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Abstract. Entangled states of quantum systems can give rise to measurement
correlations of separated observers that cannot be described by local hidden
variable theories. Usually, it is assumed that entanglement between particles is
generated due to some distance-dependent interaction. Yet anyonic particles in
two dimensions have a nontrivial interaction that is purely topological in nature.
In other words, it does not depend on the distance between two particles, but
rather on their exchange history. The information encoded in anyons is inherently
non-local even in the single subsystem level making the treatment of anyons non-
conventional. We describe a protocol to reveal the non-locality of anyons in terms
of correlations in the outcomes of measurements in two separated regions. This
gives a clear operational measure of non-locality for anyonic states and it opens
up the possibility to test Bell inequalities in quantum Hall liquids or spin lattices.
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1. Introduction

Quantum mechanics is a non-local theory: it allows for correlations between distant systems
that cannot be explained in terms of a local preparation. Early in the history of quantum
mechanics many believed that non-locality was due to incompleteness of quantum theory.
Einstein, Podolsky and Rosen (EPR) in their seminal work [1] made this debate explicit by
introducing a model with local hidden variables (LHVs). Their values would complement the
information supplied by quantum mechanics, thus restoring locality. Bell inequalities aim at
validating or rejecting this view from experimental data [2]. To date, unlike LHV theories, the
predictions of quantum mechanics have been consistent with all Bell tests.

Particle exchange gives a striking example of non-locality in quantum mechanics. Bosons
and fermions are governed by the trivial and signed one-dimensional representations of the
symmetric group, respectively, and this introduces a non-local constraint on the form of the wave
function for those particles. More generally, the many-particle wave function can transform in
a nontrivial representation of the fundamental group of configuration space when particles are
adiabatically exchanged [3]–[5]. For planar systems, this group is the braid group and particles
transforming in nontrivial braid group representations have been dubbed anyons. Anyonic
exchange interactions are topological in nature and do not change on variation of the distance
between the particles, or the metric of the spacetime manifold. A well-known example where
such interactions appear is the Aharonov–Bohm effect [6].

One may ask if the non-locality, which results from the effect of particle exchange is
measurable as a violation of Bell inequalities. The issue is subtle for bosons and fermions since
states that appear entangled in a first quantized picture may no longer appear so in second
quantization. Under the generalized entanglement approach of [7] one quantifies entanglement
of a state with respect to the purity of a subalgebra. If one imposes a superselection rule on
particle number, then states that appear entangled with respect to a mode subalgebra may
no longer be entangled with respect to a Lie subalgebra of bosonic or fermionic operators.
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This becomes evident in a Bell measurement because the local parties can presumably do not
measure along directions which mix particle number superselection sectors (see also [8, 9] for
a discussion of these issues). A study of non-locality of anyons actually avoids most of these
subtleties because there is a strong restriction on the set of observables in the physical theory.
The only relevant observables are topological charges so any test of non-locality would have
only to focus on correlations of charge measurements obtained by separated observers. In this
paper we provide a Bell-like test which delineates when such correlations cannot be reproduced
by any LHV model. Ultimately, for our test the existence of states with non-local correlations
depends on the underlying physical theory which gives rise to the anyonic particle excitations.
However, the results in this paper are independent of the detailed microscopic physics in those
theories.

To date, most Bell tests have been performed on entangled light beams, but there is
certainly an interest in showing that material media can be used to demonstrate non-locality.
Experiments involving a photon and an atom, two atoms or even kaons have been proposed
or even carried out [10]. Some of these schemes could in principle be implemented in a
fractional quantum Hall liquid [11], whereas others can be associated with arrays of Josephson
junctions [12] or atoms in optical lattices [13].

2. Anyons and their Hilbert space

Anyons can be split into two main categories: they can be Abelian or non-Abelian. Given labels
{a j} for the different types of anyons we assign fusion rules that determine the outcome of
bringing two anyons together,

ai × a j =

∑
k

N ak
ai a j

ak. (1)

Here N c
ab ∈ N counts the number of ways of combining a and b to obtain c. Non-Abelian anyons

have
∑

c N c
ab > 2 for some pair a, b, whereas in the Abelian case, the labels of the fused anyons

determine a unique outcome.
In a physical system with anyons, the low-energy part of the Hilbert space can be thought

of as a tensor product H=Hlocal ⊗Hnon-local, where the first factor describes local degrees
of freedom, which we will ignore, and the second describes topological degrees of freedom
associated with the anyons. These topological degrees of freedom may arise as a result of
nontrivial topology of the space supporting the anyons. For Abelian anyons, this is in fact the
only possibility; in the Abelian toric code models [14] for instance, the non-local degrees of
freedom are described by elements of the first homology groups of the surface with finite group
coefficients. In principle, one can probe non-local correlations in these topological degrees of
freedom, but the observables involved would need to be non-local themselves6.

For non-Abelian anyons, even on a contractible surface, there are non-local degrees of
freedom associated with the different fusion outcomes. A number of proposals have been
made on how the associated quantum numbers, or topological charges, might be measured by
interferometry (see [11, 16] for further references and [17] for an overview of the measurement
theory). We will not go into the details of interferometric measurements here, but rather
just assume that we can do projective measurements onto the various fusion channels. The

6 For example, in the toric code, Hnon-local is isomorphic to the space of two qubits and single qubit observables
correspond to non-contractible string operators, see e.g. [15].
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Figure 1. A Bell-type measurement on six particles. First a joint measurement
(large oval) of total topological charge (or spin) on a pure state of all six particles
is made and the result kept if the result is zero. Particles 1–3 are then sent to
Alice, whereas particles 4–6 are sent to Bob. Alice performs measurements of
total charge on pairs 1, 2 and 2, 3 and Bob performs measurements on pairs 4, 5
and 5, 6. For some quantum states the correlator 〈W 〉 exceeds the bound set by
LHV theories.

non-local Hilbert state space of n anyons (a1, a2, . . . , an) with total charge c has
dim(Hnon-local)=

∑
b1,b2,...,bn−2

N b1
a1a2

N b2
b1a3

N b3
b2a4

. . . N c
bn−2an

. This Hilbert space usually does not
admit a tensor product structure, e.g. the dimension could be prime, and thus does not
obviously fit the usual paradigm for tests of non-locality. Nevertheless, we show that topological
interactions can indeed be used to demonstrate non-locality in the EPR sense. In order to do
this, we consider two classes of anyonic theories: the SU(2)k models, including the Fibonacci
model [11] and a model based on discrete gauge theory [18, 19]. These models are important
both for their potential to process quantum information fault tolerantly [14, 20] and for their
viability for experimental realization [11]. For these cases the fusion spaces are at most
one dimensional, i.e. N c

ab < 2 for all (a, b, c). Non-commuting measurements project onto
different ways of combining particles a, b, c to yield d. Measurement bases are labelled by
the intermediate products x and x ′ obtained by fusing a, b, c. The unitary transformation that
describes the change from one of these bases to the other is given by the so-called F matrices,
and the recoupling formula is |(ab)c → d; x〉 =

∑
x ′(Fd

abc)
x ′

x |(a(bc)→ d; x ′
〉.

3. Bell inequalities and spin-1
2 particles

In order to build intuition for the anyonic case we describe the general framework by employing
distinguishable spin- 1

2 particles with nontrivial fusion properties. The fusion rules are given
by the angular momentum decomposition of tensor products of vector spaces. For example,
the combination of two spin-1

2 particles gives 1
2 ⊗

1
2 = 0 ⊕ 1 that closely resembles the anyonic

fusion rules (1). We will show that it is possible to violate a Bell inequality by performing only
total spin measurements, i.e. without measuring projections of the total spin along specified
directions. Consider a system divided into two spatially non-overlapping subsystems A and B,
conveniently labelled as Alice and Bob, each one possessing three spin-1

2 particles, as seen in
figure 1. First, we perform a joint measurement on the total spin EStot =

∑6
j=1 Es j and post-select

the Stot = 0 outcome that has state space dimension five. Second, we define a set of measurement
operators {ϒA

1,2, ϒ
A
2,3, ϒ

B
4,5, ϒ

B
5,6}, where ϒi, j = (Esi + Es j)

2
− 1. The eigenvalues of ϒi, j are +1 in

the triplet space and −1 for the singlet and the operators ϒA(B) act on the subsystems A(B). The
operator pair within A or B is non-commuting but [ϒA

i, j , ϒ
B
k,l] = 0. Consider the expectation
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value of the operator

W = ϒA
1,2ϒ

B
4,5 +ϒA

1,2ϒ
B
5,6 −ϒA

2,3ϒ
B
5,6 +ϒA

2,3ϒ
B
4,5. (2)

For a classical theory, even in the presence of LHVs (see [21] and references therein), the
Bell inequality for W is |〈W 〉LHV|6 2. This can be derived straightforwardly as follows [22].
Assume independence of the two subsystems (locality) so that the joint probabilities for pairs
of outcomes is just the product of the individual probabilities which could depend on a hidden
variable λ, drawn from a fixed distribution p(λ). For the above quorum of observables with
outcomes {mA

1,2,mA
2,3,mB

4,5,mB
5,6} ∈ ±1 we have

(mA
2,3 + mA

1,2)m
B
4,5 − (mA

2,3 − mA
1,2)m

B
5,6 = ±2.

Hence, in the LHV model, the outcomes must satisfy

|WLHV| = |

∫
dλp(λ)〈(ϒA

1,2(λ)ϒ
B
4,5(λ)+ϒA

1,2(λ)ϒ
B
5,6(λ)−ϒ

A
2,3(λ)ϒ

B
5,6(λ)+ϒA

2,3(λ)ϒ
B
4,5(λ))〉|

= |

∫
dλp(λ)(mA

2,3(λ)+ mA
1,2(λ))m

B
4,5(λ)− (m

A
2,3(λ)− mA

1,2(λ))m
B
5,6(λ)|

6 2.

Quantum mechanically, the maximum value of |〈W 〉| is obtained for eigenstates of W with
maximum eigenvalue, i.e. |〈W 〉|6

√
7. Our aim is to find a violation of the classical upper

bound in the subspace of states with Stot = 0. Note that our protocol allows for measuring
correlations without the need of a shared reference frame between Alice and Bob [23] thus
giving a simple and unambiguous test of Bell inequalities. In the anyonic case treated below
the operators ϒi, j also have eigenvalue −1 when the fusion outcome is the vacuum and +1
otherwise.

At this point we pause briefly to mention that while we will be operating on Hilbert spaces
that do not admit a tensor product structure, Tsirelson’s inequality [24] applies nonetheless. That
is, for arbitrary operators in equation (2) that have the same commutation structure and square to
1, quantum mechanics demands |〈W 〉|6

√
8. For example, it may be that the Hilbert space is a

direct sum of tensor products, e.g. d1 × d1 + d2 × d2. However, that space may be embedded into
a tensor product space of dimension (d1 + d2)× (d1 + d2), and hence the measurement outcomes
cannot violate the quantum Bell-like inequialities proved for tensor products [25, 26].

There are two natural orthonormal bases for a three-particle system based on the two
different orders of fusing the three particles. These are graphically represented by fusion trees
in figure 2(b). The basis change for three particles with charges (a, b, c) fusing to d is given
by the matrices Fd

a,b,c. For the case of SU(2) these matrices just describe angular momentum
recoupling and their matrix elements are the Wigner 6- j symbols:

(Fd
abc)

x
f =

√
(2x + 1)(2 f + 1)

{
a b f
c d x

}
(3)

and satisfy the orthogonality relation:
∑

x(F
d
abc)

f
x (F

d
abc)

f ′

x = δ f, f ′ . For six particles with total
spin 0, we get four natural product bases from the two pairs of bases for each triple. The
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x

1 2 3

1 2 3

654

α α α

x

α α α

ββ

|x(α, β) A = |x (α, β) A =

α α α α α α

β β

x y|ψ =
x,y,β

cx,y,β

Vacuum

(a)

(b)
1 2 3

Figure 2. The state space of anyons in our protocol represented as fusion trees.
(a) An arbitrary state of six α type anyons with trivial total charge expanded in
terms of fusion outcomes local to A and B. In the models considered here, β is its
own antiparticle, but it is straightforward to generalize. (b) A ‘local’ fusion basis
satisfying ϒA

2,3|x(α, β)〉A = ±|x(α, β)〉A and ϒA
1,2|x

′(α, β)〉A = ±|x ′(α, β)〉A for
x a vacuum state or a particle and similarly for B. For each subsystem the bases
are related by an F move: |x ′(α, β)〉 =

∑
x(F

β
ααα)

x
x ′|x(α, β)〉.

1 2 3 4 5 6

1
2

1 2 3 4 5 6

1
2

1

1 2 3 4 5 6

1
2

1

1 2 3 4 5 6

1
2

1

1 2 3 4 5 6

1
2

1

3
2

|φ0

|φ1

|φ2

|φ3

|φ4
0

00

0

0

Figure 3. Bratteli diagram for SU(2) describing the various paths for combining
six spin-1

2 particles with total spin zero. Each path defines a distinguishable state
in the Hilbert space. In the SU(2)2 case the Bratteli diagram that corresponds to
|φ4〉 is absent due to the charge truncation condition equation (7).

contributing particle labels are the spin values {0, 1
2 , 1, 3

2} and the only relevant F-matrix for

changing between bases is F
1
2

1
2

1
2

1
2
, which, for the SU(2) case is given by

F ≡ F
1
2

1
2

1
2

1
2
=

1

2

(
1

√
3

√
3 −1

)
in the basis given by fusion trees with intermediate spins 0 and 1. The distinguishable states in
the Hilbert space can be represented by Bratteli diagrams (see figure 3) which label the different
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paths for addition of angular momentum. For the group SU(2) with six spin- 1
2 particles in the

total spin zero sector, the dimensionality of the fusion space is five. We can then re-express
those states using the local fusion basis defined in figure 2:

|φ0〉 = |0′
〉A|0〉B, |φ1〉 = |1′

〉A|0〉B, |φ2〉 = |0′
〉A|1〉B,

|φ3〉 = |1′
〉A|1〉B, |φ4〉 =

∣∣∣1 (
1
2 ,

3
2

)〉
A

∣∣∣1 (
1
2 ,

3
2

)〉
B
,

(4)

where |x〉 ≡ |x(1
2 ,

1
2)〉 and |x ′

〉 =
∑

x F x
x ′|x〉. In spin components we have |φ0〉 = |9−

〉1,2 ⊗

|9−
〉3,4 ⊗ |9−

〉5,6, where |9−
〉 = (|↑↓〉 − |↓↑〉)/

√
2, so the state |φ0〉 has three adjacent singlet

pairs. Notice that in order to have trivial total spin the local bases occur in pairs that share the
same label β.

In the basis {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉} t |φ4〉, we have

W = (F†σ z F ⊗ F†σ z F + F†σ z F ⊗ σ z + σ z
⊗ F†σ z F − σ z

⊗ σ z)⊕ 2|φ4〉〈φ4|. (5)

The Hilbert space splits into different sectors labelled by β, which are conserved by the action
of W . The expression for the witness in equation (5) is easily obtained by noting that since our
measurement operators have two outcomes ±1 that ϒA

1,2 = σ z and ϒA
2,3 = F†σ z F , and similarly

for the operators on B. There is a four-dimensional sector with β =
1
2 and a one-dimensional

sector with β =
3
2 , containing |φ4〉. No Bell violation can occur in the β =

3
2 sector, since

the measurement operators commute in that sector. Maximally, Bell violating states are thus
orthogonal to |φ4〉. We consider a one parameter family of states that gives a good representation
of the full Hilbert space in terms of the Bell inequalities. Indeed, for the states

|r(a)〉 =
a

√
2
(|φ0〉 + |φ3〉)+

√
1 − a2

√
2

(|φ1〉 − |φ2〉), (6)

with −16 a 6 1 we plot the expectation value 〈W 〉 seen in figure 4. The maximal violation

(〈W 〉max,min = ±
√

7 ≈ ±2.6458) is obtained for a± = ∓

√
(7 ± 2

√
7)/14, while non-violating

regions of the parameter a can also be identified.

4. Bell inequalities and SU(2)k anyons

Consider now a two-dimensional system with quasiparticle excitations described by SU(2)k
Chern–Simons–Witten theories. The corresponding fusion rules satisfy the addition of angular
momentum with the constraints

j1 × j2 → j; only if j1, j2, j 6 k/2 and j1 + j2 + j 6 k. (7)

It is quickly verified that for k > 3, the total charge zero sector of six particles labelled by spin- 1
2

again has five states, labelled by the same fusion trees as in the SU(2) case (see figure 3). The F
matrices will differ, but for our purposes, the only relevant recoupling is still F̃1/2

1
2

1
2

1
2
. Computing

the quantum 6 − j symbols, we find (see for instance [27])

F ≡ F̃
1
2

1
2

1
2

1
2
=

1

[2]q

(
1

√
[3]q√

[3]q −1

)
,

where the quantum integers are defined as [m]q = (qm/2
− q−m/2)/(q1/2

− q−1/2) for m integer.
For the SU(2)k theories, q = e2π i/(k+2). In the limit k → ∞, then [m]q → m. As before, we can
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a

W

1.0 0.5 0.5 1.0

2

1

1

2

Figure 4. The expectation value of the Bell witness W as a function of the
amplitude of mixing for the total charge zero states |r(a)〉 in equations (6). The
yellow, blue and red lines correspond to an SU(2), SO(3)3, SU(2)2 theory with
six spin- 1

2 , τ and σ particles, respectively. The shaded region corresponds to
states which violate the inequality derived for LHV models.

label the states in the local fusion basis, as in equation (4), and still use equation (5) for W which
is derived in the same way but with the appropriate F matrix.

The state |φ0〉 is obtained by creating spin-1
2 particle anti-particle pairs at positions

(1, 2), (3, 4) and (5, 6) out of the vacuum. For the one parameter family of states |r(a)〉 we
find maximal violation at

a+ = −
1

√
8 cos(2π/(k + 2))+ cos(4π/(k + 2))+ 5

[
cos2

(
2π

k + 2

)
+ 4 cos

(
2π

k + 2

)

+

√
2 cos4

( π

k + 2

) (
8 cos

(
2π

k + 2

)
+ cos

(
4π

k + 2

)
+ 5

)
+ 2

]1/2

(8)

and at a− =
√

1 − a2
+, where

〈W 〉 = ± sec2
( π

k + 2

) √
4 cos

(
2π

k + 2

)
+

1

2
cos

(
4π

k + 2

)
+

5

2
.

It is easy to verify that k → ∞ corresponds to SU(2). A qualitative difference between anyonic
systems and the spin systems discussed before is that, while the z-components of the spins of
all particles are in principle measurable, there are not necessarily any observables associated
with the z-components of the ‘q-spins’ of the anyons. Only SU(2)q invariant quantities, such as
the total q-spins of groups of anyons, can be observables, or at any rate topologically protected
observables. This can be traced back to the superselection rule that says that the total q-spin of
all anyons together must be trivial. If it were possible to measure the z-components of every
anyons’ q-spin, then the state obtained would no longer be invariant under SU(2)q . In fact, a
similar rule would hold for confined particles in gauge theory and so for a better analogy, one
may think of the SU(2)q invariance as being closer to an SU(2) gauge symmetry rather than
spin.
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5. Explicit construction of Bell violating states for k = 2 and 3

5.1. The SU(2)2 case

It was shown by Freedman et al [28] that the anyonic theories with k > 3, k 6= 4 are universal
for quantum computation. Hence, for those theories, the Bell violating states can be obtained
by topological braiding operations alone acting, for example, on the fiducial state |φ0〉. We now
check to see if it is possible to generate a state that violates the inequality for the k = 2 case.
Up to charge factors that affect the Abelian part of braiding, the SU(2)2 anyons are believed
to exist in the ν =

5
2 plateau of the fractional quantum Hall effect [29, 31, 32] and px + ipy

superconductors and possibly in systems involving topological insulators. They come in three
varieties, the vacuum, 1, the fermion,ψ , and the non-Abelian anyon, σ , that satisfy the nontrivial
fusion rules,

ψ ×ψ = 1, ψ × σ = σ, σ × σ = 1 +ψ. (9)

The counterclockwise exchange of two σ particles, which fuse to either 1 or ψ , results in the
matrix evolution R = 1 ⊕ i expressed in the basis labelled by the fusion channels {1, ψ}. The
state evolution produced by the exchange of particles with no immediate fusion channel is found
by employing the recoupling matrix F . Expressed in the basis {|x(σ, σ )〉A|y(σ, σ )〉B; x, y ∈

{1, ψ}}, we have the following representation of the nearest-neighbor left–right exchanges that
are generators of the braid group B6:

B1 = e−i(π/4)σ x
⊗ 12, B2 = e−i(π/4)σ z

⊗ 12, B3 = e−i(π/4)σ x
⊗σ z
,

B4 = 12 ⊗ e−i(π/4)σ x
, B5 = 12 ⊗ e−i(π/4)σ z

,
(10)

where B j results from the exchange of j and j + 1 particles in a counterclockwise manner. As
a simple initial state we can consider |φ0〉 that is produced from (1, 2), (3, 4) and (5, 6) pairs
created from the vacuum.

The braid group generators, B j , are in the Clifford group, so we cannot generate a dense
set in SU(4) by braiding alone7. But can we still obtain Bell violating states? In [33, 34], an
LHV model was introduced for a pair of qubits that exactly reproduces the set of allowed
operations in the present model. There are two distinct configurations of shared vacuum pairs
(up to relabelling of particles by Alice or Bob) both of which can be obtained from |φ0〉 by
braiding. Hence, it is not possible to build Bell violating states starting out from three shared
vacuum pairs using topologically protected operations alone.

Despite the impossibility of producing a Bell violating state from |φ0〉 by topological
gates, one can in fact straightforwardly obtain a maximally Bell violating state using non-
topological gates8. Let us employ the non-Clifford gate D = e−i(π/8)σ z

⊗ 1. This can be
implemented by bringing the two and three σ anyons nearby, thus shifting the energy of the
fermionic fusion channel [36] such that a relative phase eiπ/4 is accumulated on that channel.
From these operations one can build the controlled phase gate in the following way CP =

eiπ/4 B2 B1 B2 B−1
3 B−1

2 B−1
1 B5. A simple searching algorithm provides us with the sequence that

produces |r(a−)〉 = −C P B3 B4 DB2 B3|φ0〉, with 〈W 〉 = −2
√

2, thus saturating the Tsirelson
bound.
7 Complementing topological operations by some noisy non-topological operations, one can achieve
universality [30].
8 For an alternative construction of this kind, but using the more standard tensor product structure of four-anyon
qubits, giving a total of eight anyons, see [35].
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Figure 5. Bratteli diagram for SO(3)3 describing the various paths for combining
6 charge τ particles with total charge zero. Each path defines a distinguishable
state in the Hilbert space.

In fact, it is indeed possible to realize a maximally violating state without braiding
at all. Consider a state |φ′

0〉 given by a distribution of singlet pairs on (1, 6), (2, 5) and
(3, 4). This state |φ′

0〉 is related to the fiducial distribution of pairs by the following braid
word |φ′

0〉 =
1

√
2
(|0′

〉A|0〉B + |1′
〉A|1〉B)= B−1

2 B−1
3 B5 B4 B3 B2|φ0〉. This state would be maximally

violating if we could measure in arbitrary local bases. For our fixed measurement quorum |φ′

0〉

is related to the maximally violating state by e−i(π/8)σ y
⊗ 1|φ′

0〉 = |r(a+)〉 and hence it suffices
to implement the local unitary e−i(π/8)σ y

= e−i(π/4)σ z
e−i(π/8)σ x

ei(π/4)σ z
on Alice’s side to obtain a

Bell violation. The z rotation is simply achieved by bringing anyons two and three near each
other as above, and similarly the x rotation is performed by pushing one and two together. This
scheme is re-described in appendix A in a way that emphasizes its analogy with current photon
experiments used to demonstrate non-locality. Note that the maximal Bell violation in these two
constructions actually saturates the Tsirelson inequality, making the SU(2)2 case at the same
time ‘maximally quantum mechanical’ and ‘topologically classical’.

5.2. The Fibonacci case

Let us turn now to Fibonacci anyons from the SO(3)3 theory. This is the theory obtained from
SU(2)3 but using only integer spin particles: the vacuum 1 and the non-Abelian anyon τ , with
nontrivial fusion rule τ × τ = 1 + τ . The relevant recoupling matrix is

F = F τ
τττ =

(
φ−1 φ−1/2

φ−1/2
−φ−1

)
expressed in the basis of 1 and τ . The dimension of the topological Hilbert space of m + 1
type τ anyons with total charge zero is fm , the mth Fibonacci number, hence there are
five states in the fusion space as depicted in figure 5. These states can be decomposed into
superpositions of products of local basis states as in equation (4) where |0〉 = |1(τ, τ )〉 and
|1〉 = |τ(τ, τ )〉 and |φ4〉 = |τ(τ, 1)〉A|τ(τ, 1)〉B. The state |φ0〉 is the state obtained by creating
type τ particle–anti-particle pairs on (1, 2), (3, 4), (5, 6) out of the vacuum. For the one
parameter family of states |r(a)〉 we find the same maximal violation as in equation (8) for

SU(2)3: 〈W 〉 = ±2
√

−7 + 4
√

5 ≈ ±2.7887. This is not very surprising, considering that the
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SU(2)3 theory is equivalent to the product of the Fibonacci theory and an Abelian theory with
Z2 fusion rules (see for instance [37]).

The action under braiding is represented by the matrix Rττ = ei4π/5
⊕ ei7π/5 expressed in

the basis {1, τ }. We obtain the following representation of the generators of the braid group B6

expressed in the basis {|0〉|0〉, |0〉|1〉, |1〉|0〉, |1〉|1〉} t |φ4〉:

B1 = [F Rττ F−1
⊗ 12] ⊕ (ei7π/5), B2 = [Rττ ⊗ 12] ⊕ (ei7π/5),

B3 = O†

[
ei4π/5

⊕ ei7π/5
⊕ ei7π/5

⊕

(
M1

1 M1
0

M0
1 M0

0

)]
O,

B4 = [12 ⊗ F Rττ F−1] ⊕ (ei7π/5), B5 = [12 ⊗ Rττ ] ⊕ (ei7π/5),

(11)

where O maps the product basis to the basis {|φ j〉}
4
j=0, and M = (F τ

τττ )
−1 Rττ F τ

τττ . A length
25 braid word produces a Bell violation: |9〉 = [B3 B−1

4 B−1
1 B−1

3 B−1
2 ]5

|φ0〉 with 〈9|W |9〉 =

2.5310. With longer braid words it is possible to get arbitrarily close to maximal violation [20].

6. Bell inequalities and quantum doubles

In the models above, measurements by Alice and Bob had two outcomes for the two fusion
products of the anyons. To accommodate more outcomes we can use higher dimensional Bell
witnesses [38]. We demonstrate how this works in another anyonic model with excitations
in one-to-one correspondence with irreducible representations of a Hopf algebra, D(G), the
quantum double of a finite group G [18, 19]. We focus on the simplest non-Abelian finite group,
S3, the group of permutations on three objects (see appendix B). A further simplification can
be achieved by restricting to a particular fusion subalgebra of D(S3), {1,3,8}, with nontrivial
fusion rules

3×3= 1, 3×8=8, 8×8= 1 +3+8.

The magnetic charge 8 with quantum dimension two carries non-Abelian statistics and the
fusion of n such particles gives 8×n

=
1
3(2

n−1 + (−1)n)(1 +3)+ 1
3(2

n + (−1)n−1)8. As before,
we will work in the superselection sector with total trivial charge. The smallest number of
particles in this sector that could hope to violate a Bell inequality should have fusion space
dimension > 4. If we are to pick measurement operators for Alice and Bob that measure total
charge on pairs of 8 particles and we want two non-commuting operators on each side then
we require at least six particles in total. Exactly six particles suffices, giving Hilbert space
dimension 11 for the vacuum sector.

Either by using the representation theory of D(S3), or by solving the pentagon and hexagon
equations directly (see appendix B), we find the following recoupling and braid matrices,
expressed in the basis {1,3,8}:

F ≡ F8
888 =



1

2

1

2
−

1
√

2
1

2

1

2

1
√

2

−
1

√
2

1
√

2
0

 , R ≡ R88 =

1 0 0
0 −1 0
0 0 1

 .
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Figure 6. Bratteli diagram for a subalgebra of D(S3) describing the various
paths for combining six 8 particles with total charge zero. Each path defines
a distinguishable state in the Hilbert space.

A basis of the 11-dimensional vacuum sector of the six anyon Hilbert space, depicted in
figure 6, is re-expressed in the fusion bases for A and B as

{|φ j〉}
10
j=0 =

{∑
y

F y
1 |y(8,8)〉A|1(8,8)〉B,

∑
y

F y
3|y(8,8)〉A|1(8,8)〉B,∑

y

F y
8|y(8,8)〉A|1(8,8)〉B,

∑
y

F y
1 |y(8,8)〉A|3(8,8)〉B,∑

y

F y
3|y(8,8)〉A|3(8,8)〉B,

∑
y

F y
8|y(8,8)〉A|3(8,8)〉B∑

y

F y
1 |y(8,8)〉A|8(8,8)〉B,

∑
y

F y
3|y(8,8)〉A|8(8,8)〉B,

∑
y

F y
8|y(8,8)〉A|8(8,8)〉B, |8(8,3)〉A|8(8,3)〉B, |8(8, 1)〉A|8(8, 1)〉B

}
.

(12)

The state |φ0〉 is obtained by creating type 8 particle–anti-particle pairs on (1, 2), (3, 4), (5, 6)
out of the vacuum.

Now in analogy to the cases studied for SU(2)k , we could look for a Bell-like inequality
but using measurement operators with three outcomes. Let Alice have one operator ϒA

1,2 which
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measures the outcome of total charge for particles 1 and 2 with outcomes {1,3,8} and
another, non-commuting operator, ϒA

2,3 that measures total charge for particles 2 and 3 with
outcomes {1,3,8}. In other words, ϒA

1,2 is a measurement in the basis {(Fβ
ααα)

†
|y(α, β)〉A}

with outcome mA
1,2 = y ∈ {1,3,8} and ϒA

2,3 is a measurement in the basis {|y(α, β)〉A} with
outcome mA

2,3 = y. Similarly, let Bob have two measurement operators, ϒB
4,5 that measures in

the basis {(Fβ
ααα)

†
|y(α, β)〉B} with outcome m B

4,5 = y, and ϒB
5,6 which measures onto the basis

{|y(α, β)〉B} with outcome mB
5,6 = y. Now (F1

888)
y
x = δx,8δy,8 = (F3

888)
y
x , so in the subspace of

{|φ9〉, |φ10〉}, the measurement operators all commute. These states cannot yield a Bell violation
and we can focus on the states in the nine-dimensional orthogonal subspace which is isomorphic
to the Hilbert space of two three-dimensional particles (qutrits).

In [38] it was shown how to construct Bell inequalities for bipartite systems of equal
but arbitrary finite dimension. In particular for two qutrits the authors introduce the witness
I3 which for all LHV theories satisfies |〈I3〉|6 2, whereas for quantum mechanical systems
|〈I3〉|6 4. To simplify notation let us introduce the projectors πy ≡ |y(8,8)〉〈y(8,8)| and
π̃y ≡ F†

|y(8,8)〉〈y(8,8)|F . For the quorum of observables above, the Bell witness I3 is

I3 = π̃1 ⊗ π̃1 + π̃3 ⊗ π̃3 + π̃8 ⊗ π̃8 +π8 ⊗ π̃1 +π1 ⊗ π̃3 +π3 ⊗ π̃8 +π1 ⊗π1 +π3 ⊗π3

+π8 ⊗π8 + π̃1 ⊗π1 + π̃3 ⊗π3 + π̃8 ⊗π8 − π̃1 ⊗ π̃3 + π̃3 ⊗ π̃8 + π̃8 ⊗ π̃1 −π1 ⊗ π̃1

+π3 ⊗ π̃3 +π8 ⊗ π̃8 −π1 ⊗π3 +π3 ⊗π8 +π8 ⊗π1 − π̃3 ⊗π1 + π̃8 ⊗π3 + π̃1 ⊗π8

+2|8(8,3)〉〈8(8,3)| ⊗ |8(8,3)〉〈8(8,3)|

+2|8(8, 1)〉〈8(8, 1)| ⊗ |8(8, 1)〉〈8(8, 1)|. (13)

The state with the largest violation has 〈I3〉 = −2.5216.
In the basis {|x(8,8)〉A|y(8,8)〉B; x, y ∈ {1,3,8}} t |8(8,3)〉A|8(8,3)〉B t

|8(8, 1)〉A|8(8, 1)〉B} the representation of the generators for B6 is given by

B1 = [F RF−1
⊗ 13] ⊕ R8

88 ⊕ R8
88, B2 = [R ⊗ 13] ⊕ R8

88 ⊕ R8
88,

B3 = O†

R1
88 ⊕ R3

88 ⊕ R8
88 ⊕ R3

88 ⊕ R1
88 ⊕ R8

88 ⊕ R8
88 ⊕ R8

88 ⊕

M8
8 M8

3 M8
1

M3
8 M3

3 M3
1

M1
8 M1

3 M1
1

 O,

B4 = [13 ⊗ F RF−1] ⊕ R8
88 ⊕ R8

88, B5 = [13 ⊗ R] ⊕ R8
88 ⊕ R8

88, (14)

where O maps the product basis to the basis {|φ j〉}
10
j=0, and M = F−1 RF . Here B2

j =

111∀ j , so we have the permutation group S6, as mentioned before. We compute
the action on states consisting of vacuum magnetic charge pairs. The state |φ0〉 =

|8,8; (1, 2)〉|8,8; (3, 4)〉|8,8; (5, 6)〉 is the fiducial state, and the other distinct
configuration of vacuum magnetic charge pairs is |8,8; (1, 4)〉|8,8; (2, 5)〉|8,8; (3, 6)〉 =

B3 B4 B2 B1|φ0〉, hence it suffices to consider the orbit of |φ0〉. An exhaustive search through
6! = 720 braid words corresponding to all distinct permutations in S6 finds that, while 〈I3〉

is not constant under braiding, we do find that in all cases |〈I3〉|6 2. Hence we require
some operation beyond braiding to produce a violation of LHV under our protocol. Even
if we restrict to non-topologically protected operations that just involve interacting pairs
of particles, we can indeed produce a Bell violating state. Consider the family of states
|φ′

〉 = D3,4(α1, α2)D1,2(α3, α4)D2,3(α5, α6)B1 B5 B3 B2 B3 B4|φ0〉, where Di, j(α, β) is the non-
topologically protected gate obtained by bringing anyons i and j of type 8 nearby each other
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and allowing them to interact for a time such that the fusion channel 8×8→3 accumulates
a phase eiα and the fusion channel 8×8→8 accumulates a phase eiβ . Optimizing |〈I3〉| over
the interaction phases, we find a violation 〈φ′

|I3|φ
′
〉 = 2.0512 for the angles: α1 = 0.7943, α2 =

0.3989, α3 = 3.5531, α4 = 0.9257, α5 = −0.8525 and α6 = 0.1036. No systematic attempt was
made to optimize the violation over other braid words and it is likely stronger violations could
be found.

7. Conclusions

We have described a protocol to reveal non-locality in several classes of non-Abelian anyonic
theories. The need for at least six anyons shared between two parties arises because each party
needs three anyons in order to have two non-commuting topologically protected observables. It
is possible if this could be reduced using a shared resource which fixes a common gauge, akin to
using a shared reference frames to reveal non-locality in mode entanglement with bosons [23].
The size of the maximum violation depends on the recoupling matrices F and the ability to
generate Bell violating states beginning from three vacuum charge pairs depend on the power
of the braiding operations. It is intriguing to ask whether one could find intermediate anyonic
theories which have the power to generate Bell violating states by topologically protected gates,
but are not universal for topological quantum computation.
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Appendix A. The Clauser–Horne–Shimony–Holt (CHSH) inequality and Ising anyons

In this appendix, we show the equivalence between one of our schemes and a scheme where
the CHSH inequality [22] is violated by a maximally entangled two-qubit state. Let us start by
briefly recalling this inequality. Let us consider two spatially separated parties, Alice and Bob,
sharing many copies of a bipartite system. Each of them can perform either of two measurement
on each copy; A1 or A2 for Alice, and B1 or B2 for Bob. The outcomes of A1, A2, B1, B2 are
±1. The CHSH inequality reads

〈A1 B1 + A2 B2 + A2 B1 − A1 B2〉6 2. (A.1)

When Alice and Bob perform the measurements

A1 = σ z, A2 = σ x , (A.2)

B1 =
1

√
2
(σ x + σ z), B2 =

1
√

2
(σ x

− σ z), (A.3)
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Figure A.1. State of three pairs of Ising anyons express in a ‘right–right’ basis.

on the state

|φ+
〉 = |0, 0〉 + |0, 1〉 + |1, 0〉 − |1, 1〉, (A.4)

then the l.h.s. of (A.1) is equal to
√

8, which is the maximal value attainable by quantum theory.
Let us now consider an SU(2)2 theory and suppose that three pairs of σ anyons (spin- 1

2 irrep
particles) are created from the vacuum: (σ1, σ6), (σ2, σ5), (σ3, σ4). Quasi-particles σ1, σ2, σ3

go to Alice whereas σ4, σ5, σ6 go to Bob. Using a sequence of F-moves, one can write the
corresponding state shared by Alice and Bob as drawn in figure A.1.

On Alice’s side (left part of each tree), we formally define a |0〉 state of a computational
basis as a state where her anyons 1 and 2 have fused to yield a charge-‘1’ quasi-particle before
fusing with her anyon 3. The |1〉 state is defined as a state where her anyons 1 and 2 fuse to ψ . A
similar computational basis is defined on Bob’s side. Then, it is obvious that the state Alice and
Bob share is of the form (A.4). Therefore, it should allow for a maximal violation of the CHSH
inequality by operations only on Alice’s side and on Bob’s side. Of course, the state shared by
Alice and Bob is not truly (A.4). Alice and Bob do not have two qubits, and their Hilbert space
is not a tensor product. Rather they have excitations defined over an entangled vacuum, and
their Hilbert space cannot be factorized. But as far as the CHSH inequality is concerned, all that
matters is to reproduce the mean values 〈Ai B j〉 as if their state were (A.4). For that, we only
need to implement the measurements (A.2) and (A.3).

The matter is simple on Alice’s side. A1 is a measurement where she fuses her anyons 2
and 3, and then the result with her anyon 1 (outcome ‘0’ if the intermediate particle is
trivial, and ‘1’ if the intermediate particle is ψ). A2, in turn, can be implemented by fusing her
anyons 1 and 2, and then the result with the anyon 1, as can be seen from the expressions for
the elements of the F-matrix.

In order to implement the necessary measurement’s on Bob’s side, we use the D-
gate. Bringing anyons 5 and 6 close to each other for a given amount of time allows to
implement operations of the form Dz(β)= eiβσ z

, whereas bringing anyons 4 and 5 for a given
amount of time allows to implement Dx(α)= eiασ x

. From the identity eiασ x
eiβσ z

σ xe−iβσ z
e−iασ x
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= sin 2α sin 2βσ z + cos 2βσ x
− cos 2α sin 2βσ y , we see that choosing the ‘interaction times’

(α, β)= (π/4, π/8) implements B1, whereas the choice (α, β)= (π/4, 7π/8) implements B2.

Appendix B. The quantum double model

Here we give a brief account of anyons governed by the irreducible representations of a Hopf
algebra, D(G), the quantum double of a finite group G [18, 19]. The particles can carry electric
and magnetic charge and are labelled by 5[a]

α where [a] denotes a conjugacy class of G which
labels the magnetic charge, and α, which labels the electric charge, denotes a unitary irreducible
representation of the centralizer of an element in the conjugacy class [a]. The dimension of the
carrier space for each irreducible representation, which equals the quantum dimension of the
particle 5[a]

α is d [a]
α = |[a]||α|. We focus on the simplest non-Abelian finite group, S3, the group

of permutations on three objects. Elements of S3 are organized into three conjugacy classes:
[e] = {e} the identity element, [t] = {t0, t1, t2} the transpositions and [c] = {c+, c−} the cyclic
permutations. The eight irreducible representations for D(S3) are

5
[e]
δ+

d = 1 (vacuum),

5
[c]
β0
,5[t]

γ0
d = 2, 3 (pure magnetic charges),

5
[e]
δ−
,5

[e]
δ2

d = 1, 2 (pure electric charges),

5
[c]
β1
,5

[c]
β2
,5[t]

γ1
d = 2, 2, 3 (dyonic combinations).

(B.1)

A complete derivation of the fusion rules for this model is given in [40]. In the toric
code realization of these anyon models, the quantum dimensions actually count local degrees
of freedom associated with the anyon. In the discrete gauge theory context, these degrees of
freedom are also present in the description of the system, but some of them are gauge. A single
particle’s electric charge and magnetic charge can always be measured locally (or at least within
a region of size characteristic of the particles), by braiding with other locally prepared charge
pairs and measuring the outcome of fusion of the pairs. Truly non-local properties are contained
in the fusion space. To explore this we pick a fusion subalgebra of D(S3): {5

[e]
δ+
,5

[e]
δ−
,5

[c]
β0

}

which we label for convenience {1,3,8}. The nontrivial fusion rules are

3×3= 1, 3×8=8, 8×8= 1 +3+8.

These fusion rules are the same as the fusion rules for the representations of S3 itself and also the
same as the fusion rules of the integer spin sectors of SU(2)4. The particles are their own anti-
particles. The magnetic charge 8 with quantum dimension two carries non-Abelian statistics
and the fusion of n such particles gives: 8×n

=
1
3(2

n−1 + (−1)n)(1 +3)+ 1
3(2

n + (−1)n−1)8. As
before, we will work in the superselection sector with total trivial charge. The smallest number
of particles in this sector that could hope to violate a Bell inequality should have fusion space
dimension > 4. If we are to pick measurement operators for Alice and Bob that measure total
charge on pairs of 8 particles and we want two non-commuting operators on each side then we
require at least six particles in total. Exactly six particles suffices giving Hilbert space dimension
11 for the vacuum sector.

Either by using the representation theory of D(S3), or by solving the pentagon and hexagon
equations directly, we find the following recoupling and braid matrices, expressed in the basis
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{1,3,8},

F ≡ F8
888 =



1

2

1

2
−

1
√

2
1

2

1

2

1
√

2

−
1

√
2

1
√

2
0

 , R ≡ R88 =

1 0 0
0 −1 0
0 0 1

 .

We notice immediately that R has eigenvalues ±1, so that we will end up with a representation
of the permutation group when ‘braiding’ the anyons. Nevertheless, these anyons are not bosons
or fermions, since this representation is non-Abelian. The fact that we have a permutation group
representation does signal the fact that braiding in this theory is not universal for quantum
computation. This is in fact a general property of braiding in discrete gauge theories.
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