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Abstract

Water bodies face continuous pressure from human activities, particularly from

nitrogen and phosphorus from agricultural activities and urban wastewater dis-

charges, leading to water pollution. Studies have shown that monitoring wa-

ter quality using the traditional method of water sampling is time-consuming,

labour-intensive, costly and cannot be done frequently. In environmentally sen-

sitive areas, these techniques can encounter additional restrictions in relation to

access, team size, etc. Studies have indicated that although satellite-based im-

agery has clear potential as a non-contact methodology, it has limitations due to

the coarse spatial resolution and potential for the site to be obscured due to cloud

cover. Additionally, while commercial or airborne imagery can provide high spa-

tial resolution, they are often expensive to use. Drones have shown the potential

to provide very high spatial resolution at regular intervals and at a lower cost,

acting as a middle ground between satellite, manned aircraft, and terrestrial in-

situ methods. However, issues concerned when mapping water bodies using low-

cost drones are largely unknown. To date, no methods involving low-cost drones

have been investigated to (i) understand their suitability, (ii) the associated er-

rors have never been quantified, and (iii) there have been no attempts to improve

accuracy. To undertake this investigation, a theoretical analysis was first carried

out to benchmark the accuracy of the Direct Georeferencing (DG) method for

mapping water bodies and validate with real-world data. Following this, the er-

rors associated with the DG method were identified and quantified, resulting in

the development of photogrammetric methods to improve accuracy by correcting

for these errors. The first method developed an analytical photogrammetric ap-

proach to improve the accuracy of drone imagery over water. The second method

was an advanced approach that exploited the shore to enhance the accuracy of

drone imagery when mapping water bodies. The final approach developed a

scalable method that could improve the accuracy and map water bodies at dif-

ferent geographic scales. The developed methods presented a novel approach to

improve the accuracy of drone imagery for mapping water bodies. Institutions,
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organisations and researchers can utilise the methods developed in this thesis to

generate accurate drone imagery of water bodies which can be used to measure

various water quality parameters.
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Chapter 1

Introduction

Understanding the issues that influence the accuracy of images created by low-

cost drones are essential for exploring the potential of photogrammetric tools for

monitoring water quality. This chapter introduces the reader to the motivation

behind this research and offers a thorough overview of the knowledge gap con-

cerning the use of low-cost drones. The background of existing methods used for

water quality monitoring is provided to illustrate the challenges associated with

the current methods.

This thesis makes four key contributions to the body of knowledge. First, a the-

oretical analysis of the potential sources of error that limit the accuracy of drone

imagery over water bodies is examined, and an error budget is defined. Second,

the understandings gleaned during the theoretical analysis are applied in the de-

velopment of an analytical photogrammetric approach that enhances the accu-

racy of the drone imagery by correcting errors arising from the sensor rotational

angles. The third contribution augments the traditional direct geogreferencing

techniques by incorporating sparse shore features as a reference to improve the

accuracy of the drone imagery. The fourth and final contribution explores the

potential of machine learning to develop a more scalable and generalizable ap-

proach that can be used without a requirement for any supporting external data.
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This chapter will first review important issues concerning water quality monitor-

ing in section 1.1. The key concepts of remote sensing as a tool for monitoring

water quality are then established in Section 1.2. The evolution of satellite remote

sensing for water quality monitoring and its associated challenges are detailed

in Section 1.3.1. This will be followed by an introduction of the role of airborne

remote sensing in Section 1.3.2 and Section 1.3.3 will provide the necessary back-

ground information on drone mapping. This will reinforce the potential benefits

that accrue from using drones as an alternative to ’bridge the gap’ between the

more costly satellite and airborne methods from Section 1.3.3.1. The discussion

then leads into an overview of low-cost drones and their role in water quality

monitoring in section 1.4 and will then highlight the gaps in the current knowl-

edge of mapping water bodies with drones in section 1.5. The research aim and

objectives that have been identified to fill this research gap are provided in Sec-

tion 1.6, and the underlying research assumptions that enable this research are

explained in Section 1.7. The key terms used for the different image outputs is

presented in Section 1.8. This chapter concludes by outlining the thesis structure

and listing all existing publications that have arisen from the thesis in Sections

1.9 and 1.10, respectively.

1.1 Water Quality Monitoring

Water is an essential commodity that supports life on Earth and serves as a habi-

tat for aquatic animals and plants, is vital for many recreational activities and

important for many farming and industrial activities (Trodd and O’Boyle, 2021;

Ahmed et al., 2019). Therefore, efficient and timely monitoring of water as a

resource is essential and this has been recognized in the development of the UN

Sustainable Development Goals (SDGs) (United Nations, 2015), particularly SDG

6: Clean Water and Sanitation. Many water resources are threatened by pollution

from a range of anthropogenic activities such as agriculture, discharge of un-

treated urban sewers and industrial waste, and urban runoff (Kupssinskü et al.,

2020). In Ireland, one of the main problems that affects water quality is the

2



widespread of nutrients (such as Chlorophyll-a (Chl-a), Nitrogen, and Phospho-

rus) in surface waters like lakes and rivers. This leads to eutrophication, which

is the elevation of nutrients in surface waters that causes algae to bloom (O’Boyle

et al., 2019). The Environmental Protection Agency (EPA) 2022 report on water

quality in Ireland suggest that nearly half (46%) of the water surfaces in Ireland

are in unsatisfactory condition (Trodd et al., 2022). This report also indicates that

rather than improving to meet targets for SDG 6, the level of these harmful nu-

trients is increasing in many Irish waters. In parallel, the planned expansion in

the Irish agricultural and dairy sectors under Food Wise 2025 (DAFM, 2015) can

be expected to increase the application of these harmful nutrients. Also, climate

change has resulted in more frequent storms and heavier rainfall, which tend to

impact water quality, putting increased strain on Ireland’s ability to improve wa-

ter quality.

Water quality monitoring is therefore an essential tool for assessing national wa-

ter status and enabling efficient pollution management. To be able to restore

polluted waters to a satisfactory standard and maintain the quality of waters that

are already in a good state, continuous monitoring is essential. This typically in-

volves continuous measurement of various water quality parameters at frequent

intervals.

1.1.1 Surface Water Bodies and Regulatory Requirement in Ire-

land

Managing and regulating water resources in Europe is currently guided by the EU

Water Framework Directive (WFD) (2000/60/EC) (Dalton, 2018). This directive

aims to protect and manage water resources in Europe. In Ireland, a recent EPA

inventory (Trodd and O’Boyle, 2021) shows that there are approximately 12,000

lakes and 14,000km2 of transitional waters ( a term used to describe lagoons and

estuaries) and coastal waters. Importantly, the WFD mandates that both lakes

over 50ha in surface area, as well as smaller lakes located in protected areas,
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must be monitored. Therefore, in Ireland, 812 lakes fall under the WFD (Delaney

et al., 2023). However, only 224 of these water bodies were monitored during the

period 2019-2021, representing only 27% (Delaney et al., 2023). This means that

the majority of Irish lakes are not currently being monitored. Of those lakes

with available data, the ecological status ( an assessment of the overall health

and condition in terms of biological quality) reported by EPA (Trodd et al., 2022)

was not promising: these were classed as High - 31%, Good - 38%, Moderate

- 21%, Poor - 10%, and Bad - 1% as seen in Figure 1.1a. Overall, 69% of the

monitored lakes are in satisfactory condition (high and good status), leaving 31%

in poor condition (moderate, poor, and bad). According to these findings, the

main problem contributing to this poor ecological water status is recognised as

the presence of too many harmful nutrients, which has resulted in a 5% decrease

in the number of lakes in satisfactory condition. Figure 1.1b shows the change in

ecological status in terms of Phosphorus concentrations.

Figure 1.1: The ecological status of Irish lakes from (a) current classification of
ecological status (b) the change in nutrient status for one harmful nutrient (in
this case Phosphorus) of lakes in Ireland for the period of 2016-2021.
Source: (Trodd et al., 2022)
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In Ireland, water bodies are typically monitored through in-situ water sampling

method. Notably, this method is recognised as the primary tool for monitoring

water quality globally. In-situ water sampling is a well-established method that

plays a pivotal role in monitoring water bodies. Therefore, in the following sec-

tion, a review of the method will be carried out to understand how it works and

its limitations.

1.1.2 In-Situ Water Monitoring

In-situ water sampling typically involves at least two people tasked with col-

lecting water samples from the water body. These water samples are stored in

containers and are taken to the laboratory for analysis. It usually takes between

2 hours to 1 day to complete the laboratory analyses (Delaney et al., 2023). Fig-

ure 1.2 illustrates a spatial distribution of the in-situ water sampling by the EPA.

While this method is accurate, studies have shown many limitations with this

approach. Firstly, field personnel may be restricted by the lack of accessibility

to water bodies, with some lakes removed from Ireland’s WFD programme be-

cause of accessibility issues (Delaney et al., 2023). Furthermore, this approach is

time-consuming (Gholizadeh et al., 2016), labour intensive (Dlamini et al., 2016;

Delaney et al., 2023), costly (Keller et al., 2018) and is not suitable for frequent or

regular monitoring. In Ireland, for example, according to Delaney et al. (2023),

phytoplankton in lakes is only monitored twice a year, and physico-chemicals (

an assessment of the nutrient conditions and oxygenation conditions) in lakes is

only monitored six to eight times a year for lakes within the operational mon-

itoring program. Lastly and most importantly, the required spatial coverage of

the water quality cannot be achieved (Gholizadeh et al., 2016; Delaney et al.,

2023) because water sampling is carried out at single or multiple points in the

lake, which does not represent the entire water body as illustrated in Figure 1.2

with only 2 sampling points for Lough Egish, Co. Monaghan. Water quality is

typically spatially heterogeneous, i.e. it varies across the water surface (Li et al.,

2021). Therefore, it requires a sufficient number of sampling points distributed
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across the water body. According to United Nations Water (2017), a minimum

of four evenly distributed sampling points is required. Thus, the more sampling

points taken, the better the spatial representation of water quality.

Figure 1.2: This map illustrates the spatial distribution of Phosphorus measure-
ments across Irish lakes based on the in-situ water sampling approach. The main
image (left) presents a general classification based on single or multiple points,
and is exemplified for the image to the right (Lough Egish). This is important
to demonstrate that these point samples necessarily do not represent the entire
water body and are a key justification for the method proposed in this thesis.
Source: (EPA, 2023)

Due to the sparse spatial distribution and low sampling frequency associated

with this method, water bodies are not monitored sufficiently to capture the lake-

wide distribution or the temporal dynamics of the water quality. Water quality

parameters, particularly harmful algal blooms (HAB), can spread rapidly over

short time periods, ranging from hours to days (Delaney et al., 2023). Traditional

water quality monitoring methods could therefore benefit from adopting the type

of synoptic approach typified by remote sensing to overcome these limitations

(Zheng and DiGiacomo, 2017). This could revolutionise the process under key
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categories such as scale and time. The subsequent section will review the relevant

remote sensing concepts for ensuring effective water quality monitoring.

1.2 Linking Remote Sensing Concepts with Water Qual-

ity Monitoring Needs

This section discusses two key concepts in remote sensing and their potential

contribution to providing detailed, timely, and accurate water quality informa-

tion. Section 1.2.1 will critique these in terms of scale and time, and subsequent

sections will review various remote sensing methods in light of these two key

concepts.

1.2.1 How is Scale and Time Relevant for Water Quality Moni-

toring?

The importance of scale (spatial resolution) is an important consideration when

monitoring the surface of the Earth for diverse fields, such as ecology, water re-

source management, forestry, agriculture and land use (Richards, 2009). Over

the last two decades, advances in remote sensing technology have achieved a

step-change in the potential ways of collecting data at different scales (McEliece

et al., 2020).

Scale in remote sensing is the window of perception through which the Earth’s

surface can be viewed and all descriptions of the Earth’s surfaces are expressed

through a certain scale (Wu and Li, 2009). This concept addresses both the level

of detail and also the size of the area observable within a dataset or image. When

studying the Earth’s surface, scale is an important basis for research. Thus, the in-

vestigations we make from the Earth’s surface cannot be disengaged from a scale

(Warner et al., 2008). Further, gathering data from the Earth’s surface is possible

across all scales. However, the data obtained changes in relation to the size of

the scale, leading to different results. Importantly, there is the need to match the
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scale of acquisition to the scale of the phenomena under investigation. This has

been recognised in many remote sensing studies where they demonstrated the

importance of scale in investigating a spatial problem (Pugnaire and Valladares,

2007; Utlu and Özdemir, 2020; Marceau and Hay, 1999). For example, according

to Utlu and Özdemir (2020), they found that flood modelling that uses high spa-

tial resolution images produces more accurate results. Similarly, analysis from

Roth et al. (2015) and Yu et al. (2020) established that finer scales (higher spatial

resolution images) improve plant species and land cover classification accuracy,

respectively. These findings reinforce how high spatial resolution significantly

influences both classification accuracy and spatial modelling outcomes.

In parallel with scale, the concept of time is another important phenomenon that

helps to reconstruct the past and explore how processes develop over a period

(Richards, 2009). It serves as a lens through which the dynamics of natural

systems can be observed and analysed. For environmental monitoring, time is

essential to understand the sequence of events and is an important component

that needs significant attention. Time considerations in environmental monitor-

ing can be characterized by sequence, duration, change, temporal interval, past,

present, and future (Richards, 2009). When monitoring the Earth using remotely

sensed images, time is typically defined by the sensing platform’s temporal res-

olution (i.e. the revisit cycle), whether from satellite, aeroplane, helicopter, or

drone (Miller et al., 2005).

In the context of water quality monitoring, studies suggest that methods that

incorporate the concepts of both scale and time could be of benefit (Wu et al.,

2023; Delaney et al., 2023). Spatial resolution significantly impacts the level of

detail information that is obtained, thus influencing the accuracy of the mon-

itored water quality parameter (Windle and Silsbe, 2021; Murray et al., 2022).

For instance, a water quality monitoring approach that uses very high spatial

resolution imagery will enable the detection and measurement of small changes
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in water quality. This can be useful to identify specific pollution sources. For

example, in Tamás Fráter et al. (2015), they demonstrated the potential for high

spatial resolution imagery to help monitor the growth of algae, which is often

unnoticed using lower spatial resolution imagery. Similarly, higher temporal res-

olution imagery has the potential to track the evolution of water quality over time

(Delaney et al., 2023). These studies suggest that with the application of higher

spatial and temporal resolution imagery, water pollution can be detected early

on. Subsequently, the right management decisions can be taken to remedy the

situation based on the extent and dynamics of this pollution.

To demonstrate the importance of considering the spatial resolution of the images

for water quality monitoring, three datasets with different spatial resolutions as

shown in Figure 1.3 were created. This comparison shows water turbidity maps

generated using a standard band ratio described in (Ehmann et al., 2019) and

classifies the level of suspended sediments in water which is an indication of how

clear the water is. The experiment compared water turbidity maps derived from

three image sources: very high spatial resolution (drone), moderate resolution

(Sentinel-2), and low resolution (Landsat 8). The results highlight the ability of

very high spatial resolution drone imagery to better delineate areas of different

turbidity and also improve the performance for pixels at the shoreline.
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Figure 1.3: An Example from Egya lagoon, Ghana showing water turbidity maps
derived from drone imagery (Very High-Resolution - 0.10m), Sentinel 2 image
(Moderate Resolution - 10m) and Landsat 8 image (Low Resolution - 30m ).

1.3 What Platforms can Provide the Required Spa-

tial and Temporal Resolution?

Remote sensing consists of acquiring images across specific spectral bands in the

optical, infrared, and microwave regions of the electromagnetic spectrum (Miller

et al., 2005). One active research area within this field is water quality monitoring

and it is important to consider the strengths and weaknesses of each platform.

1.3.1 Satellites - Trading Spatial for Temporal Resolution

Many water quality parameters, including Chl-a, total suspended sediments, and

turbidity, have been detected using satellite images. The successful launch of

Landsat 1 by NASA in 1972 was a disruptive technology that revolutionised how

scientists and researchers monitor the Earth. The earliest records of using satel-

lite data for monitoring water quality come from studies by Strong (1974);Scarpace

et al. (1979);Carpenter and Carpenter (1983) and Blackwell and Boland (1979).These
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studies laid the foundation for the use of satellite imagery in water quality assess-

ment. During these early periods, the primary limitations of satellite images were

the frequency of satellite overpasses (temporal resolution), accessibility, cloud

cover, and spatial resolution. Landsat 1 had an 18-day revisit cycle, meaning

that potential 20 images could be acquired for water quality monitoring per year.

However, literature has shown that the probability of acquiring cloud-free data

is also influenced by region and month, which can affect its availability (Corbane

et al., 2020; Robinson et al., 2019; Wu et al., 2021). In particular, Ireland’s av-

erage cloud cover of 100% for over 50% of the year (Dwyer, 2012; Met Éireann,

2023) reduced accessibility and applicability to, at best, only 10 images per year.

As a result, the general applicability of continuous water quality monitoring is

significantly reduced. In addition, the Landsat 1 satellite imagery had a spatial

resolution of 80m (USGS, 2017). In remote sensing applications, this is consid-

ered as low spatial resolution, which means that Landsat 1 imagery would not be

suitable to provide the level of detail necessary to assess small-scale water pol-

lution events. Following on, Landsat 2 carried the same sensor as Landsat 1 and

had the same 18-day revisit period. Consequently, it faced the same limitations

as Landsat 1. This meant that changes in water pollution could only be sensed

at 80m, making monitoring smaller variations impossible. Additionally, the 18-

day temporal resolution hampered their ability to track rapid events like algal

blooms, which can occur over a few hours or days. Landsat 4’s launch in 1982

marked an improvement with a 30m resolution and a revisit period of 16 days,

yet it encountered the same setback of low spatial resolution and longer revisit

cycle.

The advent of medium-resolution satellites like SPOT 1, 2, and 3 in the mid-

1980s to early 1990s provided better spatial resolution (10m panchromatic and

20m multispectral) but with longer revisit periods of 26 days (ESA, 2023a). Al-

though the improved spatial resolution allowed for capturing more detailed im-

agery compared to the previous satellites, the limited revisit cycle, coupled with
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cloud cover, reduced the overall applicability of these satellite images. In the past

two decades, there has been a significant improvement with satellites like Land-

sat 8 and Sentinel 2, offering improved spatial resolution and revisit cycles. The

Landsat 8 has a 30m spatial resolution and a revisit cycle of 16 days, while the

Sentinel 2 has a spatial resolution of 10m and a revisit cycle of 5 days. However,

like the previous satellites, they all struggle to provide finer detail (higher spatial

resolution) and higher temporal frequency needed for effective small-scale and

intra-seasonal water pollution management (Gholizadeh et al., 2016).

Additionally, several high-resolution satellites imagery provide both high spa-

tial and tempotal resolution. For example, SPOT 6 and 7 provide a spatial res-

olution of 1.5m (Panchromatic) and 6m (Multispectral) and a revisit capabil-

ity of 1-3 days (Airbus, 2018). Similarly, the Digital Globe Worldview 2 and

Worldview-3 provide 1.64m (8-band multi-spectral) and 1.24m (Visible Near In-

frared bands) spatial resolution and 11- days and 1-day revisit cycles, respec-

tively (ESA, 2023b). These high-resolution satellite images capture finer details

and enable frequent data collection. They have state-of-the-art technology that

can monitor water quality at a smaller scale and help detect water pollution pat-

terns. As with all satellite images, cloud cover can affect the availability of cloud-

free images. However, the high revisit cycle mitigates the impact of cloud cover

on the availability of usable imagery. This means that a good percentage of im-

ages will be cloud cover-free.

However, the major limitation is that these high resolution satellite imagery are

commercial. They are very expensive to use and are operated for profit, so users

have to pay to access the data. This limits their accessibility to individuals, organ-

isations and the scientific community. As a result, these satellite images are less

commonly used in high frequency water quality monitoring due to resource con-

straints. This is evident in a review of water quality studies where they found that

only a limited number of commercial satellites were employed in water quality
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assessments as compared to non-commercial satellites (Gholizadeh et al., 2016).

Given the limitations outlined for satellite imagery, the next section will explore

the potential of airborne remote sensing as an alternative approach to water qual-

ity monitoring.

1.3.2 Flying Lower - the Role of Airborne Remote Sensing

Airborne remote sensing is the process of collecting information about the earth’s

surface from airborne platforms such as aircraft or helicopters. It involves mount-

ing sensors on these airborne platforms, and a major strength is that it operates

below the cloud and the Earth’s atmosphere (Adjovu et al., 2023). One of the ear-

liest remote sensing studies to employ the use of piloted aircraft equipped with a

multispectral sensors to map the distribution of algal blooms was carried out by

Strong (1974). Following this success and subsequent advances in airborne re-

mote sensing technology, many other studies (Ledrew and Franklin, 1983; Engel-

hardt, 1999; Mueksch, 1995) began to emerge. For example, Ledrew and Franklin

(1983) conducted a study using piloted aircraft with a RGB sensor to study efflu-

ent plumes and this early study further demonstrated that aerial photos could be

used to monitor water bodies. Similarly, other studies like Engelhardt (1999) and

Mueksch (1995) also successfully used piloted aircraft to monitor oil spills and

Chl-a concentration, respectively in water bodies.

In parallel with technological advances in the 1990s and early 2000s, airborne

remote sensing benefited from these sensor improvements. Well-established sen-

sors common in the literature include the Airborne Visible Infrared Imaging

Spectrometer (AVIRIS), Compact Airborne Spectrographic Imager (CASI-1500),

Airborne Prism Experiment (APEX) and Hyperspectral Digital Imagery Collec-

tion Experiment (HYDICE). Over the years, these sensors have been used to assess

different water quality parameters. For example, in Lunetta et al. (2009), AVIRIS

hyperspectral imagery was acquired from the NASA Earth Resources 2 (ER-2)

aircraft to monitor Chl-a, Chromophoric Dissolved Organic Matter (CDOM), and
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Total Suspended Solids (TSS) in the Neuse River and Pamlico Sound Estuaries in

the USA. Similar airborne hyperspectral sensors, such as APEX, have also pro-

vided opportunities for operational monitoring of water bodies. APEX, which

was developed by a Swiss-Belgian consortium (VITO) on behalf of the European

Space Agency (ESA), was used to measure Chl-a, TSS, and CDOM parameters for

coastal waters in Belgium (Knaeps et al., 2009).

Airborne remote sensing provides very high spatial resolution images ranging

from 80cm to 5m (Gholizadeh et al., 2016). Additionally, airborne platforms op-

erate below the cloud cover (Cahalane et al., 2017), and so provide cloud-free

data. This largely removes the atmospheric component that influences the qual-

ity of spectral measurements made by satellite. Typically, the spatial resolution

of airborne imagery provides the necessary finer details for examining the extent

and spatial dynamics of water pollution (Lunetta et al., 2009). However, this ap-

proach has several setbacks, the primary one being the high cost of the sensors

and the high operational costs associated with pilots and suitable piloted aircraft.

Although one study by Cahalane et al. (2017) has explored the option of using

lower-cost sensors in light, piloted aircraft. However, methods requiring multiple

crew members onboard and a dedicated aircraft is unsuitable for a repeat- survey

methodology for continuous water quality monitoring. As previously explained,

continuous water quality monitoring is essential because the evolution of water

pollution events can take a few hours or days to occur (Delaney et al., 2023), mak-

ing airborne remote sensing an economically impractical approach. Drones have

emerged as a potential alternative to employ a more cost-effective and reactive

aerial survey methodology (Nex et al., 2022). Therefore, the subsequent sections

will provide an overview of drone photogrammetry and its potential as a water

monitoring tool.
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1.3.3 The Advent of New Lightweight Tech - Drone Photogram-

metry

Remotely Piloted Airborne Systems (RPAS), also popularly known as drones, can

be described as any aircraft without an onboard pilot which can fly autonomously

or be piloted remotely and utilize onboard sensors such as GNSS, IMU and sen-

sors (Gevaert, 2018; Rehak, 2017; Cabreira et al., 2019). Drones were primar-

ily developed for military purposes, but their use for civilian applications has

grown significantly in recent years (Rehak, 2017). Topographic surveys using

photographs are one of the most widely used civilian applications in diverse

fields (Nex et al., 2022). Drones have emerged as an important piece of survey

equipment for geomatics professionals across various industries and organisa-

tions worldwide. Drones now serve as the middle ground between aerial survey-

ing with piloted aircraft and traditional terrestrial surveying using total stations,

GNSS, or laser scanners (Prior et al., 2020b). The underlying principle of drone

surveys is similar to traditional aerial photogrammetry where the goal is to cap-

ture and then utilize overlapping images to reconstruct the geometry and texture

of any scene (Nex et al., 2022). These overlapping images can be used to create

many typical survey outputs, such as high-resolution 3D models (Bouziani et al.,

2021b), point clouds (Bouziani et al., 2021a), and orthomosaics (Stöcker, 2021).

1.3.3.1 Benefits of Drone Mapping

The surge in drone applications over the last decade can be attributed to the

improvement in battery time and quality, lightweight materials and sensors, the

widespread availability of affordable, off-the-shelf drone systems and advances in

image processing techniques (Gevaert, 2018). Drones provide very-high spatial

resolution (1cm-10cm) datasets, operate below the cloud cover (Cahalane et al.,

2017) similar to light aircraft, and so provide cloud-free data. Just as impor-

tantly, they can often be operated by a single pilot, are lightweight and easily

portable and therefore can access remote areas for repeat surveys. They also

produce datasets in near real-time, which helps in continuous water monitoring.
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Drones can provide very fine details at regular intervals at a low cost, unlike

commercial satellite and airborne platforms, which are often expensive or not

of sufficient spatial resolution (Su and Chou, 2015). With increased temporal

resolution enabled by drones (multiple times each day, any time of day), mon-

itoring and rapid response to water pollution outbreaks is possible (Wu et al.,

2019; Castro et al., 2020). This helps provides an understanding of the stages of

the outbreaks (Kubiak et al., 2016) that would not be possible using satellite or

airborne images alone. Table 1.1 provides a comparison of satellite, airborne and

drone imagery.

Table 1.1: Comparison of Satellite, Airborne and Drone Images for Regular, High
Spatial Resolution Monitoring.

Parameters Satellite Airborne Drone
Revisit cycle High temporal: 1 day

Low temporal: 16 days
Anytime Anytime

Spatial resolu-
tion

High resolution: ≤ 5m
Medium resolution:
10m
Low resolution: ≥30m

Very high resolu-
tion: ≤1m

Very high reso-
lution: ≤ 20cm

Cloud free Obscured with cloud Cloud free Cloud free
Cost High resolution: com-

mercial
Medium/Low resolu-
tion: free

Expensive Low - cost

In addition to their well-established terrestrial applications, drones are also suit-

able for water quality monitoring, and over the years, their application in map-

ping the distribution of water quality parameters has increased. Specifically,

low-cost drones have become a better alternative to high-end drones and have

seen an increase in their application over water in recent years (Knaeps et al.,

2019). Therefore, the subsequent section will review low-cost drones to under-

stand their potential role in water quality monitoring.
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1.4 Can Low-cost Drones Play a Role in Water Qual-

ity Monitoring?

In this section, the concept of low-cost drones adopted in this thesis will be ex-

plained in greater detail. It will define the main criteria for describing or defining

a low-cost drone. This section also contains a review of recent advances in low-

cost drones to help emphasise the pace of rapid development. Lastly, it explores

the work to date of these low-cost drones for water quality monitoring.

1.4.1 Definition of a Low-cost Drone

In drone photogrammetry, the off-the-shelf ( i.e. available immediately to be pur-

chased and does not need any customization or special ordering ) market offers an

extensive range of low-cost drones. In the last decade, there has been increased

innovation and investment in low-cost drone technology, leading to affordable,

smaller platforms, more efficient flight and a variety of sensors for obtaining re-

liable information about the Earth’s surfaces (Rambat, 2011). Consequently, in-

terest in low-cost drones has increased in the scientific community, including an

increase in use for remote sensing applications (Song et al., 2016). For example,

several studies have been conducted using these low-cost drones to monitor and

map seaweed habitats (Kellaris et al., 2019), malaria habitats (Hardy et al., 2017),

measure tree characteristics (Bossoukpe et al., 2021), map forests (Williams et al.,

2022), map weeds (Mattivi et al., 2021), and map ecosystems and features (Kabiri,

2020).

In educational institutions and research centres, budget constraints often limit

the adoption and application of cutting-edge technologies such as high-end drones.

One of the main advantages of these low-cost drones is their affordability (Bikov

et al., 2022). These low-cost drones are invaluable tools, allowing researchers

to explore various applications and innovate without incurring a significant fi-

nancial burden. Furthermore, low-cost drones offer opportunities for effective
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environmental monitoring by allowing local communities, NGOs, and volunteer

groups or citizen scientists to acquire such platforms. Due to their affordability

and accessibility, it can be assumed that these low-cost drones will continue to be

popular and as technology improves, they will incorporate more advanced fea-

tures while still maintaining a relatively low price (Bikov et al., 2022).

Generally, low-cost drones can be categorized into two types: semi-professional-

grade and consumer-grade (Stöcker, 2021), each differing significantly in terms

of their intended purpose, features, capabilities, and price. In this thesis, semi-

professional grade drones are referred to as drones that are specifically designed

for professional use such as high accuracy topographic surveys. This category

offer a certain level of spatial accuracy for derivative datasets, ranging from 1 to

3 meters, though not reaching the highest achievable of centimetre-level accu-

racy. On the other hand, consumer-grade drones can be considered as those that

are designed for general-purpose use, such as recreation, photography, videogra-

phy, and racing. They typically feature basic Global Navigation Satellite System

(GNSS) modules and Inertial Measurement Units (IMUs) for navigation, which

are not adequate for professional applications. Therefore, in this thesis, the

term ”low-cost drones” is used subsequently to refer to semi-professional grade

drones.

1.4.2 Categories and Classification

In the context of this thesis, a low-cost drone is defined by two key criteria: the

imaging device and the navigational sensor(s). These criteria were chosen as they

can be considered to be the most significant factors influencing the overall cost

of any drone. Other criteria, such as flight time, type of motor/rotor blade and

battery capacity, were not considered as they are deemed by the researcher to

have a lesser impact on the overall cost. These two components are explored in

more detail in 1.4.2.1, 1.4.2.2 and 1.4.2.3.
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1.4.2.1 Imaging Device

The imaging device or sensor is the tool - fundamental for the application of a

remote sensing methodology - that enables the collection of information about

the Earth’s surface (Wolf et al., 2014; Aber et al., 2019). Examples of imaging de-

vices include visible-only, multispectral, hyperspectral, and microwave sensors.

These sensors capture data across many parts of the electromagnetic spectrum,

including ultraviolet, visible, and infrared wavelengths.

Typically, the quality and capabilities of the imaging device are the major influ-

ence that determine the price of a drone (Rambat, 2011). For instance, the greater

the number of spectral bands that the sensor can detect, the more useful the in-

formation it can capture, consequently affecting the price. Additionally, higher

spatial resolution sensors also influence the price of a drone because this gen-

erally improves the ability to detect smaller features in an image. For example,

if one drone sensor has 48 mp resolution while the other has 24 mp, say at the

same height of 120 meters, the latter can capture data at 5 cm per pixel while

the former can only capture data at 10 cm per pixel. Therefore, all other factors

being equal, a drone sensor with a higher spatial or spectral resolution will be

more expensive than one with a lower resolution.

1.4.2.2 Navigational Sensors

The type and quality of navigational sensors (GNSS/IMU) onboard a drone are

also an important contributor to the price (Rambat, 2011). The navigational sen-

sors are used to measure and record the 3D position and orientation of the drone

during surveys (Stam, 2010). Drones equipped with high-precision navigational

sensors are generally more expensive due to their enhanced accuracy in captur-

ing data. For example, a market survey reveals that the DJI Phantom 4 Pro V2.0

drone costs =C1,699 while the DJI Phantom 4 RTK ( Real Time Kinematics) drone

costs =C6,950 as of November 2023 (DJI, 2023). The only appreciable difference

in specifications between them is the accuracy of the GNSS. The former utilises a
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standard GNSS while the latter employs a high-precision RTK differential GNSS

system. The high-end Phantom 4 RTK drone can provide a centimetre level accu-

racy while the low-cost non-RTK equivalent is only able to provide an accuracy

ranging from 1 -3m.

1.4.2.3 Market Survey

The drones of relevance to this thesis can range in price from a thousand euros to

five thousand euros, depending on their features and capabilities. In Table 1.2, a

market survey on a range of drones with low-cost sensors that are widely used in

research have been listed along with their corresponding prices.

Table 1.2: Market Study of Drones Equipped with Low-cost Sensors

Drone Model Price Sensor Accuracy
IMU

Accuracy
GNSS

Price
Source

Date
Published

Parrot Bluegrass
Quadcopter with
Sequoia sensor

=C4750 MS 0.5 o 1.5m Link 1 2024

PARROT DISCO-
PRO AG with
Sequoia sensor

=C4,276 MS 0.5 o 1.5m Link 2 2024

Sequoia sensor+
mounted on DJI
Phantom 4

=C4,231 MS 0.5 o 1.5m Link 3 2024

MicaSense
Altum-PT sen-
sor mounted on
DJI Mavic Air 2

=C1,950 MS 0.2 o 1.5m Link 4 2024

Micasense Red-
EdgeM mounted
on DJI Phantom 4

=C4,673 MS 0.2 o 1.5m Link 6 2024

Micasense
RedEdge-MX
mounted on DJI
Phantom 4

=C4,030 MS 0.2 o 1.5m Link 7 2024

Phantom 4 Pro
with RGB sensor

=C1,699 RGB 0.05 o 1.0m Link 8 2023

DJI Air 3 with RGB
sensor

=C1,119 RGB 0.05 o 1.5m Link 9 2023

Note: The prices are based on company quotations accessible at the links pro-

vided in the table. MS is Multispectral.
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1.4.3 Work to Date: Low-Cost Drones for Monitoring Water Qual-

ity

To date, the application of low-cost drones for water quality monitoring trails

behind that of their widespread use in terrestrial environments (Knaeps et al.,

2019). This is because the issues that must be considered when mapping wa-

ter bodies using low-cost drones are much less understood, and these pose many

challenges to enabling the accurate collection and processing of drone imagery

(Román et al., 2023). Despite these issues, there has been a gradual increasing

trend in the use of low-cost drones for water quality monitoring. This increase

signifies a growing recognition of this technology’s potential benefits for rapid,

regular and accurate water quality monitoring.

To demonstrate the gradual adoption of low-cost drones in water quality moni-

toring, a comprehensive literature search was conducted, as shown in Table 1.3.

A selection of the most relevant academic databases were thoroughly examined,

including Scopus, ScienceDirect, Web of Science, and also specialist journals fo-

cused on remote sensing and photogrammetry not included in those databases.

This extensive search yielded a total of seventeen studies using drones for water

quality monitoring from 2015 to 2023. Of these, thirteen studies employed low-

cost drones, while only four utilized high-end drones. These findings suggest

that the cost-effectiveness of low-cost drones is encouraging scientists to adopt

the low-cost technology as a more attractive option for water quality monitoring.
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Table 1.3: Water Studies Utilising Low-Cost and High-End Drones in Scientific
Literature

Water quality
parameter

Low-cost drones High-end drones
Sensor Studies Sensor Studies

Chl- a

Micasense
RedEdge-M

Román et al.
(2023); Wu
et al. (2023)

DJI P4
Multispectral

Xiao et al.
(2022); Lo
et al. (2023);
Zhao et al.
(2022)

Canon
Powershot
S110 NIR

Su and Chou
(2015)

DJI FC6310
sensor

Cheng et al.
(2020)

Micasense
RedEdge-M

De Keukelaere
et al. (2023)

Micasense
RedEdge

Adelson
(2020); Arango
and Nairn
(2019)

Parrot
Sequoia

Maravilla et al.
(2019)

SenseFly,
Swinglet -
Canon ELPH
110HS

Kupssinskü et al.
(2020)

Parrot
Sequoia

Román et al.
(2023); Arango
and Nairn
(2019); Prior
et al. (2020a)

Micasense
RedEdge

Ying et al.
(2021)

Turbidity
Parrot Se-
quoia

Prior et al.
(2020b)

Micasense
RedEdge

Ying et al.
(2021)
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1.5 Gaps in Current Knowledge for Mapping Water

Bodies with Drones

Drone photogrammetry is the process of using overlapping drone images to cre-

ate detailed and accurate orthomosaics, Digital Surface Models (DSM), and 3D

models. With regards to image processing, drone photogrammetry has benefited

from a fast automation process using structure-from-motion technology (SfM)

(Granshaw, 2018), which is a traditional and widely used method for reconstruct-

ing a 3D surface by identifying tie points between these overlapping images (Losè

et al., 2020; González-Jaramillo et al., 2019; Vitti et al., 2019; Iglhaut et al., 2019).

The SfM process starts with extracting and matching tie points from overlapping

images using algorithms such as the Scale-Invariant Feature Transform (SIFT) -

a widely used feature detection algorithm for identifying tie points (key points).

When sufficient tie points have been gathered, a Bundle Adjustment (BA) is per-

formed to calibrate the sensor and refine its position and orientation. In this step,

the user can often completely rely on the GNSS and the IMU onboard or manually

add Ground Control Points (GCPs) to improve the accuracy (Chiabrando et al.,

2019). The next step is to reproduce a sparse 3D point cloud of the surface. The

final step is to generate the DSM and the orthomosaic.

However, in drone photogrammetry, the main impediment encountered when

mapping water bodies is the absence of, or limited amount of ground features

that can act as tie points for this surface reconstruction (Román et al., 2023;

De Keukelaere et al., 2023). With the BA method being dependent on tie point

collection, it is impossible to apply this method for images captured over water

and so generally fails during surface reconstruction. This is because water can

be considered as featureless terrain due to its dynamic nature and homogeneous

appearance (Knaeps et al., 2019).
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To illustrate this fundamental problem, an experiment was conducted on a set

of drone images captured over water as shown in Figure 1.4. During this experi-

ment, the SIFT algorithm was applied to this drone imagery. The result revealed

that no tie points were detected on the water surface. Further evidence support-

ing this observation is found in Maravilla et al. (2019) and Roman et al. (2024),

where the BA method was employed to create a mosaic of drone datasets over a

lake. Their results mirrored those of the experiment, with 31% (Maravilla et al.,

2019) and 86% (Roman et al., 2024) of the images being unable to be processed.

Specifically, only images with a significant ground area of the shore in view could

be processed, resulting in a hole in the final orthomosaic (Maravilla et al., 2019).

Figure 1.4: An example of a drone dataset over Blessington Lake in County Wick-
low. This image illustrates how difficult it is to collect tie points over water com-
pared to the terrestrial area.
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In trying to solve this problem, photogrammetrists have favoured the Direct Geo-

referencing (DG) approach to derive the Exterior Orientation Parameters (EOP),

which are the determination of the sensor’s position and orientation required to

project a point from a 3D world onto a 2D image plane (Román et al., 2023;

Knaeps et al., 2019; Windle and Silsbe, 2021; Lo et al., 2023). DG can be de-

scribed as a method that measures the position and orientation of an airborne

sensor and uses it to directly determine the EOPs without any additional mea-

surement, i.e. GCPs (Lo et al., 2015; Ekaso et al., 2020). In the DG method, the

GNSS, which is for positioning and the IMU, which is for angular measurement,

work together to determine the sensor’s position and orientation (Bagherbandi

et al., 2022; Yastikli and Jacobsen, 2005). These two devices make it possible to

georeference an image directly. As of the time of this study, the DG method is

still the only practical solution for deriving EOPs that can be used to reconstruct

images over water.

Studies by Bláha et al. (2012) and Ip et al. (2007) have demonstrated that the

DG approach is only successful in image reconstruction with high-end drones

equipped with highly accurate RTK GNSS and IMU or Post-Processing Kinematic

(PPK) modules. High-end drones are essential as the accuracy and reliability of

the DG method is limited by the accuracy of the IMU and GNSS onboard the

drone (Jacobsen, 2002). These high-end drones feature more advanced technol-

ogy compared to low-cost drones, enabling them to produce accurate and reliable

orientation and position measurements. Despite their efficiency in producing ac-

curate EOP measurements, as previously argued in this thesis, high-end drones

are not widely used due to their high cost. Therefore, it is difficult for individuals,

organizations, and institutions to afford them, hence limiting their applicability.

As low-cost drones become more prevalent in water quality monitoring, the need

for methods or techniques that correct errors associated with drone imagery de-

rived from DG becomes increasingly important. To date, no methods involving

low-cost drones have been investigated to (i) understand their suitability, (ii) the
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associated errors have never been quantified and (iii) there have been no attempts

to improve accuracy. There is, therefore, a clear need for a study that will focus

on these three issues.

1.6 Research objectives

The aim of this thesis is to explore and enhance the photogrammetric methods

that can be employed to map water bodies using low-cost drones. To achieve this

aim, this thesis incorporates four objectives that further the body of knowledge

in the field of photogrammetry. This section summarizes these four objectives

and all relate to low-cost drones.

1.6.1 Objective 1

The first objective of this thesis is to benchmark and test the accuracy of drone

imagery of water bodies generated using the DG method. This will establish a

benchmark for comparison with subsequent methods and tests. This objective

will theoretically test the accuracy of EOPs derived from the DG method using

the standard photogrammetric collinearity equations in Chapter 3 and will be

validate further using real-world data in Chapter 4.

1.6.2 Objective 2

The second objective of this thesis is to analyse the associated errors in the im-

ages derived using the DG method and propose an analytical photogrammetric

method to improve them.

1.6.3 Objective 3

The third objective of this thesis is to develop a method that can combine BA and

DG by using the features from the shore as a reference to improve the accuracy of

drone imagery over water. This objective will theoretically test and validate the

method using real-world data in Chapter 5.
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1.6.4 Objective 4

The last objective of this thesis is to develop a method that aims to improve accu-

racy, efficiency, and scalability for mapping water bodies. This will explore image

registration techniques coupled with machine learning in Chapter 6.

1.7 Research Assumptions

A number of assumptions have been made in this thesis to facilitate work on the

objectives listed in section 1.6. The sections below detail each of these underlying

assumptions.

1.7.1 Assumption 1

One of the key assumptions of this thesis, and one that underpins all subsequent

methods, is that the surface of a water body can be approximated as flat, i.e.,

a surface that is nearly planar. While this may not always be the case in prac-

tice, especially for the sea where strong winds can generate significant wave ac-

tion, almost all inland waters can be considered relatively stable. Therefore, this

assumption discounts swell, waves, and any other water disturbances. This as-

sumption aids in establishing the relationship between the images captured by

the drone when projected to the ground plane. Therefore, all the photogrammet-

ric methods developed in this thesis adhere to this assumption.

1.7.2 Assumption 2

Another key assumption for this thesis is that water can be considered as an ex-

clusively featureless terrain. Featureless terrain can be described as any terrain

without ground features (Taha et al., 2022). A ground feature could be described

as any distinctive and identifiable element present on the earth’s surface that can

be used as a reference point. These features are typically static and provide spa-

tial information that aids in mapping, navigation and robotics applications. In

the field of photogrammetry, examples of featureless terrain that pose challenges
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during the traditional photogrammetric process include water, bare soil/sand,

and ice sheets.

In this thesis, water as a featureless terrain is explained in two broad contexts:

(i) a terrain without any identifiable features and (ii) a terrain with limited fea-

tures. The first category represents the normal state of almost all water bodies –

i.e. they lack features. In the second category, it is certainly true to say that there

may be identifiable features over the water surface in certain instances. However,

this thesis argues that these are not enough to make it a feature-rich terrain suit-

able for image reconstruction through traditional photogrammetric techniques.

For example, an image of a body of water may contain high levels of suspended

solids such as leaves, tree logs and plastics. However, these suspended solids

are not reliable features for image reconstruction due to two primary reasons.

Firstly, these suspended solids can move in the water due to currents, wind or

other hydrographic causes, hence affecting the tie point matching. This causes

more mismatches of the identified tie points in the matching process and this

will affect the accuracy and quality of the image reconstruction. Additionally,

these features are rare, not well distributed spatially, and therefore insufficient to

properly reconstruct images. During a typical BA process, at least 100-5000 key-

points must be identified in each image (Mousavi et al., 2021). Hence, throughout

this study, a key assumption that is made is that water should be considered an

exclusive featureless terrain, even when there are suspended solids.

1.7.3 Assumption 3

The aim of objective one is to theoretically test the accuracy of EOPs derived from

the DG method using the standard photogrammetric collinearity equations. This

analysis relies on the assumption that the specified manufacturers’ accuracies for

GPS and IMU are suitably defined for the proposed theoretical method. This

assumption considers a standard condition where the GPS and IMU are capa-

ble of measuring position and angular changes within the specified tolerances.
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Additionally, all other variable factors that might influence the accuracy, such

as signal quality, interference and satellite geometry for GPS and constant bias,

temperature effects and calibration errors for IMU, can be discounted.

1.7.4 Assumption 4

This thesis focused on developing methods for drones without self-leveling gim-

bals. While the methods in this thesis are primarily targeted for such drones, it

will be shown that they can be adapted for drones with gimbals as well. Drones

without gimbals were chosen as the target for this research because they are par-

ticularly susceptible to orientation influence and can best benefit from this ap-

proach.

1.8 Terminologies for Drone Image Outputs

This section introduces the key terms used for the different image outputs pre-

sented in later chapters to ensure clarity throughout the thesis.

1. Reconstructed 2D images – These are generated by projecting 3D objects

onto a 2D plane, representing the initial results of the DG approach be-

fore any corrections. These images may not necessarily be georeferenced,

meaning their coordinates could be arbitrary, like the theoretical analysis

in Chapter 3 or based on a real-world coordinate system, as demonstrated

in Chapter 4. When combined into a single image, they become a mosaicked

image.

2. Orthoimages – Orthoimages are images that have been geometrically cor-

rected (orthorectified) to remove distortions caused by terrain relief, sensor

tilt and image displacement, and scale variations (Shariat et al., 2008; Faraji

et al., 2016). They are georeferenced, meaning each pixel corresponds to

a specific location on the Earth’s surface with an accurate scale and spatial

alignment. Their geometric integrity allows them to be used as base maps

for accurate measurements. In some instances, an image captured at nadir
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(straight down) over a flat surface can be directly considered an orthoimage

(Wolf et al., 2014). This thesis specifically focuses on producing orthoim-

ages through novel methods developed in Chapters 4, 5, and 6. Therefore,

after applying these methods to the reconstructed 2D images, the resulting

product will be referred to as an orthoimage.

3. Orthomosaic – These are orthoimages that have been mosaicked into a sin-

gle image. They are obtained by edge matching and colour balancing the

orthoimages to create a seamless image (Wolf et al., 2014). This image rep-

resents the final output in mapping water bodies, where orthoimages over

the water are combined to create a single image of the area.

1.9 Thesis Structure

This thesis is further divided into six chapters with the following structure:

Chapter 2: Current State of the Art - Literature Review

This chapter investigates the four research objectives listed in Section 1.6. It be-

gins by introducing the concept of DG in more detail and investigates the work

to date in this area. This chapter further reviews the navigational sensors essen-

tial to the DG method. Lastly, it reviews the standard photogrammetric principle

and investigates how image registration and ML techniques could be employed

for mapping water bodies.

Chapter 3: Theoretical Analysis of the Positional Orientation (POSE) Errors -

Objective 1

This chapter describes the error sources that limit the accuracy of the drone im-

agery, namely; GNSS and IMU errors and sensor rotation angle influence. It fur-

ther quantifies and analyses the error sources using the standard photogrammet-

ric collinearity equations and a series of simulated tests in Python.
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Chapter 4: Developing An Analytical Rectification Method for Featureless

Terrain - Objective 2

This chapter investigates how the error sources described in chapter 3 can be cor-

rected through analytical photogrammetry. The DG method was explored in this

chapter, and the results were compared to the novel analytical photogrammetric

method developed. This method was developed to remove image displacement,

tilt displacement and scale variation errors.

Chapter 5: Assisted Direct Georeferencing Approach - Objective 3

This chapter was an improvement on the method developed in Chapter 4. This

chapter presented a new methodological process that explores the potential of

using the shore as a reference to improve the accuracy of drone images over the

water. The assessment was conducted in two parts: theoretical and experimental

assessments. The developed method was also tested under different real-world

scenarios.

Chapter 6: Automated Image Registration Model for Mapping Water Bodies -

Objective 4

The final methods chapter presents a new approach for mapping over water using

image registration techniques and a machine learning approach. The potential of

the method lies in its scalability, and its capability to map water surfaces at differ-

ent geographic scales and is an improvement on the Chapter 5 method because

no shore is needed. A series of drone datasets were used to train, validate and

test the method.

Chapter 7: Conclusion

This chapter summarizes and syntheses the results of the individual chapters.

It emphasized all the contributions and remaining gaps that could be filled. Fi-

nally, it highlights the challenges encountered during the research process and

concludes with final remarks.
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Chapter 2

Current State of the Art - Literature

Review

2.1 Introduction

As explained in the previous chapter, the main aim of the thesis is to explore

and improve the traditional photogrammetric approach for mapping water bod-

ies using low-cost drones. This chapter is, therefore, divided according to the

relevant objectives that must be met to achieve that aim. Section 2.2 will review

the concepts and methodologies relevant to achieving Objective 1, i.e. the bench-

marking. It will start with explanation on the role of DG in research and industry

in Section 2.2.1. It will further review the concepts of DG in Section 2.2.2, and

followed by an explanation on the Interior and Exterior Orientation Parameters

in Section 2.2.3. The second objective will be introduced in Section 2.3 by re-

viewing the impact of navigational errors on DG. This will involve reviewing the

IMU and GNSS in Section 2.3.2 and 2.3.3 respectively, and the considerations

arising from the type of sensor, which is one of the fundamental components in

photogrammetry, will be explained in Section 2.3.5. Section 2.4 will review con-

cepts and methodologies relevant to achieving Objective 3, i.e. combining the

BA and the DG methods. This will involve a review of the standard photogram-

metric method in Section 2.4.1. This will explain the BA process in section 2.4.2.

The final objective which is developing a scalable method will be explored in
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Section 2.5, and will encompass an exploration of the key concepts influencing

image registration and detail the types of machine learning algorithms employed

in Chapter 6.

2.2 Objective 1- Benchmark and Test DG

The first objective of this thesis is to benchmark and test the accuracy of drone

imagery of water bodies generated using the DG method. This section details

the DG method in great detail, covering the two sets of parameters required for

image reconstruction. It also reviews the current state of the DG method for

mapping water bodies and proposes a solution to address the gap identified in

the literature.

2.2.1 The Role of DG in Research and Industry

The concept of DG emerged in the 1990s as researchers delved into the poten-

tial of utilizing GPS-aided inertial navigation systems (INS) for photogrammet-

ric applications. According to a study by Hutton and Mostafa (2005), some of the

earliest tests of DG mounted a Litton LTN-90 INS on a Zeiss RMK film camera.

While the results were not entirely accurate, they provided the proof of concept

and laid the foundation for further exploration. Subsequent research reinforced

the feasibility of the DG method, paving the way for commercial development

and in 1996, Applanix, a Canadian company, unveiled the POS DG 510, the first

commercially available DG system (Hutton and Mostafa, 2005).

The emergence of commercial DG systems spurred research at academic insti-

tutions, such as Cramer (1999) from the University of Stuttgart and Colomina

(2000) from the Cartographic Institute of Catalonia, to investigate the full po-

tential of this emerging technology. In the early stages of DG development, the

primary question was whether the IMU and GPS could provide sufficiently accu-

rate attitude and position information for DG. Notable studies, such as those by
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Cramer et al. (2000); Cramer (1999); Jacobsen (2002); Grejner-Brzezinska (2001);

Yastikli et al. (2002) and Wegmann (2002); Mostafa and Hutton (2001), demon-

strated the potential of DG as a viable alternative to the traditional BA method.

Importantly, the European Organization for Experimental Photogrammetric Re-

search (OEEPE) - now the European Spatial Data Research Group (EuroSDR)

conducted a groundbreaking study in 2002 that provided comprehensive infor-

mation about the DG process and the necessary system calibration required to

encourage adoption by research and industry (Heipke et al., 2002). This study

encompassed a series of investigations comparing the accuracy of DG with the

BA method, developing new system calibration methods for DG, and thoroughly

exploring the Integrated Sensor Orientation (ISO) method.

Many years after the OEEPE Workshop proceedings and report, the DG method

has become an established technique employed by both industry and the re-

search community (Mostafa et al., 2010). In parallel with substantial technologi-

cal advancements on IMU and GNSS systems, innovations in the development of

navigational systems have enhanced the performance of the DG method. It has

evolved from its initial application with film and digital cameras to encompass

other common sensors such as multispectral sensors, hyperspectral sensors, and

push-broom scanners. For example, several studies have employed this method

in diverse applications such as wildfire monitoring (Maria and Santana, 2021), to-

pographic mapping (Syetiawan et al., 2020), disaster mapping (Chiabrando et al.,

2019), and many more.

One area of DG that has not received sufficient attention is its potential for use

with low-cost drones and specifically - when mapping water bodies. To date, no

studies have been carried out to improve the accuracy of drone imagery derived

through DG. In fact, no studies have even explored or analyzed the errors associ-

ated with using the DG method for low-cost drones for water bodies. Therefore,

this thesis aims to advance the DG method by exploring and developing novel
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techniques that can improve the performance of low-cost drones in mapping wa-

ter bodies. This represents one of the major contributions of this work.

2.2.2 Concept of Direct Georeferencing

DG is the process of directly obtaining the EOPs from the navigation sensor on-

board the aerial platform (Mitishita et al., 2016; Pfeifer et al., 2012). It can also

be defined as the process of accurately positioning and aligning aerial images to

a specific location on the Earth’s surface without the use of GCPs (Correia et al.,

2022). This term will be used for both processes in this thesis. The DG method

is not a novel approach; it has been explored since the 1990s. A strength of this

method is that it completely avoids the requirement for a parallel ground survey

installing and recording ground targets and also bypasses the Bundle Adjustment

stage, providing significant time savings (Cramer, 1999). The sensor’s position is

measured in 3D ( X, Y, and Z) from the projection centre, while the orientation of

the sensor is measured in three axes: Roll, Pitch, and Yaw. Figure 2.1 provides an

overview of the DG process, where both the intrinsic parameters of the sensor i.e.

the Interior Orientation Parameters (IOP) and the EOPs are combined. Combin-

ing these two parameters makes it possible to project a point (P ) from the ground

onto an image. One weakness of the DG approach is that accuracy of point P

is constrained by the accuracy tolerances of IMU and GNSS sensors onboard the

drone that record Pitch, Roll and Yaw, and 3D position respectively (Jacobsen,

2005; Rehak, 2017).
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Figure 2.1: Illustration of the DG concept demonstrating how a point on the
ground (P) is projected from 3D space onto a 2D coordinate system (the 2D im-
age) by combining both the IOP (sensor) and the EOP (IMU and GNSS).

2.2.3 Interior Orientation Parameters

The term Interior Orientation Parameters (IOP), also known as intrinsic parame-

ters - or ’what is going on inside the sensor’ - refer to all of the essential parame-

ters required for modelling the sensor’s geometry and the physics of the interac-

tion of the rays of light with that sensor (Förstner and Wrobel, 2016b). Sensors

which have fixed IOPs can be described as metric sensors. These sensors are gen-

erally employed for high-accuracy topographic surveys, and examples include

the list of sensors outlined in Section 1.4.3. Conversely, sensors without fixed or

stable intrinsic parameters can be described as non-metric sensors. For example,

these sensors include a Digital Single-lens Reflex Camera (DSLR), camcorders,

smartphone cameras and Closed-circuit Television cameras (CCTV) (Wolf et al.,

2014).
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The IOPs that can be determined for a metric sensor can be described as follows:

1. Focal length: It is defined as the distance from the sensor’s optical centre

to the image sensor. This is usually measured in millimetres (Förstner and

Wrobel, 2016b).

2. Principal point: It refers to the geometric centre of the photograph where

the X and Y axes intersect. It represents the centre of the image and is used

to locate image points relative to the sensor (Förstner and Wrobel, 2016b;

Aber et al., 2019).

3. Radial lens distortion: These parameters quantify the amount of radial dis-

tortion in the image. This occurs along radial lines from the principal point

(Wolf et al., 2014). Radial distortion causes straight lines to appear curved,

and the distortion increases with distance from the principal point. They

are typically presented as (k1, k2, k3) (Li-Chee-Ming et al., 2012)

4. Tangential lens distortion: These parameters quantify the amount of tan-

gential distortion in the image. Tangential distortion causes straight lines

to appear displaced from their ideal positions. They are presented as (p1,

p2) (Wolf et al., 2014).

5. Pixel Size: The physical size of each pixel on the image sensor or film plane,

typically measured in millimetres (Wolf et al., 2014).

Accurately determining these IOPs is important for many photogrammetric ap-

plications, and these are usually constant or fixed (either at manufacture or by

the operator before each flight) and are predominantly determined by calibrat-

ing the sensor (Wolf et al., 2014) either through laboratory calibration or by the

user through calibration targets such as a checkerboard or the BA process (Aber

et al., 2019). Generally, the calibration state of sensors can be broadly distin-

guished into three types: (1) a calibrated sensor – where the IOPs of the sensor

are completely and accurately known (2) a partially calibrated sensor – some of

the IOPs are identified following the calibration process and (3) an uncalibrated
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sensor – this is where the IOPs of the sensor are completely unknown (Förstner

and Wrobel, 2016b).

2.2.4 Exterior Orientation Parameters

EOPs describe the spatial relationship between the sensor and the scene being

photographed (Aber et al., 2019) - they explain where the sensor is (three-dimensional

(3D) position - XYZ) and where it is pointing (the direction). It is also commonly

referred to in photogrammetry and computer vision as the Position and Orienta-

tion (POSE). These EOPs are important for accurately reconstructing 3D scenes

and surfaces from two-dimensional (2D) images. The process includes determin-

ing the position of the sensor in XYZ and the sensor’s orientation in terms of

Roll, Pitch and Yaw during image acquisition (Wolf et al., 2014). Accurate de-

termination of the EOPs is a fundamental task in the photogrammetric workflow,

enabling accurate measurements (Jacobsen, 2005; Han et al., 2011; Grussenmeyer

and Al Khalil, 2002).

Two approaches are commonly employed for computing EOPs: direct and indi-

rect determination (Ip et al., 2007). The first approach is commonly referred to

as Direct Georeferencing (DG), while the second approach is called the Bundle

Adjustment (BA) method. These two methods are suited for different applica-

tions and scenarios. For instance, a project demanding extremely high accuracy

will require the BA method, while projects over featureless terrain or those that

require rapid and immediate processing of images such as in emergencies like

earthquakes can benefit from the DG method.

2.2.5 Pros and Cons of the DG Method

While exploring DG as a method, it is essential to evaluate its advantages and

disadvantages critically. To provide a comprehensive overview, Table 2.1 outlines

the pros and cons of the DG method. This table aims to offer a comparative

analysis of the strengths and limitations associated with DG. In summary, the
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use of the DG method provides the practical means to map a featureless terrain,

albeit its accuracy is constrained by the performance of the integrated IMU/GNSS

system. Thus, low accuracy for applications that use low-cost drones.

Table 2.1: Pros and Cons of the DG Method

Pros Cons
Not dependent on GCPs Requires rigorous system calibration

such as boresight adjustment (is the
process of determining the misalign-
ment between the camera and the
IMU) and lever arm offsets (is the
process of determining the offset be-
tween GNSS and the camera)

Computationally less expensive,
making it easy and fast to use

Accuracy constrained by IMU and
GPS limitations.

Useful for areas with difficult access Low accuracy for applications that
use low-cost drones.

Can be used for standard mapping
applications

Potential accuracy degradation in
dynamic or vibrating platforms.

Reduces data acquisition time since a
high overlap percentage isn’t needed

Small errors in the navigation sen-
sors at altitude are converted to large
errors on the ground

Enables quick image processing for
emergency applications
Can be used for applications in chal-
lenging terrains such as featureless
terrain where traditional methods
cannot work

2.2.6 DG, Drones and Water: the Current State of the Field

No research has been carried out to benchmark the accuracy of drone images of

water bodies generated using the DG method. However, some research has been

conducted to create mosaics of images from the DG method (Román et al., 2023;

Lo et al., 2023; De Keukelaere et al., 2023; Windle and Silsbe, 2021). For example,

De Keukelaere et al. (2023) produced a mosaicked image over several lakes across

Europe, which was used to map water turbidity and Chlorophyll-a. This study

utilized the DG approach by using a commercial VITO MapEO water software.

This software projected the acquired drone images onto the ground plane and

then radiometrically corrected the images to produce a final water quality map.
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Similar studies have also been performed by Lo et al. (2023), which generated a

mosaicked image of a medium-sized lake in China. This study aimed to measure

the distribution of Chl-a, Total Phosphorus, Ammonia Nitrogen, and Electrical

Conductivity using the mosaicked image. This was derived using a Python script

that also projected the images onto the ground plane. A major issue is that nei-

ther of these studies provided an analysis of the accuracy of the reconstructed

2D images derived from the DG method. This thesis argues that benchmarking

the accuracy of the reconstructed 2D images derived from the DG method is es-

sential to assess the performance and establish an approach for comparison with

methods that seek to improve the DG method. Additionally, it is important to as-

sess the accuracy under different environmental conditions, such as in calm and

strong winds. However, as at now, there is still no theoretical or real-world tests

to determine the accuracy of reconstructed 2D images obtained from low-cost

drones.

2.2.7 A Possible Solution

Benchmarking and testing the accuracy of reconstructed 2D images obtained

from low-cost drones requires developing a simulator for theoretical tests and

validate with real-world data. Because water bodies make it difficult to install

fixed targets, the first objective of this thesis is to approximate a water environ-

ment to carry out the initial theoretical accuracy assessment.

2.3 Objective 2 - Analyse Errors Associated with Di-

rect Georeferencing

2.3.1 History of Navigational Sensors

Throughout history, navigation systems have played a pivotal role in various

fields, including exploration, military operations, construction, surveying, and

many more (Stam, 2010). For instance, these systems enabled 15th-century ex-
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plorers to identify new regions of the Earth (Chrysochou, 2016), and they con-

tinue to guide us in our daily lives, helping us navigate to shops and other des-

tinations. Throughout history, the methods of navigation has changed. These

explorers made progress in navigation through the use of instruments such as

the compass, the cross-staff, and the astrolabe (Chrysochou, 2016). From the

19th to the 20th century, there have been great advances in navigational tools

(Tazartes, 2014). Two of the most widely used and standardized navigational

techniques in use currently are GNSS and IMU (Wolf et al., 2014). In the early

1980s, these devices were integrated into airborne platforms, such as helicopters,

for aerial surveying applications (Hutton and Mostafa, 2005). This integration

was a groundbreaking advancement in mapping, which improved the speed at

which high-resolution maps of the Earth’s surface could be produced.

However, these devices were bulky, averaging around 30 pounds in weight but

since the early 2000s, these devices have significantly reduced in size, opening

up the possibility of incorporating them into drones (Rehak et al., 2013). This

innovation in the drone market has also been the prompt for developing smaller

and more affordable IMU and GNSS systems.

The IMU and GNSS are considered essential for acquiring navigational data from

a drone (Mostafa and Abdelhafiz, 2017). In aerial surveying, these two devices

are always used together. As a result, knowing only the location of the sensor

during image capture is insufficient. Rather, it is equally important to understand

the sensor’s orientation during image capture.

2.3.2 Inertial Measurements Units - the IMU

IMUs are devices used to measure a drone’s attitude or orientation (Correia et al.,

2022). An IMU typically consist of three main parts: the accelerometer, the gy-

roscope and the magnetometer. These devices work together to provide an ac-

curate attitude measurement of the drone. A typical IMU device contains three
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accelerometers used to measure the acceleration in the X, Y, and Z directions

(Stam, 2010). These accelerometers measure changes in velocity and can deter-

mine the direction and magnitude of accelerative forces acting on the drone. The

gyroscopes measure angular velocity and aid in establishing the object’s orienta-

tion. The magnetometer helps measure the direction of the magnetic field. IMUs

combine the data from the accelerometer, gyroscope and magnetometer to calcu-

late the drone’s position, velocity, orientation and the direction of the magnetic

field (Stam, 2010).

In simpler terms, the IMU defines the relationship between the navigation coor-

dinate system and the body coordinate system (Rehak, 2017). Importantly, the

IMU measures the drone’s orientation around three axes in a right-handed coor-

dinate system. Typically, an IMU has six degrees of freedom (DOF), but when

a magnetometer is included, it measures nine DOF (Alatise and Hancke, 2017).

Therefore, the rotation angles of the drone can be measured in Roll, Pitch, and

Yaw. These three angles form part of the six EOPs. Roll, Pitch, and Yaw angles

describe the three rotational angles from the orientation of a rigid body relative

to a fixed reference frame known as the navigation coordinate system (Bäumker

et al., 2002). Since direct georeferencing of airborne imagery involves projecting

a point from a 3D world onto a 2D image, it will require the use of these differ-

ent coordinate frames (Li et al., 2017). The subsection below provides a detailed

explanation of the fundamental reference frames in photogrammetry.

2.3.2.1 Coordinate System 1 - the Navigation frame

The navigational coordinate system is a fixed reference frame used to define the

position and orientation of an object in space (Rehak, 2017). It serves as the refer-

ence frame against which the orientation of an object is measured with different

ways of representing navigational coordinate systems, including the North-East-

Down (NED) frame and the Earth-Centered Earth-Fixed Coordinates (ECEF) sys-

tem. The ECEF frame is a global reference frame with its origin at the Earth’s
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centre and three orthogonal axes fixed to the Earth. As shown in Figure 2.2, the

Z-axis (Ez) points to the North Pole, the X-axis (Ex) points to the intersection

of the Prime Meridian and the equator, and the Y-axis (Ey) completes the right-

handed system. A NED system frame on the other hand is a local reference frame

that uses Cartesian coordinates, where X (Nx) is North, Y (Ny) is East, and Z (Nz)

is down to represent position relative to a local origin. The NED system frame is

defined such that the North and East axes lie within a plane that is at a tangent

to the Earth’s surface, assuming the WGS84 ellipsoid model of the Earth.

Figure 2.2: An image representing of the differences between the ECEF and NED
system frame - these are the first coordinate systems involved and represent the
Navigation Frame.

2.3.2.2 Coordinate System 2 - the sensor Frame

The sensor frame (c) refers to a frame of reference specifically associated with the

sensor. In the context of photogrammetry, the sensor frame system is essential

for accurately describing the spatial properties of images and scenes captured by
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a sensor (Förstner and Wrobel, 2016b). The origin of the sensor frame is located

at the perspective centre, the point where the optical axis intersects the image

plane as shown in 2.3. The x-axis and y-axis of the sensor frame align parallel to

the corresponding axes of the image coordinate system (Rehak, 2017).

Figure 2.3: A graphic showing the sensor frame with the centre being the perspec-
tive centre: the point within the sensor lens through which light rays converge to
form the image

2.3.2.3 Coordinate System 3 - the Body frame

When a sensor is fixed to a rigid body (such as a drone), the drone’s centre of mass

is typically chosen as the origin of the rigid body. The Z-axis points upwards, the

X-axis points forward in the direction of motion or travel, and the Y-axis points to

the right of the object, perpendicular to the direction of motion, to form a right-

handed system, as shown in Figure 2.4a.

The Roll angle, also known as the tilt angle, describes the rotation of a body

around the X-axis relative to the reference frame (Gustavsson, 2015; Förstner and

Wrobel, 2016a; Yan, 2017; Khaghani and Skaloud, 2016). In other words, as the

drone banks left or right, it is described as the Roll angle. Thus, a positive Roll
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angle indicates that the sensor is tilted (or banked) to the right, while a negative

Roll angle indicates that it is tilted to the left.

The Pitch angle defines the rotation of the drone around its Y-axis. In a standard

orientation, the Pitch angle can be visualized as the angle between the longitu-

dinal axis (running from nose to tail) and the horizontal plane (Rehak, 2017).

A positive Pitch angle indicates that the nose of the drone is pointing upwards,

while a negative Pitch angle indicates that the nose is pointing downwards. For

example, Figure 2.4c shows an image of a drone Pitching down.

The final angle is the Yaw angle, which defines the rotation of a body around the

z-axis (Bäumker et al., 2002). The Yaw angle typically aligns with the drone’s

direction of travel and points upwards, as shown in Figure 2.4d. A positive Yaw

angle indicates that the body is rotated clockwise, while a negative Yaw angle in-

dicates that it is rotated counterclockwise. Typically, the range of these angles is

-180 degrees to +180 degrees for Roll, -90 degrees to +90 degrees for Pitch, and

0 to 360 degrees for Yaw.

In photogrammetry and computer vision, the representation of these rotation an-

gles can be accomplished primarily through three methods: Euler angles, quater-

nions, and direct cosine matrices (Narkhede et al., 2019; Ellum, 2009; Alatise and

Hancke, 2017). Besides these three, other methods can also be employed to repre-

sent rotation angles, namely the axis-angle representation (Alatise and Hancke,

2017) and Rodrigues parameters (Ellum, 2009). Euler angles are a set of three

angles that describe the orientation of a rigid body in three-dimensional space.

Consequently, they are defined by a sequence of three rotations about three dis-

tinct axes. The Roll, Pitch, and Yaw angles using a right-front-up body constitute

the most commonly used sequences in photogrammetry (Ellum, 2009). This or-

der of rotation is crucial for defining the position of a rigid body and is typically

referred to as the ”Euler angle sequence” (Ellum, 2009). One primary limitation
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of Euler angles is their susceptibility to gimbal lock. This phenomenon occurs

when two of the rotation axes become aligned, resulting in a loss of one degree

of freedom and restricting the system’s ability to represent certain orientations

(Toso et al., 2015).

An alternative is the application of quaternions which are a mathematical rep-

resentation of rotations in three-dimensional space. Quaternions offer a com-

pact four-dimensional representation of attitude, using both a scalar and a vector

component (Ellum, 2009). The scalar component captures the magnitude of the

rotation, while the vector component represents the axis of rotation. Unlike Eu-

ler angles, quaternions have been found to be efficient and do not suffer from

gimbal lock (Ellum, 2009). However, quaternions don’t provide a clear and intu-

itive way to interpret and communicate rotations (Bernardes and Viollet, 2022),

are computationally complex (Toso et al., 2015), and more difficult to visualize

than Euler angles (Toso et al., 2015). Euler angles have a direct physical interpre-

tation, aligning with how humans perceive and describe rotations in everyday

terms. For example, Roll, Pitch, and Yaw correspond to familiar movements like

tilting, nodding, and turning, which makes it easy to understand and communi-

cate the rotation of a rigid body.

In this thesis, the Euler angle representation is used in all subsequent analysis

and development of methods where rotational angles were used. This is due to

its simplicity in representation and analysis and its ease of understanding and

visualization (Nolze, 2006). Most importantly, Euler angle representation in the

three axes makes it easier to visualize, animate rotations and simulations, as well

as theoretical assessment and the development of methods where EOPs are used,

which are important in photogrammetry and computer vision.
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(a) Initial Position (b) Roll

(c) Pitch (d) Yaw

Figure 2.4: Illustration of the orientation of a rigid body (drone) where (a) is the
initial position of a drone, (b) is where the drone is tilted on the right wing down
(i.e. Roll), (c) is where the nose of the drone is Pitched down (i.e. Pitch) and (d)
where the drone is turned to the right (i.e. Yaw).

2.3.3 Satellite Positioning - GNSS

GNSS is a satellite-based navigation system that provides location worldwide

(Wolf et al., 2014). These locations are derived from a set of satellites orbiting

around the Earth, based on the principle that the receiver is within a line of sight

for at least four satellites (Stam, 2010). Each satellite transmits a signal that in-

cludes its position and a precise time stamp. The receiver calculates the distance

to each satellite by measuring the time it takes for the signal to arrive. Once the

distances to the satellites are known, the receiver can calculate its own position

in X, Y, and Z using trilateration (Stam, 2010).
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GNSS devices provide varying accuracy, ranging from centimetres to meters, de-

pending on the type of device (Rehak, 2017; Kraus, 2007). RTK and Differential

GPS (DGPS) technology offer very high accuracy by utilizing reference stations

to correct satellite signal errors caused by atmospheric conditions and other fac-

tors (Rehak, 2017). According to Stam (2010), there are three different grades of

GNSS devices: industry/survey-grade, professional-grade, and consumer-grade

devices.

Survey-grade drones employ RTK or DGPS systems and typically achieve an ac-

curacy of less than 5cm in XY and 10cm in Z. Professional-grade drones often use

the single-point positioning technique to derive locations, rendering them unable

to utilize reference stations for signal and atmospheric interference correction.

Consumer-grade drones come with low-quality antennas that do not provide the

signal quality and reception of professional and survey-grade drones. They are

more susceptible to signal interference, which affects the calculations of GPS po-

sitions.

2.3.4 Navigational Sensors - Influence of Errors on Accuracy

The effects of errors in navigational sensors can significantly affect the accuracy

and reliability of reconstructed 2D images created through DG. All navigational

sensors have error tolerances; however, drones equipped with low-cost naviga-

tional sensors unsurprisingly have larger tolerances (Hajiyev et al., 2015). In

standard photogrammetric methods over terrestrial regions, these errors are min-

imized through the BA process or through the incorporation of GCPS as they help

accurately calibrate the sensor and refine the EOPs. During DG, there are sev-

eral sources of errors such as sensor model error, calibration errors, errors due to

varying topography or elevation, GNSS positional errors, and IMU angular errors

(Heipke et al., 2002). This thesis focuses on GNSS and IMU errors because the
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DG method relies heavily on these sensors and therefore, quantifying their ef-

fects on reconstructed 2D image is essential. Studies suggest that GNSS position

errors translate to equivalent position errors on the ground, while IMU errors

lead to positional errors that increase in magnitude with the drone’s flight height

(Brown et al., 2007). Ultimately, each of these errors translate into positional in-

accuracies in the reconstructed 2D image produced by the DG method.

To the best of the authors’ knowledge, no assessment has been conducted to quan-

tify the influence of errors in navigational sensors for low-cost drones when using

the DG approach. The impact of navigational sensor errors on low-cost drones

for mapping water bodies further introduces specific challenges that must be ad-

dressed.

2.3.5 Drone Sensor

Apart from the navigational sensors described above in Sections 2.3.2 and 2.3.3,

the optical sensor is another fundamental component that influences the accu-

racy of the survey. Recent advancements in sensors for drone photogrammetry

have significantly increased the use of drones. Technological advancements have

enabled the design of smaller sensors, with weights ranging from 20 grams to

800 grams (Wolf et al., 2014).

There are several sensors that can be used for drone photogrammetry, includ-



Figure 2.5: Examples of drone sensors : (a) A DJI RGB camera, (b) Micasense
RedEdge P multispectral sensor, (c) Specim AFX Hyperspectral sensor and (d)
DJI ZENMUSE L1 LIDAR

2.3.6 Sensor Mount

In drone photogrammetry, the sensor mount is the mechanism used to attach sen-

sors to the drone (Wolf et al., 2014). One of its primary purposes is to constrain

the angular measurement so that the sensor’s optical axis remains vertical. This

is important because it ensures that the sensor captures images from a perpen-

dicular angle to the ground, which is essential for accurate image reconstruction.

In most cases, the sensor is mounted on a self-leveling gimbal. A self-levelling

gimbal is a device that stabilizes the sensor, keeping it level even when the drone

is in motion (Aber et al., 2019). Self-levelling gimbals can capture stable im-

ages even when the drone encounters minor disturbances or movements during

flight. These gimbals compensate for the drone’s motions, ensuring that the sen-
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sor remains level and focused on the target area (Wu et al., 2019). This device

is particularly valuable when strong winds or wind gusts are present during the

survey. Self-levelling gimbal ensures that the tilting of the sensor is minimized,

resulting in near-vertical imagery (Wolf et al., 2014).

On the other hand, some sensors are not mounted on a self-leveling gimbal (Aber

et al., 2019). Such sensors are normally affected by vibrations from the platform

they are mounted on. When sensors are exposed to excessive vibrations with-

out a self-levelling gimbal, the sensor’s optical axis struggles to remain vertical,

causing significant tilt in the images. Currently, there are many low-cost drones

in which the sensors are not mounted on self-leveling gimbals. For example,

drones like the Parrot Bluegrass, Parrot Disco AG, and fixed wing drones such

as the sensefly eBee series all lack a self-leveling gimbal. Typically, fixed-wing

drones do not have gimbals for stabilizing sensors as many multi-rotor drones

do, as the design and flight characteristics of fixed-wing drones differ from those

of multi-rotor drones, affecting how sensors are mounted and stabilized. In most

fixed-wing drone designs, sensors are usually mounted in a fixed position inside

the aerial platform to minimise drag.

Similarly, there are sensors onboard multi-rotor drones that do not have self-

leveling gimbals. For instance, the most widely used multispectral sensors, such

as the Parrot Sequoia and all the MicaSense series sensors, do not have self-

levelling gimbals. While self-levelling gimbals are not inherently required for

these sensors, gimbal devices can be installed on the drone to stabilize the sensor

further. These installations come at an additional cost of several hundred euros.

Additionally, manually installing a sensor on a gimbal can be a more complex

process (Rehak, 2017), especially for users unfamiliar with the specific require-

ments and adjustments needed for proper integration and often voids a manufac-

turer’s warranty or insurance premium. Consequently, these installations often

require technical experts to ensure the sensor’s proper functioning. Most im-
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EOPs for generating orthoimagery.

2.4.2 Safety in Numbers: the Bundle Adjustment

Since the early 1980s, the BA method has become the standard technique for com-

puting EOPs and for subsequent 3D image reconstruction (Defrise and Grangeat,

2010). BA is a mathematical optimization technique used to refine the 3D coordi-

nates of points and the EOPs of sensors in photogrammetry (Triggs et al., 2000).

It is an iterative process that minimizes the reprojection error, which is the dif-

ference between the observed image locations of points and the predicted image

locations of points based on the current estimates of the 3D coordinates and sen-

sor parameters (Defrise and Grangeat, 2010; Förstner and Wrobel, 2016b; Triggs

et al., 2000). BA is important because it corrects for sensor POSE inaccuracies,

subsequently improving the EOP’s accuracy and image reconstruction. It can

also be used to compensate for errors made during the initial sensor calibration

and to reduce the effects of noise in the data.

2.4.3 Workflow and Key Components of Bundle Adjustment

The processes involved in computing the EOPs via BA consist of the following

steps as illustrated in Figure 2.8: Feature extraction and matching, initial re-

construction, reprojection error calculation, objective function formulation, non-

linear optimization, simultaneous parameter update, refined reconstruction and

output.
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Figure 2.8: A workflow of the BA method which consist of a series of steps to
refine the EOPs.
Source: (Kumar and Simic, 2024)

1. Feature extraction and matching: To estimate the EOPs, distinctive fea-

tures are identified in multiple images and matched with similar ones iden-

tified in other images- these are called matching points (Verykokou and

Ioannidis, 2018). These matching points are then further filtered using

techniques such as Random Sample Consensus (RANSAC) to remove the

outliers.

2. Initial reconstruction: This step creates an initial 3D reconstruction of a

surface using techniques like SfM technology as explained in Section 1.5.

This initial reconstruction provides an initial guess of the EOPs and the

3D scene structure. This initial estimate often has errors, but importantly

provides the initial approximations for the BA process when refining the

EOPs.

3. Reprojection error calculation: This step computes the reprojection error

for each image, thus calculating the residuals by comparing the observed

image features (from step 2) with their corresponding projections from the

structure-based projection positions (Granshaw, 1980). Usually, it quanti-

fies the overall error in the current reconstruction by summing the squared

errors.
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4. Non-linear optimization and Simultaneous Update: This step aims to

minimize this cost function by adjusting the 3D points and sensor parame-

ters (Granshaw, 1980). Non-linear optimization techniques, such as Gauss-

Newton or Levenberg-Marquardt algorithms, are applied to minimize the

cost function iteratively. Afterward, simultaneous updates are applied to

update the EOPs from Step 2 based on the optimization results obtained

from the non-linear optimization.

5. Refined Reconstruction and Output: In this step, the results obtained

from step 4 can be further refined and iterated. This iteration can involve

replacing the feature correspondences, adjusting input parameters, or ap-

plying additional constraints to improve the accuracy of the EOPs and the

reconstructed surface (Verykokou and Ioannidis, 2018). The outputs from

the BA represent the most accurate and consistent representation of the

EOPs and the reconstructed 3D scene. The output is therefore suitable for

various high accuracy applications such as topographic mapping and engi-

neering surveys.

Figure 2.9 shows the process of BA from multiple stereo images, and Table 2.2

outlines the pros and cons of the BA method.
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Figure 2.9: Results from Pix4D Mapping software - a widely used drone im-
age processing software that utilizes the BA technique. This process is based on
finding common points between overlapping images that are used to refine and
improve the estimation of the EOPs for each image.
Source: (PIX4D, 2019)

Table 2.2: Pros and Cons of Bundle Adjustment

Pros Cons
Accuracy: It corrects for inaccuracies
in the sensor pose, hence enhancing
the accuracy of the image reconstruc-
tion

Featureless terrain: it is nearly im-
possible to apply BA in featureless
terrain due to the absence of tie
points.

Consistency: It ensures internal con-
sistency among all sensor poses and
3D points.

Computationally expensive: Bun-
dle adjustment can be computation-
ally intensive, especially for large
datasets.

Robust: It is robust to outliers and
noise in the data.

Emergency Response: The optimiza-
tion process requires substantial pro-
cessing time, making emergency or
real-time applications impractical.

Large Datasets: BA can handle large
datasets with numerous images with
different viewing angles.

Sensitivity to initial estimates: BA
requires accurate initial estimates of
the 3D coordinates and sensor pa-
rameters. If the initial estimates are
not accurate, it may lead to conver-
gence issues.
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2.4.4 Integrated Sensor Orientation - ISO

As described in Sections 2.2.2 and 2.4.2, the DG method uses GNSS and IMU

to determine the EOPs directly, while BA relies on tie points and Ground Con-

trol Points (GCPs) to determine the EOPs. Recognizing the benefits of both ap-

proaches, photogrammetrists have explored another method called Integrated

Sensor Orientation (ISO) for surveying and mapping (Heipke et al., 2002). This

technique leverages the DG method’s ability to provide an initial approximation

of EOPs, allowing the BA method to function with only a limited number of tie

points in overlapping images (Rehak, 2017; Heipke et al., 2002). Additionally,

ISO eliminates the need for extensive GCPs by distributing only a sparse network

of these targets around the edges of the survey area (Khoshelham, 2009). This ap-

proach reduces computational time while improving the accuracy of the resulting

orthoimagery (Ip, 2005). The ISO method has been primarily used in areas with

limited or no ground features like forests, deserts, and snow-covered regions (Ip,

2005; Tanathong and Lee, 2014). Emergency response situations involving forest

fires, floods, and earthquakes also benefit from ISO (Ip et al., 2007). Figure 2.10

shows the ISO method and how it utilises limited GCPs and tie points.

Figure 2.10: Illustration of the ISO method where it minimises the use of GCPs
and tie points. Utilizing blocks of images makes it possible to leverage the bene-
fits of DG and BA.
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Motivated by the potential capabilities of the ISO method in areas with limited

or no ground features, this thesis investigates whether ISO can be directly ap-

plied or requires adaptation for mapping water bodies. The presence of adja-

cent landmasses around water bodies suggests the ISO method could potentially

be implemented for mapping water bodies. Therefore, it is essential to explore

whether applying ISO with low-cost drones can achieve comparable accuracy to

the standard photogrammetry technique - BA.

2.5 Objective 4 - Automated Image Registration Model

This section reviews key image registration theory and terminology necessary for

understanding the model developed in Chapter 6. It explains image registration

and homography concepts, as well as the machine learning techniques used for

training and validating the model.

2.5.1 Definition of Image Registration

Image registration is an important process in photogrammetry that involves ge-

ometrically aligning two or more images of the same scene taken under different

conditions, such as different viewing angles (Ye et al., 2020). It is the process of

registering one or more images onto another image, typically onto a referenced

image (Scheffler et al., 2017). One of the goals of this process is to find the opti-

mal spatial transformation that aligns the target image with the reference image,

as shown in Figure 2.11, enabling accurate analysis and comparison of features

in the images. It corrects misalignment by eliminating significant differences in

rotation, translation and scale. (Ye et al., 2020).
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Figure 2.11: An illustration of the concept of image registration where a spatial
transformation is determined to map a target image onto a reference image. This
illustration shows that both images are of the same scene; however, the target im-
age has a different orientation from the reference image. The image registration
technique works by transforming the target image to align with the reference im-
age

According to photogrammetric literature, image registration methods can be cat-

egorized into two main categories: region-based/ gray-based registration and

feature-based registration (Yang et al., 2019; Zhao et al., 2020; Ye et al., 2020).

The region-based registration involves comparing the pixels in a small window

on one image with the same-sized window on another image. It then calculates

a similarity measure, which is directly derived from the pixel intensity in the

corresponding windows. Feature-based registration, on the other hand, extracts

points or features to establish the geometric relationship between the target and

reference images. A typical feature-based image registration method consists of

two important steps: image matching and image warping. The first step iden-

tifies corresponding points between the target and reference images, while the

second step calculates the homography transformation matrix that is employed

to transform the target image (Ihmeida and Wei, 2021).
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According to Zhao et al. (2020), the feature-based method has the advantage of

easy extraction of points/features, requires less run time and exhibits high ro-

bustness for image registration when compared to the region-based method. Fur-

thermore, the feature-based registration methods have demonstrated the capa-

bility for handling non-linear deformations and complex image transformations.

This capability is particularly important when dealing with images that undergo

significant changes arising from factors such as significant variation in the view-

ing angle of the sensor and perspective distortion that might be encountered for

oblique imagery. A limitation of the feature-based method is that it requires a

sufficient number of repeatable features extracted from both images.

In Chapter 6, the feature-based method will be employed to determine the re-

lationship between target and reference images. This method is chosen because

the training datasets that will be used in Chapter 6 contain a significant number

of images captured from varying viewing angles, some of which require complex

image transformations.

2.5.2 Concept of Homography

Homography is a mathematical concept that represents a transformation param-

eter that finds and maps points in one image to corresponding points in another

image, given that both images are of the same planar surface (Hussnain, 2020;

Tzanidou et al., 2015). Estimating a 2D homography from a pair of images is

one of the fundamental principles of computer vision (Fristedt, 2017). In pho-

togrammetry and computer vision, homography estimation is a technique used

to establish this mathematical relationship between the two images of the same

scene but taken from different viewpoints. The homography can be calculated

by finding a set of corresponding points between two images and then fitting a

mathematical model to these points. These corresponding points’ accuracy di-

rectly influences the homography estimation’s accuracy (Zeng et al., 2019). The
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general approach for estimating the homography using the feature-based method

that has been chosen for this thesis can be described in two main steps: corre-

spondence detection and homography estimation.

2.5.2.1 Point Correspondence Detection

The first step in estimating the homography is to identify correspondences. Cor-

respondence detection involves finding identical tie points/keypoints between

the target and reference images. In recent years, the widespread adoption of

varying image-capturing devices has spurred an increase in the use of different

feature detection algorithms (Salahat and Qasaimeh, 2017). This has necessi-

tated the development of automated algorithms for robust correspondence de-

termination called feature detectors. Some of the most widely used feature de-

tectors are Scale-Invariant Feature Transform (SIFT), Speeded Up Robust Fea-

tures (SURF), Oriented FAST and rotated BRIEF (ORB) and Accelerated-KAZE

(AKANZE) (Bouchiha and Besbes, 2015; Ye et al., 2020). Though several fea-

ture detectors exist, according to Salahat and Qasaimeh (2017), there is no ideal

detector for all applications. This is due to the diversity of computer vision ap-

plications and the varying sensors and image conditions, making it impossible to

have one ideal detector.

In general, point correspondences are first described by encoding their local or

global features, which allows them to be uniquely identified across images. Next,

a matcher is applied, which aims to remove outliers in the key points detected.

Removing outliers is important because the initial points detected may contain

incorrect matches. Algorithms like Random Sample Consensus (RANSAC) can

subsequently be applied to reduce the matching error where points are incor-

rectly paired (Wang et al., 2018). For illustrative purposes, Figure 2.12 and 2.13

shows the initial point correspondences and the true point correspondences af-

ter the application of the RANSAC algorithm, respectively, for an image taken

from a drone. The initial point correspondence, as illustrated in Figure 2.12, typ-
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ically includes a lot of matching errors, which tends to affect the estimation of

the homography matrix.

Figure 2.12: An illustration of the initial points correspondence detected between
the target and the reference image. This initial result contains a lot of mismatches
that affect the accuracy of the estimated homography matrix.

These errors present can then be filtered to produce the true correspondence as

seen in Figure 2.13.

Figure 2.13: A demonstration of the true point correspondences, where the bad
matches have been removed through a filtering algorithm. This improves the
estimation of the homography matrix that will accurately describe the true rela-
tionship between the target and the reference image.
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2.5.3 Homography Estimation

After identifying a set of true correspondences, the homography parameters are

computed using algorithms such as the Direct Linear Transform (DLT) method

(Fristedt, 2017). The selection of the optimal method will contribute to the ac-

curacy and reliability of the resulting homography estimation. Therefore, the

successful computation of the homography parameters can be used to register

the target image accurately to conform to the reference image.

2.5.4 Machine Learning

The ML techniques examined in this study include K-Nearest Neighbours (KNN)

in Section 2.5.5, Random Forest (RF) in Section 2.5.6 and Support Vector Machine

(SVM) in Section 2.5.7

2.5.5 ML Method 1: K-Nearest Neighbours

The K-Nearest Neighbours (KNN) algorithm is a supervised machine learning

algorithm that can be used to solve both classification and regression problems

(Sathishkumar and Cho, 2020). In this study, the ML task of estimating the ho-

mography parameters is considered a regression problem. The KNN operates on

the assumption that similar things exist in close proximity (Boateng et al., 2020),

and this similarity plays an important role. The KNN algorithm makes predic-

tions by finding the closest matches to a new data point within its training data.

The labels of these nearest neighbors are then used to predict the label of the new

data point (Srivastava, 2020). In this approach, the entire training data is stored

and when a prediction is required, the k-most similar records from the training

dataset are located. Then, based on these neighbours, a prediction is made.

This approach is often regarded as a form of ”lazy learning” since no computa-

tion is performed until a prediction is requested. To effectively employ the KNN

algorithm, an appropriate value for ’k’ must be determined. The accuracy of the

predictions significantly depends on this selection (Meersman et al., 2003). The
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’k’ value plays an important role in defining the number of neighbours consid-

ered during the prediction process. The optimal ’k’ value can be determined by

running the algorithm multiple times with varying ’k’ values to identify the con-

figuration that produces the most accurate predictions. The choice of ’k’ can be

influenced by the characteristics of the training data. For instance, if the train-

ing data contains outliers in Pitch and Roll, a higher ’k’ value might be beneficial.

Conversely, if the training data exhibits a high correlation, a lower ’k’ value would

be more suitable (Meersman et al., 2003). Figure 2.14 provides an illustration of

an example of how the KNN algorithm works.

Figure 2.14: Example illustration of KNN where three different ’K’ values have
been explored. In predicting a new data point, the similar neighbours close to
the new data point are used to make predictions.

2.5.6 ML Method 2: Random Forest

Random Forest (RF) is also a supervised machine learning technique that can be

used for both classification and regression problems. It operates on the principles

of ensemble learning, which involves combining multiple classifiers to improve

the predictive accuracy that can be used to address complex problems in remote
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sensing (O’Hara, 2019) such as classification mapping of coastal dune habitats

(Cruz et al., 2023b), estimating chl-a concentration (Kupssinskü et al., 2020), and

land cover classification (Magee, 2023).

The RF algorithm contains several decision trees, each trained on a distinct subset

of the original dataset (Ahmed et al., 2019). Rather than relying on a single de-

cision tree output, RF aggregates results from each tree and ultimately generates

the final output based on a majority vote from individual predictions (Magee,

2023). Generally, the greater number of trees in the forest leads to higher accu-

racy and prevents the problem of overfitting, which ensures the model can be

applied in other scenarios and environments (Magee, 2023).

The RF algorithm operates by randomly sampling the training data. Thus, it

creates multiple datasets by sampling with replacements from the original train-

ing dataset. Each of these individual datasets is commonly known as ”bootstrap

samples.” A random subset of features is considered for splitting at each node

within each decision tree. Following this, the algorithm builds a decision tree for

each bootstrap sample, obtaining predictions from each tree. Voting is then per-

formed to aggregate predicted results, and the most frequently voted prediction

is selected as the final output (Ahmed et al., 2019).

Given that RF combines multiple trees, variations in the individual decision tree

predictions are expected. However, the collective predictions from all trees con-

tribute to the correct output. To optimize the performance of the algorithm, two

key principles should be considered: first, the inclusion of actual values in the

feature variable facilitates accurate predictions, and second, predictions from

each tree should have low correlations.

As highlighted by Pont (2021), important reasons for using RF include less train-

ing time as compared to other algorithms, high prediction accuracy even for large
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datasets and the ability to maintain accuracy even when a significant portion of

data is missing. Figure 2.15 illustrates how the RF algorithm works.

Figure 2.15: Example illustration of RF where decision trees are used to predict a
new data point. In predicting, a decision from each tree is averaged to make the
final prediction.

2.5.7 ML Method 3: Support Vector Machine

A Support Vector Machine (SVM) is a supervised ML algorithm, which similar

to RF, can also be used for both classification and regression tasks. Its primary

aim is to establish an optimal decision boundary, referred to as a hyperplane,

capable of segregating an n-dimensional space into distinct classes (Kotsiantis,

2007). The hyperplane is a mathematical concept that can be visualized as a line

or plane in a high-dimensional space. This facilitates the accurate categorization

of new data points in the future. Hyperplanes as shown in Figure 2.16 function

as classification guides, that help to delineate data points into distinct categories

based on their position relative to the hyperplane. Further, the dimension of the

hyperplane depends upon the number of features, thus the number of features

in the dataset directly influences the dimensionality of the hyperplane (Corrigan,

2018).
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SVMs are broadly categorized into simple or linear SVMs and kernel or non-

linear SVMs (Corrigan, 2018). A linear SVM determines the optimal hyperplane

directly within the original feature space in scenarios where the data is linearly

separable. Conversely, when dealing with non-linearly separable data, a kernel

SVM employs kernel functions to transform the data into a higher-dimensional

space, thereby enabling the identification of a suitable hyperplane.

The SVMs work by finding a hyperplane that maximizes the separation between

data points of different classes in the high-dimensional space (Boateng et al.,

2020). The data points that are found close to the hyperplane are called the sup-

port vectors. These support vectors are considered the most important points in

the data set because they directly define the positioning of the hyperplane.

SVMs are a powerful and versatile machine learning algorithm with several ad-

vantages. As explained by Magee (2023) for satellite data classification, SVMs are

particularly effective when applied to high-dimensional data. Further, they can

effectively separate non-linearly separable data points, making them applicable

to problems that other algorithms may struggle to address. Additionally, SVMs

exhibit robustness to noise, ensuring optimal performance even when the data

is not cleaned properly. Lastly, their scalability allows them to handle problems

involving many data points. Figure 2.16 shows how SVM algorithm works.
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Figure 2.16: Example illustration of SVM where a hyperplane separates data
points into different classes. The data points close to the hyperplane, called the
support vectors, are used to make predictions.

2.6 Conclusion

The increasing adoption of low-cost drones presents opportunities for research

institutions, NGOs, local communities, and volunteer groups to engage in envi-

ronmental monitoring. However, its application for mapping water bodies re-

mains largely unexplored. This can be attributed to the fact that the traditional

BA method fails to determine the EOPs.

On the other hand, the DG method, as explained in section 2.2.2, allows for direct

determination of the EOPs using the GNSS and IMU. However, one of the main

drawbacks of this method, as shown in Table 2.1, is its low accuracy when us-

ing low-cost drones, especially in featureless terrain. Additionally, as explained

in section 2.3.2, the GNSS and IMU were identified to have an influence on the
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accuracy of reconstructed 2D image. This closer examination helped to propose

a solution that will be explored in Chapter 3. This chapter further examined the

two common sensor mounting methods for drones. Through this literature re-

view, it was found that sensors not mounted on self-levelling gimbals are much

more susceptible to platform instability, potentially affecting the accuracy of the

reconstructed 2D image.

This chapter also examined the ISO method in great detail and identified areas

requiring further investigation. Specifically, it explored whether the ISO method

can be used or adapted to map water bodies, and this will be explored in the fol-

lowing chapters. Finally, the literature review explored image registration tech-

niques and ML algorithms in relation to achieving the fourth objective which will

be explored in Chapter 6.
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Chapter 3

Theoretical Analysis of the

Positional Orientation (POSE) Errors

The first objective of this thesis is to benchmark and test the accuracy of recon-

structed 2D images of water bodies generated using the DG method. This chap-

ter focuses on investigating the effects of navigational sensor errors on the DG

method and how they contribute to the final accuracy of the reconstructed 2D

image. This follows from the findings from the literature review that there has

been no research to quantify the accuracy of the reconstructed 2D image under

certain navigational errors using a low-cost drone. This chapter performs a theo-

retical assessment using standard collinearity equations and develops a series of

simulations to further assess the contribution of both systematic and random er-

rors. The theoretical findings from this chapter will be further validated in Chap-

ter 4 by using real-world drone imagery and will act as the benchmark dataset

for many subsequent tests throughout this thesis.

The motivation for this chapter is introduced in Section 3.1, and the important

assumptions for the theoretical analysis are presented in Section 3.2. The design

and development of the simulator for the theoretical analysis are presented in

Section 3.3. The results of the theoretical analysis are detailed in Section 3.4, and

the discussion is presented in Section 3.5.
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3.1 Introduction

As explained in Chapter 2, the DG method is based on the combination of GNSS

for positioning and IMU for angular measurement. These two devices make it

possible to estimate the EOPs. However, the accuracy and reliability of the DG

method are limited or constrained by the accuracy of the IMU and GNSS on-

board the drone (Khaghani and Skaloud, 2016). Generally, errors during DG can

be categorized as errors of the intrinsic or IOPs and errors of the extrinsic or EOPs

(Yuan and Zhang, 2008). Errors in IOPs refer to systematic errors within the sen-

sor systems, while errors in EOPs encompass both random and systematic errors

related to the external factors affecting the measurements.

One of the main aims of this chapter is to determine the effects of these errors

in the measurement of position or orientation from the navigational sensors and

quantify their impact on the accuracy of a reconstructed 2D image. In this chap-

ter, the errors that will be considered are GNSS/IMU errors and sensor rotation

angles. The sensor rotation angles themselves are not errors, but the error lies

in the perturbation or deviation of these measured values from the ideal nadir

orientation of the sensor. Thus, these measured angles also contribute to errors

in a reconstructed 2D image when the sensor’s orientation is not nadir/vertical.

This is the first study to carry out a theoretical analysis of errors in IMU/GNSS

measurements and sensor rotation angles for low-cost drones, which will enable

a comprehensive understanding of their sources, characteristics, and propagation

mechanisms. By modelling and understanding these errors, methods can then be

developed in subsequent chapters that will help to improve the accuracy of the

reconstructed 2D image through the identification of error patterns and the de-

velopment of compensation techniques to mitigate the impact of GNSS and IMU

errors on drone datasets. The mathematical principle behind each of these er-

rors can be best understood and quantified in an initial study through theoretical

analysis. An error simulation for a low-cost drone using the DG method will be
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presented in this chapter and used as the benchmark for all subsequent analyses.

3.2 Important Assumptions Around the Error Bud-

get

To understand and quantify potential errors throughout the image reconstruc-

tion process, an error budget was required. This budget quantifies the potential

errors and is important for the theoretical analysis. However, developing an error

budget for the theoretical analysis demands an understanding of the underlying

assumptions required to meet this objective. Therefore, this section explains the

fundamental assumptions underpinning the theoretical analysis.

3.2.1 GNSS and IMU Errors

As detailed in Section 2.3.3. the GNSS receiver aboard the drone measures the 3D

location of the sensor when any images are captured. Therefore, any positional

errors in the GNSS receiver will translate into errors in the sensor centre coor-

dinates. According to Nowakowski et al. (2023), GNSS accuracy is influenced

by factors such as signal quality, atmospheric conditions, interference, and satel-

lite geometry. However, in this thesis, we first make an assumption that many

of these inflences are too variable for reliable prediction and that a theoretical

assessment can be developed by using the manufacturer’s specified accuracies.

While it is possible to use software or theoretically model many sources of error

(Suo et al., 2020), doing so comprehensively for all possible environmental and

atmospheric scenarios is impractical. The manufacturer’s specified accuracy typ-

ically propose that in common or ideal conditions, the GNSS device should be

able to determine your location within a specified tolerance. The manufacturer’s

accuracy rating is also predicated on the assumption of having a clear line of

sight to multiple GNSS satellites and minimal interference from obstacles (Par-

rot, 2017).
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Section 2.3.2 also explained that the IMU typically consist of gyroscopes and ac-

celerometers, and these devices influence the accuracy of the attitude measure-

ments. According to Jen et al. (2023), the accuracy of the IMU can be influenced

by factors such as constant bias, bias instability, temperature effects and calibra-

tion errors. However, in this thesis, we once again assume that the specified man-

ufacturer’s accuracy is suitable for developing this theoretical assessment. This

assumption means that under standard conditions, the IMU should be capable

of measuring angular changes within the specified tolerance. All other random

factors that might affect the accuracy of that measurement are not considered.

3.2.2 Sensor Rotational Angles Influence

The drone’s IMU measures the sensor’s orientation in three axes: X, Y, and Z, cor-

responding to the Roll, Pitch, and Yaw angles, respectively. According to Wolf

et al. (2014), tilting the sensor away from the ideal vertical (nadir) position intro-

duces tilt distortion in the image. This distortion affects the positional accuracy

of points in the reconstructed 2D image. Consequently, larger sensor tilts lead

to more pronounced tilt effects. In this thesis, the ”sensor rotational angles influ-

ence” is specifically referred to as the deviation from the nadir position measured

by the IMU. Figure 3.1 illustrate the sensor rotational angles.
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Figure 3.1: Illustration of the sensor rotational angles: the left image shows the
ideal sensor position, pointing directly at the ground, the middle image demon-
strates a tilted sensor due to drone Rolling and the right image shows a sensor
tilted away from the nadir due to drone Pitching.

3.3 Design and Development of the Simulator

3.3.1 Calculations based on the Collinearity Equations

One of the focuses of the first objective of this thesis is to theoretically determine

the relationship between measurement errors in the navigational plane and the

resulting accuracy in a reconstructed 2D image. A theoretical analysis was car-

ried out to simulate the influence of each of the error types detailed in Section

3.2 using the standard collinearity equations. These equations are fundamental

in photogrammetry as they form the basis of projecting a point from the world

coordinate onto the image coordinate (Förstner and Wrobel, 2016b). These equa-

tions assume a condition where the exposure station of a photograph, an object

point, and its photo image all lie along a straight line (Wolf et al., 2014). The

collinearity equations were chosen as the basis for this simulation because the

theoretical accuracy of DG based on collinearity equations is often better than

space intersection (Yuan and Zhang, 2008) because, in space intersection, the lo-

cation of an object in space is calculated by intersecting two rays from the sensor.
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Therefore, any errors in the image points and exterior orientation elements will

directly affect the projection coefficients of the points and, therefore, the final lo-

cation of the object.

Therefore, the mathematics underpinning the collinearity equations can be rep-

resented in the Equation (3.1) and (3.2) as explained in Wolf et al. (2014). The

xa and ya are defined as the photo coordinates for image point a. Thus in order

to simulate any point A, the XA, Y A and ZA which are defined as the object space

coordinates of point A, and XL, Y L and ZL which are defined as object space co-

ordinates of the exposure station, the m11, m12, m13, m21, m22, m23, m31, m32,

m33 which are defined as the functions of the three rotation angles, f as the focal

length and xo, yo as the coordinate of the principal point and must be combined

and expressed as Equation (3.1) and (3.2).

xa = xo − f
[
m11(XA −XL) +m12(YA −YL) +m13(ZA −ZL)
m31(XA −XL) +m32(YA −YL) +m33(ZA −ZL)

]
(3.1)

ya = yo − f
[
m21(XA −XL) +m22(YA −YL) +m23(ZA −ZL)
m31(XA −XL) +m32(YA −YL) +m33(ZA −ZL)

]
(3.2)

3.3.2 Parameters for the Simulation

The simulation incorporates the parameters that best approximate a low-cost

drone, such as the Parrot Bluegrass drone from Section 1.2. For example - the

focal length and the GNSS/IMU tolerances were sourced directly from the Parrot

Sequoia sensor specifications. This choice was deliberate, as the first objective

of this thesis was to replicate any low-cost drone and the Parrot Bluegrass was

selected because it met all the specific criteria outlined in Section 1.4.2. Further,

in the context of the simulation, the parameters for the exposure station (the po-

sition and orientation of the sensor) coordinate and the object coordinate (the

location of the object in space) were all arbitrary values. The term ”arbitrary” im-

plies that these coordinates were chosen without specific real-world data. They

are hypothetical values that were used for the simulation. It was also assumed
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that the aircraft was flying in the X direction. This means that the drone was

moving forward on the horizontal axis, and the simulation was based on a single

direction. This parameter was used because a change in the aircraft’s direction

will not affect the result. In this simulation, the theoretical analysis was carried

out solely on the tilt angles, i.e. Pitch and Roll angles. This is because the Yaw

angle represents the change in the aircraft’s direction and does not influence the

tilt angles. Table 3.1 gives a detailed description of each of the parameters used.

Table 3.1: Detail Description of the Parameters for the Theoretical Simulation.

Parameters Test 1:
Sensor Rota-
tion Angle

Test 2:
GNSS and
Sensor Rota-
tion Angle

Test 3:
IMU and
Sensor Rota-
tion Angle

Test 4:
Combined
Effects of
GNSS/IMU
Error and
Sensor Rota-
tion Angle

Focal
Length

3.98mm 3.98mm 3.98mm 3.98mm

Flying
Height

120m 120m 120m 120m

Exposure
Station
Coordinate
(XL, YL,ZL)

XL= 110m
YL = 100m
ZL = 0m

XL= 110m
YL = 100m
ZL = 0m

XL= 110m
YL = 100m
ZL = 0m

XL= 110m
YL = 100m
ZL = 0m

Object Co-
ordinate
(XA,YA,ZA)

XA = 100m
YA = 110m
ZA = 120m

XA = 100m
YA = 110m
ZA = 120m

XA = 100m
YA = 110m
ZA = 120m

XA = 100m
YA = 110m
ZA = 120m

GNSS and
IMU Error

GNSS and
IMU with
infinite accu-
racy

GNSS XYZ
error = ±
1.5m
IMU with
infinite accu-
racy

GNSS with
infinite accu-
racy
IMU error of
0.5o for Roll
and Pitch

GNSS XYZ
error = ±
1.5m
IMU error of
0.5o for Roll
and Pitch

3.3.3 Implementation of the Simulation in Python

The simulator was developed in the Python programming language. The Python

script was developed incorporating libraries such as OpenCV (Bradski, 2000),

Cameratransform (Gerum et al., 2019), NumPy (Harris et al., 2020) and Mat-

plotlib (Hunter, 2007). The simulator consisted of two main components: (1) a
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module for computing the X and Y coordinates of a point via collinearity equa-

tions, and (2) a module for projecting a planar image based on the parameters

specified in Section 3.3.2.

The first module of the simulator was developed using the NumPy. NumPy is

a fundamental library for numerical computing in Python (Harris et al., 2020).

This package provided the necessary mathematical tools for the first component

of the simulator. The NumPy library was used to implement the necessary math-

ematical operations to generate the collinearity equations. This involved con-

structing matrices to represent the equations, specifying coefficients and con-

stants, and then applying appropriate NumPy functions to obtain the solution.

The second module of the simulator was developed using OpenCV. The OpenCV

package played an important role in the simulation. OpenCV provides essential

functions for image processing, manipulation, and analysis. In the context of the

simulator, OpenCV facilitated the handling and transformation of images.

Cameratransform library used to project points from sensor space to the object

space. This library offered the tools to define the optical sensor parameters, de-

fine the EOPs, and simulate the effects of different sensor orientations. By uti-

lizing Cameratransform, the simulator could accurately project planar images

based on the specified input parameters in Section 3.3.2.

Matplotlib was the final library used - it is a popular data visualization library.

In developing the simulator, Matplolib was instrumental in creating graphical

representations of the simulation results. It was utilized to visualize the attitude

effects of the projected planar image in the X and Y directions as seen in Figure

3.3. It provided valuable insights into how any changes in orientation impacted

the final projected images.
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3.4 Results of the Theoretical Analysis

Having explained the assumptions and the theoretical and technical develop-

ment of the simulator in the previous sections, this section will present the sim-

ulation results. This assessment was for the four tests in Table 3.1 and explored

errors that may accrue from the (1) Sensor rotation angle, (2) a combination of

GNSS and sensor rotation angle, (3) a combination of IMU and sensor rotation

angle and (4) a combination of GNSS/IMU and sensor rotation angle.

3.4.1 Test 1: Influence of sensor Rotation Angles on Reconstructed

2D Image

The first test theoretically assessed the effects of sensor rotational angle on a ter-

rain point. As mentioned in Chapter 2, the drone IMU records the angular mea-

surement in the three axes. Hence, it is essential to understand the influence the

angular measurement will have on the accuracy of the final reconstructed 2D im-

age. To determine and compute the sensor rotation influence, the simulator used

the collinearity equations in Equations (3.1) and (3.2) to model the errors. This

was done by computing the projected points in X and Y from the sensor rotation

angles, and compared them to a point projected from the nadir position. There

was no calculation of errors in the Z direction because the synthetic data was

generated from a planar surface, and therefore there were no associated errors.

For the initial development of this simulation, it was assumed that GNSS and

IMU have infinite accuracy- thus, they measure the true position and orientation

without any error. In this case, the GNSS and IMU did not influence the overall

accuracy. The first test only modelled the influence of sensor rotation angles on

the projected points and from Figure 3.2, the effect of these rotation errors can be

seen. The simulation suggested that for every one-degree change in Pitch/Roll a

shift of 2.11m in the XY position of a projected point can be expected for a fly-

ing height of 120m. Calculations have been carried out for a range of values and

these results can be found in Appendix Appendix A, where the sensor rotation
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angles ranging from 1 o to 8 o have been calculated. The first test demonstrated

that as the sensor rotation angle increases, the accuracy in the ground coordinate

system decreases for a DG approach.

Figure 3.2: A theoretical accuracy assessment for the sensor rotational angle in-
fluence on a projected point for a drone flight at 120m - assuming a low-cost
drone similar to the Parrot Bluegrass. The x-axis shows the degree changes in
either Pitch or Roll, and the y-axis shows the mean absolute errors in meters

3.4.2 Image Skewing due to Sensor Rotation Angles

In addition, looking at the simulated test in Figure 3.3, further analysis can be

drawn on the effect of sensor angles on the image footprint. For the purpose of

better visualization of this effect, a more severe angle of 10 o was used. Figure

3.3a illustrates the footprint if the sensor was perfectly vertical during the image

acquisition. This results shows that there are no tilt effects on images captured at

nadir. Conversely, Figure 3.3b illustrates a situation where the sensor is Pitched

(nose down) at 10 o while the Roll and Yaw are 0 o . The results from this illustra-

tion show that a rotation in the Pitch has a very small effect along the X-axis but

much effect along the Y axis where the projected image transforms to a trapezoid-
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like shape. Figure 3.3c illustrates a situation where the drone is Rolled (tilt in the

wings) at 10 o while the Pitch and Yaw are 0 o . This result shows a minimal im-

age displacement effect along the Y-axis but a more pronounced effect along the

X-axis.

Overall, this simulation helps justify the conclusion that the orientation of the

sensor will impact the positional accuracy of any point in a DG approach, in both

the X and Y coordinates. The degree of the error will depend on how much the

drone is Rolled or Pitched. Further, the findings give insights into the nuances of

how different orientations impact the footprint of images over flat surfaces such

as water bodies.
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(a) No orientation effect (b) Effect of Pitch

(c) Effect of Roll (d) Effect of both Pitch and Roll

Figure 3.3: An illustration of the orientation effects in the X and Y coordinates.
Image (a) shows an image captured at nadir and, as a result, no orientation effect,
(b) an image captured with angular measurement from Pitch while Roll and Yaw
remain constant, (c) an image captured with angular measurement from Roll
while Pitch and Yaw remain constant, and (d) an image captured with angular
measurement from Pitch and Roll while Yaw remain constant
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3.4.3 Test 2: Introducing GNSS Error along with Sensor Rota-

tion Angle Influence

Errors in the measurement of the 3D position of the GNSS receiver also influ-

ence the errors on the ground coordinate. In this second simulation, it was now

assumed that the ground coordinates were derived from a drone equipped with

a GNSS receiver, which contains a constant error defined by the manufacturer

tolerance. The IMU error influence was excluded from these tests, hence it was

assumed it had an infinite accuracy. The simulation combined the GNSS error

and the influence of the sensor rotation angle for a drone flight at 120m assum-

ing a low-cost drone similar to the Parrot Bluegrass.

The findings obtained from Figure 3.4 highighted an important result in the re-

lationship between the sensor rotation angle and GNSS accuracy, particularly

regarding their impact on accuracy. It was observed that a one-degree change in

Pitch or Roll when combined with a GNSS manufacturers accuracy tolerance of

1.5m resulted in a 3.61m shift in the XY position for the projected point for a

drone flying at a height of 120m. This implies that when the effects of orienta-

tion errors and GNSS accuracy are combined, the positional accuracy of a point is

further reduced and highlights how a low-cost GNSS will impact the planimetric

accuracy of the DG method. Table 1 and 2 in Appendix Appendix A detail the

changes in Pitch and Roll angles combined with GNSS accuracy and the corre-

sponding errors.
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Figure 3.4: A theoretical accuracy assessment for the influence of rotational an-
gles and GNSS error on a terrain point for a drone flight at 120m assuming a low-
cost drone similar to the Parrot Bluegrass. The x-axis shows the degree changes
in Pitch or Roll and the y-axis shows the mean absolute errors in meters with a
constant 1.5m GNSS position error in XYZ. The intial tests showing the sensor
orientation-only errors are in blue and the combined GNSS/sensor orientation
error are in grey.

3.4.4 Test 3: Introducing IMU Error along with Sensor Rotation

Angle Influence

This third simulation combines the IMU error and the sensor rotation influence.

In this simulation, it is now assumed that the GNSS has an infinite accuracy and

is excluded from the tests. This way, the results were not corrupted by any error

influences other than those that were introduced using the IMU manufacturer’s

tolerances when combined with the sensor orientation error. From the result

in Figure 3.5, it can be seen that the IMU accuracy of 0.5 o in Pitch/Roll will

translate to an error of 1.4m in X and Y in the ground coordinate for a drone

flying at a height of 120m. For example, a one-degree change in orientation will

lead to an error of 3.51m in the planimetric. These results highlight the crucial

role IMU plays in measuring the angular rotations of the sensor’s position. As
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a result, any errors in these IMU measurements directly affect the accuracy of

the rotational angles in the exterior orientation. It also highlights that the GNSS

is potentially the larger contributor to these errors among the two navigation

sensors.

Figure 3.5: A theoretical accuracy assessment for all three previous tests for a
drone flight at 120m assuming a low-cost drone similar to the Parrot Bluegrass -
the influence of (i) orientation, (ii) orientation+GNSS 1.5m error and (iii) orien-
tation+IMU 0.5 o error on a ground projected point. The x-axis shows the degree
changes in Pitch or Roll and the y-axis shows the mean absolute errors in meters

3.4.5 Test 4: Theoretical Simulation of Combined Effects of Sen-

sor Rotational Angle Influence and GNSS/IMU Error

The final theoretical simulation combines all the contributory error sources (GNSS,

IMU and Sensor Rotational Angle). In this simulation, the orientation influence,

the IMU and GNSS errors are evaluated together to ascertain how they influence

the projected terrain point.

The simulation results in Figure 3.6 summarises the combined results of these

tests, where a one-degree change in Pitch or Roll, when combined with expected
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errors of 1.5m (manufacturer tolerance for GNSS accuracy) and a 0.5 o IMU ac-

curacy (manufacturer tolerance), results in a potential error of 5m in the coordi-

nates of a ground projected point for a drone flight at 120m assuming a low-cost

drone similar to the Parrot Bluegrass. Clearly, these results demonstrate that er-

rors originating from sensor rotation or angular elements are potentially more

significant than errors arising from the IMU or GNSS. Summarising the results,

a 1o change in the Pitch/Roll will result in a 2.11m shift for the point on the

ground. In addition, the navigational errors, represented by the GNSS and IMU

inaccuracies, contribute an additional error (or shift) of 2.9m to the ground point.

This means that by default, using a low-cost drone will directly impact the accu-

racy for a DG approach. Detailed calculations combining the GNSS/IMU error

and sensor rotation angles ranging from 1o to 8o can be found in Table 1 and 2 in

Appendix A.

Figure 3.6: A stacked bar graph showing the the reelvant contributions of errors
for GNSS, IMU and rotational angle influence in Pitch/Roll. The higher the rota-
tional angle encountered (i.e. how much the drone pitches or rolls), the greater
the error in meters for the projected ground point.
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3.5 Discussion

Previous studies have shown that the positional accuracy of an object projected

through DG is correlated with factors such as orientation, IMU and GNSS errors

(Dreier et al., 2021; Heipke et al., 2002; Grejner-Brzezinska, 2001). In this study,

the findings from the theoretical analysis have given the first insights into the in-

fluence that orientation, IMU, and GNSS errors have on the accuracy of the final

image. This has also highlighted the disproportionate influence that the sensor

rotation angles in Pitch and Roll has on subsequent image reconstruction. This

influences the accuracy of a reconstructed 2D image and highlights the need for

this study and the overall thesis, where low-cost drones do not have a reliable

IMU. This confirms, reinforces and advances the work on traditional aerial plat-

forms by Cramer et al. (2000), which highlighted the angular elements as the

critical factor in a DG approach.

This investigation indicates that the angular elements, specifically orientation in

Pitch and Roll, will also be crucial factors for consideration for mapping over

water using DG. This means that any factors that will directly affect the angu-

lar measurement need to be minimised or compensated for by a drone operator.

For example, high wind speed and high flight speed have all been found to con-

tribute to high angular measurement. In Otsuka et al. (2018), it was also sug-

gested that higher flight speed can increase the Pitch angle of multi-rotor drones.

Strong winds can affect the drone’s speed and flight path. Thus, flying upwind

and downwind increases or decreases the flight speed, which affects the angular

measurement. Downwind can be defined as the wind that blows in the direction

of the drone and increases the speed of a rotary drone, while an upwind is the

wind that blows against the direction of the drone and reduces the drone’s speed

(Soares, 2013).

Furthermore, this study has also highlighted how the accuracy of any image

reconstruction relies on accurate estimation of sensor orientation (Pepe et al.,
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2019). Another factor that impacts the positional accuracy is the accuracy of the

GNSS/IMU. According to Stam (2010), errors due to GNSS/IMU accuracy will

cause errors in accuracy of the same magnitude. Meanwhile, errors due to an-

gular measurements will cause errors in accuracy of several meters per degree.

This observation becomes particularly apparent in the aforementioned results,

emphasizing the significant impact of sensor rotation influence on the accuracy

of a projected point.

3.6 Conclusion

In this chapter, the error sources that limit the accuracy of a reconstructed 2D

image have been introduced and discussed, namely GNSS and IMU errors and

sensor rotation angle influence. Each of these factors were quantified and anal-

ysed using the standard photogrammetric collinearity equations and a series of

simulated tests. There are limitations to this approach, for example the sim-

ulation was predicated on important assumptions that defined the GNSS/IMU

accuracy using the specified manufacturer’s accuracy and did not account for all

other factors that might affect the accuracy. However, the results are an impor-

tant initial step in this investigation and show real value, as it was found that a

one-degree change in Pitch or Roll, when combined with a 1.5m GNSS error and

a 0.5 o IMU error, results in an error of 5m in the planimetric coordinates. More-

over, these initial results revealed that the sensor rotation influence significantly

contributed to the accuracy of the reconstructed 2D image compared to the GNSS

and IMU errors. Overall, the theoretical error budget obtained by approximating

a low-cost drone has highlighted the limitations of such systems when using the

DG approach.

This chapter has shown the importance of correcting for sensor rotation angle

and the significant contribution to the errors in a reconstructed 2D image. In

the next chapter, the results from the simulated tests will be exploited to correct

for specific errors resulting from the sensor rotation angle and navigation sensor
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errors. This method will then be validated using real-world data.

In summary, this chapter provided the following contributions:

1. Provided insight into the contribution of sensor orientation to the accuracy

of a reconstructed 2D image.

2. Quantified the contribution of navigational errors from low-cost drones on

a reconstructed 2D image.

3. Provided an error budget through simulation for a low-cost drone.
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Chapter 4

Developing an Analytical

Rectification Method for Featureless

Terrain - ARMFET

The second objective of this thesis is to analyse the associated errors in the im-

ages derived using the DG method and propose an analytical photogrammetric

method to improve them. This phase of the research is a natural progression

enabled by the simulated tests presented in the previous chapter and is essen-

tial to further our understanding by identifying and quantifying any errors as-

sociated with the traditional DG approach. By robustly assessing this process,

novel photogrammetric methods can be developed to effectively improve the ac-

curacy of reconstructed 2D images. This chapter will explore the performance

and suitability of low-cost drones for DG in greater detail. Subsequently, the first,

novel method developed in this thesis called Analytical Rectification Method for

FEatureless Terrain - ’ARMFET’ will be introduced in Section 4.6.4.
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4.1 Introduction

As explained in the previous chapters, when mapping water bodies through the

standard photogrammetric method, the main challenge is the almost complete

absence of ground features that can act as tie points for image reconstruction.

The identification of these ground features is a critical limitation as they serve as

reference points, enabling 2D image reconstruction.

In trying to solve this problem, photogrammetrists generally must rely on the

DG approach to derive the EOPs required to reconstruct drone images of wa-

ter bodies (Knaeps et al., 2019; Román et al., 2023; Windle and Silsbe, 2021; Lo

et al., 2023; Ip et al., 2007). These studies suggested that traditional DG is the

only practical solution for reconstructing images over water. This is in stark con-

trast to the terrestrial environment, where the BA method can be used to refine

the EOPs by using tie points identified in the overlapping drone images. Also,

in many instances, ground targets can be placed, which improve accuracy. This

is impractical for water surveys due to the difficulty of placing visible targets

on the water surface that remain static throughout the GNSS measurement cam-

paign and also during the flight. These therefore cannot be used by a low-cost

drone to improve the accuracy after the survey of a water body. Hence, a DG

approach for water bodies is possible for drones with highly accurate RTK GNSS

and IMU (Bláha et al., 2012; Ip et al., 2007). As a result, there is a clear gap

in the knowledge regarding the suitability and performance of low-cost drones

when mapping water bodies. There is also a clear gap regarding the techniques

that can be employed to optimise their performance for DG. This gap is partic-

ularly deserving of investigation given the growing popularity of these low-cost

systems.

Hence in this chapter, the aim is to explore and propose photogrammetric meth-

ods that can be used to correct errors and improve the accuracy of reconstructed

2D images when mapping over water using DG.
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In particular, the objectives of the part of the thesis are to:

1. Carry out a series of drone surveys and field campaigns to develop a cata-

logue of drone images suitable for further analysis.

2. Assess the accuracy of DG using low-cost drones to develop a second bench-

mark dataset for comparison with subsequent methods.

3. Develop an approach to improve rectification of drone images captured

with low-cost drones for DG.

4.2 Errors Associated with Direct Georeferencing

In the field of photogrammetry, before one can accurately measure distances, ar-

eas and positions in an aerial photograph, one requires knowledge of the errors

present in the image. According to Wolf et al. (2014) and Azim et al. (2019), im-

age rectification is essential for removing errors from reconstructed 2D images.

These errors are mainly caused by tilt, relief displacement and scale variation

(Wolf et al., 2014). In principle, an aerial photograph is not a plan, except (i)

where the terrain is perfectly flat, and (ii) the optical axis of the sensor is truly

vertical/nadir. However, a key assumption that enables the methodology in this

thesis is that when mapping over (relatively) flat terrain such as water, it is as-

sumed that there will not be any appreciable change in the elevation of the water

surface. However, it is still essential to correct for tilt and scale variation in tilted

photographs. As demonstrated in Section 3.4.2, tilted photographs when pro-

jected onto the ground plane transforms to a trapezoid-like shape which exhibits

tilts effects. This chapter will focus on three main types of problems/effects that

need to be corrected in a tilted photograph captured over a flat terrain, namely;

the (i) ground principal point offset, (ii) tilt displacement and (iii) scale varia-

tions. The subsequent sections in 4.2.1, 4.2.2 and 4.2.3 will explain in detail the

errors associated with DG.
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4.2.1 Error 1 - Ground Principal Point Offset

Despite the presence of an IMU, a sensor stabilising gimble, and other stabiliz-

ing equipment such as vibration isolation mounts or camera shock absorbers, in

practice, it is often impossible to ensure that the optical axis of a drone sensor

is truly vertical at the time of image capture (Förstner and Wrobel, 2016a; Wolf

et al., 2014). Images from low-cost drones generally do not have self-stabilizing

gimbals and are therefore most affected by tilt. In photogrammetry, different

types of images can be captured during a survey, namely; nadir/near-nadir, low

tilt, high tilt and oblique imagery. An agreed convention in the literature (Wolf

et al., 2014) is that when the sensor axis is truly vertical or there is a small un-

intentional tilt (< 1o), the image can be categorized as a nadir/near-nadir image.

For low tilt images, the tilt of the sensor axis can be defined as equal to or not

more than 3o. Images captured with the sensor axis unintentionally tilted more

than 3o can be considered as high tilt. Further, images that are captured with the

sensor axis intentionally inclined more than 5o can be classified as oblique im-

ages (Verykokou and Ioannidis, 2018). In image reconstruction, the procedures

suitable for rectifying nadir/near-nadir images can also be applied for low tilted

images without serious consequences, however, this cannot be extended to cover

high tilt or oblique images because, in such images, the errors resulting from the

tilt are pronounced.

Early work in this thesis identified a flaw in the very beginning of the DG ap-

proach for water bodies - high tilt of the sensor will result in a mismatch between

the Ground Principal Point (defined henceforth as GPP) and the GPS coordinates

of the drone. The principal point represents the central point of the image taken

by the sensor at nadir and the GPP refers to the location on the ground that

corresponds to the principal point of the sensor - these two should be identical.

However, in tilted images, the principal point is different, or ’shifted’ away from

the centre of the image. The amount and direction of this shift tilt is dependent

on the degree and the direction of the tilt. This is because, in that scenario, the
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sensor optical axis no longer points point directly down at the ground when the

sensor is tilted (either Roll or Pitch) but the GPS coordinates, on the other hand,

represent the position of the drone in the real world which has not moved. This

introduces a shift in the ground coordinate system due to changes in the perspec-

tive centre (principal point) of the sensor and GPS.

This mismatch is further illustrated in Figure 4.1. From the Figure, the image to

the left illustrates the ideal scenario where there is no tilt, i.e. perfectly nadir. As

a result, the Ground GPS point (GP) added during the geotagging process (each

image is “stamped” with this GPS point also referred to as being ”geotagged”)

and the GPP have the same XY coordinates. The image on the right in Figure 4.1

highlights one of the issues identified in this thesis - that there is a shift between

the GPP and GP when the sensor tilts. This shift is proportional to the angle

of tilt (either Roll or Pitch) of the drone and therefore, particularly prevalent in

high tilt images. In a traditional BA approach, this problem is resolved through

the iterative BA workflow described in Section 2.4.3. Similarly, in traditional DG

approach over a terrestrial environment, this can be resolved by applying GCPs.

However, both of these are impossible over water. Over flat terrain, this shift

can be potentially calculated through analytical photogrammetry. Hence, as the

second novel contribution of this thesis, a method is proposed to calculate and

correct for this shift.

96



Figure 4.1: Illustration of the principle of tilt angle. The image (left) shows an
image captured at nadir, where the XY coordinates of the Ground Principal Point
(GPP) match with those of the ground GPS (GP). The image (right) shows the
more common scenario where an image captured when the drone is tilted at an
angle introduces a mismatch between the Ground Principal Point and the ground
GPS.

4.2.2 Error 2 - Tilt Displacement

Tilt displacement is the change in an object’s image position on a tilted photo

from its theoretical position on a truly vertical photo (Wolf et al., 2014). The tilt

of the sensor leads to the apparent displacements of objects from their actual po-

sitions in the real world and links back to the XY shift issue illustrated in Section

3.4.1. The tilt displacement error is different from the ground principal point off-

set because the latter moves the entire image in a particular direction while the

former changes the position of an object in a tilted photo. This tilt is caused by

the rotation of the sensor away from the vertical (Kraus, 2007). The magnitude of

the error introduced by the tilt in the image depends upon the severity of the tilt

and is subsequently referred to as a tilt displacement error. The tilt displacement

also applies along both axes of the drone coordinate system.
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Figure 4.2 illustrates the tilt displacement error. In this scenario, the principal

point (P) refers to the geometric centre of the photograph where the X and Y axes

intersect. The isocenter (i) is the midpoint between the Nadir and the Principal

Point and Nadir is the point vertically beneath the sensor during image acquisi-

tion. In this illustration, point A can be considered as an arbitrary point captured

over a flat ground plane in the ground coordinate system. Point a is the projected

point of A in the image coordinate system when the sensor is at nadir, thereby

creating a vertical photo. Point a’ is the projected point A in the image coordi-

nate system when the sensor is tilted at an angle and results in generating a tilted

photo. Point a” is the location of the point on the ground plane that would cor-

respond to the point on the tilted photo (a’). The ground distance between point

A and the corresponding point from the tilted photo onto the ground plane a” is

tilt displacement error (dt).

The tilt displacement radiates from the isocenter of the photo and causes ob-

jects to be displaced radially towards the isocenter on the upper side of the tilted

photo and radially outward on the lower side (Förstner and Wrobel, 2016a). In

photogrammetry, if the amount and direction of tilt are known, then the photo

can be rectified to its vertical equivalent (Schofield and Breach, 2007). In this

chapter, an approach to calculate tilt displacement error via an analytical pho-

togrammetry method is developed in section 4.6.4.2. This process is important

and required for images that contain tilt.

98



Figure 4.2: An image representing the principle of tilt displacement error. The
image (left) shows an image taken when the drone is tilted at an angle which in-
troduces tilt displacement error (dt). The image (right) shows an image captured
at nadir, as a result, there is no tilt displacement error.

4.2.3 Error 3: Effects of Scale Variations

Scale variation is another error that could be present in an aerial photograph.

For vertical photographs over terrestrial areas, scale variation is caused by to-

pographic relief. Whereas, in a tilted photograph, this scale variation is exacer-

bated by the combined effects of topographic relief and tilt. A key assumption

underlying this thesis is that the study deals with imagery for a water body, rep-

resented as a uniform flat surface, and so the effects of topographic relief will

not be considered further in the development of this methodology. However, the

scale variation effect that needs to be considered is demonstrated in Figure 4.3.

In this example, an experiment was conducted where a grid of square cells was

overlaid on a vertical and tilted photographs on an area that best approximates a

flat terrain. In this scenario, it can be seen in 4.3b that due to the tilt, the distance

between C-D was less than the distance between A-B, yet both represent the same
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real-world distance on the ground.

(a) Image captured at nadir (b) Tilted photograph

Figure 4.3: An illustration explaining the scale variation effect due to tilt – where
distance ‘AB’ is longer than distance ‘CD’, yet they are the same distance on the
ground. However, for images captured at nadir, there is no scale variation effect.

4.3 Difficulties of Using GCPs in Improving Accu-

racy in Water Bodies

According to Wolf et al. (2014) and Behan (2004), the fundamental process of

correcting for the ground principal point, tilt displacement and scale variations

errors is performed through a process known as image rectification and this can

be done by the use of GCPs. These GCPs could either be visible targets or natu-

rally occurring, well distributed and identifiable features on the ground. How-

ever, as explained in section 4.1, one of the additional challenges when mapping

water bodies is the near-impossibility of placing, fixing and recording the XYZ

coordinates of stable targets over the water (Luan et al., 2012). When mapping

water bodies, the image rectification step is often skipped due to this problem.

This is evident in studies such as Knaeps et al. (2019); Román et al. (2023); Win-

dle and Silsbe (2021); De Keukelaere et al. (2023) where no image rectification

was performed, even though they used a drone without a self-levelling gimbal.
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Therefore, the second objective of this thesis is to develop an improved approach

to rectify images captured with low-cost drones over water and minimise each of

these effects. This process will rely heavily on analytical photogrammetric prin-

ciples and is entitled, Analytical Rectification Method for FEatureless Terrain -

or ‘ARMFET’.

4.4 Experimental Design

One of the fundamental research assumptions in this thesis is that the water sur-

face can be considered perfectly planar, discounting small variations from swell

or waves. To evaluate the proposed approach, a dataset over a large, flat, open

terrain was required. This setup was necessary because placing or fixing visible

targets over a water surface is too difficult and prone to error. This allowed for

the best possible approximation of a 2D water body, facilitating accurate ground

truth measurement where the ARMFET approach could be directly compared

to the standard photogrammetric method (BA). In practice, this meant that the

study area needed to have a low standard deviation in elevation. The main fo-

cus in this thesis is also to explore the suitability and performance of a low-cost

drone. As such, a drone that meets the criteria described in Section 1.4.2 was

selected. This was a fundamental requirement as the methods developed in the

thesis were to optimise the performance of such drones.

4.5 Drone and GNSS Datasets - Planning and Cap-

ture

The following sections detail the study area (section 4.5.1), the sensor and plat-

form (section 4.5.2) and the data used (section 4.5.3) during the development of

this methodology.
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4.5.1 Study Area

The study area chosen for this chapter was a flat, open field situated in Enfield,

Co. Kildare, Ireland, approximately 20 kilometres from Maynooth University.

The total area of the survey site covered 10.8 hectares. A site of this size pro-

vided adequate grounds to enable several flight lines and to alternate flight pa-

rameters for robust validation of the methodology. It also provided a large area

which allowed GCPs to be placed at intervals of 60m and ensured that the GCPs

were well distributed throughout the survey area. Also, it helped to ensure a

sufficient number (> 4) of the GCPs could be identified in each image for the pur-

poses of validation. The standard deviation in elevation across the whole test site

was measured and identified as only 0.54m. This standard deviation suggests a

relatively uniform and flat terrain within the study area. Figure 4.4 shows the

location of the study area.

Figure 4.4: A map showing the location of the study area at Enfield: the image
on the left shows a map of Ireland with the location of the field highlighted, and
the right image shows an aerial view of the open field.
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4.5.2 Sensor and Platform

A Bluegrass VTOL (Vertical Take-Off Landing) drone manufactured by Parrot

was used to acquire the imagery and navigation data for each image over the test

site. The Bluegrass has a Skycontroller to control the rotor inputs, a Sequoia mul-

tispectral sensor with four bands and a sunshine sensor to standardise the image

reflectance during the survey (Parrot, 2017). The sunshine sensor records the am-

bient illumination from the sun and is also used in the radiometric calibration of

the images. The Sequoia sensor also has two features of relevance to this study:

an IMU and a GNSS. The GNSS helps in the precise geotagging of images, and the

IMU helps measure the angular orientation of the sensor. According to the manu-

facturer’s tolerances, the IMU on the Bluegrass has an accuracy of 0.5 o for Pitch

and Roll and 1.0 o for Yaw (Sekrecka et al., 2020). The drone can record GNSS

values to an accuracy of ± 1.5 m for the horizontal and vertical plane (Sekrecka

et al., 2020), and it measures both the GPS and GLONASS constellations. Like

many drones introduced in Chapter 1, Section 1.4.2.3, the sensor is not mounted

on a self-levelling gimbal. To account for this, the Sequoia sensor is mounted be-

neath the Bluegrass but inclined at an angle of -15 o to account for the forward

motion of the platform. This means that the sensor is perfectly vertical when the

drone Pitches forward at approximately 15 o angle to begin forward flight. Fig-

ure 4.5 illustrates the Bluegrass drone equipped with a camera and a sunshine

sensor. Table 4.1 gives a detailed description of the Parrot Sequoia specifications.
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Table 4.1: Detailed Description of the Parrot Sequoia Sensor

Item Description
Multispectral sensor

sensor type Global shutter
Bands Green (530-570 nm),

Red (640-680 nm),
Red-edge (730-740 nm)
Near Infrared (770-810 nm)

Focal Length 3.98 mm
Sensor size 3.75 µm
Image size 1280×960 pixel
sensor pixel 1.2 megapixel
Radiometric resolution 16-bits

Front-facing camera
sensor type Rolling shutter
Focal length 4.88 mm
Sensor size 1.34 µm

Source: (Parrot, 2017)

Figure 4.5: An image of the Parrot Bluegrass with (a) the Sequoia sensor visible
underneath and (b) the sunshine sensor (highlighted in red) visible in a top-down
view.
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4.5.3 Field Survey

Flight paths for all drone surveys were predefined using the Pix4dCapture app

as can be seen in Figure 4.6 – this app enables autonomous flight by allowing

drones to fly following paths/waypoints with the pilot supervising operations.

Three drone surveys were carried out as part of the initial survey at the Enfield

test site, with the various flight and environmental parameters detailed in Table

4.2. A total of 30 GCPs were recorded using a Trimble 5800 dGPS receiver with

a horizontal and vertical accuracy of ±50mm, as can be seen in Figure 4.7. The

GCPs were recorded in the Irish Transverse Mercator (ITM) coordinate system.

Figure 4.6: An image showing a sample grid mission flight plan for the first drone
survey across the open field in Enfield. The flight paths were defined using the
Pix4D capture app, and the flight took approximately 8 mins.
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Figure 4.7: Distribution of 30 GCPs across the open field. An interval of approx-
imately 60m between rows and columns was used. This ensured that a sufficient
number (> 4) of GCPs were identifiable in each image.

Table 4.2: Environmental and Flight Parameters for the Field Surveys - Enfield

Parameters First survey Second survey Third survey
Environment

Temperature 6oC 6oC 6oC
Wind speed 15km/h 15km/h 15km/h
Precipitation 0mm 0mm 0mm
Cloud cover 26% 50% 40%
Wind direction NW to SE NW to SE NW to SE

Flight
Altitude 120m 120m 100m
Overlap percentages 70% across

track, 70%
along track

70% across
track, 70%
along track

70% across
track, 70%
along track

Flight speed 12m/s to 14m/s 12m/s to
14m/s

10m/s to
12m/s

No. of flight lines 6 6 8
Flight direction W to E W to E N to S
GSD 0.11m 0.11m 0.09m
No. of images cap-
tured

72 68 65

4.5.4 Additional data

Two additional drone surveys were conducted over water; two flights were car-

ried out over Lough Egish, Co. Monaghan at 54 o 04’1.20” N and -6 o 47’60” W in

December 2020. Three subsequent drone surveys over water were conducted at
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Blessington Lake, Co. Wicklow at 53 o 10’12” N and -6 o 31’57” W in June 2021.

These surveys were conducted in different seasons and under varying flight pa-

rameters and environmental factors. Table 4.3 details the flight parameters and

the environmental factors during the survey. These datasets will be used for anal-

ysis in Section 4.7.2 and again in Chapters 5 and 6 as validation datasets.

Table 4.3: Drone Surveys Over Lough Egish and Blessington Lake

Lough Egish Blessington Lake
Parameters First sur-

vey
Second
survey

First sur-
vey

Second
survey

Third
survey

Environment
Temperature 6oC 6oC 12oC 12oC 12oC
Wind speed 25km/h 25km/h 12.km/h 12.km/h 12.km/h
Precipitation 0mm 0mm 0mm 0mm 0mm
Cloud cover 26% 50% 20% 20% 20%
Wind direc-
tion

NW to SE NW to SE W to E W to E W to E

Flight
Altitude 120m 80m 120m 120m 100m
Overlap per-
centages

70%
across
track,
70% along
track

70%
across
track,
70%
along
track

70%
across
track,
70%
along
track

70%
across
track,
70%
along
track

50%
across
track,
50%
along
track

Flight speed 10.5m/s to
11m/s

9.37m/s
to
10.5m/s

8.3m/s to
10m/s

8.3m/s
to
10m/s

8.3m/s
to
10m/s

No. of flight
lines

6 4 4 5 7

Flight direc-
tion

N to S N to S W to E W to E S to N

GSD 0.11m 0.11m 0.07m 0.11m 0.94m
No. of images
captured

54 28 44 58 36

4.6 Methods

This section explains the photogrammetric methods that were developed to im-

prove the accuracy of the reconstructed 2D images obtained from the traditional

DG method. The methods applied in this chapter are broadly grouped into four
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categories. Methods 1 explains the steps involved in the image processing using

the traditional BA method. Method 2 explains the pre-processing steps: primar-

ily the extraction of navigation and auxiliary data and the sensor lens distortion

corrections. Method 3 explains the steps employed in reconstructing images us-

ing the EOPs derived from the DG method. Method 4 is the another important

contribution of this thesis, and it details the novel method developed to improve

the accuracy of the reconstructed 2D images through the removal of associated

errors in tilted images as detailed in Sections 4.6.4.1, 4.2.2 and 4.2.3 above. The

workflow illustrated in Figure 4.8 explains the process (from Method 2 to 4) of

projecting an image onto the ground plane through the application of correction

methods and highlights the novel content.

Figure 4.8: A flow diagram leading from the traditional DG process of recon-
structing a 2D surface to the application of the novel correction methods devel-
oped in this thesis to minimize errors. The input variables are the parameters
used for the reconstruction. ARMFET is the novel method proposed to improve
the accuracy by removing the errors and its sequence in the process is highlighted
in pink. The ”M” denote method.
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4.6.1 Method 1: Benchmark Dataset Using Bundle Adjustment

The traditional DG approach was used as the primary method for reconstruct-

ing the images over featureless terrain, while the BA approach was used as the

benchmark data for comparing the performance of the traditional DG approach

with each of the methodologies developed during this thesis.

The processing of the drone data was carried out using Pix4D software version

4.6.4. Two separate orthomosaics were generated using the traditional BA ap-

proach. The first orthomosaic was created without the utilization of GCPs and

the accuracy of this orthomosaic was assessed using all 30 GCPs. This orthomo-

saic provided a baseline representation of the imagery without optimisation (i.e.

no GCPs included in the processing). The second orthomosaic was generated and

optimised during the BA approach using a set of 10 GCPs. The accuracy of this

second orthomosaic was then validated using the remaining 20 GCPs.

The processing steps followed the typical SfM workflow, which encompassed

several key stages as described in (Maravilla et al., 2019; Franzini et al., 2019;

Teppati Losè et al., 2021). Firstly, image alignment and sensor calibration were

performed to ensure accurate spatial registration of the images and precise cal-

ibration of the sensor parameters. Next, tie point extraction was carried out to

identify and establish corresponding points across the images, aiding in the sub-

sequent BA. This BA process refined the sensor positions, orientations, and 3D

scene geometry, optimizing their alignment with the observed image features.

Once the BA was completed, dense point clouds were generated, capturing de-

tailed and dense 3D information of the scene. From the dense point clouds, DSM

was then created, representing the elevation of the terrain and objects in the area.

Finally, an orthomosaic was generated by combining each of the georeferenced

images of the surveyed area.
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4.6.2 Method 2: Image Pre-processing for Direct Georeferenc-

ing

4.6.2.1 Extraction of Navigation and Auxiliary data

DG requires the use of IOPs and EOPs to project a point in any 2D image onto

the 3D ground plane. Each image captured also contains ancillary information

which can help in the sensor lens distortion correction. A Python script was im-

plemented to extract the ancillary information stored in the Exchangeable Image

File Format (EXIF) data of each image. This included information such as the

sensor size, focal length, image size, attitude angles (Pitch, Roll and Yaw), GPS

position, GPS time-stamp, sensor aperture, shutter speed along with other re-

lated metadata.

4.6.2.2 Sensor Lens Distortion Correction

Sensor lens distortion correction is a crucial step in photogrammetry for appli-

cations that heavily depend on accurate measurements of objects. To ensure pre-

cise calibration, the Sequoia sensor calibration parameters were obtained from

the EXIF data of the calibration certificates generated by the company laboratory.

The images were corrected for radial and tangential distortion using K1, K2 and

P1, P2 respectively. This was implemented using a Python script that utilized the

sensor parameters.

4.6.3 Method 3: Direct Georeferencing

As explained in Chapter 1, the DG is the only practical means of deriving the

EOPs for reconstructing 2D images over the water surface. This approach utilizes

the IMU and GNSS sensor measurements to project an image onto the ground

plane. The steps employed to project an image onto the ground plane are ex-

plained in the subsequent subsections and will establish the principles for dis-

cussing the proposed improvements in ARMFET.
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4.6.3.1 Image Reconstruction

According to Wolf et al. (2014), most sensor models used in photogrammetry

assume or employ the pinhole sensor model. The sensor function of capturing

images, which involves taking points in the world and projecting them onto a

2D image plane, can then be simulated and implemented using these models. To

project images captured by the drone onto the ground plane, it is necessary to

utilise the IOPs and EOPs. These parameters allow us to compute a set of trans-

formation matrices that project points through a series of coordinate systems. In

particular, the projection process includes the following four coordinate systems:

the World coordinate system (3D) >> the Sensor coordinate system (3D) >> the

Image coordinate system (2D) >> and the Pixel coordinate system (2D). The ex-

trinsic matrix models the 3D transformation from the world coordinate system to

the sensor coordinate system, whereas the intrinsic matrix models the transfor-

mation from 3D points in the sensor coordinate system to points in the 2D pixel

coordinate system.

I. Intrinsic Parameters

The reconstruction process begins with the sensor projection. It establishes the

relationship between a point and its image which lies on a straight line that passes

through the perspective centre. These intrinsic parameters describe the interior

orientation of the sensor. They are parameters needed to model the geometry and

the physics of the sensor such as focal length, principal point, sensor dimensions

and any parameter used to model lens distortion. This transformation matrix

(K) is represented as a 3*3 matrix as shown in Equation (4.1). The focal length is

denoted as, fx and fy, in the x and y direction respectively, and the principal point

is denoted as (Cx,Cy). Note that each of the parameters in Eq. (4.1) are given in

pixels.
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K =


fx 0 Cx

0 fy Cy

0 0 1

 (4.1)

II. Extrinsic Parameters

The extrinsic parameters define the POSE of the sensor during exposure in 6DOF.

It contains six parameters; that is the spatial 3D position (X, Y, Z) of the projec-

tion centre and the attitude angles (Yaw (ψ), Pitch (θ), Roll (φ) around the sensor

axis. The rotational angles vary with the motion of the sensor. However, two of

the rotational angles (φ, θ) may be constant/exhibit minimal change over time if

the sensor is mounted on a gimble. At any point during the flight, the transforma-

tion of points from the 3D world coordinate system to the 3D sensor coordinate

system is modelled as a 4× 4 transformation matrix. This can be achieved in two

steps according to Förstner and Wrobel (2016a):

1. Rotation: The rotation is performed by three independent parameters where

Yaw, Pitch and Roll are denoted as (ψ,Θ,φ) respectively as shown in Equa-

tion (4.2).

Cn
b = Rz(ψ).Ry(θ).Rx(ϕ) (4.2)

2. The translation parameters T are denoted as X,Y,Z in the world coordinate

system through the projection centre O as seen in Equation (4.3). The Z

denotes the point’s position in 3D space.

Z = [XO, YO, ZO]T (4.3)

Adopting the equation from Bäumker et al. (2002), the extrinsic rotation matrix

(Mext ) is given by Equation (4.4) below where tx,ty,tz are the translation point.
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Mext =

 R3×3 t3×1

01×3 11×1

=



r11 r31 r13

r21 r31 r23

r31 r32 r33

tx

ty

tz

0 0 0 1


(4.4)

In the context of photogrammetry, it is also required to covert Pitch, Roll and

Yaw into Omega (ω), Phi (φ) and Kappa (κ) respectively. This is because the Yaw,

Pitch, and Roll angles are typically used to describe the orientation of a body

(drone) relative to its navigation coordinate system (see Section 2.3.2.3), whereas

the Omega, Phi, and Kappa (OPK) angles were used to describe the rotation be-

tween the image coordinate system and a projected coordinate system. The con-

version is explained in Equation (4.5) and is further expanded in Equation (4.6)

as a rotation matrix (CE
B) and is defined using counter-clockwise rotation angles.

CE
B = Rx(ω).Ry(φ).Rz(κ) (4.5)

=


1 0 0

0 cosω −sinω

0 sinω cosω




cosϕ 0 sinϕ

0 1 0

−sinϕ 0 cosϕ




cosκ −sinκ 0

sinκ cosκ 0

0 0 1

 (4.6)

=


cosϕ cosθ −cosϕ sinκ sinϕ

cosω sinκ +sinωsinϕcosκ cosωcosκ− sinωsinϕsinκ −sinωcosϕ

sinωsinκ−cosωsinϕcosκ sinω cosκ+cosω sinϕsinκ cosωcosϕ



After computation of the rotation matrix, the Omega (ω), Phi (φ) and Kappa (κ)

angles can be extracted using the System PATB formulas explained in Bäumker

et al. (2002) which was developed by University of Stuttgart as shown in Equation

(4.7).
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ω= arctan2
(
−r23

r33

)
,ϕ= arcsin(r13) ,κ= arctan2

(
−r12

r11

)
(4.7)

Finally, by combining the intrinsic and extrinsic parameters, a full transforma-

tion can be achieved, as shown in Figure 4.9. This transformation represents the

complete mapping of any point or image from the 3D world coordinate system

to the 2D pixel coordinate system, taking into account both the internal charac-

teristics of the sensor (IOPs) and its position in the world (EOPs).

Figure 4.9: An image showing the complete transformation matrix where the
intrinsic and the extrinsic parameters are combined. This complete the mapping
process from world coordinate to pixel coordinate

4.6.4 ARMFET - Analytical Rectification Method For Feature-

less Terrain

In order to rectify reconstructed images over water, this thesis proposes a novel

method called ’ARMFET’. In ARMFET, two key methods were developed and

applied: (i) a ground principal point offset correction (see Section 4.2.1 and (ii)

a tilt displacement correction that corrects error 2 and error 3 (see Sections 4.2.2

and 4.2.3). Each step of this process is illustrated in Figure 4.10. The goal is

that at the end, a rectified image which can be considered equivalent to a vertical

photograph is produced.
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Figure 4.10: An illustration of the workflow involved in rectifying images via an-
alytical photogrammetry. The blue colour shows the novel ARMFET components
which was applied : the GPP correction method was developed in this thesis and
the remaining components were derived from photogrammetric literature. The
yellow colour shows all other steps that were applied to derive the rectified im-
age.

4.6.4.1 Correction 1 - Ground Principal Point Offset

In correcting the first error source - (i) the ground principal; point offset due to

tilt, ARMFET seeks to first calculate the shift in distance between GP and GPP on

a flat terrain as depicted in Figure 4.1 in Section 4.2.1. In theory, the orientation of

a sensor will impact the positional accuracy in both the X and Y coordinates. For

example, the results from Chapter 3, Section 3.4.2 revealed that 1oC tilt in Roll

had a greater effect on the X coordinates and a smaller effect on the Y coordinate.

Conversely, 1oC change in Pitch had a greater effect on the Y coordinate and a

smaller effect on the X coordinate. This shift can be mathematically calculated

for flat terrain using the law of Sine rule, given that we already know (i) the

flying height of the drone and (ii) the attitude from the IMU. The shift in X and

Y coordinate is therefore calculated using Equation (4.8) and (4.9) respectively,

where h is the flying height, bx is denoted as the shift value in X direction between

GP and GP’ and by is the shift value in Y direction between GP and GP’. The value

obtained is subsequently used to shift the image from the image centre. At the

end of the process, the GP’ is aligned with the GP.
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bx= h∗tan(Pitch) (4.8)

by= h∗tan(Roll) (4.9)

4.6.4.2 Correction 2 - Tilt Displacement

After the principal point correction, the image needs to be corrected for (ii) tilt

displacement and (iii) scale variations. As explained in section 4.2.2, tilt displace-

ment occurs due to the sensor axis not being level with the ground plane at the

time of exposure. This can occur if the nose of the aircraft is slightly up or down

(Pitch) or if a wing is tilted up or down (Roll). If the amount and direction of the

tilt are known, then the photo can be rectified. In order to remove the tilt effect,

the following steps were applied.

I. Calculation of Tilt Displacement

Firstly, the tilt displacement error in X and Y can be calculated adopting the

equation from Schofield and Breach (2007). In equation (4.10) and (4.11), (x,y)

denote the image coordinate of a random point measured about the fiducial axes,

(x′, y′) represent the rotational effects in the image coordinate, f denotes focal

length, H denotes flying height and Pitch and Roll are angles measured by the

IMU.

x′ = −xcos(Roll) + y sin(Roll) (4.10)

y′ = −x sin(Roll)− y cos(Roll) + tan
(

Pitch
2

)
(4.11)

After the calculation of the rotation effects in the image coordinate system, the

tilt displacement error must then be converted to the ground distance. In this

process, the scale of the photograph needs to be calculated. The scale can be cal-

culated if the attitude angles and the flight height are known. In Equation (4.12)
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and (4.14), K represent the scale of variation for an image on the lower side of

a photograph, K ′ denote the scale of variation for an image on the upper side of

a photograph, f denotes focal length, ia′ denotes the distance between isocenter

and random point a, H represent the flight height, θ denotes the Pitch angle and

the (X,Y) represent the ground tilt displacement in x and y direction.

The scale of a photograph at a given point is therefore calculated as:

K =
f + ia′ sinθ

H
(4.12)

K′ =
f− ia′ sinθ

H
(4.13)

This allows the ground distance for tilt displacement in X and Y to be calculated

as:

X = Kx′ (4.14)

Y = Ky′ (4.15)

II. Geometric Transformation

After calculating the tilt displacement error in X and Y, a geometric transforma-

tion process was subsequently applied. This process removed (or eliminated) the

tilt displacement (dt) error by transforming the tilted photograph to its vertical

equivalent. In order to transform the image to its vertical equivalent, two sepa-

rate/different ground points were first derived: the ground point from the tilted

image and the ground point from its equivalent in vertical position. The first

step calculated the tilt displacement in X and Y for at least four random points

which are evenly distributed. This helped to avoid points being collinear which

will affect the geometric transformation.The new ground coordinate point was

then derived by adding the dt in X and Y to the corresponding generated ground

coordinate point. The second step was to derive the ground coordinate for its
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vertical position. This was derived by subtracting the dt in both X and Y from

the measured ground coordinate. After these two points were mathematically

derived, the image was rectified using these two different ground points. The

last step was to apply an affine transformation to warp the image to its vertical

equivalent. An affine transformation is a type of geometric transformation that

preserves parallelism and is common for remote sensing applications (Shylaja

and Sanil Shanker, 2022). It can be used to translate, rotate, scale, and shear an

image. This can be seen in Figure 4.11 where the illustration explains how the

non-rectified image is rectified from the derived ground coordinate points.

Figure 4.11: An illustration showing how images are rectified using the ground
coordinate from a tilted image and the ground coordinate from a vertical image.
Figure (a) shows the ground coordinate points obtained from the tilt and the
ground coordinate obtained from the vertical. The image is aligned using these
points through affine transformation to produce the yellow image in Figure (b).
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4.7 Results and Analysis

This section presents the results obtained from the analysis. The first analysis was

conducted by analysing the attitude angles obtained from the survey as shown in

Section 4.7.1. Subsequent analyses were conducted on the effect of wind speed

and wind direction on attitude in Section 4.7.2 and 4.7.3, exterior orientation

analysis for DG in Section 4.7.4, evaluation of the traditional DG method in Sec-

tion 4.7.5 and accuracy assessment of the ARMFET Approach in Section 4.7.6.

4.7.1 Analysis of the Attitude Angles

The evaluation of attitude angles helps assess how stable the platform was dur-

ing the surveys. Also, as revealed in Chapter 3, Section 3.5, attitude angle was

identified as the single most important factor influencing the accuracy of the re-

constructed 2D image in DG.

From the Enfield drone survey, 72 images were captured and their ancillary data

were extracted following the methodology described in section 4.6.2.1. The at-

titude angles measured from the Sequoia IMU were plotted to show the angular

measurement over the entire survey as shown in Figure 4.12. From the result,

the maximum angular measurement for Pitch and Roll were 18.49 o and 8.06 o

respectively. The mean angular measurements for Pitch and Roll were 6.7o and

5.5o, respectively. To understand the degree of variation in the angular measure-

ment, a standard deviation was also calculated. The standard deviation for the

attitudes angles were 6.4o, 1.5o, 1.9o for Pitch, Roll and Yaw respectively. Further-

more, analysis was conducted to group the images into four categories of aerial

photographs defined by Wolf et al. (2014) : nadir/near-nadir, low tilt, high tilt

and oblique imagery. The result revealed that 5.5% of the images captured were

nadir/near-nadir images (< 1o), 41.6% were low tilted images (greater than 1o

equal but less than or equal to 3o) and 52.9% were high tilted images (more than

3o). This implies that most of the images acquired were impacted by the tilt dis-

placement errors identified in Section 4.2.2 and therefore the methods proposed
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in this thesis to remove the tilt effects from the images are applicable.

Figure 4.12: Attitude angles in Pitch (brown) and Roll (black) for 72 images cap-
tured by the Parrot Bluegrass over Enfield, Co. Kildare.

4.7.2 Effect of Wind Speed on Attitude

For further analysis, the additional data described in Section 4.5.4 was also in-

cluded in the study of the influence of wind speed. This offered a greater range

of wind speeds and different flight directions to identify trends in the data.

In the study conducted by Otarola et al. (2019), a relationship between wind

speed and altitude above the surface was established. Specifically, it was deter-

mined that wind speed increases up to 0.25m/s per every 10m increase in flying

altitude. The wind speed measurements gathered from the field surveys in this

thesis were primarily obtained at ground level, hence the framework proposed by

Otarola et al. (2019) has been used to extrapolate wind speeds that correspond to

the different flight altitudes. The mean Pitch and Roll values were calculated for

each survey as seen in Table 4.4. The results showed that the highest wind speed
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recorded also produced the highest mean Pitch and Roll values. This is evident

in Figure 4.13a and 4.13b where the high wind speed produced high Pitch values

of up to 18.49 o . However, the relationship between the Pitch and Roll values

was not linear. For example, a wind speed of 21 km/h produced a mean Pitch

value that was higher than a wind speed of 22.8 km/h. This suggests that wind

speed is not the only factor that can influence the attitude angles. For instance,

the direction of the flight can also impact the attitude angles measured.

Another finding of this study was that the higher the wind speed, the more im-

pact it has on the attitude measurement. This was evident when comparing the

survey results for Figure 4.13a , which had a similar flight direction (meaning

the impact of flight direction will not contribute to the attitude measurement).

In this case, an increase in the wind speed resulted in a greater impact on the

attitude measurement. Similarly, when comparing the first and second survey

results from Blessington Lake which had the same wind speed and flight direc-

tion, the mean difference for the Pitch and Roll values was 1.8 and 0.9 degrees,

respectively. This difference was not significant, suggesting that it could be due

to random errors. These results suggest that a change in 1 km/h in wind speed

results in an increase of 0.17o in Pitch and 0.52o in Roll for this type of drone.

Additionally, it was found that gusts of winds can cause the images captured by

the drone to be highly tilted. From the Figure 4.13a and 4.13b, it can be seen that

almost all (95%) of the images captured were above 3o. Thus, it can be catego-

rized using the Wolf et al. (2014) classification as a high-tilt image. On the other

hand, about 45% of the images captured under low wind speed (Figure c,d,e and

f) were under 3o, thus can broadly be described as low tilted images.
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Figure 4.13: Comparison of attitude angles measured under different wind speed
conditions. The Figure 4.13a, and 4.13b line graphs show attitude measurement
under high wind speeds while 4.13c, 4.13d, 4.13e, and 4.13f line graphs shows
attitude measurement under low wind speed.

Table 4.4: Analysis of Mean Pitch and Roll Values Under Varying Wind Speed

Lough Egish Blessington Lake Open
Field

Parameters 1st
survey
Wind-
speed
34.9km/h

2nd
survey
Wind-
speed
32km/h

1st
survey
Wind-
speed
22.8km/h

2nd
survey
Wind-
speed
22.8km/h

3rd
survey
Wind-
speed
21km/h

1st sur-
vey
Wind-
speed
21.6km/h

Mean
Pitch

11.05o 10.53o 7.25o 5.41o 8.42o 6.7o

Mean Roll 4.2o 2.67o 3.59o 4.51o 3.4o 5.5o
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4.7.3 Effect of Wind Direction on Attitude

In addition to wind speed, wind direction also affected the drone speed and at-

titude measurement. As previously discussed, this thesis defines downwind as

the wind that blows in the direction of the drone’s travel, increasing the drone’s

speed, while upwind is the wind that blows against the direction of the drone

and reduces the drone’s speed (Soares, 2013).

In this analysis, a comparison was made between the impact of different flight

directions on the attitude angles of a drone. Figure 4.14 explains what happens

when a flight direction of a drone survey is away from the wind direction and

Figure 4.15 explains what happens when a drone flight is in the same direction

of the wind. One finding from the test is that when the flight direction of a drone

survey is away from the wind, there is less impact on the attitude angles.

The results from Figure 4.15 also demonstrate that flying in the direction of the

wind (downwind) has an impact in the attitude angles and is exacerbated when

the wind speed is high. The mean Pitch angle was calculated to be 13.5o when

flying downwind and 8.5o when flying upwind. This meant that the Pitch angle

increased with downwind and slightly decreased with upwind. The increase in

Pitch angle when flying downwind was due to the fact that the drone’s airspeed

increases when it is being pushed by the wind. This can potentially lead to a

higher angle of attack. In this experiment, the wind speed that was recorded

during the survey was high, therefore contributing to the increase of the drone

speed, especially in the downwind direction. The drone’s speed recorded when

flying downwind was 13.5m/s, while upwind was 9.5m/s. This therefore ex-

plains the reason for the high Pitch angle of the drone. Also, the slight decrease

in Pitch angle when flying upwind was due to the fact that the drone’s airspeed

decreases when it is flying against the wind. Overall, it can be concluded that the

impact of flying in the direction of the wind could be increased when the wind

speed is high and it will cause the images captured to be tilted.
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Figure 4.14: This image shows a flight path where it is away from the wind di-
rection. In this scenario, the effect of the wind is minimized. The attitude angles
in the image are categorised according to near nadir (0-1), low tilt (1-3) and high
tilted (> 3) images

Figure 4.15: This image shows the effect of wind direction on the Pitch angle of
the drone. During downwind flights the airspeed of the drone increases and this
appears to significantly increase the Pitch angle during surveys
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4.7.4 Comparison of Omega/Phi Angles Against Benchmark Data

This section focused on evaluating the Pitch and Roll angles derived from the

DG method. In photogrammetry, Pitch and Roll are converted to Omega and

Phi, respectively. To evaluate the orientation angles derived from the traditional

DG method, residual errors were calculated and plotted in a line graph. The

residuals erros were calculated by subtracting the derived attitude angles ((ω)

and (φ)) of the traditional DG method and BA method without GCPs from BA

method with GCPs. The BA with GCPs was used as the benchmark dataset. The

results from the analysis are explained in Section 4.7.4.1 and 4.7.4.2.

4.7.4.1 Evaluation of Omega Angle

A comparison of the (ω) angle residual error was done between the BA approach

without GCPs and the Traditional DG method as shown in Figure 4.16. The find-

ings revealed that the residual errors for the (ω) angle were 0.09o and 1.38o for

BA without GCPs and DG, respectively. Further, the maximum and minimum (ω)

angle obtained were 0.2o and 4.38o respectively. From the results, the residual er-

ror measured suggests a slightly high error in the X axis and could be attributed

to the high wind speed and the flight direction.
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Figure 4.16: A graph showing the (ω) angle residual error for Traditional DG
and BA with no GCP. The image sequence on the x-axis refers to the number of
individual images used (n=72). The error was calculated at each image using at
least four GCPs visible to each.

4.7.4.2 Evaluation of Phi angle

The residual error for the (φ) angle was 0.13o and 0.77o for BA without GCP and

intial DG respectively. Comparing the residual angle in (φ) to (ω), the former had

a better accuracy. From Figure 4.17, it can be seen that the (φ) angle had relatively

lower errors and could be attributed to the flight direction. These experiments

shows how the (ω)/(φ) angles derived from the traditional method using low-

cost IMUs compare to the benchmark data. This further reinforces the limitation

of traditional DG approach explained in section 4.1; which is its dependence on

accurate IMU and GNSS’s measurements.
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Figure 4.17: A graph showing the (φ) angle residual error for DG (Green) and
BA with no GCP (Black).The image sequence on the x-axis refers to the number
of individual images used (n=72). The error was calculated at each image using
four GCPs visible to each.

4.7.5 Evaluation of the Traditional DG method

The results presented thus far obtained from the Traditional DG approach were

acquired without applying any of the novel correction methods in ARMFET (as

explained in Section 4.6.3). To analyse the effectiveness of the traditional DG ap-

proach for mapping water bodies, the accuracy was measured against BA with

GCPs and BA without GCPs. The Mean Absolute Errors (MAE) were calculated

for each image by using the identified targets and finding the difference between

the ground truth data (the GCPs) and the same points in the images reconstructed

from the three methods. In an individual image, at least four GCPs were used to

calculate the MAE. An overall average was then calculated for all the MAE mea-

sured.

The MAE calculated for each test were 0.14m,1.55m and 18.93m for BA with
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GCPs, BA with no GCPs and DG respectively. These results indicate that both BA

methods achieved acceptable levels of accuracy for topographic mapping. How-

ever, as expected the traditional DG approach exhibited a higher MAE compared

to the benchmark method. This result can be attributed to the high tilt images,

which accounted for over 50% of the dataset, thus introduced tilt effects that af-

fected the DG results. The minimum MAE error recorded was 2.5m, while the

maximum MAE measured was 18.9m. Further analysis was conducted by cate-

gorizing the MAE values based on three types of images by (Wolf et al., 2014):

nadir/near-nadir, low tilt, and high tilt. The MAE calculated for these categories

were 2.4m, 8.9m, and 18.9m respectively. Figure 4.18 shows a line graph that

compares the three approaches. Furthermore, Figure 1 in Appendix B provides

an alternative representation to enhance the understanding of MAE in relation to

the trajectory of the drone.

Figure 4.18: Analysis of MAE for positional accuracy using DG before the pro-
posed correction and compares the result to BA with GCPs and BA with no GCPs.
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Additionally, to understand the influence of high Pitch and Roll angles on the

positional accuracy, a line graph was plotted to juxtapose or overlay the Pitch

angle and the MAE. From Figure 4.19, it can be seen that, high MAE directly

coincide with periods of high Pitch and Roll angle.

Figure 4.19: Positional accuracy for Direct Georeferencing compared with cor-
responding Pitch angle. The graph illustrates how high Pitch angles negatively
influence positional accuracy.

4.7.6 Accuracy Assessment of the ARMFET Approach

The Traditional DG result was improved by applying the ARMFET method de-

scribed in Section 4.6.4. From Figure 4.20, it can be seen that the MAE for DG

was improved from 18.93m to 9.34m. Furthermore, there was a significant im-

provement in the standard deviation, decreasing from the traditional DG result

of 10.09m to 2.9m. This means that MAE errors are reduced by ARMFET.
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Figure 4.20: Comparison of the positional accuracy for the initial result for DG
and after the proposed correction method has been applied. The graph shows
the significant improvement between the traditional DG result and the proposed
correction method

The ARMFET method proved to be instrumental in reducing the MAE of DG by

53.54%, thus reducing the error by more than half. This approach successfully

addressed the tilt and scale effects, resulting in an acceptable MAE. Also, the im-

age rectification helped smooth the peak errors and high tilt angles which were

caused by the high Pitch and Roll values during the survey. These findings high-

light that images with both low and high tilt angles over featureless terrain can

be rectified without the need for GCPs.
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4.8 Discussion

The accuracy assessment of the result showed that there was a significant im-

provement as ARMFET was able to reduce the MAE by 53.54%. This means that

by applying the image rectification method, low-cost drones have the potential

of producing accurate reconstruction of 2D images over featureless terrain. Over

the past few years, the use of low-cost drones for reconstructing 2D images over

featureless terrain like water using the DG method has been hindered by inac-

curate measurements from their navigational sensors, resulting in low accuracy.

This is evident in the traditional DG result, here a positional accuracy of 18.9m

was obtained. Similarly, a study by Stam (2010) employing a low-cost drone with

the DG method achieved an accuracy of 10-25 meters. This low accuracy hinders

the use of reconstructed 2D images for further applications such as water quality

monitoring. The benchmarking of the DG method performed in this study has

provided valuable insights into the limitations of low-cost drones.

The findings from the result demonstrates the significant impact of the proposed

approach on improving positional accuracy. It was observed that removing the er-

rors from tilted images contributed to improving the positional accuracy. Tilted

images are known to have errors in image displacement and tilt displacement,

which are directly proportional to the angle of tilt (Schofield and Breach, 2007).

Therefore, rectifying the images is an important process for removing distortions

from images, as explained in Wolf et al. (2014). The results show that ARMFET

can potentially make an important contribution to improving positional accu-

racy. The inclusion of the ARMFET method in the overall image reconstruction

process for tilted images can be adopted even for drone surveys over flat fea-

tureless terrain such as snow and desert areas and not solely water. ARMFET

provides a possible solution to the long-lasting problem of rectifying images over

water where it is near impossible to place visible targets as Ground Control Points

(GCPs).
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Although the ARMFET method is a practical approach for image rectification

over water, it does not fully correct the images. For example, the calculations

for the tilt displacements are based on the IMU measurements. Therefore, in-

accurate estimation of sensor orientation can lead to the calculation of assumed

tilt displacements that do not reflect the real ground displacement accurately.

Further, one limitation of the the ARMFET method is that it could be laborious

if the workflow is not automated through programming language like python,

especially if the acquired dataset is large.

4.9 Conclusion

This chapter presented the outcomes of utilizing Direct Georeferencing as an

approach for mapping featureless terrain - inland water. An empirical study

was conducted to (i) evaluate the accuracy of the DG method using a low-cost

IMU/GNSS (ii) analyse the errors associated with DG and (iii) develop a new

approach to correcting tilt effects. The findings revealed that errors originat-

ing from angular elements had a more pronounced influence compared to those

arising from the IMU and GNSS. These results emphasized the significance of

addressing angular errors in achieving accurate output. To address this, an im-

proved method was developed to adapt the traditional DG approach. The MAE

was reduced from 18.93m to 9.34m, indicating that the proposed methods for

rectifying images could achieve acceptable accuracy. These promising results

highlight the feasibility of employing low-cost drones for mapping featureless

terrains.

In summary, this chapter provided the following contributions:

1. Provided insights into the performance of the DG approach using drones

with low-cost GNSS/IMU.

2. Explored the influence of wind speed and direction on attitude angles.

3. Developed an analytical photogrammetry method called ARMFET to im-
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prove the traditional DG approach.

This chapter is based on a published peer-review paper: Essel, B.; McDonald,

J.; Bolger, M.; Cahalane, C. (2022) INITIAL STUDY ASSESSING THE SUITABIL-

ITY OF DRONES WITH LOW-COST GNSS AND IMU FOR MAPPING OVER

FEATURELESS TERRAIN USING DIRECT GEOREFERENCING. In: ISPRS eds.

International Archives of the Photogrammetry, Remote Sensing and Spatial In-

formation Sciences, Volume XLIII-B2-2022 XXIV ISPRS Congress Nice, France,

pp.37-44
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Chapter 5

ADGEO - An Assisted Direct

Georeferencing Approach

This chapter presents another novel method for improving the accuracy when

mapping water bodies known as Assisted Direct Georeferencing (ADGEO). It is

an advance on the analytical photogrammetric method in the previous chapter

(ARMFET) because it leverages sparsely populated features along the shore to

learn and propagate corrections that can refine the images over the water. The

method was incrementally developed by creating synthetic data and was vali-

dated by using real-world data to analyze ADGEO’s performance, analyze the

sensitivity of the variables, and identify the limitations. In this chapter, the mo-

tivation for this method is explained in the introduction in Section 5.1 and the

concept of the ADGEO is explained in Section 5.1.1. The method used for the

theoretical analysis is described in Section 5.2.1 and the ADGEO technical de-

velopment is described in Section 5.3. The results and analysis for this chapter

are broadly categorized into theoretical analysis in Section 5.4.1 and 5.4.2 and

experimental analysis in Section 5.5. The results are discussed in Section 5.6 and

the conclusions in Section 5.7.
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5.1 Introduction

In the previous chapter, the ARMFET method demonstrated that when used to

correct reconstructed 2D images derived from the traditional DG method, an an-

alytical photogrammtric approach that explores how the image interacts with the

ground plane can improve the planimetric accuracy for flat terrain by 50.74%.

However, an important limitation of the ARMFET approach is that its accuracy

improvement is tied to the accuracy of the attitude angles measured by the IMU.

Thus, inaccurate estimation of sensor orientation can lead to the calculation of

assumed tilt displacement corrections that do not accurately reflect the real dis-

placement of a point on the ground. Therefore, to further close the gap between

low-cost drones and high-end drones, the novel research in this chapter will ex-

plore whether it is possible to combine the advantages of both DG and BA in an

established photogrammetric technique known as Integrated Sensor Orientation

(ISO).

In photogrammetry, ISO is a well-known technique that combines both BA and

DG methods to process block of images (Heipke et al., 2002; Ip, 2005; Tanathong

and Lee, 2014). The ISO approach has been widely used in photogrammetry to

achieve high accuracy and reliable results but importantly, ISO reduces the need

for a large number of GCPs (Mitishita et al., 2016). It does this by relying on

DG for much of the block, but will have a sparse network of GCPS distributed

around the edges of the survey area, generally at the end of the flight lines as

demonstrated in Section 2.10. The ISO technique is able to perform better than

the traditional DG method, (Ip et al., 2007; Mitishita et al., 2016) because it uses

GCPS to carry out the BA to refine the sensor orientation but includes the object

position estimates from DG. Because the DG method relies solely on the accuracy

of the GNSS/IMU, the ISO technique has been shown to improve the accuracy of

reconstructed drone imagery, even those with low-cost GNSS/IMU (Tanathong

and Lee, 2014). Thus, the ISO technique can improve the accuracy of low-cost

drones because it is not as dependent on the accuracy of the GNSS/IMU as the
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DG method. This means that even if the GNSS/IMU measurements are of low

accuracy, the ISO technique can still help to improve the results. The problem

with the ISO method is that it requires a sparse network of GCPs (Heipke et al.,

2002), but, as previously established, fixing visible targets over water is imprac-

tical. Therefore, in this chapter, the aim is to combine the strengths of both the

DG and the BA methods in an adaptation of the ISO workflow for image recon-

struction for mapping water bodies.

The novel concept behind the third objective of this thesis is that this approach

utilizes the BA method in feature-rich segments of the survey area, such as the

shore, and then uses that as a reference to apply and constrain the DG for fea-

tureless areas, such as water. In brief, the BA can both be used to first reconstruct

images over the shore and then to propagate corrections, thereby refining the

accuracy of the images over the water. ADGEO is primarily intended for case

studies where the shore is in view during parts of the survey - which generally

can be expected for surveys of water bodies.

A theoretical assessment was first conducted to help develop this method. Theo-

retical assessments serve as a valuable procedure for quantifying the capabilities

of the model (Yuan and Zhang, 2008). It allows definitions of assumptions, helps

improve model accuracy and identifies limitations and constraints. This process

lends itself to refining the model and enhancing reproducibility, providing a solid

foundation for further implementation and validation of the proposed method to

practical and real-world scenarios. Therefore, this chapter seeks to test the AD-

GEO method using real-world data to investigate the viability of this concept.

Hence, the objectives of this chapter were to:

1. Develop the ADGEO method by explaining the assumptions and the under-

lying mathematical model.

2. Theoretically assess the accuracy of the ADGEO method using synthetic

data.
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3. Evaluate the performance of the ADGEO method under different scenarios

using real-world drone data.

4. Identify and provide an analysis of the strengths and limitations of the AD-

GEO method.

5.1.1 Overview and Assumptions of the ADGEO Method

The aim of the ADGEO method is to improve the accuracy of reconstructed 2D

images for mapping water bodies by using features from the shore and combin-

ing the benefits from both DG and BA. The DG approach is used to project all

the images over the water surface onto the ground plane using the IMU/GNSS,

and the BA approach is used to refine EOPs to reconstruct only the images with

the shore in view. For the purposes of this thesis, the term “shore” will be used

to refer to any land that lies along the edge of a lake, river, or sea. This land in a

broader sense could be understood as artificial surfaces, or natural features such

as sand, shingles, larger stones and vegetation.

The workflow for this method began with data acquisition as seen in Figure 5.6.

The second stage involved automatically sorting the images by grouping them

into two categories: images that had a part of the shore in view and images with-

out any shore in view. The third step was to reconstruct all images with the shore

in view using any method or software that utilizes BA such as PIX4D, Agisoft

Metashape etc. Following this, a separate image reconstruction was performed

for all images over the water without shore in view by using the DG method. Step

5 calculated the offset errors at known points for the shore images by calculating

the difference between BA and DG. These offset errors were then used to predict

the errors for an image over the water using the mathematical model developed

in Section 5.3.2. The predicted errors were used to calculate the predicted coor-

dinates for a point over the water without the shore in view. The final step was

to perform an image transformation between the predicted coordinate point and

the observed coordinate point.
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The fundamental assumption that underpins this approach is the presence of a

shore in the survey area. Since drone surveys over water are typically carried

out close to the shore due to operational and line-of-sight restrictions (Román

et al., 2023), the ADGEO requirement for a shore in view is therefore applicable

for many water scenarios. For instance, EU aviation regulations mandate that

drones operating under open category operate within visual line of sight (Euro-

pean Union Aviation Safety Agency, 2019), which often requires setting up the

drone survey at the shore and monitoring the drone’s flight from that vantage

point. Another important assumption is that the drone must fly out and return

to the shoreline during its flight trajectory. This way, the shore remains con-

stantly in view during the data acquisition process, ensuring that each flight line

will have at least one image captured with the shoreline in view (start and end of

the flightline).

5.2 Data

This section explains all the data used in the initial theoretical design and analy-

sis. Firstly, it explains how the synthetic dataset used for the theoretical analysis

was generated in Section 5.2.1. The synthetic data was generated for two sce-

narios: low variability and high variability. The low variability simulated data

defines a scenario where a drone encounters ideal flying conditions and exhib-

ited low variability in IMU measurements during the period and is detailed in

Section 5.2.2.1, while those with high variability describe strong wind conditions

and are in Section 5.2.2.2. The following section details the dataset used.

5.2.1 Overview of the Method in Generating the Synthetic Data

The synthetic data generated in this chapter were used in place of real-world

data to help develop the concept, assess the model’s accuracy and identify any

constraints and limitations. Synthetic data in this thesis can be considered to
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refer to artificially generated data that mimics a real-world image (Jordon et al.,

2022). Instead of capturing data directly from the physical environment, this

synthetic data is created using computer graphics techniques. These synthetic

datasets are designed to closely resemble real-world data, allowing computer vi-

sion models to be trained and evaluated on a larger and more diverse set of ex-

amples (Lu et al., 2021). Synthetic data allows researchers and practitioners to

generate large datasets and introduce diverse variations, which can be helpful in

scenarios where real data is scarce or difficult to obtain (Jordon et al., 2022). This

is very useful for a study exploring the accuracy of a photogrammetric method

for water bodies - due to the inability to place GCPs in the water for assessment

and survey these using traditional GNSS RTK.

All synthetic images were created using a Python environment. The process of

generating synthetic data using Python typically involves using various image

processing and computer vision libraries, such as OpenCV, NumPy, and Python

Imaging Library (PIL). These libraries provided tools and functions that were

used to generate synthetic images by manipulating existing images and creating

new images. For the theoretical evaluation, forty (40) synthetic images were cre-

ated for each of the two scenarios: low variability and high variability attitude

measurement. Out of these, five images were defined as those that would have

the shore in view (to be used by the BA method), while the remaining images rep-

resented the majority of the drone survey over a featureless water environment

with no shore in view where DG would apply. Additionally, each synthetic im-

age was overlaid with grid lines using Python’s image processing libraries such

as OpenCV, which provide functions to draw lines, shapes, and other elements

on images. Grid lines are commonly used in image processing for various pur-

poses, such as image alignment, object detection and measurement. In this case,

the grid lines were added as a visual aid in assessing the accuracy and image mis-

alignment.
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Figure 5.1 shows the design of a survey with 5 flight lines that were simulated in

a standard grid pattern. This design distinguishes between those images that had

a shore in view and those that had no shore in view. It is important to note that

this method mandates that the drone flies out and returns to the shore during

the survey. Table 5.1 describes the sensor parameters used to define the sensor

during the synthetic image creation.

Table 5.1: The Parameters Used for Generating the Synthetic Images for the Grid
Survey in Figure 5.1.

Parameters Value
Focal length 3.98 mm
Image size 1280×960 pixel
Sensor size 4.8mm×3.6mm
Principal point 2.4mm×1.81mm
Flight height 120m

Figure 5.1: The flight plan for the synthetic data. The green boundary line shows
simulated images with the shore in view and the blue boundary line shows sim-
ulated images captured over the water surface and without shore in view. Note
the requirement for alternate flight lines to begin/end at the shore - a necessity
for ADGEO
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5.2.2 Description of the Simulated Attitude Data

The low variability attitude data was generated for situations where there are

relatively stable flight conditions, and the high variability attitude data was for

situations such as high wind speed. Table 5.2 gives an overview of the two sets

of simulated data for the variables that were identified in Section 3.4.1 as having

the greatest influence on DG accuracy, namely - Pitch and Roll. The mean, stan-

dard deviation, kurtosis, and skewness were reported for each variable for both

datasets.

Table 5.2: Statistical Analysis of the Simulated Attitude Data

Item Description 1st Simulated Data 2nd Simulated Data
Pitch Roll Pitch Roll

Mean 1.80o 2.07o 5.21o 6.02o

Std Dev. 0.61 0.63 4.61 6.01
Kurtosis -0.31 -0.62 -1.24 -1.13

5.2.2.1 Attitude Data I - the Low Variability Scenario

In this study, a ”low variability attitude measurement” refers to rotational angu-

lar measurement in Pitch and Roll that has little/minimal variation. Essentially,

it represents instances where the sensor remains stable, resulting in consistent

readings without any significant deviations. In practice, this would be a low

wind-speed scenario.

In the first scenario, 54% of the images were classed as nadir or near-nadir, while

the remaining 46% were categorized as low tilt images as previously defined in

Chapter 4 section 4.2.1. The mean values for the Pitch and Roll angles in this low

variability dataset were calculated at 1.8o and 2.07o respectively. The standard

deviation was 0.61o and 0.63o in Pitch and Roll respectively. This is shown in

Figure 5.2 where an error bar was plotted to show each measured data and how

it deviates from the mean. The graph showed that only a few of the data points

had high standard deviations depicted in longer error bars, while the majority

of the data points had low standard deviations. This suggests that the data are
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correlated, indicating little variation in the measured attitude angle.

Further, the kurtosis was measured to understand the tailedness of the data

distribution. A higher kurtosis indicates that the data distribution has a more

peaked shape, with more outliers. In this simulation, the calculation showed a

low kurtosis as shown in Table 5.2 above. The low kurtosis indicated that the

attitude values were relatively consistent and not prone to extreme variations,

making it suitable for analysis under low variability conditions.

Figure 5.2: A graph showing the Pitch angles and standard deviation represented
as error bars for the low variability simulated data. The longer the error bar, the
higher the standard deviation.
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Figure 5.3: A graph showing the Roll angles and standard deviation represented
as error bars for the low variability simulated data. The longer the error bar, the
higher the standard deviation.

5.2.2.2 Attitude Data II -the High Variability Scenario

Another simulation was done to create a dataset with high attitude variability. A

high variability attitude measurements refers to the rotational angular measure-

ment in Pitch and Roll that have significant variation. In real-world scenarios,

high variability measurements often result from factors like strong winds and

high flight speeds. These conditions lead to unevenly distributed attitude data.

For this simulation, 14 % of the images were considered as nadir/near-nadir im-

ages, 24% were low tilt and 46 % were high tilt images. The mean Pitch and

Roll were measured at 5.21o and 6.02o respectively. The standard deviation was

measured at 4.61o and 6.01o for Pitch and Roll respectively, which indicates a

significant range of angular variations experienced and therefore approximates a

typical high variability scenario for a drone flight in medium to high wind con-

ditions. This is shown in Figure 5.4 and 5.5, where error bars are plotted to illus-

trate the degree to which each data deviates from the mean. This shows that the

majority of the data points had higher standard deviations while only a few had
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low standard deviations. The kurtosis measured was high, indicating extreme

values or more outliers in the attitude measurement. This explains situations

where the drone is not stable during the flight, resulting in IMU readings that

are more prone to deviations from the expected value. Hence, making a suitable

representation for analysis under high variability conditions.

Figure 5.4: A graph showing the Pitch angles and standard deviation represented
as error bars for the high variability scenario. The longer the error bar, the higher
the standard deviation.

Figure 5.5: A graph showing the Roll angles and standard deviation represented
as error bars for the high variability scenario. The longer the error bar, the higher
the standard deviation.
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5.2.3 Validation Dataset

The importance of incrementally validating a theoretical model during devel-

opment cannot be over-emphasized. A detailed description of the dataset used

to validate the ADGEO method can be found in Chapter 4, Section 4.5.1. This

section describes the real-world drone datasets and the GCPs acquired from the

Enfiel survey. The validation dataset was used to test ADGEO method under two

different scenarios as described in Section 5.5.1.

5.3 Method

This section explains the step-by-step process involved in developing and imple-

menting the ADGEO approach. The workflow is broadly broken down into three

main steps. The first step in Section 5.3.1 explains the calculation of the offset

errors for images with the shore in view. The second step explains the prediction

of offset errors for images over the water in Section 5.3.2. The last step explains

the image transformation process that was used to carry out the final correction

of the image. The entire workflow is illustrated in Figure 5.6, where the detailed

step-by-step process is explained.
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Figure 5.6: A flow diagram showing the novel ADGEO process of improving the accuracy by combining BA and DG. It illustrates the three
main stages - moving from image acquisition to image transformation. The stages in yellow shows the novel steps developed to improve
accuracy
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5.3.1 Step 1: The Shore - Calculation of Offset Errors

In ADGEO, the offset errors were first determined from the images with the shore

in view by finding the cartesian XY difference between the DG and the BA at a

given point on the reconstructed 2D image. The offset errors were then calcu-

lated and used to improve the accuracy of all images that do not have the shore

in view. The main aim of the ADGEO method is to improve the positional ac-

curacy by using the offset errors calculated from images over the shore to refine

the accuracy of images without the shore in view. Figure 5.7 highlights the steps

involved, proceeding from image projection through to the calculation of the off-

set errors. Details and explanations of the DG workflow for image reconstruction

from the object to sensor (Mext), sensor (Mproj) and image (M image) coordinate

system can be found in Equation (5.1),(5.2) and (5.3) respectively.

Figure 5.7: An illustration showing the steps and their mathematical equations
used from the image projection process to calculating the offset error between
Bundle Adjustment and Direct Georeferencing
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In Equation (5.1), (Mext) is a transformation matrix that converts a point from

the object coordinate system into the camera coordinate system by rotation and

translation. The extrinsic rotation matrix is represented as (Mm11−m33) and the

location is represented as (tx, ty tz). The (Mproj) is a perspective projection

that converts a point from the camera coordinate system to the sensor coordinate

system on a 2D plane as shown in Equation (5.2). The focal length is denoted as

(f ) and principal point is denoted as (Cx, Cy). The (M image) represent a trans-

formation matrix that converts a point from the sensor coordinate system into

the image coordinate system as shown in Equation (5.3). The (Mr) represent

the residual/offset errors in a matrix as shown in Equation (5.4). In the diagram

above, the offset error at a given point is denoted by (∆Xr, ∆Y r) in the image

coordinate system and is calculated by finding the difference between BA which

is denoated by (XBA, Y BA ) and the DG which is represented as (XDG, Y DG ). In a

given single image, the offset errors can be calculated for at least four points with

an even distribution across the image. The offset errors can only be calculated for

images with the shore in view. This is because identifiable ground features are

needed to calculate the difference in errors between the DG and the BA. Equation

(5.2) below details the formula for calculating the offset errors.

Mext =



m11 m12 m13 tx

m21 m22 m23 ty

m31 m32 m33 tz

0 0 0 1


(5.1)

Mproj =


fx 0 Cx 0

0 fy Cy 0

0 0 1 0

 (5.2)

Mimage =


fx 0 Cx 0

0 fy Cy 0

0 0 1 0


 m3×3 t3×1

01×3 11×1





Xw

Yw

Zw

1


(5.3)
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Mr =

 ∆Xr∆Yr

 =

 XBAYBA

−
 XDGYDG

 (5.4)

5.3.2 Step 2: The Water - Prediction of Offset Errors

Importantly, the offset errors cannot be calculated over the water using the ap-

proach in section 5.3.1 due to the absence of features. Thus, the practical option

is to use the shore to measure the offset errors. Building on Equation (5.4), a pre-

diction model was developed to predict the offset errors for those images without

identifiable features. ADGEO proposes an innovative approach that uses the off-

set errors measured from those images that have the shore in view to create a

prediction model that can estimate the errors for all subsequent images over wa-

ter (i.e. without features). The dependent variables required are the (i ii) attitude

angles in Roll and Pitch (from the low-cost IMU), (ii) the initial coordinate of a

given point (from a low cost GNSS) and (iv) the offset errors derived from earlier

images with the shoreline in view.

Figure 5.8 explains the steps involved from image projection to developing the

prediction model. From Equations (5.5) and (5.6), A represents an image from

the shore with Pitch and Roll values denoted as θSL and ϕSL and ( P w , P h )

denoted as the coordinate of a point measured in the image coordinate system.

B represents a transformation matrix with θFT and ϕFT denoted as Pitch and

Roll values for an image without a shore in view, and (∆Xr , ∆Y r) representing

the residual/offset error at a given known point calculated from images with the

shore in view. From Equation (5.7), X represents the unknown offset error from

an image without features (no shore in view) and is represented as (∆AU , ∆BU ).

In Equation (5.8), an inverse matrix is used to predict the unknown offset errors

at a given point in an image without features to derive Equation (5.9). The pre-

dicted offset error is added to a measured point at a given location to derive the
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predicted coordinate values which is denoted as X
′

and Y
′

as shown in Equation

(5.10). This then gives a new planimetric position of a given point in which the

true position of that point has been predicted. The unknown offset errors can be

calculated using a minimum of four points, which are evenly distributed across

the image. The next step is to perform an image transformation as represented

in Equations (5.11) and (5.12). The image is transformed using the original lo-

cation of a given point in conjunction with the predicted coordinate point via

affine transformation. The transformed coordinate after the affine transforma-

tion is denoted as X1
′

and Y 1
′

and is derived from A, B, C, D, E, and F which are

determined by comparing the location of source and predicted point and the x

and y which are the coordinates generated from the predicted model. In the final

stage, this affine transformation method warps the image to the true position of

the image in a predefined coordinate system.

A =


θSL ϕSL Pw

θSL ϕSL Ph

1 1 1

 (5.5)

B =


θFT ϕFT Pw

θFT ϕFT Ph

1 1 1




∆Xr

∆Yr

1

 (5.6)

X =


∆AU

∆BU

1

 (5.7)


θSL ϕSL Pw

θSL ϕSL Ph

1 1 1




∆AU

∆BU

1

 =


θFT ϕFT Pw

θFT ϕFT Ph

1 1 1




∆Xr

∆Yr

1

 (5.8)
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∆AU

∆BU

1

 =


θSL ϕSL Pw

θSL ϕSL Ph

1 1 1


−1 

θFT ·∆Xr +ϕFT ·∆Yr + Pw · 1

θFT ·∆Xr +ϕFT ·∆Yr + Ph · 1

∆Xr +∆Yr + 1

 (5.9)


X ′

Y ′

1

 =


∆AU

∆BU

1

+


X

Y

1

 (5.10)

X ′1 = Ax+By +C (5.11)

Y ′1 =Dx+Ey +F (5.12)

Figure 5.8: An image showing the image projection process, the offset error cal-
culated between BA and DA, the prediction of the offset errors and the final affine
transformation of the image.
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5.4 Results and Analysis

This section presents the results obtained for both the theoretical and the experi-

mental analysis. Section 5.4.1, validates the theoretical analysis by first assessing

the accuracy of the simulated low variability dataset. This was followed by as-

sessing the models’s accuracy in Section 5.4.1.2 under low variability. In Section

5.4.2, the second theoretical analysis, which included accuracy assessment and

model accuracy, was carried out for the high variability dataset. Additional anal-

ysis was conducted on sensitivity analysis of the variables in Section 5.4.3. For

more robust testing, experimental analysis was conducted in Section 5.5 using

the real-world data introduced in Section 4.5.3 that approximates a pure planar

surface such as a water body. This analysis included an accuracy assessment of

the two scenarios in Section 5.5.1, inter-rater reliability analysis of the two sce-

narios in Section 5.5.3 and analysis of the influence of overlapping percentage in

Section 5.5.4.

5.4.1 Theoretical Analysis 1: Low Variability Attitude Measure-

ment

5.4.1.1 Planimetric Accuracy Assessment

The theoretical assessment was conducted using the synthetic dataset. The anal-

ysis began by reconstructing the images using the traditional DG approach as

shown in Figure 5.9. The initial outputs of the DG approach revealed misalign-

ments in the grid lines, indicating a relatively low level of accuracy in the recon-

structed images. The resulting MAE measured for the traditional DG was 5m.

To improve the accuracy, the ADGEO method was subsequently employed to re-

fine the reconstructed 2D images, as shown in Figure 5.10. A cursory evaluation

of the outputs between the DG and ADGEO approaches suggests considerable

improvements in geometric accuracy for the latter. In Figure 5.10, the grid lines

exhibit better alignment, signifying an improvement in the accuracy of the recon-

structed images. The resulting MAE obtained was 2.2m, indicating a significant
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improvement when compared to the initial DG results. The visual comparison of

the two approaches in Figures 5.9 and 5.10 clearly illustrated the effectiveness of

the ADGEO approach in improving accuracy.

Figure 5.9: Initial results for the low variability scenario of the reconstructed 2D
images using the traditional DG approach with grid lines overlaid to aid in visual
analysis. The results show significant misalignment in the grid lines.

Figure 5.10: ADGEO results for the low variability scenario of the reconstructed
2D images with grid lines overlaid to aid in visual analysis. The result showed
significant improvement in the grid lines.
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5.4.1.2 Accuracy Assessment of the ADGEO Method - Low variability

Model accuracy assessment is an important step in evaluating the performance

and reliability of any proposed model (Teppati Losè et al., 2021). In this study,

the widely accepted linear regression method was applied to assess the accuracy

of the ADGEO method. The coefficient value provides valuable insights into the

degree of correlation between the predicted and observed values. The observed

values were derived by reconstructing images that were derived from perfectly

vertical position. This was to ensure that there were no tilt distortions in the re-

constructed 2D images. This provided the best approximation of an image with-

out corrections.

Analysing ADGEO’s performance in the low variability scenario using the R-

squared method revealed a high value of 0.93 as shown in Figure 5.11. This result

signifies a strong correlation between the predicted and observed values, indicat-

ing the model’s robustness and reliability if used processing imagery captured

during low wind conditions.

Figure 5.11: Assessment of the model’s accuracy under low variability attitude
measurement.
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5.4.2 Theoretical Analysis 2: High variability Attitude Measure-

ment

5.4.2.1 Planimetric Accuracy

The performance of the ADGEO method was also tested to assess its ability to

handle noisy measurements. This was done to simulate real-world scenarios

where strong winds or high flight speeds could affect the readings from the IMU.

To evaluate the performance of ADGEO method under these challenging con-

ditions, a second simulated dataset was generated as described in Section 5.2.1.

This enabled analysis of the method’s tolerance for high variability attitude mea-

surements, which is important for understanding the consistency and accuracy

of the method’s results and applicability for real-world environments.

To assess the accuracy, both the DG approach and the ADGEO method were

tested using a simulated dataset following the procedure described in Section

5.2.1. The analysis of the results revealed that the DG approach produced a

MAE of 11.1m, while the ADGEO method achieved a MAE of 9.8m. Thus, the

ADGEO method was able to improve the accuracy by approximately 12% but

suggests that there was no significant improvement in the accuracy as in the low-

variability tests. Further, it was evident from visual examination of the recon-

structed images in Figure 5.12 and 5.13 that improvement in the alignment of

the grid lines was not as apparent as the tests in the preceding section. These re-

sults imply that the accuracy derived from the ADGEO method was constrained

by the noisy measurement.
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Figure 5.12: An illustration of initial results of the reconstructed images using
the traditional DG approach with overlaid grid lines under high variability mea-
surement.

Figure 5.13: An image of the initial results of the reconstructed images using the
ADGEO method with overlaid grid lines under high variability measurement.
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5.4.2.2 Accuracy Assessment of the ADGEO Method - High Variability

A model accuracy assessment was also carried out to help evaluate the perfor-

mance and reliability of the proposed model in the high variability scenario.

From the analysis of Figure 5.14, an R-squared value of 0.028 was obtained, indi-

cating a weak correlation between the predicted and observed values. This find-

ing suggests that the ADGEO encounters challenges in effectively handling noisy

measurement conditions. The low R-squared value signifies that only a minimal

portion of the variability in the observed data is explained by the model’s predic-

tions.

Figure 5.14: Assessment of the model’s accuracy under High variability attitude
measurement.

5.4.3 Sensitivity Analysis

A sensitivity analysis was also performed - these sensitivity values indicate the

magnitude of change in the method’s predicted output in response to a unit

change in the corresponding input variable. The results in Table 5.3 provide im-

portant insight into how the proposed method responds to changes in these input

variables. Specifically, the sensitivity value for Pitch and Roll was found to be 0.6,

while the sensitivity value for the point location variable was 0.2. A sensitivity
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value of 0.6 for Pitch and Roll implies that even a small change in the values of

these variables would result in a relatively larger change in the predicted output

of the model. This suggested that Pitch and Roll were highly influential factors

in determining the accuracy and reliability of the model’s predictions. Any vari-

ations or errors in the measurements of Pitch and Roll could significantly impact

the model’s output, highlighting the need for surveys during low variability con-

ditions.

Table 5.3: Sensitivity analysis of the input variables for the ADGEO method

Input
variables

Roll Pitch Point location

Value 0.6 0.6 0.2

5.5 Experimental Results

The accuracy of the ADGEO method was also tested in a real-world scenario

using real-world data. This was done by exploring the various scenarios in which

the method could be used. The experimental analysis was conducted using the

open field dataset described in Chapter 4, Section 4.5.3, which can be categorized

as a low variability measurement. In this section, two scenarios were explored

and the findings are explained.

5.5.1 Description of the Two Scenarios

5.5.1.1 Scenario 1: Experiment conducted on Images Having Two Separate

Shores in View During the Survey

This experiment was conducted using the open field dataset, though it was adapted

to approximate a set-up for a survey over water. The experiment explored a situ-

ation where there were two shores in view on opposite sides of the water. In this

test, the first and last images of each flight line were assigned as the hypothetical

image with the shore in view, and the remaining images were classed as those

without the shore in view (featureless terrain). In predicting the offset errors,

158



GCPs which were visible in the first images of each flight line were used to model

the offset errors using the ADGEO method in Equation (5.10). Figure 5.15 illus-

trates what images were used to model the offset errors and are numbered from

1 to 6. After reconstructing the images using the ADGEO method as described in

Figure 5.8, the accuracy was assessed using the 30 GCPs placed on the open field.

Figure 5.15: An illustration for Scenario 1. This is a scenario where two different
shores are in view during the survey. The black and yellow arrows show the flight
direction from the shore and back to the shore.

5.5.1.2 Scenario 2 : Experiment Conducted on Images Having Only One Shore

in View

The second experiment explored a situation where only one shore was in view

during the drone survey. In this test, the first image for the first flightline and

the last image of the next flight line were defined as the image with the shore

in view and this order continued for the rest of the flightline. As illustrated in

Figure 5.16, the numbered images from 1 to 6 were used to predict the offset

errors using the ADGEO method.
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Figure 5.16: An illustration for Scenario 2. This is a scenario where one shore is
in view during the survey. The black and yellow arrows show the flight direction
from the shore and back to the shore.

5.5.2 Planimetric Accuracy

Figure 5.17 shows the calculated accuracy for each individual image without the

shore in view. The ADGEO method achieved a MAE of 3.7m and 3.91m in sce-

narios 1 and 2, respectively. This represents an improvement of 80% over the tra-

ditional DG method, which had a MAE of 18.9m. The accuracy of the approach

was also evaluated against the established BA method. While the BA method can-

not be applied over water bodies, the standard accuracy achievable in terrestrial

environments using BA can be used as a benchmark for comparison. The Mean

Absolute Error (MAE) obtained for the BA method was recorded at 1.8 m.

From the results, the ADGEO method helped smooth the peak errors in the DG

approach, which were caused by high Pitch and Roll values experienced during

the survey. From Table 5.4, it was also found that the standard deviation of the

MAE errors was reduced by applying the ADGEO method. Additionally, there

was no significant difference in the performance of the ADGEO method between
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scenarios 1 and 2, meaning that it can produce equally accurate results for both

scenarios. It was observed that the lowest MAEs measured were for images that

also exhibited low standard deviation. It was also found that the images cap-

tured closest to the shore (but not the ’shore’ images) did not display significantly

higher accuracy than those images captured further away from the shore. Possi-

ble explanations could be related to the calm winds during the survey however,

this could change in real surveys over water where as the drone moves away from

the shore, the wind speed tends to increase.

Figure 5.17: A graph showing the accuracy of the ADGEO method for Scenario 1
and 2 and compared with the traditional DG method. Both scenarios produced
similar accuracy.

5.5.3 Inter-Rater Reliability of the Two Scenarios

Inter-rater reliability is a measure of the consistency with which two or more

raters agree on the same observation (Gisev et al., 2013). Measuring the reliabil-

ity of a model is important to ensure that the model is reliable. In this study, the

inter-rater reliability was assessed between Scenario 1 and 2. This was done by
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comparing the MAE measured from Scenario 1 to the MAE measured from Sce-

nario 2. The goal of this comparison was to assess if the model was able to provide

a reliable result under different scenarios. To evaluate the inter-rater reliability,

the results were evaluated using paired sample t-test and intra-class correlation

(ICC) coefficient. The ICC is a statistical measure of the consistency of measure-

ments and provides information on the ability to differentiate variations between

measurements (Lim et al., 2022). The ICC value ranges between 0 and 1, where

a value of 0 indicates that there is no consistency in the measurements, whereas

a value of 1 indicates that the measurements are perfectly consistent. For this

analysis, the null hypothesis is that there is no difference in the measurement of

offset errors between Scenario 1 and 2.

From the results in Table 5.4, the mean and standard deviation difference re-

vealed that there were no significant differences between Scenario 1 and 2. The

ICC coefficient was measured at 0.81. This indicates that there is a high degree of

consistency in the prediction of the offset errors between Scenario 1 and 2, sug-

gesting ADGEO produces reliable results under different scenarios. The p-value

of 0.460 obtained from the paired sampled t-test also supports this conclusion. A

p-value greater than 0.05 indicates that there is not enough evidence to reject the

null hypothesis.

Table 5.4: Statistical Analysis Showing Mean Difference, Standard Deviation Dif-
ference, and Reliability Analysis Between Scenario 1 and 2

Scenario 1 Scenario 2 Mean and SD
differences

ICC
Coefficient

p-value

Mean
(m)

SD
(m)

Mean
(m)

SD (m) Mean
(m)

SD
(m)

3.73 1.67 3.95 1.55 0.22 0.12 0.821 0.460

5.5.4 Influence of Overlapping Percentage on the ADGEO Method

The impact of forward and side overlap on the accuracy of the ADGEO method

was evaluated using different overlap percentages. The evaluation was performed

by calculating the MAE for images reconstructed over the shore using the BA
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method, as well as the flight time and the number of tie points obtained. For this

analysis, different images with the shore in view were reconstructed using differ-

ent overlap percentages. The MAE for reconstructed images over the shore, the

flight time and number of tie points obtained for each overlap percentage were

calculated as shown in Table 5.5. The results showed that the higher the forward

and side overlap percentages, the better the accuracy of the reconstructed image

over the shore. This is because a sufficient number of tie points could be iden-

tified for higher image overlaps for the image reconstruction process. However,

higher forward and side overlap percentages also increase the flight time. Based

on the results, the optimum overlap percentage that produced a better accuracy

and less flight time was 30%/70% overlap. This is because it had lower forward

overlap and higher side overlap. Higher side overlap ensures that enough match-

ing points are found between two adjacent images over the shore, while lower

forward overlap ensures less images are captured, hence less flight time. It is

important to note that for 30%/30% overlap, the image reconstruction over the

shore performed poorly because there were not enough tie points found. This

analysis is important because the ADGEO prediction model is dependent on the

accuracy of the reconstructed image over the shore. Therefore, the higher the

accuracy obtained from the shore, the more accurate the prediction of the offset

errors for correcting the images without shore in view.

Table 5.5: Analysis on the Influence of Overlapping Percentages on ADGEO

Forward/Side
Overlap %

MAE (m) Flight
time

Altitude No of tie
points

70%/70% 2.1m 11mins 120 2007
50%/50% 3.0m 7mins 120 1684
30%/30% 4.8m 6mins 120 202
30%/70% 2.2m 9mins 120 1950
70%/50% 2.8m 7 mins 120 1705
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5.5.5 Example Results of Images Reconstructed Through Tradi-

tional DG and ADGEO Methods

This section shows sample images of the outputs produced by the traditional

DG and the ADGEO methods. To evaluate and demonstrate the applicability

of the ADGEO method, a survey over Blessington Lake, an inland waterbody

in Co. WIcklow, Ireland, was used for the assessment. Due to the difficulty of

placing targets, as previously explained in Chapter 4, the assessment was carried

out using static targets on the shore. The survey captured 10 images with the

shore in view but for the purpose of illustration, 3 images are presented in Figure

5.18. The images are shown in pairs, with the traditional DG method on the left

and the ADGEO method on the right. The ground truth image for the accuracy

assessment was obtained from Ordnance Survey Ireland high resolution aerial

orthoimagery which was acquired in 2018. This is a georeferenced aerial photo

with an accuracy in XY of 10cm. This provided a reliable benchmark dataset to

compare the two methods. It can be visually observed that after the application of

the ADGEO method, the location of the point measured in the ADGEO image (i.e

the red point) is closer to the ground truth point (i.e the green point) measured.

Additionally, as a proof of concept, an orthomosaic of the entire survey over the

Blessington lake has been produced from the ADGEO method and can be seen in

Appendix C.

164



(a) DG Method

(b) ADGEO Method
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(c) DG Method

(d) ADGEO Method
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(e) DG Method

(f) ADGEO Method

Figure 5.18: Example results of selected orthophotos and their MAE via tradi-
tional DG and ADGEO method. The images are overlaid on OSI high-resolution
aerial orthophoto for accuracy assessment.
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5.6 Discussion

5.6.1 Accuracy Assessment of the ADGEO Method

Based on the findings, the ADGEO method was found to be effective in improving

the accuracy under both simulations. However, it was more effective under low

variability attitude measurement conditions. ADGEO’s high accuracy under low

variability could be attributed to the low standard deviation of the data, suggest-

ing a high level of similarity in the data (Nagele, 2003). According to Bouthillier

et al. (2021) algorithms or models with low standard deviations tend to have ac-

curate predictions.

It therefore follows that high variability in data tends to affect the accuracy of the

model. The reason for this limitation is the inability of the ADGEO method to ef-

fectively account for any extreme variations. This implies that when confronted

with significant variations in the measured attitude data, the ADGEO method

will struggle. In a study by Bishop (2006), it was explained that high variation

in datasets makes it difficult for algorithms or models to learn the pattern within

the data. Also, according to Hastie et al. (2009), if the dataset used to predict

the values contains a limited number of input variables, the model may not have

enough information to predict. Thus, if the dataset input data contains a limited

number of different Roll and Pitch values, the model may not have enough in-

formation to generalize well. In the case of this study, because the model uses

only images over the shore, it tends not to have enough representation to help

the model to predict accurately.

5.6.2 Planimetric Accuracy

From the experimental analysis, the ADGEO method obtained a MAE of 3.7m,

thus out-performing the DG approach by 80%. Furthermore, when compared to

the BA accuracy of 1.8m in Chapter 4, Section 4.7.5, it is evident that the ADGEO

method closely approximates the BA’s accuracy. This means that the ADGEO
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method has the potential to incrementally close the accuracy gap with the BA

method. In the BA approach, changes in orientation of the sensor have limited

impact on the final reconstructed 2D image because the effect is mitigated by

the overlapping images with sufficient tie points which improve the POSE (Yuan

and Zhang, 2008; Rehak and Skaloud, 2016). However, in the traditional DG

approach, the accuracy of the reconstructed 2D image is directly linked with the

accuracy of the measurement of the IOPs and EOPs, as well as environmental fac-

tors such as wind speed and flight speed (Cramer et al., 2000; Jaud et al., 2018;

Dreier et al., 2021). ADGEO is able to increase the accuracy and outperform tra-

ditional DG because it combines some of the benefits of both BA and DG. This

helps to reduce the errors that are introduced by the orientation effect and the

environmental factors, and reduces the reliance on accurate EOP measurements.

The accuracies achieved through the ADGEO method provide further evidence

to suggest that drones with low-cost IMU/GNSS can play a role in mapping over

water if they employ these corrective procedures. This is because no method has

previously been developed to improve the planimetric accuracy of drones when

mapping over water. Hence, this method offers a practical solution to mapping

over water. Studies over water have not focused on improving positional accu-

racy because it is extremely difficult to improve accuracy by placing visible tar-

gets (Román et al., 2023; De Keukelaere et al., 2023). As a result, the accuracy

of mapping over water has been left to the accuracy of the IMU/GNSS. Conse-

quently, low-cost drones are often automatically considered unsuitable for map-

ping over water. The ADGEO method is the first of its kind that can be applied to

improve planimetric accuracy, and it opens up the possibility of using low-cost

drones for mapping over water.

These results suggest that ADGEO can best be applied in cases where there are :

(1) two shores in view and (2) one shore in view. This is achievable, as water sur-

veys will often be carried out close to the shore due to operational/Line of Sight
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restrictions. As a a guide, it is very important that images captured over the shore

cover 80% - 100% of the area being terrestrial. This requirement is important be-

cause the BA approach relies heavily on the ground features for accurate image

reconstruction. When stitching images together along the shore, insufficient ter-

restrial area can lead to poor reconstruction outcomes. Hence, errors in BA image

reconstruction have the potential to affect the accuracy of the measured offset er-

rors.

Additionally, it can be posited that the choice of sensor, whether multi-lens or

single-lens, will not affect or influence the performance of the ADGEO method

or its results. The ADGEO method is a reproducible method that can be used

with any frame sensor.

5.6.3 Influence of Flight Parameters

The influence of image overlap was analyzed by considering different forward

and side overlap percentages. In this thesis, analysis was made to provide a rea-

sonable overlap percentage as a guide when using the ADGEO method. The re-

sults revealed that 30%/70% was the optimum overlap percentages. The lower

forward overlap percentage ensures that less images are captured in the X-direction

of the drone survey. On the other hand, the higher side overlap percentage en-

sures that enough tie points are identified when performing BA at the shore.

Based on the combination of higher side overlap and lower forward overlap, the

flight time and the area covered are improved. Also, since the prediction accu-

racy of the offset errors for the ADGEO method is dependent on the accuracy

of the reconstructed shore image via BA, the higher side overlap ensure there is

good image reconstruction. The recommended overlap percentage in this study

should only be applied in context where the ADGEO method is to be applied.
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5.6.4 Reliability of the ADGEO Method

From the analysis, there was strong inter-rater reliability between the different

scenarios. There was also no significant difference in mean and standard devi-

ation. This result means that the ADGEO method can produce the same result

under different scenarios. This is important because it means that the method

can be used to reliably predict the offset errors. Thus, in situations where the

survey was conducted with one side of the shore in view, it can produce similar

results to a survey where there are two sides of the shore in view.

Also, the lack of significant difference in mean and standard deviation between

the different scenarios means that the method is not biased towards any partic-

ular scenario. In general, the most important element in this concept is to have

at least one side of the shore in view. However, one advantage that scenario 1

might have over scenario 2 is that both images from the sides of the shore can be

used in the reconstruction process. For example, in scenario 1, the first and last

image both have the shoreline in view. Therefore, in the instance where the mean

attitude difference between the first image over the shore and images over the

water is significantly high, the last image over the shore can be used - supposing

the mean difference is lower than the first image. On the contrary, when there

is only one side of the shore in view, there is no other alternative, especially in

cases where you have high mean attitude difference. In reality, when surveying

over water, the farther you move away from the shore, the stronger the winds.

This means that images captured even further away from the shore might show

characteristics of high attitude recording. As a result, the mean difference will

be significant. In such instances, scenario 1 might perform better than scenario

2 because the last image over the shore can be used to correct the images that are

farther away from the first image with the shore in view.
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5.6.5 Sensitivity Analysis

From the result, the input variables that are more sensitive to the output were

identified as the Pitch and Roll. This means that those attitude angles have the

greatest influence on the output of the model and explains why high variability

attitude measurements impact accuracy. The attitude angles are an important

element that introduces errors such as tilt distortions in images. This implies

that, in real-world applications, it is important to conduct drone surveys within

calmer weather conditions. This will ensure that the attitude measurements are

correlated.

5.6.6 Sources of Errors and Limitations

As already established in the methodology, one fundamental input variable in

the ADGEO process is the offset errors. The offset values between the BA and

the DG can be measured from identifiable features on the shore or alternatively

placing visible targets. These offset errors are crucial because they are used to

predict errors in images where the shore is not visible and use them to refine the

images without the shore in view. One main limitation of this method is that

the accuracy is dependent on the accuracy of the offset errors that are measured

from the shore. Thus, if the offset errors are measured with high accuracy, it

means that the observed points are close to the true values on the ground. In

such cases, the method can provide accurate predictions. Therefore, errors in

the offset measurements will tend to propagate into the predictions. This error

could have different causes, such such as low overlap side percentage and human

error in measuring the offset error. Further, the ADGEO method is dependent on

having favourable shore terrain. Therefore, in instances where the shore terrain

is rugged and has high vegetation cover such as trees, it might affect the ADGEO

method.
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5.7 Conclusion

One of the main contributions of this chapter was the demonstration of the ap-

plicability of a novel ADGEO method for improving accuracy when mapping

water bodies. This chapter also contributes to the understanding of the potential

of ADGEO in overcoming the limitations of traditional DG for mapping water

bodies and provides explanations on the mathematical model and context where

the model can be used in real-world scenarios. In this chapter, the theoretical

accuracy assessment of the ADGEO method was conducted to evaluate its per-

formance and limitations under different attitude measurements. The findings

demonstrated a potential for significant improvements in accuracy compared to

the traditional DG approach. The results from the theoretical analysis showed

that the ADGEO method was able to reduce the MAE from 5m to 2.2m under

low variability attitude measurement. Also, it was found that the attitude an-

gles were highly influential factors in determining the accuracy of the model’s

prediction. However, it was found that under high variability attitude measure-

ment, the ADGEO method cannot significantly improve the accuracy. Further-

more, the result from the experimental analysis with real world data confirmed

that the ADGEO method was able to improve the accuracy from the traditional

DG method of 18.9m to 3.7m. Also, the result showed that the ADGEO method

can be applied under two scenarios: (1) where there are two shores in view, and

(2) where there is one shore in view.

From these results, it can be concluded that using low-cost drones with ADGEO

provides a viable approach for improving the accuracy of the reconstructed 2D

images over water if care is taken to avoid high-wind environments. Importantly,

the ADGEO method is reproducible, sensor independent and can be applied to

different study areas. This approach is efficient, less expensive and less time-

consuming as ground targets are not necessarily needed in improving accuracy.

Thus, eliminating the risk of placing ground targets in inaccessible or difficult

areas.
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Considering the limitations outlined above, particularly with the limitation of

the ADGEO method dependent on the shore, the next chapter seeks to develop a

method that can be implemented even without the shore in view.

This chapter is based on a published peer-review paper: Essel, B., Bolger, M., Mc-

Donald, J., Cahalane, C. (2023) Developing a Theoretical Assessment Method for

an Assisted Direct Georeferencing Approach To Improve Accuracy When Map-

ping Over Water: the Concept, Potential and Limitations. International Archives

of the Photogrammetry, Remote Sensing and Spatial Information Sciences - IS-

PRS Archives. 48(1/W1-2023), 139–144.
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Chapter 6

AirMAP – An Automated Image

Registration Model for Mapping

Water Bodies using Multi-Sensor

Drone Data

This chapter presents a new method for improving the accuracy of image reg-

istration when mapping water bodies known as Automated Image Registration

Model for Mapping over Water (AirMAP). This novel method requires a pre-

trained model created from drone datasets captured with diverse attitude an-

gles. This model was trained using ML algorithms and was validated and tested

to analyse the model’s performance and to perform accuracy assessment for the

new datasets. In this chapter, the motivation and the objectives are first explained

in section 6.1. The datasets used for the training, validation and testing are de-

scribed in section 6.2. The step-by-step methods developed for the AirMAP ap-

proach are described in section 6.3 to give a clear understanding of the opera-

tional framework. The results and analysis for this methodology are presented in

section 6.4. Finally, the findings are discussed in section 6.5 and the conclusions

in section 6.6.
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6.1 Introduction

As demonstrated through theoretical and experimental analysis in the previous

chapter, the ADGEO model effectively improves the accuracy of reconstructed

2D images over water. This method was found to significantly improve the accu-

racy of a reconstructed 2D image over the water by up to 80% when compared

against traditional DG. However, as discussed in section 5.6.6, this approach ex-

hibits certain limitations. These limitations primarily include: 1) reliance on

the presence of a shore in some of the images, 2) sensitivity to favourable shore

geometry, and 3) reduced accuracy in conditions of highly variable attitude mea-

surements. These limitations could potentially hinder the applicability of the

ADGEO model in certain scenarios. For instance, in areas with dense vegetative

cover, such as trees and shrubs, identifying ground-truth features to determine

offset errors proves challenging. To address these limitations, it is important to

develop an approach capable of overcoming each of these constraints.

As explained in Section 2.5.1, image registration is a technique that can be used

to achieve accurate alignment of an image with no spatial information onto a

georeferenced image (Xiong and Zhang, 2010; Zhang et al., 2023). In a broader

sense, image registration functions by aligning a target image onto a reference

image (Ihmeida and Wei, 2021; Coulter et al., 2019). Over the years, the tech-

niques employed in image registration have evolved significantly, driven by tech-

nological advancements, increased computational power, and diverse application

requirements. In recent years, advanced ML and Deep Learning (DL) techniques

have been integrated into image registration. According to Cao et al. (2019),

various ML algorithms can be employed to learn from pre-trained image regis-

tration models to register new images. In Chen and Jiang (2021) for example, a

novel two-stage deep learning registration method for estimating transformation

parameters was developed to perform an image registration of a matching sub-

image. Their results demonstrated that their method can significantly improve

the geometric accuracy of remotely sensing image. Also, in studies such as Kim
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et al. (2012) and Wei et al. (2017), ML algorithms such as SVM and RF have been

used to learn from a trained medical imaging dataset to register new images.

Additionally, in Reddy et al. (2018), an Artificial Neural Network (ANN) based

ML approach was developed to register satellite images and achieved higher po-

sitional accuracy compared to conventional Rational Functional Models (RFM)

which is used to approximate the physical sensor model for geometric correc-

tions. These studies demonstrate that supervised ML can be employed to train

models using image datasets. The trained models can then estimate the trans-

formation of unseen images, which, when applied, enhances the accuracy of new

images.

As of the time of this study, no research has been carried out using ML to create

a pre-trained model that can be used to perform image registration of drone im-

agery captured over water. Therefore, this chapter will explore the possibility of

using a supervised ML approach for drone image registration. Supervised learn-

ing is a type of ML in which algorithms are trained on labelled data to learn the

relationship between input and output data (Barbarella et al., 2021). The goal is

to accurately define the mapping function so that the output variables for new,

previously unseen input data can be predicted (Brownlee, 2023).

In this chapter, a novel method which is called AirMAP is proposed for the pur-

pose of mapping water bodies by using drones. This method utilises a pre-trained

model to enable image registration. This approach broadly seeks to accomplish

three main objectives: (1) to explore and evaluate different ML algorithms for

this purpose, (2) to utilise ML to train datasets over relatively flat terrestrial ter-

rain with varying viewing angles and sensors, and, (3) to apply the trained model

to predict the transformation matrix necessary for registering an image acquired

over water. This approach is once again based on the fundamental assumption in

this thesis that water can be considered a flat surface. It is this assumption that

allows the pre-trained model from the flat terrestrial dataset to also be applied to
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water. The model uses two type of input images: a reference image and a target

image. The reference image is an image that has been accurately georeferenced

while the target image is a direct georeferenced image with no corrections applied

(thus the ARMFET and ADGEO techniques have not been applied). The model

seeks to first map and learn the transformation that maps the target image to the

reference image and this links back to the illustration in Section 2.5.1 where a

target image is mapped onto a reference image. Subsequently, the model pre-

dicts the transformation parameters that can be used to register a new unknown

image (water).

6.2 Data

6.2.1 Description of the Training, Validation and Testing Dataset

Having adequate drone data for the training, validation and testing of a ML

model is essential. In this chapter, the datasets used were sourced from two pri-

mary areas: data obtained through drone surveys conducted by the researcher as

part of this thesis (primary data) and data retrieved from online repositories (sec-

ondary data). The inclusion of secondary data sources was necessitated by factors

such as time, cost and resources of collecting adequate drone data from field sur-

veys over a flat terrestrial terrain with varying flight direction, flight dynamics,

viewing angle and sensors. Thus, this study leveraged drone data repositories

available on the internet (references to sources are in Table 6.1, supplementing

the primary data obtained through field surveys as detailed in Chapter 4, Section

4.5.3.

The two primary constraints encountered in obtaining suitable secondary data

that adhere to the assumptions of this thesis from Section 1.7 were: having images

captured with a sensor over a relatively flat area, and navigation data captured

with a low-cost drone. The datasets for the ML model were obtained from two

sensors: a drone without a self-levelling gimbal and a drone with self-levelling
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gimbal. The latter was introduced to ensure the replicability of AirMAP for

drones with self-levelling gimbals, as well as testing the AirMAP approach on a

low variability dataset. In ML, the mapping relationship learned from the train-

ing dataset is highly dependent on how representative the data is. This means

that the training data for the ML task must adequately capture the underlying

distribution of the ML problem being solved. Therefore, this study ensured that

adequate data were acquired which were representative of the navigational data

that can be derived during different conditions (low wind, moderate wind and

high wind) when surveying over water.

A detail breakdown of the datasets used for the training, validation and testing

is provided in Table 6.1.
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Table 6.1: A detailed Description of the Characteristics and Sources of the Dataset.

Sensor
No. of
images

Flight
height

Pitch Analysis Roll Analysis Type of
land-
cover

Stdv
for ele-
vation

Source Total
Mean Std Pitch

range
Mean Std Roll range

Sequoia 70 120m 5.0o 4.3 Max: 16.8
Min: 0.06

5.6o 1.4 Max: 8.06
Min: 1.3

Open
field

0.54m Field
survey

1221

Sequoia 54 120m 5.2o 4.2 Max: 16.9
Min: 0.4

4.12o 1.94 Max: 9.6
Min: 0.3

Open
field

0.54m Field
survey

Sequoia 59 120m 5.8o 5.0 Max: 17.6
Min: 0.21

1.2o 1.6 Max: 8.9
Min: 0.02

Open
field

0.54m Field
survey

Sequoia 444 120m 3.1o 2.7 Max: 17.5
Min: 0.007

6.6o 3.0 Max: 16.0
Min: 0.05

Open
Field

0.8m PIX4D

Sequoia 594 120m 5.5o 3.5 Max: 15.8
Min: 0.01

4.0o 3.4 Max: 17.7
Min: 0.005

Farmland 0.73m Kallimani
et.al.,
2020

DJI FC6310 (Phan-
tom 4 pro)

250 120m 0.2o 0.02 Max: 1.3
Min: 0.01

0.2o 0.02 Max: 1.3
Min: 0.02

Open
field

0.86m GeoNadir 350

DJI FC6310R (DJI
Phantom 4 RTK)

100 120m 0.12o 0.01 Max: 1.1
Min: 0.01

0.12o 0.01 Max: 1.3
Min: 0.01

Open
field

1.01m GeoNadir

Total 1571 1571

180

https://cloud.pix4d.com/site/48773/dataset/390580/map?shareToken=72f7d505-4fa1-4d52-9b76-3ef5665b5c39
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/RYA2ZQ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/RYA2ZQ
https://dataverse.harvard.edu/dataset.xhtml?persistentId=doi:10.7910/DVN/RYA2ZQ
https://data.geonadir.com/fairgeo?extent=-20037508.34%2C-11708082.99%2C20037508.34%2C11708082.99
https://data.geonadir.com/fairgeo?extent=-20037508.34%2C-11708082.99%2C20037508.34%2C11708082.99


6.2.2 Statistical Overview of the Datasets

This section provides a detailed examination of the datasets used in the training,

validation and testing the ML model. This examination focuses on analysing

the distribution of attitude angles and assessing the overall characteristics of the

data. The description of the datasets are categorized based on the type of sensor

used to acquire the images: Sequoia and DJI FC6310 sensor.

6.2.2.1 Sequoia Dataset

The Sequoia datasets comprised 1221 images, with a slightly imbalanced distri-

bution across the different types of images: nadir/near nadir (14.6%), low tilt

(25.9%), and high tilt (59.5%), replicating the classes defined in Chapter 4, Sec-

tion 4.2.1. This imbalance was due to the sensor not having a self-levelling gimbal

and is typical of the datasets used in previous chapters. Drones without self-

levelling gimbals struggle to maintain the sensor at nadir/near-nadir position or

even at low tilt in moderate or high wind conditions. These sensors are most sta-

ble at very low wind speeds, up to a maximum of 3 m/s. However, the Sequoia

dataset provides a good representation across the different types of images. This

representativeness ensures that the model is trained on sufficient data within

each image category, enhancing its generalizability. Further, the mean Pitch and

Roll angles for the Sequoia dataset were 5.3o and 3.7o respectively. Also, the

standard deviation was calculated at 4.5o and 2.4o in Pitch and Roll respectively.

Figure 6.1 and 6.2 shows the distribution of Pitch and Roll angles.
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Figure 6.1: An image showing the distribution of Pitch angles for the Sequoia
dataset. The image sequence on the x-axis refers to the number of individual im-
ages used (n=1221). The distribution of the angles shows a well-balanced dataset
which is required for effective training of the model.

Figure 6.2: An image showing the distribution of roll angles for the Sequoia
dataset. The image sequence on the x-axis refers to the number of individual im-
ages used (n=1221). The distribution of the angles shows a well-balanced dataset
which is required for effective training of the model.
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6.2.2.2 DJI FC6310 Sensor Dataset

The DJI FC6310 sensor (from the Phantom 4 pro and RTK drone) dataset com-

prised of 350 images. Out of these images, 97% were categorized as nadir/near-

nadir images and 3% as low tilt images. Almost all of the datasets were within

the nadir/near category because the drone contains a gimbal which stabilises the

sensor. The mean Pitch and Roll angles were 0.3o and 0.28o respectively. Also,

the standard deviation were 0.21o and 0.2o for Pitch and Roll respectively, indi-

cating a very low variability in the attitude angles. Figure 6.3 and 6.4 shows the

distribution of Pitch and Roll angles.

Figure 6.3: An image showing the distribution of Pitch angles for the DJIFC6310
dataset. The image sequence on the x-axis refers to the number of individual im-
ages used (n=350). The distribution of the angles shows a very correlated dataset
which is typical of a sensor with a gimbal.
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Figure 6.4: A graph showing the distribution of Roll angles for the DJI FC6310
dataset. The image sequence on the x-axis refers to the number of individual im-
ages used (n=350). The distribution of the angles shows a very correlated dataset
which is typical of a sensor with a gimbal.

6.3 Methods

This section details the development of the AirMAP methodology, which is broadly

broken down into two main stages. The first stage describes the data preparation

steps, and the second stage describes the process involved in training and assess-

ment of the model. This workflow is illustrated in Figure 6.5, where each process

is depicted.
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Figure 6.5: Illustration of the novel AirMAP approach: the first stage is high-
lighted in green and second stage in yellow. It leads from the data acquisition
and training to homography estimation and accuracy assessment. This method
ensures that an image captured over the water for varied attitude angles can be
improved by registering the image using a pre-trained ML model.

6.3.1 Data Preparation for the ML Model

Data preparation can be defined as the transformation of raw data into a form

that is more suitable for modelling. Data preparation is an important step in the

methodology that ensures that the data is suitable for training and evaluating the

model (Brown et al., 2020). Data preparation is one of the most important steps

in ML process because each dataset is different and specific to a project, requiring

specific preparation. Hence, the data was first prepared by labelling the datasets.

6.3.1.1 Labelling data

Labelling data or data annotation in ML is an important task that involves as-

signing class labels to data points (Desmond et al., 2021). This process is one of

the essential stages in preparing data for supervised ML. For supervised ML to

work, labelling the dataset is needed for the model to learn and make accurate
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predictions.

In ML, data labelling is the process of identifying raw data and adding one or

more meaningful and informative labels to provide context so that a ML model

can learn from it. In supervised ML, the accuracy of your trained model will de-

pend on the quality of the data labelling.

As part of the data preparation step, all the training and validation datasets were

carefully labelled. The goal was to label the data using parameters that directly

influences the image registration process of a given image. The dataset was la-

belled using input and output variables. The input variables, also known as

features or independent variable can be described as the attributes of the data

that are used to make predictions while the output variables, also known as tar-

get or dependent variables are the variables that the ML model is designed to

predict. The input variables used in this chapter include the attitude angles

(Pitch, Roll, Yaw), sensor parameters (focal length and sensor size), and flying

height. The output variable included the 3*3 homography parameters repre-

sented as h11,h12,h13,h21,h22,h23,h31,h32 and h33 (the matrix representation

can be found in Equation (6.1) below).

6.3.1.2 Homography Estimation for Individual Images

The next step was to obtain the output variable that the ML is to predict. The first

step in this process was to obtain point correspondences between the target and

reference images using a feature detector algorithm. This links back to the expla-

nation of how these correspondences are derived in Section 2.5.2.1. The next step

was to derive the true correspondences by filtering or removing the bad matches

using the RANSAC algorithm. In this step, multiple thresholds were experi-

mented and the suitable threshold that best filters the points was chosen using a

weighted sum score. After a set of true correspondences have been identified, the

homography matrix is then computed. According to Zeng et al. (2019), the widely
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and common way to parameterize a homography (H) is with a 3x3 matrix as

shown Equation (6.1). In this equation, h11,h12,h13,h21,h22,h23,h31,h32, and

h33 are the nine parameters that define the homography transformation. These

parameters can be parameterized in various ways, but one common method is to

use a set of eight parameters and normalize the matrix such that h33 = 1. This

normalization ensures that the matrix is not scale-dependent and remains a valid

homography. The homography matrixH as detailed in Luo et al. (2023) is defined

as follows:

H =


h11 h12 h13

h21 h22 h23

h31 h32 h33

 (6.1)

In computer vision, the homography transformation can be represented by Equa-

tion (6.2). In this equation, point p, represent the location of a point in the target

image that is mapped onto point p’, as shown in Equation (6.3), which is the cor-

responding point in the reference image.

p′=Hp (6.2)

p =


x

y

1

 p′ =


u

v

1

 (6.3)

The Equation (6.2) can therefore be expanded to derive Equation (6.4).


u

v

1

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33




x

y

1

 (6.4)
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To find H , the most common approach is to use the DLT method. In this thesis,

the DLT method was chosen because it can be computed directly from the corre-

sponding points without the need for any iterative or optimization algorithms, as

well as its robustness.

6.3.1.3 Direct Linear Transformation Method

DLT is a method that estimates the homography between a target image and a

reference image from a set of correspondences. DLT is a technique used to com-

pute a matrix equation of the form Ax = 0, where A represents a specific matrix,

and x denotes the vector of unknown variables we aim to determine.

By observing Equation (6.4) from above, it can be rewritten in a linear form to

get Equations (6.5) and (6.6) below:

u =
h11x+ h12y + h13

h31x+ h32y + h33
(6.5)

y =
h21x+ h22y + h23

h31x+ h32y + h33
(6.6)

By rearranging Equation (6.5) and (6.6), Equations (6.7) and (6.8) can then be

derived :

h31xu + h32yv + h33v − h11x − h12y − h13 = 0 (6.7)

h31xu + h32yv + h33u − h21x − h22y − h23 = 0 (6.8)

Each correspondence (identical keypoints between the target and reference im-

ages) provides two rows of matrix A. For a point correspondence, the Equation

(6.7) and (6.8) can be written in matrix form as Ax = 0 as shown in Equation (6.9)

where:

A =

 −x −y −1 0 0 0 ux uy u

0 0 0 −x −y −1 vx uy v

 (6.9)
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and h9 is set to 1 as shown in Equation (6.10) :

h =
(
h11 h12 h13 h21 h22 h23 h31 h32 1

)T
(6.10)

The eight degrees of freedom of the homography matrix H can then be deter-

mined with at least four true point correspondences. When solving for H , it’s

important to note that no three points can be collinear, e.g. it should be evenly

distributed. This is because a well-distributed points ensures a robust and accu-

rate estimation of the homography transformation across the entire image. Thus,

it will preserve the spatial relationship between different parts of the image, lead-

ing to a more accurate alignment.

6.3.1.4 Removal of Outliers

Outliers can be described as data points that significantly differ from the rest of

the dataset. In ML, outliers can disproportionately influence the learning process

and compromise the model’s ability to generalize effectively to new data. As

such, it is required to identify and correct such mistakes or errors in the data.

Accordingly, data cleaning was performed by using the statistical description in

section 6.2.2 to identify the outliers. Attitude angles in Pitch and Roll that were

above 18o was considered as an outlier because they were unusual or extreme

observations.

6.3.1.5 Normalisation of Data

Data normalisation is an important step in the ML process that involves trans-

forming the data into a consistent scale, ensuring that all features have a similar

range of values (Magee, 2023). Due to the different scales associated with the

features in the training datasets such as the attitude angles and the homogra-

phy parameters, data normalisation was performed. The Min-Max scaling data

normalisation method was used to scale all the features from 0 to 1. The Min-

MaxScaler function from the scikit-learn (Pedregosa et al., 2011) library in Python

was used for this process.
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6.3.1.6 Data Splitting

Data splitting is a process that involves dividing all data into subsets (Magee,

2023). Typically, the data is broken down into a training, validation, and testing

dataset (Cruz et al., 2023b). A training dataset is used to actually teach a ma-

chine learning model to recognize patterns and relationships between input and

target variables, and is typically the largest dataset. Further, a validation dataset

is a subset of data that is used to evaluate the performance of the ML model dur-

ing training. It helps fine-tune the model by adjusting hyperparameters and also

helps prevent overfitting of the training data. Lastly, a testing dataset is a subset

of data that is used to evaluate the performance of the trained model. Its goal is

to assess the accuracy of the model for new, unseen data. The testing dataset is

only used after the model has been trained and fine-tuned on the training and

validation datasets.

In this study, a stratified random sampling technique was used to split the data

into three subsets which replicate best practice for ML drone applications used

by (Cruz et al., 2023b; Thiruchittampalam et al., 2023). This technique was em-

ployed because of the slightly imbalanced proportion of the image type. The

data was split in such a way that the proportion of each image class is the same

in both the training and the validation dataset. Overall, 70% of the data was

used for training, 15% was used for validation and 15% was used for testing. The

datasets obtained from the field survey were used solely for the testing of the

ML model. This was because these datasets contained GCPs, which enabled the

accuracy assessment of the ML model.

6.3.2 Training and Assessment of the ML model

6.3.2.1 Model Training

After preparing the data, the next step of the ML process is to train the model.

During this process, different ML algorithms were employed on the training

dataset to identify and learn the patterns in the data. As indicated in section
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2.5.4, the model was trained on three supervised algorithms: KNN, RF and SVM.

The training process involved exploring the best hyperparameters to be used.

6.3.3 Hyperparameter Selection

In ML, hyperparameters are parameters that control the learning process of an

ML model. They are set prior to training and guide the learning process and

their choice can significantly impact the performance of an ML model (Bishop,

2006). Optimal hyperparameters can lead to a model that generalizes well to

new data, while incorrect or poorly chosen hyperparameters can result in over-

fitting or underfitting (Jordan, 2017). The choice of hyperparameters for all the

ML algorithms that were examined in this chapter were selected using the Grid-

SearchCV module in Sklearn to iterate over a range of hyperparameters. In this

process, the hyperparameters with the best results on the validation data were

chosen to train the model.

6.3.4 Selection of ML Model

As the ML problem being investigated is a regression problem, the assessment of

each ML algorithm used was evaluated using Root Mean Square Error (RMSE).

RMSE is a commonly used method to assess the accuracy of a ML model because

it shows how far predictions fall from measured true values using Euclidean dis-

tance and also provides a measure of error that is in the same unit as the target

variable, making it easier to interpret and compare (Chai and Draxler, 2014).

This process involved making a prediction of the homography matrix and testing

it on the validation dataset. The evaluation was then carried out in order to help

select the best performing ML algorithm. In the end, the selected best performing

ML algorithm was used to test against the test dataset.

6.3.5 Geometric transformation of the model

The next step was to apply the pre-trained model on a new dataset (testing

dataset) to geometrically transform the image. This geometric transformation
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can be understood as a mathematical operation that transforms the target image

onto a reference image (GIRARD and Girard, 2003). The different transforma-

tions comprise scaling, shearing, rotation, and translation of the target image

(Cao et al., 2019). The geometric transformation was performed using the per-

spective transformation method. One of the key characteristics of perspective

transformation is that straight lines remain straight even after the transforma-

tion. In the process, for a given pixel (x, y) in the original image, the homography

transformation would yield a new position (x’, y’) in the transformed image. The

transformation was applied in Python using the cv.warpPerspective function in

OpenCV (Bradski, 2000).

6.3.6 Evaluation of the Trained Model

After the testing dataset has been transformed, an accuracy assessment was per-

formed on the dataset. This assessment was performed to measure the accu-

racy of the transformed images by comparing its against a ground truth image

(an image rectified using GCPs). The assessment was performed using the MAE

method. The MAE was used for easy interpretation of the errors and also, it is

less sensitive to outliers (Chai and Draxler, 2014).
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6.4 Results

6.4.1 Analysis of Feature Detectors

The performance of the feature detectors were assessed by calculating the pre-

cision percentage. The precision percentage is calculated as the percentage of

correct matches after filtering through RANSAC over the total matches. The test

was conducted on selected images (n=200) comprising of 150 from the Sequoia

dataset and 50 from the DJI FC6310 dataset. This sample size was chosen because

it gives a good representation of the entire datasets and also to reduce the pro-

cessing time of testing the feature detectors on the entire datasets. From the re-

sult in Table 6.2, the SIFT algorithm had the highest average keypoints detected.

Also, the precision percentage analysis shows that SIFT provides the highest pre-

cision of 38% while the ORB had the lowest precision of 2%. Furthermore, it was

found that all the detectors struggled to detect significant number of keypoints

on the Sequoia datasets because of low sensor resolution of the Sequoia sensor

(1.2 mega pixel resolution) coupled with the usual difficulty of finding keypoints

over farmland due to its repetitive nature.

In contrast, the average number of keypoints detected from the DJI FC6310 sen-

sor datasets was significantly higher, thus 50% higher than the Sequoia dataset.

This was due to the very high sensor resolution (20 mega pixel). However, the

higher resolution resulted in significantly longer processing times, approximately

60% longer than the Sequoia dataset.

Table 6.2: Analysis of Various Feature Detectors Showing the Precision Percent-
age and Average Number of Keypoints Detected.

Feature
detector

Precision percentage Average No. of keypoints
Sequoia DJI

FC6310
sensor

Total Sequoia DJI
FC6310
sensor

Total

SIFT 30% 46% 38% 1570 2367 3937
KAZE 26% 40% 33% 1122 2184 3306
AKANZE 2% 9% 5% 646 970 1616
ORB 2% 3% 3% 352 777 1129
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6.4.2 Analysis of the RANSAC threshold

This RANSAC threshold analysis was done to assess the best performing thresh-

old to remove the outliers, an important step because the initial points detected

contain incorrect matches and this helps to reduce the matching error. The ac-

curacy of the RANSAC algorithm for outlier removal is greatly influenced by the

threshold parameter used. For example, if the threshold is too large, then the

RANSAC algorithm will generate a line which has higher probability to include

outliers. However, if the threshold is too small then the RANSAC algorithm may

find very few matches. As a result, selecting an optimal threshold that will give

high accuracy while producing good number of matches is important. This op-

timum threshold was selected by calculating the weighted sum score. The two

metrics used for the weighted sum score calculation were (i) accuracy in RMSE

and (ii) the average number of keypoints detected for each threshold with both

metrics normalised to have the same scale. The first metric was normalised to

have the maximum value as 0 and the minimum value as 1. This is because the

lower the RMSE, the better. In contrast, the second metric was normalised to

have maximum value as 1 and the minimum value as 0 because the higher the

number of keypoints detected the better. A higher weighting of 0.6 out of 1 was

assigned to the first metric because it has greater influence on the accuracy of the

derived homography while a lower score of 0.4 was assigned to the second metric.

From the Table 6.3, different thresholds from 0.8 to 0.2 were explored. From

the result, high RMSE values were recorded for thresholds ranging from 0.6 to

0.8. This is because higher thresholds increases the tolerance of the algorithm,

which leads to inclusion of bad matches in the filtering. Also, very low RMSE

was recorded for thresholds ranging from 0.2 to 0.4. This is because, in such

instances, the tolerance of the RANSAC algorithm is reduced, which is less sen-

sitive to bad matches. However, these reduced thresholds produced very few

good matches. Hence, this will likely increase the chances of uneven distribu-

tion of keypoints, which is essential for accurate estimation of the homography.
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For these reasons, the highest weighted score which was the 0.5 threshold was

selected as the optimum threshold. This threshold produces a low RMSE and as

well a good number of correspondences which will ensure a fair and even distri-

bution of keypoints.

Table 6.3: Accuracy Assessment of the Various Thresholds Explored and their
Corresponding Average Number of Good Matches Detected

Threshold
Accuracy Correspondence

detected
Score

Weighted score = 0.6 Weighted score = 0.4
RMSE Normalisation Average

No. of
correspon-
dence

Normalisation

0.8 20 0 1250 1 0.40
0.6 9 0.55 924 0.39 0.48
0.5 0.5 0.97 750 0.07 0.61
0.4 0.03 0.99 722 0.02 0.60
0.2 0.021 1 710 0 0.60

6.4.3 Evaluation of the ML Models on Validation Dataset

Assessing the performance of the ML algorithms in predicting the homography

matrix is important in selecting the best-performing model. After the best fea-

ture detector algorithm and the optimal threshold has been identified to remove

outliers, the next analysis was to evaluate the performance of the supervised al-

gorithms used to train the model. This analysis assessed the accuracy of the ML

models in predicting the output variables (homography parameters) using the in-

put features. From the results in Table 6.4, the Sequoia dataset shows that KNN

outperformed the other ML models. Also, the SVM recorded the poorest RMSE.

Additionally, the DJI FC6310 sensor datasets on the other hand produced compa-

rable accuracy among all the ML algorithms. As a result, there was no significant

difference in their performance. The ML algorithms were able to produce simi-

lar results because the attitude angles from the DJI FC6310 sensor dataset were

highly correlated as described in section 6.2.2.
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Table 6.4: Accuracy Assessment of the ML Algorithms

Dataset ML model Accuracy
(RMSE)

Sequoia
KNN 5.2
RF 8.4
SVM 12.3

DJI FC6310
KNN 2.8
RF 3.1
SVM 3.8

6.4.4 Accuracy Assessment on Test Data

After the evaluation of the ML model, the accuracy assessment was performed us-

ing the KNN algorithm on the testing dataset. The first accuracy assessment was

conducted on the Sequoia datasets using the drone datasets acquired from the

field survey. This dataset was used for the testing because it contained recorded

GCPs which provided a reliable ground truth data. The DJI FC6310 sensor dataset

was assessed using the Phantom 4 RTK dataset as indicated in the Table 6.1. This

dataset was used for testing because it was acquired using an RTK GNSS mode,

providing reliable ground truth data.

The result from Figure 6.6 and 4 showed that the Sequoia dataset had a MAE of

2.8m and MAE of 1.8m for the DJI FC6310 dataset. The results suggest that the

AirMAP model is able to improve the accuracy by 84% for the Sequoia sensor

and 63% for the DJI FC6310 sensor. Typically, due to the high tilt displacement

effects in high tilted images, they tend to have significant MAE in XY. However,

from the results in Figure 6.6, the AirMAP model was able to reduce the MAE

in XY. The results shows that the model was also able to significantly reduce the

MAE for high tilt images by 80%. Overall, the AirMAP model performed well

across the different types of images, thus showing its robustness.
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Figure 6.6: A graph showing the accuracy Assessment of the Sequoia dataset.
This graph shows that the AirMAP is able to reduce the MAE by approximately
84%.

Figure 6.7: A graph showing the accuracy Assessment of the DJI FC6310 dataset.
This graph shows that the AirMAP is able to reduce the MAE by approximately
63%.
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6.4.4.1 Example of Test Results

This section compares sample images of the results produced by the AirMAP

approach and the traditional DG method. To evaluate and demonstrate the ap-

plicability of the AirMAP approach, a survey over Blessington Lake, an inland

water was used for the assessment. Due to the difficulty of placing targets as

previously explained in Section 4.3, the assessment was carried out using static

features on the shore. The survey had about 10 images captured with the shore

in view. For the purpose of illustration, 3 images are presented in the Figure

6.8. The images are shown in pairs, with the traditional DG method on the left

and the AirMAP method on the right. Additionally, an orthomosaic of the entire

survey over the water produced from the AirMAP model has been produced and

can be seen in Appendix C. The ground truth for the accuracy assessment was

obtained from Ordnance Survey Ireland (OSI) high resolution aerial photo. This

provided a good benchmark dataset to compare the two methods. From the ex-

ample results, the AirMAP method improved the accuracy of the reconstructed

image, hence providing evidence of its applicability and effectiveness over water.
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(a) DG Method

(b) ADGEO Method
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(c) DG Method

(d) ADGEO Method
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(e) DG Method

(f) ADGEO Method

Figure 6.8: Example results of selected reconstructed images and their MAE via
traditional DG and AirMap. The images are overlaid on OSI high-resolution
aerial photo. The red arrow indicated on the map illustrates the magnitude of
the misalignment.

201



6.5 Discussion

6.5.1 Data Quality

As postulated in Priestley et al. (2023); Chen (2022) and Magee (2023), the im-

portance of data quality in ML cannot be overstated, as the performance and

reliability of any ML models are heavily dependent on the quality of the data

used for training and testing. Due to this, it is essential to explore the quality of

data used to train the model.

Firstly, one of the most significant factors ensuring data suitability for a drone

methodology intended for water surveys was the acquisition of sufficient data

over flat terrain. Secondly, having representative training data is crucial for the

model to learn and generalize well. This will mean that acquiring a drone dataset

with varying viewing angles in Pitch and Roll is important for the model to learn.

As explained in Kotsiantis (2007), one of the goals of ML model is to learn from

examples and generalize with some degree of knowledge. From the description

of the dataset in section 6.2.2, it can be seen that the dataset acquired provides

a good representation for each of the three categories of images. In this case, the

trained model will not be biased. Models with high bias often suffer from under-

fitting, poor generalisation and inability to learn complex relationship (Jordan,

2017). In this study, the results from Figure 6.6 demonstrate that both low and

high MAE values from the traditional DG are reduced. This suggests that the

AirMAP is not biased in only enhancing images with low MAE, which is typi-

cally caused by low wind speeds, but can also improve images with high MAE,

which is often due to moderate to high wind conditions.

Further, another data quality issue that has significant impact on the ML perfor-

mance is data labelling (Magee, 2023). The process of data labelling could be

susceptible to various sources of errors that can introduce noise and inaccuracies

into the training dataset (Schubert et al., 2023). Given the potential error sources

202



such as human annotation errors and misclassification that can be incorporated

into labelled datasets, it is important to correct for labelling errors. In this pro-

posed AirMAP model, data label errors will directly affect the accuracy of the

predicted homography matrix. Inaccurate data labels introduce noise into the

data training process. The sensitivity of noisy data means that even a small num-

ber of mislabelled features can have a disproportionate impact on the accuracy.

This can lead to poor registration of images which will affect the MAE in XY of

the registered images.

6.5.2 Evaluation of the ML Model

The performances of ML algorithms depend greatly on the general characteris-

tics of the training dataset (Boateng et al., 2020). Thus, there is no specified ML

algorithm that works best on any given problem. Therefore, to determine the

best ML algorithm for a given problem or datasets, multiple ML algorithms with

different hyperparameters are tested to decide on the best algorithm.

From the results, the KNN algorithm was the best performing ML model for the

Sequoia and DJI FC6310 sensor datasets. The high performance of the KNN ML

model could be influenced by various factors. Firstly, the characteristic of the

dataset had an influence on the performance of the KNN algorithm. This was

because the dataset was fairly balanced with sufficient data on the different view-

ing angles. KNN is a type of machine learning algorithm that makes predictions

based on the similarity of data points. Hence, it could perform well if similar

data points are found.

As explained in computer vision and remote sensing papers by Boateng et al.

(2020) and Srivastava (2020), KNN works on the assumption that similar things

exist in close proximity. In this process, the training data is stored and when

a prediction is required, the K-most similar records from the training datasets

are located and from this, a prediction is made. In the context of this study, the
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training data used had a good distribution of different viewing angles. In this

case, when a prediction is supposed to be made, the KNN model is able to search

through the trained data for similar records to make an accurate prediction. Un-

like the other ML models where the prediction is based on learning the patterns

from the data. Thus, these methods assume a specific mathematical form for the

data for prediction. Also, in scenarios where the features are highly correlated,

the decision boundaries of RF and SVM may be affected. Thus, high correlation

between features can affect their ability to create accurate decision boundaries.

The KNN on the other hand, doesn’t draw explicit decision boundaries. Instead,

it looks at the distance between data points to make predictions. This makes it

less sensitive to the specific mathematical relationships between features.

Further, KNN is a non-parametric algorithm, meaning it makes minimal assump-

tions about the underlying distribution of the data. Thus, the structure of the

model is determined by the data itself and this is quite convenient, because in the

“real world”, most data do not obey pre-established patterns (Barbarella et al.,

2021). Also, it can adapt well to different types of datasets without assuming

a specific functional form for the decision boundaries. This flexibility can be

advantageous when dealing with complex relationships that may not be easily

captured by parametric models like SVM. Overall, the result from the KNN ML

algorithm demonstrates and confirms the predictive performance of ML (Kigo

et al., 2023).

6.5.3 Accuracy Assessment of the AirMAP Method

Based on the results in section 6.4.4, the accuracy assessment demonstrated that

the AirMAP model was able to improve the planimetric accuracy of the orthoim-

agery by 84% and 63% for the Sequoia and the DJI FC6310 sensor dataset respec-

tively.
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Comparing the results to the ARMFET and the ADGEO methods presented in

the Chapter 4 and 5 respectively, the AirMAP model significantly outperformed

the former while marginally outperforming the latter in improving the planimet-

ric of the orthoimagery. This can be attributed to the AirMAP model’s ability to

learn from large datasets that contains different viewing angles. This ability en-

ables the model to learn the patterns, fostering a robust learning process that sig-

nificantly contributes to its accuracy. Thus, it can be concluded that the AirMAP

approach closely approximates the BA’s accuracy to a greater extent than the two

aforementioned methods. Nonetheless, the intention of the proposed AirMAP is

not primarily to outperform the BA method. Rather, it strives to achieve a higher

operational applicability by enabling its application in situations such as high at-

titude measurement and not dependent on the shores to improve accuracy while

reliably reaching an accuracy below 3m.

Further, one main limitation of the traditional DG method is that the accuracy

of the resultant reconstructed image is dependent on the orientation influence.

Thus, higher attitude measurement in Pitch and Roll will lead to higher MAE

in XY. However, the findings from the Sequoia dataset suggest that the AirMAP

model’s accuracy is less sensitive to high attitude angular measurements. This

means that the AirMAP method can effectively enhance the planimetric accuracy

in conditions of low and high attitude measurement. Nevertheless, to achieve a

much better or optimum result, the larger proportion of the dataset to be regis-

tered should not fall between 15o-18o. This is because the model might struggle

to produce an optimum result to improve the accuracy of images that falls within

such range. While the operation threshold for the AirMAP model is between 0o-

18o, the insufficient training data within this range prevents the model from gen-

eralizing effectively. Hence, to optimise the performance of the AirMAP model, it

is important to ensure that only a limited proportion of attitude angles in a given

dataset falls within that range.
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6.5.4 Applicability of the AirMAP Model

The AirMAP method will provide an opportunity to map over water surfaces

at different geographic scales. Particularly, it can effectively map large-sized,

medium and small size water bodies. Mostly, mapping a large to medium sized

water body has limitations such as extensive and prolonged data collection, vary-

ing viewing angles, as well as distinct data processing techniques (Lo et al., 2023).

Due to these existing limitations, the AirMAP method provides the technique

that can seamlessly reconstruct a high quality orthomosaic over a large-sized wa-

ter body. Hence, the AirMAP method can particularly be useful in mapping water

bodies in Ireland.

In Ireland, the EPA’s reporting cut-off for lake water quality monitoring is 50 ha

or 0.5 km2 (Dalton, 2018). Thus, a total of 224 lakes are currently included in the

EPA’s national surface waters monitoring programme (Delaney et al., 2023). Out

of these lakes, 111 are greater than 1 km2 or 100 ha, which can be considered

as large sized lakes. This effectively highlights the significance and the potential

applicability of the AirMAP method.

Furthermore, this model provides the opportunity to map over water without re-

lying on the shore as a reference to improve accuracy. This model closes the gap

of the main limitation of the ADGEO method in situations where the shore might

have unfavourable terrain such as high vegetative cover, hilly areas, etc. Addi-

tionally, the model can effectively work in situations where there is high attitude

measurement as a result of strong winds.

Further, one of the main problems with drone mapping over water is the stan-

dardisation of the accuracy of orthoimagery for water pollution time series anal-

ysis. Typically, when monitoring the evolution of water pollution, significant

differences in positional accuracies of the orthoimageries acquired over differ-

ent dates will lead to image overlay mismatches, consequently causing mixed
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change or inaccurate detections. These constrains are affected by the tradional

DG method where accuracies are dependent on the attitude measurement. The

development of the AirMAP method provides the opportunity to standardise

the accuracy derived from multiple orthoimageries over water. This will ensure

timely intervention and mitigation of pollution events.

Another advantage of the model is that it does not require a specific overlap per-

centage. Thus, the performance of the model is not dependent on the overlap

percentage and lower overlap percentages can be leveraged during surveys to in-

crease the efficiency of flight time. On the other hand, the specified flight height

recommended for data collection is 120m. This is because the training of the

model was based on data collected at this specified flying height. Hence, the

model is fine-tuned to perform best at the height of 120m. This specified height

was used because that is the maximum height an operator can fly a drone in the

open category under the EU drone regulations (European Union Aviation Safety

Agency, 2019). This height helps maximize the area coverage and improves the

flight time as well.

In summary, the workflow for the AirMAP model can be replicated for different

sensors. Also, regarding its usability, the pre-trained model can easily be used

for a new datasets in Python. This offers an easy way to automate the process.

6.5.5 Limitations of the AirMAP Model

The main limitation of the model is that it is computationally demanding. Over

the years, one key disadvantage of using ML models is that it requires powerful

computers to process large datasets. Also, the model is data driven and requires

sufficient training data to be collected and labelled. Labelling large datasets can

be very tedious and time consuming Cruz et al. (2023a); Magee (2023). Moreso,

the model is sensor specific and would require a similar process to be followed
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when training for different sensors. This makes the model less transferrable than

use of the shore in ADGEO or image corrections through ARMFET.

6.6 Conclusion

This chapter presented a method called AirMAP - a method for improving the

accuracy of reconstructed images over water using image registration techniques

coupled with ML. This model was built and trained on large datasets containing

varying viewing angles. One of the main contributions of this chapter was to

develop a novel method that can be applied to map water bodies at different geo-

graphic scales while not depending on the shore as reference to improve accuracy.

In this chapter, the dataset for the training, validation and testing were acquired

from two sensors: Sequoia and DJI FC6310. These datasets were trained on three

ML algorithms: KNN, RF and SVM. The findings revealed that the KNN algo-

rithm was the best-performing algorithm for predicting the homography matrix.

The results from the accuracy assessment demonstrated that the AirMAP model

can achieve a MAE of 2.8m and 1.9m for the Sequoia and the DJI FC6310 sensor

respectively. It was found that to optimise the performance of the model, it is

imperative to ensure that only a limited proportion of attitude angles in a given

dataset fall within 15 deg to 18 deg.

Furthermore, the findings demonstrated that the proposed model closely approx-

imate the BA’s accuracy as compared to the traditional Direct Georeferencing

(DG) approach. The usability of the model can be achieved by using the pre-

trained model in python. Moreover, the workflow for the model can be replicated

for different sensors. The novelty of the AirMAP model is particularly seen in its

robustness, its operational applicability, and its automated approach.
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Chapter 7

Conclusions and Future Works

The main goal of this thesis was to explore and enhance the traditional pho-

togrammetric methods that are employed to map water bodies using low-cost

drones. The core contributions of this thesis included: 1) a theoretical assessment

to benchmark the accuracy of navigational errors, which was validated using

real-world data, 2) development of a novel analytical photogrammetric method

to improve the traditional DG approach, 3) development of a novel method that

exploits the features from the shore to further enhance the DG approach and 4)

development of a scalable method for mapping larger water bodies.

This chapter first summarises the methods from this doctoral thesis in Section

7.1. It follows this with a presentation of the main novel contributions to the

area of mapping water bodies with low-cost drones in Section 7.2. Potential im-

provements to the methods developed in this thesis are detailed in Section 7.3.

This chapter concludes with some final remarks on the work in this thesis in Sec-

tion 7.4.
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7.1 Thesis Summary

This thesis investigated the area of mapping water bodies with low-cost drones,

and through a detailed literature review, gaps in the current knowledge were

identified. Based on these gaps in knowledge, four research objectives were iden-

tified.

7.1.1 Objective 1: Benchmark and Test the Accuracy of the DG

Method

The literature review identified that to-date, no research had been carried out

to benchmark the accuracy of drone images of water bodies generated using the

DG method. As a result, benchmarking and testing the accuracy of imagery ob-

tained from low-cost drones required developing a simulator for theoretical anal-

ysis. These theoretical tests were carried out to determine the effects of errors

from navigational sensors identified in Chapter 3. These errors were divided into

three: GNSS errors, IMU errors and sensor rotation angle influence.

7.1.2 Objective 2: To Analyse the associated errors in the images

derived using the DG method and propose an analytical

photogrammetric method to improve them

This phase of the research was the natural progression on the theoretical test and

was essential for validating the traditional DG method using real-world datasets.

Identifying and quantifying the errors associated with imagery derived from the

DG method was crucial to developing novel photogrammetric methods that can

effectively improve the accuracy of the reconstructed 2D images. The lack of

attention among photogrammatrist in minimising these errors provided the mo-

tivation to develop the novel ARMFET method. This method was explored and

discussed in Chapter 4.
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7.1.3 Objective 3: To develop a method that integrates BA and

DG in a single workflow by using the features from the

shore as a reference to enhance the accuracy of drone im-

agery over water bodies

The methodology designed for the second objective had a limitation: the accu-

racy improvement was tied to the accuracy of the attitude angles measured by

the IMU. To further close the gap between low-cost drones and high-end drones,

there was the need to explore whether it was possible to combine both DG and BA

in an established photogrammetric technique known as ISO. This novel method-

ology was theoretically tested using synthetic data and validated using real-world

data. The results from the test and the validation were detailed in Chapter 5.

7.1.4 Objective 4: To develop a method that aims to improve ac-

curacy, efficiency, and scalability for generating orthoim-

agery for larger water bodies

The last objective of this thesis was to develop a generalisable methodology that

does not rely on the shore as a reference for improving the accuracy of drone

imagery over water. This novel methodology involved training ML algorithms

on drone datasets containing diverse attitude angles. This methodology required

the estimation of transformation parameters from a pre-trained model to im-

prove the accuracy of drone imagery over water. This method was explored and

discussed in Chapter 6.
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7.2 Main Contributions to the Field of Mapping Wa-

ter Bodies with Low-cost Drones

The work carried out in this thesis contributed to four primary areas relating to

the field of mapping water bodies with low-cost drones. In the following sections,

the methodology designed to complete each objective and the tests carried out are

briefly assessed in terms of their contribution to the body of knowledge in this

field.

7.2.1 Benchmarking the DG Method

One area in which the DG method has not received attention is its potential for

use with low-cost drones for mapping water bodies. During the literature review,

it was identified that no research had been carried out to benchmark the accu-

racy of drone images of water bodies generated using the DG method. Although

existing studies have employed the DG method for mapping water bodies, nei-

ther of these studies benchmarked the accuracy of the DG method.

The thesis addressed these shortcomings by developing a simulator that enabled

benchmarking and that was validated with real-world data. The simulator was

developed using the standard photogrammetric collinearity equations to quan-

tify and analyse the error sources that limit the accuracy of a reconstructed 2D

image in Chapter 3. The error sources that most contributed to this were identi-

fied as GNSS and IMU errors and sensor rotation angle influence. The theoretical

test results revealed that the accuracy of the sensor orientation had the greatest

influence on the accuracy of the reconstructed 2D image compared to the GNSS

and IMU errors. A central finding of the application of the DG method was that

it yielded significant errors in the resulting reconstructed 2D images. Such errors

have a detrimental effect on its potential application in water monitoring appli-

cations. The work done in this study has provided a detail understanding of the

accuracy of DG method when using low-cost drones for mapping water bodies.
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This will help drone operators to be well informed of the error tolerance of their

drone. The focus in subsequent chapters of the thesis was to develop methods to

improve the accuracy.

7.2.2 Developing an Analytical Photogrammetric Method

One of the core contributions of this thesis was to develop the analytical pho-

togrammetric method, ARMFET, which is presented in Chapter 4. During the

literature review, it was also identified that no studies have been carried out to

improve the accuracy of the resulting imagery derived through the DG method.

Additionally, no studies had explored or analysed the errors associated with us-

ing the DG method for low-cost drones for mapping water bodies. These errors

were identified as ground principal point offsets, tilt displacement and scale vari-

ations. The ARMFET method was therefore developed to correct for these errors

without using GCPs and was compared to the traditional DG images. The results

confirmed that this method was able to improve the accuracy of reconstructed

2D images derived from the DG method. Furthermore, the influence of wind

speed and direction on attitude angles was quantified. The work done in this

study has shown that analytical photogrammetric method can be used to remove

errors associated with images captured over water. This method enhances the

filed of photogrammetry as no such method has been explored in correcting for

the errors associated with DG without using GCPs.

7.2.3 Developing a Method that Exploits the Shore

Although the novel ARMFET method performed well and had its strengths, Chap-

ter 5 identified limitations that required improvement. The main limitation was

that its accuracy relied heavily on measuring accurate attitude angles and this

led to inaccuracies in the calculated tilt corrections which did not reflect the true

error on the ground. To further close the gap between low-cost drones and high-

end drones, there was a need for further exploration on developing a method that

could exploit the shore in an adaption of the ISO technique. This led to the de-
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velopment of the novel ADGEO method, which combined the benefits of BA and

DG to improve the accuracy of drone imagery over water.

To evaluate and test the ADGEO method’s accuracy, a two-part assessment was

carried out. The first assessment was a theoretical analysis that detailed the per-

formance and limitations under different attitude measurements using synthetic

data. The effects of the attitude angles in influencing accuracy were also investi-

gated. The results from the theoretical analysis demonstrated that ADGEO could

achieve significantly better accuracy than the traditional DG method and this

was validated using real-world data in the second part of the assessment for two

scenarios: (1) where there were two shores in view, and (2) where there was one

shore in view. It was observed that the ADGEO method significantly improved

the accuracy of the reconstructed 2D images. The optimum overlap percentage

that produced a better accuracy when using the ADGEO method was identified.

The work done in this study has provided a method that drone operators or pho-

togrammetrist can adopt to map water bodies. This method provides a solution

to the long-lasting problem that photogrammetrist face in terms of improving

the accuracy of images over the water when using low-cost drones. In broader

context, this method can be applied both in coastal and inland waters.

7.2.4 Scaling for Mapping Larger Water Bodies

Although ADGEO improves on the traditional DG method through the integra-

tion of BA in areas of visual features (i.e. the shore), it has a built-in shortcoming

in that it requires such areas to have favourable shore geometry. Also, it has a

limitation of reduced accuracy in conditions with highly variable attitude mea-

surements such as strong winds. Consequently, these limitations hinder the ap-

plicability of ADGEO in certain situations.

In Chapter 6, these shortcomings were addressed through a novel ML approach

called the AirMAP. The advantage of this approach was that it allowed enhance
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accuracy without the need for shore features. Additionally, it is a scalable method

that can be applied to map larger water bodies. This method presented a novel

approach for mapping water bodies using image registration techniques and a

ML approach. The results identified the best-performing ML algorithm for pre-

dicting the transformation parameters for image registration. The experimen-

tal tests identified the best-performing feature detector algorithm and thresh-

old for removing bad keypoint matches. The accuracy assessment demonstrated

that the AirMAP method could significantly improve the accuracy of drone im-

agery when mapping water bodies. The AirMAP method was observed to closely

approximate the BA’s accuracy compared to the traditional DG approach. This

study is important work as we start to refine our understanding of our environ-

ment and for Monitoring, Reporting and verification (MRV) that is now required

under various Environmental legislation. Also there are several moves to build

digital twins that will demand the most accurate data. The techniques devised

here could integrate with those goals to deliver highly accurate data and aid with

advanced environmental monitoring using low cost drones.

7.3 Future Work

This thesis explored and enhanced photogrammetric methods for mapping water

bodies using low-cost drones. In the course of the development of these methods,

several areas were identified for future work where further research and analysis

could advance and benefit the methods developed as part of this thesis.

7.3.1 Additional Data Source

One significant challenge encountered during the development of the AirMAP

method was acquiring training data with diverse flight parameters and sensor

models as collecting real-world drone datasets through extensive flight campaigns

over large flat open fields proved challenging. Therefore, additional work is

required to generate synthetic data to supplement real-world data. As demon-
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strated in various ML studies, synthetic data plays a crucial role in building ro-

bust models. Platforms like Microsoft AirSim, an open-source and cross-platform

simulation environment designed for autonomous systems like drones, cars, and

robots, offer the potential to simulate the drone’s sensor and flight dynamics in

any virtual 3D environment. This would allow incorporating diverse flight pa-

rameters into the model, which will lead to the overall robustness and adaptabil-

ity of the model.

7.3.2 Algorithm Improvements

In the course of this research, avenues where ADGEO and AirMAP methods can

be improved have been identified.

7.3.2.1 ADGEO Method

ADGEO currently calculates and predicts offset errors independently for each

flight line, based on images captured with the shore in view. One potential im-

provement could be to combine all flight lines to collectively predict the offset

errors. However, this requires modifying the model architecture to handle input

data from every flight line. Exploring mathematical techniques such as Singu-

lar Value Decomposition (SVD) to decompose the ADGEO matrix equation into

singular values and vectors that could allow handling a larger number of input

data.

7.3.2.2 AirMAP Method

The AirMAP model was trained using supervised ML algorithms. While these

algorithms provided a solid foundation for the model’s functionality, an oppor-

tunity exists to further enhance its robustness. Deep learning approaches, such

as Neural Networks and Multilayer Perceptrons (MLPs), present compelling av-

enues for achieving this goal. Neural Networks, characterised by their ability

to learn complex patterns from large datasets, offer significant potential for im-

proving the performance of the AirMAP model. Similarly, MLPs, a type of feed-
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forward neural network architecture, offer another promising approach for en-

hancing the AirMAP model’s capabilities.

7.4 Final Remarks

The initial motivation for this thesis was to monitor water quality using low-cost

drones. This motivation led the researcher to focus on the development of pho-

togrammetric techniques that can be used to prepare a dataset to monitor water

quality. Despite the challenges identified, this study proposed solutions that suc-

cessfully enhanced the performance of low-cost drones for mapping water bod-

ies. The contributions from this thesis add to the current knowledge, providing

robust and practical techniques that can be utilised by state institutions like the

Environmental Protection Agency, local government authorities, researchers, and

non-governmental organisations. While the use of low-cost drones for mapping

water bodies remains understudied, it is the author’s opinion that significant ad-

vancements in the field are likely to occur in the coming years.
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Appendix A : Detail Calculation of Changes in Pitch

and Roll

Table 1: Below gives a detail calculation for changes in Pitch angle and its corre-
sponding error

Ori
Error
in X
and Y
(m)

Total
Error
(m)

Ori
and
GNSS
Error
in X
and Y
(m)

Total
Error
(m)

Ori
and
IMU
Error
in X
and Y
(m)

Total
Error
(m)

Ori,
GNSS
and
IMU
Error
in X
and Y
(m)

Total
Error
(m)

Pitch X Y Error
(X,Y)

X Y Error
(X,Y)

X Y Error
(X,Y)

X Y Error
(X,Y)

1o 0.02 2.11 2.11 1.09 3.18 3.61 1.02 3.11 3.51 2.09 4.18 5.01
2o 0.04 4.23 4.23 1.11 5.30 5.73 1.04 5.23 5.63 2.11 6.30 7.13
3o 0.06 6.36 6.36 1.13 7.43 7.86 1.06 7.36 7.76 2.13 8.43 9.26
4o 0.08 8.50 8.50 1.15 9.57 10.00 1.08 9.50 9.90 2.15 10.57 11.40
5o 0.11 10.65 10.65 1.18 11.72 12.15 1.11 11.65 12.05 2.18 12.72 13.55
6o 0.14 12.81 12.81 1.21 13.88 14.31 1.14 13.81 14.21 2.21 14.88 15.71
7o 0.18 14.99 14.99 1.25 16.06 16.49 1.18 15.99 16.39 2.25 17.06 17.89
8o 0.22 17.18 17.18 1.29 18.25 18.68 1.22 18.18 18.58 2.29 19.25 20.08

Table 2: Below gives a Detailed Calculation for Changes in Roll Angle and its
Corresponding Error

Ori
Error
in X
and Y
(m)

Total
Error
(m)

Ori
and
GNSS
Error
in X
and Y
(m)

Total
Error
(m)

Ori
and
IMU
Error
in X
and Y
(m)

Total
Error
(m)

Ori,
GNSS
and
IMU
Error
in X
and Y
(m)

Total
Error
(m)

Roll X Y Error
(X,Y)

X Y Error
(X,Y)

X Y Error
(X,Y)

X Y Error
(X,Y)

1o 2.11 0.02 2.11 3.18 1.09 3.61 3.11 1.02 3.51 4.18 2.09 5.01
2o 4.23 0.04 4.23 5.30 1.11 5.73 5.23 1.04 5.63 6.30 2.11 7.13
3o 6.36 0.06 6.36 7.43 1.13 7.86 7.36 1.06 7.76 8.43 2.13 9.26
4o 8.50 0.08 8.50 9.57 1.15 10.00 9.50 1.08 9.90 10.57 2.15 11.40
5o 10.65 0.11 10.65 11.72 1.18 12.15 11.65 1.11 12.05 12.72 2.18 13.55
6o 12.81 0.14 12.81 13.88 1.21 14.31 13.81 1.14 14.21 14.88 2.21 15.71
7o 14.99 0.18 14.99 16.06 1.25 16.49 15.99 1.18 16.39 17.06 2.25 17.89
8o 17.18 0.22 17.18 18.25 1.29 18.68 18.18 1.22 18.58 19.25 2.29 20.08
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Appendix B : Drone Trajectory

Figure 1: Drone trajectory with photo centers and GCP’s showing the positional
accuracy for Direct Georeferencing before correction,and compares the result to
BA with GCPs and BA with no GCPs.
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Appendix C : Example Results of Mosaicked Drone Datasets

Figure 2: An orthomosaic of a drone dataset over water via the traditional DG.
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Figure 3: An orthomosaic of a drone dataset over water via the ADGEO method
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Figure 4: An orthomosaic of a drone dataset over water via the AirMAP method
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