, p produces an output p(i).

Def. 1 The semantic mapping function s : P — S maps any program from P and the

semantic space S.

which has the behaviour s(p) = s(q) <= Vi € I, p(i) = ¢(i) and posseses three key
properties. Firstly, every program and input set has unique semantics. Secondly, multiple
programs can have the same semantics for a given input set. Thirdly, programs that gen-
erate different outputs for the same input set exhibit distinct semantics. Def. 1 is general
and does not specify the representation of semantics. In GP, a popular representation of
semantics is Sampling Semantics (SS), defined as the vector of output values computed
by an individual program for a given input set. This differs from the notion of fitness
cases, which are input-output pairs where the output is the desired one.

Based on Def. 1, we can establish the definition of the Sampling Semantic Dis-
tance (SSD) between two programs (p,q). Let SS(p,I) = {p1,p2,....,px} and SS(q,I) =
{q1,92, -+ ,qr} be the SS of p and ¢, when evaluated on the same set of inputs I. The
SSD between p and ¢ is defined as shown in Equation 2.2.

SSD(p.q) =3 'p,;ﬁ‘ (2.2)

el
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The Semantic Similarity (SSi) [170] compares the SSD of any two programs to deter-
mine their similarity. In an EA, the SSi can be employed to manipulate the behavioural
difference between a parent solution and its offspring. This means that it serves as a tool
to control the level of exploration exhibited by the operators responsible for generating
offspring. The objective is to produce offspring that are neither too dissimilar nor identi-
cal to their parents, similar to the concept of a learning rate in Reinforcement Learning
(RL) models. The SSi determines if programs p and q are semantically similar, formally
defined in Equation 2.3.

SSi(p,q) = (L < [SSD(p) — SSD(q)| < U) (2.3)

where L and U are the lower and upper bounds of the SSi indicator respectively, also
called the semantic sensitivity. L and U are parameters tuned empirically to keep the
solution’s behaviour similar to the parent’s while still allowing for exploration, which has
proven beneficial for GP [69, 170] and Multi-Objective Genetic Programming [63].

2.6.2 Evolution Strategies

Evolution Strategies (ES) are generally applied to real-valued representations of optimi-
sation problems. In ES, the mutation is the main operator and crossover is the secondary,
optional, operator. There are two basic forms of ES, known as (u, A)-ES and (p + A)-ES.
The variable u refers to the size of the parent population and A refers to the number of
offspring that are produced in the following generation before selection is applied. In the
former, the parent is discarded whereas in the latter, the parent is kept as part of the
next generation’s population.

Because of how ES explores the search space, it is a common practice to seed the
initial population with a known solution to the problem at hand with the expectation to
improve it. The evolutionary process begins by creating offspring from the known solution
and then progresses from there.

The distinguishing characteristics of different EA methods, such as the syntax tree
representation from GP and the population structure of ES, can be combined to create new
hybrid approaches. For example, it is possible to incorporate a GP tree-like representation
into an ES framework, as demonstrated in our IEEE Transaction on Games article [61].
This hybrid method was developed for evolving programs in resource-constrained domains.
In this hybrid approach, the ES employs a relatively small population and uses the genetic
operators typically used in GP to modify the syntax trees. The search space for potential
syntax trees is vast, and a significant portion of the trees generated during evolution
may not be useful or viable solutions. This poses a challenge when working with a small

population, as making progress becomes difficult. In such scenarios maintaining diversity
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becomes crucial to avoid stagnation.
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Surveying synergies: Monte Carlo Tree Search and

Evolutionary Algorithms

Monte Carlo Tree Search (MCTS) and Evolutionary Algorithms (EAs) are algorithms
that can benefit from each other, and multiple combined approaches have been attempted
in literature. Most of the approaches that use EAs in MCTS aim to optimise some as-
pect of it or to try to make it more generalisable through adaptation. Conversely, when
MCTS is embedded within EAs, the former is used to make EAs more methodological
and controlled. The usage of EAs under the context of MCTS is primarily focused on
offline optimisation through iterative exposure to the domain. However, there have been
ingenious proposals to integrate them with MCTS online, that is, as MCTS’s decision
is being made. In this chapter, we summarise the usage of EAs combined with MCTS.
Section 3.1 discusses the usage of EAs in MCTS, while Section 3.2 discusses the usage
of MCTS in EAs. The selection phase of MCTS models every choice made to traverse
the tree as a Multi-Armed Bandit (MAB) problem. This implies that, by extension, EAs
interact with the MAB model when used in combination with MCTS. Thus, Section 3.3
expands our scope to include works that combine MABs with EAs. Finally, Section 3.5
discusses the usage of EAs and MCTS in the context of games, with special focus on how

EAs are adapted to be used online despite the constrained computational resources.

3.1 Evolutionary Algorithms in Monte Carlo Tree Search

EAs have been successfully employed to optimise components of the standard MCTS
algorithm. For instance, the Self-Adaptive Monte Carlo Tree Search (SA-MCTS) [158]
algorithm, models the vanilla MCTS parameters as a Combinatorial Multi-Armed Bandit
(CMAB) problem to tune them on-the-go as originally proposed in [157]. In their work,
the authors proposed three versions of SA-MCTS, each with a different parameter allo-
cation strategy and two of which use EAs. The three SA-MCTS variants are SA-MCTS
with Nalve Monte Carlo (SA-MCTSnumc), SA-MCTS with N-Tuple Bandit Evolution-
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ary Algorithm (SA-MCTSnga) and SA-MCTS with a simple Evolutionary Algorithm
(SA-MCTSga). In SA-MCTSNEA, the parameters are evolved with the N-Tuple Bandit
Evolutionary Algorithm (NTBEA) [104] by representing each parameter as a 1-tuple and
the combination of parameters as n-tuples. SA-MCTSga represents combinations of pa-
rameters as individuals in a Genetic Algorithm (GA), where each parameter is a gene.
The population follows a (u + A)-Evolution Strategy (ES) where p > 2. Each individual
is evaluated by letting it control a MCTS iteration and using the reward as its fitness. It
uses a uniform random crossover and a uniform random mutation to generate offspring.
They tested the SA-MCTS algorithms in 20 games of the General Video Game Al (GV-
GAI) competition [131]. The MCTS parameters that were tuned included the C of the
Upper Confidence Bounds (UCB1) formula (refer to Chapter 2) in the tree policy and
the maximum depth of the playouts of the simulation phase. The experimental results
on the GVGAI games demonstrated that SA-MCTS agents generally achieved higher win
rates than the baseline MCTS agents, with the EA-based versions performing slightly
better [156].

3.1.1 Evolutionary Algorithms in Monte Carlo Tree Search’s simulation phase

One way to improve the performance of MCTS is to optimise the evaluation of the states
found by the tree search. This can be achieved by learning an evaluation function for
any game state, or by enhancing MCTS’s default policy. The default policy in MCTS is
Monte Carlo simulations, which choose actions uniformly at random selecting actions until
reaching the end of the game, although additional rules can be incorporated. Playouts
that involve more than just a random selection of actions are known as heavy playouts.
Note that heavy playouts have been proven to not always be beneficial to the overall
performance of MCTS and they may even be harmful [71].

The decisions of the default policy can be optimised with ES as in Hivemind [133],
which evolves rules based on patterns in the vicinity of the last move played in the game
of Hex. The evolved rules are used to bias the choices of MCTS’s default policy, leading
to improvements in performance.

The Knowledge Based Fast Evolutionary Monte Carlo Tree Search (KB Fast-Evo
MCTS) [127] is an extension of Fast Evolutionary Monte Carlo Tree Search (Fast-Evo
MCTS) [111] where the rollouts of MCTS are guided by policies derived from an EA. The
EA follows a (14+1)-ES (explained in Chapter 2) in which each individual acts as a default
policy that selects actions during the simulation step of MCTS. The individuals process
features of the game state with a set of weights, represented as genes. These features
include Euclidean distances from the playing agent to all interactable objects, and new

weights are added to the genome if new objects are encountered.
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KB Fast-Evo MCTS improves upon Fast-Evo MCTS by introducing a knowledge base
that combines two factors: curiosity and experience. The knowledge base keeps track of
statistics for all interactable sprites in the game, with curiosity aiming to discover the
consequences of collisions between sprites, while experience rewards collisions that have
proven beneficial to the agent. The fitness of each individual is calculated using a score
function that considers changes in experience, curiosity, and the game score at the end
of the playout. The authors employ games from the GVGAI framework to compare their
proposed KB Fast-Evo MCTS with vanilla MCTS, Fast-Evo MCTS, and Knowledge Based
Monte Carlo Tree Search (KB MCTS). They find that KB Fast-Evo MCTS performs the
best among these approaches. KB MCTS is an MCTS variant proposed as an ablation
study to KB Fast-Evo MCTS, where the knowledge base is used to evaluate the results
of the playouts during the simulation phase, but no evolution is performed.

In another approach described in [3], a Genetic Programming (GP) paradigm is used
to evolve agents that guide the default policy in the game of Ms. Pac-Man. The agents
generated through the GP consist of if-then-else decision trees that determine simple
actions, such as directing Pac-Man towards the closest pill. These decision trees combine
a series of hand-crafted heuristics that provide information about the game, such as the
distance to the closest ghost. The authors discovered that MCTS with the evolved decision
trees as the default policy performed competitively compared to hand-crafted agents.

The EvoMCTS algorithm [17, 18] proposes the evolution of a board evaluation func-
tions using GP. In this approach, the evolved board evaluation function serves to guide
the default policy. During the simulation step, the default policy selects the best available
action by considering a one-step look-ahead evaluation of the next available states. To han-
dle large branching factors, the default policy in EvoMCTS randomly samples a certain
number of actions, defined as the playoutBranchingFactor, from each state. EvoMCTS
defines two types of terminal nodes to be considered in the evolved trees:

e Basic terminal nodes: return values based on the current game state. For instance, one
possible implementation could tally the number of game pieces owned by the player.

e Game-oriented terminal nodes: return values relevant to the application in particular.
For example, a heuristic function that evaluates corner control in Othello, which is
considered an important aspect of the game.

Although the basic terminal nodes aim to be game-independent, they are certainly
limited in their applicability, as are the evolved trees. After all, heuristics benefit some
algorithms more than others, and it is difficult to determine how much of the success of an
algorithm can be attributed to its heuristics or the algorithm itself [127]. The authors of
EvoMCTS argue that the game-specific terminals proposed use little domain knowledge
and are properties that any player quickly realises after playing a few games.

Interestingly, the representation of EvoMCTS allows individuals to have Explicitly
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Defined Introns (EDIs), which are theorised to benefit evolution by protecting sections
of code with no repercussions in the evaluation of the carriers. EvoMCTS also features
coevolution and innovative genetic operators. It was tested in the games of Othello, Hex,
and Dodgem, and the results showed that the evolved trees were considerably stronger
than vanilla MCTS agents.

Bandit-based Genetic Programming (BGP) [82] is an EA that systematically tests
modifications from a predefined set of available modifications that can be applied to an
individual in a domain with stochastic rewards. The assumption is that even if two differ-
ent modifications are individually proven to be beneficial, the combination of both modi-
fications may not necessarily yield a superior individual. To address this issue, confidence
bounds are employed, providing strong theoretical justifications. In BGP, each unique
modification is initially tested a fixed number of times when applied to the individual,
and the resulting outcomes are used to calculate the UCB1 value for each modification. As
multiple hypotheses are being tested simultaneously (one for each available modification),
the problem is modelled as a racing algorithm. Hoeffding’s bounds are used to calculate
an upper bound and a lower bound on the efficiency of each modification. BGP is then
a modified racing algorithm that uses these upper and lower bounds to accept or reject
proposed modifications to the individual. Each modification is then tested again, the same
number of times, and ordered based on their UCB1 values. In BGP accepting a modifi-
cation is equivalent to performing mutation in an EA. The MAB framework is employed
when selecting which modification to test next. BGP has shown promising results when
applied to enhancing agents for playing the game of Go. In this context, each modification
corresponds to a change in the biases of the default policy within a MCTS-based agent.

More recently, a combination of GP and MCTS to play Hearthstone was proposed
in [38], where the GP evolves an evaluation function to influence the decisions made by
the default policy. They tested their agent, the MCTS-GP, with a variety of deck styles
and found it more robust than the vanilla MCTS.

3.1.2 Evolutionary Algorithms in Monte Carlo Tree Search’s selection phase

MCTS'’s selection phase uses a tree policy to select the nodes to explore next, making it a
phase of particular research interest as it greatly influences the MCTS’s performance [27].
Regarding offline evolution of the tree policy, the work by Cazenave [33] evolves a tree
policy formula with GP for the game of Go. This approach successfully finds formulae that
consider a wide variety of alternative statistics and heuristics, such as the All-Moves-As-
First (AMAF) value of the move, some features of the board, or the best reward among
the children of the parent node.

In [25], Bravi et al. propose three versions of a GP that evolves the tree policy for
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Table 3.1: Approaches with Evolutionary Algorithms in Monte Carlo Tree Search.

Online/ | Modified in Name Game Ref.
Offline | MCTS
Tree policy’ SA-MCTSNEA GVGAI [158]
default policy SA-MCTSga GVGAI [158]
Online . KB Fast-Evo MCTS GVGAI [127]
Default policy
Fast-Evo MCTS GVGAI [111]
Tree policy EA-MCTS, SIEA-MCTS | Carcassonne [61]
Hivemind Hex [133]
(No given name) Ms Pac-Man (3]
. EvoMCTS Othello, [17, 18]
Default policy Dodgem, Hex
Offline BGP Go 82]
MCTS-GP Hearthstone [38]
) (No given name) Go [33]
Tree policy
UCB4, UCB44, UCBy | GVGAI [25]

MCTS in rogue-like real-time games from the GVGAI competition, categorising GP ter-

minals considered for composing tree policy alternatives into three groups:

e Tree variables: are directly related to the constructed statistical tree, such as the number
of visits or rewards of certain nodes.

e Agent variables: are related to a memory of the agent, such as its number of visits to
the current location or an action repetition count.

e Game variables: that describe aspects of the game state, such as the number of “portals”
or distances from the agent to a Non-Player Character (NPC).

With them, they propose three evolutionary-based tree policies: UCB, (using only
tree variables), UCB (using both tree and agent variables), and UCBy (using tree,
agent and game variables), with the latter surpassing the other two in the majority of
the games. They experimented with the tree policies they found through evolution on 62
GVGALI games available at the time, finding that most of the evolved equations behaved
rather similarly to UCB1 on average. They encourage evolving heuristics for clusters of
games with similar design aspects.

Bravi’s approach was later employed to evolve different playstyles in the game Mini
Dungeons 2, where 4 unique procedural personas are evolved offline [81]. A big issue of
all the approaches that evolve a tree policy is that they demand exposure to the game
beforehand to have enough time to perform their evolutionary process, as can be seen in

Table 3.1, which summarises the algorithms discussed in this section.
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3.2 Monte Carlo Tree Search in Evolutionary Algorithms

The versatility of EAs is achieved thanks to their numerous parameters, which are flexible
enough to meet different requirements. The evolutionary process uses meta-heuristics and
randomness to conduct the search. However, certain EA aspects can be controlled with
ideas present in MCTS.

3.2.1 Monte Carlo Tree Search in Rolling Horizon Evolutionary Algorithms

There are multiple hybrids of Rolling Horizon Evolutionary Algorithm (RHEA) and
MCTS [58, 83], where MCTS is used to improve certain aspects of Rolling Horizon
Evolutionary Algorithm (RHEA). For instance, in [57], the algorithm called C-MCTS-
S allocates half of the computational budget to run MCTS and then uses the best action
path in its statistical tree to initialise the RHEA population, which uses the rest of the
computational budget. Similarly, the Statistical Tree-based Population Seeding RHEA
(STPS-RHEA) technique [64] initialises the population by following the path in the sta-
tistical tree that leads to the best reward, and the rest of the individuals are generated
by running the Upper Confidence Bounds for Trees (UCT) tree policy. The tree policy
has the potential to create a different individual every time as the statistical tree is up-
dated with the evaluation of every previously seeded individual. To prevent stagnation
due to the small population size, the technique also injects seeded individuals in every
subsequent generation of the evolutionary process.

In [83], the authors propose five approaches to combine RHEA and MCTS in real-
time games of the GVGAI framework, and they find these approaches to be more robust
than the standard RHEA. In the chosen games, the agent controls a character in a 2D
map with multiple interactable items or Non-Playable Characters (NPCs). The games
may also include stochastic elements, such as unpredictable NPC movements. Their first
proposed algorithm is a variant of RHEA called RHEA with rollouts (EAroll). It runs a
small MCTS with a parameterised maximum search depth with its root set at the end of
the sequence of actions of each RHEA individual. The rewards obtained from the MCTS
are then averaged with those of the individual. The idea is to obtain a more accurate
fitness evaluation for each individual by finding a potential plan after the evolved actions.
The second variant is called RHEA then MCTS for alternative actions (EAaltActions).
It first runs a RHEA to find a solution and then allocates a portion of the computational
budget to a MCTS that searches for an alternative independent solution. Finally, the two
solutions are compared, and the one with the better fitness is selected as the final decision.
The third variant, called EAroll plus sequence planning (EAroll-seqPlan), incorporates
a buffer to retain the plan from the previously executed action in EAroll, which is then

used to initialise the search when the algorithm is called again. The fourth variant, EAroll
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plus occlusion detection (EAroll-occ), includes a check to identify inconsequential actions
in the EAroll action sequences. If any such actions are identified, they are removed to
potentially enhance the overall performance of the controller. The final variant, named
EAroll plus NPC attitude check (EAroll-att), introduces awareness of NPCs present in
the game, based on the assumption that their behaviours remain consistent throughout
the game. The agent learns whether collisions with a specific NPC type have resulted
in negative or positive consequences and uses this information to penalise or reward its

proximity to each type of NPC.

3.2.2 Generating EA offspring using Monte Carlo Tree Search

In the context of adversarial games with complex turns, Evolutionary Monte Carlo Tree
Search (EMCTS) [14] is a hybrid algorithm where the nodes of the statistical tree represent
complete action sequences for a single turn. The edges of the tree represent mutations
of the action sequences that lead to their offspring. As a result, EMCTS systematically
explores the search space of an EA. The search process in EMCTS begins with a single
individual, which serves as the root of the tree. The statistical tree is constructed using the
MCTS algorithm, employing UCBI1 as the tree policy. The action sequence represented by
each node in the statistical tree is evaluated by simulating its actions and using a heuristic
on the resulting state. The statistical tree of EMCTS exhibits a high branching factor
due to the numerous possibilities for mutation for each individual. To tackle this issue,
EMCTS incorporates Bridge Burning (BB) [93, 144], a pruning technique that divides the
search into an arbitrary number of phases. Once the budget for each phase is exhausted,
the best child of the root becomes the new root of the statistical tree. All nodes that are
not part of the new statistical tree are discarded, allowing the search to proceed.

The main drawback of EMCTS is its limitation in planning for the current turn, which
is addressed in its extension, Flexible Horizon Evolutionary Monte Carlo Tree Search
(FH-EMCTS) [13]. In FH-EMCTS, the parameter search horizon is introduced, which
increases the 