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Abstract

Neuronal activity can be modulated by attention even while the sensory stimulusis held
fixed. This modulation implies changes in the tuning curve (or receptive field)of the neu-
rons involved in sensory processing. We propose an information-theoretic hypothesis for
the purpose of this modulation, and show using computer simulation that the similar mod-
ulation emerges in a system that is optimally encoding a sensory stimulus when the system
is informed about the changing relevance of different features of the input. We present a
simple model that learns a covert attention mechanism, given input patterns and tradeoff
requirements. After optimization, the system gains the ability to reorganize its computa-
tional resources (or coding strategy) depending on the incoming covertattentional signal,
using only threshold shifts in neurons throughout the network. The modulation of activity
of the encoding units for different attentional states qualitatively matches that observed in
animal selective attention experiments. Due to its generality, the model can be applied to
any modality, and to any attentional goal.
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1 Introduction

Optimized representation models of visual receptive fieldshave to date used fixed
and homogeneous fidelity requirements (e.g.[1]).

We introduce a normative model of top-down attention in which an attentional sig-
nal (originating outside the model) breaks this symmetry bymodulating the trade-
offs in transmission fidelity of the features of an input pattern.
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Fig. 1. Network architecture. The network contains five layers forming anencoder/decoder
system with a bottleneck. Each layer receives the attentional signal.

The limited capacity for processing information and the ability to filter out un-
wanted information are the basic phenomena that define attention [4]. Physiologi-
cal studies have shown that when two stimuli are presented simultaneously inside a
cell’s receptive field, the cell’s response is strongly influenced by which of the two
stimuli was attended [7, 8, 11]. But the fashion in which this modulation occurs
remains a subject of debate.

Previous computational models of top-down attention use gating mechanisms or
synaptic modulation to implement selective attention [3, 5, 6, 9, 12], and the par-
ticulars of the modulation is thus built into those models. This paper introduces a
new class of model, in which the attentional signal is presented to the processing
layers in the same fashion as is the sensory input, and the system learns to assign
resources to different parts of the stimulus, and to modulate this assignment accord-
ing to the attentional signal, without any special structure or architectural bias. The
only information concerning the semantics of the attentional signal comes from
the error measure during optimization, which for the specific visual phenomena
being modeled here penalizes the system more heavily for errors in an attentional
spotlight.
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2 Methods

Network architecture.The system consists of an auto-associative network with five
layers (Figure 1). The bottom layers encode the input signal, while the top layers
decode it. The central bottleneck layer represents the input pattern using fewer
units1 than the input layer. Each layer is fully connected to the next, and they all
receive an additionaltop-down attentional signalinput. The layer sizes are 256–20–
10–20–256, where the input and output layers are treated as 16×16 grids for display
purposes. The attentional signal consists of a two-elementvector representing the
center of the attentional spotlight in Cartesian coordinates scaled into the range±1.
The hyperbolic tangent activation function was used throughout.

Training. The encoder and decoder were jointly optimized to minimizeE(p) =
∑

i ci(p) (yi(p)−di(p))2, wherei indexes locations in the 16×16 grids holding the
stimulus and its reconstruction,ci(p) is the intensity of the attentional spotlight,
yi(p) is the output of the network,di(p) is the desired output, which is in our
case the same as the input, andp represents the complete pattern of information
coming into the system at one point in time,i.e. the input pattern as well as the
top-down attentional signal. The gradient was calculated using backpropagation
and optimization used online gradient descent with a weightdecay term of10−6

and a learning rateη = 0.005. All weights were plastic during learning, and the
attention coefficients in the penalty function formed a simple soft maskci(p) =
1/(1 + k2||i − a(p)||2), with a(p) being the attentional input (a two-dimensional
vector in our case) andi being a location in the plane. The width of the attentional
spotlight was set byk, which was held constant atk = 12 in our simulations.

Training Set.The 2000-element training set consisted of 16×16 pixel images, with
the pixels being zero mean and having standard deviationσ = 1/3. The images
were created by convolving (filtering) white Gaussian noiseimages with a rota-
tionally symmetric 2D Gaussian withσfilter = 2. Edge effects were avoided by
extracting only the 16×16 center of the resulting image. These images were later
scaled to have the desired variance. The center of the attentional mask was drawn
independently of the input image, and uniformly distributed within the input image.

Controls.To limit the capacity of the system, which is theoretically unbounded for
real-valued units, zero-mean Gaussian noise with standarddeviation 0.1 was added
to each bottleneck unit’s total input during training. Moreover, we confirmed that
the system is in fact reassigning resources appropriately,and not just degrading
peformance for unattended location, by comparing results using a flat attentional
mask to those exhibited with the peaked mask described above.

1 Fewer units is not a strict requirement, as other means, such as injected noise, can serve
to limit the capacity of the bottleneck.
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Fig. 2. Reconstruction example for a single input pattern and four different attentional states
as indicated by the dashed circles. The error is calculated as the absolute intensity difference
between input and output.

3 Results

Encoding/Decoding.An example of the encoding/decoding results for a testing pat-
tern (i.e.a pattern not included in the training set) is shown in Figure2. This figure
presents the output of the system when the center of the spotlight of attention is lo-
cated in different corners of the image while the image itself is held constant. The
dashed circles indicate the location of the attentional spotlight, but should not be
interpreted as hard-edged masks. Obtaining a lower error inside the dashed circles
is consistent with the hypothesis that attention assigns more resources to attended
locations, thus giving better reconstruction of some features of the input stimulus.

Modulation of unit activation.A linear approximation of the response of each neu-
ron in the bottleneck was found using the reverse correlation method [2, 10]. These
values were used to define “excitatory” and “inhibitory” stimuli for each bottleneck
unit, with respect to its activation. Images containing combinations of excitatory
and inhibitory regions were created and presented to the network. Figure 3a shows
the activation of one bottleneck unit for two attentional states (right or left, as in-
dicated by the dashed ellipse) and four different input images. The+/– symbols
indicate which part of the image contains excitatory/inhibitory input. The differ-
ence of activation of the bottleneck units as attention is shifted from right to left is
presented in Figure 3b. The height of each bar represents theaverage over all bot-
tleneck units (ten in our case). Standard errors are also shown. These figures show
a clear modulation of the activation of a unit: when the same stimulus is presented
(one side excitatory, and the other inhibitory) the activation changes dramatically
depending on the top-down attentional signal. This result is common for all units
in the bottleneck, as indicated by the averages and small standard errors in Fig-
ure 3b. These results also show that stimulus changes in the unattended location
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Fig. 3. Attentional modulation of activation. (a) Activation of one bottleneck unit for two
attentional states. Squares indicate stimuli, created by combining left and righthalves of ex-
citatory (+) and inhibitory (–) inputs. Dashed ellipse indicates attentional spotlight. (b) Av-
erage change in activation over all units in the bottleneck with right/left attentional shift,±
standard error. Squares at bottom represent stimuli.

produce smaller changes in activation than changes in the attended location. This
can be seen by comparing the second and third dark bars (attention to the left, with
one half excitatory) with the first dark bar (attention to theleft with both halves
excitatory) in Figure 3a.

These results qualitatively match neuronal response changes found in animals dur-
ing selective visual attention tasks [8, 11].

4 Conclusion

We presented an unstructured model that learns a covert top-down attentional mech-
anism. Top-down attentional signals innervate the entire network, and each unit
treats them no differently than bottom-up sensory signals.The only information
received by the network about the semantics of the attentional input comes from
the objective optimized during learning. This model accounts for attentional mod-
ulation of neural response in a unified framework that includes both attention and
receptive field formation, and as a consequence of an underlying normative princi-
ple, rather than by tuning a complex special-purpose architecture.

One general prediction of this class of models is that a system with a narrower
bottleneck (or richer input) will have stronger attentional modulation than a system
with sufficient capacity to represent its input with high fidelity. This might be tested
by raising animals in visually richvs. impoverished environments and measuring
differences in the magnitude of attentional modulation of receptive fields.

The model reproduces neuronal modulation observed in physiological experiments,
and can be naturally applied across tasks and across sensorymodalities. The model
has the potential of being extended to attentional goals where modulation would
be less intuitive, such as acoustic source segregation, or feature-driven attentional
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goals such as priming. It may also be possible to build a hierarchical system whose
modules not only receive top-down attention signals, but generate such signals for
lower-level modules.
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