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Abstract
Despite the exclusion of the Southern Ocean from assessments of progress towards achieving the Convention on Biological 
Diversity (CBD) Strategic Plan, the Commission for the Conservation of Antarctic Marine Living Resources (CCAMLR) 
has taken on the mantle of progressing efforts to achieve it. Within the CBD, Aichi Target 11 represents an agreed com-
mitment to protect 10% of the global coastal and marine environment. Adopting an ethos of presenting the best available 
scientific evidence to support policy makers, CCAMLR has progressed this by designating two Marine Protected Areas in 
the Southern Ocean, with three others under consideration. The region of Antarctica known as Dronning Maud Land (DML; 
20°W to 40°E) and the Atlantic sector of the Southern Ocean that abuts it conveniently spans one region under consideration 
for spatial protection. To facilitate both an open and transparent process to provide the vest available scientific evidence for 
policy makers to formulate management options, we review the body of physical, geochemical and biological knowledge of 
the marine environment of this region. The level of scientific knowledge throughout the seascape abutting DML is polarized, 
with a clear lack of data in its eastern part which is presumably related to differing levels of research effort dedicated by 
national Antarctic programmes in the region. The lack of basic data on fundamental aspects of the physical, geological and 
biological nature of eastern DML make predictions of future trends difficult to impossible, with implications for the provi-
sion of management advice including spatial management. Finally, by highlighting key knowledge gaps across the scientific 
disciplines our review also serves to provide guidance to future research across this important region.
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Introduction

The Southern Ocean (SO), one of the five oceans of the 
World (International Hydrographic Organization) connects 
the three major oceans through the largest ocean current on 
Earth, the Antarctic Circumpolar Current (ACC). The SO 
plays a crucial role in the global climate system, being a 
major CO2 sink responsible for 40% of the anthropogenic 
CO2 uptake by the worlds ocean (Sabine et al. 2004, 2013; 
Khatiwala et al. 2009; Frölicher et al. 2015; Landschützer 
et al. 2015) with the largest net sink in the vast sub-Antarctic 

zone on the northern flank of the ACC (Sallée et al. 2012). 
Its northernmost boundary is not defined but can range from 
the northern front of the Antarctic Circumpolar Current at 
approximately 50°S up to 60°S, which is the definition sug-
gested by International Hydrographic Organization.

Unlike the boreal high latitude oceans, the SO has dis-
played comparatively little warming in recent decades likely 
due to the meridional overturning circulation at its northern 
boundary, which draws cold deep water up to the surface and 
dampens the effects of surface heat uptake (Armour et al. 
2016; Morley et al. 2020; Auger et al. 2021). This large-
scale stability is in stark contrast to the impacts of climate 
change at more regional scales such as on the nearshore 
marine environments, with thinning and collapsing ice 
shelves and glacier retreat being increasingly attributed to 
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rising air temperatures (particularly in the western Antarctic 
Peninsula) and upwelling of relatively warm Circumpolar 
Deep Water onto the continental shelf (Jenkins et al. 2018) 
Changing ocean temperatures are not the only pressure the 
SO is facing; ocean acidification is projected to further drive 
the potential range contraction of key species such as Ant-
arctic krill Euphausia superba (Kawaguchi et al. 2013) ; 
the impacts of fishing pressure for Antarctic krill and to a 
lesser extent toothfish (Dissostichus spp.) on foodweb struc-
ture and function are poorly understood (Marschoff et al. 
2012), as are both the implications of a questionable recov-
ery of historically overfished species (Welsford 2011) and 
the documented recovery of upper trophic predators such as 
Antarctic fur seals (Arctocephalus gazella) and cetaceans 
(Branch et al. 2004; Kock 2007).

The suite of biodiversity conservation “Aichi” Targets 
agreed to within the Convention on Biological Diversity 
(CBD) includes a commitment to protect 10% of the global 
coastal and marine environment through a representative 
system of protected areas and other area-based manage-
ment approaches by 2020 (Barnes 2015; Leadley et al. 2017; 
Chown et al. 2017), and more recent calls to increase this 
level of protection to ~ 30% by 2030 as part of the UK-led 
Global Ocean Alliance “30by30 Initiative” (https://​www.​
gov.​uk/​gover​nment/​topic​al-​events/​global-​ocean-​allia​nce-​
30by30-​initi​ative/​about). However, the SO is excluded from 
assessments of progress towards achieving the CBD Stra-
tegic Plan, including Aichi Biodiversity Target 11 (Chown 
et al. 2017). Under the Antarctic Treaty System (ATS), 
the Commission for the Conservation of Antarctic Marine 
Living Resources (CCAMLR) has taken on the mantle of 
progressing efforts to achieve the CBD Strategic Plan. The 
ability to place the impacts of the multitude of stressors into 
a broader ecosystem context that is useful for policy-making 
bodies such as CCAMLR is driven by the availability of 
information on how the ecosystem has varied over time. 
Unfortunately, long-term time series amenable to this are 
scarce in the SO which hinders our ability to make empirical 
statements on ecosystem status and variability (Constable 
et al. 2016). In this regard, modelling has become a popular 
toolset to support management and policy decisions within 
national legislature and international treaties (Fulton 2010). 
Modelling efforts can integrate a wide range of biogeo-
chemical and physical information in a common framework, 
highlight major processes, identify key knowledge gaps and 
provide a mechanism for examining management actions in 
a theoretical context prior to implementation (Fulton et al. 
2015). In terms of developing the best available scientific 
understanding of ecosystem structure and function, the 
selection and implementation of an appropriate modelling 
approach is driven by the availability of data (Fulton 2010).

Adopting an ethos of presenting the best available sci-
entific evidence to support policy makers at CCAMLR in 

designating spatial conservation measures, CCAMLR estab-
lished the world’s first high-seas Marine Protected Area 
(MPA), the South Orkney Islands Southern Shelf MPA in 
2009 (Fig. 1) (Trathan and Grant 2019). Subsequent to this, 
a more systematic approach to circum-Antarctic spatial plan-
ning was developed and underpinned by a benthic bioregion-
alization analysis of the best available data (Douglass et al. 
2014) and then formalized under Conservation Measure 
91–04 as a means to guide how spatial planning be under-
taken (Brooks et al. 2020). This analysis partitioned the Con-
vention area into nine discrete Planning Domains (Fig. 1) to 
ensure that CCAMLR-designated MPAs achieved a broad 
regional and representative coverage. Since the designa-
tion of the MPA Planning Domains, the Ross Sea Regional 
Marine Protected Area (RSRMPA) came into practice in 
2017 (1.5 M km2; (Brooks et al. 2020) (Fig. 1). Other poten-
tial MPA’s have been proposed across Domain 7 in East 
Antarctic (East Antarctic MPA, EAMPA; https://​www.​antar​
ctica.​gov.​au/​about-​antar​ctica/​law-​and-​treaty/​ccamlr/​marine-​
prote​cted-​areas/​eampa/) and Domain 1 across the western 
Antarctic Peninsula and Scotia Sea (D1MPA; (Sylvester and 
Brooks 2020).

Available infrastructure, finances and the harsh climate 
all serve to limit the capacity to collect information either 
directly through ship campaigns or indirectly using autono-
mous platforms and satellite-derived data. Importantly, the 
spatial distribution of collected data is not uniform. Intui-
tively then, developing a science-based understanding of 
the ecosystem in the SO that is appropriate and useful for 
policy makers to develop area-based management strate-
gies cannot rely on a single common analytical framework. 
Rather it must be achieved by using appropriate modelling 
tools supported by quality-controlled data which are then 
assessed for the level of confidence they provide (Fulton 
et al. 2015). This is possibly best exemplified by the very 
different analytical processes used in the development of 
the RSRMPA (benthic and pelagic bioregionalization with 
mass balanced foodweb model Pinkerton et al. 2010a; Sharp 
et al. 2010), EAMPA (bioregionalization and supported by 
important areas for upper trophic predators Raymond et al. 
2015; Wenzel et al. 2016), and D1MPA (MARXAN spatial 
planning tools) chosen based on the varying degrees of data 
availability and quality.

A third MPA is also under development throughout 
CCAMLR Domains 3 and 4, which is being led and devel-
oped by Germany (on behalf of the European Union and its 
Member States) and Norway, with a growing list of co-pro-
ponents which at the time of publication included Australia, 
India, Korea, New Zealand, Ukraine, United Kingdom, Uru-
guay and the United States of America (Teschke et al. 2021). 
The area under consideration spans the Weddell, Lazarev, 
Riiser-Larsen and Cosmonaut Seas (the latter three seas are 
also collectively referred to as the Kong Haakon VII Hav), 
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https://www.antarctica.gov.au/about-antarctica/law-and-treaty/ccamlr/marine-protected-areas/eampa/
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bounded to its east and west by the EAMPA and D1MPA 
proposals, respectively. Within this region, the German and 
South African Antarctic Research Programmes have a long 
history of scientific research of the Southern Ocean, each 
operating icebreaking ships to conduct scientific research 
and logistical support of their all-year Antarctic stations 
(Neumayer III and SANAE, respectively) for over forty 
years. There are four other nations that maintain a year-
round presence through Antarctic stations in the Weddell 
Sea / Dronning Maud Land (DML) area (Troll, Norway; 
Maitri, India; Syowa, Japan; Novolazarekskaya, Russia: 
Fig. 2) and an additional seven summer-only research sta-
tions operated by Belgium (Princess Elizabeth), Finland 
(Aboa), Germany (Kohnen), Norway (Tor), Sweden (Svea, 
Wasa) and Japan (Asuka); however, none of these have had 

vessels dedicated to marine research in recent history. Whilst 
remotely sensed environmental data from satellites, ocean 
moorings and other autonomous platforms provide data, 
early on in the process of developing the scientific under-
standing of the region it became clear that the vastly dif-
ferent levels of ship-based research effort had created an 
unbalanced distribution of physical, biogeochemical and 
trophic data across this region (Fig. 2). The western region 
from the prime meridian to the eastern side of the Antarctic 
Peninsula has been the focus of mainly German, British and 
Norwegian scientific expeditions resulting in a comprehen-
sive scientific understanding of the region that is amenable 
to a similar MARXAN spatial planning exercise as con-
ducted by the proponents of the D1MPA. However, the area 
to the east of the meridian out to the western boundary of 

Fig. 1   The nine Marine Protected Area (MPA) planning Domains 
(numerical values within each Domain) designated by the Com-
mission for the Conservation of Antarctic Marine Living Resources 
(CCAMLR) after a bioregionalization analyses of the best avail-
able scientific data (Douglass et  al. 2014). Red hatched lines cor-
respond to the region known as Dronning Maud Land (DML) and 
our review focusses on the marine environment off this section of 
coastline. Domain 1 contains the first MPA to be designated within 
the CCAMLR Planning Domains (the South Orkney Islands South-
ern Shelf MPA; solid green, SOISSMPA), whilst Domain 8 hosts 
the world’s largest MPA, the Ross Sea Regional MPA (green solid 
area, RSRMPA). There are three additional MPA proposals currently 
under consideration by CCAMLR; one led by Australia and the Euro-

pean Union in Domain 7 (East Antarctic MPA; green hatched area, 
EAMPA) and one in Domain 1 co-proposed by Argentina and Chile 
(grey hatched area, D1MPA), which also corresponds to the area in 
which the krill fishery primarily operates. The third MPA proposal, 
led by the European Union and its Member States and Norway, spans 
Domains 3 and 4 (Weddell Sea MPA; grey hatched area, WSMPA—
boundaries within the current iteration of the broader MPA are 
described in detail in Teschke et al. (2021)). Differences in data abun-
dance across the Prime Meridian have led to a two-phased approach 
to developing this latter proposal with the area to the west of the 
Prime Meridian (white dashed line) considered mature enough for 
agreement, whilst to the east additional work is required
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the EAMPA has received comparatively less research atten-
tion and consequently requires the application of a less data-
intensive modelling approach. To ensure that appropriate 
and robust scientific advice could be given, the proponents 
of the MPA agreed to adopt different modelling approaches 
to characterize the ecosystem in the west versus east (across 
this data imbalance) whilst ensuring that the outputs could 
be harmonized in order to make sense for management and 
policy-making purposes.

The region of Antarctica known as Dronning Maud Land 
(DML) and the Atlantic sector of the Southern Ocean (SO) 
that abuts it ranges from 20°W to 45°E (Fig. 1), conveniently 
span key geographic regions under management considera-
tion and it is this region that we focus on herein. We refrain 
from setting a latitudinal boundary for the northern extent 
of our review given both the challenges in delimiting the 

SO we describe earlier, and to maintain a degree of flex-
ibility in describing large-scale processes. We review the 
body of physical, geochemical and biological knowledge of 
the marine environment that has been generated through-
out this region. In conducting our review, we address two 
key aims (1) to provide a transparent scientific backdrop to 
place ongoing management work into context, particularly 
with respect to future MPA planning activities and (2) to 
give guidance for the direction of potential research needs 
that could be used to stimulate future collaborative science 
programmes in the region.

Fig. 2   The marine environment out from Dronning Maud Land 
(DML; bounded by black line) within the Atlantic Sector of the 
Southern Ocean (inset). Six year-round research stations are indi-
cated, whereas seven additional summer-only stations within DML 
are not shown (for image clarity). There is considerable seasonal vari-
ability in median sea ice extent that can reach almost as far north as 
Bouvetøya and the Antarctic Polar Front (PF—solid green line) dur-
ing the winter (solid purple line). World Ocean Database Conductiv-

ity Temperature and Depth (CTD), Ocean Station Data (OSD) and 
Expendable Bathythermograph (XBT) data within this marine region 
between 1999–2020 are shown (yellow dots) to exemplify the degree 
of data disparity on either side of the Prime Meridian (0° longitude). 
Our review focusses on the physical, geochemical and biological data 
across the marine environment adjacent to DML, generally as far 
north as the PF
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Physical system

Paleoceanography

In the Atlantic sector of Antarctica, several paleoceano-
graphic records have been established from the Antarctic 
Peninsula (Taylor et al. 2001; Shevenell et al. 2011; Hass 
et al. 2016; Allan et al. 2020) with others around Bouvetøya 
(Bianchi and Gersonde 2004; Divine et al. 2010) and the 
Scotia Sea (Allen et al. 2011; Collins et al. 2013). However, 
there are comparatively few reconstructions from the DML 
region. A continuous record covering the time range 1.35 
million years (My) to eight thousand years (ky) before pre-
sent (BP) from the continental margin off DML showing a 
linkage of oceanographic changes to fluctuations of North 
Atlantic Deep Water formation and the Atlantic Meridional 
Overturning Circulation (Forsberg et al. 2003). The record 
also clearly reflects the Mid-Pleistocene Transition around 
1.25–0.7 My when the duration of glacial-interglacial cycles 
changed from ca. 40 to 100 ky (Lisiecki and Raymo 2005; 
Clark et al. 2006).

During the Last Glacial Maximum (LGM) ca. 30–20 ky 
BP, diatom-based reconstructions from south of the Antarc-
tic Polar Front (PF) in the Atlantic sector of Antarctica indi-
cate that the last glacial summer SSTs were 1–3 °C colder 
than modern conditions (Xiao et al. 2016). The last glacial 
ended with a two-step warming, although this warming was 
suppressed towards the south by ice discharge from Ant-
arctica (Xiao et al. 2016). During the deglaciation, between 
16 and 14.5 ky BP, a slowing in the rate of warming in 
the Atlantic sector of the SO, including the seas offshore 
DML, decreased concurrently with a reduced rate of CO2 
increase in the atmosphere and a minor cooling over Green-
land (Stenni et al. 2011).

For the last ca. 12 ky (Holocene interglacial period), the 
sparse diatom-inferred SST records from the vicinity of the 
PF show relatively gradual climate change for the Atlantic 
sector of the SO (Nielsen et al. 2004; Divine et al. 2010; 
Xiao et al. 2016). In this area, the warmest ocean surface 
conditions were characterized by SSTs 1–3 °C above modern 
mean temperatures and reduced sea ice presence between 12 
and 9 ky BP. Subsequent cooling coincided with decreas-
ing summer insolation at high northern latitudes during the 
mid to late Holocene (Divine et al. 2010; Xiao et al. 2016). 
However, some records show that the late Holocene warm-
ing in the APF region began shortly after 4.4 ky BP (Divine 
et al. 2010) and that it coincided with the climate optimum 
at the Antarctic Peninsula around 4–3 ky BP (Hjort et al. 
1998). During the last 1.6 ky BP, warm SSTs comparable 
to the Early Holocene optimum prevailed in the APF of the 
Atlantic sector of the SO, and the Little Ice Age cooling 

of the Northern Hemisphere was not detected in this area 
(Hodell et al. 2001; Nielsen et al. 2004).

Ice shelves

The DML coast is dominated by ice shelves, which are 
floating extensions of the inland ice sheet (Fig. 3). The total 
area of DML ice shelves is ~ 221,000 km2 or about 14% of 
the total for Antarctic ice shelves. Compared to other Ant-
arctic regions, DML ice shelves are relatively small (typi-
cally ~ 100 km long/wide), they are bounded by promon-
tories of the ice sheet and their current termini are near 
the break of the continental shelf. The thickness of the ice 
shelves ranges from a few hundred metres to a kilometre, 
with thickest ice near the grounding line of major ice streams 
and outlet glaciers (Fretwell et al. 2013; Morlighem et al. 
2020) . The central parts of ice shelves are typically moving 
by several metres per day, whereas their sides can be nearly 
stagnant (Rignot et al. 2013).

Ice rises are locally grounded features within DML ice 
shelves, where ice-shelf flow is diverted around a topo-
graphic feature or as ice rumples when ice-shelf flow over-
rides the grounded feature (Matsuoka et al. 2015). Surface 
scars that appear in the middle of an ice shelf are typically 
related to local grounding and friction from ice rumples. 
Strong shearing and fracturing in these areas and along ice-
shelf margins can cause heavy crevassing and rifting that can 
spread to large areas downstream, seen for example on the 
Jelbart (Humbert et al. 2015) and Fimbul ice shelves (Hum-
bert and Steinhage 2011) and Shirase Glacier (Nakamura 
et al. 2010). Along-flow stripes and channels are typically 
advected from the grounding line where they have formed 
due to bedrock undulations and subglacial water outlets 
(Drews et al. 2017; Alley et al. 2018). These surface- and 
basal structures further evolve by localized ice-shelf strain 
and topographically induced basal melting/freezing and 
snow accumulation (Langley et al. 2014a; Berger et al. 2017; 
Drews et al. 2020). The implications of these surface- and 
basal structures on ice-shelf stability and mass balance have 
been a major research focus in recent years and the relevant 
processes need to be better parameterized in future ice-sheet 
models (Jansen et al. 2013; Borstad et al. 2017; De Rydt 
et al. 2018).

In general, DML ice shelves are in an advancing and 
growing phase until they calve off large icebergs with a 
retreated front as a result. The largest known calving event 
is that of Trolltunga on Fimbulisen where a 50 × 100 km 
iceberg broke off during the austral winter of 1967 (Swith-
inbank 1969) and spent a decade drifting westward along the 
coast to the Antarctic Peninsula with numerous breaks due to 
grounding on seamounts (Vinje 1977). In a similar pattern, 
many icebergs can be observed drifting or grounded along 
the coast of DML, both local ones and icebergs that originate 
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from as far east as the Ross Sea (Pirli et al. 2015). Compared 
to the rest of Antarctica, DML has been identified as a region 
with particularly infrequent calving and large iceberg sizes 
(Liu et al. 2015). This makes it complicated to interpret ice-
shelf extent in a climate context, so it is more common to 
focus on changes in ice thickness as a measure of ice-shelf 
condition. In contrast to West Antarctica where many ice 
shelves have been thinning rapidly, DML ice shelves have 
experienced a slight thickening over the last few decades 
(Paolo et al. 2015). Thickening has also been observed in the 
inland and over ice rises in DML (Goel et al. 2018; Smith 
et al. 2020). The apparent pattern of ice thickening might 
be part of a long-term trend or related to a positive snowfall 
anomaly over the region that started in 2009 (Boening et al. 
2012; Lenaerts et al. 2013). Observations of snow accumula-
tion on DML ice shelves show typical values of 0.2–0.6 m 
water equivalent per year (Sinisalo et al. 2013; Pratap et al. 
2022) , but with higher variability around ice rises due to 
orographic snowfall and wind erosion (Lenaerts et al. 2014; 
Kausch et al. 2020). Long-term ice core records from the 

coastal region indicate that snow accumulation over the last 
century has decreased in western DML (Altnau et al. 2015) 
and increased in eastern DML (Philippe et al. 2016). 

Surface melting is small compared to snowfall, but occurs 
regularly on many DML ice shelves (Trusel et al. 2013), 
particularly in blue-ice areas where a combination of kata-
batic winds and low albedo enhances melting (Winther et al. 
1996; Lenaerts et al. 2017). Most meltwater refreezes locally 
in the snow and firn, but near-surface drainage into streams 
and lakes occur at ice shelves like Nivlisen and Roi Bau-
douin (Kingslake et al. 2017; Dell et al. 2020). The ground-
ing zone of Nivlisen also hosts several epishelf lakes which 
are freshwater tidal lakes between rocky land and an ice 
shelf with a connection to the ocean beneath the ice shelf 
(Gibson and Andersen 2002; Phartiyal et al. 2011). If surface 
melting of DML ice shelves increases due to global warm-
ing, the firn pack might become saturated by ice (Hubbard 
et al. 2016) and start to contribute towards hydrofracturing 
and ice-shelf disintegration as seen on the Antarctic Penin-
sula (Scambos et al. 2000; Alley et al. 2018). Surface- and 

Fig. 3   Overview of glaciology and ocean bathymetry in Dronning 
Maud Land. Ice shelves are outlined in black and nunatak areas are 
shaded. Ice flow velocity (Gardner et al. 2018) is shown in colours on 
top of the Landsat Image Mosaic of Antarctica (Bindschadler et  al. 

2008). Ice sheet topography is visualized with 200  m contour lines 
(Helm et al. 2014) and ocean bathymetry is shown as a shaded relief 
(Arndt et al. 2013)
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subglacial meltwater runoff might also become relevant pro-
cesses for ice-sheet mass balance in the future (Bell et al. 
2018).

Basal melting of ice shelves by ocean water is more wide-
spread and of larger magnitude than surface melting. Over 
DML ice shelves, basal melt rates of up to a few metres per 
year have been measured locally by ice-penetrating radar 
(Langley et al. 2014b; Lindbäck et al. 2019) and inferred 
over larger areas by satellite remote sensing (Rignot et al. 
2013; Berger et al. 2017). Basal melt rates are typically high-
est near ice-shelf grounding lines, where ice is thickest, as 
well as within basal channels and near the fronts where sum-
mer-warmed surface water can penetrate below the ice-shelf 
fronts (Hattermann et al. 2012). Basal refreezing has also 
been observed at several locations (Orheim et al. 1990; Pat-
tyn et al. 2012), but is likely of small magnitude compared to 
the net basal melting which has been estimated to 75 Gt a−1 
(Rignot et al. 2013), 145 Gt a−1 (Liu et al. 2015) and 158 Gt 
a−1 (Adusumilli et al. 2020)  for DML as a whole. Seasonal 
and temporal variations in basal melting have been observed 
to be large (Lindbäck et al. 2019; Sun et al. 2019), but so far 
little is known about interannual variability and long-term 
trends in DML.

The discharge of ice across the grounding line to the 
DML ice shelves is estimated to be in the range 160–190 Gt 
a−1 (Rignot et al. 2013; Liu et al. 2015), with no significant 
change between 2008 and 2015 for the region as a whole 
(Gardner et al. 2017). This is consistent with other regions 
in East Antarctica, but in contrast to West Antarctica where 
several large glaciers have sped up (Mouginot et al. 2014) 
as a result of increased ice-shelf basal melting and conse-
quent loss of buttressing (Pritchard et al. 2012). Ice-shelf 
changes at this scale are so far unheard of in DML, but local 
observations and modelling show that ungrounding of ice 
rumples can cause significant glacier acceleration (Favier 
et al. 2016; Gudmundsson et al. 2017). Seaward of the ice 
rises and rumples, the ice shelves play a more passive role 
and are expected to have little or no dynamic impact on the 
inland ice sheet, acting as a safety band for future ice-front 
retreat (Fürst et al. 2016).

Sea floor, shelf geology and bathymetry

The seafloor off DML was created along a mid-ocean ridge, 
the Southwest Indian Ridge (SWIR), which is the tectonic 
boundary between the African lithospheric plate to the north 
and the Antarctic lithospheric plate to the south (Online 
Resource 1). SWIR is characterized as a slow to ultra-
slow mid-ocean spreading ridge (Sauter et al. 2013), with 
spreading rates as low as 14 mm a−1, amongst the slowest 
on Earth. The continental margin (including the continental 
shelf and slope) of DML has a rifted volcanic origin which 
formed during the break-up of Gondwana (Jokat et al. 2003). 

Bathymetry data is sparse in the east of DML region, with 
the International Bathymetric Chart of the Southern Ocean 
(IBCSO) relying heavily on interpolation between empirical 
data (Arndt et al. 2013). Offshore from western DML is a 
narrow coastal shelf with water depths of < 600 m, a steep 
continental slope interrupted by a steep cliff (the Explora 
Escarpment, Fig. 3) before the Weddell Abyssal Plain is 
reached at ca. 4400 m (Michels et al. 2002). The shelf has 
canyons, such as the Wegener Canyon, ridges and depres-
sions (Jerosch et al. 2016). The Weddell Abyssal Plain is 
generally flat, but it features the Maud Rise (Brandt et al. 
2011a)  and Astrid and Gunnerus Ridges (Fig. 3); Maud Rise 
is a large, equidimensional volcanic plateau in the Lazarev 
Sea which rises 2000 m above the seafloor; Astrid Ridge 
forms a pronounced north–south trending seafloor high, sep-
arating the Lazarev and Riiser-Larsen Seas; Gunnerus Ridge 
is a prominent bathymetric structure probably consisting of 
continental crust (Mizukoshi et al. 1986; Roeser et al. 1996) 
separating the Riiser-Larsen and Cosmonaut Seas.

The marine part of the continental margin of DML is bor-
dered by the grounding line and starts inland of the "coast-
line" defined by the ice shelf edge. Bathymetric surveys to 
the western limit of DML (southeast Weddell Sea) have 
revealed a channel-levee system; multiple channels merge 
into a larger channel flowing northeast towards DML (Kuhn 
and Weber 1993; Michels et al. 2002). A channel system 
in the Riiser-Larsen Sea extends from the upper continen-
tal slope towards the Enderby Abyssal Plain (Thiede and 
Oerter 2002; Hass et al. 2016). Bathymetry below the float-
ing Fimbul ice shelf based on seismic surveys (Nøst 2004; 
Smedsrud et al. 2006) compiled as part of the Bedmap2 
(Fretwell et al. 2013) and the Rtopo2 data sets (Schaffer 
et al. 2016) shows a relatively flat seafloor between 500 and 
1000 m water depth. Seismic observations of bathymetry 
under ice shelves exist for Fimbulisen (Nøst 2004; Smedsrud 
et al. 2006)  and Ekström Ice Shelf (Smith et al. 2020), and 
have been combined with airborne gravity data and model-
ling to coastal bathymetry maps for the main ice shelves 
of central DML (Eisermann et al. 2020, 2021). Remaining 
areas are covered by the bathymetry compilations Bedmap2 
and Rtopo2. Most of these data show a relatively flat sea-
floor between 500 and 1000 m water depth. However, some 
deeply incised valleys are also present, the most prominent 
of which is beneath the Jutulstraumen ice stream (Fig. 3). 
Other main topographic features are the ice rises which rest 
on shallower beds, but typically grounded well below sea 
level (Goel et al. 2020). In terms of marine sedimentation, 
the thicknesses of sediment sequences vary from ~ 1000 m 
in the Lazarev Sea to ~ 2000 m in the Riiser-Larsen Sea, 
with the thickest sequences occurring in the east (Hinz et al. 
2004).
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Sea ice off Dronning Maud Land

Landfast sea ice

Between 3 and 13% of Antarctic sea ice area (SIA) is land-
fast ice depending on the season (Aoki 2017; Fraser et al. 
2020)  with the remainder being drifting sea ice. However, 
landfast ice protects the ice shelf edge from waves and is 
an important habitat for penguins and seals (Fraser et al. 
2020, 2021). There are a limited number of studies in the 
DML region, such as those on break-up of landfast sea ice 
at Lützow-Holm Bay, eastern DML (e.g. Aoki 2017), and 
on landfast ice evolution in Atka Bay (Arndt et al. 2013, 
2020)  (Fig. 3). In the new circum-Antarctic landfast sea ice 
distribution data set from 2000 to 2018 (Fraser et al. 2020, 
2021) the area off DML is found to be a region with rather 
low landfast ice extent compared with other regions along 

the Antarctic coast (see Figs. 3, 4 in Fraser et al. 2020). 
DML fast ice area varies within 1–7 × 104 km2 comprising 
from nearly 30% (summer, February) to only about 1% (win-
ter, September) of total sea ice area in the region (Figs. 4, 
5). This might be linked to a generally deeper bathymetry 
(Fig. 2) and hence a less frequent presence of grounded ice-
bergs that could provide the anchoring points for landfast 
ice off the coast of DML (Fraser et al. 2021). Noteworthy is 
that about half of the landfast ice in the 20° W to 40°E sector 
is located in the Lützow-Holm Bay area (between 33° and 
40°E), and the reminder of the DML coastline has relatively 
little landfast ice.

Pre‑satellite records of Antarctic sea ice extent variability

Our knowledge of Antarctic sea ice variability including 
DML for the period before 1979 remains fragmentary and 
largely based on early satellite records (Gallaher et al. 2015), 
paleorecords (Stenni et al. 2017; Thomas et al. 2019)  and 
documents (e.g. ship logbooks). Whale catch positions have 
been used to infer the regional summer sea ice extent (SIE) 
retreat within 50°W–120°E by ca. 3–7° of latitude between 
1931–1961 and 1971–1987 (de la Mare 1997; Cotté and 
Guinet 2007) . A total decrease of 25% in Antarctic SIE 
may have occurred between these two periods, with the larg-
est changes found for the DML region. However, pan-Ant-
arctic sea ice maps of Hansen (1934, 1936) for 1929–1934 
based on information from Norwegian whaling factories do 
not support such a drastic change. Accounts from earlier 
expeditions to Antarctica (1897–1917) provide additional 
evidence for a possible lack of secular trend in Antarctic 
summer SIE over the twentieth century. Historical sea ice 
conditions around Antarctica are comparable to the present 

Fig. 4   Amplitudes of seasonal cycles of sea ice extent (a) and sea ice 
area (b) in the Dronning Maud Land sector of the Southern Ocean. 
Plots based on Special Sensor Microwave/Image monthly mean sea 
ice concentrations since 1979. The magnitude of seasonal cycle 
for each year is calculated using the method of Huang and Savage 
(1998). Blue (red) dots indicate the months when the seasonal maxi-
mum (minimum) of sea ice extent (a) and area (b) were registered

Fig. 5   Anomalies of sea ice extent (SIE) winter maximum and sum-
mer minimum in the Dronning Maud Land sector of the Southern 
Ocean since 1979. Plots are derived from Special Sensor Microwave/
Imager derived monthly mean sea ice concentrations
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day except for the Weddell Sea area where a sea ice edge 
shift by 1.0–1.7° further north has been inferred (Edinburgh 
and Day 2016).

Antarctic sea ice extent and area off Dronning Maud Land 
during the satellite remote sensing era

Sea ice variability off the coast of DML is dominated by the 
seasonal cycle that represents some 97% of the total variance 
for both sea ice area (SIA) and SIE over the period 1979 to 
2020. The seasonal cycle itself is highly variable with the 
amplitude changing from 4.0 to 5.6 million km2 (Fig. 4a) 
and from 3.2 to 4.3 million km2 for SIA (Fig. 4b), respec-
tively. As a result, no significant changes and trends over 
this period for the study area were detected neither in SIE, 
nor SIA. The annual minimum SIE is typically reached in 
February, but occasionally in March (Fig. 4a). The seasonal 
timing of the winter SIE maximum is slightly more variable, 
varying from September to October, with the majority of 
maxima in October. Similar applies for SIA (Fig. 4b) though 
maximum SIA often tends to precede the SIE maximum, 
pointing to a role of a wind-forced drift in a final phase of 
the seasonal sea ice expansion and a relatively large sea ice 
velocity trend for the DML sector compared with most other 
Southern Ocean regions (Holland and Kwok 2012). Time-
series of anomalies for the seasonal SIE and SIA extremes 
for the DML sector (Fig. 5) are significantly anticorrelated, 
pointing to influence of albedo and heat uptake feedbacks 
(Stammerjohn et al. 2012; Holland 2014).

Sea ice thickness in Dronning Maud Land

Information on thickness of Antarctic sea ice is still sparse. 
Pack ice thicknesses measured with the laser altimeter on 
ICESat in late 2003 were around 1 m off DML, whilst thick-
ness estimates from ship-based observations were much 
thinner at approximately 0.5 m, or less (ASPeCt data, see 
http://​aspect.​antar​ctica.​gov.​au/​data; Worby et al. 2008; Mak-
sym et al. 2012). Spring ice thicknesses for the Weddell Sea 
and the westernmost part of DML measured from ICESat 
were in the range 1–2 m (Yi et al. 2011), whilst thicker 
sea ice in the Weddell Sea for years 2011, 2014 and 2016, 
averaged to 2.4–2.6 m based on recordings from airborne 
surveys (Operation IceBridge) (Kwok and Kacimi 2018). 
Strong interannual variability of ice thickness for pack ice 
off Lützow-Holm Bay has also been detected between 2000 
and 2012, with a mean total thickness of 1.9 m (Sugimoto 
et al. 2016) .

Direct measurements of landfast ice thickness in Rek-
tangelbukta in early summer between years 2005 and 2010 
revealed a dominant mode in the range 1.50–1.75 m, and a 
broad range of snow thicknesses (dominant mode 0–0.2 m, 
but also occasionally large amounts of snow > 0.5 m) (Heil 

et al. 2011). Ice thickness surveys in Atka Bay, over a 9-year 
period, showed that the ice thickness was about two metres 
(Arndt et al. 2020). In Lützow-Holm Bay fast ice thickness 
varied significantly between years, with significant contri-
bution from snow to ice mass balance (Kawamura 1997), 
whilst Uto et al. (2006) revealed distinct first- and multi-
year zones with thicknesses of 1–2 and 2–4 m, respectively. 
Snow-ice, from upward ice growth at the transition snow-ice 
due to flooding with seawater and refreezing, is widespread 
in the Antarctic ice pack (Lange et al. 1990; Eicken et al. 
1994). Snow-ice is found in the DML region in both pack 
ice and landfast sea ice (Kawamura 1997) . Platelet ice, 
which can contribute to ice growth from below, has also 
been observed in DML (Hoppmann et al. 2015; Hunkeler 
et al. 2015; Arndt et al. 2020).

Physical oceanography

The regional oceanographic environment is characterized by 
the influence of the Weddell Gyre, a large cyclonic, wind-
driven ocean gyre that connects the Antarctic Circumpolar 
Current (ACC) with the coastal circulation in the Atlantic 
sector of the Southern Ocean (Vernet et al. 2019) (Fig. 6). 
With a major site of Antarctic Bottom Water formation 
located in the southwest (Orsi et al. 1999; Meredith 2013), 
and comprising the World’s largest contiguous region of 
deep upwelling in the interior (Marshall and Speer 2012; 
Talley 2013), the Weddell Gyre allows strong connections 
between the atmosphere, surface ocean, and deep waters. Its 
dimensional overturning circulation plays an important role 
for the biological and carbon cycle in the Southern Ocean 
(MacGilchrist et al. 2019) and has the capability of modulat-
ing global climate on time scales of hundreds to thousands 
of years, arguably being one of the most influential oceanic 
region on the planet (Vernet et al. 2019).

The southern, westward flowing part of the Weddell Gyre 
forms a topographically steered boundary current over the 
steep continental slope which converges with the shallower 
Antarctic Coastal Current that flows westward on the narrow 
continental shelf into the Weddell Sea (Fahrbach et al. 1992; 
Heywood et al. 2013). The eastern gyre inflows (Ansorge 
et al. 2015; Ryan et al. 2016) fuel this joint boundary current 
system with Circumpolar Deep Water, a relatively warm, 
saline, nutrient-rich and oxygen-depleted mid-depth water 
mass of tropical origin present in the ACC. On its way south, 
this water mass is transformed into a slightly colder deriva-
tive called Warm Deep Water (WDW), as it entrains the 
Weddell Gyre (Nicholls et al. 2009).

In principle, WDW has a large potential to melt the Ant-
arctic Ice Sheet along the DML coast (Hattermann et al. 
2014) and the Weddell Sea downstream (Hellmer et al. 2012, 
2017), with direct consequences for global sea level (Tim-
mermann and Goeller 2017). However, despite its proximity 

http://aspect.antarctica.gov.au/data
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to the continent, the WDW is currently separated from the 
coast by the pronounced Antarctic Slope Front, shaped by 
prevailing easterly winds that set up a southward Ekman 
transport such that cold, fresh Antarctic Surface Water is 
transported onshore (Sverdrup 1954; Nøst et al. 2011) push-
ing the WDW down to 600–700 m depth (Heywood et al. 
2013) (Fig. 7).

Coastal polynyas that are of great importance for local 
sea ice formation and biological productivity (Arrigo et al. 
1997; Moreau et al. 2019) are typically smaller here than 
elsewhere around Antarctica (Tamura et al. 2016) and bot-
tom water formation usually does not occur in this region 
(Fahrbach et al. 1994). Instead, the convergence of sea ice 
melt water along the DML coast, associated with the easterly 
winds (Hattermann et al. 2012; Zhou et al. 2014), gives rise 
to a cold and “fresh shelf regime” (Thompson et al. 2018) 
that contrasts with the dense water masses produced by sea 
ice export on the wide southern Weddell Sea continental 
shelf (Nicholls et al. 2009) and the warmer continental shelf 
regions in west Antarctica (Jenkins et al. 2018).

Whilst the coherent along-slope boundary currents propa-
gate oceanic signals over long distances along the Antarctic 
margin (Graham et al. 2013) prominent topographic features, 
such as Gunnerus and Astrid Ridge and the undersea Maud 
Rise affect the local circulation (de Steur et al. 2007; Dong 
et al. 2016) and can influence the presence and timing of 
sea ice, and biological productivity in this region (Kauko 
et al. 2021). Maud Rise in particular, plays a role in the 

intermittent appearance of the Weddell Polynya (Gordon 
1978; Campbell et al. 2019; Francis et al. 2019) that is asso-
ciated with the strength of the westward flow impinging on 
the seamount (Holland 2001).

Many open questions of the ocean, climate and marine 
ecosystem off the DML coast depend on a better under-
standing of the interaction of the narrow continental shelf 
regime with the deep ocean circulation of the Weddell 
Gyre (Vernet et al. 2019). The effect of melting of DML 
ice shelves on the water masses of the Weddell Gyre in 
a changing climate, and vice versa, plays key role for 
the circulation in this sector of Antarctica (Hattermann 
2018) and, thus, important for predicting future sea lev-
els (Hellmer et al. 2017). Whilst the main physical pro-
cesses that mediate the energy and mass fluxes from the 
deep ocean and across the Antarctic Slope Front are 
known, including surface Ekman dynamics (Hayakawa 
et al. 2012), mesoscale eddies (Nøst et al. 2011; Stewart 
and Thompson 2015; Thompson et al. 2018), local topo-
graphic interactions (Price et al. 2007; St-Laurent et al. 
2013), tides (Sun et al. 2019) and undercurrent dynamics 
(Chavanne et al. 2010).

Shipboard hydrographic data are mostly available for the 
(eastern and southern) Weddell Sea, whilst only sporadic 
observations from the Weddell Gyre east of the prime merid-
ian are available (Ryan et al. 2016). Increasing availability 
of (sea ice tracking) Argo floats has boosted the coverage in 
the interior gyre (Reeve et al. 2019; Moreau et al. 2020), and 

Fig. 6   The general circulation and pathways of water masses in the 
Weddell Gyre off the Dronning Maud Land coast (from Reeve et al. 
2019). ACC​ Antarctic Circumpolar Current, CDW Circumpolar Deep 

Water; (m)WDW (modified)Warm Deep Water, WSDW Weddell Sea 
Deep Water, WSBW Weddell Sea Bottom Water
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the dawn of animal-sensor based hydrographic observations 
(Roquet et al. 2013) helps to fill in the Southern Ocean data 
desert. However, the general lack of coastal observations 
(Jourdain et al. 2019) and severe summer bias (Hattermann 
et al. 2018) limit our understanding of the dynamics at the 
gyre margin (Reeve et al. 2019). Dedicated, year-round, as 
well as long-term observational efforts are needed to better 
understand and forecast the physical processes that affect 
various aspects of the marine environment in the DML 
region.

Biogeochemical system

Air‑sea CO2 fluxes, ocean acidification 
and biogeochemical drivers

The marine environment of DML is physically and chemi-
cally a dynamic area due to the interaction between bathy-
metric features, frontal systems, sea ice edges and zones, 
ice shelves and variability in biogeochemical processes 
(Bakker et al. 1997; Bathmann et al. 1997; Chierici et al. 

2004; Fransson et al. 2004a, b; Landschützer et al. 2015). 
The variability in these features and processes has a large 
impact on sea-air CO2 exchange and vertical carbon export 
on diurnal, seasonal and interannual scales (Hoppema et al. 
1999, 2000; Chierici et al. 2004; Fransson et al. 2004a; 
Metzl et al. 2006). The seasonal cycle is the dominant fac-
tor of the variability of partial pressure of CO2 (pCO2) in the 
Southern Ocean, with net outgassing of CO2 being dominant 
during winter and biological uptake during summer (Metzl 
et al. 1999; Fransson et al. 2004a; Lenton et al. 2013; Mon-
teiro et al. 2015). Biological uptake of CO2 is enhanced at 
fronts, in the ACC (Chierici et al. 2004)  and in the marginal 
sea ice zone (Froneman 2004; Arrigo et al. 2008)  due to 
the availability of essential macro-nutrients and iron, and 
surface-water stratification (de Baar et al. 1995; Bathmann 
et al. 1997; Bathmann 1998; Chierici et al. 2004; Arrigo 
et al. 2008; Tagliabue et al. 2014; Graham et al. 2015). In 
the eastern Weddell Sea, the relatively warm and CO2-rich 
Circumpolar Deep Water (CDW) is transported upwards in 
the water column affecting the ocean chemistry and increas-
ing surface CO2 and ocean acidification (Hoppema et al. 
1995; Bakker et al. 1997; Chierici et al. 2004; Fransson 

Fig. 7   Vertical cross sections of the Antarctic Slope Front (ASF) in 
the reduced-salinity shelf regime along the DML coast Sea at approx-
imately 17°W. Seasonal climatologies of winter (July–December) 
and summer (January–June) of (a), (c) potential temperature and (b), 
(d) salinity constructed from > 2800 ship-based and sensor-equipped 

seal hydrographic profiles and projected onto standard cross section. 
Dashed vertical lines indicate the spacing of individual depth bins 
as described in Hattermann (2018); the red curve shows the average 
thermocline depth as a constant reference in each panel
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et al. 2004b; Pretorius et al. 2014) . Moreover, direct pCO2 
measurements obtained in early winter under the ice of the 
Weddell Sea, combined with estimated entrainment rates, 
showed that an area of intense upwelling expressed by the 
structure of the cyclonic gyre has the capability to be almost 
continuously a sink for atmospheric CO2 (Stoll et al. 1999; 
Hoppema 2004a, b; Van Heuven et al. 2014). Moreover, in 
DML, autumn surface pCO2 observations showed the largest 
ocean CO2 uptake in the region, particularly near the ice-
covered coast of DML (Ogundare et al. 2021). However, the 
effect of seasonal ice melting on the surface pCO2 variability 
has showed a rapid change from CO2-rich under-ice surface 
water to a phytoplankton-mediated CO2 sink (Chierici et al. 
2004; Hoppema et al. 2007; Bakker et al. 2008).

Near the continent and in the Weddell Sea, Antarctic Bot-
tom Water (AABW) is formed. When formed, surface-water 
CO2 and dissolved oxygen equilibrated with atmospheric 
CO2 and oxygen sink together with this cold and dense 
water to the bottom or the deep ocean (Metzl et al. 1995; 
Hoppema et al. 2001; Ohshima et al. 2016). In the Weddell 
Sea, 13–30% of AABW formation has been reported, and 
estimates of anthropogenic CO2 in AABW showed a contri-
bution of at least 6% of the presently estimated worldwide 
natural CO2 sequestration in the abyssal oceans (Hoppema 
2004a, b).

Due to climate change with warming and melting of sea 
ice and ice shelf in DML, the increased release of freshwater 
may increase the surface stratification, which in turn may 
increase the phytoplankton-mediated ocean CO2 sink and 
seasonal pCO2 variability (Chierici et al. 2004; Hoppema 
et al. 2007; Bakker et al. 2008). With more open water and 
wind-induced upwelling, surface-water pCO2 will potentially 
increase. In the 1990s the winds were stronger over much 
of the SO, causing more water to be upwelled to the surface 
from depth (Le Quéré et al. 2007). Since these deeper waters 
contain higher concentrations of CO2, the upwelling resulted 
in an anomalous release of CO2 into the atmosphere, result-
ing in a stagnation or even a decrease in the ocean’s net 
CO2 uptake (Landschützer et al. 2015). However, in recent 
years, the weakening of this upwelling system enables the 
upper ocean to absorb more CO2 (Landschützer et al. 2015), 
where changes in the wind-driven circulation patterns are 
likely responsible for higher oceanic uptake of atmospheric 
CO2 (Takahashi et al. 2009). The current understanding of 
the seasonal drivers of surface-water CO2 and air-sea CO2 
exchange in the Southern Ocean is still limited, particularly 
in DML, where more observations during different seasons 
are required to accurately represent the seasonal cycle of 
CO2 (Lenton et al. 2013; Monteiro et al. 2015; Ogundare 
et al. 2021). Due to low CO2 data coverage during autumn, 
limited sea-air CO2 flux estimates from direct sea-surface 
CO2 observations particularly in the ice-covered regions off 
the coast of DML and in the Weddell gyre are available. 

This highlights the importance of increasing seasonal CO2 
observations especially during autumn/winter to improve 
the seasonal coverage of flux estimates in the seasonal sea 
ice-covered regions of DML as well as in the entire South-
ern Ocean. There is a general lack of coastal observations 
in DML, particularly in autumn and winter, when there is 
sea ice, which limit our understanding of the seasonal vari-
ability, biogeochemical drivers, and net ocean CO2 uptake 
(Ogundare et al. 2021). There is a need for year-round obser-
vations on CO2 system (pCO2, pH, alkalinity) and other bio-
geochemical variables (e.g. dissolved oxygen, nutrients), as 
well as long-term observational efforts to better understand 
the changes and variability due to physical, chemical and 
biological processes that affect the marine environment and 
ecosystem in the DML region. To fill these gaps in season-
ality, research expeditions in autumn and winter, the use of 
long-term moorings with pCO2, pH and other biogeochemi-
cal sensors at different depths near the coast in DML and 
Argo floats (sea ice tracking) including biogeochemical sen-
sors (Moreau et al. 2020) can increase the coverage. Moreo-
ver, during the open-water seasons, additional surface-water 
pCO2 data can be obtained from remotely sensed data using 
algorithms (Mattsdotter Björk et al. 2014).

Biological system

Benthic fauna

There are very few registered biological samples from 
the benthos of Kong Haakon VII Hav; from early Alfred 
Wegener Institute cruises in the 1980s and 1990s; from one 
station on ANDEEP-III (2005) and from the Maud Rise 
seamount (Brandt et al. 2007), 15 shallow dive stations at 
the Japanese Syowa station (0–18 m depth) (Nakajima et al. 
1982) and three benthos-stations from a Norwegian cruise 
in 2019 (unpub). Photo and video records of benthos from 
the late 1980s and onwards have been compiled by and spa-
tially examined in 3°latitude × 3°longitude units (Gutt et al. 
2013a, b). Several of these datasets are available through, 
for example, the SCAR Antarctic Biodiversity Portal (www.​
biodi​versi​ty.​aq), PANGAEA (www.pangaea-de),  De Broyer 
et al. (2011) and Teschke et al. (2020). This lack of volume 
in benthic datapoints (see e.g. Barnes et al. 2009) both high-
lights the urgent need for more benthic sampling in the area, 
as well as explains the use of extrapolated knowledge from 
neighbouring areas as a basis for understanding the Kong 
Haakon VII Hav benthos.

The benthic fauna can be separated in two major groups 
(1) the shallow- and shelf-fauna and (2) deep-sea fauna. Intu-
itively, the shallow and shelf-fauna is vastly more examined 
than that of the deep sea, despite an increased effort over the 
last 20 years to include areas deeper than 1000 m (De Broyer 

http://www.biodiversity.aq
http://www.biodiversity.aq
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and Koubbi 2014). The benthic fauna is generally both rich 
and very diverse (Clarke and Johnston 2003), but common 
taxa such as Brachyura (true crabs) are absent (Griffiths et al. 
2014) (except from two specimens of Hyas araneus thought 
to have arrived with ballast water at South Shetland Islands 
(Tavares and De Melo 2004), whilst groups like pycnogo-
nids (sea spiders) are present in exceptionally high numbers 
compared to other areas (Clarke and Johnston 2003; Convey 
et al. 2011). Geographic separation and stable environmental 
conditions over geological timescales have resulted in high 
levels of endemism (50–90% on-shelf) (Kaiser et al. 2013), 
with several taxa showing high percentages of crypticism 
and species new to science whenever they are systematically 
identified (up to 90% of species registered in some taxon-
studies) (Brandt et al. 2011b). The benthic fauna is generally 
slow- and long lived, and a larger percentage than in other 
regions are brooders (Kaiser et al. 2013), but planktotrophy 
has been reported as common in the shallows (Poulin et al. 
2002). Many taxa are specially adapted with inter alia gigan-
tism, dwarfism and antifreeze proteins (Kaiser et al. 2013).

The shelf and shallower subtidal waters of the Antarctic 
are regularly disturbed by iceberg scouring and infrequently 
disturbed by drop-stones. This leaves a seafloor combined 
of both soft-bottom (mainly silty) and scouring troughs with 
exposed bedrock near land and smaller areas of hard-bottom 
where there are drop-stones. As the benthic fauna generally 
varies depending on available habitat or substrate, this vari-
ety of seafloor allows for diverse assemblages of fauna (Gutt 
and Starmans 1998; Raguá-Gil et al. 2004; Linse et al. 2013; 
Dorschel et al. 2014; Pineda-Metz et al. 2019). The sessile 
fauna is much reduced by iceberg scourings (Gerdes et al. 
2003; Gutt and Piepenburg 2003) and higher in undisturbed 
areas, particularly in hard-bottom habitats such as drop-
stones and exposed bedrock (Bathel and Gutt 1992). The 
silty abyssal plains are often viewed as one unbroken habi-
tat, but geological structures such as seamounts, ridges and 
troughs form habitats shaping the fauna also here (Brandt 
et al. 2011a). The closest area to Kong Haakon VII Hav that 
has been extensively studied is the Weddell Sea and using 
this area as a theoretical template for what we can find in 
Kong Haakon VII Hav might be informative. Community 
complexity is generally high even with increasing spatial 
resolution, but processes driving the spatial patterns in ben-
thos are little known (Gutt et al. 2013a). Core communi-
ties may include sessile suspension feeders, with or without 
sponges, supported by food entrained in strong near-bottom 
currents (Gutt 2007). In low-current areas, communities are 
typically dominated by infauna and mobile epifauna and 
controlled by vertical phytodetritus flux and soft sediments. 
For the sheltered shallow soft bottom communities, grain 
size of the sediment and organic content seem to be the 
greatest factors shaping the communities (Vause et al. 2019). 
For much of the fauna below 1000 m, the only pattern that 

can be discerned is that depth seem to have a higher impact 
than latitude (Linse et al. 2007).

The shelves of the Weddell Sea are spatially highly heter-
ogenous with regard to both biodiversity and biomass (Gutt 
et al. 2013a). Areas with strong near-bottom currents may 
hold complex communities of suspension feeders such as 
sponges (Barthel and Gutt 1992), soft corals, bryozoans and 
ascidians that may function as substrate for other inverte-
brates as well as hiding areas for smaller fishes. These areas 
can have a very high biodiversity and biomass (Gerdes et al. 
1992). Areas with less strong near-bottom currents are often 
dominated by highly motile echinoderm taxon-groups such 
as Ophiuridae and Holothuriidae. Generally, the biomass 
of motile echinoderms will increase with a decrease in the 
structure-building sessile fauna and decrease when the struc-
ture builders dominate (Galéron et al. 1992).

The deep parts of the Weddell Sea, and of the Southern 
Ocean in general, seem to have a strong connection to other 
abyssal basins because of isothermal conditions in the lower 
water column (Brandt et al. 2007, 2011a)—especially for 
species with a high spreading capacity. Brooders and slow 
spreaders, on the other hand, seem to have very high levels 
of Southern Ocean endemism, and studies have shown that 
there are very high percentages of undescribed and cryptic 
species. Many case-studies show this number to be as high 
as 90%; this is most possibly also a sign of under-sampling 
(Brandt et al. 2011a).

Kong Haakon VII Hav has a very narrow available shelf 
and a slope marked by canyons, with the majority of the 
area being deeper than 1000 m. Prominent features are: sea-
mounts (Maud Rise) and deep ridges (Astrid Ridge and Gun-
nerus Ridge) with adjacent deep plateaus (De Broyer et al. 
2011). These structures will have coarser sediments or even 
for Maud Ridge some hard bottoms. First indications from 
the mega-benthos (video-samples) from these areas from the 
Norwegian cruise 2019 are that the Astrid Ridge has a high 
biodiversity of echinoderms and sponges, whilst Maud Rise 
has a high diversity of sponges, soft corals and ascidians, 
especially at the exposed bedrock (A.H.S Tandberg, pers. 
obs). Seamounts are of particular interest biologically, as 
they often have a unique fauna and can be viewed as “step-
ping stones” for distribution of benthic taxa (Pitcher et al. 
2008; Kvile et al. 2014). Previous studies from Maud Rise 
indicate that the macro-benthos is distinctly different from 
the surrounding deeper plains and the deeper Weddell Sea, 
with several families of Polychaeta, Porifera and Isopoda 
being rare or seemingly endemic to the Maud Rise, and gas-
tropods being far more abundant than in other deep Weddell 
Sea stations (Brandt et al. 2011a).

Studies show that the projected increase of seafloor tem-
perature will result in an average 59% decrease of the avail-
able suitable habitats for 79% of the shelf species (Griffiths 
et al. 2017). The high O2-levels supported by the steady cold 
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temperatures in the SO have been seen as one reason for the 
polar gigantism seen in many benthic species (De Broyer 
1977; Chapelle and Peck 1999; Moran and Woods 2012). 
A warming ocean, especially warming near-bottom waters 
in the SO will, with its lowered capacity for O2, possibly 
reduce not only the size of the giants (Spicer and Morley 
2019), but also the general respiratory capabilities of sev-
eral species and even other physiological mechanisms such 
as the gut-movements of pycnogonids (Woods et al. 2017). 
Some evidence suggests that the increase in ocean acidifica-
tion will be particularly problematic for benthic calcifying 
animals associated with the narrow shelves of the eastern 
Weddell Sea (Figuerola et al. 2021), as the sediments here 
are shown to have high levels of CaCO3 (Hauck et al. 2012).

The effect of the relatively recent trend of extended 
ice cover and increased amounts of ice-berg scouring and 
stranding in the north-eastern Weddell Sea has recently been 
examined (Pineda-Metz et al. 2020), where the decrease in 
primary (pelagic) productivity due to the increased whiten-
ing is reflected in a pronounced decrease in both microben-
thic abundance and biomass.

Productivity of the Dronning Maud Land sector

The DML sector does not feature any major productivity 
hotspots associated with the coastal or island effect common 
to the west Antarctic Peninsula and the sub-Antarctic islands 
(Blain et al. 2007; Vernet et al. 2008), but chlorophyll a and 
particularly net primary productivity derived from satellite 
ocean colour summer climatology (Fig. 8) reveal a large 
open ocean area of high phytoplankton productivity. This 
zones seems to be associated with topographically induced 
upwelling of deep waters enriched in iron by hydrothermal 
vent activity downstream of the Southwest Indian Ridge 
(Ardyna et al. 2019). In fact, a recent study suggested that 
primary production in open waters of the eastern part of the 
DML sector is responsible for the strong carbon sink of the 
Weddell Sea (MacGilchrist et al. 2019). The importance of 
this primary productivity was somehow unexpected given 
the relatively low overall surface ocean chlorophyll concen-
trations (Kauko et al. 2021)  (Fig. 8). On the contrary, DML 
coastal polynyas such as Lutzow-Holm Bay are amongst the 
least productive coastal polynyas of Antarctica, based on 
satellite-derived ocean colour (Arrigo et al. 2015), possibly 
because of their small sizes and the quasi-absence of a shal-
low continental shelf as a sedimentary iron source. Hotspots 
of high primary productivity partially overlap with areas 
of ecological significance identified via tracking of marine 
predators (Hindell et al. 2020). However, there is very lim-
ited in situ data for the DML sector east of the prime merid-
ian compared to the wealth of studies west of the prime 
meridian and the Weddell Gyre (Vernet et al. 2019) .

Phyto‑ and zooplankton

Recent initiatives, including the Baseline Research on 
Oceanography, Krill and the Environment (BROKE and 
BROKE-WEST) studies (Swadling et al. 2010)  or the 
Southern Ocean Continuous Plankton Recorder (SO-CPR) 
Surveys (Hosie et al. 2003; McLeod et al. 2010; Pink-
erton et al. 2010b), have attempted to broaden the geo-
graphical extent of plankton studies towards the eastern 
Indian sector. (Hegseth and von Quillfeldt 2002). Most 
phytoplankton investigations are restricted to the sum-
mer months when the sea ice is at its minimum (Vernet 
et  al. 2019) However, highest Chl-a concentrations of 
3 mg m−3 were observed in the northeastern Weddell Sea 
and Lazarev Sea were observed in autumn whilst winter 
concentrations never exceeded 0.08 mg m−3 (von Harbou 
et al. 2011). The haptophyte algae Phaeocystis antarc-
tica and diatoms (in particular Fragilariopsis cylindrus 
and F. curta) appear to be important phytoplankton taxa 
in the Weddell Gyre (Hegseth and von Quillfeldt 2002; 
Moreau et al. 2013) whilst autotropic dinoflagellates and 
cryptophytes seem to be more of local importance (Fig. 9). 

Fig. 8   Austral summer climatology (2002–2016) of satellite-derived 
(MODIS-Aqua) a sea-surface Chlorophyll-a (the main phytoplank-
ton pigment) and b net phytoplankton production from the Carbon-
based Production Model (CbPM, Behrenfeld et al. 2005). Both vari-
ables indicate the contribution of phytoplankton to carbon uptake and 
the marine food web. The mean (1987–2016) sea ice extent is indi-
cated for September (light grey line) and February (dark grey line), 
obtained from NOAA/NSIDC Climate Data Record of Passive Micro-
wave Monthly Southern Hemisphere Sea Ice Concentration
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Protozooplankton, often referred to as microzooplank-
ton, are important grazers of phytoplankton and usually 
dominated by heterotrophic flagellates, dinoflagellates 
and ciliates but large protozoans, including foraminifera, 
radiolarians and acanthareans, can make up a significant 
fraction of Southern Ocean protozooplankton biomass 
(Caron et al. 1995; Henjes et al. 2007; Decelle et al. 2012; 
Assmy et al. 2014). All major metazooplankton groups 
are represented in the Southern Ocean (Fig. 10) and total 
zooplankton biomass differs little between the Antarctic 
sectors, but latitudinally it is maximal in the Polar Fron-
tal Zone and declines to the north and south (Atkinson 

et al. 2012b; Hunt et al. 2016). As in other ocean regions, 
copepods are the most abundant zooplankton and gener-
ally contribute the bulk of zooplankton biomass, followed 
by euphausiids (krill) and salps (Voronina 1998) . The 
hyperiid amphipod Themisto gaudichaudii is an important 
component of the zooplankton community of the northern 
ACC (Kane 1966) and has been shown to also extensively 
feed on copepods (Atkinson et al. 2012a). The abundance 
of copepods is typically inversely related to the abundance 
of krill (Atkinson et al. 1999; Priddle et al. 2003). The 
distributions of phyto-, proto- and metazooplankton have 
been recorded on transects across the frontal systems of 
the ACC (Froneman et al. 1995; Bathmann et al. 1997; 

Fig. 9   Microscopic pictures of Southern Ocean protists. The dia-
toms a Fragilariopsis kerguelensis, b Corethron pennatum and c 
Chaetoceros dichaeta; the haptophyte algae d Phaeocystis antarctica 
(colonial form); the dinoflagellates e Tripos pentagonus and f Proto-
peridinium spp.; the tintinnid ciliate g Acanthostomella norvegica; 
unidentified Acantharia (h); and the radiolarian (i) Cycladophora 

bicornis. Protists in a–e belong to the autotrophic phytoplankton 
whilst those in f–i have a heterotrophic feeding mode and are cate-
gorized as protozooplankton (also referred to as microzooplankton). 
Light micrographs (a), (f) and (i) were taken by Ulrich Freier, b by 
Cecilie von Quillfeldt, c by Marina Montresor and (d), (e), (g) and 
(h) by Philipp Assmy



1328	 Polar Biology (2022) 45:1313–1349

1 3

Klaas 1997, 2001; Smetacek et al. 1997, 2002; Bathmann 
1998; Pakhomov et al. 2000; Froneman 2004; Pakhomov 
2004; Pakhomov and Froneman 2004) , meso-zooplank-
ton (Falk-Petersen et al. 1999; Cisewski et al. 2010) and 
macrozooplankton (Falk-Petersen et al. 1999; Hunt et al. 
2011; Flores et al. 2014) as well as the energy content of 
the major zooplankton taxa (Schaafsma et al. 2018). The 
available phyto-, proto- and metazooplankton data cited 
above show a distinct dichotomy for the DML sector, with 
a relatively large body of information available west of 
the prime meridian from the Antarctic continent up to the 

Polar Front, including the eastern Weddell Sea, and a strik-
ing sparseness of data east of the prime meridian.

Sea ice biota and krill

Three main types of sea ice communities can be distin-
guished, characterized by specific algal assemblages: sur-
face, interior and bottom ice communities. Surface and 
interior sea ice communities play a relatively important 
role in the Southern Ocean and snow infiltration commu-
nities are a particularly important component of Antarctic 

Fig. 10   Prominent Southern Ocean meso and macrozooplankton. 
Copepods: a Calanoides acutus (Wikipedia), b Rhincalanus gigas 
(Shaoqing Wang). Krill: c Euphausia superba (D.W.H. Walton), d 

Euphausia crystallorophias (World Register of Marine Species). 
Salp: e Salpa thompsoni (Jan Michels). Amphipod: f Themisto gaudi-
chaudii (Wikipedia)
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surface communities (Horner et al. 1988; Spindler 1994; 
Robinson et al. 1997; Garrison et al. 2003), contributing 
substantially to sea ice primary production (Arrigo et al. 
1997). Tison et al. (2017) confirmed the importance of the 
infiltration layer for ice algal productivity in the Weddell Sea 
and the infiltration community also dominates in pack ice 
off DML (Kristiansen et al. 1998). Phaeocystis antarctica 
was actively growing and favoured by the growth conditions 
in the infiltration community (Kristiansen et al. 1998). The 
most ubiquitous species in the sea ice bottom layer is the 
pennate diatom Fragilariopsis cylindrus (Lim et al. 2019). 
The sub-ice colonial diatom Berkeleya adéliensis forms 
strands attached to the underside of sea ice. This species is 
mainly associated with land-fast ice in Antarctica (Riaux-
Gobin et al. 2003; Belt et al. 2016). In addition, platelet ice 
blooms can be particularly important. These are sites of high 
biomass accumulation (Smetacek et al. 1992; Arrigo et al. 
1995; Roukaerts et al. 2021)  and have been observed both 
in the eastern Weddell Sea (Smetacek et al. 1992; El-Sayed 
2013) and in Atka Bay near the German Antarctic station 
(Hoppmann et al. 2015).

A compilation of Chl a data (proxy of algal biomass) 
from Antarctic sea ice shows that the western part of the 
DML sector has been reasonably well covered, in particu-
lar from the eastern Weddell Sea until slightly east of the 
prime meridian (Meiners et al. 2012). Further east, includ-
ing the entire Indian sector, only 13 ice cores were available 
in the circumpolar dataset (Meiners et al. 2012). Regard-
ing ice algal and sea ice protist diversity, the record for the 
DML is even sparser with a few sampling locations for the 
eastern Weddell Sea (Van Leeuwe et al. 2018). Summer 
persistence of sea ice in the Weddell Gyre partly explains 
the higher availability of ice algal data there as compared 
to other regions where the sea ice retreats all the way to 
the continent during summer. Ice algal production might 
exceed phytoplankton production over the growth season in 
the Weddell Sea during years with extensive sea ice cover 
(Hegseth and von Quillfeldt 2002) when ice algal production 
typically contributes 10% to the overall SO primary produc-
tion (Legendre et al. 1992; Arrigo et al. 1997).

Different water masses in the Southern Ocean are charac-
terized by different euphausiid species. Most of our knowl-
edge of euphausiid ecology is based on Antarctic krill which 
is by far the most important species both as a grazer and 
in terms of food for higher trophic levels. It is reported to 
feed on a wide range of food items including microplank-
ton, copepods and other euphausiids (Atkinson et al. 2002). 
The distribution of Antarctic krill usually coincides with 
the high productive areas dominated by blooms of diatoms 
and Phaeocystis. In the pelagic realm, Antarctic krill can 
aggregate in massive swarms that will exert considerable 
local grazing pressure whilst it is more dispersed under sea 
ice (Smetacek et al. 1992; Tarling and Fielding 2016). Sea 

ice constitutes a critical environment for the recruitment, 
survival and feeding of krill, in particular for juvenile stages, 
and ice fauna biomass is often dominated by this species 
(Smetacek et al. 1992; Siegel and Loeb 1995; Flores et al. 
2011, 2012; Schmidt et al. 2014; Meyer et al. 2017) Ant-
arctic krill has also been found grazing on phytodetritus on 
the abyssal sea floor (Schmidt et al. 2011). This versatile 
life strategy likely contributes to the dominance of Antarc-
tic krill. Other important krill species include Thysanoessa 
macrura (Haraldsson and Siegel 2014) and E. crystalloro-
phias (Pakhomov et al. 1998), the former of which seems 
to be quite widely distributed, whereas the latter is more 
restricted to the Antarctic Coastal Current on the narrow 
shelf (Boysen-Ennen and Piatkowski 1988).

Studies on Antarctic krill have been summarized across a 
suite of reviews (Atkinson et al. 2004; McBride et al. 2014; 
Hunt et al. 2016). The total krill biomass is strongly con-
centrated in the SW Atlantic sector (Siegel 2005; Atkinson 
et al. 2008). More recent efforts in the Lazarev Sea during 
different seasons have provided new insights into the distri-
bution, physiology and life cycle of Antarctic krill from this 
area as far as 3° E (Atkinson et al. 2002; Meyer et al. 2002, 
2009; Flores et al. 2011, 2012; Hunt et al. 2011; Siegel 2012; 
Schmidt et al. 2014). In the Lazarev Sea, two ‘populations’ 
of Antarctic krill, one in the ACC and another in the East 
Wind Drift, much closer to the continent, seem to reflect 
distinct stocks or subpopulations (Atkinson et al. 2012b). 
Apparently, the Lazarev Sea does not sustain a single self-
maintaining population, but rather a complex transition zone 
of stocks from the Scotia Sea and the Cosmonaut Sea (Siegel 
2012). Nevertheless, the DML sector seems to be critical for 
the understanding of regional krill recruitment and produc-
tion (Krafft et al. 2010). Pteropods, amphipods and the arrow 
worm Sagitta gazellae are other important species of the 
ice-associated fauna in the Lazarev Sea (Krapp et al. 2008).

Fishes

Two distinct fish assemblages appear to characterize the SO, 
a coastal assemblage dominated by juvenile notothenioid 
fishes in many areas and an oceanic assemblage dominated 
by meso- and bathypelagic fishes (Kock 1992) . The best-
studied ocean area adjacent to DML in terms of fishes is the 
Lazarev Sea. Because the Coastal Current largely coincides 
with the shelf beak, it forms an effective physical barrier 
between oceanic and coastal ichthyoplankton communities 
in the region. This overall region is a transition zone in terms 
of fish fauna from the East Antarctic province, where spe-
cies diversity is high and biomass low, to the West Antarctic 
province where species richness is lower, but biomass is 
higher (Wohlschlag and DeWitt 1972) .

Early research cruises in the Lazarev Sea reported 25 
species from eight families from collections in autumn 
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(Efremenko 1991). Biomass of catches of the little known 
benthopelagic longfin icedevil (Aethotaxis mitopteryx), sug-
gest that the Lazarev Sea in an important distributional area 
for this species, which has slow growth rates and a con-
comitantly low fecundity rate (Kunzmann and Zimmermann 
1992). A comparative study between the Lazarev Sea and 
the eastern Weddell Sea (Wöhrmann and Zimmermann 
1992) reported a high percentage of non-notothenioid spe-
cies in trawl catches, despite the general dominance of Noto-
theniidae (cod icefishes) and a patchy distribution of benthic 
assemblages whilst the macrourid Macrourus holothrachys 
typically dominated deep catches. Species diversity was 
found to be similar between the Lazarev and Weddell Seas 
(Ekau 1986; Gutt et al. 1994); both areas being dominated 
by the Nototheniidae, with slender scalyhead (Trematomus 
lepidorhinus) as the most abundant species. The Lazarev 
Sea showed a high number of species (n = 24), although with 
average fish abundance. The high species richness was in 
part due to the presence of rare species, such as emerald 
rockcod (Trematomus bernacchii) and smalleye moray cod 
(Muraenolepis microps) (Gutt et al. 1994). Myers’ icefish 
(Chionodraco myers) and slender scalyhead were most abun-
dant in benthic fish assemblages (Gutt and Ekau 1996).

Myctophid dietary preferences were determined for Ant-
arctic lanternfish (Electrona antarctica) and Nichol’s lan-
ternfish (Gymnoscopelus nicholsi) in the Atlantic and Indian 
Sectors of the SO, including along the 0° Meridian from the 
Antarctic Polar Front to the coastline in the middle of the 
Lazarev Sea (Pakhomov et al. 1996). Densities were high-
est immediately north of the marginal ice zone, with a sec-
ondary peak in the northern vicinity of the Antarctic Polar 
Front. Mesozooplankton including copepods, euphausiids, 
hyperiid amphipods and pteropods constituted the bulk of 
the diet, proportional to their regional occurrences.

The top 200 m layer of the coastal and slope areas of 
the Lazarev Sea have previously been characterized by a 
diverse notothenioid larval community consisting of high 
densities of Antarctic silverfish (Pleuragramma antarctica) 
(Flores et al. 2008), which also dominate pelagic catches in 
the eastern Weddell Sea during January–February (White 
and Piatkowski 1993). Further offshore, diversity of the lar-
val community decreased and was dominated by Antarctic 
jonasfish (Notolepis coatsi) and Antarctic lanternfish (Flores 
et al. 2008). On their easternmost transect (at 0°), Flores 
et al. (2008) noted that dragonfish larvae (Bathydraco ant-
arcticus) became more common, potentially in response to 
the upwelling of deeper water layers close to the Maud Rise 
seamount (Holland 2001). Offshore communities did contain 
postlarval fishes including Antarctic deep-sea smelt (Bathy-
lagus antarcticus) and a variety of lantern fishes including 
Brauer’s lanternfish (Gymnoscopelus braueri), Nichol’s lan-
ternfish and Antarctic lanternfish.

Density of postlarval Antarctic lanternfish was positively 
related to postlarval krill abundance at 3800–4500 m (Flores 
et al. 2008). Juvenile Antarctic lanternfish had a diet com-
prised mainly of calanoid copepods, although euphausiids 
comprised 28% of the food items. This species as well as 
the Antarctic jonasfish show diurnal vertical migrations 
with higher densities in the epipelagic zone during dark 
hours (Hunt et al. 2011). Vertical migration enables them to 
exploit both mesopelagic and epipelagic food resources and 
implies that they act as an effective energy carriers between 
these realms. Lanternfishes thus represent a major energetic 
source for predators in the Lazarev Sea (Van De Putte et al. 
2006).

Diets of top predators, documented on a regional basis, 
have provided insights into the fish community along the 
DML coast. In western DML, Weddell seals (Leptonychotes 
weddellii) had consumed a variety of fish species in addi-
tion to squid and krill (Plötz et al. 1986). Antarctic silverfish 
were most prevalent, followed by Antarctic toothfish (Dis-
sostichus mawsoni), nothothenoids and channichthyids. Diet 
varied between years, with regard to prevalence of Myers’ 
icefish, blunt scalyhead (Trematomus eulepidotus), Pagetop-
sis maculatas, Racovitzia glacialis and long-fingered ice-
fish (Cryodraco antarcticus) (Plötz et al. 1991a). Ross seals 
(Ommatophoca rossii) in the pack ice of the Kong Haakon 
VII Hav, north of DML had only fed on Antarctic silverfish 
(Skinner and Klages 1994). Antarctic petrels (Thalassoica 
antarctica) breeding at Svarthamaren may also consume 
fish, including Antarctic lanternfish, Antarctic silverfish, 
Bathylagus spp. and Melamphaes spp., but Antarctic krill 
numerically dominated their diet (Lorentsen et al. 1998; 
Descamps et al. 2016a).

Cosmonaut Sea and Cooperation Sea/Prydz Bay region 
mainly contained numerous Antarctic silverfish, Antarctic 
jonasfish and Antarctic lanternfish (Lubimova et al. 1988; 
Van de Putte et al. 2010). However, overall densities of fish 
were amongst the lowest observed in the SO, with areas 
to the east having an order of magnitude higher total fish 
densities (Hoddell et al. 2000). The coastal community in 
the Cosmonaut Sea showed higher species diversity than 
oceanic areas, containing a range of notothenioid species. 
Oceanic areas were relatively species poor, with Antarctic 
lanternfish and Antarctic jonasfish dominating in deeper 
water.

Two Antarctic dragonfishes in the Cosmonaut Sea and 
Cooperation Sea, Mawson’s dragonfish (Cygnodraco 
mawsoni) and ploughfish (Gymnodraco acuticeps), are 
associated with krill swams during their early pelagic life 
stages (Pakhomov 1998). Mawson’s dragonfish preyed on 
fishes (32%), with blunt scalyhead, Antarctic silverfish and 
longfin icedevil as the three most important species in the 
diet (Pakhomov 1998). Fish comprised 97% of the diet of 
ploughfish in the Cosmonaut Sea, with Antarctic lanternfish 
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and Nichol’s lanternfish being the most important food items 
(Pakhomov 1998). Lanternfish often comprise 90% of fish 
preyed by seabirds, both penguins and flighted seabirds 
(Hopkins et al. 1993; Olsson and North 1997), as well as 
fish-eating marine mammals. Modelling has suggested a 
poleward range shift amongst sub-Antarctic lanternfishes, 
with increased diversity at high latitudes by mid-twenty-first 
century (Freer et al. 2019). Smaller, sub-Antarctic species 
may reach further south, which would have implications 
for trophic interactions. Species with restricted niches and 
limited available habitat will be the most vulnerable group 
at high latitudes because of climate warming (Freer et al. 
2019). This includes the pelagic shoal species Antarctic sil-
verfish and the icefishes, which reside on the shelf in sub-
zero water (Mintenbeck et al. 2012).

Cephalopods

Cephalopods are widely distributed in the SO (Xavier et al. 
2016), where they occupy the ecological niche of epipelagic 
fishes in the Antarctic Frontal Zone. They play an important 
role in the ecology of the SO, linking the abundant mes-
opelagic fish and crustaceans with higher predators such as 
seabirds and marine mammals (Rodhouse and White 1995; 
Collins and Rodhouse 2006), but are generally undersam-
pled and poorly known. Early life stages of squid have been 
sampled in the Lazarev Sea during summer (seven taxa) and 
winter (4 taxa). (Guerrero-Kommritz 2011). The cranchiid 
squids Galiteuthis glacialis and colossal squid (Mesonycho-
teuthis hamiltoni) were both commonly caught during sum-
mer (71% of cephalopods, approximately one individual per 
pelagic trawl catch, n = 129) of and co-occurred across the 
sampled area. During winter, only G. glacialis was com-
mon (95% of cephalopods, ca. 4 per pelagic trawl catch, 
n = 64. Abundant distribution of G. glacialis extends into 
the pelagic zones of Riiser-Larsen Sea and Cosmonaut Sea 
(Rodhouse and Clarke 1986; Van de Putte et al. 2010). The 
early-life phase of G. glacialis is concentrated in the upper 
zone of the “warm deep water” beneath the Antarctic surface 
layer, although juveniles have also been sampled below sea 
ice together with adults of Kondakovia lingimana and Slo-
sarczykovia circumantarctica (Guerrero-Kommritz 2011), 
species that are distributed throughout the seas around 
Antarctica.

Beaks of squid are often found in stomachs of albatrosses, 
petrels, seals and whales (Rodhouse et al. 1987, 1990; Plötz 
et al. 1991b; Skinner and Klages 1994). Seals feed on a 
variety of squid species, whereas sperm whales (Physeter 
macrocephalus) feed on the colossal squid in deep water 
as well as 40 smaller cephalopod species (Clarke 1980). 
Diets of Antarctic petrels (Thalassioica antarctica) breed-
ing at Svarthamaren (250,000 pairs) contained 5% squid, 
mainly identified as Psychroteuthis glacialis, which implied 

an estimated consumption of 2300 tonnes squid annually 
(Lorentsen et al. 1998). Food samples collected from Ant-
arctic petrels at sea in the same study contained less crus-
taceans and relatively more fish and squid than those from 
Svarthamaren.

Seabirds

Four seabirds are common breeders in DML: the Antarctic 
petrel (Thalassoica antarctica), the snow petrel (Pagodroma 
nivea), the south polar skua (Catharacta maccormicki) and 
the emperor penguin (Aptenodytes forsteri) (Mehlum et al. 
1988; Croxall et al. 1995; Van Franeker et al. 1999; Fretwell 
and Trathan 2009). Four to seven million Antarctic petrels 
breed in Antarctica and almost half of the known Antarctic 
petrel colonies are located in DML, hosting more than 60% 
of the breeders (Van Franeker et al. 1999). Snow petrels are 
less numerous and only several tens of thousands of pairs 
seem to breed in DML, which represents a small proportion 
of the entire population (Croxall et al. 1995). The world 
population of south polar skua is between 5000 and 8000 
breeding pairs (del Hoyo et al. 1996) and the number of 
pairs in DML is likely, at least, in the hundreds (e.g. > 100 
nests are present at Svarthamaren, Unpubl. data). There are 
ten emperor penguin breeding colonies uniformly distrib-
uted evenly across DML, representing approximately 16% 
(38,000 breeding pairs) of the breeding population (Fretwell 
and Trathan 2009, 2021; Fretwell et al. 2012). Adélie pen-
guins (Pygoscelis adeliae) and Wilson’s storm petrels (Oce-
anites oceanicus) also breed in DML but only on the very 
eastern coastline in the Lützow-Holm Bay area for the for-
mer (6000 adult Adélie penguins observed in summer 2004) 
(Kato and Ropert-Coudert 2006; Lynch and LaRue 2014) 
and only in very small and scattered numbers for the latter 
species (Ryan and Watkins 1988; Johansson and Thor 2004).

With the exception of the south polar skua that can exploit 
inland-breeding birds during the breeding season (Brooke 
et al. 1999; Busdieker et al. 2020) and then leave Antarctic 
waters during the winter months (Weimerskirch et al. 2015), 
all seabirds breeding in DML rely entirely on the marine 
environment including the Kong Haakon VII Hav. A large 
part of this marine area along the DML coastline represents 
an area of ecological significance (Hindell et al. 2020). 
Habitat use during and outside the breeding season is well 
described for Antarctic petrels breeding at Svarthamaren 
(71°53ʹS, 5°10ʹE), the largest seabird colony in Droning 
Maud Land. Antarctic petrels use a very large marine area 
during the breeding season covering the entire Kong Haakon 
VII Hav and the eastern part of the Weddell Sea (Fauchald 
and Tveraa 2006; Descamps et al. 2016b; Fauchald et al. 
2017; Tarroux et al. 2020). During the non-breeding season, 
Antarctic petrels from Svarthamaren spend a lot of time in 
the same area even if the core of their distribution is shifted 
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westwards (Descamps et al. 2016b; Delord et al. 2020). 
Antarctic petrel foraging is associated with sea ice both in 
the breeding (Ainley et al. 1984; Fauchald et al. 2017; Tar-
roux et al. 2020) and non-breeding (Chapman et al. 2004; 
Delord et al. 2020) season. The distribution at-sea of snow 
petrels, emperor and Adélie penguins breeding in DML is 
currently unknown but observations at sea indicate that these 
three species, amongst many others, are common within the 
Kong Haakon VII Hav (Joiris et al. 2013; Ropert-Coudert 
et al. 2014). Overall, more than 25 seabird species have 
been observed in the marine area between DML and 50°S, 
and more than 55 species if we include observations up to 
40°S (Joiris et al. 2013). This marine area is thus used by a 
larger seabird diversity than, for example, the Weddell Sea. 
The Antarctic petrel is by far the most numerous species 
observed south of 50°S and was especially numerous close 
to ice edge or in the ice pack (Joiris et al. 2013). These at-sea 
observations indicate that the marine environment outside 
DML is not only important for seabirds breeding on DML 
but is also used by sub-Antarctic and Antarctic seabirds 
breeding in other regions (Joiris et al. 2013; Ropert-Coudert 
et al. 2014). All these observations have been done during 
the summer period (breeding season) and the seabird diver-
sity in the Kong Haakon VII Hav during the winter months 
remains unknown.

In general, little is known about the diet of seabirds 
foraging in the Kong Haakon VII Hav. The only detailed 
information come from the Antarctic petrel breeding at 
Svarthamaren (Lorentsen et  al. 1998; Descamps et  al. 
2016a). These petrels feed mostly on Antarctic krill during 
the breeding season but fish also represent a significant pro-
portion of their diet (Lorentsen et al. 1998; Descamps et al. 
2016a). Stable isotopic data (Hobson and Wassenaar 1999) 
suggest that during the non-breeding period crustaceans 
(Antarctic krill) also represent an important part of Antarc-
tic petrel diet (Descamps et al. 2016a). Emperor penguins 
from the eastern Weddell Sea feed mainly on several species 
of squid, fish, krill, amphipods and isopods (Klages 1989; 
Piatkowski and Pütz 1994) and we might expect that those 
breeding along the DML coastline have a similar varied 
diet. Although detailed information is lacking, some results 
suggest that snow petrels and Adélie penguins have also a 
krill-based diet (Watanuki et al. 1994). This likely indicates 
that the role of Antarctic krill in the marine ecosystem in 
the Kong Haakon VII Hav might be central and similar to 
the one played in the Weddell Sea (Rau et al. 1992; Hodum 
and Hobson 2000).

Except for Antarctic petrels, the current status and trends 
of most seabird species breeding in DML or using the marine 
area outside DML remains largely unknown. Data from the 
longest-studied population of emperor penguins at Terre 
Adélie coupled with future levels of sea ice variability mod-
elled under various climate change scenarios demonstrated 

that not only is the demographic trajectory of the species 
highly dependent upon variability in sea ice, but that the 
DML coastline is predicted to be the region most likely to 
experience the greatest levels of sea ice variability into the 
future (Jenouvrier et al. 2014). Despite this apparent threat, 
there are no available data on emperor penguin populations 
in DML and their current trend is unknown. Generally, infor-
mation is lacking for virtually all seabird species breeding in 
DML, except for the Antarctic petrel. Long-term monitor-
ing data from Antarctic petrels at Svarthamaren exist since 
1996 and indicate that the population is currently declining 
(Descamps et al. 2016b). The population dynamics of the 
Antarctic petrel is partly explained by fluctuations in the 
Southern Oscillation Index (SOI) and Antarctic Oscillation 
(AAO) (Descamps et al. 2016b) and by extreme weather 
events {Citation}. The mechanisms linking changes in AAO 
or SOI to changes in Antarctic petrel population are cur-
rently unknown but may involve changes in primary produc-
tivity and prey availability. The ongoing decline in Antarctic 
petrel at Svarthamaren may thus reflect large-scale changes 
in their main prey, i.e. Antarctic krill (Atkinson et al. 2004). 
Considering the central role of Antarctic krill in the marine 
ecosystem and in the diet of many seabird species, such a 
decline would suggest that most seabirds breeding in DML 
or using the Kong Haakon VII Hav are at risk. Important 
Bird and Biodiversity Areas (IBAs) have been identified 
around the Antarctic continent, including DML, and their 
overlap compared with the currently adopted and proposed 
network of key management areas (Handley et al. 2021).

Marine mammals

Pinnipeds

Four pinniped species breed on ice in coastal areas along 
DML: crabeater (Lobodon carcinophagus); Weddell (Lep-
tonychotes weddellii); Ross (Ommatophoca rossi); and leop-
ard (Hydrurga leptonyx) seals. Weddell seals use shore-fast 
ice, and their general ecology is well documented from other 
regions. Abundance or densities of seals are estimated for 
the DML area, covering parts of the area, but most of these 
are based on data collected decades ago (Hall-Martin 1974; 
Southwell et al. 2012). The most comprehensive survey for 
the DML region was conducted as part of the Antarctic Pack 
Ice Seal (APIS) programme; APIS covered most coastal 
areas in DML, surveying seals over five austral summers 
between 1996 and 2001 (Gurarie et al. 2017). The modelled 
abundance in the surveyed area (from 30°W to 10°E) was 
estimated to be 514 (95% CI 337–886) × 103 crabeater seals, 
60 (95% CI 43.2–94.4) × 103 Weddell seals and 13.2 (9% 
CI 5.50–39.7) × 103 leopard seals. Crabeater seal estimated 
densities in this area were similar to those obtained dur-
ing surveys in the Pacific and Indian Ocean sectors under 
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APIS. Few Ross seals were observed (n = 24), leading to a 
conservative estimate of 830 (95% CI 119–2894) individu-
als over the study area. In a more recent ship-based survey 
in 2015/2016 in the eastern Weddell Sea, including areas 
off DML, crabeater seals were again found to be the domi-
nant species (Bester et al. 2019) Interestingly, in this same 
study Ross seals were found to be relatively abundant off 
the Princess Martha Coast (0.77 seals nm−2) and they also 
occurred in relatively high numbers in the eastern Weddell 
Sea (Bester et al. 2020).

Dietary information for seals from DML is only available 
for small parts of this vast area and again these data are dec-
ades old. Stomach contents from Weddell seals revealed that 
fish, cephalopods and krill were the most important prey for 
this species (Plötz et al. 1986, 1991a). A study of stomach 
contents of Ross seals collected from Kong Haakon VII Hav 
(n = 40) found that the Antarctic silverfish and the glacial 
squid P. glacialis were dominant prey items (Skinner and 
Klages 1994).

Biologging studies exist on the behaviours of seals from 
the DML area, though most published work is based on data 
in some cases that are over twenty years old. Studies con-
ducted on crabeater seals suggest they spend most of their 
time in the drift ice, diving shallowly in a diel pattern that 
suggests that they target krill (Nordøy et al. 1995) . Wed-
dell seals appear to have a bimodal feeding pattern, foraging 
either near the surface or benthically, often near shelf edges 
(Nordøy et al. 1995; Bornemann et al. 1998; Plötz et al. 
2002; Watanabe et al. 2006; Liebsch et al. 2007; McIntyre 
et al. 2013; Boehme et al. 2016). Ross seals spend most of 
their time in drift ice or near the Antarctic polar front where 
they feed pelagically (Blix and Nordøy 2007). Leopard seal 
diving behaviour in the region is similar to that reported 
elsewhere with them diving to shallow depths, usually near 
the edges of drift ice, where they hunt at or near the surface 
(Nordøy and Blix 2009). Southern elephant seals (Mirounga 
leonina) from subantarctic breeding grounds such as Bou-
vetøya, Prince Edward Islands and Kerguelen Island conduct 
overwintering foraging trips to the ice shelf in DML, sug-
gesting that the region has enough secondary production to 
support upper trophic predators (Biuw et al. 2010; Mcintyre 
et al. 2012; Labrousse et al. 2015). Moored passive acoustic 
monitoring devices have also been used to examine vocal 
repertoires of all four seals species in DML, characterizing 
the temporal occurrence and species composition at various 
sites along the coastline (Terhune et al. 2008; Van Opzee-
land et al. 2010; Van Opzeeland and Hillebrand 2020).

Cetaceans

Cetaceans data are scarce throughout the DML area, 
although limited minke whales (Balaenoptera acutorostrata) 

observational data exist (Plötz et al. 1991b) as well as den-
sity estimates (Kasamatsu et al. 1998; Williams et al. 2014) 
and acoustic presence data (Reeves et al. 1996; Shabangu 
et al. 2020; Van Opzeeland and Hillebrand 2020). The sta-
tus of sperm whales (Physeter macrocephalus), beaked 
whales (mainly southern bottlenose whales (Hyperoodon 
planifrons)) and killer whales (Orcinus orca) in areas off 
the DML coast is presented in (Kasamatsu 1995), but these 
data are now close to three decades old. Branch et al. (2007)  
review present (and past) densities and distributions of blue 
whales (Balaenoptera musculus) from the Southern Hemi-
sphere including DML, where this species appears to be 
increasing in abundance. Surveys along the coast off DML 
using icebreaker supported helicopters in the summers of 
2006/07 and 2008/09 (Scheidat et al. 2011)  registered four 
species of whales along the Larsen Ice Shelf, including the 
Antarctic minke whale, Arnoux’s beaked whale (Berardius 
arnuxii), southern bottlenose whale (Hyperoodon plani-
frons) and killer whales.

Habitat modelling efforts, based on opportunistic sight-
ings of humpback (Megaptera novaeangliae) and minke 
whales in the DML region from the period 2005–2011 pro-
vide some information that is potentially useful for survey 
planning (Bombosch et al. 2014). Generally, suitable hump-
back whale habitat exists in all ice-free areas north of the ice 
edge, whilst minke whale habitat includes sea ice-covered 
areas in addition. Passive acoustics have revealed that many 
species including blue, fin (Balaenoptera physalus), hump-
back, and minke whales are present in DML throughout the 
year (Thomisch et al. 2016; Menze et al. 2017; Schall et al. 
2020; Van Opzeeland and Hillebrand 2020).

Larger-scale habitat suitability modelling efforts have, in 
general, identified the coast of DML as a hotspot for many 
upper trophic species including humpback whales, crabeater 
seals and Weddell seals (Hindell et al. 2020).

Pollution

Persistent organic pollutants (POPs) have been detected in 
sea water, sea ice, and air from DML, the levels are low in 
the few available studies (Kallenborn et al. 2013). A suite of 
POPs have been analysed in ice algae, phytoplankton, zoo-
plankton, krill and Antarctic lanternfish from DML (Bengt-
son Nash et al. 2008; Hallanger et al. 2011). The polybro-
minated diphenyl ethers (PBDEs) levels in Antarctic krill 
are comparable to Thyssanoessa inermis sampled from the 
Svalbard area, as well as two other studies in the Antarc-
tic region (Chiuchiolo et al. 2004; Corsolini et al. 2006). 
Of the seabirds from DML and its immediate surrounds, 
the south polar skua from Svarthammaren and Adélie pen-
guins from Syowa station have been analysed for POPS, 
having lower levels than similar trophic levels seabirds in 
the Northern Hemisphere (Bustnes et al. 2006; Yamashita 
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et al. 2018). Other seabirds from Vestfjella and Bouvetøya 
also contained POPs (Norheim et al. 1982). Perfluorinated 
compounds (PFCs) has been analysed, but not detected, in 
krill both west and east of eastern border of DML (Bengtson 
Nash et al. 2010).

Information on pinniped ecotoxicology, health and dis-
ease studies are limited to studies conducted decades ago 
(Steinhagen-Schneider 1986; Schumacher et al. 1992; Sten-
vers et al. 1992; Vetter et al. 1997, 2003; Vetter and Luckas 
2000; Tryland et al. 2005, 2012). Levels of several metals, 
toxaphenes and organochlorines are high and some of the 
seals have been exposed to phocine herpesvirus, Brucella, 
toxoplasma and parapox.

Mercury has been detected in air from research station 
Troll since 2007 (Pfaffhuber et al. 2012; Pernilla Bohlin-
Nizzetto, NILU, pers. comm.). Mercury has also been 
detected in samples of snow in a transect from Dome Fuji 
to Syowa (Han et al. 2011). Mercury and other metals have 
been detected in Antarctic petrel and south polar skua from 
DML and Bouvetøya (Norheim et al. 1982; Nygård et al. 
2001; Carravieri et al. 2018). 

Macroplastics has been observed visually in the northern 
part of DML at a density of 0.2 items km−2 (Eriksen et al. 
2014). Though microplastic particles or fibres have not yet 
been detected (Kuklinski et al. 2019).

Discussion

The seascape abutting DML is clearly polarized in terms 
of the availability of scientific knowledge, with a clear lack 
of data in its eastern part. The geographical biases in avail-
ability of data are likely related to the research effort dedi-
cated by national Antarctic programmes or the lack thereof. 
For example, South Africa has had research expeditions to 
Antarctica since 1959 on an almost annual basis, as has Ger-
many since 1979, with both countries running year-round 
Antarctic stations in western DML. These regular research 
expeditions have generated considerable amounts of infor-
mation, and importantly, time series of environmental vari-
ables throughout western DML and the eastern Weddell 
Sea. To the east of this longitude, none of the five nations 
which possess either permanent or seasonal research stations 
(Belgium, India, Japan, Norway and Russia) have had an 
icebreaking research vessel dedicated to regular Antarctic 
research; this has limited the capacity to collect scientific 
data throughout the eastern region.

Some of the knowledge gaps identified in DML are sys-
temic to Antarctica; for example, an appropriate understand-
ing of atmosphere/ocean carbon flux is lacking, as is the 
ability to characterize contemporary levels of pollution out-
side the immediate vicinity of Antarctic stations that have 
a year-round presence. Similarly, knowledge on ice shelf 

dynamics is poor, with a better understanding required 
to understand the different sensitivities of individual ice 
shelves to climactic and oceanic forcing. Additionally, the 
distribution of paleoceanographic data beyond instrument 
records from the SO is currently too sparse to infer the com-
plicated structure of climate dynamics and the range of past 
natural climate change.

Currently, across the coastal marine environment off 
DML, there is neither a targeted satellite monitoring pro-
gramme nor field surveys of ice shelves to quantify patterns 
of basal melting, runoff and subsequent drainage, all of 
which can drive the disintegration of ice shelves. There is a 
paucity of oceanographic data available under ice shelves, 
with the exception of Fimbulisen and a need to further our 
understanding of the slope front dynamics along the shelf 
break of DML. In the context of ice shelf dynamics and 
coastal ocean processes, there is a clear lack of data in the 
sea ice-covered coastal waters of Antarctica, though devel-
opment of under-ice mooring systems and use of animal-
borne oceanographic sensors have proved valuable. Indeed, 
the information on interactions between sea ice and coastal 
oceanography throughout the eastern region of DML are 
limited to satellite data, modelling efforts, Argo floats and 
limited amounts of animal-borne, sensor data.

Bathymetry plays a key role in directing coastal ocean 
currents, with intrusions of warm water masses such as the 
Warm Deep Water onto the shelf being facilitated by can-
yons and channels punctuated along the shelf break. How-
ever, appropriately resolved swath mapping makes up only 
a small part of contemporary bathymetry data sets, particu-
larly along eastern DML and bathymetry under ice shelves 
is little known. Thus, the ability to predict the future of ice 
shelves is hampered by an absence of glaciological, oceano-
graphic and geological data throughout eastern DML, with 
only the combined study of these fields providing appropri-
ate information.

Biological aspects of ecosystem function in terms of tem-
porally relevant data can best be described as almost non-
existent, with the exception of satellite-derived ocean colour 
that has provided valuable information on phytoplankton 
biomass and productivity since the SeaWiFS was launched 
in 1997. Mapping Vulnerable Marine Ecosystems (VME) 
is fundamental to regulating their protection; CCAMLR 
has specific Conservation Measures directed to this issue. 
However, even basic mapping of species at different trophic 
levels is lacking east of the prime meridian, whilst to its west 
data on benthic communities are limited to sparse collec-
tions of photo images and a few other studies. Knowledge 
on the lower trophic food web (e.g. plankton and krill) and 
fish assemblages is rudimentary, precluding predictions on 
future trends with potential new stressors. Indeed, currently, 
the best available scientific knowledge of the lower trophic 
food web is largely limited to inferences of what might be 
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present, based on geomorphological and oceanographic 
similarities with other regions of Antarctica for which data 
exists. This severely limits our understanding of contempo-
rary and future ecosystem functioning and how these may 
be impacted by climate change.

At higher trophic levels (seabirds, seals and whales), 
only the Antarctic petrel colony at Svarthamaren has 
received any form of long-term attention. However, whilst 
data from this colony have been used to characterize popu-
lation trends and indicate that the DML marine environ-
ment is experiencing large-scale changes, information on 
the lower trophic levels (particularly in terms of prey dis-
tribution and composition) has hampered efforts to under-
stand what drives these trends. Importantly, almost all data 
are from the summer season; information outside this 
seasonal period is essential to place summer population 
trends into context. Even basic information across DML 
on emperor penguin ecology such as the breeding sched-
ule is largely non-existent. Satellite-derived estimates of 
breeding population sizes have been inferred from fae-
cal stains on snow, though these have yet to be ground-
truthed such that colony size can be determined with any 
certainty. Data are lacking on the critical at-sea foraging 
habitat of breeding adults. The South African National 
Antarctic Programme is currently using data from tagged 
juveniles birds to determine habitat exploitation of post-
fledging chicks. For Adélie penguins, simple presence-
absence data are limited either to Soviet-era ship-based 
counts, or through satellite image analysis which suggests 
this species is absent from the entirety of DML, although 
recent tagging of non-breeding Adélie penguins outside 
the South African Antarctic station suggests they utilize 
this region. The only data available on seal abundance 
and distribution east of the prime meridian are from two 
surveys conducted between 1996 and 2001, though at-sea 
sightings data from both the South African and German 
research vessels are abundant to the west of this longitude. 
Similarly, knowledge of cetacean abundance and distribu-
tion to the east of the prime meridian is limited to surveys 
conducted almost three decades ago.

The disparity between western and eastern DML in terms 
of data availability is clear, and presumably linked to the his-
torical capacity of nations to conduct marine research in the 
region. The lack of basic data on fundamental aspects of the 
physical, geological and biological nature of eastern DML 
make predictions of future trends difficult to impossible. In 
turn, the capacity to provide management advice at either a 
national or international level (sensu ATCM or CCAMLR) 
in the context of ecosystem responses to changes in climate 
patterns is limited to modelled responses from incomplete 
data, or data extrapolated from other regions of the Antarc-
tic ecosystem that may or may not resemble DML. Model-
ling of available data is one avenue of potential knowledge 

advancement and at least an appropriate way to develop 
hypotheses for empirical testing which in turn can help 
prioritize data collection. However, addressing the linked 
issues of poor data coverage and poor or inappropriate mod-
elling exercises requires a commitment over timescales of 
years and without this commitment, achieving even a basic 
understanding of the region will be challenging. Importantly, 
increased employment of new technology to facilitate map-
ping and monitoring must also be considered in tandem with 
field-based empirical research to ensure adequate data col-
lection for improved regional model forecasting. Clearly, a 
directed programme of research is required to generate the 
necessary data; this will require a coordinated approach and 
a commitment over timescales of years in order to achieve.
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