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Abstract

Neuronal activity can be modulated by attention even while the sensory stiisubetd
fixed. This modulation implies changes in the tuning curve (or receptive fiélle neu-
rons involved in sensory processing. We propose an informationetietypothesis for
the purpose of this modulation, and show using computer simulation that the simdar mo
ulation emerges in a system that is optimally encoding a sensory stimulus whestim s
is informed about the changing relevance of different features of fhat.iWe present a
simple model that learns a covert attention mechanism, given input patteirisadeoff
requirements. After optimization, the system gains the ability to reorganize itsutamp
tional resources (or coding strategy) depending on the incoming cattentional signal,
using only threshold shifts in neurons throughout the network. The mibolulaf activity
of the encoding units for different attentional states qualitatively matchéslisarved in
animal selective attention experiments. Due to its generality, the model campliedap
any modality, and to any attentional goal.
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1 Introduction

Optimized representation models of visual receptive fialle to date used fixed
and homogeneous fidelity requiremerggy([1]).

We introduce a normative model of top-down attention in Wwhaa attentional sig-
nal (originating outside the model) breaks this symmetryrtmdulating the trade-
offs in transmission fidelity of the features of an input patt
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Fig. 1. Network architecture. The network contains five layers formingrexader/decoder
system with a bottleneck. Each layer receives the attentional signal.

The limited capacity for processing information and theligbto filter out un-
wanted information are the basic phenomena that definetiattgd]. Physiologi-
cal studies have shown that when two stimuli are presentedltsineously inside a
cell’s receptive field, the cell's response is strongly iaflaed by which of the two
stimuli was attended [7, 8, 11]. But the fashion in which thisdulation occurs
remains a subject of debate.

Previous computational models of top-down attention usegamechanisms or

synaptic modulation to implement selective attention [36,59, 12], and the par-
ticulars of the modulation is thus built into those modelBisTpaper introduces a
new class of model, in which the attentional signal is presito the processing
layers in the same fashion as is the sensory input, and tiensysarns to assign
resources to different parts of the stimulus, and to modutas assignment accord-
ing to the attentional signal, without any special struetoir architectural bias. The
only information concerning the semantics of the attertigignal comes from

the error measure during optimization, which for the speaifsual phenomena
being modeled here penalizes the system more heavily forseim an attentional

spotlight.



2 Methods

Network architectureThe system consists of an auto-associative network with five
layers (Figure 1). The bottom layers encode the input sjgmaile the top layers
decode it. The central bottleneck layer represents thet ipatiern using fewer
units! than the input layer. Each layer is fully connected to thet,n@xd they all
receive an additionabp-down attentional signahput. The layer sizes are 256—20—
10-20-256, where the input and output layers are treate@babtlgrids for display
purposes. The attentional signal consists of a two-elewesibr representing the
center of the attentional spotlight in Cartesian coordimataled into the rangel.

The hyperbolic tangent activation function was used thhowd.

Training. The encoder and decoder were jointly optimized to minimiZe) =

> ci(p) (wi(p) — di(p))?, wherei indexes locations in the 2616 grids holding the
stimulus and its reconstruction,(p) is the intensity of the attentional spotlight,
y;(p) is the output of the networkd;(p) is the desired output, which is in our
case the same as the input, gndepresents the complete pattern of information
coming into the system at one point in times. the input pattern as well as the
top-down attentional signal. The gradient was calculatgdgibackpropagation
and optimization used online gradient descent with a wedgitay term ofl0=°
and a learning rate = 0.005. All weights were plastic during learning, and the
attention coefficients in the penalty function formed a demoft maske;(p) =
1/(1 + k?*||i — a(p)||*), with a(p) being the attentional input (a two-dimensional
vector in our case) andbeing a location in the plane. The width of the attentional
spotlight was set by, which was held constant at= 12 in our simulations.

Training SetThe 2000-element training set consisted 0k16 pixel images, with

the pixels being zero mean and having standard deviatien 1/3. The images
were created by convolving (filtering) white Gaussian nomages with a rota-
tionally symmetric 2D Gaussian withkjjie = 2. Edge effects were avoided by
extracting only the 1616 center of the resulting image. These images were later
scaled to have the desired variance. The center of the iattehimask was drawn
independently of the input image, and uniformly distrilelagthin the input image.

Controls.To limit the capacity of the system, which is theoreticalhbounded for

real-valued units, zero-mean Gaussian noise with stard#asidtion 0.1 was added
to each bottleneck unit’s total input during training. Mover, we confirmed that
the system is in fact reassigning resources appropriadaly,not just degrading
peformance for unattended location, by comparing ressitsgua flat attentional
mask to those exhibited with the peaked mask described above

! Fewer units is not a strict requirement, as other means, such as injectedaasiserve
to limit the capacity of the bottleneck.
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Fig. 2. Reconstruction example for a single input pattern and four diffetéentional states
as indicated by the dashed circles. The error is calculated as the abstnstyndifference
between input and output.

3 Results

Encoding/DecodingAn example of the encoding/decoding results for a testirig pa
tern (.e.a pattern not included in the training set) is shown in Figur€his figure
presents the output of the system when the center of thagiptatf attention is lo-
cated in different corners of the image while the imagefiisdield constant. The
dashed circles indicate the location of the attentionatlg, but should not be
interpreted as hard-edged masks. Obtaining a lower ersatdrthe dashed circles
is consistent with the hypothesis that attention assign® mesources to attended
locations, thus giving better reconstruction of some fesgtwf the input stimulus.

Modulation of unit activationA linear approximation of the response of each neu-
ron in the bottleneck was found using the reverse correlatiethod [2, 10]. These
values were used to define “excitatory” and “inhibitory’hstili for each bottleneck
unit, with respect to its activation. Images containing bomations of excitatory
and inhibitory regions were created and presented to tiveonket Figure 3a shows
the activation of one bottleneck unit for two attentionaltss (right or left, as in-
dicated by the dashed ellipse) and four different input iesag he+/— symbols
indicate which part of the image contains excitatory/iitoity input. The differ-
ence of activation of the bottleneck units as attention igeshfrom right to left is
presented in Figure 3b. The height of each bar represents/édrage over all bot-
tleneck units (ten in our case). Standard errors are alsershthese figures show
a clear modulation of the activation of a unit: when the satimewus is presented
(one side excitatory, and the other inhibitory) the acioratchanges dramatically
depending on the top-down attentional signal. This resutbmmon for all units
in the bottleneck, as indicated by the averages and smalliatd errors in Fig-
ure 3b. These results also show that stimulus changes innidéended location
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Fig. 3. Attentional modulation of activationa) Activation of one bottleneck unit for two
attentional states. Squares indicate stimuli, created by combining left antailgbs of ex-
citatory (+) and inhibitory €) inputs. Dashed ellipse indicates attentional spotlidghtAy-
erage change in activation over all units in the bottleneck with right/left atteadtstnift, +
standard error. Squares at bottom represent stimuli.

produce smaller changes in activation than changes in teedsd location. This
can be seen by comparing the second and third dark barst{@tiémthe left, with

one half excitatory) with the first dark bar (attention to ta& with both halves
excitatory) in Figure 3a.

These results qualitatively match neuronal response @sdiogind in animals dur-
ing selective visual attention tasks [8, 11].

4 Conclusion

We presented an unstructured model that learns a covedidap-attentional mech-
anism. Top-down attentional signals innervate the enta®vark, and each unit
treats them no differently than bottom-up sensory sigriet& only information

received by the network about the semantics of the attealtioput comes from

the objective optimized during learning. This model acdedar attentional mod-
ulation of neural response in a unified framework that inekidoth attention and
receptive field formation, and as a consequence of an urndgmyprmative princi-

ple, rather than by tuning a complex special-purpose arctite.

One general prediction of this class of models is that a systeh a narrower
bottleneck (or richer input) will have stronger attentibmadulation than a system
with sufficient capacity to represent its input with high fite This might be tested
by raising animals in visually ricks.impoverished environments and measuring
differences in the magnitude of attentional modulationeafeptive fields.

The model reproduces neuronal modulation observed in plogscal experiments,
and can be naturally applied across tasks and across sensdayities. The model
has the potential of being extended to attentional goalsevhedulation would

be less intuitive, such as acoustic source segregatioeature-driven attentional



goals such as priming. It may also be possible to build a rehreal system whose
modules not only receive top-down attention signals, buegate such signals for
lower-level modules.
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