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Abstract
1.	 Biodiversity and ecosystem function (BEF) studies aim to understand how 

ecosystems respond to a gradient of species diversity. Generalised Diversity-
Interactions (DI) models are suitable for analysing the BEF relationship. These 
models relate an ecosystem function response of a community to the identity of 
the species in the community, their evenness (proportions) and interactions. The 
number of species in the community (richness) is included implicitly in a DI model.

2.	 It is common in BEF studies to model an ecosystem function as a function of 
richness; while this can uncover trends in the BEF relationship, by definition, spe-
cies diversity is broader than richness alone, and important patterns in the BEF 
relationship may remain hidden. Here, we introduce the DImodels R package for 
implementing DI models. We show how richness is mathematically equivalent to 
a simplified DI model under certain conditions, and illustrate how using the DI 
multidimensional definition of species diversity can provide deeper insight to the 
BEF relationship compared to traditional approaches.

3.	 Using DI models can lead to considerably improved model fit over other meth-
ods; it does this by incorporating variation due to the multiple facets of species 
diversity. Predicting from a DI model is not limited to the study design points, 
the model can interpolate or extrapolate to predict for any species composition 
and proportions (assuming there is sufficient coverage of this space in the study 
design).

4.	 Expressing the BEF relationship as a function of richness alone can be useful to 
capture overall trends. However, collapsing the multiple dimensions of species 
diversity to a single dimension (such as richness) can result in valuable ecological 
information being lost. DI modelling provides a framework to test the multiple 
components of species diversity in the BEF relationship. It facilitates uncovering a 
deeper ecological understanding of the BEF relationship and can lead to enhanced 
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1  |  INTRODUC TION

In biodiversity and ecosystem function (BEF) studies, there is usually 
a range of communities that may vary in the number, identities and/or 
proportions of species, and in overall density. One or more ecosystem 
function responses are recorded for each community a period after spe-
cies diversity is manipulated (an experiment) or observed (an observa-
tional study). Since communities in BEF studies are characterised by the 
initial richness, composition (species identities) and evenness (species 
proportions) of their species, statistical analyses should ideally jointly 
assess how ecosystem function (community-level responses) is affected 
by these three variables. Diversity-Interactions (DI) modelling, intro-
duced by Kirwan et al. (2009) and Connolly et al. (2013), jointly assesses 
the effects of species identity, richness, evenness, community composi-
tion and interspecific species interactions on an ecosystem function in 
a regression modelling framework. The DImodels package (Moral et al., 
2022) for R software (R Core Team, 2023) implements this approach.

DI models typically include three components in the linear 
predictor:

where y is a community-level response (e.g. biomass for a plant com-
munity); Identities are the effects of species identities and enter the 

model as initial individual species proportions; Interactions are the pair-
wise effects of interspecific interactions between the initial species 
proportions; while Structures include other experimental structures, 
such as blocks, treatments or environmental gradients. A possible DI 
model (excluding structures) is:

where pi is the initial proportion of species i, � i is the identity effect of 
species i, �ij is the interaction parameter for species i and j and � is a nor-
mally distributed random error term, with constant variance. The non-
linear exponent parameter � on each pipj in the Interactions component, 
determines the shape of the BEF relationship by allowing the impor-
tance and impact of interaction terms to be directly modelled (Connolly 
et al., 2013). Imposing different constraints in the Interactions term can 
make DI models more biologically informative and estimable (Table 1).

A major strength of the DI modelling framework is its ability 
to decompose the various elements of species diversity, includ-
ing species identity (composition), species richness and evenness 
(Kirwan et al., 2007). While ‘richness’ does not appear explicitly 
in Equation  (2), richness is implicitly included (see appendix S1 in 

(1)y = Identities + Interactions + Structures + �,

(2)
y =

S
∑

i=1

𝛽 ipi +

S
∑

i, j=1

i< j

𝛿ij
(

pipj
)𝜃

+ 𝜀,

inference. The open-source DImodels R package provides a user-friendly way to 
implement this modelling approach.

K E Y W O R D S
biodiversity and ecosystem function relationship, community composition, Diversity-
Interactions models, species interactions

TA B L E  1  The Identities’ and Interactions components for a range of DI models; there are s species in the pool that are categorised by T 
functional groups (FGs), and pi is the initial proportion of species i.

Model name Identities Interactions Model taga

Species identity
(no interactions)

s
∑

i=1

� ipi
− ID

Average pairwise
(all interactions equal)

s
∑

i=1

� ipi 𝛿

s
∑

i, j=1

i< j

(

pipj
)𝜃 AV

Functional groups
(interactions dictated by functional 

group membership)

s
∑

i=1

� ipi

T
∑

q=1

𝜔qq

∑

i, j∈FGq

i< j

(

pipj
)𝜃

+

T
∑

q, r=1

q< r

𝜔qr

∑

i∈FGq

∑

j∈FGr

(

pipj
)𝜃

FG

Additive species
(species-specific contribution)

s
∑

i=1

� ipi

s
∑

i, j=1

i< j

(

𝜆i + 𝜆j
)(

pipj
)𝜃 ADD

Full pairwise
(all interactions unique)

s
∑

i=1

� ipi

s
∑

i, j=1

i< j

𝛿ij
(

pipj
)𝜃 FULL

aEach model can be implemented in the DImodels package and the DImodel argument within the DI() function is referred to as the ‘model tag’ (see Section 2).
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Connolly et al., 2013): when modelling data with monocultures and/
or mixtures that have an equal proportion of their nonzero species 
(equi-proportional mixtures), the average pairwise DI model (see 
Table 1) with � = 0.5 and all Identities effects set equal is equivalent 
to the richness model (Figure 1a). A mathematical proof and illus-
tration of this equivalency are in SI1. Under the same conditions, 
a � = 0.72 approximates the BEF model with predictor the square 
root of richness, and � = 0.87 approximates the log(richness) model 
(Figure 1a). Through DI models, we can go beyond richness as the 
main explanatory driver of the BEF relationship and additionally 
test for: (1) deviations from a linear richness BEF relationship (the 
shape of the BEF relationship changes with �: Figure 1a); (2) species-
specific effects (different identity effects (� i), Figure 1b); (3) depar-
tures from equi-proportional communities (the richness model is 
not sensitive to changes in species proportions at a given richness); 

and (4) varying interaction structures (the richness model assumes 
any pair of species interacts with the same strength). These bene-
fits of DI models are illustrated in SI1 and Section 3.

The DI model framework can be used to analyse community-level 
responses without the need to have the response broken down into the 
various species contributions (a requirement of partitioning models, see 
Loreau & Hector, 2001). This is particularly relevant for community-level 
responses that cannot be partitioned (e.g. greenhouse gas measure-
ments; see Cummins et al., 2021), and for community-level responses 
that are labour intensive to partition into species contributions. DI mod-
els relate a ‘total’ ecosystem function to initial (e.g. sown proportions in a 
grassland biodiversity experiment) or previous species diversity.

Here, we present the DImodels R package for fitting DI models 
and showcase its functionality. We also compare DI modelling to 
other commonly used BEF modelling approaches.

F I G U R E  1  Conceptual diagram to 
illustrate how richness is implicitly 
included in a DI model. It is assumed the 
underlying data come from a balanced 
design with only equi-proportional 
communities from a pool of four species. 
Predicted ecosystem function versus 
richness for: (a) a range of DI models 
where all species interact in the same 
way (AV model in Table 1), with identity 
effects equal, and with � varying, and (b) a 
DI model with unique identity effects for 
each species and an average interaction 
term with � = 0.5; predictions are shown 
for select individual communities (the 
pie glyphs show the initial community 
proportions) and on average for each 
richness level (black dots; computed as 
ŷ =

5+ 8+ 12+ 15

4
+ 8

∑
�

pipj
�0.5). The dotted 

grey line is the fitted richness model, 
it coincides with the average DI model 
predictions.
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2  |  THE DImodels  R PACK AGE

The DImodels package provides users with the flexibility to fit 
and compare different types of DI models. A typical workflow 
consists of (1) loading and exploring the dataset; (2) performing 
automatic model selection using the autoDI() function; and (3) 
refitting and/or extending the autoDI() selected model using the 
DI() and (sometimes) the DI_data() functions (Figure 2). A dataset 
suitable for use with the package will contain a response variable 
and columns indicating the initial species proportions; it may also 
include block, treatment, density and/or community explanatory 
variables. The package contains simulated and real example data-
sets for illustration.

2.1  |  Automatic model selection

The autoDI() function provides an automatic model selection pro-
cedure to fit a limited range of DI models. The user may choose 
between different criteria for model selection, such as F-tests and 
likelihood-based information criteria. Using autoDI(), a four-step se-
lection process identifies the best DI model from those fitted (Box 1). 
While autoDI() is an excellent starting point, it fits a limited number 
of DI models; it is strongly recommended to assess the diagnostics of 

the selected model and to explore additional models as appropriate 
via the DI() function. For instance, autoDI() does not test for interac-
tions of a treatment with other variables in the model.

The package provides the richness_vs_DI() function, a second 
automated model selection procedure. This function compares the 
richness model to a small subset of DI models (SI1).

2.2  |  Fitting individual DI models

The syntax for the DI()function is:

DI(y, prop, DImodel, data, block, density, treat, FG, extra_formula, 
custom_formula, estimate_theta, theta)

The data argument specifies the dataset for analysis. The argu-
ments y, prop, block, density and treat specify the corresponding col-
umn name (or number) in the dataset. The arguments block, density 
and treat constitute the Structures component of the DI model. The 
argument DImodel takes specific model tags (Table 1) and defines 
the corresponding Identities and Interactions components. When fit-
ting a functional groups model (FG tag in Table 1), the argument FG 
is used to declare the functional group names. Additional terms may 
be added by specifying a formula in the argument extra_formula, for 

F I G U R E  2  Schematic diagram representing a typical workflow and the conceptual map of the DImodels package. A dataset (orange 
column) is passed through the core package functions (blue column) and the resulting model objects can be passed through additional 
functions (purple column).
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example, interactions between species proportions and treatment 
effects. By default, a DI model fitted using DI() will assume � = 1, 
however, it can be set to a numeric value with the theta argument or 
can be estimated using estimate_theta = TRUE.

Ordinary least squares estimation is used when � = 1. The main 
challenge lies in generating the interaction terms of the model ma-
trix. The DImodels package uses the species proportions input to 
internally prepare the appropriate model matrices depending on the 
specifications of the Identities and Interactions components. When � 
is estimated, we optimise the log-likelihood L(�) of the model using 
Brent's (1973) method.

2.3  |  Working with fitted DI models

Both autoDI() and DI() return objects of class DI, for which differ-
ent S3 methods are available to calculate predictions and associated 
standard errors, information criteria and log-likelihood values, and 
compare nested models using F–tests (Figure 2). Specific contrasts 
and their standard errors are provided by contrasts_DI() (see ex-
ample in SI2.9). Updated calls to the DI() function are obtained via 
update_DI(). Confidence intervals for the � parameter can be com-
puted via the theta_CI() function (see example in SI4.5). We obtain 
100(1 − �)% confidence intervals for � by profiling L(�) over a pre-
defined grid and obtaining the values of � that correspond to the 
solutions of the equation L(�) − L

(

�̂
)

=
1

2
�2

1;�
, where L

(

�̂
)

 is the log-
likelihood evaluated at the maximum likelihood estimate �̂ and �2

1;�
 is 

the 100�% percentile of the chi-squared distribution with 1 degree 
of freedom.

Data manipulation steps are carried out automatically within 
the autoDI() and DI() functions. However, the user can compute and 

store interaction variables using the DI_data() function and, for in-
stance, may wish to use them in the extra_formula argument within 
the DI() function (see SI4 for an example), or moving beyond the 
DImodels package to other types of extended modelling approaches 
(e.g. Bayesian inference via MCMC samplers, or inclusion of random 
block effects). Moreover, users may extract the full model matrix of 
a fitted DI model using the model.matrix() S3 method for glm objects, 
or by using the extract() S3 method for DI objects, which extracts 
specific parts of the model matrix.

3  |  C A SE STUDIES

We present two case studies to highlight the benefits of DI models 
and the features of our package. SI2 (simulated data) and SI3 (Bell 
dataset on a bacterial experiment) reproduce the analyses in the 
case studies. SI4 presents an additional case study on data from a 
grassland biodiversity experiment. All three datasets are available in 
the DImodels package.

3.1  |  Simulated data case study

We simulated a BEF dataset, assuming a pool of three species, with 
16 unique communities each characterised by the proportions of 
species 1, 2 and 3 respectively: p1, p2, and p3. The design (Figure 4b 
and SI2.2) consisted of:

•	 monocultures of each species (e.g., 1:0:0),
•	 binary communities: equi-proportional (e.g., 0.5:0.5:0) and unbal-

anced (e.g., 0.8:0.2:0), and
•	 three-species communities: equi-proportional (0.333:0.333:0.333) 

and unbalanced (e.g., 0.6:0.2:0.2).

A response (ecosystem function) was simulated for four replicates 
of each community, giving 64 experimental units (this ‘sim0’ dataset 
is available in the DImodels package). The responses were simulated 
from:

with values: �1 = 25, �2 = 20, �3 = 15, �12 = 30, �13 = 20 and �23 = 40 , 
with � ∼N

(

0, �2 = 4
)

. A positive interaction means that combin-
ing the interacting species will result in a higher expected mean 
than the weighted average expected identity effects; for example, 
in the absence of any interaction between species 1 and 2, the ex-
pected response for a 40:60 initial two-species mix of species 1 
and 2 would be (25)(0.4) + (20)(0.6) = 22, however, given the pos-
itive interaction term, the expected response from Equation  (3) is 
(25)(0.4) + (20)(0.6) + (30)(0.4)(0.6) = 29.2.

(3)
y =

3
∑

i=1

𝛽 ipi +

3
∑

i, j=1

i< j

𝛿ijpipj + 𝜀,

BOX 1 Overview of autoDI()

The autoDI() function implements a four-step model selec-
tion procedure, plus an optional initial step (Figure 3). ‘Step 
0’ (optional) investigates the significance of Structures by 
comparing the intercept-only model with models includ-
ing the Structures terms. In ‘Step 1’, � is estimated for the 
average interactions (AV) model and is tested for a differ-
ence from 1. In ‘Step 2’, the Interactions term is investigated 
using forward selection with five different Interactions 
structures, including the estimate of � from ‘Step 1’, if it was 
significantly different from 1, or assuming � = 1 otherwise. 
In ‘Step 3’, the treatment (if present) is tested for inclusion 
in the model selected in ‘Step 2’. Finally, in ‘Step 4’ (also 
optional, but conducted by default), autoDI() carries out a 
lack-of-fit test by comparing the model selected in ‘Step 
3’ with the reference (community) model, which includes 
a factor variable representing each unique combination of 
species proportions, as the linear predictor.
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We analysed the simulated data by fitting: (1) the richness model, 
(2) a full pairwise DI model and (3) a one-way ANOVA model (a factor 
with a level for each of the 16 unique communities). We found:

The richness model: As richness increased, the response also in-
creased (Figure 4a, p < 0.001). All variation around the line is as-
sumed to be residual error variation (MSE = 11.24, 62 residual df). 
At each level of richness, some variation is likely due to changing 
composition and/or changes in the proportions of species.

The full pairwise Diversity-Interactions model: Species identities 
and interactions strongly influenced the response, as evidenced by 

the ‘dome’ shape in the ternary diagram (Figure 4b; MSE = 3.54, 58 
residual df). The DI model can predict for any combination of species 
proportions around the three-dimensional simplex space (Figure 4b). 
Figure 4c also illustrates DI model predictions and highlights the in-
creasing trend in predictions as richness increases; variation in pre-
dictions due to species composition and proportions is additionally 
represented by the pie-glyphs (Vishwakarma et al., 2023).

The one-way ANOVA model: There was a strong effect of chang-
ing species diversity (Figure 4d, p < 0.001; MSE = 3.75, 48 residual 
df). Comparisons can be made between any two communities in 
the design space but there are limitations to generalise patterns 

F I G U R E  3  A schematic representation of the autoDI() pipeline.

F I G U R E  4  (a) the fitted richness model 
with raw data; (b) the predicted response 
values across the three-dimensional 
simplex space, predicted from fitting a DI 
model (with design points marked with a 
dot or X, the grey coloured X highlights a 
prediction that is not a design point); (c) 
the predicted response for each design 
point from fitting a DI model, with the 
pie-glyphs (jittered) illustrating the initial 
proportions and trendline connecting 
the average prediction at each level of 
richness; (d) predicted response for each 
community from a one-way ANOVA 
model. The coloured X's in each panel 
highlight select predictions for each 
analysis: turquoise for a monoculture of 
species 1, red for 20% of species 2 and 
80% of species 3, white for an equi-
proportional three-species mixture and 
grey for 10% of species 1 and 3 and 80% 
of species 2.
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across species diversity. The main strength in the ANOVA model is 
its ability to act as a reference or a test for lack of fit.

To illustrate the varying inferential ability of the three ap-
proaches, we highlight the predictions from each model for select 
communities; see the coloured X's in Figure 4. The ANOVA and DI 
models give a tailored prediction for the three communities in the 
design space (turquoise, red and white X's). The richness model only 
gives an average prediction at any given level of richness. Only the 
DI model can predict uniquely for any set of species proportions. 
Thus, DI models can predict across levels of richness (as with the 
richness model), predict for any community in the design (as with the 
ANOVA model) and predict for any combination of p1, p2, and p3 by 
interpolating and extrapolating around the simplex space, assuming 
there is reasonable coverage of the design space.

The MSE was highest for the richness model (11.24; AIC = 340.45), 
while the DI model (3.54; AIC = 270.26) and ANOVA model (3.75, 
AIC = 281.76) had similar MSE values. This supports that the lower 
numbers of parameters in the DI model explained as much variation 
as the ANOVA (reference) model and was an improvement over the 
richness model.

3.2  |  The Bell dataset case study

This case study comes from a 72-species bacterial biodiversity ex-
periment (Bell et al., 2005). The bacterial ecosystems used were from 
semipermanent rain pool depressions near the base of European 
beech trees Fagus sylvatica. Microcosms were inoculated with com-
binations of bacterial species isolated from these ecosystems. A 
total of 1374 microcosms were constructed at richness levels of 1, 2, 
3, 4, 6, 8, 9, 12, 18, 24, 36 and 72 species. The daily respiration rate 
of the bacteria in each microcosm averaged over three time intervals 
(days 0–7, 7–14 and 14–28) was analysed.

With 72 species, the Bell dataset presents some challenges for DI 
models: a full pairwise interactions model would have 72 identity and 
2556 interaction effects. Fitting this model is neither possible (there 
being only 1374 experimental units) nor desirable since estimating so 
many interaction terms is unlikely to provide valuable biological infor-
mation. We fitted the three models in Table 2. The average pairwise 

DI model with � set to 1 gives a higher AIC than the richness model, 
however, when � was estimated, the AIC was much lower (Table  2; 
�𝜃 = 0.79 < 1, more importance is given to interactions when propor-
tions are lower). Raw data and the predictions from each model are 
shown in Figure 5; four � values are shown to illustrate the flexibil-
ity of the DI modelling framework in modelling the shape of the BEF 
relationship. Of the three models fitted, the third model (AV + θ es-
timated) is the best according to AIC (Table 2; Connolly et al., 2013), al-
though the model with all identity effects assumed equal (but keeping 
AV + θ estimated) gives a comparable AIC value (SI3.2). It is clear that 
for these data, assuming a BEF relationship to be linear with richness 
would be inappropriate, as would assuming � = 1.

4  |  FINAL REMARKS

This DImodels package provides a user-friendly means to fit a range of 
models. The autoDI() function provides an automated preliminary analy-
sis of a BEF dataset and is particularly beneficial to users new to the 
modelling approach. Only a subset of possible models that can be fitted 
to a given dataset are tested in autoDI(), and users should supplement 
the autoDI() analysis with further analysis using the DI() function.

Use of the full pairwise interactions DI model is typically con-
strained to datasets with a smaller number of species than (e.g.) the 
Bell data as it can have limited biological value (too many parameters) 
or may not be estimable (e.g. in studies where a pair of species do not 
occur together). However, alternatives involving the DI modelling 
framework are available to deal with datasets where communities 
are species rich. One solution is to use random pairwise interactions 
(Brophy et al., 2017; McDonnell et al., 2023); in this approach the 
pairwise interactions are assumed to be latent realisations of normal 
random variables, and it is only necessary to estimate their mean and 
variance rather than all possible combinations. Another solution is to 
specify Interactions components that utilise fewer degrees of free-
dom, such as the average pairwise interaction structure (Table  1). 
Indeed, even the average pairwise interaction model alone can have 
considerable value by allowing estimation of the shape of the BEF 
relationship rather than imposing a linear richness relationship, 
for example. Moreover, in studies where a specific pair of species 
is not observed in the same observational/experimental unit, their 

TA B L E  2  Models fitted to the Bell dataset, with their AIC values.

Model description Equation(s) AIC

Average interactions model, identity effects equal, � set to 0.5 (equivalent to 
the richness model, see SI1) y = 𝛼 + 𝛿

72
∑

i, j=1

i< j

(

pipj
)0.5

+ 𝜖
6789.95

Average interactions model, � set to 1
y =

72
∑

i=1

𝛽 ipi + 𝛿

72
∑

i, j=1

i< j

pipj + 𝜖
6814.61

Average interactions model, � estimated
y =

72
∑

i=1

𝛽 ipi + 𝛿

72
∑

i, j=1

i< j

(

pipj
)𝜃

+ 𝜖
6751.12
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pairwise interaction coefficient cannot be estimated by a full pair-
wise DI model, and hence the alternative strategies outlined above 
can be useful.

When designing an experiment suitable for analysis using DI 
modelling, replicates of each community are not required. This is be-
cause DI modelling is analogous to a response surface analysis and 
replication is across the continuous simplex space. Of course, it may 
be beneficial to have replicates in some parts of the simplex design 
space to provide additional power; in particular, it is recommended 
(but not required) to have replication at the extremities of the de-
sign at the monoculture points. DI modelling is applicable to BEF 
data where species identities and proportions have been manipu-
lated across an evenness and richness gradient (e.g. the Switzerland 
Case Study, see SI4), and also applicable for BEF data where only 
equi-proportional mixtures are available (provided that a range of 
richness levels is included in the design, e.g., the Bell Case Study). 
DI models can jointly assess the effects of species identity, richness, 
evenness and species interactions on ecosystem function responses 
in a wide range of BEF studies.

Estimating � in a DI model allows the data to identify the best 
shape of the BEF relationship (rather than the user imposing, e.g., 
a log or linear richness relationship). Frequently richness alone will 
not capture all variation due to species diversity and DI modelling 
provides a versatile framework to model the multiple dimensions of 
species diversity effects in the BEF relationship.
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F I G U R E  5  Average daily respiration 
rate versus richness for the raw data 
(black dots) and the fitted predictions 
from the average interactions models 
with � = 1 (blue line), � = 0.5 (yellow line), 
� = 0.87 (orange line) and with � estimated 
(�̂ = 0.79; purple line). Predictions for each 
model are computed as the average of all 
design communities (black dots) at each 
level of richness, with a smoothed line 
imposed across richness levels. The model 
with � = 0.5 depicts the BEF relationship 
with a linear richness shape, while the 
model with � = 0.87 approximates the BEF 
relationship with a log(richness) shape.
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