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Abstract

Bayesian additive regression trees (BART) is a Bayesian tree-based model which can
provide high predictive accuracy in both classification and regression problems. Within
the Bayesian paradigm, regularisation is achieved by defining priors which ensure that
each tree contributes modestly to the overall ensemble, thereby enhancing generalisation.
Consequently, BART has proven to be very useful in a wide array of applications.

However, the standard BART model is limited in certain respects. This thesis introduces
some novel extensions to the BART framework to address certain key shortcomings. The
inherent lack of smoothness, which is intrinsic to the piecewise-constant nature of the
decision trees, is the motivation behind two of our proposals. The first involves the in-
corporation of Gaussian processes while the second uses penalised splines in the terminal
nodes. Both of these novel approaches yield demonstrable improvements from the points
of view of predictive accuracy and uncertainty calibration in extensive simulations and
real-world applications.

Another drawback of the standard BART model is that it is designed for predicting
univariate outcomes. We introduce a third extension to embed BART in the seemingly
unrelated regression framework to deal with multiple outcomes and model the covariance
structure arising from their joint distribution. The method is applied in a causal setting
in order to determine the cost-effectiveness of a novel medical intervention.

The incorporation of penalised splines is designed to introduce smoothness to BART’s
predictions. Concurrently, the extension to model multivariate outcomes within a seem-
ingly unrelated regression framework enhances BART by structuring the covariance
among responses. The synthesis of Gaussian processes with BART exemplifies this
dual enhancement, simultaneously facilitating smooth predictive surfaces and capturing
structured dependency, although the latter is within the feature space.

ix
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CHAPTER 1
Introduction

This thesis is presented in the form of three distinct, self-contained chapters. This
overall introduction chapter aims to outline the content contained within the chapters
that follow and to draw parallels between their overlapping themes and purposes, where
appropriate. Broadly speaking, this thesis describes some extensions to the Bayesian
additive regression trees framework. We begin by providing relevant background moti-
vation and then present dedicated chapter summaries in Section 1.2.

1.1 Motivation
Binary decision trees are non-parametric statistical models based on recursively
partitioning the feature space to create subsets that are homogeneous with re-
spect to a response variable. Their advantages include the ability to handle both
categorical and continuous covariates, high interpretability, and the flexibility to
approximate functions without specifying a parametric functional form. Addi-
tionally, they are adaptable to various tasks, including continuous regression and
classification. These properties have made binary decision trees a popular choice
among researchers and practitioners for statistical analysis, further supported by
the widespread availability of implementations across numerous software packages
and programming languages.
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1.1. Motivation

Among the earliest examples of tree-based approaches specifically developed for
predictive purposes are those introduced by Belson (1959) and Morgan and Son-
quist (1963), concentrating on the examination of survey data. Most of the current
methodologies, which continue to be widely used and recognized, are based on the
adoption of a “greedy search” technique for constructing trees. This technique
avoids solving the optimisation problem for the entire tree structure in favor of
initiating at the root node and proceeding downward in a sequential manner to
identify the optimal tree configuration. Murthy and Salzberg (1995) provided em-
pirical validation that such a greedy search strategy consistently approaches the
performance of an ideal tree. Notable implementations of this framework include
the CART (Breiman et al., 1984) and C4.5 (Quinlan, 1993) algorithms, with the
latter being an extension of the ID3 algorithm (Quinlan, 1986).

Subsequently, Chipman et al. (1998) introduced a Bayesian approach to the CART
algorithm by establishing a prior structure for the tree and its parameters, and
conducting a stochastic search to navigate the tree space. This method enables
deriving a posterior distribution over trees, thereby assigning higher probabilities
to more accurate (‘good’) trees. A similar methodology was also suggested by
Denison et al. (1998), with notable distinctions outlined by Chipman et al. (1998).
These include basing the tree specification on the actual count of terminal nodes
using a truncated Poisson distribution and employing Reversible Jump Markov
Chain Monte Carlo methods (RJ-MCMC; Green, 1995) for tree-space exploration.

Simultaneously, in the late 1990s, Breiman introduced several ensemble meth-
ods that leveraged tree-based models as their core components, such as bagging
(Breiman, 1996) and arcing (Breiman, 1998) ensembles. These techniques, along
with the work of Ho (1998), laid the groundwork for what would later emerge as
one of the most acclaimed and widely used methods — random forests, officially
introduced by Breiman (2001). In a different vein, Friedman (2001) proposed
another class of tree ensembles characterised by additive functions, where small
regression trees, produced through CART, contribute in an additive manner to
modelling the variance of the target variable. The rise of ensemble models marked
a significant phase in the development of novel and robust statistical models.
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1.1. Motivation

Within a Bayesian context and drawing inspiration from earlier ensemble methods,
Chipman et al. (2010) introduced Bayesian additive regression trees (BART), con-
stituting a robust ensemble of Bayesian CART trees. BART adeptly handles both
regression and classification tasks by modelling a univariate response with shallow
trees, which are regularised through specific priors on the tree structure and con-
ditional prior distributions for leaf parameters given the tree structure. This setup
has the same spirit as the approach of Friedman (2001), with each tree making a
modest contribution to the overall ensemble. The ensemble’s additive nature fa-
cilitates sampling the joint distribution of all trees through a Bayesian backfitting
algorithm (Hastie and Tibshirani, 2000), which serves as the models’ primary sam-
pling mechanism. BART has demonstrated excellent predictive performance and
uncertainty calibration, benefits attributed to its Bayesian underpinnings. More-
over, BART retains most of the adaptability and advantages of tree ensembles,
making it a versatile tool in the literature on tree-based models (Dorie et al., 2019;
Sparapani et al., 2020; Kim, 2022; Wu et al., 2021; Cao et al., 2023).

Over a decade since its initial publication, BART has inspired an active research
environment, leading to numerous extensions for various scenarios not originally
encompassed by its assumptions. An excellent review of recent advances to BART
is provided by Linero (2017). Key developments include adapting BART for high-
dimensional data (Linero, 2018), using probabilistic splitting rules (Linero and
Yang, 2018), tailoring BART for survival analysis (Sparapani et al., 2016), covering
spatial extensions (Müller et al., 2007; Kim, 2022), addressing heteroscedasticity
(Pratola et al., 2020), generalising the framework beyond conditional conjugacy
(Linero, 2022a), adding model trees as building-blocks of the ensemble (Prado
et al., 2021), and providing visual tools to aid interpretability (Inglis et al., 2024),
among others. Theoretical advances have also been developed to fill the lack of
understanding as to precisely why BART has worked so well (Ročková and Saha,
2019; Ročková and Van der Pas, 2020). In addition, BART has emerged as a central
method in various causal inference applications. One of the pioneering showcases of
BART in this domain was due to Hahn et al. (2020), which achieved prominence by
surpassing competing methods in causal analysis benchmarks (Dorie et al., 2019).
Comprehensive reviews of BART’s role in causal inference have been provided by
Hill et al. (2020) and Linero and Antonelli (2023).
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1.1. Motivation

Enhancing the computational performance of BART is also an active field of re-
search. He and Hahn (2023) introduces a stochastic hill-climbing technique claimed
to be an efficient adaptation of BART, enabling faster model estimation. Moreover,
BART is readily accessible in open-source statistical software like R (R Core Team,
2024), bolstered by well-crafted and performance-tuned packages such as dbarts
(Dorie et al., 2024), BART (Sparapani et al., 2021), and bartMachine (Kapelner
and Bleich, 2016). These packages offer proficient implementations that support
a variety of outcome types including continuous, binary, categorical, and time-
to-event data, enabling the model to be readily adapted to different application
settings.

Despite the successful general performance of BART, the model relies on assump-
tions that may be violated for different applications, and still possesses some key
limitations which have yet to be adequately addressed. In this work, we aim to
extend BART in a few different directions and offer further alternatives to practi-
tioners. One such limitation concerns the additive and piecewise-constant nature
intrinsic to the tree-based methodology. This was mitigated through two of the
proposed approaches in this thesis. First, the novel GP-BART method was devel-
oped in which a Gaussian process (GP) prior was integrated into the conditional
distribution of the terminal nodes, predicated on the tree structure. Given the
inherent capacity of GPs to exhibit smoothness for particular kernel functions,
which delineate their covariance structure, the GP-BART model facilitates the
incorporation of smoothing within an entirely Bayesian paradigm.

Regarding this same limitation, we introduce another extension, the novel spBART
model, which adds smooth effects through the employment of additive functions,
as initially advocated by Friedman and Silverman (1989) within generalised lin-
ear models. Notably, these functions are represented through classes of smooth
functions, with penalised splines (Eilers and Marx, 1996) emerging as a prevalent
choice in the additive models literature. Thus, we incorporated these additive el-
ements as foundational components of the Bayesian CART trees that constitute
our enhanced spBART model.
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1.2. Chapter summaries

Another underlying limitation of the model that we are tackling is with respect to
the fact that BART was principally developed for predicting univariate responses.
Although recent adaptations by Peruzzi and Dunson (2022), Um et al. (2023), and
McJames et al. (2023) have extended the scope of BART to encompass multivariate
responses, integrating these across the ensemble of trees, these particular multi-
variate BART versions are themselves limited by some assumptions which may not
be universally valid in all application settings. Motivated by challenges associated
with multivariate outcomes in the cost-effectiveness analysis (CEA) framework,
we introduce a generalisation we refer to as seemingly unrelated BART (suBART)
for the concurrent modelling of multiple responses linked to cost and efficacy con-
siderations. Though the methodology was derived from a specific case study, the
suBART model is adaptable, extending to d-dimensional applications and accom-
modating both continuous and binary outcomes. Expanding upon Chipman et al.
(2010)’s analogy between seemingly unrelated regression (SUR) and BART, our
suBART framework distinguishes itself by jointly estimating d distinct tree ensem-
bles and capturing the interdependencies among outcomes through a structured
error covariance. This represents a departure from existing multivariate BART ap-
proaches which incorporate covariances at the terminal node level, under the often
restrictive assumption of a shared tree structure across all d responses. The main
connection between suBART and GP-BART here is their exploitation of struc-
tured covariance modelling, albeit in different ways. The former directly models
the covariance structure among the responses, while the GP-BART also takes into
account the covariance among instances from the feature space, especially in cases
where there is spatial dependency underlying the data which is not covered by the
original BART formulation.

1.2 Chapter summaries
This thesis is structured into three chapters, each dedicated to exploring inno-
vative strategies for addressing scenarios where the foundational assumptions of
Bayesian additive regression trees (BART) may be compromised, or where the
model requires modifications to accommodate a variety of data types. Before
delving into the main chapters, which are presented in the format of journal arti-
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cles detailing each method, we provide an overview of the standard BART model
itself in Chapter 2, beginning with a concise introduction to the underpinning el-
ements of the ensemble methods, notably the classification and regression trees
(CART) algorithm. Following this, we present a comprehensive overview of the
Bayesian framework as applied to CART, concluding with a detailed exposition of
BART itself, emphasising how the previously mentioned assumptions and limita-
tions manifest within the model. The main articles are presented in the following
order: Initially, we provide a concise overview of the GP-BART model, illustrat-
ing how the integration of GP priors facilitates the incorporation of smoothness
and a covariance structure across observations. Following this, we summarise the
adaptation of the covariance structure to the outcomes, employing the newly de-
veloped suBART model to analyse a dataset under the CEA framework. Lastly, we
outline our development of an extension to the BART model which incorporates
penalised splines within the terminal node structures to enhance model flexibility
and prediction accuracy.

1.2.1 Chapter 3: GP-BART
BART models are based on tree-based structures that employ piecewise constant
approximations to model the conditional expectation of a response given a set
of covariates, which represent an obstacle to approximating a smooth function.
This approach, as per several other regression methodologies, operates under the
assumption that observations within a terminal node are drawn from an indepen-
dent and identically distributed (i.i.d.) population. However, this assumption may
not hold in scenarios involving spatial data, where the proximity of observations
influences their correlation, as articulated by Tobler’s first law of geography: “ev-
erything is related to everything else, but near things are more related than distant
things” (Tobler, 1970). This spatial autocorrelation contradicts the i.i.d. assump-
tion, necessitating models that can explicitly account for such dependencies. GPs
offer a compelling solution by imposing a prior over function spaces, assuming
that these functions exhibit a joint multivariate normal distribution (Willan et al.,
2004). The covariance structure of these priors, defined through a kernel func-
tion, is inversely related to the distance between observations, thereby capturing
the essence of spatial correlation where closer observations exhibit stronger cor-
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relations. Moreover, the smooth surfaces produced by Gaussian processes offer
the adaptability required to fine-tune smooth functions, ensuring that models can
accurately reflect the underlying data structure with the needed flexibility. In
Chapter 3, we demonstrate the capabilities of GP-BART through extensive simu-
lation studies and applications to several real benchmark datasets, and find that
it obtains superior metrics for prediction accuracy and uncertainty calibration rel-
ative to several tree-based competitors and other purely spatial methodologies.

1.2.2 Chapter 4: suBART
While the traditional BART is limited to univariate responses, it is common to
encounter scenarios involving data-generating processes with multiple outcomes,
where there is an interest in modelling these outcomes jointly given the exist-
ing correlation among them. In the field of cost-effectiveness analysis (CEA),
policymakers base their decisions on models that need to account for the aver-
age treatment effect in terms of both cost and quality. It becomes evident that
these two metrics are correlated, underscoring the necessity for them to be mod-
eled jointly to ensure an accurate representation of the model. In the conventional
CEA literature, the prevalent methodology involves the use of seemingly unrelated
regression models to accommodate the joint distribution of responses. However,
this approach is fundamentally parametric and built upon linear assumptions, pos-
ing challenges to correctly specifying the functional form of the model, especially if
there are non-linear effects or multiple low-order interactions. In contrast, BART
handles such complexities with remarkable efficiency. Despite its advantages, the
standard BART framework does not support modelling multiple outcomes directly.
To address this limitation within the CEA context, and overcome other limitations
of existing multivariate BART approaches, we introduce an adaptation of BART
referred to as suBART in Chapter 4. This extension enables the modelling of each
individual response by associating it with distinct ensembles of trees, thus offer-
ing a sophisticated approach to analysing multiple outcomes simultaneously. We
evaluate the suBART model for multivariate continuous outcomes and a further
probit suBART extension which accommodates multivariate binary outcomes in a
number of simulated settings, and subsequently apply the suBART model to data
from an observational case study in the health economics context.
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1.2.3 Chapter 5: spBART
In addressing the smoothness assumption through the GP prior in GP-BART, we
encountered significant computational demands, leading to infeasible scenarios for
larger datasets. An alternative strategy for achieving smoothness within a multi-
ple regression context is through the incorporation of additive functions (Friedman
and Silverman, 1989). These function classes are regarded as smoothers due to
their ability to reparameterise the original feature space, thus accommodating non-
linear behaviors effectively. Prior research, such as that by Prado et al. (2021),
has demonstrated that the integration of model trees, which incorporate linear
terms within the terminal nodes of the BART framework can mitigate the lack of
smoothness stemming from its piece-wise construction. Accordingly, by proposing
the integration of penalised splines into the BART framework, we aim to expand
the versatility of the model tree BART approach. The resultant proposal in Chap-
ter 5, which we term spBART, enhances BART’s adaptability to complex data
structures. Moreover, spBART can be perceived as facilitating model specifica-
tion within the penalised-splines approach. This is because we develop a sampling
strategy capable of determining the relevant sets of basis functions, thereby avoid-
ing the need to pre-specify the model structure. As per GP-BART and spBART,
we demonstrate the capabilities of spBART through extensive simulation studies,
including a setting in which the main effects vary smoothly and/or contain dis-
continuities. Through an application, we further show that spBART outperforms
or competes with other explicitly tree-based methods and other approaches from
the literature on splines.
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CHAPTER 2
A review of Bayesian additive

regression trees

Before delving into the main chapters of this thesis, we begin by establishing the ground-
work for the BART model with a concise review of the tree models which compose the
ensemble. We start by introducing decision trees, the fundamental building blocks. We
focus on their notation and key characteristics under a non-Bayesian perspective. Next,
we review the Bayesian CART algorithms proposed by Chipman et al. (1998) and Deni-
son et al. (1998). Here, we explain in further detail their core components and highlight
the unique features of these approaches, particularly their prior specifications and the
underlying learning algorithms. Finally, we present a concise review of BART describing
the model and its main assumptions.

2.1 Decision trees
Decision trees can be seen as non-parametric statistical models based on partition-
ing algorithms which recursively partition the data into homogeneous subsets with
respect to a response variable. Let xi = {x(1)

i , . . . , x
(p)
i } be a p-dimensional predic-

tor vector, with X ∈ Rn×p encapsulating the entirety of the design matrix, and y
standing as the n-dimensional response vector. Here, each pair (xi, yi) constitutes
an individual data observation, where i = 1, . . . , n.
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2.1. Decision trees

A binary decision tree, which we denote as T , is constructed based on a set of
splitting rules that define partitions or nodes within the feature space. The nodes
in a decision tree are categorised into root, internal, and terminal nodes. The root
node is the starting point of a tree. Internal nodes are intermediate nodes that
are not terminal; each one possesses a specific splitting rule, which generally leads
to two child nodes. For a continuous predictor, the splitting rule {x(j)

i ≤ c} is
composed by a splitting variable (x(j)

i ) and a splitting threshold (c), which directs
the observations towards the left, if the splitting rule is satisfied, and to the right
otherwise. In the case of a categorical predictor, the splitting rules are instead
determined by a subset of categories C, whereby the observations are dichotomised
into either {x(j)

i ∈ C} or {x(j)
i /∈ C} and then allocated to the left or right child

nodes accordingly. Terminal nodes, also known as leaves, are the endpoints of a
tree, as there are no subsequent child nodes below them. Figure 2.1 illustrates the
components described above for a single decision tree.

x(1) ≤ 0.3

x(1) ≤ 0.6

x(3) ∈ {C}

TRUE FALSE

Figure 2.1: Example of a binary decision tree of depth 3 with three internal nodes
(rectangles) and four terminal nodes (circles), with splitting rules of different types.

Learning the tree is usually accomplished via a greedy search. The nature of the
response y defines which criteria can be used to select the splitting rules used to
learn the tree, as well as which predicted value will be assigned to the observations
in the leaf nodes. As all observations within a leaf are generally assigned the same
predicted value, the main goal of a recursive partitioning algorithm is to search for
splitting rules which optimise a given loss function in each partition of the tree.
For any partition R within a tree T which subsets the data D = (xi, yi)n

i=1, the
most common loss functions are presented below:
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• Gini index (categorical outcomes):

CGini(R) :=
M∑

m=1
p̂m(1 − p̂m),

where p̂m is the proportion of the category m in the partition R.

• Shannon entropy (categorical outcomes):

CH(R) := −
M∑

m=1
p̂m log p̂m.

• Mean squared error (continuous outcomes):

CMSE(R) :=
∑

(x, y) ∈ R
(y − ȳ)2,

where ȳ = 1
|R|
∑

(x, y) ∈ R y and |·| indicates cardinality.

In the process of identifying a new partition, the algorithm selects a predictor j
and an associated cut-point k which jointly form a splitting rule that is used to
further divide one of the partitions of the tree (R) into two disjoint regions, Rleft

and Rright, so that

∆R(j, k) = {C(R) − C(Rleft) − C(Rright)}

is maximised. Here, C(·) denotes a generic loss function from the list above. Over-
all, this optimisation aims to identify the splitting rule that most decreases the
loss function. This approach applies to both regression and classification settings.
Ultimately, the predictions are made at the terminal node level in light of the
chosen loss function. In regression settings using CMSE, for example, predictions
are given by the mean of the yi observations assigned to the given node while in
classification settings using CGini or CH , predictions are given by the category m

whose proportion p̂m minimises the cost.

In theory, adhering strictly to the optimisation of a loss function to learn the
tree structure might favour regions where the leaves would contain only a single
observation, leading to significant overfitting. To mitigate this, early stopping
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rules are generally employed, such as introducing a stopping complexity parameter
ωcost, whereby a split is avoided if ∆R < ωcost. Alternative constraints include
setting a predetermined maximum tree depth or specifying a minimal number of
observations per leaf.

While these criteria might appear logical, they tend to be less effective compared to
what is widely regarded as the most efficient method: grow an ‘overfitted’ tree and
then apply cost-complexity pruning (Breiman et al., 1984). This approach involves
pruning a larger tree from the terminal nodes upwards, resulting in a smaller set
of subtrees. Following this, through cross-validation, test sample evaluations are
applied to select the subtree characterised by the minimal estimated loss. The
objective is to eliminate nodes that contribute minimally to the prediction.

2.2 Bayesian CART
As an alternative to the CART algorithm, which is a recursive partitioning method
based on a greedy search, Chipman et al. (1998) proposed a Bayesian approach to
identify optimal trees, referred to as BCART. The algorithm adopted to learn the
tree structures is a principled stochastic search, subject to the prior specification
of the tree and its parameters. Although Denison et al. (1998) also independently
proposed a similar Bayesian framework for binary decision trees, we will focus
on the work of Chipman et al. (1998), as it is the one on which most of the
contributions in this thesis are fundamentally based. However, we endeavour in
this section to both describe each component of BCART and clarify the main
differences with the approach of Denison et al. (1998).

To begin, BCART assumes that

yi = g (xi; T ,M) + εi, εi
i.i.d.∼ N

(
0, τ−1

)
(2.1)

for all i = 1, . . . , n. Here, the decision tree T is described by a set of splitting rules
and M = (µ1, . . . , µb) represents the set of terminal node parameters, where ℓ =
1, . . . , b denotes the number of terminal nodes in tree T . The function g(·; T ,M)
assigns the value µℓ to all observations xi within the leaf ℓ. For greater flexibility,
the residual precision τ can also be defined at the terminal node level τℓ — referred
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to as mean-variance shift model (Chipman et al., 1998) — but for conventional
notation, we will adopt the common τ across all terminal nodes — referred to as
the mean-shift model. In particular, we adopt the same formulation throughout
the novel contributions introduced in the following chapters of this thesis.

The objective of the BCART algorithm, which can also be viewed as a (Bayesian)
non-parametric statistical model, is to explore and sample from the posterior dis-
tribution T |X,y. Although this is not a trivial task, the Metropolis-within-Gibbs
algorithm has been proven to be a valuable tool capable of exploring the tree space
effectively and updating the terminal node parameters. Given that the BCART
model is characterised by (M, T ), it is critical to set a joint prior distribution for
these quantities. This can be done via decomposition of the joint prior distribu-
tion into π(M | T )π(T ), under the assumption that the prior on the tree π(T ) is
independent of the parameter collection M.

Chipman et al. (1998) adopt a branching process prior for T . Letting η denote a
generic terminal node and assuming the terminal nodes are independent a priori,
the prior on the tree structure hinges on the multiplication of independent priors for
each node, which are in turn dictated by the rule probability Prule(η, T ) and split
probability Psplit(η, T ). These two components correspond to the probability of
assigning a given predictor and split point and the probability of a split to generate
left and right child nodes, respectively. Recall Figure 2.1 for examples of splitting
rules within a binary decision tree. The default prior setting for Prule(η, T ) assumes
a discrete uniform distribution, reflecting the random assortment of predictors and
the corresponding grid over the range of the selected predictor, within node η of
tree T . It is noteworthy that predictors can be either numerical or categorical.

Another important component of the prior on the tree structure is given by

Psplit(η, T ) = α

(1 + dη)β , (2.2)

where dη = 0, 1, 2, . . . denotes the depth of the node η, and the pair of hyperpa-
rameters β ≥ 0 and 0 ≤ α ≤ 1 respectively penalise the shape and size of the tree,
making deeper trees less likely to be split further. This prior on the tree structure
is a key difference between the BCART algorithm and the approach of Denison
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et al. (1998). Denison et al. (1998) instead consider a zero-truncated Poisson dis-
tribution on the number of terminal nodes. However, this prior, in contrast to
Equation (2.2), does not penalise the topology of the tree a priori. In other words,
as long as two trees have the same number of leaves, they will have the same prior
probability under this alternative approach, regardless of their topologies.

Given the assumption of prior independence across the leaves, the prior for the
collection of parameters M = (µ1, . . . , µb) can be written as

π (M | T ) =
n∏

ℓ=1
π (µℓ) .

The µℓ parameters are assumed to be i.i.d. and follow a normal distribution
µℓ | σ, T ∼ (µ̄, τ−1/a), where a is a hyperparameter selected to ensure that the
prior is spread out over the range of y values. Considering the mean-shift model,
the prior assumed for the residual precision is τ ∼ Gamma (aτ , dτ ), which also
achieves conjugacy. Specifying these priors facilitates the characterisation of the
posterior distribution as being proportional to

π (T ,M, τ | y,X) ∝ π (y | X,M, T , τ) π (T ) π (τ)π (M | τ, T ) ,

which does not hold a closed-form. Nevertheless, sampling from this posterior
distribution is feasible by sequentially sampling from

π (T | y,X) ∝ π (T )
∫ ∫

π (y | X, T ,M, τ) π (M | T , τ) π (τ) dM dτ, (2.3)

π (M | T , τ) ∝ π (y | X, T ,M, τ) π (M | T , τ) , (2.4)

π (τ | y,X,M) ∝ π (y | X, T ,M) π (τ) . (2.5)

The samples from posterior distribution of the trees, as delineated in Equation
(2.3), are obtained through a Metropolis-Hastings (MH) step, given the absence
of a closed-form solution for the tree structure. The remaining parameters M and
τ , as outlined in Equations (2.4) and (2.5) respectively, can be efficiently sampled
using a Gibbs sampling method, thanks to the conjugacy of their priors.

Exploring the posterior distribution of the tree structure requires the use of a MH
step. The associated acceptance ratio when proposing a new tree T ⋆ is given by

α (T , T ⋆) = min
{

1, π (y | X, T ⋆) π (T ⋆) q (T ⋆ → T )
π (y | X, T ) π (T ) q (T → T ⋆)

}
. (2.6)

14



2.2. Bayesian CART

Equation (2.6) can be succinctly described as containing the ratios (from left to
right) of the likelihood, the prior, and the proposal distribution between a new tree
T ⋆ and the current tree T . Understanding the dynamics of each component of
Equation (2.6) is crucial for a comprehensive grasp of how the MH step navigates
the posterior distribution of the tree structure. Regarding the likelihood compo-
nent, the aforementioned conjugacy allows for the terminal node parameters to be
marginalised out, thus avoiding the need for reversible-jump Markov chain Monte
Carlo (RJ-MCMC; Green, 1995). This approach circumvents the introduction of
additional parameters associated with some new tree proposal, marking a signif-
icant departure from the methodology of Denison et al. (1998), which relies on
RJ-MCMC to explore the tree space, given that µℓ is not marginalised out of the
likelihood functions in the MH step.

Under the stochastic search strategy developed by Chipman et al. (1998), a new
tree can be proposed based on the following four moves: ‘grow’, ‘prune’, ‘change’
and ‘swap’. The last one is an additional move when compared with the method-
ology of Denison et al. (1998). The type of move is randomly selected (with equal
probability) to generate a modification of the current tree, and the nature of the
modification is intuitive given the names of the moves. For the grow move, a ter-
minal node is selected at random and divided into two new nodes by assigning a
splitting rule, also chosen randomly, in accordance with the Prule(η, T ) defined in
the prior on T . The prune move is the reversible counterpart of the grow move; it
selects a parent node of two terminal nodes at random and converts it into a single
terminal node by collapsing its leaves. The change move selects an internal node at
random and assigns it a new splitting rule, also chosen randomly, again following
Prule(η, T ). Lastly, the swap move involves randomly selecting a parent-child pair
of internal nodes to exchange splitting rules, unless the sibling shares the same
rule. Figure 2.2 summarises all possible tree proposal moves.

We now illustrate how each component of Equation (2.6) is computed for each
move. We begin with the grow move. The likelihood ratio changes solely for the
node selected for growth and its children, as follows:

π (y | X, T ⋆)
π (y | X, T ) = π (yηL | X, T ⋆) π (yηR | X, T ⋆)

π (yηG | X, T ) ,
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where yηG denotes the response variable for the observations within the selected
leaf, and yηL and yηR respectively denote the same for its prospective left and right
children. Regarding the tree ratio, this term can be succinctly expressed as follows:

π (T ⋆)
π (T ) = (1 − Psplit (ηL, T ⋆)) × (1 − Psplit (ηR, T ⋆))

Psplit (ηG, T ) .

Lastly, the transition ratio for the grow move is given by

q (T ⋆ → T )
q (T → T ⋆) = P (grow) /bT

P (prune) /νT ⋆

,

where bT corresponds to the number of leaves of the tree T and νT is the number of
internal nodes that are parents of terminal nodes only in tree T ⋆. The Prule(η, T )
terms are omitted for the sake of simplification, as they mostly cancel out when
comparing the ratios of tree prior and proposal.

x(1) ≤ −0.3
GROW

T T ⋆

(a) The grow move.

x(2) ≤ 0.25
PRUNE

T T ⋆

(b) The prune move.

x(2) ≤ 0 x(1) ≤ 0.3
CHANGE

T T ⋆

(c) The change move.

x(3) ∈ {A}

x(1) ≤ 0.5

x(1) ≤ 0.5

x(3) ∈ {A}

SWAP
T T ⋆

(d) The swap move.

Figure 2.2: Illustration of how the tree proposal moves (a) grow, (b) prune, (c)
change and (d) swap operate. We stress, however, that the grow and prune moves
are not restricted, as respectively depicted here, to growing or producing stumps.

While the details provided above are specific to the grow move, analogous com-
putations apply for the prune move. However, the ratios for the prune move are
typically the inverse of those discussed for the grow move. For the change and
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swap moves, the relationships are even simpler, as these actions do not alter the
topology of the tree, resulting in both the transition ratios and the prior ratios
(excluding Prule(η, T )) being consistently equal to one. The primary distinction
from the grow and prune moves lies in the likelihood term. Specifically, for the
change move, the likelihood must account only for the pair of leaves that underwent
modification, since the rest cancel out:

π (y | X, T ⋆)
π (y | X, T ) =

π
(
yη⋆

L
| X, T ⋆

)
π
(
yη⋆

R
| X, T ⋆

)
π (yηL | X, T ) π (yηR | X, T ) ,

where yη⋆
L

and yη⋆
R

represent the response variable assigned to the new left and
right children associated with the rule proposed during the change move. A similar
rationale applies to the swap move, where only the modified nodes are involved in
the calculation of the constituent likelihood ratios.

2.3 BART
BART is an additive ensemble of Bayesian trees introduced by Chipman et al.
(2010), chiefly for nonparametric regression tasks. BART aims to regularise the
contribution of each tree, ensuring that each contributes equally to the overall en-
semble. This regularisation results in improved generalisation capabilities, aligning
with the principles outlined by Friedman (2001) in the context of gradient boosting.
Within the Bayesian framework, BART achieves this regularisation by appropri-
ately configuring the prior distributions on the topology and leaf parameters of its
constituent trees. Unlike BCART, which uses only one tree, the combination of
multiple trees allows BART to approximate non-linear effects and automatically
capture lower-order interactions with minimal assumptions and without requiring
pre-specification of the model’s functional form.

The BART model is defined as

yi =
T∑

t=1
g (xi; Tt,Mt) + εi, εi

i.i.d.∼ N
(
0, τ−1

)
,

from which it is apparent that the model is an additive extension of the structure
of the BCART models defined in Equation (2.1). One of the main differences is the
total number of trees T composing the final model prediction, which is typically
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large. Chipman et al. (2010) recommend a default of T = 200 and note that
performance initially tends to improve dramatically as T is increased from one.
Each tree is determined by it its own specific collection of parameters Mt =
(µt1, . . . , µtbt), where bt denotes the number of leaves ℓ belonging to the tree Tt.

Having defined the BCART components as building blocks, it is essential to high-
light how their priors are adjusted within the BART framework. Firstly, the prior
on the tree structure penalises deep trees in an attempt to prevent overfitting,
an aspect commonly seen in recursive partitioning algorithms. By default, BART
sets the hyperparameters for the prior π(T ) as α = 0.95 and β = 2. In this set-
ting, the prior probabilities of observing a tree with one, two, or three terminal
nodes are approximately 0.05, 0.55, and 0.14, respectively, demonstrating a prior
bias towards shallow trees. Another important component of BART relates to the
prior distribution for the terminal node parameters, where

µtℓ ∼ N
(
µµ, τ

−1
µ

)
, with τµ = 4κ2T,

Scaling the response variable to fall within [−0.5, 0.5] aids the elicitation of this
prior. Consequently, µµ = 0 is typically assumed. The specification of τµ is then
based on the induced N(0, T τ−1

µ ) prior on the conditional expectation E[yi | xi].
By setting κ = 2, there is a 95% confidence level that the mean of the overall
prediction from BART will reside within the scaled response interval. Note that
the precision of the leaf parameters is proportional to the number of trees, which
helps prevent any single tree or a small number of trees from dominating the fit,
thereby enhancing the model’s generalisation capabilities.

The prior choice for the residual precision is adjusted through its hyperparame-
ters. Assuming the model offers greater flexibility than a linear method, a ‘data-
informed’ prior is utilised. For a fixed shape parameter, the rate parameter of the
gamma prior is chosen such that P(τ > τ̂) = q, where τ̂ represents a naïve estimate
of the residual precision typically derived from an OLS estimator; Chipman et al.
(2010) recommend q = 0.9.

If one aims to sample from the posterior distribution of the trees and their pa-
rameters, it is necessary to specify the prior distributions above assuming prior
independence among the collection of terminal node parameters as follows:
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π ((T1,M1) , . . . , (TT ,MT ) , τ) =
(

T∏
t=1

π (Tt,Mt)
)

× π (τ)

=
(

T∏
t=1

π (Mt | Tt) π (Tt)
)

× π (τ)

=
 T∏

t=1

bt∏
ℓ=1

π (µtℓ | Tt) π (Tt)
× π (τ) .

In the context of BCART, the focus was primarily on sampling from the posterior
distribution (T ,M, τ) | y,X. With the transition to an ensemble of trees, the
posterior distribution of interest is expressed as

π ((T1,M1) , . . . , (TT ,MT ) , τ | y,X) .

Let T(−t) represent the collection of all trees Tt except for tree t, and similarly, let
M(−t) denote the collection of all leaf parameters except for Mt. As per BCART,
the joint posterior distribution of the BART model does not have a closed-form.
However, the posterior samples can be obtained via the following update scheme:

1 : T1 | y, T(−1),M(−1), τ

2: M1 | y, T1, . . . , TT ,M(−1), τ

...

2T − 1: TT | y, T(−T ),M(−T ), τ

2T : MT | y, T1, . . . , TT ,M(−T ), τ

2T + 1: τ | (T1,M1), . . . , (TT ,MT ), aτ , dτ ,y.

The main challenge of this sampling approach involves obtaining posterior sam-
ples for a given tree Tt and its collection of parameters Mt, given the condition-
ing on the data, all other remaining trees T(−t), and the associated collection of
parameters M(−t). The Bayesian back-fitting algorithm (Hastie and Tibshirani,
2000) is employed to address this conditional dependence. With the use of this
algorithm, the dependence on (y, T(−t),M(−t)) is simplified through the partial
residuals Rt = y −∑

k ̸=t g(X; Tk,Mk). As a result, the sampling process is revised
accordingly to
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1: T1 | R1, τ

2: M1 | R1, T1, τ

...

2T − 1: TT | RT , τ

2T : MT | RT , TT , τ

2T + 1: τ | (T1,M1), . . . , (TT ,MT ), aτ , dτ ,y.

Lastly, another significant consideration arises from the conjugate choice for the
prior on Mt, allowing for the expression

π (Tt | Rt, τ) ∝ π (τ) × π (Tt)
∫
π (Rt | Tt,Mt, τ) × π (Mt | Tt) dMt.

Marginalising out the terminal node parameters µtℓ in this fashion ensures that
changes in the tree topology, such as those produced by the grow and prune moves,
will not modify the size of the parameter space when proposing a new tree as part
of the MH step. Recall that this is a similar feature of BCART models which dif-
ferentiates them from the approach of Denison et al. (1998) and bypasses the need
for RJ-MCMC. Indeed, the sampling process for each step in the aforementioned
sequential approach is consistent with that defined in Section 2.2; that is, the
trees are sampled via MH steps and both the residual precision and the terminal
node parameters are sampled via Gibbs steps. The primary distinction is that Rt

now acts as the ‘response variable’ in each of these steps. Another difference from
BCART — where the proposal moves have the same prior probability — is that
the probabilities of the moves grow (0.25), prune (0.25), change (0.4) and swap
(0.1) are not equal in BART.

The complete sampling strategy for the BART model is outlined in Algorithm
2.1. Practical implementations of this algorithm are available in a number of
open-source R packages, including BART (Sparapani et al., 2021), bartMachine
(Kapelner and Bleich, 2016), and dbarts (Dorie et al., 2024).
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Algorithm 2.1: BART sampling algorithm
Input: X, y, T , M, and all hyperparameters of the priors.
Initialise: T tree stumps with µt1 = 0 ∀ t, and τ drawn from its prior.

1 for m = 1 to M do
2 for t = 1 to T do
3 Calculate the partial residuals Rt = y −∑

k ̸=t g(X; Tk,Mk) ;
4 Propose a new tree T ⋆

t by a grow, prune, change, or swap move;
5 Accept T ⋆

t with probability

α (Tt, T ⋆
t ) = min

1,
π
(
Rt | T ⋆, τ

)
π
(
T ⋆

t

)
q
(
T ⋆

t → Tt

)
π
(
Rt | T , τ

)
π
(
Tt

)
q
(
Tt → T ⋆

t

)
 .

6 for ℓ = 1 to bt do
7 Update µtℓ | Rtℓ, T , τ .
8 end
9 end

10 Update τ | . . ..
11 end

Output: Samples from π ((T1,M1), . . . , (TT ,MT ), τ | y).

BART can be readily adapted for classification settings with binary responses
yi ∈ {0, 1} using the probit model, by assuming P(yi = 1 | x) = Φ(G(xi)), where
G(xi) ≡ ∑T

t=1 g(xi; Tt,Mt). In this setup, the restriction τ = 1 is imposed, and
the precision hyperparameter for the leaf parameters is adjusted to τµ = κ2T

9 ,
maintaining the default value of κ = 2, such that G(xi) will with high probability
be in the interval [−3, 3]. To accommodate the binary support of the outcome,
modifications in the posterior sampling calculations are necessary, including the
implementation of the data-augmentation technique by Albert and Chib (1993).
This involves introducing latent variables z1, . . . , zn ∼ N(G(xi), 1), constrained by
zi > 0 if yi = 1 and zi < 0 if yi = 0. The sampling algorithm for the probit version
of BART is obtained by replacing the yi values in Algorithm 2.1 with these zi

values and introducing an additional step after line 9 for obtaining posterior draws
of zi | . . . using truncated normal distributions.
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Another key feature of BART is its provision of measures to assess variable im-
portance. From the combination of all trees, it can be observed that the most
relevant predictors tend to appear more often among the tree splits. Therefore,
measures such as the proportion of times a predictor appears among all the split-
ting rules can be used to indicate which variables and low-order interactions may
be more relevant. This approach provides a ‘model-free’ variable selection within
the BART framework in the sense that it does not require the imposition of para-
metric assumptions.

In summary, BART has been validated as a powerful tool, offering not only excep-
tional predictive accuracy but also reliable uncertainty calibration. Linero (2017)
conducted a comprehensive review of advances to BART, highlighting numerous
proposed extensions. Linero (2017) also compared the enhanced performance of
BART in an array of application settings against other models commonly refer-
enced in the literature, such as random forests (Breiman, 2001), MARS (Friedman,
1991), boosting (Friedman, 2001), neural networks, and support vector machines
(Cortes and Vapnik, 1995).

However, as previously discussed in Chapter 1, the standard BART model de-
scribed herein suffers from a number of limitations, such as the lack of smoothness
given the piecewise-constant nature of the ensemble, and its initial formulation
covering only univariate responses. In the chapters which follow, we exploit the
scope for extending BART in light of these particular shortcomings.
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CHAPTER 3
GP-BART: a novel Bayesian

additive regression trees approach
using Gaussian processes

The Bayesian additive regression trees (BART) model is an ensemble method exten-
sively and successfully used in regression tasks due to its consistently strong predictive
performance and its ability to quantify uncertainty. BART combines “weak” tree mod-
els through a set of shrinkage priors, whereby each tree explains a small portion of the
variability in the data. However, the lack of smoothness and the absence of an explicit
covariance structure over the observations in standard BART can yield poor performance
in cases where such assumptions would be necessary. The Gaussian processes Bayesian
additive regression trees (GP-BART) model is an extension of BART which addresses
this limitation by assuming Gaussian process (GP) priors for the predictions of each
terminal node among all trees. The model’s effectiveness is demonstrated through ap-
plications to simulated and real-world data, surpassing the performance of traditional
modelling approaches in various scenarios.

3.1 Introduction
Bayesian additive regression trees (BART; Chipman et al., 2010) is a probabilistic
machine learning model that has proved successful in both regression and clas-
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sification settings (Zhao et al., 2018; Zhang et al., 2020; Janizadeh et al., 2021).
Effectively, BART is a non-parametric Bayesian regression approach which learns
through sums of trees (Chipman et al., 1998), where each terminal node contribu-
tion is constrained by a regularising prior distribution. Given a vector of predictors
xi = (xi1, . . . , xip), the target function f(xi) is obtained by aggregating the small
contributions of each tree, which is similar in flavour to the small step updates of
gradient boosting algorithms (Friedman, 2001).

Considering a univariate response and training observations denoted as {xi, yi}n
i=1,

the standard BART model is given by

yi | xi ∼ N
(

T∑
t=1

h (xi; Tt,Lt) , τ−1
)
,

where the function h assigns a sampled value µtℓ to xi within terminal node ℓ of
the tree Tt across all T trees and the vector Lt = (µt1, . . . , µtbt) collects the sampled
mean parameters from the bt terminal nodes in tree Tt. Here, N(·) denotes the
normal distribution and τ is a residual precision term. In standard BART, terminal
node parameters µtℓ are assigned a N(µµ, τ

−1
µ ) prior, where the hyperparameters

are selected to shrink the influence of each tree.

Our novel GP-BART method modifies the standard BART by using the function
g (replacing h) which assigns a vector of sampled values ψtℓ to the ntℓ observations
in node ℓ of tree Tt, rather than the single value µtℓ used by BART. This is achieved
by assuming a Gaussian process (GP) prior over each terminal node with constant
mean µtℓ and a covariance function whose parameters are defined at the tree level.

In recent years, several extensions and modifications to the original BART model
have been proposed to cover different types of data and assumptions (Hill et al.,
2020). To deal with the lack of smoothness, Linero and Yang (2018) presented
a soft version of the BART model by advocating probabilistic split rules at the
tree-building stage. Starling et al. (2020) presented a BART extension, also in-
corporating GPs, which guarantees smoothness over a single target covariate by
applying Gaussian process priors for each terminal node over the targeted variable.
Prado et al. (2021) proposed model trees BART that considers piecewise sums of
linear functions at the terminal node level instead of piecewise sums of constants,
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adding flexibility. Our GP-BART considers GP models at the terminal node level,
and can be seen as a piecewise sum of GPs which are inherently smooth.

Notably, our GP-BART approach is coherent with previous work of Linero (2017),
who identified that the BART model is itself a GP, conditional on the tree struc-
tures, with a non-parametrically learned covariance matrix whereby each element
is described by the proportion of times the two corresponding design points are
allocated to the same terminal nodes across all trees. Linero (2017) further showed
that as T → ∞, BART becomes a GP unconditionally. Therefore, it is natural to
assume GP priors over the terminal nodes directly to circumvent the need for large
T . More specifically, Linero (2017) also shows that the implied kernel under this
relation between BART and GPs is a function of the L1 distances between design
points (similar results were also found in Balog et al. (2016)). Following this, it is
natural to allow kernels of other types, especially ones defined by different distance
metrics. Here, we employ node-specific anisotropic exponentiated-quadratic ker-
nels relying on squared Euclidean distances. Though these are parameterised, this
enables covariance structures, more flexible than the one implied by the standard
BART, to be learned non-parametrically when T > 1, which would be too difficult
to pre-specify under a single GP, or even a sum of GPs without tree splits.

The treed Gaussian process (tGP; Gramacy and Lee, 2008) is another treed ap-
proach to GPs which defines all hyperparameters of a single GP at the terminal
node level, thereby making it possible to incorporate non-stationarity into the
model by varying the residual precision parameter across terminal nodes. How-
ever, to deal with the changing dimensions of the parameter space associated with
growing and pruning a tree, this model requires the use of a reversible jump al-
gorithm (Green, 1995), which comes with increased computational costs. Our
GP-BART can also be seen as an additive ensemble of these treed GPs; though we
define our priors and associated hyperparameters differently, the additive nature
of the sum of GPs is shown here to yield superior performance. Finally, another
example of previous work combining BART and GPs is provided by Wang et al.
(2023), who use node-level GPs differently, as an extrapolation strategy for im-
proving BART’s predictions for exterior points outside the range of the training
data. The authors describe their approach as a ‘GPed tree’, in contrast to the
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‘treed GP’ of Gramacy and Lee (2008), and by extension GP-BART’s ensemble of
treed GPs.

We envisage our novel GP-BART framework being particularly suited for spatial
data where smoothness in space is expected for certain covariate combinations,
and thus useful in situations where GPs are commonly used (e.g., Banerjee et al.,
2008; Gelfand and Schliep, 2016; Andugula et al., 2017; Xie et al., 2018). As well
as GPs, we introduce a further novelty to allow for rotated splits. Traditional tree-
based models can be interpreted as hyper-rectangles since each node is given in
parallel-axis directions. This behavior leads to a staircase decision boundary which
can inhibit the model’s ability to approximate true boundaries. García-Pedrajas
et al. (2007) propose non-linear projections of the tree models used in ensem-
ble approaches to overcome this limitation, while Menze et al. (2011) describe
an oblique forest model which selects optimal oblique directions using linear dis-
criminant analysis. More recently, Blaser and Fryzlewicz (2016) proposed random
rotation ensembles where the direction of rotation is selected randomly, yielding
a more general decision boundary. In the GP-BART framework, the incorpora-
tion of random projections on various directions allows for splitting rules that are
not limited to exclusively parallel axes. This flexibility enables the tree search
algorithm to explore a broader sample space of the tree distribution, aiming to
mitigate the issue of poor mixing (Wu et al., 2007). The rotation moves can also
be interpreted as another way to represent and model complex interactions among
variables and should not be seen as strictly restricted to spatial features.

The remainder of this chapter is structured as follows. Section 3.2 describes the
GP-BART model, with mathematical formulations and key specifications. Section
3.3 contains the sampling algorithm and describes prediction settings and uncer-
tainty estimation. Sections 3.4 and 3.5 provide comparisons between GP-BART
and other methods in simulated and real-data benchmarking scenarios, respec-
tively. Finally, Section 3.6 presents conclusions regarding the proposed algorithm,
some limitations, and potential future work. We note that an implementation of
our method is available in the R package gpbart, which is written in C++ and
available at: https://github.com/MateusMaiaDS/gpbart, with which all results
were obtained.
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3.2. Gaussian processes Bayesian additive regression trees

3.2 Gaussian processes Bayesian additive
regression trees

For simplicity, we begin with the notation for a single tree model. Let T1 be
a binary splitting tree with b1 terminal nodes and let G1 = ({µ11,ϕ1, ν}, . . . ,
{µ1b,ϕ1, ν}) denote the sets of parameters associated with each terminal node’s
GP. Each GP, denoted by GP1ℓ(µ1ℓ,Ω1ℓ(ϕ1, ν)), is characterised by a constant
mean vector µ1ℓ = (µ1ℓ, . . . , µ1ℓ) and a covariance function Ω1ℓ(ϕ1, ν), ∀ ℓ =
1, . . . , b1, where ϕ1 = {ϕ11, . . . , ϕ1p⋆} ∈ Rp⋆ and ν are, respectively, the vec-
tor of length parameters and precision parameters of the chosen stationary ker-
nel. Notably, this parameterisation allows for variable-specific length parameters
ϕ1j ∀ j = 1, . . . , p⋆, where p⋆ ≤ p is the number of continuous predictors, under
which the kernel is still stationary but no longer isotropic.

In the standard BART, since the trees follow a binary structure, each new node is
determined by split rules of the form {x(j) ≤ cx(j)} vs. {x(j) > cx(j)} for continuous
predictors, where cx(j) is a scalar uniformly sampled from the range of a specific
covariate x(j) in the matrix X of training set predictors. Dummy variables are
typically used to represent categorical predictors, which yields rules of the form
{x(j) ∈ dx(j)} vs. {x(j) /∈ dx(j)}, where dx(j) denotes one of the variable’s possible
outcome levels.

For a single tree T1 with b1 terminal nodes, the model is written as yi | xi ∼
N(g(xi; T1,G1), τ−1), where the function g(·) assigns the predicted values ψ1ℓ from
GP1ℓ to the observations belonging to terminal node ℓ. The description of the tree
structure for GP-BART, which generalises the above to allow for rotated splitting
rules, is deferred to Section 3.2.1.

Expanding such a model into a sum-of-trees structure is achieved via

yi | xi ∼ N
(

T∑
t=1

g (xi; Tt,Gt) , τ−1
)
,

where the parameters Gt = ({µt1,ϕt, ν}, . . . , {µtbt ,ϕt, ν}) now characterise the
terminal node GPs of each tree Tt, now denoted by GP tℓ(µtℓ,Ωtℓ(ϕt, ν)),∀ ℓ =
1, . . . , bt, where µtℓ = (µtℓ, . . . , µtℓ) is again a constant vector, ϕt = {ϕt1, . . . , ϕtp} ∈
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Rp is now specific to each tree, in addition to each variable, and g now assigns the
predicted values ψtℓ from GP tℓ. The GP-BART model can be interpreted as a
piecewise sum of non-linear GPs whereby each of the T trees will make a small
contribution to the overall E[yi | xi], whereas BART can be interpreted as a less
flexible piecewise sum of constants. Consequently, GP-BART typically requires
fewer trees than the standard BART model.

As in standard BART, we require prior distributions for the tree structure and
terminal node parameters; i.e., (T1,G1), . . . , (Tt,Gt). We assume ν is fixed and
select the following shrinkage priors assuming independence between trees and
terminal nodes:

π ((T1,G1) , . . . , (Tt,Gt) , τ) = π (τ)
T∏

t=1
π (Tt,Gt)

= π (τ)
T∏

t=1
π (Gt | Tt) π (Tt) ,

(3.1)

where

π (Gt | Tt) = π (ϕt)
bt∏

ℓ=1
π (ψtℓ | µtℓ, Tt,ϕt, ν) π (µtℓ | Tt) . (3.2)

We follow Chipman et al. (2010) in our selection of priors for Tt and τ and adopt
data-driven priors for the node-level µtℓ in such a way that considerable probability
is assigned around the range of the observed y given the induced prior from the
sum of GPs. Associated hyperparameters are omitted from Equations (3.1) and
(3.2), for brevity, but we now fully define each prior in turn.

3.2.1 The tree structure
The prior π (Tt) is specified following the standard setting given by (Chipman
et al., 1998), with slight modifications to incorporate the rotated splitting rules.
Thus, the tree prior distribution is implicitly defined by a generating stochastic
process. In the standard BART algorithm, the tree generation is initialised with
a root node. Thereafter, the structure is learned via grow, prune, change, and
swap moves. New trees are proposed by growing a new terminal node, removing
a pair of terminal nodes, changing the split rule for an internal node, or swapping
the split rules for a pair of internal nodes, where the type of move is chosen at
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random. Each proposed tree is then accepted or rejected via Metropolis-Hastings
(MH); see Chipman et al. (1998) for further details. Notably, the swap move is
not incorporated by GP-BART due to computational complexity, as shown by
Kapelner and Bleich (2016), and the tendency of GP-BART to yield shallower
trees, for which proposing such swap moves would not be feasible.

We also introduce two modified moves, termed “grow-rotate” and “change-rotate”,
as replacements for the original “grow” and “change” moves, in order to enhance
the predictive performance over standard BART. We begin by selecting a pair of
covariates j and j′ among the set of p possible covariates in X at random with
equal probabilities. The rotated splitting rules are restricted to the case where the
covariate j in the selected pair is continuous. Subsequently, an angle θ is sampled
with equal probability from a predefined grid of 20 equally spaced values within
the interval [0, π]. To rotate both predictors with respect to θ, it is possible to
transform the original coordinate system to (x(j)

r ,x(j′)
r ) by multiplying

(
x(j),x(j′)

)
by the rotation matrix

R (θ) =
cos θ − sin θ

sin θ cos θ

. (3.3)

Then, within the projected feature space, one of these predictors from the pair
(x(j)

r ,x(j′)
r ) is sampled, again with equal probability. The rotated splitting rules

are restricted to the case where the covariate selected from the pair is continuous.
A split rule is then selected by sampling a cutpoint from a uniform distribution
cx(.)

r
∼ Uniform(ax(.)

r
, bx(.)

r
), where ax(.)

r
and bx(.)

r
represent the minimum and maxi-

mum values of the transformed selected split variable x(.)
r within the branch. These

rules in the projection space correspond to rotated rules in the original space. If
θ is chosen from the set θ0 = {0, π/2, π}, the rotation direction remains originally
axis-aligned, effectively returning to the standard BART splitting rules with a
univariate cutpoint as per Section 3.2. Thus, the standard BART moves can be
viewed as a specific case of their projected counterparts. Indeed, in cases where
axis-aligned splits are sufficient, proposed projections at θ ∈ θ0 tend to be accepted
instead of any other θ direction.

As stated, the above applies only when the selected covariate from the pair is
continuous. While we omit categorical variables from the GPs, we do allow them
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to be used to form splitting rules. If the sampled covariate within the pair is
categorical, the angle θ is irrelevant; we assume θ ∈ θ0 and need not sample it.
When the selected covariate is binary, the splitting rule is simply a partition of its
levels. However, we make a further modification when the sampled pair contains a
nominal variable. We use the reparameterisation suggested by Wright and König
to identify optimal cutpoints for such predictors in treed methods (see Wright and
Ziegler (2017) and Wright and König (2019) for more details). This ultimately
leads to split rules of the form {x(.) ∈ {S}} vs. {x(.) /∈ {S}}, where {S} denotes a
subset of the levels of the given covariate and also allows for continuous covariates
to be rotated with respect to nominal ones. Otherwise, GP-BART utilises the
default moves from BART outlined in Section 3.2 when p = 1.

To summarise, the prior for Tt can be divided into five aspects; namely, (i) the
distribution on the pair of candidate splitting variables at each interior node,
(ii) the distribution on the selected splitting variable, conditioned on the chosen
pair, (iii) the distribution on the rotation angle θ, given the selected variable,
and (iv) the distribution on the splitting cutpoint, conditional on the chosen pair,
variable, and angle. For these four aspects, the relevant priors coincide with the
equiprobable discrete proposal distributions described above. Furthermore, (v) the
prior probability of an individual node at depth d = 0, 1, 2, . . . being non-terminal
is controlled by the hyperparameters α and β through

Pr (non-terminal node) ∝ α (1 + d)−β , α ∈ (0, 1) , β ∈ [0,∞) . (3.4)

The tree prior π (Tt) is then given by a product of the probabilities of each node,
since Equation (3.4) assumes independence between nodes. Following some evalua-
tion of alternative parameterisations, we fix the default values α = 0.95 and β = 2,
as per the standard BART (Chipman et al., 2010). The proposal distribution for
a new tree is described by a discrete sample of the possible grow-rotate, change-
rotate, and prune moves, with respective probabilities of 0.3, 0.4, and 0.3. These
probabilities align with those associated with the standard moves in bartMachine
(Kapelner and Bleich, 2016), whereby the 0.1 probability of a swap move in the
original BART (Chipman et al., 2010) is equally reapportioned to the grow-rotate
and change-rotate moves, without modifying the prior probability of the prune
move.
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3.2. Gaussian processes Bayesian additive regression trees

Figure 3.1 summarises the main idea of our proposed statistical model, highlighting
the modified terminal node priors and the rotated splitting rules, via four examples
of regression trees within the ensemble. Here, there are two continuous predictors,
x(1) and x(2), and x(3) is categorical, with the sets {S1} and {S2} being subset of its
levels. Notably, some split rules from trees T2 and T3 are obtained by projecting a
randomly sampled non-parallel axis direction θ onto the pair (x(1),x(2)), resulting
in rotated splitting rules.

T1

x(3) ∈ {S1}

x(1) ≤ 0.5

ψ11 ψ12

ψ13

TRUE FALSE

T2

x(1) ≤ 0.1x(2) − 0.6

x(1) ≤ 1.2

ψ21 ψ22

ψ23

T3

x(2) ≤ −0.7x(1) + 0.2

x(3) ∈ {S2}

ψ31 ψ32

x(1) ≤ 0.3x(2) + 0.1

ψ33 ψ34

T4

x(2) ≤ 0.1

ψ41 ψ42

Figure 3.1: Graphical representation of four example trees from a GP-BART
model. The splitting rules in each tree can take the form of a univariate cut-
point for continuous covariates (subject to θ ∈ θ0), a subset of factor levels for
categorical covariates, or rotated split rules obtained by random projections of
a pair of covariates, provided the selected covariate from the pair is continuous.
Gaussian process priors are assumed for the predicted values for each terminal
node in each tree, such that ψtℓ ∼ GP tℓ a priori.
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3.2.2 The prior on the Gaussian processes
The main contribution of the GP-BART model is to define

ψtℓ | Tt, µtℓ,ϕt, ν ∼ MVN (µtℓ = µtℓ1ntℓ
,Ωtℓ) (3.5)

as a GP prior over the set of ntℓ observations belonging to terminal node ℓ of
tree Tt, where 1ntℓ

is a vector of ones of length ntℓ, such that the mean vector
is constant. Here, Ωtℓ ∈ Rntℓ × Rntℓ is specified as a node-specific, stationary,
anisotropic matrix of exponentiated-quadratic covariance terms, with its (i, k)-th
element given by

ν−1 exp

−1
2

p∑
j=1

(
x

(j)
i − x

(j)
k

)2

ϕ2
tj

 . (3.6)

We normalise all predictors to the [0, 1] range to improve the numerical stabil-
ity of the kernel. Notably, the trees themselves are unaffected by this, as the
rules governing their structure are invariant to monotone transformations. We set
µtℓ | Tt,∼ N

(
µµ, τ

−1
µ

)
to exploit conjugacy and enable all µtℓ parameters to be

marginalised out. Hence, Equation (3.5) can be redefined as

ψtℓ | Tt,ϕt, ν, µµ, τµ ∼ MVN
(
µµ1ntℓ

, τ−1
µ 1ntℓ

1⊤
ntℓ

+ Ωtℓ

)
,

in order to encourage better mixing. We adopt this likelihood formulation through-
out and provide further details in Appendix 3.A.

Chipman et al. (2010) showed that the induced prior distribution on E[yi | xi] over
all T trees in a BART model allows for some expert knowledge to be incorporated
about the contribution of each tree which can help to guide the choices of hyper-
parameter values. However, the presence of the GP priors on ψtℓ in GP-BART
yields a different induced prior which we write as

E [yi | xi] ∼ N
(
Tµµ, T

(
ν−1 + τ−1

µ

))
.

Following the Chipman et al. approach, the key idea is to select the hyper-
parameters such that E[yi | xi] is between ymin and ymax with high probability.
The confidence interval for E[yi | xi], ∀ i = 1, . . . , n, has boundariesTµµ − k

√
T
(
ν−1 + τ−1

µ

)1/2
= ymin

Tµµ + k
√
T
(
ν−1 + τ−1

µ

)1/2
= ymax
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3.2. Gaussian processes Bayesian additive regression trees

for a chosen k. We adopt k = 2, which represents an approximate 95% confidence
interval. Following Chipman et al., we re-scale y such that ymin = −0.5 and
ymax = 0.5, set µµ = 0 and hence set the precision parameters to

ν = τµ = 8k2T,

in order to balance the contribution of both parameters.

Though ν and τµ are both referred to as precision parameters, their roles and in-
terpretations differ, with ν and τµ – both of which are fixed rather than estimated
– being the parameters that control the precision of the GPs and the µtℓ param-
eters, respectively. As we increase the number of trees T , the scale ν−1 of each
GP decreases, regularising the model by setting the contribution of each GP to be
small. Likewise, the precision of the µtℓ parameter is proportional to the number
of trees, shrinking the mean of each terminal node as more tree components are
added into the model. Setting both parameters in this way reduces the chance of
only one single tree dominating the model.

3.2.2.1 The prior on the length parameter

As shown in Equation (3.6), ϕt controls the rate of decay with respect to the L2

distances between pairs of design points, such that larger values of ϕtj will quickly
decrease the contribution of variables which are uncorrelated with the true genera-
tion function f(xi). Thus, to enable the use of automatic relevance determination
(ARD) over the variables used in the GPs while balancing computational consid-
erations, we derive a discrete prior for the length parameter ϕtj for a given tree t
and covariate j from a mixture of gamma distributions:

κ× Ga (aϕ1 = 3, dϕ1 = 2.5) +

(1 − κ) × Ga (aϕ2 = 5000, dϕ2 = 100) ,
(3.7)

where Ga(a, d) denotes a gamma distribution with expectation a/d. The two
components govern smaller and larger values of ϕtj, respectively, and we set the
mixture weight κ to 0.3 throughout.

Ultimately, we define a discrete prior for π(ϕtj), with support given by Sϕ =
{0.1, 0.5, 1, 2, 3, 4, 50} in order to reflect the high-probability regions of the mix-
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ture in Equation (3.7) and the fact that the precise magnitude of ϕtj is only
important for smaller values. Furthermore, the prior probabilities are specified
to be proportional to dϕ(k), where dϕ(k) is the density of the mixture of gamma
distributions in Equation (3.7) evaluated at k ∈ Sϕ. This leads to probabilities of
Pr(ϕtj = k) = (0.022, 0.206, 0.236, 0.035, 0.014, 0.002, 0.485), which reflect the fact
that, a priori, we expect each variable to have an equal chance of contributing
meaningfully to the GPs. The ϕtj sampling processes is also done using MH, with
the proposal distribution for new parameters given by an equiprobable discrete
distribution which reflects the support of our induced discrete prior π(ϕtj) — i.e.,
each value in Sϕ is sampled with equal probability — and helps to avoid spurious
length parameter values.

The aforementioned normalisation of each predictor in X also aids the elicitation
of this prior, by minimising the range of ϕtj and ensuring all covariates are on
the same scale. Furthermore, the discrete proposal reduces the computational
burden, as we can partially pre-compute all possible covariance functions. We
calculate the fraction in the exponent of Equation (3.6) for each length parameter
value in Sϕ, using all n observations of the continuous covariates, and thereafter
obtain Ωtℓ(ϕt, ν) by appropriately utilising the quantities relevant to the sampled
ϕt1, . . . , ϕtp⋆ values and subset of observations X(tℓ) belonging to the corresponding
terminal node.

3.2.3 The prior on the residual precision
A conjugate gamma distribution τ ∼ Ga(aτ , dτ ) is assumed for the residual preci-
sion parameter. To select the hyperparameters, we follow Chipman et al. (2010)
in setting the shape aτ and rate dτ such that Pr (τ ≥ τ̂OLS) = ητ , where ητ is a
high-probability value (we typically use ητ = 0.9) and τ̂OLS is the precision calcu-
lated from an ordinary linear regression of y against the same set of predictors X.
The intuition behind this estimation strategy comes from the idea that, given the
non-linearity of the GP and the piecewise-constant component from BART, we
can be optimistic that the precision of the model is greater than that of a linear
model.
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3.3. Computational algorithms for inference and prediction

3.3 Computational algorithms for inference and
prediction

Given the observed y, the posterior distribution for the trees and their parameters
is given by

π ((T1,G1) , . . . , (TT ,GT ) , τ | y) . (3.8)

We define the notation of a generic set M−t as the the set of all M1, . . . ,MT

elements except Mt, such that T−t corresponds to the set of T − 1 trees except
Tt with respective terminal node parameters G−t. The key feature necessary to
sample from Equation (3.8) is the “Bayesian backfitting” algorithm of Hastie and
Tibshirani (2000), which enables iterative sampling of the t-th tree and its parame-
ters. Hastie and Tibshirani showed that the distribution π (Tt,Gt | T−t,G−t, τ,y))
can be rewritten in terms of the partial residuals

Rt = (rt1, . . . , rtbt) ≡ y −
T∑

r ̸=t

g (X; Tr,Gr) . (3.9)

The general structure of the sampler is thus given by:

1 : T1 | R1,ϕ1, ν, τµ, τ

2: ψ11, . . . ,ψ1b1 | T1,R1,ϕ1, ν, τµ, τ

3: ϕ1 | T1,R1, ν, τµ, τ

...

3T − 2: TT | RT ,ϕT , ν, τµ, τ

3T − 1: ψT 1, . . . ,ψT bT
| TT ,RT ,ϕT , ν, τµ, τ

3T : ϕT | TT ,RT , ν, τµ, τ

3T + 1: τ | (T1,G1) . . . , (TT ,GT ), aτ , dτ ,y.

The algorithm is initialized with T stumps (i.e., trees with a single root node),
with all mean parameters µt1 = 0 and all length parameters ϕtj sampled from
the discrete proposal distribution described in Section 3.2.2.1. Additionally, the
residual precision parameter τ is sampled from its prior distribution. For stumps,
only the grow-rotate move is proposed. Thereafter, once trees have reached suffi-
cient depth d = 1, new trees T ⋆

t are sequentially proposed by randomly selecting
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one of the three available moves: grow-rotate, change-rotate, and prune, and then
accepted or rejected according via MH.

Though these moves modify the tree depth, Gt only changes dimension with re-
spect to the means µt1, . . . , µtbt , since ν is fixed and ϕt is specified at the tree
level. Consequently, this does not affect the sampling of Tt, since all µtℓ pa-
rameters are marginalised out, thereby yielding a tractable tree posterior propor-
tional to π (Tt) π (ϕt) π (Rt | Tt,ϕt, ν, τµ, τ), which does not depend on any varying-
dimensional parameters at the terminal node level. The predicted values in each
terminal node are updated by a Gibbs sampling scheme, with the associated full
conditional distribution given by

ψtℓ | . . . ∼ MVN (µGPtℓ
,ΣGPtℓ

) , (3.10)

where

µGPtℓ
= Λ⊤

tℓ

(
τ−1Intℓ

+ Λtℓ

)−1
rtℓ,

ΣGPtℓ
= Λtℓ − Λ⊤

tℓ

(
τ−1Intℓ

+ Λtℓ

)−1
Λtℓ,

with Λtℓ = τ−1
µ 1ntℓ

1⊤
ntℓ

+ Ωtℓ and Intℓ
being an identity matrix of the indicated

dimension.

Lastly, we sample the length parameters ϕtj ∀ (j = 1, . . . , p⋆, t = 1, . . . , T ) from
their discrete proposal distribution using MH steps. Once all T trees are updated,
the precision parameter is sampled using a Gibbs step, with the full conditional
given by

τ | . . . ∼ Ga
(
n

2 + aτ ,
1
2
(
y − ŷ)⊤ (y − ŷ)

)
+ dτ

)
, (3.11)

where ŷ ≡ ∑T
t=1 g(X; Tt,Gt) represents the sum of the predictions ψtℓ across all

terminal nodes from all sampled trees.

3.3.1 Algorithm specifications and initialisation
We set the number of trees T to have a default value of 20, since we require
fewer trees than BART due to the inherent non-linearity of the GPs and achieved
reasonable predictive performance in various scenarios demonstrated in Sections
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3.4 and 3.5 using this value. Alternatively, this quantity could be selected via
cross-validation, though the computational cost of doing so may be prohibitive.

Employing the rotated splitting rules or using the standard moves from BART
is also a setting of the model that can be toggled by the user, as well as which
variables are included in the GPs themselves. All variables are allowed to form
splitting rules, since it improves the model’s prediction in general, especially for
spatial data. If the rotated splits are deemed unnecessary, the sampler will not
accept them and favour splits with θ ∈ θ0. By default, if there is no strict prior
knowledge about the covariates, GP-BART includes all continuous variables in the
GPs. Though a more parsimonious model could be achieved if the variables used
in the GPs are merely a subset of those used to construct the trees, we do not
consider this further here.

We present the full structure of the GP-BART sampler in Algorithm 3.1, where
the matrix of covariates X and response vector y from the training set enter as
inputs. Trees, partial residuals, and hyperparameters are then initialised. For each
MCMC sample, a proposed tree T ⋆

t is accepted, if it is valid and contains no empty
terminal nodes, with probability γ⋆(Tt, T ⋆

t ). The novel aspects of the tree prior we
introduce under GP-BART (i.e., priors over the pair of candidate splitting variables
and the rotation angle θ) cancel out in the MH acceptance ratio. Consequently,
the ratio of priors π (T ⋆

t ) /π (Tt) in γ⋆ (Tt, T ⋆) and the transition probabilities q(·)
for all moves remain unchanged from the formulations given by Linero and Yang
(2018). The remaining parameters are sampled using Equations (3.10)–(3.11).

A standard number of iterationsNMCMC = 3500, of which the firstNburn = 1500 are
discarded, was found to yield a sufficient number of samples to reliably characterise
the posterior in all applications herein. This was verified through examination of
the convergence of posterior samples of τ . Though the algorithm is computation-
ally onerous given the matrix inversions associated with the use of GPs, we stress
that such operations are of the order O(n3

tℓ) within a given terminal node, rather
than O(n3) as they would be under a single GP. Further details of the compu-
tational performance of our algorithm in the context of a simulation study are
deferred to Section 3.4.2.1.
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Algorithm 3.1: GP-BART sampling algorithm.
Input: X, y, T , NMCMC, Nburn, and all hyperparameters of the priors.
Initialise: T tree stumps with µt1 = 0 ∀ t, ϕtj ∀ (t, j) drawn with equal

probability from Sϕ, and τ drawn from its Ga(aτ , dτ ) prior.
1 for iterations m from 1 to NMCMC do
2 for trees t from 1 to T do
3 Calculate the partial residuals Rt via Equation (3.9);
4 Propose a new tree T ⋆

t by a grow-rotate, change-rotate, or prune move;
5 Accept and update Tt = T ⋆

t with probability

γ⋆ (Tt, T ⋆
t ) = min

1,
π
(
Rt | T ⋆

t ,ϕt, ν, τµ, τ
)
π
(
T ⋆

t

)
q
(
T ⋆

t → Tt

)
π
(
Rt | Tt,ϕt, ν, τµ, τ

)
π
(
Tt

)
q
(
Tt → T ⋆

t

)
 .

6 for terminal nodes ℓ from 1 to bt do
7 Update ψtℓ via Equation (3.10).
8 end
9 for continuous predictors j from 1 to p⋆ used in the GPs do

10 Update ϕtj using MH.
11 end
12 end
13 Update τ via Equation (3.11).
14 end

Output: Samples from π ((T1,G1), . . . , (TT ,GT ), τ | y).

3.3.2 Prediction in GP-BART
The trees in GP-BART models can provide out-of-sample predictions for a set of n⋆

new observations X⋆. For a given terminal node ℓ in tree Tt for a particular MCMC
sample, the joint posterior distribution of the node-level training predictions and
the node-level test predictions is given byψtℓ · · ·

ψ⋆
tℓ

∼ MVN
0ntℓ

0n⋆
tℓ

,
Λtℓ Λ⋆

tℓ

Λ⋆⊤
tℓ Λ⋆⋆

tℓ

,
with Λ⋆

tℓ ∈ Rn⋆
tℓ ×Rntℓ and Λ⋆⋆

tℓ ∈ Rn⋆
tℓ ×Rn⋆

tℓ . Here, ntℓ and n⋆
tℓ denote the number

of observations assigned to terminal node ℓ of tree Tt for the training samples and
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new data, respectively. This posterior predictive distribution can be conditioned
with respect to ψtℓ to yield

ψ⋆
tℓ |ψtℓ,X(tℓ),X⋆

(tℓ), . . . ∼ MVN
(
µGP⋆

tℓ
,ΣGP⋆

tℓ

)
,

where µGP⋆
tℓ

= Λ⋆⊤
tℓ Λ−1

tℓ ψtℓ and ΣGP⋆
tℓ

= Λ⋆⋆
tℓ − Λ⋆⊤

tℓ Λ−1
tℓ Λ⋆

tℓ.

Ultimately, the function g⋆ assigns the vector µGP⋆
tℓ

= E(ψ⋆
tℓ | . . .) to the associated

new observations X⋆
(tℓ) on a per-iteration basis, such that the estimates from GP-

BART are given by

ŷ⋆(m) = N
(

T∑
t=1

g⋆
(
X⋆; T (m)

t ,G(m)
t

)
, τ̂−1(m)In⋆

)
, (3.12)

where m indexes the draws from the posterior distribution after the burn-in iter-
ations. The overall prediction ȳ⋆

i for a new observation x⋆
i is then given by the

average of the estimates ŷ⋆(1)
i , . . . , ŷ⋆(M)

i ; i.e., ȳ⋆
i = 1

M

∑M
m=1 ŷ

⋆(m)
i . Posterior samples

from Equation (3.12) can also be used to quantify the uncertainty in the predic-
tions. For instance, with some large number Q of draws per posterior sample, the
endpoints of a (1−α)% prediction interval for a predicted value ȳ⋆

i can be obtained
from the upper and lower α/2 quantiles of (ŷ⋆(11)

i , . . . , ŷ⋆(M1)
i ), . . . , (ŷ⋆(1q)

i , . . . , ŷ⋆(MQ)
i ).

3.4 Simulation studies
In this Section, we present simulation studies to evaluate the performance of GP-
BART from several different perspectives. In Section 3.4.1 we primarily aim to
assess the efficacy of incorporating the rotated splitting rules and the GPs them-
selves for data with explicit spatial components, whereas in Section 3.4.2 we first
aim to assess the ARD associated with the equiprobable discrete prior on the tree-
varying, variable-specific length parameters ϕtj described in Section 3.2.2.1. An
evaluation of the computational burden is also provided in Section 3.4.2.1.

3.4.1 Benchmarking experiments
In these experiments, the simulated data are composed by a summation of trees
with two terminal nodes, built using the variables X = (x(1),x(2)). These co-
variates are simulated such that each predictor is generated from a uniform grid
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between −10 and 10. The values associated with each terminal node follow a mul-
tivariate normal distribution with specific mean and covariance parameters. We
generate the response variable via

y =
[
(µ11 + s11)1(x(1) ≤ x(2)) + (µ12 + s12)1(x(1) > x(2))

]
+
[
(µ21 + s21)1(x(1) ≤ −x(2)) + (µ22 + s22)1(x(1) > −x(2))

]
+
[
(µ31 + s31)1(x(1) ≤ 0) + (µ32 + s32)1(x(1) > 0)

]
+ ε,

(3.13)

with number of trees T = 3, each with two terminal nodes. The node-specific mean
parameters µtℓ are all constant vectors of the form (µtℓ, . . . , µtℓ), with respective
values given by µ11 = −10, µ21 = 0, µ31 = 10, µ12 = 5, µ22 = 20, and µ32 = −15.
Multivariate normal spatial terms stℓ ∼ MVN(0ntℓ

,Ωtℓ(ϕt = 3ntℓ
, ν = 0.1)) are

added within each terminal node. Residual noise terms ε ∼ MVN(0n, τ
−1In) are

also added. Results obtained with residual precision values of τ = {10, 1, 0.1, 0.01}
lead to similar conclusions in that GP-BART consistently shows the best perfor-
mance in terms of prediction accuracy and uncertainty calibration. For brevity,
we show the data and results for τ = 10 here only and defer the other results to
Appendix 3.B. Figure 3.2 shows the simulated data surfaces for data sets of size
n = {100, 500, 1000}, respectively, highlighting the different partitioning behaviour
and smoothness within each data set.

Figure 3.2: Simulated data with n = {100, 500, 1000} observations, respectively.
We compare the performance of our GP-BART model to other tree-based methods,
namely BART (Chipman et al., 2010), SoftBART (Linero and Yang, 2018), and
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tGP (Gramacy and Lee, 2008), as well as the universal kriging model (Cressie,
2015) and latent Gaussian models using integrated nested Laplace approximations
(INLA; Lindgren and Rue, 2015). We evaluate the results using 5 repetitions of 5-
fold cross-validation; each fold is treated as a test set and prediction accuracy and
uncertainty calibration are quantified using the root-mean-square error (RMSE)
and the continuous ranked probability score (CRPS; Gneiting and Raftery, 2007),
respectively, over all folds within a given repetition.

The models are fitted using the R packages BART (Sparapani et al., 2021), SoftBart
(Linero, 2022b), tgp (Gramacy and Taddy, 2010), fields (Nychka et al., 2021),
and INLA (Lindgren and Rue, 2015), with their default settings. All hyperparame-
ters for the GP-BART model were specified using their default values and settings
previously described in Sections 3.2 and 3.3. To qualitatively compare the meth-
ods, we analyse the prediction surface generated by each algorithm for the data
sets of size n = {100, 500, 1000}, shown in Figure 3.2, using predictions over the
test sets in the repeated 5-fold setting. The corresponding plots are provided in
Figures 3.3, 3.4, and 3.5. In each case, results from one randomly chosen repetition
of the repeated 5-fold cross-validation are used to construct the plots.

Figure 3.3: Predicted surfaces for the simulated scenario with n = 100 observations
from the first panel of Figure 3.2 using different methods over one randomly chosen
test repetition.
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Figure 3.4: Predicted surfaces for the simulated scenario with n = 500 observations
from the second panel of Figure 3.2 using different methods over one randomly
chosen test repetition.

Figure 3.5: Predicted surfaces for the simulated scenario with n = 1000 observa-
tions from the third panel of Figure 3.2 using different methods over one randomly
chosen test repetition.

42



3.4. Simulation studies

Though the provided plots indicate clear differences between each model type,
each model’s behaviour is similar across the sample sizes. GP-BART’s predic-
tion surfaces appear most similar to the original data shown in Figure 3.2 in each
case. Indeed, GP-BART successfully identifies diagonal partitions due to its ro-
tated splits, while BART, SoftBART, and tGP only produce splits parallel to the
axes. Though BART and SoftBART uncover differences among the terminal node
regions nonetheless, their predictions are less accurate than their competitors by
virtue of spatial dependence not being explicitly accounted for by these two meth-
ods. In addition, GP-BART can produce smoother surfaces than BART, as the
nature of the original algorithm inherently involves the summation of stepwise-
constant functions. The tGP, kriging, and INLA predictions capture the spatial
features well, but their failure to identify the partitions results in blurred predic-
tion surfaces in areas where the data splits. Therefore, we emphasise that the
proposed model takes advantage of the benefits of rotated splits, explicitly defined
spatial dependence assumptions, and the inherent smoothness from the GPs.

A quantitative comparison is shown in the boxplots in Figure 3.6, which reflect the
previous qualitative interpretations. Here, GP-BART presents substantially lower
RMSE than its competitors, particularly for smaller n. We assess uncertainty cal-
ibration by examining boxplots of CRPS scores in Figure 3.7. These results show
that the GP-BART model presents the lowest CRPS values among all methods.
Thus, considering both metrics jointly, GP-BART’s performance in terms of pre-
diction accuracy and uncertainty quantification is superior to the other models
considered.

To highlight the effect of the proposed moves and the use of GPs over the terminal
nodes, four different, restricted versions of GP-BART are compared:

(A) without any rotated moves or GPs (i.e., the standard BART model);

(B) without GPs, but with the new rotated ‘grow’ and ‘change’ moves;

(C) without the new rotated moves, but with GPs;

(D) the standard GP-BART with both rotated splitting rules and GPs.
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We defer the results for the other sample sizes, which lead to similar conclusions,
to Appendix 3.C, along with an evaluation of the acceptance rates for the tree-
proposal moves under version (D), and consider only the n = 500 setting here, for
brevity. This comparison is summarised in Figures 3.8 and 3.9, in which the letters
above are used to distinguish the model versions. As before, results based on one
randomly chosen repetition of the 5-fold cross-validation are used to construct
Figure 3.8.

The prediction surface (A) in Figure 3.8 suggests BART cannot adequately capture
different behaviours in the terminal node regions due to the lack of smoothness
and non-linearity compared with GP-BART. Panels (B) and (C) both compare
reasonably well with (D), which highlights the benefits of the rotated split rules
and use of GPS, respectively. However, there is an apparent lack of smoothness
in the terminal node regions of (B), and visible blurriness in the areas where the
data splits in (C). Ultimately, it is evident that combining both innovations in
(D) yields the best performance.

This conclusion is reinforced by Figure 3.9, which indicates the superior perfor-
mance of version (D). Despite the larger variance in the RMSE, the standard
GP-BART obtains the lowest median value of both metrics shown. Versions (B)
and (C), which respectively incorporate rotated splits and GPs, yield similar yet
slightly inferior RMSE values to (D), but their performance in terms of uncertainty
calibration as measured by median CRPS differs more substantially. Notably, the
standard BART model (A) is unsatisfactory from both points of view.
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Figure 3.6: Comparisons between the RMSE obtained by the competing models
for the simulated data using 10-fold cross validation over different sample sizes.
These results show that GP-BART tends to deliver the lowest median RMSE,
as it encompasses assumptions of spatial dependence, smoothness, and allows for
rotated splits.

Figure 3.7: Comparisons between the CRPS values obtained by the competing
models for the simulated data using 10-fold cross validation over different sample
sizes. These results show that GP-BART tends to deliver the lowest median CRPS
scores, as it encompasses assumptions of spatial dependence, smoothness, and
allows for rotated splits.
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Figure 3.8: Comparison between the predicted surfaces under the different versions
of GP-BART for the n = 500 simulated data over one randomly chosen test
repetition. The surface for (D), the standard version of GP-BART, is qualitatively
close to the observed data in the second panel of Figure 3.2.

Figure 3.9: Boxplots of the RMSE (left) and CRPS (right) values across the differ-
ent versions of the GP-BART model for the n = 500 simulated data. The standard
GP-BART (D) has the best performance in terms of both RMSE and calibration.
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3.4.2 Friedman data
In this scenario, we consider the Friedman equation (Friedman, 1991):

yi = 10 sin
(
πx

(1)
i x

(2)
i

)
+ 20

(
x

(3)
i − 0.5

)2
+ 10x(4)

i + 5x(5)
i + ϵi, i = 1, . . . , n,

where x(j)
i ∼ Unif(0, 1) ∀ j = 1, . . . , p and ϵi ∼ N(0, τ−1). This equation is used for

benchmarking tree-based methods using synthetic data, and has been examined
in many other papers, e.g., Chipman et al. (2010); Linero and Yang (2018). For
these data, we compare GP-BART to its explicitly tree-based competitors, namely
BART, SoftBART, and tGP. Though there are no spatial features here, we still
anticipate that incorporating GPs and rotated splits will help as there are non-
linear smooth interactions in these data.

Here, we specify τ = 100, n = 500, and consider two versions of the same data;
firstly with p = 5 and secondly with p = 10 features, of which the first 5 are
those from the first scenario. As the Friedman equation uses only 5 covariates
to generate the response, the additional five predictors in the second scenario are
uninformative noise variables with no effect on yi. Figure 3.10 shows that GP-
BART outperforms the other methods and presents good performance in terms
of predictive accuracy and uncertainty calibration, using the RMSE and CRPS
metrics as above. Subsequently, Figure 3.11 shows the same comparison, this time
with the additional 5 noise variables.

The latter comparison with extra noise variables in Figure 3.11 is also favourable
to GP-BART. In particular, these results show that the uninformative variables
do not have a detrimental effect on its performance. This can be attributed to
the discrete prior assumed for the ϕtj parameters automatically diminishing their
influence on the kernels of the GPs. Conversely, the adverse effects of such variables
on the RMSE and CRPS values under BART, SoftBART, and tGP are more readily
apparent, when one compares Figure 3.10 and Figure 3.11. The deterioration is
especially notable for tGP.
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Figure 3.10: Comparison of the RMSE and CRPS over the test set in the 25 folds
from 5 repetitions of 5-fold cross-validation for the Friedman data set with n = 500
and p = 5.

Figure 3.11: Comparison of the RMSE and CRPS over the test set in the 25 folds
from 5 repetitions of 5-fold cross-validation for the Friedman data set with n = 500
and p = 10, i.e. with 5 additional noise variables.

Table 3.1 further demonstrates the effectiveness of the ARD by examining mean
values of the minimum values of ϕtj for each variable (in both the p = 5 and
p = 10 scenarios) over all trees and all accepted MH proposals in the retained
posterior samples across each repetition of 5-fold cross-validation. In the first
scenario (p = 5), the fourth and fifth variables, which are merely related linearly
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to the response, are shown to be associated with moderately higher values. In the
p = 10 scenario, the model selects substantially larger values for the 5 extra noise
variables which are unrelated to the response, whereas small values are selected
for all of the informative predictors, such that they contribute meaningfully to
the GPs. Despite the remarkable performance of GP-BART in the Friedman
simulations, it is important to note the extremely high signal-to-noise ratio in
these cases. Given the results shown in Appendix 3.B, where the residual precision
parameter τ is varied in the benchmarking experiments, we can reasonably expect
the performance gap to narrow as this ratio decreases for the Friedman data also.

Table 3.1: Means and standard deviations (in parentheses) of the minimum value
for ϕtj for each variable over all trees and all accepted MH proposals in the retained
posterior samples across each repetition of 5-fold cross-validation on the Friedman
data sets. The first row shows the p = 5 scenario and the subsequent rows show
those same 5 variables and the 5 additional noise variables in the p = 10 scenario.

Friedman data Mean (Standard Deviation)
Without noise
(p = 5)

0.45 0.45 0.20 0.49 0.55
(0.13) (0.13) (0.17) (0.08) (0.16)

With noise
(p = 10)

0.46 0.42 0.39 0.50 0.58
(0.12) (0.16) (0.18) (0.01) (0.18)
47.4 47.2 47.7 48.2 43.2

(10.78) (11.09) (10.06) (8.98) (16.93)

3.4.2.1 Computational performance and cost considerations

While GP-BART exhibits superior performance compared to its tree-based com-
petitors, it is important to acknowledge its additional computational costs. This
chiefly arises from its composition as a sum of GPs, which incurs a computational
complexity of O(n3

tℓ) within each terminal node. Although the model shows favor-
able outcomes in the simulations presented thus far, it is important to weigh this
against computational efficiency. While the the aforementioned O(n3

tℓ) costs can
be reduced by encouraging deeper trees a priori, the relevant hyperparameters of
Equation (3.4) should be handled with care. We continue to adopt the default val-
ues of α = 0.95 and β = 2 as modifying them can decrease run times but comes at
the expense of worse predictive performance. See Appendix 3.D for more details.
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To asses the algorithm’s computational demands, the microbenchmark R package
(Mersmann, 2021) was used to obtain accurate measurements of the run times for
GP-BART, tGP, and SoftBART, with five replications for each method. These
competing treed models were specifically chosen due to their substantial compu-
tational requirements, and both were applied using their default settings. For
GP-BART, our own R package based on C++ code was used. All computations
were performed using R version 4.2.1 on a MacBookPro laptop, equipped with a
2.3 GHz Dual-Core Intel Core i5 processor and 8GB of RAM. The experiments
were conducted on the Friedman data set with noise variables (i.e., p = 10), while
varying the training sample size (ntr) among {50, 100, 500} and keeping the testing
sample size fixed at nte = 50.

The findings are summarized in Table 3.2, which shows that both GP-BART and
tGP experience a rapid escalation in computational time as the training sample
size (ntr) increases. Notably, GP-BART exhibits the highest computational burden
in the comparison. Indeed, the run times with ntr = 500 suggest that GP-BART
would need to be run on a dedicated machine or server for feasible modelling
of larger datasets. However, it is noteworthy that despite the greater run times
required by GP-BART, its timings remain comparable to those of tGP, particularly
when considering the ratio of GP-BART’s timings to the number of trees (T = 20
in its default setting).

Table 3.2: Computational time statistics for the p = 10 Friedman data in seconds,
across five runs of each implementation for GP-BART and two tree-based com-
petitors.

Method Metric ntr = 50 ntr = 100 ntr = 500

GP-BART
Min. 150.8 442.9 37633.9
Mean 167.1 458.4 39360.5
Max. 176.4 482.2 40187.2

tGP
Min. 5.1 20.6 2062.8
Mean 6.2 21.6 2119.9
Max. 6.5 23.8 2177.0

SoftBART
Min. 10.7 12.5 43.2
Mean 12.8 15.8 44.0
Max. 13.6 21.7 44.8
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3.5 Applications
In this Section, we appraise the predictive performance of GP-BART compared to
BART, SoftBART, tGP, kriging, and INLA on diverse real data sets, as a larger
and more challenging test of GP-BART’s capabilities. For illustration, we use four
public data sets containing spatial features; i.e., with inherent dependence over
the observations. These data sets are:

1. The Auckland data; consisting of 166 observations describing infant mortality
in Auckland, with two spatial covariates and the target variable (Bivand and
Wong, 2018).

2. The Baltimore data; comprising 221 observations of house sales prices, two
spatial features, and 13 other covariates, not all of which are continuous
(Bivand and Wong, 2018).

3. The Boston data; containing 506 observations of the median values of owner-
occupied suburban homes, two spatial features, and 13 other covariates, not
all of which are continuous. We model a corrected version (Gilley and Pace,
1996) of the original data (Harrison and Rubinfeld, 1978).

4. Swmud; a data set of seabed mud content in the southwest Australia Exclu-
sive Economic Zone with 177 observations of two sets of spatial coordinates
and mud content as the target variable (Li et al., 2011).

Our implementations of each algorithm follow their respective default settings,
including those previously described in Sections 3.2 and 3.3 for GP-BART. As be-
fore, 5 repetitions of 5-fold cross-validation are used to evaluate performance. Cat-
egorical features cannot be formally accommodated in the GPs under the present
parameterisation of GP-BART’s kernel function. Hence, for the Baltimore and
Boston data sets, we restrict the GPs to include the continuous and integer-valued
covariates only. However, categorical features are still used to form splitting rules
for GP-BART, as described in Section 3.2.1. All other methods accommodate cat-
egorical features using dummy variable representations. In each case, the strictly
spatial continuous features represent the exact coordinates of the instances.
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The results are summarised in Figure 3.12 and Figure 3.13, which show the RMSE
and CRPS, respectively, for each data set over all folds. According to Figure
3.12, GP-BART presents the lowest median RMSE for the Auckland, Boston, and
Swmud data sets. The difference is most pronounced for the Boston data, for
which kriging and INLA perform notably worse than all tree-based methods. For
the Baltimore data, it ranks second among all methods.

Figure 3.12: Comparison between the RMSE values for the benchmarking data sets
across the six competing methods using 5 repetitions of 5-fold cross-validation.
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Figure 3.13 shows that the CRPS values produced by GP-BART are similarly
favourable when compared with the performance of the other algorithms, with
GP-BART having the lowest or second-lowest median CRPS values for all but
the Baltimore data set. Note that boxplots of the CRPS values for kriging are
omitted from Figure 3.13 for the sake of visual clarity, as they are well outside the
range of those for the other models in the comparison. Jointly considering both
the predictive accuracy and the uncertainty calibration, GP-BART was able to
consistently yield superior or competitive predictions.

Figure 3.13: Comparison between CRPS values for the benchmarking data sets
across five of the six competing methods using 5 repetitions of 5-fold cross-
validation.
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Given the variability in these boxplots, another aspect of performance evalua-
tion for each model and data set is illustrated in Figure 3.14, which presents the
average RMSE rank for each of the 25 test partitions from the repeated cross-
validations. Ranks are defined here such that the model yielding the lowest mean
RMSE is given a rank of 1, while the one with the worst prediction performance
is given the highest possible rank of 6, for each test partition. From Figure 3.14,
we can see that GP-BART has the lowest average RMSE rank for the Boston
data set, particularly compared to the standard BART model. For the Auckland
data, INLA’s performance in this regard is also the best followed right after by
GP-BART, where both jointly outperform the other methods. For the Swmud
data, GP-BART presents the lowest average ranking among treed methods, losing
only to the traditional spatial methods. Finally, GP-BART’s performance on the
Baltimore data is competitive with respect to other methods based on trees and
GPs and superior to the traditional spatial methods.

Figure 3.15 also relies on average ranks, though here using CRPS as the metric
of comparison in order to evaluate uncertainty quantification. As per Figure 3.14,
GP-BART performs best among the treed methods for the Auckland data and
performs better than the traditional spatial methods for the Baltimore data. For
the Boston data, SoftBART and tGP surpass all other methods, but GP-BART
achieves the next-lowest mean rank. Finally, GP-BART remains competitive for
the Swmud data, notably outperforming the standard BART. Following its omis-
sion from Figure 3.13, kriging’s CRPS performance is by far the worst for each
data set.
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Figure 3.14: RMSE ranks for all six competing models over the four benchmark
data sets, averaged over all five repetitions of the 5-fold cross validation. The ranks
range from 1 to 6, with lower ranks being associated with lower mean RMSE values.

Figure 3.15: CRPS ranks for all six competing models over the four benchmark
data sets, averaged over all five repetitions of the 5-fold cross validation. The
ranks range from 1 to 6, with lower ranks being associated with lower mean CRPS
values.
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3.6 Discussion
In this chapter, we proposed GP-BART as an extension to the standard BART
model. We used Gaussian processes (GPs) to make observation-specific predictions
at the terminal node level, and thus are able to capture non-linear relations and
spatial dependence through the covariance structure of the GPs. In addition, our
novel model allows the use of rotated splitting rules to build rotated partitions,
which enable more flexibility in the tree representations.

The performance of GP-BART was evaluated over a number of simulated scenar-
ios, where the model outperformed BART, restricted versions of GP-BART itself
without the use of GPs and/or novel rotated splitting rules, and another unrelated
BART extension. Our benchmarking studies also highlighted GP-BART’s supe-
rior performance relative to some spatial models, namely basic kriging and INLA.
Our second simulation setting, using data generated according to the well-known
Friedman equation, without explicit spatial components, was also favourable to
GP-BART over other tree-based methods. In particular, these results demon-
strated GP-BART’s insensitivity to the inclusion of noise variables through the
use of ARD.

When tested on real applications, using out-of-sample data via 5 repetitions of
5-fold cross-validation, GP-BART displayed competitive predictive capabilities,
beating many of the established methods. We also compared the calibration prop-
erties of our method using CRPS; again, GP-BART performed as well or better
than competing methodologies. Overall, in terms of predictive accuracy and uncer-
tainty quantification, GP-BART consistently showed promising performance from
both perspectives.

There are several potential issues remaining with the model and the sampling
algorithm, which may provide opportunities for future research and further per-
formance improvements:

• Careful choices have been made regarding the specification of prior distribu-
tions for the model parameters because the trees and the GPs can compete
to explain the variability in the data. We have endeavoured to set sensible
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default parameters throughout. However, a more substantial study might
suggest general rules as to how these parameters might be elicited in light
of certain data set properties. In some simpler scenarios, reparameteris-
ing the kernel functions to specify the length parameters at the tree-level
only (i.e., no longer adopting variable-specific ϕtj) may be appropriate, and
would significantly speed-up the algorithm by reducing the number of like-
lihood evaluations involved in learning these parameters via MH. However,
predictive performance may deteriorate as a result of this simplification in
the presence of uninformative variables or other cases where variables con-
tribute unequally to the GPs. Alternatively, block updates of ϕtj would also
reduce the computational burden, though designing an efficient proposal dis-
tribution for simultaneously sampling an adequate set of parameter values
is not a trivial task.

• The model can be computationally challenging to fit for larger data sets,
since the calculation of each terminal node’s contribution to the overall like-
lihood involves inverting each associated covariance matrix, though the cost
is reduced from O(n3) under a single GP to O(n3

tℓ) per node, given the
partitioning introduced by the tree structure. Marginalising the GP mean
parameters also speeds up the algorithm. Potential strategies for further
speeding up the algorithm fall into two categories.

1. Regarding the necessary matrix computations, scalable, sparse, greedy
approximations for GPs — e.g., the Nyström method (Williams et al.,
2002) or the methods of Quiñonero-Candela et al. (2007), Rahimi and
Recht (2007), and Wilson et al. (2020) — may also be advantageous
in future work. However, such approximations may compromise model
performance compared to our present MCMC implementation.

2. Incorporating warm-up procedures to initialise GP-BART could be an-
other viable strategy. For instance, XBART (He and Hahn, 2023) em-
ploys recursive partitioning and other modifications to the standard
BART to rapidly find large trees which fit the data well; by ensuring
that its draws are in high-probability regions of the BART posterior,
this approach greatly reduces burn-in times. Seeding GP-BART in a
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similar fashion would allow convergence to be achieved more rapidly.
However, it would be crucial to carefully design this initialisation pro-
cess to align with the specific GP-BART setting, as a faster initialisation
may potentially result in local minima or wasteful iterations and trees in
high-probability regions of the BART posterior may not be well-suited
to GP-BART.

• In general, determining variable importance in GP-BART is difficult as vari-
ables may contribute to both the GPs and/or the splits. Though the ARD
appears to adequately capture relevant variables and account for irrelevant
variables in the applications considered herein, there is further scope for
re-calibrating the discrete prior and proposal distributions for the length
parameters in cases where there is prior knowledge about the relative impor-
tance of specific predictors, as well as scope for exploiting variable-selection
from the BART component. At present, all continuous predictors used to
construct the trees are used in the GPs, which need not be the case. It may
be beneficial to restrict the GPs only to the variables used to define splits
along the given branch, though this would come with significant additional
computational costs.

• In the applications herein, we have focused on the use of GP-BART for spatial
data sets, but there is nothing to prohibit the model being used in generic ma-
chine learning tasks. However, we have restricted the GPs to be covariance-
stationary through our use of anisotropic exponentiated-quadratic kernels,
which are governed only by scalar rate and tree-level, variable-specific length
parameters. A superior approach may introduce non-stationarity to the au-
tocovariance and hence produce more flexible GP surfaces. Relatedly, recall
that tGP incorporates non-stationarity in its single ‘treed-GP’. Doing so for
GP-BART may result in our model demonstrating even further performance
improvements over tGP in the applications, but it would come with more
computational challenges.

Indeed, though the model outperforms its competitors in all simulation ex-
periments and on most of the real data sets analysed above, the underlying
exponentiated-quadratic kernel functions used in our parameterisation of the
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GP components may be inappropriate in other settings. Investigating alter-
native kernel functions to further improve GP-BART’s performance is of
great interest for future work. For instance, kernels capable of accommodat-
ing the non-continuous features we discarded in our analysis of the Baltimore
and Boston data sets would also be of particular interest. However, this
would not be immediately straightforward, given that changing the kernel
necessitates specifying priors appropriately and deriving posterior distribu-
tions from scratch for sampling parameters with each new kernel and that
more sophisticated kernels may further increase the computational burden.

• An advantage of Bayesian additive tree ensembles is their faster convergence
compared to Bayesian CART models (Chib and Greenberg, 1998). While
more trees generally lead to quicker convergence, the computational cost as-
sociated with the GPs may outweigh the benefits due to the increased burden
of adjusting more trees, especially given the aforementioned costs of the re-
quired node-specific matrix inversion operations. The improved convergence
of ensembles of trees relative to models with only a single tree may also
explain how GP-BART is capable of effectively exploring the ϕtℓ parameter
space and avoiding local minima. A more extensive comparison on how the
number of trees can affect the convergence and how to optimise this aspect
of the proposed ensemble while balancing computational considerations may
furtherimprove the algorithm’s performance.

We hope to report on these developments as part of our future research plans.
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3.A Tree likelihood

In general terms, following the initial formulation of the GP-BART model de-
scribed in Section 3.2.2, the posterior distribution of the residuals for a terminal
node ℓ in tree t is given by

Rtℓ | Tt, µtℓ,ϕt, ν, τ ∼ MVN
(
µtℓ = µtℓ1ntℓ

, τ−1Intℓ
+ Ωtℓ

)
.

However, in writing this likelihood, we can marginalise out the terminal-node mean
parameters µtℓ | Tt, τµ ∼ N(0, τ−1

µ ) as follows

π (Rtℓ | Tt,ϕt, ν, τ) =
∫
π (Rtℓ | µtℓ,ϕt, ν, τ) π (µtℓ) dµtℓ

∝ |Γtℓ|−1/2 exp
{

−1
2 (Rtℓ − µtℓ)⊤ Γ−1

tℓ (Rtℓ − µtℓ)
}

×

τ−1/2
µ exp
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−τµ

2 µ
2
tℓ

}
,

where Γtℓ = τ−1Intℓ
+ Ωtℓ. After further calculations, letting

vtℓ = 1⊤
ntℓ

Γ−1
tℓ 1ntℓ

+ τµ,

applying the log, and then summing over the terminal nodes, we obtain

log π (Rt | Tt,ϕt, ν, τ) = log C − 1
2

bt∑
ℓ
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tℓ Rtℓ + 1
2

bt∑
ℓ

v−1
tℓ 1⊤

ntℓ
Γ−1

tℓ RtℓR⊤
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,
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where C is a constant of proportionality. Recalling Λtℓ = τ−1
µ 1ntℓ

1⊤
ntℓ

+ Ωtℓ, this
expression can be further simplified with the constant µtℓ parameters explicitly
absorbed into the kernel of the GP. This yields the following distribution for the
partial residuals

Rtℓ | Tt,ϕt, ν, τ ∼ MVN
(
0ntℓ

, τ−1I tℓ + Λtℓ

)
,

which bypasses the need to sample the µtℓ parameters and leads to better mixing.

3.B Performance evaluation with varying
residual precision on the benchmarking
experiments

To assess the model’s performance across different levels of noise, we replicated
the experiments from Section 3.4.1, varying the residual precision parameter τ
at three levels — specifically τ = {1, 0.1, 0.01} — and compared GP-BART with
its competitors in each case, as before. Recall that the results shown throughout
Section 3.4.1 are based on τ = 10 only. The results now indicate that even with in-
creasing noise (i.e., lower precision), GP-BART maintains consistent performance
and continues to exhibit the lowest median RMSE and CRPS values, though the
variability of both metrics does increase as τ decreases.

The results for τ = 0.1, τ = 0.1, and τ = 0.01 are presented in Appendices
3.B-i, 3.B-ii, and 3.B-iii, respectively. As per Section 3.4.1, we show in each case
the simulated data surface for the given τ value with sample sizes of n = 100,
n = 500, and n = 1000 and then show the predicted surfaces according to GP-
BART and its competitors BART, SoftBART, tGP, kriging, and INLA at each
sample size. Finally, we show boxplots of the RMSE and CRPS values obtained
by the competing methods on the data generated with the respective τ value.

3.B-i Residual precision τ = 1

The simulated data surfaces considering the residual precision τ = 1 for different
samples sizes n = {100, 500, 1000} are shown in Figure 3.B.1. Figures 3.B.2–3.B.4
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show the corresponding predicted surfaces from one randomly chosen repetition of
the repeated 5-fold cross-validation for each respective sample size. As before, GP-
BART’s predicted surfaces more closely resemble the signal from the original data
depicted in Figure 3.B.1 in every instance, when compared with its competitors.
The quantitative comparison is summarised via boxplots of RMSE and CRPS
values in Figure 3.B.5 and Figure 3.B.6, respectively. These boxplots reflect the
conclusions draw from previous plots where, in general, GP-BART presents the
lowest median values for RMSE and CRPS across all scenarios.

Figure 3.B.1: Simulated data with n = {100, 500, 1000} observations, respectively,
and residual precision of τ = 1.
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Figure 3.B.2: Predicted surfaces for the simulated scenario with n = 100 observa-
tions from the first panel of Figure 3.B.1 using different methods over one randomly
chosen test repetition. The residual precision is τ = 1.

Figure 3.B.3: Predicted surfaces for the simulated scenario with n = 500 obser-
vations from the second panel of Figure 3.B.1 using different methods over one
randomly chosen test repetition. The residual precision is τ = 1.
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Figure 3.B.4: Predicted surfaces for the simulated scenario with n = 1000 ob-
servations from the third panel of Figure 3.B.1 using different methods over one
randomly chosen test repetition. The residual precision is τ = 1.

Figure 3.B.5: Comparisons between the RMSE obtained by the competing models
for the simulated data using 5 repeated 5-fold cross validation over different sample
sizes, and τ = 1. Based on the results, it is evident that GP-BART consistently
delivers the best performance on average, as it encompasses assumptions of spatial
dependence, smoothness, and allows for rotated splits.
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Figure 3.B.6: Comparisons between the CRPS values obtained by the competing
models for the simulated data using 5 repeated 5-fold cross validation over differ-
ent sample sizes, and τ = 1. Based on the results, it is evident that GP-BART
consistently delivers the best performance on average, as it encompasses assump-
tions of spatial dependence, smoothness, and allows for rotated splits.

3.B-ii Residual precision τ = 0.1

The simulated data surfaces considering the residual precision τ = 0.1 for different
samples sizes n = {100, 500, 1000} are shown in Figure 3.B.7. Figures 3.B.8–3.B.10
show the corresponding predicted surfaces from one randomly chosen repetition of
the repeated 5-fold cross-validation for each respective sample size. As before, GP-
BART’s predicted surfaces more closely resemble the signal from the original data
depicted in Figure 3.B.7 in every instance, when compared with its competitors.
The quantitative comparison is summarised via boxplots of RMSE and CRPS
values in Figure 3.B.11 and Figure 3.B.12, respectively. These boxplots reflect the
conclusions draw from previous plots where, in general, GP-BART presents the
lowest median values for RMSE and CRPS across all scenarios.
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Figure 3.B.7: Simulated data with n = {100, 500, 1000} observations, respectively,
and residual precision of τ = 0.1.

Figure 3.B.8: Predicted surfaces for the simulated scenario with n = 100 observa-
tions from the first panel of Figure 3.B.7 using different methods over one randomly
chosen test repetition. The residual precision is τ = 0.1.
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Figure 3.B.9: Predicted surfaces for the simulated scenario with n = 500 obser-
vations from the second panel of Figure 3.B.7 using different methods over one
randomly chosen test repetition. The residual precision is τ = 0.1.

Figure 3.B.10: Predicted surfaces for the simulated scenario with n = 1000 ob-
servations from the third panel of Figure 3.B.7 using different methods over one
randomly chosen test repetition. The residual precision is τ = 0.1.
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Figure 3.B.11: Comparisons between the RMSE obtained by the competing models
for the simulated data using 5 repeated 5-fold cross validation over different sample
sizes, and τ = 0.1. Based on the results, it is evident that GP-BART consistently
delivers the best performance on average, as it encompasses assumptions of spatial
dependence, smoothness, and allows for rotated splits.

Figure 3.B.12: Comparisons between the CRPS values obtained by the competing
models for the simulated data using 5 repeated 5-fold cross validation over differ-
ent sample sizes, and τ = 0.1. Based on the results, it is evident that GP-BART
consistently delivers the best performance on average, as it encompasses assump-
tions of spatial dependence, smoothness, and allows for rotated splits.
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3.B-iii Residual precision τ = 0.01

The simulated data surfaces considering the residual precision τ = 0.01 for dif-
ferent samples sizes n = {100, 500, 1000} are shown in Figure 3.B.13. Figures
3.B.14–3.B.16 show the corresponding predicted surfaces from one randomly cho-
sen repetition of the repeated 5-fold cross-validation for each respective sample
size. As before, GP-BART’s predicted surfaces more closely resemble the signal
from the original data depicted in Figure 3.B.13 in every instance, when compared
with its competitors. The quantitative comparison is summarised via boxplots of
RMSE and CRPS values in Figure 3.B.17 and Figure 3.B.18, respectively. These
boxplots reflect the conclusions draw from previous plots where, in general, GP-
BART presents the lowest median values for RMSE and CRPS across all scenarios.

Figure 3.B.13: Simulated data with n = {100, 500, 1000} observations, respec-
tively, and residual precision of τ = 0.01.
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Figure 3.B.14: Predicted surfaces for the simulated scenario with n = 100 ob-
servations from the first panel of Figure 3.B.13 using different methods over one
randomly chosen test repetition. The residual precision is τ = 0.01.

Figure 3.B.15: Predicted surfaces for the simulated scenario with n = 500 obser-
vations from the second panel of Figure 3.B.13 using different methods over one
randomly chosen test repetition. The residual precision is τ = 0.01.
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Figure 3.B.16: Predicted surfaces for the simulated scenario with n = 1000 ob-
servations from the third panel of Figure 3.B.13 using different methods over one
randomly chosen test repetition. The residual precision is τ = 0.01.

Figure 3.B.17: Comparisons between the RMSE obtained by the competing models
for the simulated data using 5 repeated 5-fold cross validation over different sample
sizes, and τ = 0.01. Based on the results, it is evident that GP-BART consistently
delivers the best performance on average, as it encompasses assumptions of spatial
dependence, smoothness, and allows for rotated splits.
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Figure 3.B.18: Comparisons between the CRPS values obtained by the competing
models for the simulated data using 5 repeated 5-fold cross validation over differ-
ent sample sizes, and τ = 0.01. Based on the results, it is evident that GP-BART
consistently delivers the best performance on average, as it encompasses assump-
tions of spatial dependence, smoothness, and allows for rotated splits.

3.C Performance evaluation for restricted
versions of GP-BART

The results of a comparison between different versions of GP-BART for simulated
data with n = 500 are illustrated in Figure 3.8, showing predicted surfaces, and
Figure 3.9, showing boxplots of the RMSE and CRPS values. For completeness,
we provide here the analogous plots for the other sample sizes considered in the
simulation study, with predicted surfaces and boxplots for the n = 100 data in
Figures 3.C.1 and 3.C.2, respectively, and equivalent plots for the n = 1000 data in
Figures 3.C.3 and 3.C.4. Recall that the restricted versions of GP-BART evaluated
here are: (A) without any projection moves or GPs (equivalent to the standard
BART model); (B) without GPs, but with the addition of the new rotation moves;
(C) without the new moves, but with GPs; and (D) the standard GP-BART with
both rotated split rules and GPs. Finally, numerical summaries of the median
RMSE and CRPS values for all sample sizes across all four versions are summarised
in Table 3.C.1 and the acceptance rates for the tree-proposal moves under the full
GP-BART are summarised in Table 3.C.2.
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Figure 3.C.1: Comparison between the predicted surfaces under the different ver-
sions of GP-BART for the n = 100 simulated data over one randomly chosen
repetition. The surface for (D), the standard version of GP-BART, is qualita-
tively close to the observed data in the first panel of Figure 3.2.

Figure 3.C.2: Boxplots of the RMSE (left) and CRPS (right) values across the
different versions of the GP-BART model for the n = 100 simulated data. The
standard GP-BART (D) has the best performance in terms of both RMSE and
calibration.
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Figure 3.C.3: Comparison between the predicted surfaces under the different ver-
sions of GP-BART for the n = 1000 simulated data over one randomly chosen test
repetition. The surface for (D), the standard version of GP-BART, is qualitatively
close to the observed data in the third panel of Figure 3.2.

Figure 3.C.4: Boxplots of the RMSE (left) CRPS (right) values across the different
versions of the GP-BART model for the n = 1000 simulated data. The standard
GP-BART (D) has the best performance in terms of both RMSE and calibration.
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The behaviour of versions (B) and (C) in Figures 3.C.2 and 3.C.4 is consistent
with the corresponding Figure 3.9 for the n = 500 benchmarking experiment in
Section 3.4.1. These versions clearly demonstrate the efficacy of the novel grow-
rotate and change-rotate moves and the use of GP priors over terminal nodes, in
that they show improved performance relative to the standard BART according
to both metrics, but incorporating both innovations under GP-BART (D) yields
the best performance. Regarding Figures 3.C.1 and 3.C.3, the predicted surface
under GP-BART is the one which is closest to the observed data in each case. To
provide further clarity, Table 3.C.1 numerically summarises the median lines of the
boxplots from Figure 3.9, Figure 3.C.2, and Figure 3.C.4. All versions present lower
values of both metrics as the sample size increases. While (B) and (C) improve
on the standard BART (A) in each case, GP-BART remains the superior method
from both perspectives at each value of n. Though the difference between it and its
competitors in terms of RMSE and CRPS becomes less pronounced as n increases,
GP-BART remains the best from the points of view of prediction accuracy and
uncertainty calibration. Interestingly, there is no unanimous tendency for version
(B), which adds rotated split rules only, or version (C), which adds GPs only, to
be second best; when jointly considering both RMSE and CRPS, (C) outperforms
(B) in terms of CRPS at n = 1000. This reaffirms that combining both innovations
is necessary to achieve the best performance.

Table 3.C.1: Summaries of the median RMSE and CRPS values over the 5 repe-
titions of 5-fold cross-validations for the n = {100, 500, 1000} simulated data sets
from the benchmarking experiments in Section 3.4.1.

Version n = 100 n = 500 n = 1000
RMSE CRPS RMSE CRPS RMSE CRPS

(A) 10.80 6.39 7.00 3.97 4.90 2.66
(B) 7.79 4.54 3.33 1.83 3.01 1.52
(C) 8.80 5.11 4.10 2.08 3.37 1.48
(D) 5.35 3.15 2.65 1.10 2.61 0.83

Finally, we present the MH acceptance rates of the newly proposed moves used for
learning the tree structures under the standard GP-BART (D). Table 3.C.2 shows
the proportion of new trees that were accepted after the burn-in phase using each
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of the three available moves for each simulated data set, over all 25 folds in total.
The acceptance rates of the novel grow-rotate and change-rotate moves highlight
their effectiveness.

Table 3.C.2: Acceptance rates for the tree-proposal moves available under GP-
BART for the three simulated data sets, obtained by dividing the number of times
the given move was accepted by the total number of trees across all 25 folds in all
retained posterior samples.

Move n = 100 n = 500 n = 1000
grow-rotate 0.107 0.052 0.037
change-rotate 0.218 0.053 0.031
prune 0.109 0.056 0.038

3.D Examining the effects of the
hyperparameters of the tree prior

The choice of the tree hyperparameters α and β from the tree prior in Equation
(3.4) controls the depth of the trees which compose the ensemble. The default
choice is α = 0.95 and β = 2, which tends to favour shallow trees. In the GP-BART
context, it would appear to be of interest to consider alternative hyperparameter
specifications, in order to encourage deeper trees with fewer observations in each
terminal node, given the computational complexity of O(n3

tℓ) per node. However,
we show here that doing so comes at the expense of worse predictive performance.

To evaluate the joint effect of alternative specifications of α and β on the com-
putational cost and the accuracy of the predictions, we conducted an experiment
using data generated via the Friedman equation (Friedman, 1991); specifically, we
use the same data from Section 3.4.2 with p = 10 predictors, of which five are ad-
ditional noise variables, as an example. In this case, GP-BART was trained with
ntrain = 500 and evaluated with ntest = 500. The tree parameters were evaluated
over a discrete grid of α = {0.1, 0.5, 0.95, 0.99} and β = {1, 2, 5}. All possible com-
binations of these parameters were evaluated, constituting a total of 12 different
scenarios. All other parameters were set to their default values. The outcomes are
summarised in Figure 3.D.1, in the form of relative run times and RMSE values.
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The run time of each setting is given relative to the time taken under the defaults
of α = 0.95 and β = 2.

Figure 3.D.1: Performance assessment for Friedman data with noise variables and
n = 500, over a range of α and β values in the tree prior, in terms of run time
(relative to the default parameterisation of α = 0.95 and β = 2) and RMSE.

From these results, it is evident that setting priors which favour more splits can
reduce the computational cost of the model. As the cost of each matrix inversion
is at the scale of O(n3

tℓ), deeper trees with fewer observations in each terminal
node reduces the burden of matrix inversion. However, the predictive performance
diminishes due to forcing splits that should not exist. Conversely, the few settings
which slightly improve the RMSE are substantially slower. Therefore, it remains
sensible to adopt the default values for α and β from the standard BART are
as the default for GP-BART. Indeed, we do so throughout the main body of the
paper and note that changing these settings to increase the speed of computations
should be done with caution as it can significantly harm predictive performance.
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CHAPTER 4
Seemingly unrelated BART for

cost-effectiveness analyses in
healthcare

In recent years, theoretical results and simulation evidence have shown Bayesian additive
regression trees to be a highly-effective method for nonparametric regression. Motivated
by cost-effectiveness analyses in health economics, where interest lies in jointly modelling
the costs of healthcare treatments and the associated health-related quality of life experi-
enced by a patient, we propose a multivariate extension of BART applicable in regression
and classification analyses with several correlated outcome variables. Our framework
overcomes some key limitations of existing multivariate BART models by allowing each
individual response to be associated with different ensembles of trees, while still handling
dependencies between the outcomes. In the case of continuous outcomes, our model is
essentially a nonparametric version of seemingly unrelated regression. Likewise, our pro-
posal for binary outcomes is a nonparametric generalisation of the multivariate probit
model. We give suggestions for easily interpretable prior distributions, which allow spec-
ification of both informative and uninformative priors. We provide detailed discussions
of MCMC sampling methods to conduct posterior inference. Our methods are imple-
mented in the R package suBART. We showcase their performance through extensive
simulations and an application to an empirical case study from health economics. By
also accommodating propensity scores in a manner befitting a causal analysis, we find
substantial evidence for a novel trauma care intervention’s cost-effectiveness.
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4.1 Introduction
Many research questions in health economics are concerned with trading off the
costs and benefits of a medical intervention. The most prominent examples are in
cost-effectiveness analysis (CEA), where we wish to decide whether a new inno-
vative treatment is worth the associated increase in costs. We therefore need to
estimate the average treatment effects on both costs and health. However, in order
to get coherent measures of uncertainty, the two treatment effects must be esti-
mated jointly in order to account for the correlation between them (Baio, 2012).
This point is elaborated in Section 4.2. If the CEA is performed with observational
data, where the treatment assignment is not randomised, we additionally have to
adjust for confounding bias in the analysis.

In this chapter, we aim to estimate the cost-effectiveness of a novel treatment for
physical trauma rehabilitation, called the transmural trauma care model (TTCM),
using data gathered under a study by Wiertsema et al. (2019) which we will hence-
forth refer to as the TTCM data. The treatment assignment is not randomised
and the number of potential confounders is large relative to the sample size. Of
the multiple cost and effectiveness outcomes the authors investigated, we focus
on healthcare-related costs and health-related quality of life. It is of interest to
jointly estimate both outcomes, and reasonable to assume both that the outcomes
are non-linearly related to the available predictors and that each outcome may
depend on different subsets of predictors, which may in turn interact in complex
ways. The challenge of CEA under these circumstances motivated the develop-
ment of our novel methodology, though we also anticipate its use in other CEA
studies and broader healthcare settings.

In the causal inference literature, there is wide agreement that flexible nonparamet-
ric methods, which do not impose strong parametric assumptions on the regression
functions, are the best tools for estimating treatment effects with observational
data (Dorie et al., 2019; Rudolph et al., 2023). It is not straightforward, however,
to apply this knowledge in the context of CEAs. Seemingly unrelated regression
models (SUR; Zellner, 1962), the most recommended statistical method for CEAs
(Willan et al., 2004; El Alili et al., 2022), impose strong linearity assumptions,
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which can bias the inferences if there are strong non-linear relationships between
the variables of interest. On the other hand, there is a distinct lack of nonpara-
metric regression methods which can handle multivariate outcomes. We adopt a
Bayesian perspective and fill this gap by developing a nonparametric version of
SUR. The idea is to replace the linear predictors in the SUR model by sums of re-
gression trees. In the univariate case, this regression method has become known as
Bayesian additive regression trees (BART). BART has already demonstrated com-
petitive performance for univariate responses (Dorie et al., 2019; Rudolph et al.,
2023) and it seems plausible that this efficacy will extend to situations with multi-
ple outcomes of interest. However, by embedding BART in the SUR framework, we
also seek to overcome some limitations of existing multivariate BART extensions.

Chipman et al. (2010) introduced the BART method as an ensemble method, where
each learner is a tree following the Bayesian CART approach previously proposed
by the same authors (Chipman et al., 1998). Considering a univariate response
vector y ∈ Rn and a set of predictors X ∈ Rn×p, which may be of mixed type, one
of the main objectives of regression modelling is to estimate the conditional expec-
tation E[yi | xi] = f(xi). As a nonparametric model, BART offers high flexibility
in estimating this conditional expectation. However, the propensity of decision
trees to overfit is mitigated by the Bayesian underpinnings of the framework al-
lowing informative prior distributions to impose regularisation in a principled and
transparent fashion, as well as the additive nature of the ensemble. These features
facilitate better generalisation, in a similar vein to the gradient boosting approach
of Friedman (2001). The success of BART is widely reported in the literature
across a broad spectrum of applications (Janizadeh et al., 2021; Sarti et al., 2023;
Yee and Deshpande, 2023). In addition, theoretical work has demonstrated the
frequentist optimality of BART under certain conditions (Linero and Yang, 2018;
Ročková and Saha, 2019; Ročková and Van der Pas, 2020; Rocková, 2020).

The BART model was originally developed for univariate responses but subsequent
formulations emerged to adapt BART to multivariate responses. Examples include
the Bayesian additive vector autoregressive tree (Huber and Rossini, 2022) for mul-
tivariate time-series analysis and formulations by Peruzzi and Dunson (2022) for
multivariate spatial data. Other applied work involves an extension of BART to
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forecast the tails of multivariate responses (Clark et al., 2023). Um et al. (2023)
adapted BART to cover not only multivariate responses but also the assumption
of a skew-normal distribution; throughout this chapter, we refer to the variant
without skewness as mvBART. Furthermore, McJames et al. (2023) proposed an
extension of Bayesian causal forests (BCF; Hahn et al., 2020)) for multivariate
responses. All aforementioned approaches share the limitation that the tree struc-
ture must be identical for each component of the outcome vector. It is easy to
envisage situations for which this is inappropriate: a specific covariate may be
strongly associated with one outcome but independent of another. For example,
factors which govern costs may be unrelated to quality of life, and vice versa.

In this study, we propose a novel variant of BART termed seemingly unrelated
BART (suBART) which is designed to handle multivariate continuous responses
and address this key limitation. Chipman et al. (2010) previously drew parallels to
SUR models (Zellner, 1962) and alluded to the potential extension of BART in this
direction. Our framework differs from the aforementioned multivariate BART ex-
tensions, which assume a single set of trees with correlated multivariate Gaussian
distributions in the terminal nodes. Instead, we jointly fit individual ensembles
of trees and model the interdependence of the outcomes through correlated error
terms. Thus, suBART also differs from merely applying entirely separate uni-
variate BART models to each outcome. Motivated by our investigation into the
cost-effectiveness of the TTCM intervention, we further extend suBART to in-
corporate propensity scores, in the spirit of Hahn et al. (2020), as befits causal
analyses. Beyond CEA settings, we also develop probit suBART, an extension of
suBART to accommodate multivariate binary outcomes. We envision this version
of the model being useful in economic applications with correlated binary out-
comes; see Ramful and Zhao (2009) as an example. Our approach is similar to
that of Chakraborty (2016), who presented a version of seemingly unrelated BART
for exclusively continuous outcomes with an adaptive number of trees. However,
it is not specifically tailored to causal inference objectives typical of CEAs and
lacks an available open-source software implementation. We address these gaps by
providing a comprehensive framework, which covers either continuous or binary
outcomes, and a practical implementation through an R named suBART, which is
available at https://github.com/MateusMaiaDS/suBART.
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4.2. CEA and the suBART model

This chapter proceeds as follows: Section 4.2 provides background theory on CEA
and motivates the development of the suBART model in the context of the applica-
tion to the TTCM data from Wiertsema et al. (2019). Section 4.3 then elaborates
on the theoretical underpinnings of the suBART methodology and Section 4.4 dis-
cusses the posterior inference for both the multivariate continuous and multivariate
binary outcome settings. Section 4.5 considers different simulation scenarios and
discusses the performance of both suBART models compared with standard com-
petitors. The empirical findings of our application of suBART to the TTCM data
are presented in Section 4.6. Finally, Section 4.7 summarises the proposed method-
ologies, highlighting both their limitations and potential for further extension, and
presents conclusions regarding the health economic application. Additional results,
comparisons, and findings are included in Appendix 4.A.

4.2 CEA and the suBART model
We now provide more detail about the CEA setting which inspired the suBART
model and review some relevant ideas from health economics and causal inference.
Detailed treatments can be found in Gabrio et al. (2019) and Li et al. (2023).
We defer a description of the specific TTCM data to which we apply suBART to
Section 4.6.

A major motivation to develop the suBART method was its potential applicability
in cost-effectiveness analyses of healthcare treatments. Such analyses are usually
performed with data from clinical trials, but there is increasing interest in the
analysis of observational data, where the treatment assignment is not randomised.
There is broad consensus among epidemiologists that simple parametric models
often lead to severe bias and that flexible nonparametric models are preferable for
the analysis of observational data (Hernán and Robins, 2024). It seems reasonable
to assume that this would extend to the setting of cost-effectiveness analysis, where
we want to infer two treatment effects simultaneously. There is, however, a lack
of statistical methods fit for these purposes. Given that BART has proven to be
very useful for causal inference in the univariate setting (Hill, 2011; Dorie et al.,
2019; Rudolph et al., 2023), we consider it a promising method for the multivariate
cost-effectiveness setting.
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The fundamental problem of cost-effectiveness analyses in health economics is
to determine which of two competing healthcare treatments — usually, but not
always, for the same disease — should be implemented. Often one is both more
effective and more expensive than the other, which raises the question whether
the increase in health is worth the added expenses. Henceforth, we let ci and
qi respectively denote the healthcare costs and the health-related quality of life
associated with a patient. We also suppose that there are two different treatments
of interest, t = 0 and t = 1. Using the usual potential outcomes notation, we let
ci(t) denote the costs associated with patient i, had they received treatment t. We
do likewise for qi(t). We furthermore suppose that there is some vector of baseline
characteristics xi which have an effect on both the outcomes ci and qi, as well as
the treatment indicator t.

Given a sample of n observations, we wish to estimate the mixed average treatment
effect (MATE)1 on the costs in this sample, which we define as

∆c := 1
n

n∑
i=1

E [ci(1) | xi] − E [ci(0) | xi] . (4.1)

We now make the assumption of ignorability, which means that conditional on the
baseline covariates xi, the treatment t is independent of the potential outcomes
ci(0) and ci(1). Under this assumption, we may rewrite our treatment effect as

∆c = 1
n

n∑
i=1

E [ci | t = 1,xi] − E [ci | t = 0,xi] .

It follows that ∆c is completely specified by the conditional expectations E[ci |t,xi].
We proceed in the same manner for ∆q, the MATE on the patient’s quality of life.
It is then customary to combine the two treatment effects into a utility function,
the incremental net benefit (INB):

INBλ := λ∆q − ∆c.

1The MATE is closely related to the population average treatment effect (PATE), although
the terminology for treatment effects is not consistent across the literature. We elect to use the
terminology of Li et al. (2023), according to whom the PATE requires a generative model for
the covariates xi and thus necessitates additional assumptions. We work with the MATE in
Equation (4.1) to simplify the analyses. Note that this common approach actually corresponds
to what is called the PATE by Imbens and Rubin (2015) and other authors.
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The scalar parameter λ is called the willingness-to-pay. Roughly speaking, λ
quantifies how much cost (in the given currency) a decision-maker is willing to
trade for a one-unit increase in healthcare-related quality of life for one patient.
The decision rule is then simple: if the INB is at most zero, we say that treatment
1 is not cost-effective, and treatment 0 should be implemented. If the INB is
larger than zero, we consider treatment 1 to be cost-effective and worthy of being
implemented.

To illustrate the importance of modelling the two outcomes c and q jointly, let us
assume for simplicity that the joint distribution of ∆c and ∆q is bivariate normal.
Then

Pr (INBλ > 0) = Φ
 E [INBλ]√

Var [INBλ]


= Φ

(
λE [∆q] − E [∆c]

(λ2Var [∆q] + Var [∆c] − 2λCov [∆q,∆c])1/2

)
.

Consequently, the probability of cost-effectiveness depends on the covariance of
∆c and ∆q. Without the normality assumption, this probability can usually not
be found explicitly, but the same principle applies nonetheless: the probability of
cost-effectiveness depends on the joint distribution of ∆c and ∆q (Löthgren and
Zethraeus, 2000; Gabrio et al., 2019). It follows that we must model c and q jointly,
as modelling them separately would enforce the unrealistic prior belief that the
treatment effects ∆c and ∆q are independent. This belief is seldom appropriate,
since empirical cost and health data are often strongly correlated (Willan et al.,
2004).

We hence use the suBART model developed below to jointly estimate the condi-
tional expectations E[c | t,xi] and E[q | t,xi]. The treatment effects and INB can
then be obtained as functions of these estimates. Our approach mirrors that of
Hahn et al. (2020): we first estimate propensity scores (using probit BART), and
then condition the suBART model on all covariates, the treatment indicator, and
the estimated propensity scores.
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4.3 The suBART models for continuous and
binary responses

We start by reviewing the original BART model in the univariate setting in Section
4.3.1, in order to provide context for what is to follow. We then present our novel
extensions to the multivariate continuous outcome setting in Section 4.3.2 and the
multivariate binary outcome setting in Section 4.3.3. Specific details regarding
posterior inference for the suBART models are deferred to Section 4.4.

4.3.1 A review of univariate BART
BART was designed to solve the classic regression problem of the form

yi = E [yi | xi] + εi,

where yi is a univariate response variable for observation i = 1, . . . , n, xi is a
p−dimensional predictor, and εi ∼ N(0, σ2). The idea is to find a flexible ap-
proximation for the conditional expectation E[yi | xi] by expressing it as a sum of
regression trees. A regression tree consists of two components:

1. A binary tree T , which defines a finite partition {A1, . . . ,Ah} of Rp based
on the feature space of X, using the available predictors or a subset thereof
to form splitting rules. In other words, A1, . . . ,Ah are subsets of Rp such
that any xi ∈ Rp is contained in exactly one Aℓ.

2. A collection of scalar parameters M = (µ1, . . . , µh), called leaf nodes, with
each component being associated with the corresponding subset in the par-
tition.

We now define a function xi, T ,M 7→ g(xi, T ,M) as follows: xi ∈ Aℓ for exactly
one ℓ; then g(xi, T ,M) := µℓ. In the case of a single regression tree, we may then
define the regression function xi 7→ E[yi | xi] by E[yi | xi] := g(xi, T ,M). Figure
4.3.1 shows an illustration of a simple regression tree, including the regression
function it implies, for the case p = 1.
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Figure 4.3.1: Regression tree (left) and implied regression function (right).

To extend this idea to additive regression trees, we consider not just one tree, but
multiple trees T1, . . . , Tm, each with their own corresponding partitions and leaf
nodes. Then we let E[yi | xi] := ∑m

t=1 g(xi, Tt,Mt). The definition of the statistical
model now becomes

yi =
m∑

t=1
g (xi, Tt,Mt) + εi,

which is the basic BART model presented in Chipman et al. (2010). The model is
typically not identified, since different sets of trees can lead to the same regression
function. However, this is not a problem, since the individual trees are rarely of
direct interest.

The sum of trees framework can also be used to model the conditional expectation
of a binary response y, which takes values in {0, 1}. This is the probit BART
model, again proposed originally in Chipman et al. (1998). The model is easier
to present and analyse when it is cast in terms of a continuous latent variable.
Suppose z is such that

yi =

1 if zi > 0

0 otherwise.
(4.2)

As before, we model zi as

zi =
m∑

t=1
g (xi, Tt,Mt) + εi

with εi ∼ N(0, 1). This then implies that
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E [yi | xi] = Pr (yi = 1 | xi) = Pr (zi > 0 | x) = Φ
(

m∑
t=1

g (xi, Tt,Mt)
)
,

where Φ(·) is the cumulative distribution function of the standard normal distri-
bution.

For both types of outcome, given a sample of size n and a univariate outcome vector
y ∈ Rn associated with a predictor matrix X ∈ Rn×p, we are interested in sam-
pling from the joint posterior distribution π(T ,M |y,X) where T = (T1, . . . , Tm)
denotes the collection of all trees and M = (M1, . . . ,Mm) denotes their corre-
sponding mean parameters. To obtain the posterior, it is necessary to define priors
for both the trees and the terminal node parameters. Assuming the independence
of leaf parameters conditional on the tree structures, Chipman et al. (1998) defines
the joint prior distribution as

π
(
T ,M, σ2

)
=
[

m∏
t=1

π (Tt,Mt)
]

× π
(
σ2
)

=
[

m∏
t=1

π (Mt | Tt) × π (Tt)
]

× π
(
σ2
)

=
 m∏

t=1

bm∏
ℓ=1

π (µtℓ | Tt) × π (Tt)
× π

(
σ2
)
.

To achieve conjugacy, it is typically assumed that the residual variance parameter
σ2 follows an inverse-gamma distribution and µtℓ ∼ N(0, σ2

µ). with σ2
µ = 0.25

κ2m

being proportional to the number of trees in order to regularise the contribution
of each tree. The definition of π(Tt) includes specifying the probability of a non-
terminal node as α(1 + γtℓ)−β where γtℓ denotes the depth of that node. The
hyperparameters α and β take the default values suggested in Chipman et al.
(2010) of 0.95 and 2, respectively, to favour shallow trees.

Once the prior is defined, a sampler for the aforementioned posterior distribution
can be obtained. Referring to T (−t) := T \ {Tt} and M(−t) := M \ {Mt}, an
MCMC sampler can be built by sequentially sampling π(Tt|T (−t),M,y,X, σ2) and
π(Mt | T ,M(−t),y,X, σ2). It can be shown that Tt and Mt depend on (T (−t),y)
only through the partial residuals rt := y − ∑m

j ̸=t g(X, Tj,Mj). This fact can be
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4.3. The suBART models for continuous and binary responses

used to construct a Bayesian back-fitting algorithm (Hastie and Tibshirani, 2000).
Therefore, the successive draws become

π (Tt | rt, σ
2)

π (Mt | Tt, rt, σ
2),

where new trees and splitting rules are sampled through a Metropolis-Hastings step
calculated using the integrated-likelihood for the tree Tt over the leaf parameters
Mt. See Chipman et al. (2010) and Kapelner and Bleich (2016) for further details
of the model and additional information the algorithmic implementation on which
that of the suBART models is based.

4.3.2 The suBART model for continuous outcomes
We consider a regression problem of the form

y
(1)
i
...
y

(d)
i

 =


E
[
y

(1)
i | xi

]
...

E
[
y

(d)
i | xi

]
+


ε

(1)
i
...
ε

(d)
i

 (4.3)

where y(j) represents the j-th component of a d-variate outcome, and (ε(1)
i , . . . , ε

(d)
i )⊤

∼ MVNd(0d,Σ). In principle, different models can be used for each conditional
expectation in Equation (4.3). If the conditional expectations are all assumed to be
linear in xi, we obtain the classic SUR model (Zellner, 1962). We instead want to
allow the possibility that the conditional expectations are non-linear. Given that
the BART model has been shown to be a viable model in the one-dimensional
setting, it seems reasonable to expect this viability to extend to the multivariate
case. We therefore proceed by assigning an ensemble of regression trees to each
E[y(j)

i | xi] as follows
y

(1)
i
...
y

(d)
i

 =


∑m

t=1 g
(
xi, T (1)

t ,M(1)
t

)
...∑m

t=1 g
(
xi, T (d)

t ,M(d)
t

)
+


ε

(1)
i
...
ε

(d)
i

 , (4.4)

where
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4.3. The suBART models for continuous and binary responses

• T (j)
t is a binary tree which defines a finite partition {A(j)

tℓ : 1 ≤ ℓ ≤ h
(l)
t } of Rp.

Note that h(j)
t is the number of leaf nodes of the tree T (j)

t . The collection of
all trees pertaining to the j-th outcome is denoted by T (j) = (T (j)

1 , . . . , T (j)
m ).

• M(j)
t = (µ(j)

t1 , . . . , µ
(j)
th

(j)
t

) is the vector of leaf parameters associated with the

tree T (j)
t . Similarly, the collection of all leaf parameters associated with the

j-th outcome is denoted by M(j).

• (ε(1)
i , . . . , ε

(d)
i )⊤ ∼ MVNd(0d,Σ), with Σ being a d×d covariance matrix. We

write σ2
j := Σjj for the diagonal elements, such that σ2

j is the variance of the
error term ε(j). We further write ρjk := Cor(ε(j), ε(k)) ∀ j ̸= k. Note that for
any j, k, we have

ρjk =
Cov

[
ε(j), ε(k)

]
√

Var [ε(j)] Var [ε(k)]
= Σjk√

ΣjjΣkk

= Σjk

σjσk

.

The model setup is straightforward, and indeed similar to the original BART
model in Chipman et al. (2010). Our model is comprised of d univariate BART
models, which are linked through the correlated error terms ε(j). For simplicity, we
assume that the number of trees m is common across all d outcomes. However, we
stress that each submodel has its own separate collection of m trees. Thus, there
are d × m trees in total. This is a key difference compared to other multivariate
BART versions McJames et al. (2023); Um et al. (2023), which assume that the
trees are the same for all outcomes, i.e., that there are only m trees in which the
leaf parameters associated with each tree are vectors µtℓ.

A consequence of this assumption in existing multivariate BART versions is the
implication that the p-dimensional predictor xi is the same for all d outcomes.
However, in systems of equations such as (4.3) and (4.4), the set of predictors
xi need not be of common dimension p for each outcome. Indeed, our suBART
software implementation allows different subsets of the predictors to be used for
each constituent univariate BART model. Though we will henceforth assume that
the predictors are the same for all outcomes, for simplicity, it is important to note
that having the same set of predictors xi available as candidates to form splitting
rules in each set of trees does not imply that the trees for different outcomes will
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4.3. The suBART models for continuous and binary responses

split on the same components of xi at the same cutoff values. Unlike the standard
SUR, imposing restrictions on the xi for different outcomes is not required to
ensure that different outcomes depend on different covariates under suBART, as
different sets of trees will tend to form different partitions on different subsets of the
feature space X anyway, by the inherent nature of the tree-generating process in
BART. Although practitioners can impose such restrictions nonetheless, to strictly
guarantee that the trees for a given outcome do not depend on certain predictors,
this is an appealing property, in the sense that suBART minimises the need to
pre-specify the parametric form of the models for each conditional expectation.

We assume that the m regression trees for each outcome are all independent of
each other and of the covariance matrix a priori, as per Chipman et al. (2010); i.e,

π
((

T (1),M(1)
)
, . . . ,

(
T (d),M(d)

)
,Σ
)

=
 m∏

t=1

d∏
j=1

π
(
T (j)

t ,M(j)
t

)× π (Σ)

=
 m∏

t=1

d∏
j=1

π
(
M(j)

t | T (j)
t

)
π
(
T (j)

t

)× π (Σ) .

We further assume that the leaves of a tree are conditionally independent, given
the tree structure, i.e.,

π
(
M(j)

t | T (j)
t

)
=

h
(d)
t∏

ℓ=1
π
(
µ

(j)
tℓ | T (d)

j

)
.

With this setup, prior distributions for T (j)
t , µ

(j)
tℓ , and Σ are sufficient to specify

the joint prior distribution for all model parameters. The tree structure T (j)
t is

assigned the same prior as in the original work by Chipman et al. (2010), with
default hyperparameters α = 0.95 and β = 2 to favour shallow trees and avoid
over-fitting.

The prior used for the leaf node parameters is also aligned with the approach of
standard BART. As noted earlier, this prior is formulated conditionally on the
tree T (j)

t . We assume that each outcome component y(j) is re-scaled such that
y

(j)
i ∈ [−0.5, 0.5]. This enables the model to specify, with defined probability, that

the implicit prior for E[y(j)
i | xi] lies within the rescaled interval. Consequently, the

prior is then
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µ
(j)
tℓ | T (j)

t ∼ N
(
0, σ(j)

µ

2)
, (4.5)

where σ(j)
µ

2 = 0.25
κ2m

, as before. We suggest κ = 2 as a default choice, which assigns
a prior probability of 0.95 to the event {E[y(j)

i | xi] ∈ [−0.5, 0.5]}.

In the univariate BART model, the error variance is assigned an inverse-gamma
prior, which is conditionally conjugate and can thus be easily incorporated into a
Gibbs sampler. Furthermore, by choosing the hyperparameters accordingly, it is
possible to put an informative prior on the error variance. The usual approach is
as follows: suppose that for the outcome y, we have a ‘data-based overestimate’
σ̂2 of the error variance σ2 (for example, the sample variance of the observed y
values). Presumably, the true value of σ2 is smaller than σ̂2, since the variation
of y is partly explained by the covariates X. Therefore, we would like to assign a
large prior probability to the event {σ2 < σ̂2} (for example, 0.95).

We now wish to generalise this idea to multivariate settings: for all components j
of the outcome vector

(
y(1), . . . ,y(d)

)
, we have an overestimate σ̂2

j of σ2
j , and want

to assign some probability p to the event {σ2
j < σ̂2

j }. Additionally, we also would
like to control the prior on the correlations ρjk, where j ̸= k. Since there is usually
not strong prior information about these correlations, it is preferable for the prior
to not be too informative in any direction. Additionally, the chosen solution should
be computationally tractable and readily incorporated into MCMC samplers.

The inverse Wishart distribution is often used as a prior for covariance matri-
ces. As it is a straightforward multivariate generalisation of the inverse-gamma
distribution, it facilitates easy computations. Unfortunately, the inverse-Wishart
prior is not well-suited to meet our aforementioned goals; among other problems,
it imposes a strong prior dependency between the variances and the correlations.
Consequently, it is generally not feasible to choose the hyperparameters such that
the prior has the desired properties for both the variances and the correlations.
See Alvarez et al. (2014) for a detailed study of this issue.

We thus instead adapt an approach by Huang and Wand (2013) and parameterise
the covariance matrix Σ as follows:
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4.3. The suBART models for continuous and binary responses

• aj ∼ Inv-Gamma(1/2, 1/A2
j), where Aj > 0 is a fixed hyperparameter.

• Σ|a1, . . . , ad ∼ Inv-Wishartd(ν+d−1,S0), where S0 := 2ν×diag (1/a1, . . . , 1/ad).

The implied prior distribution for the correlations can be derived (Huang and
Wand, 2013) and is given by

π (ρjk) =
(
1 − ρ2

jk

) ν
2 −1

, ρjk ∈ (−1, 1) . (4.6)

Crucially, the prior does not depend on A1, . . . , Ad. It is uniform if and only if
ν = 2. For higher values, the prior increasingly concentrates around zero. We
consider ν = 2 a reasonable default choice, since we usually do not have any
strong prior information on the correlations. In simulation tests, it was found that
this uniform prior can sometimes lead to an ill-identified posterior, consequently
causing problems with the MCMC sampling. This seems to occur primarily in
situations where the sample size is small, the dimension of X is large, and the
variability of the multivariate outcome is almost entirely explained by X. In such
cases, we have found it useful to increase ν to improve sampling. It is also worth
recalling that the response vector is bivariate in the motivating CEA application
in Section 4.2, such that there is only one such correlation parameter.

From the previous definitions, the prior for the standard deviations is given by
σj ∼ Half-t(ν,Aj); see Wand et al. (2011) for more details. Since the priors for
the correlations are independent of Aj, the choice of Aj remains arbitrary. We
can thus tweak it to enforce the prior probability Pr(σj < σ̂j) = ασ, in accordance
with the standard BART approach. To do this, we set up the following equation

ασ = 2
Γ(ν+1

2 )
Γ(ν

2 )
√
νπA2

j

∫ σ̂j

0

(
1 + x2

νA2
j

)− ν+1
2

dx (4.7)

and solve it for Aj, which can be done through numerical root-finding. This
expression is the cumulative distribution function of a Half-t-distributed random
variable with degrees of freedom ν, scale parameter Aj, and support on [0,∞). By
rewriting Equation (4.7) in terms of regularised incomplete beta functions, it can
be shown that this expression is continuous as well as strictly decreasing in Aj and
approaches 1 and 0 as Aj approaches 0 and ∞, respectively. Thus, the solution
for Aj exists and is unique.
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4.3. The suBART models for continuous and binary responses

4.3.3 Probit suBART
While the previous model was designed to jointly model multiple continuous out-
come variables, we now turn our attention to binary outcomes. We will present a
generalisation of the linear multivariate probit model (Chib and Greenberg, 1998),
where the linear predictors are replaced by sums of regression trees. Alternatively,
it can also be seen as a multivariate generalisation of the probit BART model.

Suppose that we have some predictor variables X, and a binary outcome vec-
tor y(j)

i ∈ {0, 1} ∀ j = 1, . . . , d, whose dependence on xi we want to model. In
particular, we do not want to assume that the components of yi are condition-
ally independent, given xi; there may be some leftover correlation which is not
explained by xi. As in the basic probit BART model, we cast the multivariate
version in terms of latent variables zi = (z(1)

i , . . . , z
(d)
i ); the construction is exactly

as per Equation (4.2) for each outcome j. Then, the probit suBART model is
given by 

z
(1)
i
...
z

(d)
i

 =


∑m

t=1 g
(
xi, T (1)

t ,M(1)
t

)
...∑m

t=1 g
(
xi, T (d)

t ,M(d)
t

)
+


ε

(1)
i
...
ε

(d)
i

 , (4.8)

where

• g(·), T (j)
t , and M(j)

t are defined as before.

• (ε(1)
i , . . . , ε

(d)
i )⊤ ∼ MVNd(0d,Σ), with Σ being a d × d correlation matrix.

Again writing ρjk := Corr(ε(j), ε(k)) for j ̸= k, we have

Σjk =

1 if j = k

ρjk if j ̸= k.

Conditional on the latent variables zi, the model is essentially the same as the
suBART model presented earlier. The only difference is that for each error term
ε(j), we fix the variance at 1. Without doing this, the model would be unidentified.
This issue is not specific to probit suBART, but also arises in the linear multivariate
probit model. See Chib and Greenberg (1998) for details. It follows that Σ, the
covariance matrix of the error terms, is equal to 1 in each diagonal entry, and
hence must be a correlation matrix.
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4.3. The suBART models for continuous and binary responses

The priors for the trees are exactly same as those for the suBART model. The
dependence structure of the trees, leaves, and covariance matrix are also the same.
The other priors are broadly similar, but there are some implications that are
worth briefly highlighting. The prior for the terminal node parameters µ(j)

tℓ again
follows Equation (4.5), though the calibration of the variance hyperparameter
requires more care. Taking σ(j)

µ

2 = q2
z

κ2m
, with κ = 2 as a default choice, we assign

a prior probability of 0.95 to the event {E[z(j)
i |xi] ∈ [−qz, qz]}. On the probability

scale, this means that {Pr(y(j)
i = 1 | xi) ∈ [Φ(−qz),Φ(qz)]}. For example, when

taking qz = 3 as per Chipman et al. (2010), we assign a prior probability of 0.95
to the event {Pr(y(j)

i = 1 | xi) ∈ [0.0013, 0.9987]}. This is reasonable for many
applications, since extremely small or large probabilities are uncommon.

In the probit setting, Σ is a correlation matrix and hence must be positive definite,
as well as having all diagonal entries equal to 1. These restrictions make it difficult
to choose a prior for Σ which has desirable properties and facilitates easy sampling.
Chib and Greenberg (1998) present a prior (and related sampling strategy) which
we found to be extremely inefficient in our application. We thus instead adapt
an approach by Zhang (2020) (see also Barnard et al. (2000), where some of the
following results originate, and ?). We introduce an auxiliary parameter D, which
is a d × d diagonal matrix. We then define W := D 1

2 ΣD 1
2 , and assume the prior

W ∼ Inv-Wishartd(ν + d− 1, Id), where Id is the d-dimensional identity matrix.

Given W, we can recover D and Σ thanks to the identities D = diag(W) and
Σ = D− 1

2 WD− 1
2 . The induced marginal prior density of Σ is

π (Σ) ∝ (det Σ)
1
2 (ν+d−1)(d−1)−1

 d∏
j=1

det [Σ]jj

− ν+d−1
2

,

where [Σ]jj is the j-th principle submatrix of Σ. It can be shown that the marginal
prior density for the correlations is again given by Equation (4.6), as per the suB-
ART model for continuous outcomes above, despite the different priors assumed
for Σ. The hyperparameter ν plays a similar role as it did before; in most situa-
tions, we again consider ν = 2 a reasonable default choice but reiterate that higher
values of ν may lead to more stable and efficient sampling in specific scenarios.
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4.4 Posterior inference
This section describes strategies and algorithmic details for conducting posterior
inference under suBART and probit suBART for multivariate continuous and mul-
tivariate binary outcomes, respectively. For both frameworks, sampling is per-
formed using a Metropolis-within-Gibbs sampler based on their respective priors
and model specifications. Given an observed sample y1, . . . ,yn, with yi ∈ Rd, all
computations are carried out conditionally on the covariates X ∈ Rn×p. Thus, for
the sake of readability, we will consider X fixed and not condition on it explicitly.
Additionally, the expression π(θ | Θ \ {. . .}) denotes the conditional distribution
of θ with respect to all parameters except θ itself and the ones listed within the
braces. For example, π(T (j)

t | Θ \ {M(j)
t }) refers to the distribution of tree T (j)

t

given all parameters except T (j)
t and M(j)

t . This slightly unusual notation reduces
the complexity of the expressions which follow. As we routinely condition on all
but two parameters, it is clearer to highlight what is not being conditioned on.

4.4.1 suBART continuous
For brevity, we define the estimate for y(j)

i as ŷ(j)
i := ∑m

t=1 g(xi, T (j)
t ,M(j)

t ) and
ŷi = (ŷ(1)

i , . . . , y
(d)
i )⊤, since there are now multiple components of yi. Analogously,

we define the residuals from a tree t associated with the j-th component as r(j)
t :=

{r(j)
t1 , . . . , r

(j)
tn }, where r

(j)
ti := y

(j)
i − ∑m

k ̸=t g(xi, T (j)
k ,M(j)

k ). As per the standard
BART, we are interested in sampling from the posterior distribution

π(Θ | Y) = π
((

T (1),M(1)
)
, . . . ,

(
T (d),M(d)

)
,Σ, a1, . . . , ad | Y

)
,

which, due to the back-fitting algorithm (Hastie and Tibshirani, 2000) and proper-
ties of the multivariate normal distribution, can be obtained from sequential draws
from a collection of conditional distributions. In the multivariate continuous out-
comes setting, we have that yi ∼ MVNd (ŷi,Σ). For the following, we will also
need the conditional distribution of any component y(j)

i given all other components
y(−j)

i . Using a well-known result (see e.g., Baldi (2024), Section 4.4), this can be
found in closed form:

y
(j)
i | y(−j)

i ,Θ ∼ N
(
ŷ

(j)
i + Σj(−j)Σ−1

(−j)(−j)

(
y(−j)

i − ŷ(−j)
i

)
,

Σjj − Σj(−j)Σ−1
(−j)(−j)Σ(−j)j

)
, (4.9)
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where Σ(−j)(−j) is the submatrix obtained by excluding the j-th row and column.
Analogously, Σj(−j) denotes the vector obtained by selecting the j-th row and
excluding the j-th column from Σ. Using the result from Equation (4.9), the
posterior distribution π(T (j)

t | r(j),Θ \ {M(j)
t }) can also be obtained in closed-

form, up to a normalising constant, as the conditional distribution of the residual
component r(j)

i given ŷ(−j)
i is known. Then, as described in Section 4.3.1, the

sampler for the joint posterior distribution of the trees T (j)
t and their parameters

M(j)
t , for the j-th component of y(1), . . . ,y(d), is given by successive draws from

T (j)
t | r(j)

t ,Θ \
{
M(j)

t

}
M(j)

t | r(j)
t ,Θ.

Notably, the algorithm reduces to the standard BART approach when the dimen-
sion d is equal to one. Indeed, each draw above can also be viewed as univariate
BART — albeit with distinct mean and variance parameters — since it is con-
ditioned on the values of all other components in Y, as illustrated by Equation
(4.9). The full structure of the suBART sampler is given in Algorithm 4.1, but we
first describe the remaining required posterior conditional distributions.

The posterior distribution for µ(j)
tℓ is given by

µ
(j)
tℓ | Θ ∼ N


 σ(j)

µ

2

v(j) + n
(j)
tℓ σ

(j)
µ

2

×

n
(j)
tℓ∑

i=1
r

(j)
i −

n
(j)
tℓ∑

i=1
u

(j)
i

 , v(j)σ(j)
µ

2

v(j) + n
(j)
tℓ σ

(j)
µ

2

 , (4.10)

where u
(j)
i := Σj(−j)Σ−1

(−j)(−j)(y
(−j)
i − ŷ(−j)

i ), v(j) := Σjj − Σj(−j)Σ−1
(−j)(−j)Σ(−j)j,

and n
(j)
tℓ denotes the number of observations in the given terminal node. It is

evident from Equation (4.10) that the term u
(j)
i vanishes and v(j) = σ2

µ when
d = 1, yielding in an expression identical to the original BART formulation. Due
to the conditional conjugacy in the construction of Huang and Wand (2013), the
conditional posteriors of the auxiliary parameters a1, . . . , ad and Σ take simple
forms. We have

aj | Θ ∼ Inv-Gamma
(
ν + n

2 ,
1
A2

j

+ ν
(
Σ−1

)
jj

)
, (4.11)

where (Σ−1)jj denotes the j-th entry along the diagonal of Σ−1, and
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Σ | Θ ∼ Inv-Wishartd (ν + d− 1 + n,S0 + S) , (4.12)
where S = ∑n

i=1(yi − ŷi)(yi − ŷi)⊤.

Algorithm 4.1: suBART sampling algorithm.
Input: X, Y, m, NMCMC, Nburn-in, and all hyper-parameters of the priors.
Initialise: T (1), . . . ,T (d) tree stumps, Σ, µ(j)

tℓ = 0 ∀ (t, j).
1 for iterations h from 1 to NMCMC do
2 for dimension j from 1 to d do
3 for trees t from 1 to m do
4 Calculate the partial residuals r(j)

t ;
5 Propose a new tree T (j)

t

⋆
by a grow, prune, or change movea;

6 Accept and update T (j)
t = T (j)

t

⋆
with probability

γ⋆
(
T (j)

t , T (j)
t

⋆)
= min

1,
π
(
r(j)

t | T (j)
t

⋆
,Θ \

{
M

(j)
t

})
π
(
T (j)

t

⋆)
q
(
T (j)

t

⋆
→ T (j)

t

)
π
(
r(j)

t | T (j)
t ,Θ \

{
M

(j)
t

})
π
(
T (j)

t

)
q
(
T (j)

t → T (j)
t

⋆)
 .

for terminal nodes ℓ from 1 to b(j)
t do

7 Update µ(j)
tℓ | r(j)

t ,Θ using Equation (4.10).
8 end
9 end

10 end
11 for j from 1 to d do
12 Update aj | Θ using Equation (4.11).
13 end
14 Update Σ | Θ using Equation (4.12).
15 end

aSee Kapelner and Bleich (2016) for further details on these tree proposal steps and transition
probabilities q(·).

4.4.2 Probit suBART
In multivariate binary settings, the goal is to sample from the similar posterior

π(Θ | Y) = π
((

T (1),M(1)
)
, . . . ,

(
T (d),M(d)

)
,Σ,D | Y

)
.
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Note that W is a deterministic function of Σ and D, and is hence omitted from
the above distribution. However, it will be more convenient to work with the joint
posterior of the parameters and the latent variables

π (Θ,Z | Y) = π
((

T (1),M(1)
)
, . . . ,

(
T (d),M(d)

)
,Σ,D,Z | Y

)
,

for which the sampling algorithm is very similar to the previously presented Al-
gorithm 4.1 in the continuous setting. For brevity, we discuss only the required
modifications to Algorithm 4.1 without presenting a new algorithm in full.

The updates for the trees and leaf nodes stay essentially the same, with the one
difference being that the latent variables Z replace the data Y. The updates for the
aj parameters are of course dropped, since they do not apply to the probit model.
An important additional step is that the latent variables for each component j
should be updated after line 9 in Algorithm 4.1. In a similar manner to Equation
(4.9), the marginal distribution of z(j)

i can be obtained as follows

z
(j)
i | z(−j)

i ,Θ ∼ N
(
ẑ

(j)
i + Σj(−j)Σ−1

(−j)(−j)

(
z(−j)

i − ẑ(−j)
i

)
,

Σjj − Σj(−j)Σ−1
(−j)(−j)Σ(−j)j

)
. (4.13)

However, sampling the latent variables also requires conditioning on Y. In doing
so, we find that π(z(j)

i | z(−j)
i ,Y,Θ) follows a truncated normal distribution with

the same location and scale parameters as Equation (4.13). However, we encounter
a case distinction for the support of this conditional posterior distribution based
on the values of the associated response. If y(j)

i = 0, which implies that z(j)
i ≤ 0,

the support is truncated to (−∞, 0]. Conversely, if y(j)
i = 1, which implies that

z
(j)
i > 0, the support is truncated to (0,∞). In each case, we draw the sample

through the method proposed by Robert (1995).

Finally, the other major difference for the probit suBART sampler is the update
of Σ and the auxiliary parameter D . We write out the conditional posterior as

π (Σ,D | Θ,Z) ∝ π (Σ,D) (det D)
d−1

2 π (Z | Θ)

∝ π (Σ,D) (det D)
d−1

2 (det Σ)−n/2 exp
(

−1
2

n∑
i=1

(zi − ẑi)⊤ Σ−1 (zi − ẑi)
)
,

where π(Σ,D) = π(W) is the aforementioned inverse-Wishart prior on W. The
term (det D) d−1

2 is the Jacobian determinant which arises due to the change of
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variables W 7→ Σ,D. This distribution is not of known form, and can hence can-
not be sampled from directly. We instead proceed using the parameter-expanded
Metropolis-Hastings (PX-MH) algorithm of Zhang (2020). This defines a proposal
for W(k+1) |W(k), νprop ∼ Inv-Wishartd

(
νprop,W(k)

)
where k is the current MCMC

iteration and νprop is a tuning parameter.

4.5 Simulation studies
In this section, we evaluate the efficacy of the proposed models through experi-
ments with simulated data. Section 4.5.1 and Section 4.5.2 are devoted to sim-
ulation designs in which the responses y(1), . . . ,y(d) are all continuous and each
outcome y(j) ∈ {0, 1} is binary, respectively. We undertake a comparative analysis
of suBART against benchmark models, including the standard BART model ap-
plied independently to each response, the multivariate BART (mvBART) model,
and a Bayesian linear seemingly unrelated regression (SUR) model. We also con-
sider probit versions of each model, where available. This comparative study aims
to explore various aspects of the models, including predictive performance and
their ability to accommodate assumptions regarding correlation among responses
and/or assumptions of linearity. Furthermore, our simulations aim to elucidate
the primary distinctions between suBART and mvBART. For example, the splits
generated by trees under the mvBART framework entail a splitting rule in all
components of Y, potentially deviating from an accurate representation of the
true function f(X) for some scenarios. Consequently, each response variable in
our experiments is generated using a different subset of covariates. Additionally,
a significant improvement in predictive performance capacity is anticipated when
compared with the linear SUR model as, for the most part, the responses in our
experiments are almost all assumed to be non-linearly related to the covariates.

These assumptions were tested over 100 replications of each simulation scenario,
using different sample sizes of ntrain = ntest = {250, 500, 1000} for training and
test samples respectively. The metrics employed to assess differences in model
performance included the root mean squared error (RMSE), the continuous ranked
probability score (CRPS; Gneiting and Raftery, 2007), and the prediction interval
(PI) coverage for the multivariate regression cases, while the logarithmic loss, the
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accuracy (ACC), and the credible interval coverage of the probabilities from Φ(z(j)
i )

were used for the multivariate probit scenarios. The 50% posterior intervals are
computed using the 25-th and 75-th percentiles over the posterior samples from
Ŷ

(j)
i , while the posterior means for each Ŷ (j)

i , σj, and ρjk are obtained by averaging
the posterior replications.

Throughout all experiments, the default choice for the inverse-Wishart hyperpa-
rameter is ν = 2, reflecting our lack of prior information about the correlation
structure (Huang and Wand, 2013). The selection of the proposal degrees of free-
dom νprop for the PX-MH algorithm can be fine-tuned to adjust its acceptance
rate, as outlined in prior studies (Zhang et al., 2006). Consistent with existing
literature (Zhang et al., 2015), we adopt the default value of νprop = ntrain, which
appears to ensure a sufficiently well-behaved sampler. The number of trees for
each component j was fixed at m = 50. For the MCMC settings, we set a total
of NMCMC = 3000 iterations, of which Nburn-in = 1000 samples are discarded as
burn-in. Adjustments to the number of MCMC samples and other hyperparame-
ters such as ν, νprop, and m could be made to enhance convergence and predictive
performance, though the model does not seem to be overly sensitive to such choices.

Lastly, we note the software implementations for each model included in the com-
parison. The suBART models are fitted using our own suBART implementation
and the BART models are fitted using the dbarts package Dorie et al. (2024),
while the linear Bayesian SUR models (henceforth BayesSUR) are fitted using
the probabilistic programming language Stan Stan Development Team (2024b),
through the rstan package Stan Development Team (2024a) which provides an R
interface for this library. The mvBART model was evaluated using the skewBART
implementation provided by Um et al. (2023), specifically by setting the argument
do_skew=FALSE of the main MultiskewBART() function. However, it is worth
noting that its current implementation is limited to continuous scenarios with two
dimensions, thereby results were constrained to such cases. The default arguments
were retained for all competing models with the exception of the number of trees
for the tree-based models, which were set to the same value (m = 50) as suBART.
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4.5.1 Continuous response experiments
The two simulation scenarios described by the systems of equations below were
created to accommodate different types of complexity. In these experiments, the
values of the response are non-linear functions modified from examples described
in Friedman (1991) and Breiman (1996) for a multivariate response scenario. In
the first scenario, the third response is exceptional in the sense that the gen-
erating function is purely linear. Note that correlated noise (ε(1)

i , . . . , ε
(d)
i )⊤ ∼

MVNd(0d,Σ) is subsequently added to each scenario’s d-dimensional response.

Friedman #1:

x
(1)
i , . . . , x
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iid∼ Uniform(0, 1)

y
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i x
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Friedman #2:
x

(1)
i , . . . , x

(5)
i , x

(8)
i , x

(10)
i

iid∼ Uniform(0, 1)

x
(6)
i ∼ Uniform(0, 100)

x
(7)
i ∼ Uniform(40π, 560π)

x
(9)
i ∼ Uniform(1, 11)

y
(1)
i = 10 sin

(
x

(1)
i x

(2)
i π

)
+ 20

(
x

(3)
i − 0.5

)2
+ 10x

(4)
i + 5x

(5)
i

y
(2)
i =

√√√√x
(6)
i

2
+
(

x
(7)
i x

(8)
i − 1

x
(7)
i x

(9)
i

)2

y
(3)
i = atan

x
(7)
i x

(8)
i − 1

x
(7)
i x

(9)
i

x
(6)
i


The p = 10 predictors are generated from a uniform distribution in each scenario.

It is notable that not all predictors are used to build the responses. However, all
p = 10 predictors are used for model fitting in each case. It is anticipated that
the tree-based models will be able to identify these uninformative noise variables.
It is also essential to emphasise that each component of the outcome vector Y is
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derived from a distinct set of predictors in both scenarios. However, no restric-
tions are imposed on which predictors are associated with which response during
model fitting. As previously mentioned, it is anticipated that mvBART may en-
counter challenges in accurately approximating the true generating functions in
such cases. For each tree, the partitioning of the covariate space is reflected across
all responses, which may not hold true, particularly when examining the responses
of the Friedman #2 scenario where y(1) and y(2) do not share any predictors.

In each simulated scenario, we varied the dimension of the covariance error matrix
within d = {2, 3} and defined Σ accordingly, with specific values assigned to
each parameter σj and each correlation parameter ρjk, for all j ̸= k. In both
Friedman scenarios, the error covariance parameters were set as detailed in Table
4.5.1 and it is the first two responses y(1)

i and y
(2)
i which comprise the d = 2

settings. The restriction to d = 2 enables consideration of the mvBART model in
the comparisons, owing to the aforementioned limitation of the skewBART software
to bivariate outcome settings.

Table 4.5.1: True parameters of Σ used for each simulation scenario.

d σ1 σ2 σ3 ρ12 ρ13 ρ23

Friedman #1 2 1.00 10.00 — 0.75 — —
3 1.00 2.50 5.00 0.80 0.50 0.25

Friedman #2 2 1.00 125.00 — 0.75 — —
3 1.00 125.00 0.10 0.80 0.50 0.25

A comparison of results is depicted in the boxplots in Figure 4.5.1 and Figure 4.5.2
which confirm previous assumptions about suBART performance. These figures
illustrate the results for Friedman #1 with ntrain = ntest = 1000. In general,
suBART exhibits either slightly superior or competitive predictive performance
when compared to BART and mvBART, as evidenced by small average values
of RMSE and CRPS over the test samples. Furthermore, when compared with
BayesSUR, all tree-based methods exhibit a clear superiority in estimating the non-
linear responses. The primary discrepancy occurs when j = 3, where BayesSUR
has the best performance owing to the linearity of this response.
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Figure 4.5.1: Simulation results for continuous outcomes for Friedman #1 with
ntrain = ntest = 1000 and d = 2.

In terms of uncertainty estimation, Figure 4.5.1 illustrates that all methods exhibit
reasonable coverage ratios when d = 2, except for the first component where
both mvBART and linear SUR displayed higher coverage ratios for the prediction
intervals, indicating that σ2

1 was overestimated. Figure 4.5.2 corroborates these
findings, with the divergence observed only when the response is solely dictated
by a linear function, as illustrated by panels with j = 3 in Figure 4.5.2.
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Figure 4.5.2: Simulation results for continuous outcomes for Friedman #1 with
ntrain = ntest = 1000 and d = 3.

For the Friedman #2 scenario, the results are summarised in Figure 4.5.3 where
d = 2 and ntrain = ntest = 1000. In this case, suBART consistently outperforms
its competitors in all aspects. The deteriorated performance of mvBART can be
explained by the particular nature of the simulation setting, where each outcome
relates to an entirely distinct set of predictors, while the tree splits assume the
opposite. Additionally, the calibration of the suBART estimations remains con-

103



4.5. Simulation studies

sistent, as evidenced by the boxplot for the PI coverage, which mostly covers the
correct value. Equivalent figures summarising the results for the remaining scenar-
ios, with d = 3 and/or different sample sizes, yield the same conclusions as above
and have been omitted for brevity; they can be found in Appendix 4.A.
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Figure 4.5.3: Simulation results for continuous outcomes for Friedman #2 with
ntrain = ntest = 1000 and d = 2.

Ultimately, for proper uncertainty quantification, it is essential to correctly esti-
mate the correlation values from the covariance matrix Σ. Table 4.5.1 displays
the RMSE and coverage ratio of a 50% credible interval (CI) for the correlation
parameters ρjk for all j ̸= k provided by suBART, mvBART, and BayesSUR.
Notably, correlation values for the BART model are not provided as it assumes
independence among multiple responses (i.e., ρ̂jk = 0 ∀ j ̸= k), and the mvBART
estimations are restricted when d = 2 due to limitations of the skewBART package.
From the results, it is clear that suBART outperforms mvBART and BayesSUR
in terms of coverage, demonstrating its superior ability to estimate correlation
structures. The coverage values of zero for BayesSUR are particularly notable
and suggest an inability to accurately estimate correlations when assuming linear
regressions for non-linear responses. In terms of RMSE, suBART is superior to
BayesSUR and comparable to mvBART, albeit only in the d = 2 setting.
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Table 4.5.2: RMSE and coverage of a 50% CI for ρ̄jk from the posterior samples
for Friedman #1 with ntrain = ntest = 1000 for continuous outcomes.

RMSE CI coverage
suBART mvBART BayesSUR suBART mvBART BayesSUR

d = 2
ρ12 0.02 0.02 0.33 0.50 0.05 0.00
d = 3
ρ12 0.02 — 0.37 0.37 — 0.00
ρ13 0.03 — 0.31 0.41 — 0.00
ρ23 0.03 — 0.18 0.52 — 0.00

4.5.2 Binary response experiments
The experiments for binary responses are aligned with those from Section 4.5.1,
wherein different training and test sample sizes of ntrain = ntest = {250, 500, 1000}
are used. The simulation of the latent variables z(j) is described by the system of
equations below. Other than when j = 3, the values of the latent variables are
non-linear functions. Recall that correlated noise (ε(1)

i , . . . , ε
(d)
i )⊤ ∼ MVNd(0d,Σ)

is subsequently added to the d-dimensional latent variable, where the true Σ pa-
rameters are set to the same values as Table 4.5.1, and that the generating process
for each binary response follows Equation (4.2) thereafter.

Friedman #3:
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The models evaluated for these experiments are the probit suBART and probit ex-
tensions of the standard BART and BayesSUR. Despite the complete unavailability
of a probit version of mvBART in the skewBART software, for any dimensionality,
we persist in evaluating settings with varying dimension d = {2, 3} with the d = 2
setting again comprising the first two responses. The results are summarised in
Figure 4.5.4 and Figure 4.5.5, which are consistent with the findings from Section
4.5.1. When logarithm loss and ACC are considered as metrics for evaluating
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predictive performance, suBART either exhibits superior results or comparable
averages. Both tree-based models outperform Bayesian SUR, with the exception
of the linear third response in the d = 3 setting, as per the continuous simulation
studies in Section 4.5.1.
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Figure 4.5.4: Simulation results for binary outcomes for Friedman #3 with ntrain =
ntest = 1000 and d = 2.

Regarding calibration, it is evident that suBART outperforms BART across all
scenarios, showing coverage ratios that closely approximate the true values. On
the other hand, due to the inherent linearity of BayesSUR, its calibration perfor-
mance is notably poorer, though the third linear response is again an exception in
this regard, as per Section 4.5.1. However, even for this linear response, suBART
appears to exhibit superior performance in uncertainty quantification when com-
pared to standard BART. For brevity, the results for remaining sample sizes are
presented in Appendix 4.A, as they lead to similar conclusions.
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Figure 4.5.5: Simulation results for binary outcomes for Friedman #3 with ntrain =
ntest = 1000 and d = 3.

106



4.6. Analysis of the TTCM data

The results regarding the estimation of the correlation parameters are presented
in Table 4.5.3, which includes the RMSE and CI coverage for the correlation pa-
rameters ρjk associated with binary responses when ntrain = 1000. These results
are consistent with Table 4.5.2 in clearly demonstrating superior performance of
suBART with respect to prediction accuracy and estimating correlation structures.

Table 4.5.3: RMSE and coverage of a 50% CI for ρ̄jk from the posterior samples
for Friedman #3 with ntrain = ntest = 1000 for binary outcomes.

RMSE CI coverage
suBART BayesSUR suBART BayesSUR

d = 2
ρ12 0.25 0.51 0.42 0.00
d = 3
ρ12 0.04 0.27 0.46 0.00
ρ13 0.05 0.11 0.47 0.06
ρ23 0.06 0.08 0.47 0.32

4.6 Analysis of the TTCM data
We now apply the continuous suBART model in the cost-effectiveness setting which
we introduced in Section 4.2. We analyse data from Wiertsema et al. (2019). The
authors collected data on n = 140 patients suffering from traumatic injuries. The
two treatment options are usual care and the novel transmural trauma care model
(TTCM), denoted by t = 0 and t = 1, respectively. The treatment assignment
was not randomised. The outcomes we use, for c and q respectively, are the costs
from the healthcare perspective and generic healthcare-related quality of life.

As is usual in CEAs, the cost outcome is an aggregate measure: c comprises
the total costs acquired from hospital records as well as several questionnaires
conducted over the course of nine months following treatment, in which patients
were surveyed on their use of various healthcare resources. The responses —
examples of which relate to issues such as hospital stays, medication use, and
surgeries — were then converted to costs. Conversely, the effectiveness outcome q
was calculated from one single survey administered nine months after treatment
using the EQ-5D-3L instrument (Lamers et al., 2006). Additional details on the
data collection process can be found in Wiertsema et al. (2019). The data also
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includes p = 11 baseline covariates, with respective sample sizes of 83 and 57 in the
two treatment groups. The ratio of covariates to observations is thus reasonably
large. We reproduce the table of baseline variables in Table 4.6.1. We account for
the categorical predictors in the tree-based models using the method of ordering
categories proposed by Breiman et al. (1984).

Table 4.6.1: Baseline data from Wiertsema et al. (2019).

Characteristics Mean (SD) or frequency (%)
Intervention group (t = 1) Control group (t = 0)

n 83 57
Age 43.4 (15.6) 50.5 (17.9)
Gender (M/F) 39/44 (47/53%) 26/31 (46/54%)
Education level
Low 7 (8.4%) 6 (11.1%)
Middle 19 (22.9%) 16 (29.6%)
High 57 (68.7%) 32 (59.3%)
Medical history
None 53 (63.9%) 30 (52.6%)
Chronic 14 (16.9%) 13 (22.8%)
Musculoskeletal 16 (19.3%) 14 (24.6%)
Trauma type
Traffic 44 (53.0%) 25 (43.9%)
Work related 0 (0.0%) 2 (3.5%)
Fall 27 (32.5%) 17 (29.8%)
Sports 11 (13.3%) 9 (15.8%)
Other 1 (1.2%) 4 (7.0%)
Fracture region
Upper extremity 31 (37.3%) 25 (43.9%)
Lower extremity 41 (49.4%) 19 (33.0%)
Vertebral 7 (8.4%) 1 (1.8%)
Multitrauma 4 (4.8%) 12 (21.1%)
Injury severity score 7.9 (4.4) 8.6 (6.3)
Hospital admission 62 (75%) 29 (51%)
Length of hospital stay (days) 7.1 (6.1) 10.0 (11.4)
Surgery 53 (64%) 21 (37%)
TTOb 24.3 (14.3) 14.6 (14.7)
b Days between trauma and first outpatient consultation.
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The original dataset had some missing observations — for survey items related to
the outcome variables only — which Wiertsema et al. (2019) dealt with through
multiple imputation. 17% of patients did not complete any follow-up question-
naires, and hence were missing all information on q and some survey information
on c (though hospital records were available for all patients). Additionally, 39%
and 7% of respondents were missing some (but not all) survey items related to
c and q respectively. As missing data is not the subject of this chapter, we will
avoid this complication by simply working with one imputed dataset, obtained
through predictive mean matching (Vink et al., 2014), and treating that as com-
plete data. Specifically, the imputation is applied to the missing survey items prior
to the calculation of c and q. It follows that the analysis given here is not directly
comparable to the original one, and we do not claim that it is more valid in this
regard. We discuss this issue further in Section 4.7.

We will compare three methods for estimating the treatment effects: (1) suB-
ART, (2) mvBART as implemented in skewBART, and (3) Bayesian linear SUR,
with default priors as provided in the Stan user’s guide (Stan Development Team,
2024b). We use m = 100 trees for the tree-based methods. It is worth noting
that we do not impose any restrictions on the sets of covariates associated with
each response, for any of these methods. All covariates in Table 4.6.1 are used.
This means that all trees are allowed to form splitting rules using all covariates for
suBART, the single set of multivariate trees are allowed to split on all covariates
for mvBART, and all linear regressions for BayesSUR also share all covariates.
Following Wiertsema et al. (2019), we do not specify any interaction effects or
non-linear terms in the linear predictors for BayesSUR, owing to the difficulty of
pre-specifying appropriate functional forms in the presence of a large amount of
candidate interactions and the associated challenges in terms of model selection.
In any case, Dorie et al. (2019) found that linear models perform poorly in causal
settings even when also including interactions, polynomial terms, and regularisa-
tion to avoid overfitting. Conversely, BART-based methods are well-equipped to
automatically capture low-order interactions and non-linearities (Linero and Yang,
2018; Ročková and Van der Pas, 2020).
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In addition, we evaluate each method again with the set of predictors augmented
using propensity scores estimated via probit BART. This procedure is inspired
by the univariate ps-BART method proposed by Hahn et al. (2020), which in-
duces a covariate-dependent prior on the regression function and can substantially
reduce bias due to regularisation-induced confounding. We first estimate propen-
sity scores for each patient through probit BART, which give the probability that
a patient received treatment 1, conditional on their baseline characteristics, and
then add the posterior mean propensity score estimates to the set of predictors
xi used to estimate the conditional expectations E[c | t,xi] and E[q | t,xi] via the
chosen model. Thus, we expand the comparison to include what we refer to as ps-
suBART, ps-mvBART, and ps-BayesSUR, which are straightforward adaptations
of the univariate ps-BART method. Although the use of BART-based propensity
scores in conjunction with linear SUR deviates from usual practice in the applied
health economics literature, we nonetheless use the same set of propensity scores
estimated via probit BART for each method, in order to ensure the comparison is
fair in this regard. Expanding the comparison to include versions of each method
with and without propensity scores will help to establish the extent to which dif-
ferences in results are attributable to differences in model specification or due to
the inclusion of propensity scores.

4.6.1 Results of the TTCM data analysis
Figure 4.6.1 shows the distribution of the estimated propensity scores. Despite
some overlap, it is evident that the treatment groups are quite imbalanced with
respect to their baseline characteristics and that some form of covariate adjustment
is necessary to avoid biased results. As already described, we reevaluate each model
with the estimated propensity scores included as an additional covariate. Following
Li et al. (2023), who characterise this as an “approximately Bayesian” procedure,
we expect this to lead to results which are more robust to model misspecification.
Furthermore, this step makes the models less prone to attributing the effect of
confounders to the treatment variable Hahn et al. (2020).

In Figure 4.6.2, we show highest density regions of kernel density estimates of
the posterior distributions of ∆c and ∆q — obtained through suBART, mvBART,
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and BayesSUR, as well as their counterpart models which also incorporate the
estimated propensity scores as additional predictors — in the form of a cost-
effectiveness plane (CEP; see Gabrio et al. (2019) for more details). In general, for
both ∆c and ∆q, the centers of the distributions are shifted further away from 0 and
posterior uncertainty is greater when the propensity scores are incorporated. These
differences are most pronounced between ps-BayesSUR and BayesSUR and the
posterior mean is furthest from the origin under ps-suBART. A notable distinction
between suBART and BayesSUR is that the former appears to be more uncertain
about ∆c while the latter appears to be more uncertain about ∆q. Furthermore,
the same applies to the comparison between ps-suBART and ps-BayesSUR.

In Table 4.6.2, we further provide some summary statistics for ∆c, ∆q, and the
INB at a representative value of λ = 20000. We stress that this quantity is
not indicative of the cost of the TTCM intervention, which averages €272 per
patient (Wiertsema et al., 2019). Rather, this value is indicative of a situation
in which decision-makers would be willing to pay €20,000 per additional unit of
healthcare-related quality of life, which is much greater as the treatment effect of
∆q is near-zero. In any case, €20,000 is a commonly used threshold for determin-
ing whether an intervention represents value for money in the CEA literature (see
e.g., Drummond et al. (2015) and Gabrio et al. (2019)). At this chosen λ value,
we see some considerable differences between ps-suBART and the other methods.
This suggests that there may be strong non-linear functional relationships be-
tween the covariates and the outcomes (such that suBART benefits from relaxing
the linearity assumption of BayesSUR, without requiring pre-specification of the
functional forms) and that those relationships may differ for the two outcomes c
and q (such that suBART benefits from relaxing the mvBART assumption of a
common tree structure). Notably, the estimated treatment effects are markedly
smaller in absolute value for each method when propensity scores are excluded and
only ps-suBART yields a 95% CI for INB20000 which excludes zero.
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Figure 4.6.1: Propensity scores by treatment arm, estimated via probit BART,
where t = 0 corresponds to the control group.
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Figure 4.6.2: CEPs showing highest density regions of kernel density estimates
of the posterior distributions of ∆c and ∆q according to each model, with and
without the propensity scores. The posterior means are indicated by a red dot in
each case, the individual draws of ∆c and ∆q are shown via grey points , and the
contour lines correspond to probability levels of 0.5, 0.75, 0.9, and 0.95.
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4.6. Analysis of the TTCM data

Table 4.6.2: Posterior means with 95% credible intervals for ∆c, ∆q, and INBλ at
a representative value of λ = 20000 for each model, with and without propensity
scores.

Model Mean and 95% CI
∆c ∆q INB20000

ps-suBART −1371 [−2895, 189] 0.054 [−0.020, 0.127] 2449 [210, 4635]
suBART −880 [−2126, 345] 0.045 [−0.019, 0.110] 1776 [−65, 3585]
ps-mvBART −674 [−1859, 362] 0.042 [−0.025, 0.112] 1516 [−282, 3415]
mvBART −587 [−1678, 477] 0.038 [−0.024, 0.104] 1353 [−373, 3137]
ps-BayesSUR −698 [−2166, 771] 0.093 [−0.012, 0.203] 2560 [−228, 5395]
BayesSUR −191 [−1285, 916] 0.063 [−0.016, 0.144] 1448 [−660, 3556]

Rather than relying on a single λ value, we also show the probability of cost-
effectiveness as a function of the willingness-to-pay λ in Figure 4.6.3. This plot,
called a cost-effectiveness acceptability curve (CEAC; Löthgren and Zethraeus,
2000), is a highly-important tool in guiding the decision of which medical inter-
vention to implement. These probabilities are simply estimated by counting all
posterior draws for which INBλ > 0 and dividing this count by the total num-
ber of posterior draws. We see some remarkable differences, depending on which
type of model is used and whether or not the estimated propensity scores are
incorporated. Notably, the estimated probability of cost-effectiveness only ex-
ceeds the typical 95% reference level at any λ under ps-suBART, suBART, and
ps-BayesSUR. Moreover, this probability is consistently larger at all λ values for
all methods when propensity scores are included. Given that we have reason to
believe that ps-suBART, ps-mvBART, and ps-BayesSUR are more accurate than
their counterparts, we henceforth discuss only these methods.

A particularly striking aspect of Figure 4.6.3 is that ps-suBART is the only method
for which the estimated probability of cost-effectiveness is well above 95% for all
λ values. This threshold is typically regarded as a reasonably high probability
of cost-effectiveness, so we would be quite content in asserting that the TTCM
is cost-effective, regardless of the value of λ. In fact, even if decision-makers are
unwilling to pay anything (i.e., λ = 0) per unit of effect gained, ps-suBART still
reports a probability of 0.97 of being cost-effective compared to regular care. For
ps-BayesSUR, the probabilities are notably lower for small λ values, even when
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including propensity scores. Based on the ps-BayesSUR results, we likely would
want to collect more data before committing to a final decision. At higher λ, the
probabilities of cost-effectiveness approach the estimates obtained by ps-suBART.
For ps-mvBART, the probabilities follow a similar pattern as the ps-suBART es-
timates, but remain lower across the full range of λ values and never reach the
0.95 reference level. We are thus lead to a substantially different conclusion, de-
pending on the method used: ps-suBART finds strong evidence for TTCM being
cost-effective, while the results from the other two models are less conclusive. As
previously alluded to, the results for each method are even less conclusive when
the propensity scores are omitted from the set of predictors.
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Figure 4.6.3: CEACs showing probabilities of cost-effectiveness as a function of λ
for each model, with and without propensity scores, with a horizontal dotted line
at the 0.95 reference level.

4.7 Discussion
In this chapter, we introduce the suBART model for multivariate outcomes both as
means of accounting for non-linearities and interactions in the seemingly unrelated
regression framework and as a means of addressing the key limitation of existing
multivariate BART approaches which assume a single set of trees, such that the
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entire response vector is partitioned in the same way by the splitting rules in
the ensemble. By modelling each component of the outcome using a univariate
BART, suBART captures non-linearities in the relationship between the response
and predictors while allowing for and detecting the different subsets of covariates
— along with the interactions between them — associated with each response
without enforcing common tree structures. We further develop the model to handle
multivariate binary outcomes.

The effectiveness of suBART is demonstrated through extensive simulation stud-
ies, in which it is shown that the model adequately captures non-linear responses,
accurately estimates the covariance structure for multivariate responses, and gen-
erally outperforms its main competitors — including other tree-based alternatives
and the Bayesian linear SUR — from the points of view of both predictive accuracy
and uncertainty quantification. Notably, suBART is consistently superior to the
strategy of applying the standard BART model independently to each response,
which demonstrates the benefits of modelling the covariance between multivari-
ate response under our suBART framework. Furthermore, the results show that
the model exhibits enhanced flexibility compared to its direct multivariate coun-
terpart, mvBART. This flexibility stems from suBART permitting variation in
splitting rules across each response, by allowing the trees for each outcome com-
ponent to differ rather than imposing common tree structures. This enables a more
accurate representation, especially when different outcome components depend on
distinct sets of predictors.

The main focus of this chapter is the application of suBART within the context of
cost-effectiveness analysis, a setting in healthcare where it is of interest to jointly
estimate the healthcare costs and the health-related quality of life associated with
two or more treatment options. In our analysis, we find remarkable differences
depending on the particular method used for the TTCM data. It is of course
expected to see large differences between linear SUR and the two BART-based
models, given the very different model assumptions. The even larger differences
between suBART and mvBART are arguably more interesting. To reiterate, suB-
ART assigns each outcome its own tree ensemble, while the trees for all outcomes
are the same for mvBART. The large differences in results suggest to us that the
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assumption of a shared tree structure is a significant one, which may have a strong
impact on the results. Unlike mvBART, suBART can accommodate data where
the dependence on X is very different for different components of the outcome
vector. In the CEA context, this applies particularly in situations where factors
which govern the costs are unrelated to the quality of life, and vice versa. Such
situations do occur in practise; for example, when investigating the effect of total
knee replacement, Dakin et al. (2012) found that the patients’ sex was a strong
predictor of healthcare costs yet had no measurable relationship with quality of
life, while the exact opposite was true for the patients’ age. On the other hand,
a shared tree structure may lead to estimates which are more precise, without
necessarily being more accurate, since there are more data available to inform the
tree structure. Um et al. (2023) claim this as an advantage of their method. We
do indeed see somewhat smaller posterior variance in the mvBART estimates. We
also find that suBART further benefits from the inclusion of estimated propensity
scores as an additional predictor. Overall, we consider the model we refer to as ps-
suBART to be a natural adaptation of the univariate BART approach and expect
it to be a very useful tool in the analysis of observational cost-effectiveness data.

Despite the extensive array of comparisons and scenarios and the additional in-
sights gleaned by suBART in the CEA setting, there remains ample opportunity
for further exploration of various extensions to suBART. We delineate some of
these possibilities below in light of limitations identified in the simulation studies
and real data application.

• Although suBART models non-linear responses with considerable flexibility,
the model may still lack the desirable smoothness in certain scenarios; as
it is based on the standard BART model, its construction relies on sums of
piecewise-constant functions. However, several methods have been proposed
to address the inherent lack of smoothness in BART (Linero and Yang, 2018;
Prado et al., 2021; Maia et al., 2024) and these approaches could potentially
be adapted to suBART as well.

• The suBART framework can be contrasted with the traditional SUR frame-
work in that the conditional expectations are all modelled either via nonpara-
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metric univariate BART models or via parametric linear models. In the sim-
ulation studies, suBART’s superiority in capturing non-linear responses was
comprehensively demonstrated, although BayesSUR was preferable when the
response was generated by a simple linear function. A semi-parametric model
in which some outcomes are modelled by BART and some are modelled by
linear regressions could be of interest in cases where practitioners have strong
prior belief about the complexity or lack thereof of one or more responses.
Alternatively, such scenarios could be handled by varying the number of trees
assigned to each component, though further experiments will be required to
verify this.

• In the classic SUR model context, accounting for heteroscedasticity has been
a common challenge in the literature Afolayan and Adeleke (2018). As suB-
ART represents an effective alternative to the traditional linear SUR, the
extension proposed by Pratola et al. (2020) to accommodate heteroscedas-
ticity within BART could be adapted to the suBART setting to address cases
where the homoscedasticity assumption is invalid. However, it is important
to note that the approach of Pratola et al. (2020) has yet to be extended
beyond scalar variance estimation.

• The proposed suBART accommodates two types of multivariate outcomes:
all continuous and all binary. We stress however that this flexibility is exclu-
sive and does not apply to both types simultaneously. Previous works in the
literature, such as those by Papageorgiou et al. (2014), Zhang et al. (2015),
and Pourmohamad and Lee (2016), have adapted a Bayesian framework for
handling responses of mixed type. These approaches could potentially be
adapted to the suBART framework, providing greater generalisation of the
approach, particularly given that trading off treatment costs against binary
outcomes (e.g., cancer remission) is often of interest in other healthcare ap-
plications.

• The ps-suBART model we used in our analysis of the TTCM data builds on
the ps-BART model (Hahn et al., 2020). Hahn et al. (2020) also propose a
another related method, the Bayesian causal forest (BCF). The authors and
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their discussants found the performance of ps-BART and BCF to be similar
overall, with each method improving on the other in some settings. One of
the advantages of BCF is the ability to directly specify a prior on the amount
of treatment effect heterogeneity, while this prior is left implicit in ps-BART.
The drawback of this flexibility is that the prior specification is more complex
in BCF, and it is harder to find reasonable default choices which are appro-
priate in a variety of settings. Additionally, the computational demands of
BCF are greater than for standard BART. Both of these issues would be-
come even more challenging in the SUR setting with multivariate outcomes.
However, given that a multivariate generalisation of BCF has recently been
proposed by McJames et al. (2023), which is analogous to the multivariate
generalisation of BART developed by Um et al. (2023), there remains scope
for embedding BCF in the seemingly unrelated framework as an alternative
multivariate approach for conducting cost-effectiveness analyses.

• CEAs are sometimes conducted with more than two treatment options of in-
terest. Conceptually this is similar to the two-treatments setting presented in
the TTCM application. For details, we refer interested readers to Drummond
et al. (2015), Section 4.4. The ps-suBART method could be easily extended
to settings with more than two treatments, by estimating propensity scores
using multinomial probit BART (Kindo et al., 2016). With more than one
treatment effect for each outcome, and more than one INB, each correspond-
ing to a pairwise comparison of two treatments, the treatment which has a
positive INB in all comparisons would be considered cost-effective.

• When presenting the TTCM data, we noted that the original dataset had
missing responses for survey questions related to the outcome variables. We
bypassed this by working instead with an artificial complete dataset. Ideally,
we would prefer to keep the missing values and incorporate the imputation
directly into the posterior computation, in order to get coherent estimates of
posterior uncertainty. Assuming that the observations are missing at random
(the probability of missingness does not depend on the true values of the
missing observations, conditional on the observed data), it is straightforward
to incorporate imputation into our Gibbs sampler: we would simply draw
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the missing y(j)
i values from their conditional distribution, given in Equation

(4.9). Imputing outcomes with the probit suBART model could be done in
a similar manner. However, imputation of missing outcomes for the present
application would be further complicated by the fact that the outcomes were
calculated after imputing the constituent survey responses by Wiertsema
et al. (2019). Imputing missing covariate values, on the other hand, is a
totally different matter: our models are formulated conditionally on X, and
hence impose none of the distributional assumptions on X that would be
required for imputation tasks. That being said, missing covariate values
could be handled by simply adapting the approach of Kapelner and Bleich
(2016).

We hope to incorporate these advancements into our forthcoming research plans
and anticipate suBART’s adoption in other CEA settings to inspire further devel-
opments.
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Appendix

4.A Performance evaluation on simulation
experiments

In order to evaluate the performance of suBART against its competitors, we con-
ducted experiments replicating those outlined in Section 4.5, where we varied
ntrain = ntest = {250, 500, 1000} and d = {2, 3}. This appendix summarises the
remaining results omitted from the main chapter. The findings illustrated in the
boxplots below align with the conclusions drawn in Section 4.5. Overall, suBART
exhibits reasonable performance metrics for both continuous and binary outcome
scenarios, either matching or surpassing its tree-based model counterparts. No-
tably, suBART outperforms the Bayesian linear SUR across all scenarios, with the
exception of the responses where the response with the predictors is exclusively
linear. Additionally, we provide a summary of the estimation of correlation param-
eters through tables displaying the RMSE and 50% CI coverage for all ρkj where
j ̸= k. Across all scenarios, suBART consistently approaches the true values and
provides credible intervals with proper coverage ratios.
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Figure 4.A.1: Simulation results for continuous outcomes for Friedman #1 with
ntrain = ntest = 250 and d = 2.
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Figure 4.A.2: Simulation results for continuous outcomes for Friedman #1 with
ntrain = ntest = 250 and d = 3.
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Figure 4.A.3: Simulation results for continuous outcomes for Friedman #1 with
ntrain = ntest = 500 and d = 2.
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Figure 4.A.4: Simulation results for continuous outcomes for Friedman #1 with
ntrain = ntest = 500 and d = 3.
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Figure 4.A.5: Simulation results for continuous outcomes for Friedman #2 with
ntrain = ntest = 250 and d = 2.

j=1 j=2 j=3

0.00

2.00

4.00

6.00

100.00

200.00

300.00

400.00

500.00

3.00

6.00

9.00

R
M

S
E

j=1 j=2 j=3

0.00

1.00

2.00

3.00

4.00

100.00

200.00

2.00

4.00

6.00

C
R

P
S

j=1 j=2 j=3

0.40

0.50

0.60

0.40

0.50

0.60

0.40

0.45

0.50

0.55

0.60

P
I c

ov
er

ag
e

Model: suBART BART BayesSUR

Figure 4.A.6: Simulation results for continuous outcomes for Friedman #2 with
ntrain = ntest = 500 and d = 2.
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Figure 4.A.7: Simulation results for continuous outcomes for Friedman #2 with
ntrain = ntest = 1000 and d = 3.
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Figure 4.A.8: Simulation results for continuous outcomes for Friedman #2 with
ntrain = ntest = 500 and d = 3.
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Figure 4.A.9: Simulation results for continuous outcomes for Friedman #2 with
ntrain = ntest = 1000 and d = 3.
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Figure 4.A.10: Simulation results for binary outcomes for Friedman #3 with
ntrain = ntest = 250 and d = 2.
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Figure 4.A.11: Simulation results for binary outcomes for Friedman #3 with
ntrain = ntest = 250 and d = 3.
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Figure 4.A.12: Simulation results for binary outcomes for Friedman #3 with
ntrain = ntest = 500 and d = 2.
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Figure 4.A.13: Simulation results for binary outcomes for Friedman #3 with
ntrain = ntest = 500 and d = 3.

Table 4.A.1: RMSE and coverage of a 50% CI for ρ̄jk from the posterior samples
for Friedman #1 with ntrain = ntest = 250 for continuous outcomes.

RMSE CI coverage
suBART mvBART BayesSUR suBART mvBART BayesSUR

d = 2
ρ12 0.05 0.09 0.34 0.33 0.17 0.00
d = 3
ρ12 0.04 — 0.39 0.30 — 0.00
ρ13 0.07 — 0.32 0.39 — 0.00
ρ23 0.08 — 0.18 0.39 — 0.02

Table 4.A.2: RMSE coverage of a 50% CI for ρ̄jk from the posterior samples for
Friedman #1 with ntrain = ntest = 500 for continuous outcomes.

RMSE CI coverage
suBART mvBART BayesSUR suBART mvBART BayesSUR

d = 2
ρ12 0.03 0.07 0.34 0.47 0.07 0.00
d = 3
ρ12 0.02 — 0.38 0.48 — 0.00
ρ13 0.04 — 0.32 0.39 — 0.00
ρ23 0.05 — 0.17 0.45 — 0.00
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Table 4.A.3: RMSE and coverage of a 50% CI for ρ̄jk from the posterior samples
for Friedman #2 with ntrain = ntest = 250 for continuous outcomes.

RMSE CI coverage
suBART mvBART BayesSUR suBART mvBART BayesSUR

d = 2
ρ12 0.05 0.258 0.34 0.33 0.00 0.00
d = 3
ρ12 0.04 — 0.39 0.30 — 0.00
ρ13 0.07 — 0.32 0.39 — 0.00
ρ23 0.08 — 0.18 0.39 — 0.02

Table 4.A.4: RMSE and coverage of a 50% CI for ρ̄jk from the posterior samples
for Friedman #2 with ntrain = ntest = 500 for continuous outcomes.

RMSE CI coverage
suBART mvBART BayesSUR suBART mvBART BayesSUR

d = 2
ρ12 0.04 0.21 0.50 0.32 0.00 0.00
d = 3
ρ12 0.05 — 0.56 0.24 — 0.00
ρ13 0.07 — 0.49 0.33 — 0.01
ρ23 0.06 — 0.71 0.55 — 0.00

Table 4.A.5: RMSE and coverage of a 50% CI for ρ̄jk from the posterior samples
for Friedman #2 with ntrain = ntest = 1000 for continuous outcomes.

RMSE CI coverage
suBART mvBART BayesSUR suBART mvBART BayesSUR

d = 2
ρ12 0.06 0.17 0.49 0.02 0.00 0.00
d = 3
ρ12 0.05 — 0.58 0.02 — 0.00
ρ13 0.05 — 0.49 0.18 — 0.01
ρ23 0.03 — 0.72 0.51 — 0.00
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Table 4.A.6: RMSE and coverage of a 50% CI for ρ̄jk from the posterior samples
for Friedman #3 with ntrain = ntest = 250 for binary outcomes.

RMSE CI coverage
suBART BayesSUR suBART BayesSUR

d = 2
ρ12 0.11 0.29 0.40 0.00
d = 3
ρ12 0.11 0.31 0.41 0.00
ρ13 0.11 0.11 0.53 0.21
ρ23 0.13 0.12 0.44 0.37

Table 4.A.7: RMSE and coverage of a 50% CI for ρ̄jk from the posterior samples
for Friedman #3 with ntrain = ntest = 500 for binary outcomes.

RMSE CI coverage
suBART BayesSUR suBART BayesSUR

d = 2
ρ12 0.06 0.26 0.50 0.00
d = 3
ρ12 0.05 0.28 0.50 0.00
ρ13 0.08 0.13 0.51 0.12
ρ23 0.09 0.10 0.48 0.40
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CHAPTER 5
Incorporating smoothness in

Bayesian additive regression trees
via penalised splines

Bayesian additive regression trees (BART) have emerged as a prominent ensemble method
across a diverse range of predictive tasks. Its appeal lies in its consistent ability to pro-
vide accurate predictions while simultaneously offering robust measures of uncertainty.
This is achieved by aggregating a set of ‘weak’ tree models, each contributing a small
share to explain the expected conditional mean of the response variable through care-
fully chosen prior settings. However, due to the inherent additive piecewise-constant
nature of its base learners, BART may suffer from an assumption of lack of smoothness,
which can be violated in various contexts. In this study, we propose a novel extension to
the BART algorithm by incorporating Bayesian penalised splines within terminal nodes,
thereby introducing greater flexibility to approximate smooth functions. This approach
also facilitates flexible variable selection within the additive model framework, providing
an alternative for determining which basis functions should be included in the model.
Further flexibility is achieved by accounting for smooth interactions, beyond the inter-
actions already handled by the standard BART model. We evaluate the performance of
our proposed method using both simulated examples and one real-data benchmark. We
compare our novel approach to related competitors, both tree-based and additive, and
provide comprehensive insights into its effectiveness and applicability.
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5.1 Introduction
Bayesian additive regression trees (BART) are a prominent ensemble method com-
posed of Bayesian decision trees proposed by Chipman et al. (2010). BART
methodology is increasingly recognised for its great predictive performance and its
capability to provide accurate uncertainty quantification, a trait that distinguishes
it from other statistical learning models (Hill et al., 2020), without the need for
strong parametric assumptions about the model. One of BART’s main features
is the principled approach to regularisation of the trees that compose the aggre-
gation, being addressed through the prior specification of the tree structure and
its parameters. The flexibility from the ensemble of trees allows BART models to
account for non-linearities and low-order interactions. Examples of successful ap-
plications of BART exist across various domains, including predicting daily global
and diffuse solar radiation (Wu et al., 2021), competing risk analysis (Sparapani
et al., 2020), spatial data analysis (Kim, 2022), and environmental modelling (Cao
et al., 2023). Despite its effectiveness and flexibility, the original BART model is
subject to certain assumptions and limitations inherent to its initial formulation.
A notable one is the lack of smoothness in the model, a characteristic intrinsic
to the decision tree-based approach from which BART constructs its estimations.
These predicted values are represented by step-wise functions, delineated by the
specifications of mean parameters from the terminal nodes. Consequently, even if
the additive component from BART aids to improve the generalisation of the esti-
mated function, the resulting model fundamentally retains a non-smooth essence.

Addressing this challenge, Linero and Yang (2018) introduced an enhancement
to the BART methodology by incorporating so-called “soft-trees”. This approach
enables predictions for an observation within a terminal node to be derived not
solely from the parameter associated to the current leaf but from a weighted com-
bination of parameters across various terminal nodes within a tree. Furthermore,
Prado et al. (2021) proposed another extension aimed at mitigating BART inher-
ent lack of smoothness by integrating linear models within the terminal nodes of
the trees. Maia et al. (2024) (corresponding to Chapter 3 of this thesis) proposed
a novel method employing intrinsically smooth Gaussian process (GP) priors over
the parameters in the leaves. In the innovative extension presented within this
chapter, we propose to enhance the BART framework by incorporating additive
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models, specifically penalised splines, into the tree structure. Consequently, we
have designated this method as spBART.

Initially introduced by Friedman and Stuetzle (1981) and further developed in
Buja et al. (1989), the concept of using additive models as the sum of smooth
linear functions has been established as an effective method for capturing non-
linearity within a multiple linear regression framework. Splines, a class of these
functions, have been extensively employed in statistical models to add flexibil-
ity to the estimation of the model, as noted by Smith (1979) and Wegman and
Wright (1983). Although splines relax the assumption of linearity regarding a set
of predictors X ∈ Rn×p, they have the drawback of requiring the user to include
extra parameters, including the number and position of knots which form the basis
functions over which the function is approximated. Previous work from Friedman
and Silverman (1989) and Kooperberg and Stone (1992) developed schemes to op-
timise this choice. A divergent approach was later proposed by other researchers
whereby, instead of selecting an optimal number of knots, the strategy involved
using a large number of knots and an associated parameter to limit the flexibil-
ity of the fitted curve. This was achieved by penalising the second derivative of
the adjusted curve, as introduced by Reinsch (1967). This method, referred to
as smoothing splines, has since become a common practice in various instances
within the spline literature (Gu, 2013).

Eilers and Marx (1996) suggested applying a difference of the r-th order between
adjacent coefficients of B-splines (De Boor, 1972), of any degree, as an alternative
of this previous approach, thus introducing penalised splines (P-splines). The
Bayesian framework for P-splines, foundational to the additive models used in this
chapter, was formalised by Lang and Brezger (2004). Despite the novelty of the
approach we propose, previous work has already attempted to integrate Bayesian
penalised splines with tree-based models; for instance, Low-Kam et al. (2015)
used Bayesian trees to model threshold effects and interactions, in conjunction
with penalised B-splines for smoothing dose-time response surfaces. Our model,
spBART, integrates this Bayesian P-splines framework with BART, aiming to
achieve a predictive model that is smoother than the original Bayesian ensemble.
Additionally, it enhances model flexibility as the set of basis functions effectively
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used in the model are determined by the tree sampling, when compared with
the traditional Bayesian P-splines which require the user to pre-specify which
covariates are going to be modelled via the basis functions.

Within the context of spline regression and additive models, it is pertinent to ac-
knowledge the development of multivariate adaptive regression splines (MARS),
as proposed by Friedman (1991). MARS facilitates the identification and adapta-
tion of basis functions through a recursive partitioning approach within regression
models. This method offers flexibility in selecting knots and yields an interpretable
model capable of selecting and identifying significant variables and interactions.
A Bayesian framework for MARS was further developed by Denison et al. (1998),
wherein a probability distribution over the space of possible MARS models is
explored. This exploration incurs the use of the reversible jump Markov chain
Monte Carlo (RJ-MCMC) algorithm, introduced by Green (1995), to accommo-
date changes in the size of the parameter space. Denison et al. (1998) positions
Bayesian MARS as inherently related to Bayesian CART algorithm, as discussed
by both Denison et al. (1998) and Chipman et al. (1998), since both involve a
Bayesian setting for a partition model. Our proposed spBART is closely related
to these models; however, unlike Bayesian MARS, which relies on the RJ-MCMC
sampler to exclusively define the basis functions and interactions, spBART employs
penalised splines over a fixed set of basis functions. Additionally, the trees aid the
identification of any existing partitions within the feature space, and determine
the subset of important variables and interactions.

The remainder of this chapter is organised as follows: Section 5.2 describes the
methodology underpinning spBART along with the mathematical foundation of
the proposed model and its specifications. Section 5.3 gives more details of the
sampling algorithm. Section 5.4 presents two simulation examples to highlight the
features of this novel ensemble model and to facilitate comparison with existing
competitors. Section 5.5 provides a brief application to a real dataset from a
meteorological application, followed by a concise final discussion in Section 5.6
on the model’s conclusions and limitations. An implementation of our method is
available in the R package spBART2, which was used to obtain all presented results.

2Accessible at https://github.com/MateusMaiaDS/spBART.
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5.2 spBART: penalised splines Bayesian
additive regression trees

5.2.1 Bayesian P-splines
Initially, it is essential to outline the setting of the Bayesian splines used throughout
this chapter. The setup largely aligns with the the Bayesian P-splines proposed
by Lang and Brezger (2004), to which we refer the reader for more detail. In the
specified model yi = f(xi)+εi, i = 1, . . . , n, with εi following a normal distribution
N(0, τ−1) with residual precision τ , the estimation of f(X) is given by additive
functions f̂(X) = γ + ∑p

j=1 s(x(j)). Here s(x(j)) = B(j)θ(j) corresponds to the
linear combination of the basis functions from the predictor x(j) ∈ Rn, and γ is
an intercept. These bases B(j) ∈ Rn×K are constructed using cubic B-spline basis
functions, where K denotes the number of basis functions, corresponding to the
number of internal knots. To prevent over-fitting associated with a larger number
of knots, as discussed by Eilers and Marx (1996), an r-th order penalty is applied
to the coefficient estimates. This is facilitated by the prior specification of the
parameters for each basis function:

θ(j) ∼ N
(
0, (τλjPr)−1

)
λj ∼ G

(
aλj

, dλj

)
,

where Pr = D⊤
r Dr is the penalty matrix generated from the difference matrix of

the r-th order Dr . To illustrate, assuming a second-order penalty, D2 is given by:

D2 =


1 −2 1 0 . . . 0
0 1 −2 1 . . . 0
... ... ... ... . . . ...
0 0 0 0 . . . 1


(K−r)×K

.

It is observed that the the prior for θ(j) is improper due to rank deficiency at the r-
th level, which can potentially lead to numerical and computational instabilities in
subsequent calculations. To address this, in line with the transformation proposed
by Eilers (1999), we employ a reparameterisation of the basis functions by setting
C(j) = B(j)Dr(D⊤

r Dr)−1, whereby the basis function C(j) inherently accounts for
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the difference penalty. Consequently, Pr = IK ∀ r. Another important aspect is
regarding the number of knots that are used. As a default, we set K = 20 as being
sufficiently high enough for a second-order penalty. Lastly, due to identifiability
and numerically stability, using an approach similar to Durbán and Currie (2003)
and Lang and Brezger (2004), we transform to C(j) to be a centered penalised
basis function. The centered B-spline implies a rank reduction; according to Wood
(2017), it is recommended to set the K-th column to zero and delete it. Hence, we
obtain C(j) ∈ Rn×(K−1). This centering has also been justified under the Bayesian
perspective from the point of view of model selection (George and McCulloch,
1993); it amounts to initially integrating out the intercept parameter, if one is
included in the model.

These basis functions, although being flexible enough to model non-linear effects
from any predictor x(j), do not cover the effect of interactions. In the literature,
it is common to use the tensor product between two one-dimensional B-splines in
order to model interactions. For instance, for j ̸= k, we have that s(x(j),x(k)) =
(B(j) ⊗ B(k))θ(j,k), where ⊗ denotes the tensor product. The resulting interaction
basis would have its own penalty matrix; Besag and Kooperberg (1995) suggest
using a prior specification to penalise the coefficients from the interaction basis
based on the four nearest neighbour terms. Another choice for the prior is based
on the Kronecker product of the penalty of the main effects j ̸= k; see Clayton
(1995) for further details. However, as here we use the reparameterisation C(j) of
the B-splines, the interaction bases are given simply by the tensor product C(j,k) =
C(j) ⊗ C(k). Consequently, the penalty matrix for these basis still would be given
by the identity matrix I(K−1)2 . For notational brevity, and because we consider
only two-way interactions in the terminal nodes (other low-order interactions can
be accounted for by the trees), in subsequent sections of this chapter the total
number of basis functions for a given set of p predictors is denoted as d = p+

(
p
2

)
,

where C(j) ∈ Rn×K⋆ . The number of columns K⋆ depends on whether C(j) refers
to a set of basis functions related to a main effect or an interaction, such that

K⋆ =

K − 1 if j ≤ p

(K − 1)2 otherwise.
(5.1)
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This is valid for all j = 1, . . . , d, where C(j) represents all reparameterised centered
penalised bases. Recall that the indices j ≤ p refer to main effects, while higher
indices indicate two-way interactions. Three-way interactions in the spline basis
functions are not considered, as they quickly become computationally infeasible.

5.2.2 spBART
Suppose that for a given set of observed predictors X ∈ Rn×p, the goal of the
model is to estimate the parameters of the conditional distribution of a dependent
variable y | X, which is assumed to follow a normal distribution so that:

yi | xi ∼ N
(

T∑
t=1

g(xi, Tt,Θt), τ−1
)
,

where Tt refers to the tree structure with the partitions conditioned on the feature
space of X. The parameter set Θ = ({γt1, zt1,θt1}, . . . , {γtbt , ztbt ,θtbt}) encom-
passes all parameters associated the additive models within the bt terminal nodes of
each tree t. A distinguishing feature of this model, compared to BART, is the spec-
ification of priors within terminal nodes which is determined by additive models
rather than only a mean parameter. Consequently, the value assigned to an obser-
vation xi within a terminal node is given by the sum of the intercept γtℓ and the d
additive components ∑d

j=1 z
(j)
tℓ C(j)

tℓ θ
(j)
tℓ . Here, the vector z(j)

tℓ = {z(1)
tℓ , . . . , z

(d)
tℓ } ∈ Rd

works as an indicator vector to define whether the j-th set of basis functions and
its coefficients are included in the model of the terminal node. The term C(j)

tℓ

corresponds to the subset of all rows from the set of basis functions C(j) — con-
structed from the entire x(j) — associated with the split rules that lead to node ℓ
of the tree t. Finally, θ(j)

tℓ represents the vector of coefficients associated with each
set of basis functions for variable j inside a given leaf.

For clarity, Figure 5.2.1 illustrates an example of spBART with two trees. Given
predictors X ∈ Rn×3 and considering all possible two-way interactions, the model
constructs a total of d = 6 sets of basis functions to account for both main effects
and interactions. For instance, the indicator vector of the first terminal node in
T1 is denoted by z11 = {1, 0, 0, 0, 0, 0} and the corresponding basis function is
C(1)

11 ∈ Rn11×K⋆ , where n11 is the number of observations where x(1)
i ≤ 0.3. For

the second tree T2, a similar structure is observed; the leaf indicators z21 = z22 =
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{0, 0, 1, 0, 0, 0} imply that the models for each leaf solely incorporate the bases
related to x(3).

The role of ztℓ extends beyond indicating the bases and parameters of the model;
it ensures a fixed number of parameters across different nodes. Despite not having
all d basis functions and vectors of predictors effectively contributing to the model,
they are still present but can have their effect diminished, if necessary, by the λj

parameter, thereby eliminating the need for techniques such as RJ-MCMC during
the sampling algorithm. It is also crucial to note that the tree split rules are on
X rather than the re-parameterised space of the basis functions, meaning that the
basis functions within each leaf are essentially a subset of the original set of basis
functions C(j) and are not regenerated for the data assigned to each terminal node.

(a) T1

x(1) ≤ 0.3

γ11 + C(1)
11 θ

(1)
11 x(3) ≤ 0.6

γ12 + C(1)
12 θ

(1)
12 γ13 + C(1)

13 θ
(1)
13

TRUE FALSE

(b) T2

x(2) ≤ 0.4

γ21 + C(3)
21 θ

(3)
21 γ22 + C(3)

22 θ
(3)
22

Figure 5.2.1: An example of two trees generated by spBART; the split rules are
subject to the original feature space X, and terminal node values are determined
by an intercept and a subset of additive functions per leaf.

A key aspect of the model is that each tree is limited to a single main effect basis.
The interaction basis functions, if included, are related solely to this primary
predictor within a given tree. This constraint is crucial for several reasons: first,
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by allocating only one main effect per tree, marginal effects can be easily recovered;
the opposite would not be possible. By including all predictors within nodes, any
tree split would represent an interaction of all basis functions with the splitting
variable. Second, it narrows the search space for each tree, facilitating better
convergence. For instance, consider a dataset with p = 10 predictors, where the
true function f(xi) depends only on one variable. Permitting the use of all available
sets of basis functions would result in a total of fifty-five potential terms (10 main
effects and 45 interactions) to be included in the model, a considerably larger
sample than that generated by the true process. By limiting the model to one main
effect per tree, the model space is reduced to ten possible models (each capturing
one main effect and its interactions bases), resulting in a more feasible search.
Moreover, this restriction does not compromise the final model representation, as
the aggregation of trees enables the recovery of a model encompassing all main
effects and interactions, if necessary. In line with the standard BART, we can define
the prior distribution for the tree structure and the terminal node parameters to
be independent. Therefore, the complete prior is described by

π ((T1,Θ1) , . . . , (Tt,Θt) , λ1, . . . , λd, τ) = π (τ) ×
d∏

j=1
π (λj) ×

T∏
t=1

π (Tt,Θt | λ, τ) ,

where

π (Tt,Θt | λ, τ) = π (Θt | Tt,λ, τ) × π (Tt)

=
 bt∏

ℓ=1
π (θtℓ | ztℓ,λ, τ) × π (ztℓ) × π (γtℓ)

× π (Tt) .

We define the priors for Tt and γtℓ following Chipman et al. (2010), despite adopt-
ing a different setting for the tree hyperparameters. For τ and λj, a data-driven
approach is employed to establish their prior distributions. Hyperparameters asso-
ciated with these distributions are omitted in the preceding equations for brevity
but are comprehensively specified subsequently, along with the reasoning for each
component of the prior.

5.2.3 The tree structure
The tree prior, in alignment with the Bayesian CART algorithm (Chipman et al.,
1998), assumes the probability of a node being non-terminal is given by α(1+νtℓ)−β,
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where νtℓ denotes the depth of node ℓ in the tree t, where α and β are hyperpa-
rameters penalising the node depth. As a distinction from the standard Bayesian
CART setting, taking account that the presence of additive functions within a
terminal node can sufficiently model the main effect of a predictor, we adjust α to
0.5, since the original prior excessively favours stumps being non-terminal. The
distribution regarding the splitting variables and splitting rules remains the same
as per Chipman et al. (1998), with a uniform prior of selecting any of the available
j = 1, . . . , p variables, and uniformly selecting available values from the discrete
set of cut-points of the selected j-th variable. The proposals specific to the tree
structure (i.e., modifications to the number of nodes, split variables, and cut-points
of a tree Tt), are confined to grow, prune, and change movements. This approach
aligns with the strategies suggested by Kapelner and Bleich (2016) to diminish the
computational complexity inherent in the calculations for the back-fitting MCMC
algorithm, as we elaborate later in Section 5.3.

5.2.4 The prior on terminal node parameters
As mentioned above, the model described within a terminal node is given by

γtℓ +
d∑

j=1
z

(j)
tℓ C(j)

tℓ θ
(j)
tℓ ,

where γtℓ denotes the intercept of the model, z(j)
tℓ is the indicator of the contri-

bution of the coefficients θ(j)
tℓ ∈ RK⋆ associated to the centered penalised basis

functions C(j)
tℓ ∈ Rntℓ×K⋆ . Before the basis generation, all predictors x(1), . . . ,x(p)

are normalised between [0, 1] and the B-splines for the main effects are generated.
The K knots are equally spaced between the interval [−ωx(j) , 1+ωx(j) ] where ω(j)

x is
the standard deviation obtained for each component j; this strategy avoids extrap-
olation problems from the basis functions (see Eilers et al., 2015, for further details
about the P-splines design). For numerical stability and to aid prior elicitation,
the y is scaled to be between [−0.5, 0.5].

5.2.4.1 The prior on the intercept parameter

For the intercept parameter γtℓ, the prior is defined as γtℓ ∼ N(0, τ−1
γ ), where τγ =

4κ2T . This hyperparameter choice for the intercept aligns with the BART prior,
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positioning spBART as a generalisation of BART with the presence of additive
models in the terminal nodes. The intercept plays a crucial role in modelling
breakpoints or discontinuities within contributions for any set of basis functions,
thereby enhancing the model’s flexibility beyond what could be achieved with only
a Bayesian P-splines model.

5.2.4.2 The prior on basis indicator parameters ztℓ

For the d-dimensional indicator vector ztℓ of the basis functions j = 1, . . . , d,
d independent Bernoulli prior distributions are assigned, denoted by z

(j)
tℓ

i.i.d.∼
Bernoulli(0.5). Specifying all success probabilities as 0.5 reflects the absence of
prior knowledge regarding the importance of variables and interactions, implying
that the model should be equally likely to include or exclude a set of basis func-
tions. Although, in principle, these priors could be calibrated to favour certain
interactions or main effects by adjusting the probabilities for different sets of ba-
sis functions j, the default approach remains non-informative in terms of variable
selection. Furthermore, it simplifies the MH step as the priors cancel out in the
acceptance ratio as a result. However, we emphasise the distinction between the
prior and proposal distributions and stress that we allow z

(j)
tℓ = 1 for only one main

effect at most where j ≤ p. Otherwise, the indicator takes the value 0 for all p− 1
remaining main effects. The indicator for the interaction effects can only take the
value 1 for the set of p − 1 candidate interactions which comprise the included
main effect, or the last included main effect, and take the value 0 otherwise. We
achieve these restrictions in practice by never proposing invalid trees which are in
violation of these conditions when performing the MH step.

As the ztℓ vector indicates which set of bases are effectively included in the model,
it has a direct role in terms of variable importance. Indeed, an additional feature of
this vector, besides avoiding the need for a RJ-MCMC sampler, is that its posterior
samples can be used to construct an interpretable measure of variable importance.
To summarise ztℓ among all trees, we compute the following proportion for each
posterior sample (where we omit the iteration index for notational clarity):

∆j =
∑T

t

∑bt
ℓ=1 z

(j)
tℓ∑d

j=1
∑T

t

∑bt
ℓ=1 z

(j)
tℓ

. (5.2)
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5.2.4.3 The prior on the number of sets of basis functions mtℓ

In the BART model, the prior on the tree structure Tt indirectly governs the
quantity of leaf parameters. Owing to the inclusion of a novel set of parameters
in the terminal nodes, it is imperative to regularise the number of sets of basis
functions mtℓ now used in the leaves. To this end, a prior is imposed on each
terminal node concerning this count, without distinguishing between interactions
and main effects. To encourage parsimony in the model, we adopt a zero-truncated
Poisson prior π(mtℓ) ∼ ZTP(ψm = 0.1), with mtℓ = 1, 2, 3, . . ., as we only consider
a terminal node to be valid if it has at least one set of basis functions of any
type. This rate choice concentrates most of the density on one or two sets of basis
functions, such that settings with an excess of bases incur substantial penalisation.

5.2.4.4 The prior on the basis coefficients

The prior for the coefficients θtℓ is established within a hierarchical framework,
accounting for penalization within the basis functions:

θ
(j)
tℓ | λj, τ ∼ N

(
0, (τλj)−1 IK⋆

)
λj ∼ Gamma

(
aλj

, dλj

)
,

where K⋆ is given by Equation (5.1). A critical aspect of the model is the inter-
pretation of the prior for the λj parameter. Unlike standard BART, where the
distribution of the induced prior is readily retrievable through the prior distribu-
tion of the leaf parameters, the contribution of each set of basis functions here may
differ across trees, making it challenging to pre-specify a range of values for θ(j)

tℓ

considering a fixed number of trees. Our strategy relies on the assumption that
unimportant values of θ(j)

tℓ typically hover around zero, as the basis functions are
centered. Consequently, to presume that a variable is important, a larger a priori
variance is preferred, anticipating that the coefficients will deviate from zero. This
is achieved by defining the prior for λj such that E[λj] is small.

However, defining a reasonable range of values for the coefficients θ(j)
tℓ , and con-

sequently their precision, is not as straightforward as prior specification for linear
regression coefficients, given the additive nature of the ensemble and particularly
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the structure of the basis functions. Once we have scaled y to fall within [−0.5, 0.5],
our goal is to maximise the sample variance w(θ̂(j)

tℓ ) from the coefficients from the
linear combination given by y(j) = C(j)θ(j) with respect to θ, constrained on y(j)

being kept within the scaled interval. This problem is addressed through numer-
ical optimisation, resulting in a vector of optimal values θ̂(j). Following this, the
estimation for the maximum variance — or alternatively, the minimum precision
— of the coefficients is determined by λj

min = 1/w(θ̂(j)
tℓ ) where w(·) represents the

sample variance. Given that X and the basis functions are scaled, this process is
required to be performed only once each for both all main effect and all interaction
bases to determine their respective minimum λk values. Subsequently, we establish
the prior with default settings aλk

= λmin
k and dλk

= 1, where k ∈ {1, 2} indicates
the type of basis; i.e., whether it is an interaction or not.

Notably, λj is assigned at the predictor level, meaning it holds a constant value
across all trees and leaf nodes. This uniformity facilitates interpreting the value
of the parameter directly with the set of bases function associated with the x(j)

predictor. Specifically, λj can be seen a measure of the smoothness from the as-
sociated set of basis functions, whereby smaller values yield smoother functions.
Additionally, its posterior samples can be interpreted to evaluate variable impor-
tance. A variable or interaction whose marginal effect contributes insignificantly
to the model is expected to be represented by a constant function, implying zero
smoothness and thus larger posterior means for λj. Nonetheless, λj should not
be exclusively used for variable selection, as its values may merely indicate the
smoothness level; i.e, a large value of λj does not strictly imply that an effect is
irrelevant. For a complete picture of the relevance of a given main or interaction
effect, λj and ∆j from Equation (5.2) should be considered jointly. Conclusions
regarding the strength of a variables contribution can be further supported by
visual inspection of the marginal effect surfaces.

5.2.5 The prior on the residual precision
The residual precision parameter prior is set via a conjugate gamma distribution
τ ∼ Ga(aτ , dτ ). Given the superior flexibility of additive models for capturing
non-linear relationships in comparison to linear models, there is an underlying
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assumption that the residual precision of such models exceeds the one derived
from a linear framework. In alignment with Chipman et al. (2010), the selection
of the shape aτ and rate dτ hyperparameters is guided by the objective to ensure a
high probability, typically ντ = 0.9, that τ surpasses the precision τ̂OLS estimated
from ordinary linear regression on the predictors X.

5.3 Posterior inference
To design the sampler for the posterior joint distribution π(T1,Θ1), . . . , (Tt,Θt),
. . . ,λ, τ |y), the back-fitting algorithm of Hastie and Tibshirani (2000) is employed.
For simplicity, T (−t) denotes all trees except specifically tree t, and Θ(−t) represents
all parameters except those of tree t. This notation facilitates the expression of
the full conditional distribution π(Tt,Θt | y,T (−t),Θ(−t),λ, τ), which, in the back-
fitting context, is characterised by the partial residuals Rt ≡ y−∑T

k ̸=t g(X, Tk,Θk),
thereby being represented as π(Tt,Θt | Rt,λ, τ).

Hence, the sampling scheme for (Tt,Θ) consists of sequentially drawing from

Tt | Rt,Zt,λt, τ (5.3)

Gt | Rt,Bt,Zt,λ, τ (5.4)

Bt | Rt,Gt,Zt,λ, τ, (5.5)

where Zt,Gt, and Bt denote the collections of ztℓ, γtℓ, and (θ(1)
tℓ , . . . ,θ

(d)
tℓ ) parame-

ters across all terminal nodes, respectively. The sampling strategy for Equations
(5.4) and (5.5) adopts a Gibbs sampling arrangement, facilitated by the choice of
conjugate priors. Analogously, the samplers for λ and τ employ the same approach.
The sampler for Tt uses a Metropolis-Hastings (MH) algorithm as per Chipman
et al. (2010), although some modifications are required, which we describe below
for incorporating the mtℓ, ztℓ, and θ(j)

tℓ parameters.

5.3.1 Metropolis-Hastings step
Omitting substantial cancellation for notational brevity, the MH-step of Equation
(5.3) for a new tree proposal has an acceptance ratio given by

min
{

1, π (Rt | T ⋆
t ,Z⋆

t ,λ, τ)π (m⋆
tℓ) π (T ⋆

t ) q (T ⋆
t → Tt)

π (Rt | Tt,Zt,λ, τ) π (mtℓ) π (Tt) q (Tt → T ⋆
t )

}
, (5.6)
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where the likelihood term from Equation (5.6) is obtained by marginalising out
the γtℓ, θ(j)

tℓ . The remaining quantities refer to other prior components, such as
the prior distribution on the number of set of bases Mt = (mt1, . . . ,mtbt), the
tree structure Tt, as well as the associated transition probabilities q(·). The ratio
regarding the number of sets of basis functions π(m⋆

tℓ)/π(mtℓ) is considered at the
tree node level, given that MH proposals in this context exclusively alter a single
terminal node at a time. Additionally, the ratio π(Z⋆

t )/π(Zt) is always equal to 1,
as discussed in Section 5.2.4.2.

Since the tree changes are made at the level of the leaf, we are interested in the
marginal distribution of a terminal node which is given by

Rtℓ | Tt, ztℓ,λ, τ ∼ N
0, τ−1

Intℓ
+ τ

τγ

1ntℓ
1⊤

ntℓ
+ τ

d∑
j

z
(j)
tℓ λ

−1
j C(j)

tℓ C(j)
tℓ

⊤
 .

The proposals for the MH-step fall into two categories: those altering the tree struc-
ture and those affecting which basis functions contribute within a terminal node.
The former includes the conventional ‘grow’, ‘prune’, and ‘change’ moves proposed
by Chipman et al. (1998), where T ⋆

t ̸= Tt and Z⋆
t = Zt. Additionally, we introduce

the ‘add’, ‘remove’, and ‘modify’ moves to adjust the indicator vector ztℓ for the
set of bases within terminal node ℓ of tree t, leading to T ⋆

t = Tt and Z⋆
t ̸= Zt. We

also note that ‘add’ and ‘remove’ are the only moves which can lead to m⋆
tℓ ̸= mtℓ;

otherwise, the associated ratio cancels in Equation (5.6) for the modify move.

To illustrate, Figure 5.3.1 depicts these proposals on a generic node with ztℓ =
{1, 0, 0, 0, 0, 0} for p = 3 and d = 6. In panel (a), the add move samples uniformly
from a discrete grid of available two-way interactions related to x(1), resulting in a
new proposal z⋆

tℓ = {1, 0, 0, 1, 0, 0}. In panel (b), we present an analogous scenario
for the remove move, sampling with equal probability a set of basis functions
included in the node, leading to z⋆

tℓ = {1, 0, 0, 0, 0, 0}. We note that this move is
not restricted solely to interaction bases; a main effect can be removed as long
there is also an interaction included in the terminal node. Lastly, in panel (c), we
display the result of a modify operation; this operation randomly selects a j where
z

(j)
tℓ = 1 within a terminal node. Subsequently, this z(j)

tℓ is set to zero, and another
randomly selected valid coordinate is set to one. One of the consequences of this
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move is to replace one main effect by another, as shown in the last panel of Figure
5.3.1, where z⋆

tℓ = {0, 1, 0, 0, 0, 0} is accepted. We note that the modify move is
only allowed to replace a main effect by another when the selected terminal node
is a stump with no interactions. These procedures ensure the creation of only valid
terminal nodes. Recall, specifically, that each leaf must be restricted to at most
one main effect and any included set of interaction bases must be associated with
the incorporated main effect. If a main basis is absent, the interaction should relate
to the last main effect that was present. Moreover, each terminal node must hold
a minimum of 25 observations, an increase from the minimum of 5 recommended
by Chipman et al. (2010), to be considered valid.

γtℓ + C(1)
tℓ θ

(1)
tℓ

γtℓ + C(1)
tℓ θ

(1)
tℓ + C(4)

tℓ θ
(4)
tℓ

ADD

(a) Add a set of basis functions.

γtℓ + C(1)
tℓ θ

(1)
tℓ + C(4)

tℓ θ
(4)
tℓ

γtℓ + C(1)
tℓ θ

(1)
tℓ

REMOVE

(b) Remove a set of basis functions.

γtℓ + C(1)
tℓ θ

(1)
tℓ

γtℓ + C(2)
tℓ θ

(2)
tℓ

MODIFY

(c) Modify a set of basis functions.

Figure 5.3.1: Illustration of the novel tree-editing operations governing the basis
functions in the terminal nodes. Panel (a) shows the add move; adding a set of basis
functions. Panel (b) shows the remove move; removing a set of basis functions.
Panel (c) shows the modify move; essentially swapping two sets of basis functions.
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We set the probability of selecting the grow, prune, change, add, remove, and mod-
ify moves as {0.15, 0.15, 0.2, 0.15, 0.15, 0.2}, respectively. See the supplementary
material Linero and Yang (2018) for additional details regarding the transition
probabilities of a new tree. The remaining posterior samples of parameters from
a leaf-node level are obtained from the full conditionals

γtℓ | . . . ∼ N
s−1

γtℓ

ntℓ∑
i=1

Ri − 1⊤
ntℓ

d∑
j=1

z
(j)
tℓ C(j)

tℓ θ
(j)
tℓ

 , τ−1s−1
γtℓ

 , (5.7)

θ
(j)
tℓ | . . . ∼ N

S−1
θ

(j)
tℓ

C(j)
tℓ

⊤
Rtℓ −

γtℓ1ntℓ
+

d∑
k ̸=j

z
(k)
tℓ C(k)

tℓ θ
(k)
tℓ

 , τ−1S−1
θ

(j)
tℓ

 , (5.8)

where sγtℓ
= ntℓ + τγ

τ
and S

θ
(j)
tℓ

= C(j)
tℓ

⊤
C(j)

tℓ + λjIK⋆ .

Lastly, it is also necessary to update the parameters of the precision of the basis
coefficients and the precision of the residuals. The full conditional distributions
are given by

λj | . . . ∼ Gamma
1

2

T∑
t=1

bt∑
ℓ=1

z
(j)
tℓ K

⋆ + aλj
,
1
2

T∑
t=1

bt∑
ℓ=1

z
(j)
tℓ θ

(j)
tℓ

⊤
θ

(j)
tℓ + dλj

 (5.9)

τ | . . . ∼ Gamma
n

2 + 1
2

d∑
j=1

T∑
t=1

bt∑
ℓ=1

z
(j)
tℓ K

⋆ + aτ ,

1
2(y − ŷ)⊤(y − ŷ) + 1

2

d∑
j=1

T∑
t=1

bt∑
ℓ=1

λjz
(j)
tℓ θ

(j)
tℓ

⊤
θ

(j)
tℓ + dτ

. (5.10)

The algorithm initialises with a set of p trees, wherein each zt1 is configured as a
zero vector, except for z(t)

t1 = 1, for all trees t = 1, . . . , p. By having the number
of trees equal to the number of main predictors, each tree t = 1, . . . , p is initiated
with one corresponding main effect j = 1, . . . , p, thereby avoiding any initial bias
towards specific covariates, and allowing a complete model to be specified if all
predictors are important. Although we adopt T = p as a default setting, it is
possible to initialise fewer (or more) trees than there are main effects. However, if
the number of trees in the model is smaller than the number of important variables,
the model will be misspecified, as only one main effect is allowed by each tree at
most. Subsequently, the algorithm proceeds to sample all outlined parameters
over NMCMC = 5000 iterations, of which Nburn-in = 3000 are discarded as burn-in
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samples. The MCMC default setting was determined based on the convergence
analysis of posterior samples on the experiments applied herein. The complete
process is summarised in Algorithm 5.1.

Algorithm 5.1: spBART sampling algorithm.
Input: X, y, T , NMCMC, Nburn-in, and all hyperparameters of the priors.
Initialise: T (t) tree stumps where only z(t)

t1 = 1 with γtℓ = θ
(j)
tℓ = 0 ∀ (t, j, ℓ),

and τ = 1.
1 for iterations h from 1 to NMCMC do
2 for trees t from 1 to T do
3 Calculate the partial residuals Rt;
4 Propose a new tree T (j)

t

⋆
by a grow, prune, or change movea, or a new

indicator vector z⋆
tℓ by an add, remove, or modify move;

5 Accept and update T (j)
t = T (j)

t

⋆
and Z(j)

t = Z(j)
t

⋆
with probability

γ⋆
(
T (j)

t , T (j)
t

⋆)
= min

{
1, π (Rt | T ⋆

t ,Z⋆
t ,λ, τ) π (T ⋆

t ) q (T ⋆
t → Tt)

π (Rt | Tt,Zt,λ, τ) π (Tt) q (Tt → T ⋆
t )

}
.

for terminal nodes ℓ from 1 to bt do
6 Update γtℓ | Rt,θ

(j)
tℓ , ztℓ,λ, τ using Equation (5.7).

7 for j from 1 to d do
8 Update θ(j)

tℓ | Rt, γtℓ, ztℓ,λ, τ using Equation (5.8).
9 end

10 end
11 end
12 for j from 1 to d do
13 Update λj | y,Θ using Equation (5.9).
14 end
15 Update τ | y,Θ using Equation (5.10).
16 end

aSee Kapelner and Bleich (2016) for further details on these tree proposal steps and transition
probabilities q(·).
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5.4 Simulation experiments
The simulation studies are conducted in order to highlight the promising features
of spBART and showcase tasks where the model can be reasonably anticipated
to perform well. First, the model should be able to provide smooth estimations,
as it uses splines as a building-block component. Secondly, due to the tree-based
approach, it should be possible to identify any existing change-points within the
main effects and/or interactions. These aspects can be readily observed through
marginal effects plots, which are easily derived from the additive model setting,
thus avoiding the need for partial dependence plots — commonly used within
BART literature (Kapelner and Bleich, 2016; Chipman et al., 2010) — which can be
computationally intensive. Furthermore, the model also should be able to perform,
at some level, an automatic model specification for the additive functions. This is
achieved through the add, remove, and modify moves, which determine which set of
basis functions are relevant to estimate the conditional expectation of y |X, as well
as the λj parameter which controls the smoothness of each set of basis functions. To
assess these aspects of spBART, two versions of the Friedman equation (Friedman,
1991) are presented. The first one follows the original formulation, while the second
— which we refer to as the ‘Friedman break’ data — introduces change-points to
the marginal effects of x(3) and x(4). Both are explained in further detail on Section
5.4.1 and Section 5.4.2, respectively. Though we display the marginal effects for
certain relevant main and interaction effects which effectively contribute to the
model in both simulations, we note that we provide a complete overview of all
main marginal effect estimates ∀ j = 1, . . . , p in each case in Appendix 5.A.

In evaluating predictive performance, the model is compared using ten replica-
tions of the data, with training and test dataset sizes varying among ntrain =
ntest = {250, 500, 1000}. To measure the accuracy of predictions and the quality
of uncertainty quantification, we use the root mean squared error (RMSE) and
the continuous ranked probability score (CRPS; Gneiting and Raftery, 2007) over
the test dataset, respectively. Both metrics have the property of lower scores indi-
cating superior model fits, with RMSE focusing on mean predictive performance
while CRPS covers uncertainty calibration.
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Our model is evaluated in comparison with tree-based models such as BART and
some of its variants, including SoftBART (Linero and Yang, 2018) and model trees
BART (MOTR-BART; Prado et al., 2021), which claim to mitigate the assumption
of non-smoothness. The experiments further extend to models which perform an
adaptive selection of basis functions. Aiming to assess their performance relative to
some of the most advanced techniques currently employed in the domain of additive
models, we used models such as MARS (Friedman, 1991) and Bayesian MARS
(Denison et al., 1998). These models are fitted, respectively, using R packages
dbarts (Dorie et al., 2024), softBART (Linero, 2022b), MOTRbart (Prado et al.,
2021), earth (Milborrow, 2024), and BASS (Francom and Sansó, 2020) with their
respective default settings, except for the earth package where we modify the
main function to include the pairwise interactions.

5.4.1 Friedman data
The Friedman function is described by

yi = 10 sin
(
πx

(1)
i x

(2)
i

)
+ 20

(
x

(3)
i − 0.5

)2
+ 10x(4)

i + 5x(5)
i + ϵi, i = 1, . . . , n, (5.11)

where x(j)
i follows a uniform distribution, x(j)

i ∼ Unif(0, 1) for all j = 1, . . . , p, and
the error term ϵi is normally distributed ϵi ∼ N(0, τ−1). Notably, the predictors
x(6) through x(10) are noise variables, being independent of the response variable y.
A key aspect of this simulation includes the smooth interaction effect between the
pair (x(1),x(2)), which spBART is expected to identify effectively. Additionally,
given that the first two additive terms from Equation (5.11) exhibit non-linearity,
they are presumed to be more accurately represented using smooth functions.

Figures 5.4.1 and 5.4.2 summarise the result for RMSE and CRPS over the test
samples for all different sample sizes. Among all evaluated models, BART exhibits
the least favorable performance which is likely due to its assumptions around
lack of smoothness. The results indicate that spBART generally surpasses all its
competitors in performance, achieving lower values of RMSE and CRPS, with
the exception of SoftBART, which exhibits a performance equivalent to that of
spBART. The performance of MARS and BASS notably deteriorates relative to
spBART at larger sample sizes.
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Figure 5.4.1: Comparisons between the RMSE calculated on the test samples by
the competing models for the Friedman data using ten replications over different
sample sizes ntrain = ntext = {250, 500, 1000}.
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Figure 5.4.2: Comparisons between the CRPS calculated on the test samples by
the competing models for the Friedman data using ten replications over different
sample sizes ntrain = ntext = {250, 500, 1000}.
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The capacity of spBART to automatically identify the important set of basis func-
tions can also be assessed through simulation. Figure 5.4.3 summarises the means
of ∆j and λj j = 1, . . . , d calculated over the posterior samples. We highlight,
in blue, the set of variables on which y depends according to Equation (5.11).
However, we note that the first two variables do not contribute directly; only a
smooth interaction between x

(1)
i and x

(2)
i appears in Equation (5.11); thus, this

is only interaction effect displayed. Conversely, the crosses denote the remaining
uninformative main effects and interactions which do not contribute at all.

Initially, by calculating proportions ∆j from Equation (5.2), we interpret that only
bases with averages ∆̄j significantly exceeding zero are effectively selected by the
model. We note that spBART removes x(1) as it contributes solely through the
interaction term. Subsequently, when analysing the λ̄j averages, two points can be
elucidated: the unselected j sets share approximately the same value, mirroring
the prior settings for main effects and interactions. Furthermore, for effects with
∆̄j > 0, the λ̄j values can indicate the smoothness level of the marginal effect. For
example, the lower value of λ̄3 among the main effect bases is expected, given the
quadratic function that determines the marginal effect of x(3) in Equation (5.11).

Another important aspect of λj is its ability to adapt sets of bases that are spo-
radically included in the trees. As previously mentioned, given the centralisation
of the basis functions and their coefficients being centered at zero a priori, it is an-
ticipated that less important bases will exhibit relatively larger λj values. Hence,
when a group of bases, despite being selected for inclusion in the model by the
MH step, exhibit no correlation with y, the prediction surface is approximately
constant around zero. This is grounded in the relationship detailed in Equation
(5.9); i.e., the posterior rate for λj is proportional to the sum of the square of θ(j)

tℓ

throughout the terminal nodes of the trees in which they are included. Therefore,
the λj values associated with irrelevant bases tend to be larger than those for the
other main effects. This can be seen by examining λ̄2 in Figure 5.4.3.

Finally, Figure 5.4.4 displays the marginal effects obtained from the spBART
model which effectively contribute to y according to Equation (5.11). This demon-
strates that the model produces predicted curves that closely match the true gen-
erating functions, ensuring the necessary smoothness in its estimates.
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Figure 5.4.3: Posterior averages for ∆̄j and λ̄j for one of the replications of spBART
on Friedman data. The set of variables and the corresponding interactions that
contribute to Equation (5.11) are highlighted. The remaining uninformative main
effects and interactions which do not contribute are represented by crosses.
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Figure 5.4.4: The panels depict the marginal effects derived from the set of basis
functions most frequently selected by one of the replications of the spBART model
applied to the Friedman dataset where ntrain = 250.
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5.4.2 Friedman break data
To evaluate the anticipated ability of spBART to detect change-points within the
marginal effects of a predictor, we conducted a modified experiment based on the
Friedman equation (5.11) by introducing a discontinuity in x(3) and x(4). The
data-generating process is described by

yi =10 sin
(
πx

(1)
i x

(2)
i

)
+ 1(x(3)

i ≤ 0.5)

(
20
(
x

(3)
i − 0.5

)2
+ 5

)
− 1(x(3)

i > 0.5)

(
20
(
x

(3)
i − 0.5

)2
+ 5

)
− 1(x(4)

i ≤ 0.3)

(
15x(4)

i + 5
)

+ 1(x(4)
i > 0.3)

(
10x(4)

i + 5
)

+ 5x(5)
i + ϵi, i = 1, . . . , n, (5.12)

where 1(·) is the usual indicator function, x(j)
i ∼ Unif(0, 1) ∀ j = 1, . . . , p, and

ϵi ∼ N (0, τ−1). It is expected that spBART will be able to model the smooth
curves, taking into account their inflections and discontinuities existent in the
marginal effects. Furthermore, as in the previous example, it should effectively
handle variable selection, detecting the most important set of basis functions,
being interactions or not.

The outcomes are shown in Figures 5.4.5 and 5.4.6, presenting boxplots of the
RMSE and CRPS values computed across the sample sets for varying sample
sizes. From the results, we can observe that spBART consistently ranks among
the methods producing the lowest values for both metrics. Unlike the previous
Friedman simulation scenario, MARS appears to exhibit the weakest performance
in this context, revealing a limitation in handling change-point scenarios. Con-
versely, we can notice that alternative models to BART demonstrate improved
performance, suggesting that the lack of smoothness from the original formulation
may still adversely affect estimations.
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Figure 5.4.5: Comparisons between the RMSE calculated on the test samples by
the competing models for the Friedman break data using ten replications over
different sample sizes ntrain = ntext = {250, 500, 1000}.
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Figure 5.4.6: Comparisons between the CRPS calculated on the test samples by
the competing models for the Friedman break data using ten replications over
different sample sizes ntrain = ntext = {250, 500, 1000}.
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The result for the variable selection for the Friedman break example is illustrated
by Figure 5.4.7. Analogously to the interpretation on the original Friedman data,
we can observe that most of the sets of basis functions which are effectively con-
tributing to the model have a higher proportion than those remaining. Their
respective degrees of smoothness are also represented by their λ̄j values where, as
expected, among the main effects both x(3) and x(4) are the ones with a smaller
average. When a set of irrelevant basis functions is selected, λj can correct the
influence of that marginal effect. This is exemplified by the unimportant j = 2,
which has a moderate proportion ∆̄2 and a large λ̄2 value.
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Figure 5.4.7: Posterior averages for ∆̄j and λ̄j for one of the replications of spBART
on Friedman break data. The set of variables and the corresponding interactions
that contribute to (5.12) are highlighted. The remaining uninformative main ef-
fects and interactions which not contribute are represented by crosses.

Figure 5.4.8 shows the marginal effect of the main variables on the training data,
derived from Equation (5.12), in one of the replications of spBART applied to
the Friedman break data with ntrain = 250. It is important to observe that the
model successfully identified the change-points for both main effects and accu-
rately approximated the generating functions within each partition. Furthermore,
these panels underscore that spBART avoids unnecessary splits unless a change-
point genuinely exists within the marginal effect, thereby facilitating insightful
interpretations of the data.
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Figure 5.4.8: The panels depict the marginal effects derived from the set of basis
functions most frequently selected by one of the replications of the spBART model
applied to the Friedman break dataset where ntrain = 250.

5.5 Real data benchmarking
We now evaluate spBART on real data. This dataset, previously used to demon-
strate Bayesian MARS in Denison et al. (1998), comes from research by Bruntz
et al. (1974) which investigates how ozone levels depend on specific meteorological
factors over 153 days from May to September 1973 in the New York metropoli-
tan area. The cube root of the ozone levels is the target variable, in accordance
with Yu and Jones (1998). The dataset includes three predictors: solar radia-
tion, temperature, and wind speed. The data is available in base R under the
name airquality. Small proportions of the ozone and solar radiation variables
are missing; in accordance with Denison et al. (1998), we present result using only
the complete cases, resulting in a total of 111 observations.

To evaluate the model performance, 10-fold cross-validation was performed and
the RMSE and CRPS were calculated over the test fold partitions. The spBART
model was compared under its default setting, along with the same competitors
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presented in Section 5.4. The results are summarised in Figure 5.5.1 which displays
the RMSE and CRPS metrics resulting from the comparative analysis. spBART
demonstrated the lowest median values for both indicators, reflecting higher pre-
dictive precision and improved uncertainty calibration compared to alternative
models. SoftBART, emerging as the second-best performer, implies that adopting
a smooth approximation may be advantageous for achieving more precise estimates
of the cube root of ozone levels.
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Figure 5.5.1: Comparison between the RMSE and CRPS values for the airquality
data across the six competing methods using 10-fold cross-validation.

The analyses for variable importance were also performed and shown in a scatter
plot of the posterior means ∆̄j and λ̄j in Figure 5.5.2, using the whole dataset. The
framework to interpret these results is the same as that of Figures 5.4.3 and 5.4.7.
First we analyse the ∆̄j values and observe which set of bases have higher propor-
tions. We see that Temperature, Solar R. and the interaction Wind:Temperature
seem to be the main contributors to variability in the ozone levels. Examining
their corresponding λ̄j values, we infer that they differ from the prior expectation,
thereby correctly adjusting the smoothness of the curve according to the data. On
the other hand, the group of basis functions which are considered unimportant
are the ones which present a low average proportion ∆̄j, such as the predictor
Wind, and the interactions Solar.R:Temp, and Solar.R:Temp; consequently, their
respective λ̄j values are close to the mean of their prior distribution.
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Figure 5.5.2: Posterior averages for ∆̄j and λ̄j for the airquality data set, in-
cluding all three main effects and all three pairwise interactions.

To substantiate the interpretations derived from Figure 5.5.2, the marginal effects
for wind, temperature, solar radiation, and the Wind:Temperature interaction are
explored in further detail. Figure 5.5.3 illustrates the three marginal main effect
estimates, determined by the posterior median of each linear combination of their
respective sets of basis functions and coefficients retrieved by the sampler. These
results reinforce the initial conclusions, highlighting that temperature and solar
radiation significantly contribute to the final prediction. Analysis of these two
functions reveals their smooth characteristics, which may elucidate the relative
underperformance of BART compared to other methods. As anticipated, the wind
predictor exhibits a marginal effect consistently near zero and flat, which is in
agreement with its small ∆̄j and λ̄j, respectively. The proportion ∆̄j is non-
zero but nonetheless quite small; given that interaction bases are included only
when they comprise of an interaction between the included main effect and some
other variable, the frequency with which the unimportant wind variable is included
could be attributable to the predominance of the Wind:Temperature interaction
and not necessarily the importance of the main effect of wind. In other words, the
frequent presence of this particular interaction modestly enhances the probability
of including the main effect of wind in certain model samples compared to the other
two unimportant effects, namely the two interactions involving solar radiation.
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Figure 5.5.3: The marginal effect of the main effects calculated over the posterior
median of predictions for the training observations across each set j = 1, . . . , 3
of basis functions for the airquality data. This analysis reveals a non-linear
relationship between the cubic root of solar radiation and temperature, while in-
dicating an absence of the marginal effects of wind speed on ozone levels.

Figure 5.5.4 presents the estimated plane characterising the interaction between
wind and temperature. In line with expectations deriving from the prominent
proportion of this interaction, this term is contributing to explain the ozone levels
through the presented non-linear smooth surface. In further detail, the surface
exhibits a pronounced gradient with respect to changes in wind speed, particularly
in areas of elevated temperatures. The intricate non-linear structure observed here
underscores the benefits of employing basis functions to capture inherent flexibility
and smoothness needed in the model. Notably, we omit the additional interaction
surfaces — i.e., the Solar.R:Wind and Solar.R:Temperature interactions — because
they were approximately flat surfaces with zero effect.

Lastly, the results regarding the variable selection herein are also aligned with the
ones obtained by Denison et al. (1998). The findings from Bayesian MARS suggest
that the most important basis functions in the fit were the main effect terms for
radiation and temperature and the wind and temperature interaction term. This
congruence reinforces the reliability of our proposed methodology, which is further
complemented by the superior predictive performance and calibration obtained by
spBART when compared with its competitors.
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Figure 5.5.4: The marginal effect of the Wind:Temperature interaction, determined
using the posterior median of predictions for the training observations. The surface
exhibits a non-linearity and demonstrates the flexibility afforded by P-splines.
Despite the relatively higher value of λ̄j, this parameter calibrates the appropriate
degree of smoothness required to adjust the curve accurately, and is not merely a
consequence of a constant marginal effect.

5.6 Discussion
In this work, we present spBART, an extension of BART models that integrates
Bayesian P-splines into the terminal nodes, resulting in smoother predictions. Fur-
thermore, spBART is envisioned as a tool for identifying important main effects
and low-order interaction components, while adapting the degree of smoothness
without the need for pre-specifying the functional form of an additive model.

The novel ensemble approach was evaluated over simulation scenarios with two
primary objectives: to assess the predictive performance and uncertainty calibra-
tion of the method in comparison to its competitors, and to perform a selection
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among the relevant subset of basis functions that should be included in the model.
For the first task, spBART demonstrated consistent performance, out-performing
most of its competitors, with the exception of SoftBART, against which it main-
tained competitive results. With respect to variable selection, spBART identified
the important main components of the model, discarding the ones that do not con-
tribute effectively to explaining the the variability in the response y. Moreover,
due to the additive nature of the model facilitated by splines, it was straightfor-
ward to visualise and provide interpretable marginal effects, thereby aiding in the
development of more comprehensible models.

Ultimately, spBART was employed on a real dataset to estimate ozone levels based
on several physical properties, including radiation level, wind speed, and temper-
ature. The model identified a subset of significant effects and interactions, along
with marginal effects plots that could offer valuable insights to domain specialists.
These findings are corroborated by the outcomes of cross-validation experiments,
which demonstrated that the model possesses better predictive capabilities and
effective uncertainty quantification relative to closely-related alternative models.

Despite the simulations and experimentation described above, there are still some
open possibilities to be explored that could improve the performance of the model:

• Setting the correct number of trees T seems to be a sensitive specification of
the model. Despite the default value for total number of trees being T = p,
such that there is initially one tree per main effect, we observed that the
model performance can deteriorate when using a larger number of trees. The
harm on the model performance is more pronounced regarding the variable
selection, once it seems that if enough trees are dominating the modelling
of the signal, the remaining trees will attempt to model noise leading to
the inclusion of spurious correlation in final aggregated model. Chakraborty
(2016) proposed an approach for automatic tree selection in BART which
may could be adapted here at the cost of adding extra computational step,
as it would be necessary to use a RJ-MCMC (Green, 1995) step as the
number of trees would be changing.
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• In certain scenarios, maintaining fixed probabilities for the add, remove, and
modify operations, even after the model identifies the requisite subset of
basis functions, can result in superfluous and inefficient MCMC iterations.
Implementing techniques for diminishing adaptation, as discussed in Haario
et al. (2001) and Roberts and Rosenthal (2009), for tree proposals could
enhance efficiency and build a more computationally effective sampler for
the trees.

• The number d of possible sets of basis functions can escalate rapidly with
p and thus harm the exploration of the space of predictors. This challenge
was partially addressed by limiting each tree to one main effect and its as-
sociated interactions. However, further enhancement is possible through the
introduction of a Dirichlet prior on the probability of selecting set j in the
add, remove, and modify operations. This strategy, which could adopt the
prior configuration proposed by Linero (2018), has the potential to improve
convergence and prevent the wasteful expenditure of MCMC iterations.

• The prior for the number of sets of basis functions mtℓ is specified as a zero-
truncated Poisson distribution with a fixed rate parameter ψm. Assuming a
hyperprior for ψm may allow greater flexibility for more complex models.

• Although the choice of the number of number of internal knots is facilitated
by the penalised splines approach, it would still be interesting to further
evaluate the sensitivity of the model for a wider range of choices for this
parameter. Similarly, the effects of varying the degree of the B-splines used
to generate C(j) and the order r of the penalty applied to their differences
could also be evaluated.

We plan to integrate these developments into our future research projects.
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Appendix

5.A Marginal plots from the main effects from
simulations

One of the main advantages from the additive functions used within the terminal
nodes of spBART is the possibility to easily recover the marginal effects for each
predictor x(j) through their respective basis functions and associated parameters
z

(j)
tℓ and θ(j)

tℓ . Figures 5.A.1 and 5.A.2 represent all the marginal effects for each
main basis j = 1, . . . , p over the training sample, derived from a randomly selected
replication within the cross-validation setting, where ntrain = ntest = 250, for the
Friedman dataset and Friedman break dataset, respectively. Though these plots
include some main effects which were already depicted in Figures 5.A.1 and 5.A.2,
most of the panels depict main effects which were omitted from the main section
of the paper as they were deemed not to be effectively contributing to the model
estimation since they are mostly flat at zero. For similar reasons, and the fact
that they greatly outnumber the number of main effects, we elect not to show
the remaining interaction effects either. Overall, both examples illustrate the
successful variable selection performed by spBART.
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Figure 5.A.1: All marginal effect estimates for the main bases j = 1, . . . , p, derived
from a randomly selected replication within the cross-validation setting, where
ntrain = ntest = 250, on the training sample of Friedman data.
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Figure 5.A.2: All marginal effect estimates for the main bases j = 1, . . . , p, derived
from a randomly selected replication within the cross-validation setting, where
ntrain = ntest = 250, on the training sample of Friedman break data.
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CHAPTER 6
Conclusions

Bayesian additive regression trees (BART) is a non-parametric Bayesian approach which
leverages an ensemble of Bayesian decision trees to approximate non-linear dynamics and
capture low-order interactions for modelling univariate responses from a set of predictors
with minimal assumptions and model specifications. In this thesis, we introduce a suite
of extensions to address some shortcomings of BART, and to accommodate the breach
of certain key assumptions, by incorporating a covariance structure within the feature
space (GP-BART; Chapter 3), modelling the covariance structure of the response for
multivariate outcomes (suBART; Chapter 4), and enhancing smoothness by embedding
penalised splines within BART (spBART; Chapter 5). We now revisit the innovations
presented in each chapter, underlining the novel contributions made, in light of their
comprehensive evaluation and comparison against existing methodologies aimed at re-
solving similar challenges. We conclude with reflections on open research inquiries that
merit further exploration to refine or broaden the enhancements discussed herein.

Initially, by incorporating Gaussian processes (GP) to account for possible correla-
tions among observations, the model manages the covariance structure inherent in
the multivariate normal prior over function spaces. Introducing GPs not only facili-
tates the modelling of dependencies but also grants the ability to create smooth sur-
faces. Furthermore, we propose new, oblique tree-splitting strategies, referred to as
‘grow-rotate‘ and ‘change-rotate‘, offering modifications over traditional parallel-
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axis splits and thus increasing the flexibility of partitions from the model. We
anticipate these innovations being particularly effective in (but not limited to) the
domain of spatial data analysis. The effectiveness of GP-BART is demonstrated
through extensive simulation studies and analyses of several real-world benchmark
datasets, where it consistently outperforms various tree-based alternatives and
spatial methods in terms of prediction accuracy and uncertainty calibration.

In developing the GP-BART approach, a significant computational challenge was
encountered due to the complexity of O(n3

tℓ) associated with the required matrix
inversion operations within each terminal node. Attempts to alleviate this com-
putational load through low-rank approximations were made, yet such strategies
detrimentally impacted the model’s predictive accuracy, indicating a need for a
more nuanced treatment. Other strategies, including warm-up iterations aimed
at reducing ntℓ, did not yield successful outcomes as the resultant tree structures
would take longer to converge. An exploration towards a more adaptable model
involved varying the kernel function’s length parameter within terminal nodes —
that is, allowing for ϕtℓ rather than ϕtj as adopted throughout Chapter 3 — but
it is more challenging to provide an efficient sampler for the length parameter if
we consider it on the terminal node level.

Another path for investigation stems from the fact that GP-BART operates under
the assumption of homoscedasticity, implying constant residual variance τ . How-
ever, this assumption often does not hold in either the GP literature or in real-world
applications, presenting a challenge that has been addressed in several papers (e.g.,
Binois et al., 2018). Within the scope of this thesis, consideration was given to
adopting the approach of Pratola et al. (2020), which incorporates multiplicative
trees for modelling non-stationary variations within the BART framework. Aiming
towards a more versatile ensemble of GPs in this direction, however, was deferred
to future work as it was beyond the initial publication scope for GP-BART.

Moving towards the covariance structure on the outcomes, BART has the limi-
tation that it only considers univariate responses. Consequently, in cases where
it is of interest to analyse data with multiple correlated responses, it is neces-
sary to modify the model in order to account for the dependencies between them.
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Motivated by a problem from cost-effective analysis, we were interested in jointly
modelling the average treatment effect with respect to two outcomes associated
with healthcare cost and healthcare quality jointly. This extension facilitates the
construction of a forest in which each distinct response is represented by its own
ensemble of trees, while also accounting for the joint distribution of these outcomes
by linking the trees through a correlated error term. In addition to the suBART
model for multiple correlated continuous outcomes, we also present a probit ex-
tension of suBART tailored for multivariate binary outcomes. The evaluation of
both suBART models encompasses several simulation settings. These assessments
precede the application of the continuous suBART model to data derived from an
observational study situated within the field of health economics.

Despite the comprehensive set of comparisons and scenarios, coupled with the
nuanced insights provided by suBART in cost-effectiveness analysis, there still
exists significant scope for further investigation into diverse extensions of the
suBART model. One of the avenues to explore is to incorporate smoothness
within the tree-based framework using probabilistic splitting rules, in a similar
way to the SoftBART approach of Linero and Yang (2018). Another limitation
which could be addressed is accounting for settings where the assumption of ho-
moscedasticity is violated. This remains a prevalent issue within the conventional
seemingly unrelated regression framework, as reported by Afolayan and Adeleke
(2018). Given suBART’s role as a robust alternative to the linear SUR methodol-
ogy, the heteroscedasticity-tailored modification of BART, as proposed by Pratola
et al. (2020), offers promising opportunities for adaptation in suBART applica-
tions, especially in situations where the assumption of uniform variance proves to
be untenable. However, it is important to note that Pratola et al. (2020) only
proposes a solution for estimating a scalar variance; adapting this to covariance
structures in the presence of multiple outcomes would require additional specifi-
cations to the model beyond suBART’s original scope. Furthermore, while our
methodology introduces a general framework for multidimensional outcomes, the
two presented versions of suBART are tailored distinctly for exclusively continu-
ous and exclusively binary multivariate outputs. Future work aims at expanding
suBART to enable the joint modelling of outcomes of mixed type, integrating both
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binary and continuous responses. This advancement is particularly pertinent to
data encountered in CEA settings, where such mixed outcomes are frequently ob-
served, and given the current framework of suBART this could be easily addressed
with extra adjustments for the covariance sampler.

In Chapter 5, we addressed one more way of tackling the lack-of-smoothness lim-
itation that was first explored in the GP-BART approach. Within the domain of
multiple regression, achieving smoothness can be alternatively pursued by incorpo-
rating additive functions (Friedman and Silverman, 1989). These function classes,
due to their ability to reparameterise the original feature space and effectively
capture non-linear relationships, are recognised as smoothers. Prior works, such
as that of Prado et al. (2021), have shown that incorporating model trees, with
linear regressions in the terminal nodes within the BART framework, can alleviate
the inflexibility inherent in BART’s piecewise-constant construction. Taking these
considerations into account, we proposed the integration of penalised splines into
BART, aiming to augment the versatility of the tree-based BART approach. The
resulting model, termed spBART, enhances the capacity of BART to adapt to
smooth predictive surfaces. Additionally, spBART can be viewed as facilitating
model specification within the penalised-splines paradigm. This is because, as we
demonstrate, the proposed sampling strategy is capable of automatically select-
ing the relevant sets of basis functions for the model, including those related to
two-way interactions, thereby circumventing the need for pre-specifying the model
structure. Similar to GP-BART, spBART’s capabilities are showcased through
comprehensive simulation studies, encompassing scenarios where the main effects
exhibit smoothness and/or discontinuities. Furthermore, we demonstrate through
an application that spBART outperforms or performs competitively against other
established tree-based methods and spline approaches.

For spBART, there are also directions for further research to enhance the per-
formance of the model. While the default number of trees (one per main effect)
appears suitable, using an excessive number can deteriorate model performance,
particularly regarding variable selection. This occurs when a subset of trees mod-
elling the signal dominate, leaving remaining trees to capture noise and intro-
duce spurious correlations. The automatic tree selection approach introduced by
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Chakraborty (2016) for BART could potentially be adapted here, albeit at an in-
creased computational cost due to the inclusion of reversible-jump MCMC steps
required to account for varying tree numbers. Additionally, employing adaptive
MCMC techniques — as explored in Haario et al. (2001) and Roberts and Rosen-
thal (2009) — could increase the efficiency of the sampler. Dynamically adjusting
the probabilities of proposals — particularly those which modify the spline models
at the terminal node level — could improve efficiency by reducing unnecessary
MCMC iterations after the model identifies the relevant sets of basis functions.
Furthermore, the rapid growth in the number of possible basis function sets with
increasing predictors hinders exploration of the predictor space. While this is par-
tially addressed by limiting each tree to include only the basis functions for one
main effect at most and only the two-way interactions comprising this same vari-
able, introducing a Dirichlet prior on the probability of selecting a specific set of
basis functions as part of the novel ‘add’, ‘remove’, and ‘modify’ operations could
further enhance convergence and reduce the number of wasteful iterations. This
approach could potentially leverage the prior configuration proposed by Linero
(2018). Finally, while the penalised splines approach relies on a choice regarding
the number of internal knots, further investigation is warranted to evaluate the
sensitivity of the model to a wider range of values for this parameter. Similar eval-
uations should be conducted for both the degree of the B-splines used to generate
the basis functions and the order of the penalty applied to their differences.

Finally, there are other potential extensions that could be developed by borrowing
features of the three main proposals included herein. Firstly, the rotated splitting
rules which are presently exclusive to GP-BART could be incorporated into suB-
ART and psBART — given that this innovation is not strictly limited to the spatial
setting — which may further improve their performance. Secondly, the incorpo-
ration of smoothness achieved by GP-BART and spBART could be leveraged in a
more flexible version of suBART; embedding GPs or splines in the terminal nodes
of the trees in suBART could further enhance the suBART model and further
differentiate our method from the purely parametric linear seemingly unrelated
regression approach that is predominant in the cost-effectiveness literature.
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Each proposed extension in this thesis has a corresponding software implementa-
tion available using the open-source statistical programming language R (R Core
Team, 2024). All are distributed on GitHub repositories. These include gpbart
(github.com/MateusMaiaDS/gpbart) for the GP-BART model proposed in Chap-
ter 3, suBART (github.com/MateusMaiaDS/suBART) for the seemingly unrelated
BART model proposed in Chapter 4, and spBART (github.com/MateusMaiaDS/
spBART) for the penalised splines BART model proposed in Chapter 5. While the
current versions are intended solely for replicating the results in this thesis, future
work should focus on creating comprehensive R packages. These packages would
enhance efficiency and potentially leverage C++ for faster computations across all
models (not only GP-BART). Ultimately, the goal is to encourage broader user
adoption of the extensions presented here.

Overall, this thesis introduces extensions to the BART ensemble method that ef-
fectively address key limitations of the standard approach. The proposed modifica-
tions demonstrate promising results in various applications, suggesting their broad
applicability. As highlighted in the concluding chapter, there are many promising
areas for future research. These areas hold the potential to further improve their
capabilities and ultimately lead to their inclusion in formalised R packages.
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