
VisTex: An Investigation on the Role of

Visual and Textual Programming

Languages When Learning to Program

M A R K N O O N E

A thesis submitted for the degree of

Master of Computer Science

Department of Computer Science

Maynooth University

October 2023

Supervisor: Dr. Aidan Mooney

Head of Department: Prof. Ronan Farrell

C O N T E N T S

I introduction & background 1

1 introduction & background 2

1.1 Introduction . 2

1.2 Motivation . 4

1.3 Goals and Research Questions 5

1.4 Contributions . 6

1.5 List of Publications . 7

1.6 Ethical Approval . 8

1.7 Thesis Overview . 9

2 related work 10

2.1 Overview of Systematic Literature Review 10

2.1.1 Introduction and Motivation 11

2.1.2 Research Questions . 12

2.1.3 Background . 13

2.2 Method . 14

2.2.1 Introduction . 14

2.2.2 Resources Searched . 14

2.2.3 Search Terms . 15

2.2.4 Document Selection 15

2.2.5 Quality Assessment . 17

2.2.6 Data Extraction and Synthesis 19

2.3 Dataset . 20

2.3.1 Types of Studies . 20

2.3.2 Timeline of chosen publications 20

2.3.3 Data Sources . 21

i

2.3.4 Dataset Discussion . 21

2.4 Results . 22

2.4.1 Research Question 1: Are there any benefits of learn-

ing a visual programming language over a traditional

text-based language? 23

2.4.2 Research Question 2: Does the choice of First Pro-

gramming Language make a difference? What lan-

guages are the best ones to teach? 34

2.4.3 Discussion . 43

2.5 Summary . 45

II course development & testing 46

3 initial course development 47

3.1 Overview . 47

3.2 Initial Test Sessions . 47

3.2.1 Language Choice . 48

3.2.2 Sessions Overview . 50

3.2.3 Initial Pilot Test . 51

3.2.4 Data Collection . 53

3.2.5 Main Session Delivery 53

3.2.6 Summer Camp Outcomes 54

3.3 Full Courses . 58

3.3.1 Courses Overview . 59

3.3.2 Schools Testing . 60

3.4 Need for a Hybrid Model . 71

3.5 Summary . 72

III hybrid programming 73

4 hybrid java 74

4.1 The Need for Hybrid Java and Introduction 74

4.2 Additional Hybrid Programming Background 76

ii

4.3 Hybrid Java Development . 78

4.3.1 Block Sections . 81

4.4 Hybrid Java Testing . 83

4.4.1 Test 1: Undergraduate Survey 83

4.4.2 Test 2: Computer Science Summer Camp 86

4.4.3 Test 3: UKICER Workshop 89

4.4.4 Iterative Development 90

4.5 Building the Hybrid Java Curriculum 91

4.6 Other Uses for Hybrid Java 92

4.7 The Hybrid Java Package . 94

4.8 Summary . 94

IV conclusions & future work 96

5 conclusions and future work 97

5.1 Conclusions . 97

5.1.1 Research Questions . 98

5.1.2 Place for Hybrid Java 99

5.2 Challenges . 100

5.3 Future Work . 101

5.3.1 Full Hybrid Java Delivery 101

5.3.2 Further Testing Phases 102

5.3.3 Object Oriented Programming 103

5.3.4 Hybrid Java to Java translation 103

5.3.5 Visual Feedback . 104

5.3.6 Other Language Options 105

5.3.7 HJP Sharing . 105

Bibliography 106

Appendix 118

a appendix 1 - summer camp sessions 118

a.1 Initial Session Materials . 118

a.1.1 Java Session Material 118

iii

a.1.2 Snap! Session Material 127

a.1.3 Survey Questions . 134

a.1.4 Data Sheet . 136

b appendix 2 - full courses 137

b.1 Full Course Materials . 137

c appendix 3 - hybrid java blocks 138

c.1 Full List of all Hybrid Java Blocks 138

iv

L I S T O F F I G U R E S

Figure 2.1 List of accepted papers, their year and their QA

Scores (Y = 1, P = 0.5, N = 0, score of 3 out of 4

required) . 18

Figure 2.2 Timeline of Accepted Papers 21

Figure 2.3 Distribution of Accepted Papers by Source 22

Figure 3.1 Advanced Code Solutions 52

Figure 3.2 Language Difficulty Ratings 55

Figure 3.3 Language Mean Difficulty Ratings by Age 56

Figure 3.4 Responses to Favourite and Least Favourite Course

Elements . 57

Figure 3.5 Example homework question (Java and Snap!) . . . 60

Figure 3.6 Java Examination Question 62

Figure 3.7 Snap! Examination Question 63

Figure 3.8 Computer Science at University Opinions - Java . . 66

Figure 3.9 Computer Science at University Opinions - Snap! . 66

Figure 3.10 Hardest Session in Java 68

Figure 3.11 Easiest Session in Java 69

Figure 3.12 Hardest Session in Snap! 70

Figure 3.13 Easiest Session in Snap! 71

Figure 4.1 For Loop Backend in Snap! 79

Figure 4.2 For Loop Frontend in Snap! 80

Figure 4.3 Sample Hybrid Java program with output 82

Figure 4.4 Undergraduate System Test Question 84

Figure 4.5 Graph of responses to Q3, Q4 and Q5 respectively . 85

Figure 4.6 Simple Calculator program in both Java and Hybrid

Java . 88

v

Figure C.1 "Control" Blocks . 139

Figure C.2 "Sensing" Blocks . 139

Figure C.3 "Operators" Blocks . 140

Figure C.4 "Variables" Blocks – Variables, Strings, Scanner . . . 141

Figure C.5 "Variables" Blocks – Random, Parse, Arrays 142

Figure C.6 "Variables" Blocks – 2D Arrays 143

L I S T O F TA B L E S

Table 3.1 Session Topics . 50

Table 3.2 Marking Schemes for Java and Snap! 64

vi

A B S T R A C T

Visual programming languages are seen by many as the best way to teach

programming at primary and secondary level, while at third level textual

languages tend to be taught due in part to the dependence of these lan-

guages to industry. In general, there is a trade-off in programming lan-

guage design between ease of use and expressiveness. Writing a simple

"Hello, world" program in a visual language, such as Snap, Scratch or App

Inventor, is generally more straightforward than writing it in a general-

purpose programming language such as Java or Python. The underlying

syntax of visual languages tends to be hidden from students thus elimi-

nating the possibility of syntax errors by making it impossible to create

syntactically invalid programs.

In our current society vast opportunities exist for graduates in Infor-

mation Technology and Software Development but dropout rates from

year one to year two in Computer Science courses at higher education

are worryingly high; as indeed is the low ratio of females studying these

courses. The timeliness of this project is in line with considerable interest

and growth in teaching programming at secondary schools (e.g. Computer

Science at Leaving Certificate) but, we must endeavour to ensure that we

are not turning students off pursuing programming in higher education,

if the first language they encounter at secondary school is not optimal.

Numerous studies and much debate, particularly in the ACM CS Edu-

cation community forum discuss the optimal first language to teach com-

puter programming to students. These studies are often small in scale,

have specific settings and are not repeated, and thus must be interpreted

with caution. Despite all of this the answer remains elusive. A solid sys-

tematic project composed of multiple repeated studies that would provide

vii

scientific evidence on the efficacy of the examined languages and thus di-

rect future pedagogic approaches is needed and is the first component of

this research.

The overall aims of the project include investigating the role that differ-

ent types of programming languages (textual, visual and “hybrid”) play

when a learner is first introduced to programming. A systematic analysis

of the gathered data will be carried out to determine if educational, age,

gender and other differences lead to a preference in language choice and

difference in performance in those languages. When the initial phases of

curriculum testing are complete, a hybrid version of Java (with a blocks-

based approach) will be developed and delivered as a curriculum. Finally,

a conclusion will be made as to whether visual programming languages

result in more effective and higher performance outputs than textual pro-

gramming languages, and if the hybrid approach provides a “middling”

difficulty level.

viii

A C K N O W L E D G M E N T S

This work was undertaken with support from the Maynooth University

John and Pat Hume Scholarship 2016-2019, and 2023.

I wish to thank my wife, Jessica Noone, who has always been there for

me and supported me through everything over the years.

I would also like to thank my supervisor, Dr Aidan Mooney. He was al-

ways around when needed, and gave the perfect amount of support, never

pushing too hard but never under supporting either. He was a pleasure to

work with.

I am grateful to Emily O’ Regan, a past project student who aided in

the development of the Hybrid Java tool. I would also like to thank Em-

lyn Hegarty-Kelly, Keith Nolan, Amy Thompson, Sam O’ Neill and many

other Postgraduate students who I have worked with over the last few

years.

I would like to thank a number of co-authors that I met during this

project including Frank Glavin, Monica Ward, Emer Thornbury and others.

Finally, I would like to acknowledge all of the students in schools where

my curricula were tested, students who attended the Computer Science

Summer Camp during numerous test sessions, many demonstrators of

the CS Summer Camp who aided in teaching and attending focus groups.

They were all instrumental in the completion of this research.

ix

A C R O N Y M S

The following is a list of frequently used acronyms that will appear in

this thesis. Please refer back here if there are any acronyms you do not

recognise when reading. They are listed in alphabetical order.

• BYOB - "Bring Your Own Blocks" - The original name for the Snap!

programming environment. The name was eventually changed for

obvious reasons.

• CS - "Computer Science".

• CS0 - "Computer Science 0" - The name given to a pre-University

level programming course, often using a visual programming lan-

guage.

• CS1 - "Computer Science 1" - An introductory programming course

covering all of the basic threshold concepts.

• CS161 - The name for the CS1 course in the Department of Computer

Science at Maynooth University.

• CS162 - The name for the CS2 course in the Department of Computer

Science at Maynooth University.

• CS2 - "Computer Science 2" - The followup course to a CS1. This

usually covers more advanced topics, for example object orientation.

• CSC - "Computer Science Centre" - A support centre ran by the De-

partment of Computer Science at Maynooth University which aids

struggling students with their programming skills.

• FPL - "First Programming Language".

x

• HJP - "Hybrid Java Package" which will be detailed in Chapter 4 and

Chapter 5.

• IDE - "Integrated Development Environment" - A tool used to write

and run programs.

• JC - "Junior Certificate" - The first set of state examinations in Ireland,

taken by 14-15 year olds.

• LC - "Leaving Certificate" - The final set of state examinations in

Ireland, taken by 17-18 year olds. These examinations determine

your University prospects.

• MU - "Maynooth University".

• RQ - "Research Question".

• SLR - "Systematic Literature Review".

• TPL - "Textual Programming Language".

• TY - "Transition Year" - An intermediate year between the JC and LC

in Ireland which is optional for students. Traditionally, students will

do more experimental classes during this year.

• VisTex - "Visual and Textual Programming Languages" - The name

of this study.

• VPL - "Visual Programming Language".

xi

D E C L A R AT I O N

I confirm that this is my own work and the use of all material from other

sources has been properly cited and fully acknowledged.

Mark Noone

October 2023

xii

Part I

I N T R O D U C T I O N & B A C K G R O U N D

1
I N T R O D U C T I O N & B A C K G R O U N D

Visual and Textual Programming Languages (VisTex) are the two primary

language types used in programming education today. A Visual Program-

ming language (VPL) is one which uses more than just text in their work-

flow (images, blocks, animation etc.). Some examples of VPL include

Scratch, Alice and flowchart based systems. A Textual Programming Lan-

guage (TPL) on the other hand is what most consider a "traditional" pro-

gramming language, one that might be used in third level education or

industry. Examples of TPL include Java, Python and C++.

In this thesis, a comparative study will be done examining the usage

of visual and textual programming language in a second-level educational

setting. In particular, Snap! will be used as the VPL and Java as a TPL.

This will be discussed in more detail later. This study will involve the

undertaking of a Systematic Literature Review, development and testing

of curricula, examining the need for another "hybrid" option, the develop-

ment of this and then data analysis and conclusions.

In this introductory chapter, some of the initial ideas and motivations

will be described, research questions will be set and an overview of the

remaining chapters in the thesis will be presented.

1.1 introduction

It has been shown that the frontal lobes in the brain, home to key com-

ponents of the neural circuitry underlying “executive functions” such as

planning, working memory and abstract thinking, are among the last ar-

2

1.1 introduction

eas of the brain to mature; they may not be fully developed until halfway

through the third decade of life [37, 88].

Computer programming is a skill that many people struggle with. The

Computer Science Education Research team (CSEd) at Maynooth Univer-

sity (MU), with over 15 years of experience predicting programming per-

formance, have pioneered PreSS#, which is an early warning system that

predicts student performance based on three main factors; self-efficacy,

mathematics performance and hours spent playing computer games. De-

spite the strong links between Computer Science and Mathematics and

the proven importance of mathematics in the PreSS# system, most pro-

gramming languages tend to be taught using a theoretical approach like

Second Language Acquisition rather than the theoretical approach used in

mathematics. This focus on abstract thinking may not be relevant given

the brain development of the learner.

Programming ability rests on the foundation of knowledge about a lan-

guage through comprehension. Visual programming languages are widely

used to introduce young people to programming. However, the majority of

higher education programming courses are delivered through text-based

languages, due in part to the reliance in industry on these language types.

It could be argued that learning a programming language is similar to

learning a second natural language. Krashen [44], a very influential re-

searcher in the area of Second Language Acquisition, suggests in his Input

Hypothesis that language acquisition is driven solely by comprehensible

input at a comprehensible level. According to Krashen there are two inde-

pendent systems of second language performance: ’the acquired system’

and ’the learned system’. The ’acquired system’ requires meaningful in-

teraction in the target language. The ’learned system’ results in conscious

knowledge about the language, e.g. knowledge of grammar rules.

3

1.2 motivation

1.2 motivation

Computer Science as a third level subject has a history of volatility. While

it has generally provided a very high graduate to employment ratio, it

has often struggled with retaining students in the early years, particularly

from first to second year [77]. According to a study undertaken by the

Irish Times newspaper in 2016, “about one-third of (Irish) Computer Sci-

ence students across all institutes of technology are dropping out after

first year in college" [11]. This is something that researchers and educators

continually try to mitigate.

In modern day society, the ability to code is a highly desirable skill. So

much so that the current supply from third level institutes across the world

does not meet the high demands of industry. One of the major issues is

the low progression rates from first to second year in third level Computer

Science courses with introductory programming courses proving to be a

high contributing factor. This is something that needs to be addressed.

One such way to address the issue is to get children involved and engaged

with computing at young ages.

The motivation for this study relates closely to the concept that tackling

the task of introducing students to Computer Science, and more specifi-

cally programming, should be done at an early age in order to best pique

and maintain their interest. There are multitude of methodologies, lan-

guage choices and educational styles when it comes to teaching a First

Programming language (FPL). This thesis will attempt to suggest a "best

approach" to FPL teaching, and to continually supporting our students

while they are learning.

4

1.3 goals and research questions

1.3 goals and research questions

This project will attempt to determine if there is a particular programming

language type that is an appropriate starting language for learners to en-

hance their likelihood of success. The premise is that different learners will

perform better in one language over another with a number of key factors

influencing this. In a study from the Anita Borg Institute [22], it was found

that 18% of undergraduate degrees awarded in computer science were to

women, a drop of 19% since 1985, due in part to misconceptions amongst

younger females. Therefore, getting the language choice right, especially

for females who are programming for the first time, is pertinent.

The following are the major goals of the project:

• Investigate the role that different types of programming languages

(textual and visual) play when a learner is first introduced to pro-

gramming. The goal is to determine if visual and textual languages

result in different levels of comprehension and different levels of aca-

demic performance.

• Carry out a systematic analysis on the gathered data to determine if

educational level (primary, secondary, tertiary) differences lead to a

preference in language choice.

• Carry out a systematic analysis on whether gender differences result

in a preference in language choice.

Three research questions will be addressed, namely:

1. Does the choice of language type affect the performance of learners

as they learn programming for the first time? (RQ1)

2. Do visual programming languages, given their close interconnection

with mathematics in terms of delivery, result in more effective and

higher performance outputs than textual languages? (RQ2)

5

1.4 contributions

3. Is there an alternative approach to the traditional programming lan-

guage types, and if so, how effective would this approach be? (RQ3)

Using statistical analysis techniques learner data will be analysed. We

will attempt to determine whether educational, gender and efficacy differ-

ences exist across the language types.

Additionally, does the absence of the iconic, as in textual languages

make a difference? During the reporting phase, the results will be dis-

seminated to appropriate parties, namely the Eye Movements and CS Ed-

ucation communities.

Upon completion of this work, verifiable curricula will have been created

which can be reused by other teachers with ease. With the introduction of

Computer Science to the Leaving Certificate, this work is very timely. We

will be able to see if these curricula have any effect on learning versus the

existing trial curriculum in place from 2018 – 2020 [83].

1.4 contributions

The main contributions of this thesis are:

• To examine the background research in this area in the form of a

large-scale Systematic Literature Review.

• To determine the effectiveness of current teaching methodologies and

tools within Computer Science Education at Secondary Level.

• To demonstrate the creation of a Hybrid Programming tool and its

use cases. It will be shown that this tool fits the need for a "middling"

level of difficulty in youth education.

• To create a "package" of material that includes the Hybrid Java Tool,

a short course with all materials (class plans, slides, assessments)

which second-level educators can take and utilise, and to create a

bevy of examples to help with student support at third-level.

6

1.5 list of publications

1.5 list of publications

The following is a list of all publications (and other relevant academic

works, e.g. workshops) created by the author throughout the duration

of the project. All of these publications can be found at the following

google scholar link: https://scholar.google.com/citations?view_op=

list_works&hl=en&authuser=1

• Visual and Textual Programming Languages: a Systematic Review

of the Literature published in Journal of Computers in Education,

2018 [68]. This paper will form the backbone of Chapter 2. It had 106

citations at time of thesis submission.

• First programming language: Visual or textual? published in Inter-

national Conference on Engaging Pedagogy, 2017 [67]. This paper

will be discussed in Chapter 3. It had 12 citations at time of thesis

submission.

• First Programming Language - Java or Snap? A Short Course Per-

spective published in Computer Science Education: Innovation and

Technology, 2019 [69]. This paper will be presented in Chapter 3. It

had 1 citation at time of thesis submission.

• Hybrid Java: The Creation of a Hybrid Programming Environment

published in the Irish Journal of Technology Enhanced Learning [70].

This paper will be examined in Chapter 4. It had 5 citations at time

of thesis submission.

• Hybrid Java Programming: A Visual-Textual Programming Lan-

guage Workshop held at the UK and Ireland Computing Education

Research Conference, 2019 [34]. This workshop will be explained in

Chapter 4.

7

https://scholar.google.com/citations?view_op=list_works&hl=en&authuser=1
https://scholar.google.com/citations?view_op=list_works&hl=en&authuser=1

1.6 ethical approval

• Creation of a Hybrid Programming Language published in the Ed

Tech Book of Abstracts, 2019 [61]. This abstract covers the initial idea

of the Hybrid Java tool, and will be mentioned in Chapter 4.

• An Overview of the Redevelopment of a Computer Science Sup-

port Centre and the Associated Pedagogy Impacts published in All

Ireland Journal of Higher Education, 2021 [72]. This paper looks

at the redevelopment of the Maynooth University Computer Science

Centre, and will be touched on in Chapter 5. It had 1 citation at time

of thesis submission.

• A Review of the Supports Available to Third-Level Programming

Students in Ireland published in All Ireland Journal of Higher Edu-

cation, 2022 [71]. This paper studies the existing state of Computing

Support in Ireland currently, and will be used as a metric for the

need for Hybrid Programming as a support tool in Chapter 5. It had

2 citations at time of thesis submission.

1.6 ethical approval

Ethical approval was applied for and approved by Maynooth University in

the early stages of this project. The application number for this approval

was SRESC-2017-037. This was a Tier 3 application, given that the project

would involve working with children under the age of 18. This application

had strict ethical protocols to ensure the correct management of data and

to ensure the safety of all involved with the project. This ethical approval

allowed us to engage with students in a wide range of settings including

school visits, students under 18 attending Maynooth University for events

(such as Summer Camps) and other scenarios with University students

over 18 also.

8

1.7 thesis overview

1.7 thesis overview

This section will provide a brief overview of what will be discussed in each

of the remaining thesis chapters.

Chapter 2 provides an overview of other work in the relevant areas.

In particular, a Systematic Literature Review published in the Journal of

Computers in Education will be discussed, along with some other relevant

literature from more recent years. All of this literature looks at the existing

state of visual and textual programming usage in education.

Chapter 3 describes the creation of the initial curricula in both Java and

Snap!, and their deliveries to schools, summer camps, etc. Introductory

sessions were first developed and tested for teaching at a summer camp,

and to inform future course development. Afterwards, full 8 week short

courses were developed and then tested. Finally, this chapter will high-

light the need for a "middling" difficulty level of language, namely Hybrid

Programming Languages.

Chapter 4 discusses the creation of a Hybrid Programming tool, "Hybrid

Java". After development, an overview of the creation of a short course

utilising the tool to mirror the Java and Snap! variants is presented. There

was then a short testing phase for this tool including a summer camp

session, a conference workshop and focus groups.

Chapter 5 will look at the conclusions of this project including some

additional analysis elements (most analysis is done throughout the thesis).

Hybrid Java, as the primary output of this body of work can be delivered

as a complete package for educators, with accompanying curricula, class

plans and more. It will be shown that Hybrid Programming fills in a

gap in the pedagogy where a certain age of student could effectively be

taught programming, and the efficacy of Hybrid Java as a support tool

will be discussed. Future work that could be done in this area will also be

examined.

9

2
R E L AT E D W O R K

As outlined in Chapter 1, this project is focused on the relationship be-

tween VPL and TPL in terms of learning a First Programming Language

(FPL). As such, an in depth research process was deemed necessary to ex-

amine the existing state of research in this area. A Systematic Literature

Review (SLR) was determined to be the best approach.

This chapter will begin by examining an SLR entitled “Visual and Tex-

tual Programming Languages: A Systematic Review of the Literature”,

work on which was undertaken in the first year of this project. This paper

was published in 2018 in the Journal of Computers in Education and has been

quite successful, with over 100 citations to this date. What will follow after

this SLR is a discussion of some additional publications which were pub-

lished post 2018 and are relevant to the project, particularly around the

concepts of hybrid programming and student support.

2.1 overview of systematic literature review

It is well documented and has been the topic of much research as well

that Computer Science courses tend to have higher than average drop-out

rates at third level, particularly so, for students advancing from first year

to second year. This is a problem that needs to be addressed not only

with urgency but also with caution. The required number of Computer

Science graduates is growing every year, but the number of graduates is

not meeting this demand, and one way that this problem can be alleviated

is to encourage students, at an early age, towards studying Computer Sci-

10

2.1 overview of systematic literature review

ence courses. This paper presents an SLR that examines the role of visual

and textual programming languages when learning to program, particu-

larly as an FPL. The approach is systematic in that a structured search of

electronic resources has been conducted, and the results are presented and

quantitatively analysed. This study will provide insight into whether or

not the current approaches to teaching young learners programming are

viable, and examines what we can do to increase the interest and retention

of these students as they progress through their education.

2.1.1 introduction and motivation

The usage of Computer Science is becoming much more prevalent in soci-

ety today. In Ireland, a high number of technology companies choose to

set up due to the quality of our third-level Computer Science graduates.

However, the demand for a highly educated workforce is so great that the

required numbers of graduates are not coming through the system to meet

the demand.

According to a study undertaken by the Irish Times newspaper in 2016,

"about one-third of Computer Science students across all institutes of tech-

nology are dropping out after first year in college" [11]. Similarly, the re-

port discusses high drop-out rates among students progressing from first

to second year in universities. It is well accepted that a high contributor

to this lower progression rate is that incoming students to CS struggle to

master fundamental concepts in their FPL modules [77].

What can we do to help solve these problems? There are two things that

we believe must be considered. Firstly, we must educate students in the

subject area of Computer Science at an earlier age so that they have an

inherent interest when it comes to choosing a college/university course.

In Ireland, steps have been taken at second level to address this. From the

beginning of the 2017–2018 school year, Irish secondary schools will begin

11

2.1 overview of systematic literature review

teaching a short course in coding and other aspects of Computer Science

to "Junior Cycle" students (approximately 12–15 years of age). In 2018,

a full Computer Science option to "Senior Cycle" students (approximately

16-18 years of age) will be offered [20]. Teaching programming at an earlier

age is becoming prevalent in many other countries too as the importance

of Computer Science becomes more evident. The second thing we need

to ensure is that we are teaching students correctly. This means, using

the correct methodologies, using the right programming language and

starting with the correct basis. All of these are challenges we aim to discuss

in this paper, with a particular focus on language choice.

This paper contains the findings of a systematic literature review that

was performed between October 2016 and March 2017. In it, two research

questions were asked relating to Computer Science retention and what

languages/tools we should be using to get the best performance/interest

from students of various ages. These questions will help to inform us as to

whether visual or textual languages or a hybrid of both is the best choice

as a teaching language. It will also determine whether this choice has any

bearing on future decisions about (and ability with) programming.

2.1.2 research questions

This study is focused on the relationship between language choice and

learning to program. In particular, we want to discover what effects visual

programming languages have on the learning process as well as how they

compared with the performance of students using traditional text-based

languages. To that end, the following research questions were defined:

1. Are there any benefits of learning a visual programming language

over a traditional text-based language?

2. Does the choice of First Programming Language make a difference?

What languages are the best ones to teach?

12

2.1 overview of systematic literature review

2.1.3 background

Systematic literature reviews provide an unbiased and comprehensive ap-

proach to answering broad research questions. They offer a strict set of

guidelines for how to extract information from relevant databases and pro-

cess it in a detailed manner. This allows for an exhaustive analysis of avail-

able papers balanced with time required to process them. For the ques-

tions we will raise in this paper, we anticipated that a very large amount

of material could be found. As such, a systematic review was the best

approach for us to take.

With Computer Science making its way onto second level school curric-

ula in Ireland, this research is very timely. The topics of language choice

and the "best" First Programming Language and teaching approach is of-

ten asked, for example by Davies et al. [19], Eid and Millham [23], Ivanović

et al. [35], Mannila and de Raadt [55], Quille et al. [77], but rarely an-

swered. With this review, we aim to address the topics in a detailed man-

ner and compile the opinions and results of many researchers.

Some other literature reviews that have informed this study include the

work of Nolan and Bergin [64] on anxiety in programming. This well struc-

tured review along with Kitchenham’s guidelines [38] provided a number

of key methodologies for undertaking the review. Some other reviews

were also read, but were a lot more specialised. Major et al. [52] looked

at teaching introductory programming using robots, for example. Our

review covers the full spectrum of introductory programming language

opinions and visual/textual language comparisons. Its broad nature will

be of great use to researchers and educators alike trying to decide what

approaches to use in their classes.

13

2.2 method

2.2 method

2.2.1 introduction

The methodology used to perform this literature review is based on Bar-

bara Kitchenham’s approach, as modified by Keele [38]. This procedure

was chosen due to its high focus on removing human bias from the search

process. This ensures that, to the highest possible level of certainty, no

false positive answers to the research questions will be found.

The method involves performing the following thorough steps, which

are followed throughout this paper:

1. Identify the need for a review (see Sections 2.1.1 and 2.1.3).

2. Specify the Research Questions (see Section 2.1.2).

3. Develop a review protocol (see Sections 2.2.1-2.2.3).

4. Identification of research (see Section 2.2.4).

5. Study quality assessment (see Section 2.2.5).

6. Data extraction and synthesis (see Sections 2.2.6-2.3.3).

7. Report on found results (see Section 2.4).

2.2.2 resources searched

Between October 2016 and November 2016, searches were performed on

numerous publication databases, namely, the ACM Digital Library, IEEE

Xplore, the Education Resources Information Centre (ERIC) and Google

Scholar. These particular databases were chosen due to the high level

of regard achieved in their respective industries. ACM and IEEE both

contain a very wide range of Computer Science papers. ERIC is primarily

14

2.2 method

an educational database, which is also important for this study. Google

Scholar was used as a backup database to ensure that all important papers

were found.

2.2.3 search terms

The methodology used to perform these searches involved taking each

primary term and searching for it in each database. If the primary search

term alone yielded less than 400 results, all of those papers were extracted

for later filtering. If the search was too broad, it was combined with each

respective secondary search term and those results were then chosen for

filtering.

Due to the broad nature of this study, an extensive list of search terms

was used. This list included 10 primary search terms and 16 secondary

search terms. These terms were chosen in order to cover a broad spectrum

of age groups and language types. The goal was to be as fully comprehen-

sive as possible. The terms used were:

Primary Terms: "Visual Programming", "Iconic Programming", "Visual

Versus Textual", "Visual vs. Textual", "Graphical Programming", "Textual

Programming", "First Programming Language", "Introductory Programming",

"Novice Programmers" and "Programming Education"

Secondary Terms: "Scratch", "Alice", "Primary Education", "National

School", "Elementary School", "First Level", "Secondary Education", "High

School", "Second Level", "Third Level", "College", "University", "CS1", "Kids",

"Children", "Education" and "Teaching"

2.2.4 document selection

The initial searches on each database produced a very large number of re-

sults. In total (combining the amount of responses for each pair of search

15

2.2 method

terms), ACM returned 2252 papers, IEEE returned 1713 papers, ERIC re-

turned 486 papers and Google Scholar returned 655 papers. This is a

total of 5106 potential papers (though there may be overlap between the

sources). The first step to minimise these numbers was to perform a "Ti-

tle Filtering" on the related papers. This removed any titles where it was

immediately obvious they would have nothing to do with the research

questions posed. This process cut the number of possible papers down to

661 (all sources merged).

After obtaining full copies of the filtered papers, the next stage involved

an "Abstract Filtering". This was performed in much the same way as

"Title Filtering", but the full abstract of each paper was read. If the content

of a paper’s abstract did not relate to either of the research questions, it

was excluded. This process was undertaken in December 2016. After its

completion, 124 possible papers remained.

At this stage, each paper needed to be read in full. Inclusion and Ex-

clusion Criteria were defined as well as a quality assessment (see Section

2.2.5) undertaken at the same time during this phase. The requirements

for a paper to be included were that the paper:

• Focused on the topic of at least one research question.

• Focused on specific programming languages, either visual, textual,

or a combination of both. Specifically, a study/verification needed to

be undertaken with students.

• Detailed the learning of a First Programming Language.

• Was NOT grey literature / blog / a PhD thesis.

• Did NOT examine students under the age of 10.

Each paper had to meet all of the applicable above requirements. For

papers that were borderline, author discretion was used based on their

content. For example, some papers were kept, which described the devel-

opment of certain VPL tools despite not detailing any studies.

16

2.2 method

2.2.5 quality assessment

After reading each paper in full, a final decision was made as to whether

it would be included in the results section of this study. For each paper,

a rigorous quality assessment protocol was applied. This process was un-

dertaken manually during the reading phase.

Kitchenham [38] lists 18 possible quality assessment questions in her

guidelines. For this study, a small subset of four questions were chosen.

These were:

• How credible are the findings?

• If credible, are they important?

• Is the scope of the study sufficiently wide? (modified)

• How well can the route to any conclusions be seen?

For each of these questions and each paper, a score was applied. A score

of 1 was given if the paper completely satisfied the question (Y). A score

of 0.5 was given if the paper partially satisfied the question (P). A score of

0 was given if the paper failed to satisfy the question (N). Upon first full

read through of a paper, these questions were answered. This involved a

certain amount of objectivity. For Q1 and Q2, the credibility of the papers

had to closely relate to the research questions. For Q3, small studies that

contained very little content or had very small experimental groups were

excluded. For Q4, it was important that the paper had a logical route to

its conclusions and did not make any assumptions. This information was

all double checked and adjusted where necessary, before making the final

decision on the included papers.

For a paper to be included, it must achieve a score of at least three

(out of four). This ensures that a paper is of sufficient quality without

rashly excluding one that misses a single element. Between this Quality

17

2.2 method

Assessment (QA) and the inclusion criteria, a final list of 53 papers were

selected for inclusion. The full list of accepted papers as well as details of

their QA scores are presented in Figure 2.1.

Figure 2.1: List of accepted papers, their year and their QA Scores (Y = 1,

P = 0.5, N = 0, score of 3 out of 4 required)

18

2.2 method

2.2.6 data extraction and synthesis

Throughout the process, all important information was extracted and

stored in a number of Microsoft Excel documents. For each search in

the initial stages of the study (before coming to the final 53 titles), each

individual database search was stored in its own Excel sheet. After title

filtering of each document occurred, a master list of titles that passed

was created. This document was the primary one used from then on.

During the abstract processing stage, papers were highlighted in green if

they were to be read in full, highlighted in yellow if they needed further

examination and highlighted in red if they were deemed unrelated to the

study.

At this point, the 124 abstract-filtered papers were split into a new tab

on the excel document. Here, the full title, source, publication location,

which research question the paper covered and any additional notes were

stored. A similar highlighting system was used on this tab as well, when

papers were deemed to have failed the quality assessment checks or when

they did not cover any research questions.

As well as the use of Microsoft Excel, Mendeley reference manager [58]

was used to store every full paper and summaries from the reading of

that paper. This tool was chosen as it allowed one to keep track of which

papers had been read, and to "favourite" those ones that passed the quality

assessment. A folder structure was used to separate each set of papers into

their initial sources (ACM, IEEE, ERIC, Google Scholar). Mendeley also

makes it very easy to see where and in what year a paper was published.

At the writing stage, Mendeley allowed for easy generation of the list of

references for BiBTeX.

19

2.3 dataset

2.3 dataset

2.3.1 types of studies

Many of the included studies involve quantitative experiments detailing

the results following the teaching of some form of curriculum using a

given language. Some authors also used a mixed model approach for data

collection (feedback surveys / questionnaires as well as tangible results).

Some of the accepted papers were borderline in their Quality Assessment

scoring but were still accepted due to the fact that the original developers

wrote it, despite not containing any study.

2.3.2 timeline of chosen publications

Programming, and in particular programming languages, are a very

volatile thing. What may be relevant today might not have been even ten

years ago. As such, it was decided to set a hard timeline for acceptable

papers. Any paper that passed all other checks and was written any time

after 2002 was kept for analysis. This gave a 15-year range for acceptance.

This timeline provides a high chance for papers to still be relevant without

too many irrelevant studies being kept. Although a lot can change in a

15-year range in terms of Computer Science we felt that in the domain of

Computer Science Education there would not be as dramatic a change, as

techniques used 15 years ago may still be used today.

The profile of when the accepted papers were published is shown in

Figure 2.2. A large number of these are from between 2008 and 2018.

Additionally, 33% were published after 2014. This tends to suggest that

our 15-year range is a valid range based on our research questions.

20

2.3 dataset

Figure 2.2: Timeline of Accepted Papers

2.3.3 data sources

The largest quantity of accepted papers came from the ACM database.

Figure 2.3 shows the breakdown of which database the 53 accepted papers

were found in. For comparison, during the reading stage (before the final

filtering), 73 papers were retrieved from ACM, 36 from IEEE, seven from

ERIC and eight from Google Scholar. All accepted papers were dissemi-

nated via a conference or a journal.

2.3.4 dataset discussion

This study was performed systematically in order to ensure the answers

to the research questions were comprehensive, unbiased and valid. As

discussed in Section 2.3.2, a 15-year range of acceptable papers was set.

This allows for examination of the evolution of teaching methodologies

21

2.4 results

Figure 2.3: Distribution of Accepted Papers by Source

and languages within recent history. With this timeline, we can see what

has changed and perhaps more importantly, what has stayed the same.

Similarly, with the inclusion of secondary search terms, we are able to look

at different levels of education (primary, secondary, tertiary). As will be

seen throughout the results, different levels of education tend to converge

towards certain language types or teaching styles. This trend appears to be

universal. Even though the final papers are from different countries, their

results have key similarities. Through this systematic process and with this

information in mind, we believe the results returned were of high quality.

2.4 results

In this section, analysis of the 53 approved papers will be performed. This

analysis will involve a second full read-through of each paper (having first

read them in the QA stage along with the papers rejected at this stage).

While reading the papers, key points will be extracted and noted down

in the Mendeley Reference Manager notes section. Twenty-nine papers

inform the first research question, with 24 informing the second. It is

important to note that the level of contribution that some papers will have

22

2.4 results

will be greater than that of others. Some papers that were included may

have only raised one strong point, but if it was a point worth making, it

was included.

2.4.1 research question 1 : are there any benefits of

learning a visual programming language over a

traditional text-based language?

As a reminder, a VPL is any programming language where users are able

to manipulate the underlying code in some graphical fashion rather than

the traditional text-based approach. Some examples of widely used VPLs

today include Scratch [53] and Alice [16]. Before discussing these, let us

look at a more traditional approach.

Flowchart approach

A more traditional approach to visual languages came in the form of using

flowcharts. Most "modern" languages don’t use this methodology, but for

completeness, results from the search that covered this style of design are

included here. Greyling et al. [28] discuss the concept of the B# language

that they developed. B# uses an iconic flowchart approach to give students

two options in developing their code, via drag-and-drop of code pieces, or

by the traditional textual approach. As a user is building a flowchart, code

is generated in parallel in C++, Pascal or Java. Flow chart icons are con-

nected by lines, making the ordering and structure of the program obvious.

While this methodology worked well in the early stages of a CS1 course,

the authors note that "unfortunately initial evaluation sessions showed that

many students did not succeed in developing adequate coding skills while

working with B#". Another example of a flowchart-based VPL is RAPTOR

[12]. RAPTOR’s goal is to improve problem solving skills while reducing

the emphasis on syntax. It uses a similar approach to B#, except without

23

2.4 results

a textual counterpart. Different elements are built up via drag-and-drop,

ensuring that program structure is correct. From a study of 959 test sub-

jects, the authors found that students prefer to express their algorithms

visually, with 95% choosing to use a flowchart on the final exam over a

textual language. This lends credence to the concept of a VPL, allowing

more advanced tools to be built.

Scratch

Scratch was developed by the Lifelong Kindergarten Group at the MIT

Lab. Scratch’s primary goal is to give young people an accessible way

to introduce themselves to programming. It uses a "drag-and-drop" ap-

proach, where users drag "blocks" from a predefined list of commands

into a script area. These blocks essentially fit together and make syntax

errors impossible. This reduces the mental load of the student and allows

them to focus on concepts rather than becoming bogged down with the

technicalities of the language.

There have been many studies performed to verify the efficacy of Scratch

as a teaching tool for young audiences. Tangney et al. [90] used Scratch in

a project-based after-school workshop for 15–16-year-old students. Their

goal was to see if they could engage students at an early stage and put

them on a path to CS courses. They had 39 students with high maths

performance attend the workshops, and the results were favourable. The

majority of participants enjoyed the content of the workshop, and the au-

thors noted that "participants left with a favourable and more realistic

impression of both CS courses and the CS profession".

Lewis [49] performed a brief comparison study of Scratch and Logo.

This comparison focused on programming concepts. Lewis noted that

"the Scratch environment provided a relative improvement in learning

outcomes for students learning the construct of conditionals". Meerbaum-

Salant et al. [57] point out, however that bad habits can still happen even

24

2.4 results

in a VPL. They discuss how, if these are not caught, they could actually

affect performance in later textual language courses. We as teachers still

need to portray good methodologies for students to demonstrate success.

These papers cover just a small sample of the work that has been done

verifying the usefulness of Scratch, and it is well established in its field.

Perhaps the clearest indicator of Scratch’s success is the sheer number of

projects that are connected on their website with 136,157,507 total projects

shared when checked in August 2023 (up from 20,695,116 in March 2017

at time of original publication) at the MIT Media Lab [51].

Alice

Alice, while working in a very similar manner to Scratch has somewhat

different targets. The developers Cooper [16] aim was to provide students

with a "serious pre-CS1 programming experience". Alice allows users to

build up a functional animated world using drag-and-drop code blocks.

It contains a "Virtual World Editor", which allows users to lay out a set

of objects in 3D space. All the underlying code is still dealt with in a

drag-and-drop manner after this initial visual setup. Cooper has noted

that, "opposed to algorithm animation, program visualisation systems al-

low the student to create their own animations". One of Alice’s biggest

differences from Scratch is that it supports the Object Oriented approach

to programming, although in a limited fashion.

Among the studies that investigate Alice as a VPL is the study per-

formed by Parker [73]. This study involved a week long workshop with

15 high school students, with a goal of encouraging them towards a de-

gree in Computer Science. The participants did connect with the course,

with many stating they enjoyed the video game development aspect and

their enthusiasm was encouraging. Larger studies include that of Sykes

[89] which focused on the Objects First approach that Alice allows. A CS1

course based on Alice was directly compared to two iterations of a CS1

25

2.4 results

course based on C. The author accepts that it is harder to perform compu-

tations with Alice, and that the lack of visible syntax could be an issue in

later courses, but at the same time, it is noted that Alice makes it very easy

to understand the fundamentals, which is exactly what one would want

from a CS1 language. The Alice students outperformed the control groups

significantly in the exams.

Johnsgard and McDonald [36] present another success story using Al-

ice. They were experiencing low grades in their C++-based CS1 course.

They implemented a CS0 (pre-CS1) using Alice. The average grade in the

following year of C++ rose to 70.3% from 46.4% in the previous year, a sta-

tistically significant increase. Students also expressed their enjoyment of

the Alice course. Anniroot and de Villiers [4] found that Alice helped their

students better their problem solving abilities and gave them a stronger

understanding of programming concepts. They found that through "quan-

titative analysis of the closed-ended questions, 81% of experimental learn-

ers were found to agree that the visual effects in Alice provide meaningful

contexts for understanding classes, objects, methods, and events".

Of course, not everyone can have a positive experience. Garlick and

Cankaya [25] felt that while Alice was a nice tool, students didn’t necessar-

ily focus on programming concepts enough and were more just enjoying

building a world. The alternative they offered was a "pseudo code" CS0 —

in other words, a course that focused purely on algorithmic design with

no programming language used at all. The participants in the course had

similar results in Alice and pseudo code assignments, with a worse result

on the Alice exam, and the Alice group declared less confidence as well

via collected survey responses. Given the large number of positive feelings

towards Alice in multiple studies (a small sample of which are discussed

here), Alice’s failings in this course could possibly be attributed to the

teaching techniques employed or the fact that pseudo code might not be

comparable to a full language (i.e. programming is more complex).

26

2.4 results

After School Clubs

After school clubs, such as CoderDojo, often teach Scratch or a similar VPL

as one of their modules. The authors have had the pleasure to watch some

students progress from a local CoderDojo to the CS1 course on offer at

their university. These students often have a strong advantage and perform

very highly at college level.

In 2014, Smith et al. [86] analysed the effect of 1000 Code Club locations

in UK schools. They chose to primarily teach Scratch due to its "known

ease of use by primary school children". Step by step instructions were

given at first, but as the children progressed, they were expected to create

their own scripts and make their own choices. Surveys were collected at

the end of the year, with some positive results. The children had demon-

strated a good knowledge of some programming concepts. Smith analysed

22 final projects at random and discovered that "(some) children coped re-

markably easily with difficult programming concepts". To push this idea

further, Seals et al. [82] had 8–9 year olds working on assignments in Al-

ice that were of an equivalent difficulty level to that which 18–19-year-old

college students would undertake. This is quite remarkable. Something

must be helping these young people understand things so clearly.

Blocks

The most prevalent thing noticeable in the analysis of both Alice and

Scratch is that the block-based approach to teaching seems to resonate

strongly with younger cohorts. This may not be a surprise due to the fact

that a large number of people are believed to be visual learners, and young

students generally have more creative minds. What else is it that makes

this blocks approach so strong?

Sandoval-Reyes et al. [81] asked themselves this same question. They

performed an analysis of three major block programming environments:

27

2.4 results

Scratch, Alice and App Inventor, while also looking at Greenfoot. They

put forward the idea that this kind of environment provides such strong

pedagogy due to "connecting users with their interests", direct mapping of

ideas to instructions on screen and the hiding of unnecessary complexities

from the novice user. The blocks approach can work in all kinds of environ-

ments, as demonstrated by Catroid [85]. Catroid allows users to develop

programs directly on their phone, they can even develop controllers for

other devices such as the Lego Mindstorms NXT robot. For many young

people, this is a really exciting prospect. Price and Barnes [76] undertook

an interesting study that "seeks to isolate the effect of a block interface

on the experience of novices". Half of a group of middle school students

were assigned to a "block" group, while the other half were assigned to a

"text" group. During a half-day session, the students were given program-

ming exercises to do in their respective environments. At the end of the

session, data via surveys and logged interactions with the tools were anal-

ysed. The block group performed better than the text group, and they also

had a slightly higher self-efficacy at the end of the session as well. This

provides strong data pointing to blocks having some positive effect on the

performance of students.

Transition from Visual to Textual

A number of researchers tend to agree that, while Visual Programming is

a very strong concept for introductory courses, it has a tendency to fall

short when the time comes to deal with complex topics. Some researchers

agree that VPL are more of a "gateway" to learning textual languages.

Dorling and White [21], for example, examined a scenario in which

graphical languages were taught "in conjunction with, not in place of, text-

based programming languages". This study involved beginning a ten week

curriculum using Scratch and algorithmic concepts, and working towards

introducing Python. By showing students Python code side-by-side with

28

2.4 results

Scratch code, their understanding of the textual language was made much

stronger. It was noted that "this transition process has been a factor in an

increased uptake of Computer Science".

Giordano and Maiorana [26] looked at a similar approach that involved

using multiple languages in the same course. This study was done with a

group of 28 10th grade students in Italy between the ages of 14 and 16. The

course was taught over 28 weeks. The early stages used Scratch and similar

tools. According to the authors, "This is done in order to relieve students

from the burden of learning all the syntax-related details and instead to

let them focus on the concepts and problem solving skills". In later weeks,

the C language was introduced to give students a proper experience with a

textual language. The results were positive across the course. In particular,

when the C language section began, students made less errors than would

normally be expected upon first exposure. This shows that using the VPL

first has allowed students to familiarise themselves with the concept of

programming.

Weintrop and Wilensky [93] asked "To Block or not to Block". They

wanted to determine if high school students found the blocks approach

easier than the textual approach and why. To examine this, they taught

a course using five weeks of Snap! and five weeks of Java. Fifty-eight

percent of students found Snap! easier to use. Some participants reported

(via a survey) that the blocks approach was easier to read and the shapes

were also determined to be helpful. There are also some drawbacks, for

example, blocks languages are less powerful. At some point, you will hit

a barrier you cannot pass with the tools you have. The author suggests

an interesting point: "Why not add a similar browsability to introductory

text-based environments"? Multiple authors have examined this concept

in detail; we will call this type of language a "Hybrid Language".

29

2.4 results

Hybrid Languages

These languages involve either an interface that shows both visual and tex-

tual elements at the same time, or the merging of a textual language into

a blocks style interface. Weintrop [92] describes this idea in detail. A pilot

study involving the use of block-based, text-based and hybrid program-

ming environments was performed in order to compare the effects of all

the three. The analysis (while ongoing) showed promise for the concept

of hybrid languages. There are certainly benefits to both visual and tex-

tual approaches, hence why combining them might have the best possible

effect on young learners.

The earliest found study on the concept of hybrid languages was under-

taken by Cilliers et al. [14]. The authors wanted to examine what effect the

integration of an iconic notation into a textual development environment

would have. They recognised that "visual programming notations offer

benefits over textual programming notations" while also recognising that

VPL were not a standalone solution. In order to verify their thoughts, they

implemented a course that compared a control group using exclusively

PASCAL as their language of choice to a study group using B# as their

language of choice (first mentioned in Section 2.4.1.1). B# was designed

with the intention of only being valid for the initial stages of CS1, after

which the students would progress to a purely textual approach (once they

became familiar with the concepts). Participants using B# performed sta-

tistically significantly better upon final assessment, particularly amongst

students deemed to be high risk. In other words, it helped those who

would have struggled quite a lot with the traditional approach, without

having a negative effect on those who didn’t necessarily need the extra

help.

Koitz and Slany [41] also asked a similar question when comparing

Scratch and "Pocket Code". Pocket Code is a mobile development envi-

ronment that uses a mix of textual programming and Scratch elements.

30

2.4 results

After performing four tasks using both languages (17 participants), the

results showed that Pocket Code’s hybrid approach was more beneficial

than the purely visual approach of Scratch.

In recent years, there has been a large amount of research into hybrid

languages that use existing textual languages merged with a block style

model. In 2011, Federici [24] combined the C programming language into

a Scratch-like blocks system. This was made possible by a Scratch mod

known as BYOB. This tool allows for the creation of custom blocks and

functions within the Scratch environment. The author implemented blocks

such as printf, scanf, integers, etc. The goal of this research was to "lower

the student effort required in advancing from introductory tools, such as

Scratch, to regular programming languages, such as C". The tool they de-

signed was named blockC. Kyfonidis et al. [45] developed a very similar

implementation called Block-C. The authors wanted a visual methodology

without skewing away from teaching a "general purpose programming

language". This was tested with a two hour tutorial and 32 first year

university students. The Block-C group performed much stronger than

a textual C group.

This concept expands past just the C language of course, with tools ex-

isting to allow blocks to be modified for any language. Matsuzawa et al.

[56] provide an example of a Java-based blocks language. With their study,

the tool allowed for direct translation between blocks and text-based Java.

The author posited that students should begin with this blocks approach,

and gradually move towards a fully textual environment. Those who con-

tinued to use Blocks for the entirety of the study turned out to be the

weaker students, showing that the visual approach might have a thresh-

old. Finally, Robinson [79] looked at a tool called "Patch" which combined

Scratch with elements of Python. Again, the goal was to minimise the gap

between visual and textual languages in young learners. No verification

31

2.4 results

was done on this particular tool, but it follows much the same patterns as

the other tools discussed.

Academic Benefit

Based on all of the discussed approaches to visual programming, can we

see any academic benefit to teaching such a language? It is well established

that younger students can take a tool like Scratch and really thrive using

it, but what about second level students? Cheung et al. [13] believes that

there are key age groups for each type of language to be most successful.

High school students respond better to textual programming, students

younger than 14 find VPL is the most beneficial, and those from around

15–17 would most benefit from a hybrid environment. They ran summer

workshops that back up this fact on hybrid languages. Andujar et al. [3]

also wanted to see if there was any benefit of teaching high school students

visual programming. They came to a similar conclusion as Cheung et al.

[13], in that teaching Alice to them did not provide any significant benefit

over other languages. However, Alice did increase the retention rate of

students. This could come down to the enjoyment of using a VPL, and

this effect could hold true for all courses using VPL.

Conclusion

From the literature, it is clear that Visual Programming Languages present

many benefits over traditional text-based programming languages. As pre-

sented in Section 2.4.1.8, all types of language have their benefits.

There are many factors that lead to VPL being beneficial. For one, they

are highly accessible. They are available both online and as downloadable

tools for free. This makes it easy for a curious individual to find and give

it a go. If we search "Programming for Kids" on Google, Scratch among

other educational programming websites are indexed on the first page of

results. For those who have a more general interest in computers, they

32

2.4 results

might attend an instructor-led after-school club (see Section 2.4.1.4). This

gives them an introduction to beginning programming. Clubs such as

CoderDojo encourage young kids to get involved with programming at an

early age. The authors have been involved with such a club for a number of

years. From our own perspective, we have seen multiple students progress

to our CS1 course and perform at the top end of the class having learned

a VPL first.

The familiarity of VPL is another key element. Many young learners

will watch animated shows or play games, and, from our experience, they

love the feeling of seeing their own ideas and animations come to fruition.

Similarly, the presentation style often resonates with young students. The

WYSIWYG / drag-and-drop approach to learning fosters creativity in a

way that might not be possible with text-based languages. You can exper-

iment more and easier when you have a sprite visible showing the out-

comes of what you have created. The level of knowledge overhead with

this approach is much lower.

As presented in Section 2.4.1.5, middle school students both performed

better and had higher self-efficacy when using the blocks-based approach

to programming [76]. In Section 2.4.1.6, multiple examples are provided

showcasing the effects learning a VPL can have on learners as they

progress towards a TPL. Having this knowledge and skill is a key factor.

For the purpose of this research question, we can conclude from the

above evidence that teaching a Visual Programming Language or hybrid

programming language to the right age group can have a very positive

effect on their interest and retention in Computer Science. This might also

have a positive effect on the retention rates in college level courses.

33

2.4 results

2.4.2 research question 2 : does the choice of first pro-

gramming language make a difference? what lan-

guages are the best ones to teach?

In this section, we will examine whether or not the choice of First Pro-

gramming Language (FPL) has a significant effect on outcome in an intro-

ductory programming course. Specific languages will be examined, and

conclusions will be drawn.

A "Good" First Programming Language

The first question that must be asked is, what constitutes a good FPL?

Gupta [29] examined this question in detail and believes that the choice

of FPL is a big decision, one that will have a "profound impact" on future

learning. He concluded that the "ideal" language will depend on the age

of the target audience among other things. He posits that it is important

to "focus on problem based learning, allowing students to focus on tech-

niques rather than on the language syntax itself". Some of the important

elements of a FPL that he discusses are:

• The language should have a clear and intuitive syntax.

• The language should cover all common syntactic and semantic con-

structs.

• The language should be consistent in its handling of things like errors

and provide meaningful error messages.

• The language should not have excess brevity (functional languages)

or excess verbosity

• The language should be customisable and allow for changing needs

over time.

34

2.4 results

Ateeq et al. [6] examined this research question specifically in the con-

text of C++ or Python. They agree with many of Gupta’s definitions of

important features in a FPL, particularly regarding notation overhead, ver-

bosity, target audience and use of simple syntax. They found that Python

met many of these requirements (which will be discussed in more detail

in Section 2.4.2.4). To test this, a study was run with CS1 students compar-

ing their thoughts of both languages (via surveys). In most criteria, Python

was held in a higher regard which further proves that the checklist above is

an important factor. Mannila and de Raadt [55] also examined objectively

what languages might be the best to use as a FPL. A list of 17 criteria was

developed by educational language writers. Eleven well-known languages

were examined against these criteria. Those that came out on top were

Python (meeting 15 of 17 criteria), Eiffel (15/17) and Java (14/17).

Ranade [78] furthers these ideas by talking about his college’s use of

a C++ language that has been graphically augmented with a logo turtle

style view. He believes that the focus of a FPL course should be taken

away from syntax / semantics and directed towards the more fun aspects

of computing as well as algorithmic thinking. One key example from their

work was the use of this tool to demonstrate how recursion works using a

visual tree that keeps splitting its branches in two as the structure grows

deeper. This tree was drawn in real time. The author believes the visual

nature of this allows for easier comprehension of complex concepts.

Difficulties with CS1

The attrition rates in CS1 courses are often quite high; there must be some

attributing factors to this. Lahtinen et al. [47] used a survey to help dis-

cover what some of the key difficulties students experienced were. This

survey was distributed to 559 students and 34 teachers from a group of

multinational universities and colleges. Most were students of C++, but

some had used others as well. Most of the key results agree with the ideas

35

2.4 results

of a good FPL in Section 2.4.2.1. Recursion, pointers, abstract types and er-

ror handling were determined to be the hardest concepts.Getting familiar

with structures, syntax, algorithm design and how to divide into functions

/ classes are the elements that need to be done to be successful. In general,

however, "the teaching language did not seem to affect the learning situa-

tions". Mannila et al. [54] also analysed Java and Python programs with

the intent of determining the difficulties the writers experienced. Sixty

programs written by 16–19-year-old novices were used. Common errors

that were found involved poor error checking, bad use of variable types

in Java and mismatching brackets in Java. The authors also agreed that

Python had the potential to be a strong CS1 as it had less errors than the

verbose Java code.

Luxton-Reilly [50] on the other hand posits that learning to program is

actually an easy endeavour, and that we, as educators, expect too much

from students in a CS1 module. Could we in fact be scaring people away

from CS by overestimating how much can be learned in a short period? He

raises the point that "There is nothing intrinsic to the subject that makes it

difficult to learn, but rather our subjective assessment of how much a stu-

dent "should" be able to achieve by the end of the course that determines

the difficulty". This is something to keep in mind as we discuss FPL next.

The Commonly Chosen Languages

Davies et al. [19] conducted a survey of 371 institutions in the US in

2011. This will give a reasonable snapshot of FPL choice in general in

this region. They broke the survey down into CS0, CS1 and CS2. The most

commonly used CS0 language was Alice, followed by Python and Java. For

CS1, the primary focus for this paper, Java was the most used with 48.2%

of institutions adopting it, 28.8% offered C++ and 12.9% offering Python.

Alice only maintained 4.3% usage as a CS1 language. For CS2, the usage of

Java strengthened further to 55.8%, with C++ also increasing to 36.1%. All

36

2.4 results

other languages of note fell to usage rates of below 4%. This tells us that

advanced topics are much better suited to object oriented environments.

In the following sections, the efficacy of a subset of these languages will

be discussed in detail.

Textual FPL

By far, the most commonly found language in the literature was Python.

This may come down to the fact that Python is reasonably new when

compared to C++ and Java. These languages have already cemented them-

selves in the pedagogy of CS1. Python still needs to convince educators of

its efficacy, however it could be a strong choice for a FPL.

Grandell et al. [27] discuss their attempts at a Python-based FPL course

with high school students. They recognised that Python met a lot of the

requirements that make it "easy" to learn. They implemented a curriculum

and tested it on 42 boys. Eighty-five percent of students passed the course,

with an average grade of 77.1%. This was compared to a similar High

School course in Java they previously taught, with the Python average

being much higher. Survey results showed that students strongly agreed

that Python was easy to learn. Nikula et al. [63] also considered Python

to be an easy language to learn. They tested this at three institutions that

previously used different languages (C, Java, Delphi). In all cases, Python

was found to be a better choice. This was determined by a higher average

grade on a course of comparable difficulty. Leping et al. [48] used Python

as their FPL with a subset of their class in 2008. The rest of the class was

still taught using Java. They felt that Python was "elegant, simple and

practical" with clean and easy to read syntax. The results showed similar

outcomes for both Java and Python students. One interesting outcome

however was that a lower percentage of people outright failed the course

in Python, but more students were perhaps scraping by.

37

2.4 results

Hunt [33] disagrees with Grandell et al. [27], Nikula et al. [63] and

Leping et al. [48]. In 2014, his department switched from teaching Java

to Python. In 2015, they decided to switch back due to problems they

experienced that hadn’t been noted in literature studied. In particular, the

lack of arrays, the difficulty of transitioning to Java in CS2, and the inability

to focus on an "objects first" approach were cited as the reasons for this.

According to the TIOBE index Software [87], Java is the most commonly

used programming language in the world (at least it was in 2017, cur-

rently in July 2023 it is 4th with Python now sitting atop the rankings), so

it makes sense that it is a frequently used FPL also. Ivanović et al. [35] took

up teaching of Java after a number of years of using Modula-2. They de-

cided to do a comparison study. While they liked Java as a language, there

were no statistically significant differences in grades. The author posits

"this result suggests that the choice of the introductory programming lan-

guage does not matter if we use students’ performance as the criterion of

suitability". Again, it is worth noting that many other papers in the liter-

ature mentioned Java as their FPL without discussing why. This could be

complacency due to it being such a widely used language that not many

researchers are discussing its efficacy.

Not much information was found relating to C++ as a FPL. This is likely

due to the rise in Java in the last two decades. One paper that discusses

C++ was Bergin et al. [8] which covers some of the issues related to C++

in CS1. It is noted that C++ contains many verbose and over-complicated

elements such as include statements, unnecessary typecasting and string

comparison. A lot of these issues are also present in other common FPL.

The author is not trying to discourage the use of C++, but merely pointing

out some likely pitfalls that could be experienced.

38

2.4 results

Visual FPL

Scratch is commonly used to teach programming to young students, but

is it effective? Aivaloglou and Hermans [1] performed an analysis on a

database of 250,166 scraped Scratch projects to see how children make use

of the tool. While most projects were small, conditionals and variables

were frequently applied. There were also some example of large projects

using multiple sprites and many blocks of code. This shows that Scratch

has the potential to be used as a FPL, or in general as a first-exposure pro-

gramming environment. They also found a high count of clones within

the data, suggesting that it already is being highly used for teaching pur-

poses. Armoni et al. [5] noted that learning Scratch at an early age did

affect retention. These students chose to continue on to a Java / C# course

later into their school lives. They also appeared to pick up information

faster and grasp the tougher concepts before their peers.

As presented in Section 2.4.2.3, Alice is the most frequently used lan-

guage in college level CS0 courses. Mullins et al. [62] discussed one such

course. The authors see the importance of students being able to see and

manipulate objects directly in the editor, a benefit they would not expe-

rience in a textual language. Upon examining collected data from the

course, it was noted that results varied, but for the most part using Al-

ice increased pass rates, sometimes with a lower average grade however.

In general, Alice proved most helpful for those students who would tra-

ditionally struggle with the material, without having a negative effect on

other students who don’t need the extra help. Retention and interest also

increased with those who undertook this course.

Comparison of Textual and Visual FPL

A multitude of studies have been performed that compare the usage of

VPL and textual languages as FPL. da Silva Ribeiro et al. [84] wanted to

determine if, and how, VPL can help learners understand and transition

39

2.4 results

to a textual language. This was tested with the help of a pair of Moodle-

based web courses. The visual course was taught using Visual iVProg and

the textual course used C. The Moodle "Virtual Programming Lab" envi-

ronment allowed for automatic evaluation of student submissions. These

courses were voluntary (public), and only lasted four weeks. There was a

total of 144 participants, split between both teaching styles. The content in

both courses was essentially the same. From an analysis of workload, the

authors conclude that "visual programming seems to be a nice option to

introduce programming concepts".

Cliburn [15] discusses a CS1 course that taught Alice and Java together

in the same term. A total of 84 participants took this course, of which 59.5%

found Alice helped them in their understanding of Java. Despite this, the

author argues that this outcome was not good enough. If Alice truly made

a lasting difference, apart from just the effect of knowing elements of a

programming language before beginning Java, then the figure should be

much higher. One interesting response from a provided survey was "the

programming concepts it (Alice) taught were mostly so simplistic that it

really would have been better to spend only a little time on them and the

more complex concepts did not make sense until I learned them in Java".

It was due to responses like this that the author decided to revert to a full

Java course. He still believes that Alice can be useful, but perhaps not in a

two language, one semester style course.

Daly [18] also compared the effects of teaching Alice side-by-side with

Java. The focus was on confidence levels and if they have an effect. There

were a total of 29 participants who took part in this online study. Eigh-

teen took the pure Java course, with 11 taking a course that entailed six

weeks of Alice followed by six weeks of Java. The author found that "the

students in the Alice / Java course had a higher level of confidence overall

when compared to the pure Java course". More importantly, confidence

40

2.4 results

did seem to imply success in the course and also led to higher retention

and enjoyment.

Eid and Millham [23] wanted to investigate if learning introductory con-

cepts in a textual language was better than doing so in a VPL. Two groups

of students were examined. One group started with a textual language and

proceeded to a high level visual programming course. The other group

started with a low level visual programming course and proceeded to the

high level one. This allows for the focus on concepts first and lets students

understand what is happening at a basic level. The authors found that

there was statistically significantly better test results for those whose FPL

was text-based.

Textual Augmentation

A number of authors also looked at the concept of textual augmentation,

which is akin to the hybrid languages discussed earlier. Laakso et al. [46]

wanted to look at the concept of an executable pseudo language. The

authors believe that this allows you to take the focus away from verbose

syntax while still allowing the run time nature of programming to shine

through. Their solution involved a tool called ViLLE, which runs on a

subset of Python, and allows for visualisation. The authors tested this

tool on a class of 72, with 32 students using ViLLE. The results showed

enhanced learning in those who used ViLLE.

Montero et al. [59] looked at Greenfoot which allows for visualisation of

object oriented Java concepts using animation. They chose Greenfoot as it

allowed for both visual and textual editing of the program. In their study,

15 students used the Greenfoot environment while 18 used only textual

materials. There was a statistically significant difference at the end of the

course in the knowledge of Greenfoot students versus the knowledge of

the control group about Object Oriented principles. Greenfoot was also

liked by the students, which is always a positive thing.

41

2.4 results

Alshaigy et al. [2] developed a tool called PILeT, which is an interactive

learning tool for Python. The goal of this tool was to be adaptable to the

learning style of the student. If they were a visual learner, they could use

a visual tool, similarly a textual model and a puzzle-based model were

included. As you use the tool, it builds up a knowledge database about

how you learn in order to present the user with the best material first

time as they progress. The authors goal is to avoid a single pedagogical

learning style, which would not necessarily meet everyone’s needs. Based

on the literature in this paper, and the amount of different approaches

that different institutions take, this might be a very strong concept. The

analysis of this tool is still ongoing, but early results are promising.

Conclusion

Many researchers believe that using correct teaching methodologies, inde-

pendent of what particular tool you are using is more important than the

actual choice of First Programming Language. Educators have had success

with a broad range of different FPL, and equally others have had failings

with many languages. As discussed in Section 2.4.2.1, there are certain

criteria that a "Good" FPL might have. If these guidelines are followed (by

not picking an overly "difficult" language), along with if the teacher is fa-

miliar with a given language, this might lead to the best quality of course.

For us, if one particular language of each type had to be chosen, Python,

however, seems to be the most highly supported textual language from the

literature, possibly due to its relative newness as a programming language.

Java would also be a strong choice as it is currently (one of) the most used

language(s) in the world [87] and has proven itself to be a strong FPL [55].

Scratch is also held in high regard as a VPL. Based on the knowledge that

hybrid languages provide the best of both worlds, the "ideal" language

choice might by a combination of Python (or Java) and Scratch. If a course

42

2.4 results

can be made stimulating and interesting for the students, then the choice

of programming language is not as important as many people think.

2.4.3 discussion

Throughout this review, we have discussed the benefits of learning a Vi-

sual Programming Language and whether or not the First Programming

Language choice has a profound effect on student performance and inter-

est. It is clear that the most important thing educators can do is make their

course interesting, and ensure it covers all the important elements needed

to truly "know" programming.

It has been demonstrated through the answers to the research questions

that the actual choice of what tools to use does not matter, within reason.

The use of a Visual Programming Language will in most cases, be very

helpful to a student. It may not be something to pursue for a longitudinal

time frame, but as an introduction to CS, it is clearly beneficial and will

generally lead to higher retention of knowledge and interest. Some other

general recommendations in terms of First Programming Language choice

are detailed next.

In Sections 2.4.2.1 and 2.4.2.3, we discussed both the elements that lead

to a "good" FPL choice and the frequency of common language uses. These

factors should be your main consideration when choosing a language. You

want a language that allows you to teach all threshold concepts in an easy

to understand manner. At the same time, you do not want a student’s pri-

mary language to be something that only 1% of the workforce use. These

reasons are why we will primarily focus on Java / Python / Scratch for

the rest of the thesis as they have a good balance of all the requirements

and usage rates.

It is important to find your programming comfort zone. When you

are comfortable with your material, it will come across in your teaching

43

2.4 results

and will give your students more confidence. If you have been using and

teaching Java for years, you are likely best to stick with it. There is no need

to reinvent the wheel since the concepts are the most important thing and

the syntax can be relearned by the student in the future. This is better

rather than their having a negative first experience that turns them away

from Computer Science forever.

In general, it is always good to follow local conventions in order to best

prepare young students for what they will be undertaking in the future. In

Ireland, Computer Science is currently in the process of being introduced

as an examinable, optional, Leaving Certificate subject. An initial phase

with a small number of schools will commence in September 2018, with

full roll-out to all schools commencing in 2020. For this course, students

will be taught using both Python and Javascript [17]. As such, these might

become more highly considered languages of choice for educators within

Ireland.

If a student of any age enjoys what they are doing, there is a better

chance that they are going to understand it and continue studying it. An

interactive and fun environment fosters the best learning for young stu-

dents as it allows them to feel they are involved in the process. With par-

ticular reference to VPL (although it holds true for TPL as well), Armoni et

al. [5] noted that after learning and experimenting with Scratch at an early

age, students were more likely to continue with programming. Scratch

mostly involves game making and animation and is generally considered

fun.

Most of all, we would suggest that you ensure you enjoy teaching your

material and engage with it and your students, because if you do not,

it is unlikely that they are enjoying learning it [7]. This initial analysis

aims to guide educators at all levels and in all institution types to examine

the options available to them when they are teaching programming. This

review may go some way to informing their decisions about what the First

44

2.5 summary

Programming Language to use and the benefits of both text-based and

visual-based programming languages.

2.5 summary

This chapter began to answer two of the overall research questions. For

RQ1, the literature mostly shows that language choice is not the single

most important element (but is still something to be considered). For RQ2,

the literature suggests that there is an age where VPL usage wanes. In

Chapter 4 we will look at a "hybrid" programming approach that fills in the

gap years between when VPL appeal to students and when TPL become

more approachable.

The chapter overall demonstrated the need for a consensus approach

in FPL teaching. There are many different approaches with differing out-

comes, but the most agreed upon elements are making programming ed-

ucation interesting, some level of VPL intervention and following good

methodologies and structure. Throughout the rest of this thesis, we will

begin to examine the author’s approach to this problem.

45

Part II

C O U R S E D E V E L O P M E N T & T E S T I N G

3
I N I T I A L C O U R S E D E V E L O P M E N T

3.1 overview

This chapter will look at the development of two initial pilot sessions using

Java and Snap! as the programming languages of choice. Testing of these

sessions was undertaken at a Summer Camp ran by Maynooth University.

With the knowledge gained from these sessions, further development will

then be described on full eight-week courses in both languages. Finally,

we will examine the testing phase of these curricula in both a public and

private secondary school in Ireland, with multiple class groups.

3.2 initial test sessions

With the knowledge gained from the Systematic Literature Review find-

ings, development of pilot sessions began in April 2017. Java and Snap!

were chosen as the languages of choice for these sessions due to their famil-

iarity and frequency in the literature. They were designed to be instructor

led and cover a high number of topics in a short time frame (90 minutes).

Both sessions were designed to be as identical as possible, in terms of

content. They both contained key concepts in programming such as vari-

ables, selection statements, loops and a key task (drawing shapes in Snap!

and creating a basic calculator in Java). This would ensure that the pri-

mary difference in opinions of the session material rested on the language

choice itself.

47

3.2 initial test sessions

Presentations were designed to accompany these sessions. A survey was

also created using Google Forms for attendees of the summer camp (and

any future tests) to fill out. All slides from the summer camp as well as the

survey and related documents can be seen in Appendix A. These materials

were all used at the Computer Science Summer Camp 2017, Maynooth

University to teach the developed sessions. In Section 3.2, a paper entitled

"First Programming Language: Visual or Textual" [67] will be referenced.

This was published in the proceedings of the International Conference on

Engaging Pedagogy (ICEP) in December 2017. It details the creation of the

initial test sessions and their first delivery.

3.2.1 language choice

The languages that were decided upon to be used in this study were Snap!

and Java. Snap! was chosen as an alternative to the popular VPL Scratch

as Snap! is a clone of Scratch that offers some more advanced options

which will be useful for future work in the development of a curriculum.

Java was chosen because, according to the TIOBE index [87], Java is (one

of) the most commonly used programming language in the world. This

includes an aggregate of both educational and industry based popularity.

A major finding of the literature review was that teaching methodolo-

gies are often more important than the actual languages of choice. Fur-

thermore, familiarity is a large factor in teaching ability. Both of these

languages are very familiar to the author. While there is a multitude of lit-

erature that pointed to these languages being the "best choice", there were

some key points that added further weight to using them as the languages

of choice in this study. Given that language choice isn’t the most important

aspect of teaching, picking a language that is widespread has clear advan-

tages for both teacher and learner. There is also more established material

48

3.2 initial test sessions

available for teaching Java and Snap!. Snap! provides all the functionality

of Scratch along with the ability to add additional features.

To further this point, a survey conducted in the USA in 2011 [19] inves-

tigated 371 institutions of educations who were asked what language they

used for their beginner programming courses (CS1 or CS0). The results

were that 48.2% of institutions had adopted Java. While this doesn’t in-

form us of the current rates today, nor does it inform us of data outside

of the USA, it still gives a strong idea of where the numbers have been in

recent years.

In many countries, CoderDojo and other similar after school club organ-

isations often use Scratch or another visual language as the backbone of

their teaching. It is well established that VPL are considered more fun for

young learners to experiment with when compared to the more complex

TPL. The author has had experience with running such a CoderDojo and

has seen first-hand the effect learning Scratch, and other blocks-based lan-

guages, has had on some students. Other researchers have examined this

further by looking at retention of students [5]. They found that after learn-

ing Scratch at an early age, the students that chose to progress to a Java /

C# course in later years appeared to pick up information faster and grasp

some of the tougher concepts earlier than their peers.

However, which of these two approaches makes the learning process eas-

ier for the student? As mentioned earlier, language choice and approach

is not as important as methodology; however, some elements of each lan-

guage type might be easier for different age groups to learn. Due to this, a

combination of both languages might be a good, if not the best, approach

to take. A study undertaken in 2015 which involved teaching five weeks

of Snap and five weeks of Java found that 58% of students thought Snap!

was easier to use [93]. Some students reported that the blocks approach

was easier to read. Some drawbacks were also noted; for example, blocks

were identified as being less powerful giving less implicit customisation

49

3.2 initial test sessions

(but this isn’t a huge issue for CS1, given the implied simplicity of first

principles programming).

These are but a few examples of why these languages were chosen. In

general, no matter what language or tool is chosen it will have both posi-

tives and negatives. For this study, the two languages were chosen due to

pedagogical evidence of their success.

3.2.2 sessions overview

Once the two languages had been decided on, work could commence on

developing initial sessions for both. The goal was to create two sessions

that were close to identical in terms of content and level of difficulty, while

still managing to showcase the important elements of each respective lan-

guage. The sessions would be designed to be delivered to students aged

10-18 in 90-minute sessions. As well as the author, multiple demonstrators

would be employed at the summer camp to provide help to the students

whenever they struggled. This would allow for even detailed topics to

be covered in a very short time frame. In terms of content, both sessions

would cover the topics presented in Table 3.1. These sessions were devel-

oped as pilots to test the methodology with an aim to develop full curricula

in the next stage (which will be discussed in Section 3.3).

Table 3.1: Session Topics

Language Tools

(BlueJ / Snap!)

Java boilerplate /

Snap! run blocks

"Hello World"

for the language

Selection

statements (if /

else)

Basic Math Variables Loops An advanced

topic

50

3.2 initial test sessions

For Java, the session closely followed a shortened, but expedited ver-

sion of the CS1 course delivered in the Computer Science department at

Maynooth University. For Snap!, elements were taken from the “Beauty

and Joy of Computing course” [10] as well as from personal experiences

with Scratch. The key element that allows these sessions to be delivered

in such a short time frame (compared to usually spending weeks learning

these topics) lies in the expectations. The students are not expected to be-

come experts in the material. We simply aim to give them an overview of

what programming entails and introduce some threshold concepts.

At the end of each topic in a session, an exercise would be displayed

on the slides giving the students a chance to trial what they have learned.

The students’ copy of the material would not contain the answers to these

exercises. Once the students had sufficient time to work on the exercise,

the answer would be given on the lecturer’s copy of the slides on screen

so they could see the optimal solution.

For the final section of each session, the advanced topic was covered.

This is the only element of the sessions that would be significantly different.

For Snap!, the concept of drawing shapes was chosen since it would utilise

a part of everything they had learned so far and also demonstrate some

nice animation features of the software (See Figure 3.1a). For Java, the

concept of creating a very basic calculator was chosen. Again, this would

combine everything they had learned together, while showing something

functional that they would understand (See Figure 3.1b).

3.2.3 initial pilot test

Before the commencement of the main testing phase at the Computer Sci-

ence Summer Camp, a pilot test for each session was conducted. The Snap!

session was tested on a cohort of approximately 20 Junior Cycle students.

These students were attending Maynooth University to experience taster

51

3.2 initial test sessions

(a) Snap! Advanced Code (b) Java Advanced Code

Figure 3.1: Advanced Code Solutions

courses in multiple disciplines. The material was well received based on

anecdotal feedback. Many students followed along with the session mate-

rial, while some others lost focus. This was not a major concern as it would

be expected with a group who had not decided themselves to attend the

sessions.

The Java session was also tested on a small group of Senior Cycle stu-

dents by a member of our research group. The anecdotal feedback from

them was generally positive. Some students struggled with the loops con-

cept (a threshold concept within programming). This was rectified in the

final session by moving it to later in the teaching process for those who

wanted a challenge after completing the main phase.

The feedback received from both of these pilot tests was vital as it helped

to verify that the timing of the sessions was correct as well as revealing

some enhancements that were needed in the material.

52

3.2 initial test sessions

3.2.4 data collection

Since there would be no official testing of the students, feedback relating

to the success or failure of the sessions would come from the results of a

survey. This survey was compiled, using Google Forms, after the initial

pilot tests were completed. The goal of the survey was to learn about how

the students felt about the sessions; how the sessions compared was a key

element of this. The questions that were decided upon for the survey can

be seen in Appendix A.

These questions would help to gather feedback from the students with

as little bias as possible. It would allow them to express their preferences

within each individual session as well as make a fair comparison of the

two sessions. The ability to filter the results by age and gender is also key

to determining if there are any preference patterns. In line with ethical

requirements, consent forms were given to parents before the commence-

ment of the camp to ensure data collection and possibly publication was

allowed by their parents. On the day, consent from the students was also

collected.

3.2.5 main session delivery

In June 2017, the departmental summer camp began. The camp is broken

down into three separate weeks where students can choose to do any of

the weeks individually or all three weeks. All the content was unique in

each week. The Java and Snap! sessions were both scheduled to run on the

same day in week two. In total, there were 35 students sitting the sessions

on the day with ages varying from 10 to 18 years of age.

The Snap! session was the first session delivered. The students all chose

a PC which had the Snap! website preloaded as well as a copy of the

material opened. After a short introduction, the slides were presented and

53

3.2 initial test sessions

delivered at a slow pace. The majority of students followed along with no

issues, with minimal assistance from the demonstrators. Some students

were on the wrong track with some of the exercises, but understood the

answer once it was shown on the screen. This session ran for 90 minutes.

After a short 30-minute lunch break, the students returned and imme-

diately started working with Java. Java was chosen to go second due to

the perceived extra difficulty it would present. Since the material of the

two sessions mostly matched, they would only be learning the syntax of

Java in the first part of the Java session rather than both the concepts and

the syntax. To further assist with the learning of Java, some parts of the

exercises were live coded after the students made their attempt rather than

being static on the screen. After the completion of the Java course, the sur-

vey was immediately administered while all the material was still fresh in

their minds. If there was more time available, another study would have

been ran using Java first as well.

3.2.6 summer camp outcomes

All 35 students who were present on the day of the study provided a

response to the survey. The demographic of the participants varied slightly

with 88.6% of the participants being male and 11.4% being female. In terms

of the age groups, 8.6% were between 10 and 12, 68.6% were between 13

and 15, and 22.9% were 16 or older. To examine if these demographics

show patterns in their perceptions of the different languages and styles,

most feedback will be broken down in relation to age groups.

The most encouraging outcome from the survey was that 88.6% of re-

spondents said they wanted to learn more programming in the future.

The other 11.4% said that they “maybe” want to learn more in the future.

This shows that the perception of younger learners towards the topic is

very positive.

54

3.2 initial test sessions

The main question that arose from this study is whether one language

was perceived to be harder than the other or not. The results of this ques-

tion can be seen in Figure 3.2a and Figure 3.2b. The mean difficulty rating

for Snap! was 3.57/10 while Java had a mean difficulty rating of 6.94/10.

Based on a one-tail paired two sample t-test, this represents a clear statis-

tical inference that Java was harder to learn than Snap! (p = 6.8E-10). We

wanted to check how this breaks down across the age groups. Is there a

clear upward trend of the languages getting easier as you get older? From

the results of this study, there seems not to be a clear trend, as can be

seen in Figures 3.3a and 3.3b. Unsurprisingly, for all age groups, Java re-

mained more difficult than Snap! (10-12 year olds: p=0.0471, 13-15 year

olds: p=1.03E-06 and 16+ year olds: p=0.0013).

(a) Snap! Difficulty (b) Java Difficulty

Figure 3.2: Language Difficulty Ratings

This is not conclusive given that the number of students who fell outside

the 13-15-year-old range was very low. Given that the courses were created

with the same core content (with the exception of the one advanced topic

in each), no external bias is being added to the difficulty ratings. This is

purely based on the syntax and content of the languages themselves and

how they compare to each other.

55

3.2 initial test sessions

(a) Snap! Difficulty by Age (b) Java Difficulty by Age

Figure 3.3: Language Mean Difficulty Ratings by Age

To further analyse, the students were asked what they considered to be

the hardest aspect of each course. For Snap!, 34.3% said variables were,

28.6% said drawing shapes and 22.9% said loops. For Java, 68.6% said

making the calculator, 17.1% said loops and 11.4% said selection state-

ments. Putting the shapes and the calculator on this section of the survey

was an oversight as they involved using all the core elements of the course

to make. However, this still gives us a good idea of what students were

finding difficulty with and were mostly in the expected places.

Finally, when asked whether they preferred one of the styles of program-

ming (text based or visual based), 37.1% of students said they preferred

text based and 31.4% said visual based and 31.4% said that they had no

preference. However, analysing the age brackets for this question it was

observed that 13-15 year olds had a larger preference for the visual based

language (41.6%) over the text based language (29.2%) with 19.2% having

no preference. Conversely, 16+ year olds overwhelmingly preferred text

based programming (62.5%) with 0% choosing the visual based option

and 37.5% having no preference. This gives some credence to the theory

that younger students enjoy visual programming more and older students’

prefer textual programming.

56

3.2 initial test sessions

As well as this numerical data, the students could make some optional

comments on the course related to their favourite and least favourite ele-

ments as well as anything else they wished to add. When asked if they

enjoyed each session, 60% of students responded that they did (for both

sessions). Similarly, 34.3% (Snap!) and 25.7% (Java) said that they though

the sessions were “OK”. The remaining 5.7% (Snap!) and 14.3% (Java) did

not enjoy the courses. In terms of a preferred course, 51.4% of the students

preferred the Snap! session with 48.6% preferring Java.

In terms of students’ favourite and least favourite things in each ses-

sion, some students chose not to respond, and others gave spoiled answers.

For favourite things, there were 30 valid answers, while for least favourite

things there were 24 valid answers. These were then summarised into

categories and the results can be seen in Figure 3.4a and Figure 3.4b.

(a) Students’ Favourite Things (b) Students’ Least Favourite Things

Figure 3.4: Responses to Favourite and Least Favourite Course Elements

A few other key anecdotal comments from the survey included:

• "Make the programming bit more interesting" – This was a fair comment.

It is difficult to find the balance between learning and fun in an in-

troductory course.

57

3.3 full courses

• "Spend more time on Java" – Given the higher difficulty of Java, it is

completely fair that students would need more time to learn the Java

material.

• "Overall it was really interesting and enjoyable!"

The results of this study, even though the number in attendance was

reasonably small and a lot of the feedback was anecdotal, are still impor-

tant. When and why one might use a VPL as a teaching tool are questions

that are often asked and rarely answered. This study has shown that a

language like Snap! has as much potential for learning as Java, provided

the target audience is correct.

Some elements of the study could have been done differently, and will

be rectified in the next phase. The time available for delivery of the course

was not ideal with some students feeling like they needed longer for cer-

tain concepts. There were some minor mistakes in the survey such as

asking the students what the most difficult element was and including the

element that encompassed everything.

3.3 full courses

Following on from the successful delivery and testing of the short sessions,

plans were laid out for the development of two curricula that expanded on

them. The target audience for these full courses would be Transition Year

students (approximately 15 years old students who are doing an interme-

diate year in school between Junior Cycle and Senior Cycle).

A full suite of material was included in the development (slides, class

plans, assessments, etc). Just like the short courses, these would be as

identical as possible. These courses would be built to last eight weeks

and cover a number of key threshold concepts in Computer Programming,

including:

58

3.3 full courses

• Language Introduction (Hello World)

• Variables and Operators

• Selection

• Loops

• Strings and User Input

• Arrays (omitted in the course delivery)

This section will discuss this process in detail, as well as outline the test-

ing phase for these courses. The full course material can be seen as part

of Appendix B. Throughout Section 3.3, a paper entitled "First Program-

ming Language: - Java or Snap!? A Short Course Perspective" [69] will

be referenced. This was published in the proceedings of the 10th Annual

International Conference on Computer Science Education: Innovation and

Technology in 2019.

3.3.1 courses overview

In May 2018, work began on developing the eight-week courses in both

Snap! and Java based on all findings from the summer camp short courses.

For each session mentioned in Section 3.3, the material was created in

parallel for both languages to ensure that they were equivalent. The ma-

terial created for each week included a class plan, teaching slides, in class

practice questions, a homework sheet and a homework answer sheet. Two

surveys were also drafted; one as a pre-course survey which collected basic

data and opinions on Computer Science and one as a post-course survey

which would collect opinions on the lessons, the courses and Computer

Science in general again.

The questions asked both in class and as part of the homework sheets

were partially inspired by the existing CS1 course at Maynooth University

59

3.3 full courses

(as well as ideas from the Systematic Literature Review) but simplified for

the target audience. A sample of a question asked in both courses during

the “Selection” session is shown in Figure 3.5.

Figure 3.5: Example homework question (Java and Snap!)

Once the course development was completed in June 2018, the material

was given to some colleagues for equivalence testing. This involved read-

ing the course materials in parallel and deciding if they were equivalent,

as we needed others to verify our thoughts and decisions. Results of this

testing were favourable, and some feedback was also obtained which led

to further iterative development of the curriculum materials.

As well as the six major topics, the week 7 and week 8 material also had

to be developed. Week 7 was a revision week which allowed the students

to reflect on all of the concepts they had touched on over the previous

weeks. This material contained worksheets with multiple short questions

(one per topic) and two longer questions (using elements from all weeks)

to pick from. Week 8 was an examination so a question and marking

scheme needed to be written up for this session. The material for both

courses can be seen on Padlet (see Appendix B).

3.3.2 schools testing

During July and August of 2018, contact was made with a number of

schools under the PACT initiative [60] to offer them the option of host-

60

3.3 full courses

ing one of the courses in the first term of the 2018 – 2019 academic year.

The supervisor of this project is a founding member of the PACT initia-

tive at Maynooth University and hence this is why this methodology was

explored. These courses would be delivered in Transition Year. An agree-

ment was made with two chosen schools, with the following make up:

• School #1 – Mixed gender public school, four Transition Year classes,

15-16-year-old students, two classes would undertake the Java course

and two classes would undertake the Snap! course, approximately 40

students for each course.

• School #2 - All girls private school, one Transition Year class, 15-16-

year-old students, approximately 20 students total, would undertake

the Java course.

All five classes began in mid-October 2018 with the intention to run until

the final week before Christmas for a total of eight weeks. There were some

challenges with this which ended up pushing the last two sessions to late

January 2019 after a month-long break from material, but all material was

still delivered to all students.

One exception to this is that the “Arrays” sessions were not delivered

to any class. This was due to the fact that Strings took longer for the

students to comprehend and practice than originally expected. As such,

Strings and User Input (originally a single week session) was expanded

out to two weeks and arrays had to be dropped from the course. The

revision and final exam were adjusted to account for this.

The first session began with an introduction to the programming envi-

ronment of choice (JCreator for Java, Snap! UI for Snap!). The students

were also given an overview of what the rest of the course would entail.

Finally, they were asked to complete a short survey on their opinions of CS

and what they expected from the course. Data was collected anonymously

with each student being given an ID number to link their data with the

survey in the final week.

61

3.3 full courses

All intermediate sessions began with a recap of what was covered in the

previous week and a run through of the homework questions that were

assigned. The new material was then delivered. Week 7 gave the students

control to look over any material they previously struggled with. They

were able to ask questions or simply work away on questions. The final

session began with the post course survey and the course completed with

a final examination.

Efficacy Outcomes

The final examination was delivered in week 8 of the course delivery. Stu-

dents were given 45 minutes to answer a short question which used an

element of each week’s material. The questions posed in Java can be seen

in Figure 3.6 and the question posed in Snap! can be seen in Figure 3.7.

Figure 3.6: Java Examination Question

Once the examination was completed, a photograph was taken of each

student attempt, saved as their ID number. After the course was com-

pleted, these attempts were then graded based on a marking scheme. The

marking schemes gave either 0 (no attempt made), 5 (decent attempt made

at using the element) or 10 (good or perfect use of the element) for each of

62

3.3 full courses

Figure 3.7: Snap! Examination Question

ten different requirements to give a total of 100 marks. The ten marking

elements for each language’s examination are given in Table 3.2.

The average results from these tests were as follows:

• Snap! - 34.4 / 100

• Java - 22.8 / 100

• Java in School #1 - 22.8 / 100

• Java in School #2 - 42.5 / 100

From these results, we were able to discern some important information.

First of all, the overall grades were quite low. There any many possible

factors for this including the limited time frame for practice, the general

difficulty of learning programming [47], the fact that the last two sessions

(revision and examination) needed to be delivered after the winter holi-

days, and in school #1’s case the lack of a permanent teacher present in

the room. Additionally, it is worth noting that no marks would be awarded

to students towards their end of year marks for Transition Year so a lack

of motivation may be present.

63

3.3 full courses

Table 3.2: Marking Schemes for Java and Snap!

Marks (/100) Java Snap!

10 Use of Import Use of a "When Click" Block

10 Use of Class Use of the "Answer" Element

10 Use of a Main Method Use of an Update Statement

10 Use of a String Variable Use of a Variable With Text

10 Use of the Scanner Use of "Ask and Wait"

10 Use of a Loop Use of a Loop

10 Use of an If Statement Use of an If Statement

10 Use of Modulus Use of Modulus

10 Use of a Print Statement Use of "Say" Block to Print

10 Use of charAt Use of "letter X of" Block

For the null hypothesis that the Java examination would not be more

difficult than the Snap! examination; the results show that this is possibly

the case. This was shown through the usage of a two tailed t-test which

was the metric used for all further data analysis in this paper. A minimum

p-value of 0.05 will be required to reject any null hypotheses. In this in-

stance, we had p = 0.3420 (p > 0.05). This is not a statistically significant

enough result to say if one exam was more challenging than the other. If

this were true, it would imply that Java is not actually implicitly harder to

learn than Snap! is.

Interestingly though, when we break this down further and assume that

the two schools were both significantly different environments, the results

look a little different. We can affirm this by comparing the Java results of

school #1 with school #2. When we do, we see a statistically significant

difference in outcomes with p = 0.0009 (p < 0.01). This means that there’s

64

3.3 full courses

a greater than 99% chance that the differing environments between the

schools had a significant effect on the study.

With this in mind, we can now compare the outcomes of the Java exami-

nation and the Snap! examination in school #1 (which was also the school

with the larger dataset with two classes each). We found that the Snap!

grades were significantly higher with p = 0.01239 (p < 0.05). This tells us

that there’s a very high probability that the Java examination was in fact

more difficult to perform well in, and we can reject the null hypothesis for

school #1.

This would align with the previous findings [67] that Java was a signifi-

cantly harder language to learn. This is the key point of the study.

Survey Outcomes

The examination results were only one metric analysed as part of this pro-

cess. As previously mentioned, two surveys were also administered; the

first one prior to the first session of the course which collected opinions on

what they might expect from the course, if they might consider studying

Computer Science at University and other collected survey data.

The second survey was administered right before the final examination

to determine the easiest and hardest sessions from the student’s vantage,

their overall enjoyment of and difficulties with the course and once again

whether they would consider studying Computer Science at University.

One important point to note as we delve into some of the results from

these surveys is that the cohort who were there for the pre-survey did not

exactly match the cohort who undertook the post-survey. There is much

overlap but due to absences on both days, there are some who only sat

one of the two surveys.

In Figure 3.8, the opinions of the Java students on studying Computer

Science at University can be seen and in Figure 3.9, the opinions of the

Snap1 students on studying Computer Science at University can be seen.

65

3.3 full courses

Figure 3.8: Computer Science at University Opinions - Java

Figure 3.9: Computer Science at University Opinions - Snap!

66

3.3 full courses

In terms of the Java students, we found that with p = 0.2349 for the

change in opinions between the pre-course survey and the post-course

survey that there was no significant decrease. This implies that the course

itself did not negatively affect their views of programming and Computer

Science. In terms of the Snap! students, with p = 0.1795 we can make the

same conclusion.

What these results did show however is that some of the students were

able to make their mind up over the duration of the course. This is an im-

portant thing given the current dropout rates in Computer Science course

at University [11]. It is vital that students are aware of what Computer

Science is before committing to attending third level and having exposure

to courses like these ones will ensure this.

In Figure 3.10, Figure 3.11, Figure 3.12 and Figure 3.13, the outcomes are

shown for which course sessions the students found the easiest and most

difficult. In Figure 3.10 and Figure 3.12 it is interesting to note that loops

were considered the hardest to learn in Java, but not as many deemed it the

hardest in Snap!. Instead, Strings and User Input seemed to be the most

difficult Snap! session (which was still a highly chosen session in Java).

In Figure 3.11 and Figure 3.13 it was clear that the introductory sessions

eased students into each course and were overwhelmingly considered the

easiest. This is much in line with what we would have expected.

The two other key questions in the post-course survey were “How much

did you enjoy the course? (1= Not at all, 5 = It was OK, 10 = I loved it)” and

“How difficult did you find the course? (1 star = easy, 5 stars = difficult)”.

In terms of enjoyment, the average rating for Snap! was 5.6 and the

average rating for Java was 5.4694. The difference between the results for

both courses was not significant with p = 0.8027. In other words, there was

no difference at all in enjoyment levels of the courses. This is logical since

the courses had identical content so enjoyment levels would be expected

to be similar.

67

3.3 full courses

Figure 3.10: Hardest Session in Java

When it came to difficulty though, the results were more interesting.

Java was rated 3.51 / 5 on average for difficulty. Snap however was only

rated a 2.63 / 5. The courses were as identical in content as possible.

Comparing the rated difficulties, we have p = 0.0002 which is significant

at p <0.01. This means that students found Snap! to be much easier than

Java, which again aligns with previous findings.

If we look even deeper at school #1 only (as they would have a similar

cohort of students, they rated Java 3.69 / 5 in terms of difficulty) the result

only gets more significant with p = 0.0001. This leaves very little room

for the results to be chance meaning that Java is clearly more difficult than

Snap!. The only way we could be more certain is if the exact same students

rated each language.

This is once again key. It further exposes the fact that Java is more chal-

lenging to learn. This can only mean that some element of Java (verbosity,

overhead or something else entirely) caused it to be more difficult to learn

given the nature of the study with identical courses. If this is the case,

why do we not teach CS1 in a VPL all of the time? Of course, this study

68

3.3 full courses

Figure 3.11: Easiest Session in Java

can only make this assertion for students aged 15 – 16 years old. This is a

younger cohort than we would see at University level.

We also examined whether gender made a difference to the difficulty

the students perceived with either course. We found that there was no

measurable difference in the difficulty rating for girls against boys in the

Java course (p = 0.5514) or the Snap! course (p = 0.5033). These results

mean that within the same language groupings, gender did not have an

effect on how students perceived the course.

Due to the low number of participants who took both surveys in certain

cases (Males taking Java course n = 8, females taking Snap! course n = 9)

the results were inconclusive as to whether Java was more difficult than

Snap! amongst only males and only females respectively. The data did

seem to be trending towards the overall conclusion that Java was more

challenging, however. Females rated Java 3.36 / 5 on average for difficulty

compared to their average Snap! difficulty rating of 2.89 / 5. Likewise,

males rated Java 3.63 / 5 on average compared to Snap! 2.54 / 5.

69

3.3 full courses

Figure 3.12: Hardest Session in Snap!

Finally, we note some interesting comments that the students of the

course made. These comments were made under the post-course survey

question “Do you have any other comments or suggestions?”.

• "Nope but maybe have a school teacher in the classroom" – From

a student in the Snap! course. This is very important given the

difference between school #1 (no teacher present) and school #2.

• "I found that when I was doing the tasks with instructions it was

easy, but when I had to do them on my own, I found it to be much

more difficult." - From a student in the Java course. This is a common

issue that faces many students in CS1 / CS2 courses.

• "It was a useful experience to get under my belt! I’m not sure if pro-

gramming is what I want for my future, but it was good to get to

know the basics and try it out." – From a student in the Java course.

Programming courses in schools are important to help students de-

cide early on if it would interest them as a degree choice.

70

3.4 need for a hybrid model

Figure 3.13: Easiest Session in Snap!

3.4 need for a hybrid model

The results from this study show promise. At least with the 15 – 16 age

group, it does seem that Snap! was easier to learn than Java was. This

outcome informed the next phases of the research. The courses presented

will be slightly adjusted. More importantly though, given the confirma-

tion that Java is statistically significantly more difficult than Snap!, it was

decided that work would now begin on a hybrid programming model.

The concept of a hybrid programming language has been examined by

multiple educators in recent years with promising results. In particular,

Weintrop [93], Poole [74] and Harken [30] have looked at the concept in

different ways. Weintrop [93] has created one of these environments with

some promising early results. Harken [30] has commented that “brows-

ability” is a key feature of visual blocks-based environments that reduced

the complexity of learning them.

Our hypothesis is that a hybrid, drag and drop implementation of the

Java programming language will reduce the difficulty of learning Java. We

71

3.5 summary

have already proven in this study that Snap! was certainly easier, for 15

– 16 year old students, than Java. Using Snap!’s "build your own blocks"

feature, we will be able to create custom blocks to match the syntax and

semantics of Java keywords and code sections. With this created, we can

create a third version of the course using the hybrid environment.

We hope to then see that Java is harder than Java Hybrid, and Java Hy-

brid is harder than Snap! in terms of learning difficulty. We infer that this

could be the case due to the browsability and blocks-based environments

having enough of an effect to ease the complexity of Java’s verbosity with-

out trivialising the learning of the language. It will also reduce the cogni-

tive load of the student when assessing a problem. We call this the "linear

line hypothesis". However, from looking at results of similar studies, we

do not believe that it would make learning Java easy enough to put it on

level ground with Snap! and other purely visual blocks-based languages.

3.5 summary

Overall, the work presented in this chapter has shown the promise for

considering other forms of FPL rather than just a text-based approach.

All approaches have their merits but with increasing drop-out rates and

student difficulty with traditional CS1 courses as shown by Watson & Li

[91], considering other approaches might just be the key to improving

retention. These initial courses are one of the major deliverables of this

project, but in the next chapter we will begin discussing the development

and testing of "Hybrid Java", a tool and curriculum combined that fills in

a gap in the pedagogy.

72

Part III

H Y B R I D P R O G R A M M I N G

4
H Y B R I D J AVA

This chapter will discuss the development, verification and testing of "Hy-

brid Java". Hybrid Java is a Hybrid Programming Language (or tool) built

on top of the Snap! programming language. It aims to combine the power

of a traditional textual programming language with the visual features of

the Snap! language. It was developed after the previous phases of the

study showed a need for, and gap in the market of a Hybrid Programming

tool based on Java. The initial concept and the subsequent development

will be discussed, along with a workshop where feedback was gathered

along with an initial test at the Maynooth University Computer Science

Summer Camp.

This chapter will refer to a number of academic papers. In particular,

"Hybrid Java: The Creation of a Hybrid Programming Environment" [70],

"Hybrid Java Programming: A Visual-Textual Programming Language

Workshop" [34] and "Creation of a Hybrid Programming Language" [61].

The final Hybrid Java tool can also be found online at [66].

4.1 the need for hybrid java and introduction

Some visual languages (such as ScratchJr and Snap!) have a reach to chil-

dren as young as five. It has been well documented that there exists a gap

in the education of students in their mid- to late-teenage years where per-

haps visual languages are no longer suitable and textual languages may

involve too steep of a learning curve.

74

4.1 the need for hybrid java and introduction

There is an increasing need for languages that combine the powerfulness

of a text-based language with the simplistic design of a visual language.

These so-called hybrid programming languages would allow for the intro-

duction of more complex programming concepts to students by having a

more welcoming and more suitable interface. A need for a hybrid lan-

guage is growing alongside the increasing interest among young people

in the field of Computer Programming. This follows from the research

of Cheung et al. which shows that there is a certain age group (13-16

years old) where many students begin to consider visual programming

languages too limited; but they are still at a point where they consider

text-based languages too verbose and difficult to learn [13].

This tool attempts to address this need. For the purpose of this project,

the platform Snap! is utilised to create a hybrid language. Snap! is a

visual programming language which employs "blocks" to allow users to

build programs. Snap! is also considered a platform and runs in the user’s

browser and presents an interface on which the user can program. Snap!

was originally known as BYOB (Build Your Own Blocks) and was heavily

influenced by the blocks-based visual language Scratch. Both Scratch and

Snap! give the user access to libraries of pre-existing blocks with pre-set

functionalities and allow the user to build programs using these blocks.

The main additional feature that Snap! offers is the ability to create one’s

own blocks and extend the functionality of those blocks to create more

complex and powerful programs. This is something that will prove very

useful when it comes to development of the tool.

The newly created hybrid language presented combines the textual pro-

gramming language of Java with the visual "drag-and-drop" programming

language of Snap!. Snap! allows the user build their own blocks, which

supports the integration of Java into the platform. A "drag-and-drop" inter-

face is presented to the user, with each "block" representing a correspond-

ing concept in Java. Samples of concepts developed with this new lan-

75

4.2 additional hybrid programming background

guage will be presented along with some of the main considerations and

constraints involved. User experience and feedback was gathered from a

subject pool of 174 first year Computer Science students in Maynooth Uni-

versity where these participants were given instructions to work with the

hybrid programming language and provide a feedback to evaluate their

experience using the language. This informed additional development

phases. Further testing was then performed via the Computer Science

Summer Camp at Maynooth University, the workshop at UKICER and

through additional feedback channels, such as focus groups.

4.2 additional hybrid programming background

There have been numerous studies undertaken to evaluate the benefits

and disadvantages related to teaching programming using visual program-

ming languages [9, 39, 80, 93, 94]. One such study [93] was devised to

determine if a visual blocks-based programming language would be fit-

ting as a first programming language for students to learn. The study was

focused around high school students and answered three main questions:

• Is a block-based language considered easy? If so, why?

• What are the difference between blocks-based and text-based languages?

• What could be considered as weaknesses within blocks-based languages?

The results found that over half of the student participants surveyed

found the block-based language Snap! easier to use than the text-based

language Java. The reasons given for the increased ease-of-use included:

• "The lack of obscure punctuation".

• The provision of "graphical cues" given by the shape of the blocks,

assisting the user in determining how to use them.

76

4.2 additional hybrid programming background

• The "act of dragging-and-dropping" the blocks resulting in less errors

than the traditional typing of commands.

Perhaps the strongest advantage of a visual programming language to

emerge from this study is the "browsability" of its commands as reported

by Weintrop & Wilensky [93]. By having an easily accessible list of com-

mands that are available to the user, the complexity of a language is re-

duced. This is something that text-based programming languages tend

not to have, apart from libraries for more complicated elements.

Although the block-based language was seen as easier to use than the

traditional text-based language, weaknesses were also identified, includ-

ing:

• The limitation attached to programs that can be created, which pro-

hibits the creation of more complex programs, a fact also discussed

by Preidel et. al [75].

• Some students found that more time was required to complete a

program in a blocks-based environment as opposed to a text-based

environment.

• The students recounted how text-based languages often require less

lines of code to be written in comparison to the number of blocks

needed in a blocks-based language.

• The lack of authenticity held by blocks-based programming lan-

guages in the sense that the blocks-based language was not similar

enough to traditional text-based languages to effectively educate

others in the ways of computer programming.

Some efforts have been undertaken by researchers to bridge this gap in

the past. One large area of focus has been the creation of text-based pro-

gramming environments with some visual cues or elements. For example,

77

4.3 hybrid java development

Kölling, Quig, Patterson, & Rosenberg have developed the BlueJ program-

ming system [43] and Kölling has developed the Greenfoot programming

environment [42]. Both environments seek to solve a particular problem.

BlueJ is presented as a learning tool to aid with the difficulty of teach-

ing object-oriented programming to novice programmers. Greenfoot has

similar goals but targets itself at younger students and uses topics such

as game development to help teach the concepts. Both tools aim to fill

this educational gap, but neither are marketed as complete solutions, with

the assumption that students will still migrate to a text-based language

afterwards.

A pertinent question that could be asked here is "Is there a tool with a

more longitudinal focus, or one which can be used interchangeably with a

text-based language?". From the results of the literature review (see Chap-

ter 2), it was found that visual programming languages are extremely

beneficial when taught to the "right age group". The study also further

pointed to the existence of this "educational gap" around the ages of 14-17

where neither language type is ideal. This was again further backed up

by the results of the initial course delivery (see Chapter 3). Therefore, we

have discerned that text-based languages have their weaknesses, but visual

block-based languages also have their issues. This led to the logical con-

clusion of taking the best parts of both language types and merging them

together into a so-called hybrid programming language. In particular, a

hybrid blocks-text environment.

4.3 hybrid java development

Hybrid Java is built using the Snap! Platform [31]. Snap! was developed

as an extensible reimplementation of Scratch [53], with the added benefit

of being able to create one’s own custom visual blocks. This allows one

to create some backend code using Snap!’s blocks, and then customise the

78

4.3 hybrid java development

display (frontend) for the block. Using this toolset, the goal was to create

blocks that mirror the syntax of the Java programming language.

Figure 4.1 presents an example of the "build your own block" feature of

Snap!, where the functionality of a Java "for loop" is defined using Snap!

blocks. The first line creates the visual display for the block, in this case

the structure "for (int", followed by a variable "i", then an initial value,

a condition and finally some update predicate. The next line puts the

"init" number into the "i" variable. Finally, for the remaining lines, a Snap!

"while loop" is used to mirror the functionality of the Java "for loop" by re-

peatedly iterating the statements and updating the variables until the loop

condition is no longer met. Figure 4.2 presents the user facing display of

the code block from Figure 4.1 (with some additional elements included).

In terms of functionality, it is equivalent to a Java "for loop" which runs a

piece of code several times.

Figure 4.1: For Loop Backend in Snap!

With this process of creating blocks in Snap! the overall goal for the

environment was to allow a user to create functional programs that mirror

their Java counterparts. For the first major version of the environment, it

should have enough blocks available to teach a CS1 module.

This led to the identification of the below list of concepts, which would

need to be replicated for Hybrid Java.

79

4.3 hybrid java development

Figure 4.2: For Loop Frontend in Snap!

1. A Java like structure (classes, main method)

2. Variable initialisation and modification

3. User Output (printing)

4. Operators

5. Comments

6. Conditional Statements

7. Iteration

8. Strings and String Methods

9. User Input - Scanners and Scanner methods

10. Arrays

11. Random Numbers

All of these concepts were included in the first iteration of the environ-

ment. A full set of all the finished code blocks are provided in Appendix

C. For each code block, the backend code that would make the block work

needed to be conceptualised, which proved more challenging in some in-

stances than in others. For example, the Hybrid Java "if" block was easy to

replicate as Snap! has its own "if" block concept. In this instance, the Java

like frontend can simply call the Snap! version of if in the backend. Other

concepts like "2D arrays" did not have a direct match in Snap! leading to

a more detailed development, in this case, forcing Snap! to create a list of

lists.

80

4.3 hybrid java development

4.3.1 block sections

Once all of the blocks were created, a major aspect relating to the user ex-

perience with the environment related to the presentation of the blocks. By

default, the Snap! user interface provides the following categories under

which blocks can be placed: "Motion", "Looks", "Sound", "Pen", "Control",

"Sensing", "Operators" and "Variables". These categories are usually filled

with the existing Snap! programming blocks. However, for this program-

ming environment, all of the original blocks could be hidden (to avoid

confusion between Snap! blocks and Hybrid Java blocks). Hybrid Java

blocks were then placed into the following categories, linking back in with

the previously discussed list of concepts:

• Control - All of the Java structure (1), imports, printing (3), selection

(6) and looping (7) blocks,

• Sensing - Blocks for commenting code (5),

• Operators - All operator (4) blocks (simple operations, incrementing,

logical operators),

• Variables - All remaining variable blocks (basic types (2), Strings (8),

User Input (9), Arrays (10), 2D Arrays (10), Random numbers (11)).

The Motion, Looks, Sound and Pen categories were left empty. These

sections mostly refer to the movement of the Sprite in Snap! and as such,

it was decided that they should be left empty. There were no obvious

mappings between the Java language snippets and any of these sections.

It is important to note that by simply deleting blocks from the Hybrid

Java command list, one can create a version of Hybrid Java with as many

or as few blocks as desired by the teacher. A copy of this version can then

be saved for use in a specific setting. Using this approach, one can ask

students to create a program and give them a version of the Hybrid Java

interface with the exact blocks they will need to use to create the required

81

4.3 hybrid java development

program, potentially reducing the complexity of solving the problem. For

example, we could ask the student to "write a program that prints all of

the even numbers between 1 and 10". For a struggling novice, this might

not be enough information to succeed in writing this program. However,

if the student was given the Hybrid Java environment with only a for loop,

if statement and some operator / variable blocks they might be able to

piece it together in an easier fashion having now realised what blocks the

required code will comprise of.

To create a program in the Hybrid Java environment, users simply drag

and drop blocks to construct their code. Once a user has a completed

piece of code, they simply need to click on the top block in the chain

to run the program. For those familiar with blocks-based languages this

will be very familiar. An example of a simple completed program and its

corresponding output is shown in Figure 4.3.

Figure 4.3: Sample Hybrid Java program with output

It is also important to note that the "class" and "main" blocks do not have

the same functionality in Hybrid Java as they do in Java. This is because

the concept of a "class" in Snap! would simply be the entire programming

area, and the concept of a method in Snap! would be simply having mul-

tiple separated lists of programming commands. These blocks are still

retained however to aid the transition from Hybrid Java to Java and vice

versa. They also delete old temporary variables like the one seen in 4.3.

82

4.4 hybrid java testing

4.4 hybrid java testing

Multiple phases of testing occurred with the tool. The first phase of testing

occurred with a first year undergraduate Computer Science class. The

second phase took place at the annual Computer Science Summer Camp

at Maynooth University for students aged 12-17 years old. The third phase

of testing occurred during a workshop delivered by the authors at the

UKICER conference. At the end of these phases, we had semi-experienced

programmers’ feedback, novice programmers’ feedback and researchers’

feedback. This was an invaluable suite of testing to have completed in a

short period of time and allowed us to sample a variety of people who

would engage with the tool.

The tool was always seen as a multi-purpose tool, in that it could be

used a scaffolding tool for undergraduate students, but also as a tool that

could be used with learners who had moved beyond the pure block-based

programming languages. Having access to these groupings in a first year

university class and a group attending a summer camp allowed us to sur-

vey these key users. An overview of the phases of testing will be provided

in the following sections along with the discussion of iterative develop-

ment of the tool after these testing phases. The overall purpose of this

testing was to obtain feedback on the tool to help improve it while consid-

ering the effectiveness of the developed tool.

4.4.1 test 1 : undergraduate survey

Once a full prototype of Hybrid Java was built, plans for testing the ef-

ficacy of the environment were put in place. In May 2019, at the end of

semester two of the 2018/2019 academic year, a system test and survey

was undertaken with the CS1 undergraduates (in module CS162). These

students use Java as their programming language, hence they were the

83

4.4 hybrid java testing

perfect candidates to test the new environment. The primary goal for this

test was to verify the ease of use of the user interface and to see if users

with some Java knowledge could easily transition to using Hybrid Java.

For this test, 174 students were asked to solve a question, presented in

Figure 4.4, using the new Hybrid Java programming environment. The

students were only given a brief overview of the system and a quick de-

scription of how to create a program before being left to work through it

themselves. This allowed us to observe if the system was intuitive to use

for the students. As the students were already competent in Java, the main

variable was the Hybrid Java system itself. The students were only given

ten minutes to complete this task due to time constraints.

Figure 4.4: Undergraduate System Test Question

After attempting to solve the problem, the students were then asked to

complete a short survey detailing their experiences of using the program-

ming environment. The questions asked in the survey were as follows

(note, for all "how difficult" questions (Q3-Q5), the response was a number

between 1 and 10, where 1 represented "not difficult" and 10 represented

"extremely difficult"):

1. How many years of programming experience do you have?

2. Did you complete the question?

3. How difficult was it for you to find the blocks you needed?

4. How difficult was it for you to understand the functionality of the

blocks?

5. How difficult was it for you to complete the question?

84

4.4 hybrid java testing

6. Do you have any other comments about your experience?

For Q1, 79% of respondents said they had less than one year of program-

ming experience, creating a good baseline for the knowledge level of the

participants. Only 5% of participants claimed to have more than two years

of experience. In total, 46% of the participants completed the question in

the allotted time. This was likely due to the overhead of getting used to

the system, coupled with the limited time they were given to complete the

task. With more time, it is expected that more people would have com-

pleted the task. Some participants also completed the task very quickly,

and these students stated that they had used Scratch or another visual

programming language before, reducing their learning overhead.

The most interesting data was produced by the replies to Q3, Q4, and

Q5. Figure 4.5 presents a summary of the results of all three questions,

broken down by the rating band. For all three questions, most participants

answers aligned with the lowest band (1-2 in difficulty).

Figure 4.5: Graph of responses to Q3, Q4 and Q5 respectively

➢ For Q3, 60% of participants found it easy to find the required blocks.

➢ For Q4, 82% of participants understood the functionality of the

blocks which makes sense given that all the students had been study-

85

4.4 hybrid java testing

ing Java for at least two semesters already, and should be familiar

with Java code.

➢ Finally, for Q5, 55% of participants reported low difficulty in answer-

ing the question. This number may have been skewed upwards given

that the time constraint may have been a factor in the "difficulty" of

completing the question.

Some of the key comments that participants made included discussion

on the ease of use of the tool ("Overall very easy to understand and use"),

the usefulness of using the tool to introduce Java to young or novice pro-

grammers ("Seems like this could be a very innovative and novel way to

teach Java") but also on the reduced usefulness for experienced program-

mers ("I would have been able to complete this task quicker in text"). These

comments mostly align with the author’s own thoughts on the placement

of this programming environment in the pedagogy.

Overall, the results from this first phase of testing were very promising.

They showed that there was an ease of transitioning from Java to Hybrid

Java, with very few participants having issues with the system. There is

an overhead to learning any new tool, so with more time given to prac-

tice, the participants would likely have all completed the task. Even with

some students not completing the task, given the average difficultly rating

of approximately 2 out of 5, it can be said that for semi-experienced pro-

grammers, Hybrid Java was a relatively easy tool to use. In test phase two,

we will examine if the tool remains as intuitive for first time programmers.

4.4.2 test 2 : computer science summer camp

In July 2019, the Computer Science department at Maynooth University

ran their annual Summer Camp for 12-17 year old participants. This sum-

mer camp offers short 90-minute sessions in numerous topics related to

Computer Science. This camp was the ideal place to test Hybrid Java in

86

4.4 hybrid java testing

a more detailed learning session with participants who had little to no

programming experience. This would run very similarly to how the initial

test sessions ran in Section 3.2.

This Summer Camp runs over a three-week period, with participants

able to attend one, two or three weeks. During week 1 of the camp, a

session on Java was ran. This session was the same one from Section 3.2.5.

This session used BlueJ [43] as its Integrated Development Environment

(IDE). During week 2 of the camp, a session on "Hybrid Java" was run

which closely aligned with the material from the Java session but utilis-

ing the new tool. Both sessions covered an introduction to the language,

language boilerplate, a "Hello World" program, Variables, Operators and

Selection. After going through these topics, the students were tasked with

creating a very simple calculator which performs some elementary calcu-

lation on two numeric variables based on the operator sign inside a third

variable. They received support in this from a team of demonstrators who

were working at the camp. The expected output for the code in both Java

and Hybrid Java is presented in Figure 4.6.

Thirty-nine participants completed the Hybrid Java session at the Sum-

mer Camp. Of these thirty-nine participants, seventeen had attended the

Java session. Once again, after completing the Hybrid Java session, the

participants were asked to fill out a quick survey to collect their opinions

on both the session and the environment itself. Some of the key results

from this survey were that:

• Thirty-eight out of the thirty-nine participants either enjoyed or some-

what enjoyed the session, leaving only one participant who did not

enjoy the session.

• Thirty-eight participants found the Hybrid Java system "approach-

able". An interesting comment on this was that "It began confusing

but eventually I got the hang of it and realised how straight forward

it was".

87

4.4 hybrid java testing

Figure 4.6: Simple Calculator program in both Java and Hybrid Java

• Of the seventeen participants who had attended the Java session the

week prior, seven of them preferred the Java session, five of them

preferred the Hybrid Java session and five of them thought they were

about the same enjoyment level.

The primary questions of interest asked all participants (n=39) to rate

the difficulty of the Hybrid Java session on a scale of 1-10 (1 representing

"not at all" to 10 representing "very difficult"), and, for those who were

present the previous week (n=17) to rate the difficulty of the Java session

on a scale of 1-10. The results were that these questions showed a difficulty

rating of 4.69 for Hybrid Java, and 5.35 for Java. While this difference is

not statistically significant (p=0.366, p>.05), it follows the expected trend.

Despite the identical content of the two sessions, the Hybrid Java session

was considered somewhat easier by these participants. It is important

to note that given that the Java session was introduced first, there is a

88

4.4 hybrid java testing

possibility of some recency bias in that the 17 students could have rated

the Hybrid Java session "easier" due to having already seen the material

in the Java session. When these seventeen participant ratings are removed

from the average calculation a rating of 4.82 resulted. While this result is

slightly higher than the 4.69 reported above, it is still much lower than the

corresponding rating for Java. This suggests that Hybrid Java could have

some ease of use that Java doesn’t.

4.4.3 test 3 : ukicer workshop

In September 2019, a workshop relating to the Hybrid Java programming

environment was delivered at the UK and Ireland Computing Education

Research (UKICER) conference in Canterbury, England [34]. This was less

about testing the system but more about collecting feedback from other

academics in the area prior to further development of the tool. The goal

of this phase was to gauge the interest in the Computer Science Education

community for the tool, and to give the tool a thorough debugging.

The workshop was a two-hour session, of which the first thirty minutes

consisted of delivering a presentation on the tool. Subsequently, a booklet

of information and sample programs was provided to the attendees along

with the tool itself. They were encouraged to practice constructing pro-

grams that they might write themselves in their CS1 lectures. They were

also encouraged to try some difficult code sequences to vigorously test the

system. Finally, the last thirty minutes of the workshop were dedicated

to collecting feedback. This was done via a survey and via a Padlet wall.

Questions related to bug detection in the tool, general feedback on the tool

and feedback on the workshop session itself. Some of these can be found

as part of the Padlet linked in the final paragraph of Appendix C.

Three participants attended the workshop, which limited the amount of

feedback that was received. However, the consensus in the room was that

89

4.4 hybrid java testing

it was an enjoyable workshop and an interesting idea for a tool but not

ideal for the set of participant’s student groups. One of the key comments

that arose during this workshop was that "It takes a small learning curve

to understand how to use the blocks in the environment and how to inter-

connect them. However, I see it with the eyes of a developer, I am curious

how new learners grab it." This is an interesting statement given what we

have seen in the summer camp test that new learners do engage with the

tool when delivered in an instructor-led manner.

Some bugs and issues were also discovered, as was the hope. Some

examples of these bugs included being able to use length operators and

String operators on integers, not being able to assign true or false values

to Booleans after their initial creation and some suggestions of missing

blocks. Some of these issues were addressed immediately after returning

from the conference, as discussed in Section 4.4.4, while others are noted

as part of the future work in Section 5.

Overall, the workshop was a success and some strong feedback was

provided for the tool from the researchers perspective.

4.4.4 iterative development

Following the completion of all three phases of testing, as well as some

minor changes in between testing phases, a round of iterative development

was undertaken on the Hybrid Java programming environment. Some of

the main changes that were made included:

1. Reordering of all the blocks into a more logical order. The origi-

nal ordering of the blocks was based on the order of block creation.

This new block order (which is the same as the version shown in

Appendix C) is focused more on the order of the main teaching con-

cepts. This makes it easy for the educator to hide the blocks that they

don’t need until a later phase of their teaching.

90

4.5 building the hybrid java curriculum

2. Redevelopment of the 2D Arrays blocks. During testing, it was dis-

covered that the original 2D array blocks did not function as expected.

They were creating a long list of elements rather than a "list of lists".

This led to issues when accessing elements. This was rectified in this

change.

3. Inclusion of more versions of each Array type. In the original ver-

sion, there were only arrays for "int", "double" and "String". This

version also provides for "float", "long", "char" and "Boolean" Array

functionality.

4. Moving the comments blocks to their own section. Originally the

comments blocks were on top of the "Control" section. These were

moved to the, as yet empty, "Sensing" section as feedback pointed

out that they didn’t make sense where they were.

5. Creating an external version of the tool which can be used externally

to the Snap! website. Snapp! [32] is an external tool which allows

for the creation of executable projects. This tool allowed for export

of the Hybrid Java project into an external file for ease of use with

classes.

The version of the tool which is referenced in Section 4.7 includes all

of these discussed enhancements. Some other minor changes were made

along the way such as the fixing of typos and very minor functionality

changes etc. All of these changes are also present in the current iteration.

This version of Hybrid Java is fully usable for teaching early introductory

programming concepts.

4.5 building the hybrid java curriculum

In Chapter 3, the development of a Java curriculum and a Snap! curricu-

lum was discussed in detail. Once the efficacy of Hybrid Java had been

verified through all aforementioned testing phases and iterative develop-

91

4.6 other uses for hybrid java

ment phases, work began on creating the Hybrid Java curriculum. This

curriculum fully mirrors the other two, with all material being the same.

The full curricula can be seen in Appendix B.

As with the initial course development, the material includes slide decks,

class plans, assessment, examples and more. Due to time constraints in the

project, this course was never delivered to a class but will be discussed in

the future work Section 5. With this course material created, and Hybrid

Java developed to a high standard, the "final product" of this thesis could

be created. This we will call the "Hybrid Java Package" (HJP), which will

be discussed more in Section 4.7.

4.6 other uses for hybrid java

The benefit of the Hybrid Java approach is that if one wanted to transition

to a fully text-based language, like Java, there is little to no overhead to

doing so. This is for several reasons. Firstly, the text on the blocks is the

same as the "text" in the Java language. Secondly, it has been shown in

the literature that starting with a visual programming language is a good

option for introducing programming concepts before going to a full text-

based language [5, 84]. It would be perfectly feasible to have a second pro-

gramming course (Object-Oriented Programming or Algorithms and Data

Structures) run in Java after initially learning Hybrid Java. The students

would also have learned the same threshold concepts while undertaking

a Hybrid Java CS1 course as would be expected from a text based CS1

course, so there will be no gap in the knowledge.

It has been shown that a focus on concepts and teaching methodologies

is often more important than the choice of FPL [47, 68]. In particular,

one interesting result came from Giordano and Maiorana [26] where they

taught a course that started with Scratch and progressed to using the C

language. This was done to allow a focus on concepts, and the result was

92

4.6 other uses for hybrid java

that when the students transitioned to C, they made less errors than would

normally occur upon first exposure to the C language (during their normal

teaching routine).

While it is non-traditional to use a visual or hybrid programming en-

vironment in a third-level CS1 environment, one area where visual lan-

guages are commonly used is with teaching a programming language to

young learners. As discussed in Section 4.1 there is a point where younger

students disconnect from pure visual programming languages but aren’t

quite ready for a text-based programming language yet [13]. The Hybrid

Java environment perfectly fills this educational gap.

Hybrid Java can certainly be used as a First Programming Language on

its own, but it is possible that one of its greatest strengths lies in the area

of intervention and student support. I have been involved in the running

of the "Computer Science Centre" at Maynooth University [65] for a num-

ber of years. This is a centre that provides support for students who are

struggling with the CS1 course material or are looking for some extra chal-

lenges. In the centre we tend to find one of the most common issues a

Java CS1 student faces are the verbosity of the language, which opposes

what a good FPL should be [29]. By giving the student the Hybrid Java

tool, while they are learning a Java course, we would expect to see an ease

in the complexity for them. The browsable nature of the commands [93]

and the ease of use of drag-and-dropping the blocks in to place [76] com-

bined with an already existing knowledge of how the Java programming

language works provides a student with as much opportunity to under-

stand as possible. This is something that needs to be tested fully as part of

future work to see just how strong of an intervention tool Hybrid Java is.

93

4.7 the hybrid java package

4.7 the hybrid java package

The HJP is something that can be offered to individual educators, insti-

tutions and anyone else interested in using Hybrid Java for teaching or

intervention purposes. They will be provided with all of the course mate-

rials, the Hybrid Java tool itself, instructions to set it up and instructions

on how to delete blocks (temporarily) where necessary for a problem. This

gives a level of control to the educator to utilise the tool how they see fit.

With the Hybrid Java curriculum, the educator can teach a short course

in programming just like they can with the Java course and the Snap!

course. They will be able to make their own judgements on it as a FPL,

as an alternative to VPL courses they might otherwise teach or as a bridge

between VPL and TPL skillsets.

The other major usecase possible for the HJP is as an intervention for

third-level programming students. The idea here is that students who are

struggling with the verbosity of Java can be given a version of Hybrid Java

with the appropriate amount of blocks present for their current progres-

sion is CS1 and solve their exercises as normal but using Hybrid Java to

lessen the difficulty. A sample of this package (in its full format, with all

blocks present) can be found as part of the full materials in Appendix B.

4.8 summary

In this chapter, a new hybrid programming environment called "Hybrid

Java" has been presented. Between the existing literature in the area of

hybrid programming languages, and the multi-phase testing performed

here, we have shown that this tool could fill a much needed educational

gap and could provide an ease of learning for both struggling students

and as a FPL. There is also evidence to suggest that the main strengths of

the environment may lie in the realm of programming intervention.

94

4.8 summary

Test one verified that students who are already studying Java could eas-

ily transition to Hybrid Java. There was very little overhead in learning

how to use the tool, which was particularly positive since the students

were only given 10 minutes to complete a task with little introduction.

Test two showed that teaching Hybrid Java as a FPL had promise, particu-

larly with school students. Despite covering the same material, the Hybrid

Java course was considered marginally easier. Test three helped to point

out some bugs with the tool and helped provide insight on how other edu-

cators perceive the tool. The number of participants at this workshop was

low, and as such there is further work to be done.

Overall, the initial development and testing of the Hybrid Java tool has

been very positive. Some strong feedback and initial opinions have been

received. All the testing phases were successfully completed, and some

encouraging results were received. This has allowed for the discovery of

where the tool best lies in the pedagogy of programming. A strong plan

can been laid out for future work and future development. Perhaps soon

we will see more hybrid programming languages being used as either a

FPL or as an intervention tool, as it certainly seems that using such a

language can have positive outcomes for students.

95

Part IV

C O N C L U S I O N S & F U T U R E W O R K

5
C O N C L U S I O N S A N D F U T U R E W O R K

This chapter will present the conclusions and future work components of

this project. It will examine the research questions and discuss these in de-

tail before suggesting possible future work that could be carried out with

the project to further enhance Hybrid Java, and to further the testing and

delivery of all three courses to further verify the "linear line" hypothesis,

discussed below.

5.1 conclusions

In this thesis, it has been shown that there are some differences when

teaching a VPL versus teaching a TPL. Outcomes when learning both lan-

guage can very much be the same, but this body of work has shown that a

TPL is more complex to understand, particularly for younger learners. As

discussed in Section 4.4.2, Hybrid Java appears to have some ease of use

that Java doesn’t, while not being considered quite as simple as Snap! was.

This leads us to the "Linear Line Hypothesis".

The Linear Line Hypothesis is a hypothesis held by the author that Hy-

brid Java (and in general, hybrid programming languages) rests in the

middle of a VPL (Snap!) and a TPL (Java) in terms of difficulty to under-

stand and ease of use. The testing phase in Chapter 4 aligns with this

hypothesis. A deeper analysis of Hybrid Java, and additional large-scale

testing phases and data analysis would be beneficial to proving this point.

However, the initial data very much aligns in this direction.

97

5.1 conclusions

5.1.1 research questions

In Section 1.3, the research questions for this project were presented. In

this section, an overview of the answers to these questions will be dis-

cussed. As a reminder, the questions were as follows:

1. Does the choice of language type affect the performance of learners

as they learn programming for the first time? (RQ1)

2. Do visual programming languages, given their close interconnection

with mathematics in terms of delivery, result in more effective and

higher performance outputs than textual languages? (RQ2)

3. Is there an alternative approach to the traditional programming lan-

guage types, and if so, how effective would this approach be? (RQ3)

For RQ1, it can be reasoned that yes, the choice of language can affect

the performance of learners as they learn programming for the first time.

Data presented in Chapter 3 has shown that Snap! is statistically signifi-

cantly easier to learn for Transition Year students than Java in certain sce-

narios. This is an important result, particularly because most research on

visual programming languages demonstrates the "traditional" use cases

for these languages as discussed in Chapter 2. For example, designing

simple games that interact with the sprites. This research examined the us-

age of Snap! when teaching first principles programming concepts. This

means that we can use a VPL to teach core programming, while making

the learning easier for our younger students. It would be valuable to see

more educators taking this approach. For older learners (University age

particularly), the data is a little less clear with much background research

highlighting that TPL gave better outcomes.

For RQ2, conclusions show that yes, VPLs can result in higher perfor-

mance outputs compared to TPLs, for certain age groups or types of stu-

dents. Students who took the assessment in the Snap! course in Section

98

5.1 conclusions

3.3.2 not only did so with a higher average grade, but also did so in a

faster average time. It is vital to remember that the programming exer-

cises for both the Snap! course and the Java course were designed to be

equivalent. The only differences in requirement were the language type

used. Everything was taught by the same educator, delivered in the same

manner, with the same topics and same examples. The only variables that

changed was the language type and editor. This result shows that using a

VPL as a first principles programming tool can be very effective with the

correct group.

For RQ3, it has been shown that a Hybrid model of programming is

an effective one. In particular, Hybrid Java was developed and has had

positive reactions from all members of the CS community (students and

educators alike). This Hybrid model allows for a reduction in verbosity

and overhead when teaching a TPL, without removing any of the features

or styling of a TPL. This allows for easy transition from the Hybrid model

to the Textual model, much easier than the leap from VPL straight to TPL.

More research is needed to fully verify the "place" where Hybrid program-

ming will be at its most effective. In the following sections, this will be

discussed in detail.

5.1.2 place for hybrid java

Hybrid Java is a tool that has potential for multiple different avenues of

success. These include:

• As a First Programming Language (particularly for youth)

• As an intervention tool (for struggling novice programmers at Uni-

versity level)

• As a "simplication" tool by showing only a small subset of blocks

necessary to solve a problem

99

5.2 challenges

A FPL is the most obvious function of the tool, given that this is what

it was developed for. Initial testing of delivering this as a short course

shows that there should be good outcomes when using Hybrid Java. It

will effectively teach programming concepts while also making learning

Java easier.

In Section 4.7, the Hybrid Java Package was discussed. This is one major

output of the project and will help to further test Hybrid Java as a FPL. This

package provides educators with an off-the-shelf tool which they can bring

into their classroom setting to help students as they learn programming.

They can use the provided instructions and materials to make it their own,

and teach programming in their own style utilising it.

Intervention is an important element of third level programming sup-

port. The author is very familiar with supporting students, as will be dis-

cussed more in Section 5.3.2. Hybrid Java has great potential in this space.

It can be used to support novice programmers through the obfuscation of

blocks, easing of verbosity and other key elements. This could even be

of great assistance to students with dyslexia or other reading difficulties,

reducing the complexity for them too.

Further to the above point, by obfuscating blocks we can create a simpli-

fied version of the tool (which can be built upon each week) to provide to

students. They can look at the list of blocks available to them and solve a

problem using only this subset. This reduces the cognitive load required.

Normally, with a TPL you would need to know all of the code and how to

write it, and then solve the problem on top of that.

5.2 challenges

No project delivery comes without it’s challenges. In this section, some of

the challenges that arose in this project will be evaluated.

100

5.3 future work

The primary challenge in this project was an extended deferral period.

Due to work commitments, work on this project stopped in September

2019 and no re-registration occurred until October 2022. Even so, very lit-

tle time was available during the academic year 2022-23. However, through

some dedicated time commitment and some great support from my super-

visor, my other colleagues and my family and friends alike, completion

was eventually achieved.

Some smaller challenges arose in the teaching phase of the project. There

were major differences in teaching style required in the public schools

attended versus the private ones. It was essential that this did not effect

the data, but it did prove challenging at the time.

Finally, a lack of time and lack of ease to get into schools in a post-

COVID-19 world meant that Hybrid Java did not get as much testing time

as would have been desired. This is something that is addressed in Section

5.3, and is something the author is passionate about continuing as part of

ongoing research in the future.

5.3 future work

This body of work has many potential avenues for continuation. This sec-

tion will discuss these ideas in detail. Some of this will be continued over

time by the author, other elements are available for others to experiment

with and improve upon.

5.3.1 full hybrid java delivery

The next major phase of comparison testing would involve teaching the

Java and Snap! curricula in some schools, and Hybrid Java in others. A

large scale study producing much data from "similar" school environments

will help conclusively determine the "difficulty" of Hybrid Java over a lon-

101

5.3 future work

gitudinal time-frame. It is expected that Hybrid Java will be easier than

Java but more difficult than Snap!, as discussed in earlier chapters.

5.3.2 further testing phases

Another phase of planned testing could be in the Computer Science Cen-

tre (CSC) at Maynooth University, to see how students who are currently

learning Java interact with it and how they perceive the benefits of the

tool. This would help to further examine the benefits of Hybrid Java as a

support tool, rather than a teaching tool. Is this where Hybrid Java partic-

ularly shines? Is is better suited as support for those who are otherwise

struggling with learning text-based Java?

The author has experience with working in (and managing) the CSC for

a number of years. There is definite scope for a tool such as this to assist

struggling programmers with their work. One of the major issues that

students have in our CS1 module is difficulty in typing. Minor typos or

poor indentation have lasting effects on their learning and progress. More

details on the CSC can be found in a number of publications which the

author contributed on [71, 72].

It would be interesting to see if students who are currently struggling

with the course material have a different outcome from interacting with

the tool. Perhaps it will provide them a different perspective on the chal-

lenges they are facing. In this testing phase, a comparison would be con-

ducted between students who only interact with Java, students who are

briefly introduced to Hybrid Java but still primarily work in Java and stu-

dents who heavily rely on Hybrid Java after their initial introduction. In

particular, it would be interesting to see if a like-for-like pair of students

(determined through some metrics such as Leaving Certificate results, sim-

ilar background, similar first semester results etc.) perform differently in

102

5.3 future work

the final examination with the only changing variable being the language

tool that was used.

5.3.3 object oriented programming

One of the strongest benefits of the Hybrid Java tool is its extensibility.

This is one of the key factors in a good first programming language [55].

Future development of the tool could involve the creation of additional

blocks. One area of focus that is not currently present is the ability to code

in an object-oriented manner. Some research will need to be undertaken

to determine the feasibility of this. Some other blocks could also be added

based on feedback from educators and students alike on missing blocks.

Similarly, as there is recognition for the requirement of new blocks, they

can be added.

Another tie-in concept to this is to implement libraries or algorithms

that "allow" more complex code to be ran in a simple fashion. Hybrid

Java is perfectly suited to this given that you can abstract the code behind

a visual block which the students simply need to place. For example, a

student could drag-and-drop a "Bubble Sort" block which takes input and

bubble sorts that input, all without needing to know the complexity of the

code at first.

5.3.4 hybrid java to java translation

Given the ease of extensibility of Snap!, another interesting task would be

to create a tool add-on that could convert the visual Hybrid Java blocks

into fully functional Java code. This code could then be taken and utilised

in an external Java compiler and should work like standard Java program-

ming. Alternatively, it could be examined whether a Java compiler could

be built underneath Snap! so that running Hybrid Java is more authentic,

103

5.3 future work

so that it has the ability to provide true errors and so that students would

have more understanding if their code failed. This would be a difficult

implementation, but it would provide major quality of life improvements

if it were possible.

Similarly, there is potential for the reverse to be possible. Using

Javascript (which already interfaces with Snap! in the background), a

"block" could be built which reads in a Java file and converts it to equiva-

lent Hybrid Java blocks. This would also be a challenging implementation,

but would have many interesting use cases if possible. From students

creating an "easier to modify" code sequence that they can then interface

with in the drag-and-drop methodology, to students inputting sample

code from their teacher with a task to then make modifications or fill in

the gaps.

5.3.5 visual feedback

Another key task for future development is providing better visual feed-

back to users. When a program is run, it is important to see what went

wrong if a user doesn’t get the expected output. This is an area that Hy-

brid Java is currently lacking in. Visual feedback has been shown to make

learning hard concepts easier [40]. This is something that can be improved

upon. As well as visual feedback, some functional "Java-like" error han-

dling would be helpful. Right now, if you are missing the non-functional

"main method" or "class" block, no errors occur. Implementation of Java er-

rors such as "Main method not found in class", "At least one public class is

required" and other such errors could be undertaken. This would help to

align Hybrid Java more closely with Java and make the transition between

the tools even more seamless. Meaningful error handling is important to

the understanding and comprehension of a language, and in the ability to

fix coding problems by oneself [47]. However, the option could be present

104

5.3 future work

for the educator to turn these errors off to provide an "easier" introduction

if desired.

5.3.6 other language options

With the framework for Hybrid Java created, it would now be much sim-

pler to design other programming language using the same model. For

example, Hybrid Python could be developed in much the same way, in

many cases simply needing to change the label of the block to look like

Python code, while the underlying Snap! code can remain the same. This

can be augmented with (or in some cases replaced by) additional blocks

that aren’t ordinarily present in Java. For example, with Python, Lists

would replace Arrays. Even functional languages could be modelled this

way. The opportunities are vast in this sphere.

5.3.7 hjp sharing

Finally, and perhaps most importantly, there is a plan to send on the com-

pleted "Hybrid Java Package" to second-level educators. This package con-

tains everything a teacher needs to get started with Hybrid Java: instruc-

tions for the tool itself, class plans, in-class slides and exercises, homework

sheets and a final assessment and feedback survey.

By sending this on to educators free of charge, with the only request

being that they send back results of the survey and anonymised exam

results (simply grades would suffice), we can see how a large range of stu-

dents perform while using this course. This will be an element of ongoing

large-scale data collection. From this data, we can analyse the position of

Hybrid Java within the pedagogy, and confirm (or deny) the initial anal-

ysis that it fits in between a visual programming language and a textual

programming language in terms of difficulty.

105

B I B L I O G R A P H Y

[1] Efthimia Aivaloglou and Felienne Hermans. “How kids code and

how we know: An exploratory study on the scratch repository”. In:

Proceedings of the 2016 ACM Conference on International Computing Ed-

ucation Research. ACM. 2016, pp. 53–61.

[2] Bedour Alshaigy, Samia Kamal, Faye Mitchell, Clare Martin, and

Arantza Aldea. “Pilet: an interactive learning tool to teach python”.

In: Proceedings of the Workshop in Primary and Secondary Computing

Education. ACM. 2015, pp. 76–79.

[3] Marvin Andujar, Luis Jimenez, Jugal Shah, and Patricia Morreale.

“Evaluating visual programming environments to teach computing

to minority high school students”. In: Journal of Computing Sciences

in Colleges 29.2 (2013), pp. 140–148.

[4] Jeraline Anniroot and M R de Villiers. “A study of Alice: A visual

environment for teaching object-oriented programming”. In: Proceed-

ings of the IADIS International Conference on Information Systems 2012

(2012).

[5] Michal Armoni, Orni Meerbaum-Salant, and Mordechai Ben-Ari.

“From scratch to “real” programming”. In: ACM Transactions on

Computing Education (TOCE) 14.4 (2015), p. 25.

[6] Muhammad Ateeq, Hina Habib, Adnan Umer, and Muzammil Ul

Rehman. “C++ or Python? Which One to Begin with: A Learner’s

Perspective”. In: Teaching and Learning in Computing and Engineering

(LaTiCE), 2014 International Conference on. IEEE. 2014, pp. 64–69.

106

Bibliography

[7] Barbara P Benson. How to meet standards, motivate students, and still en-

joy teaching!: four practices that improve student learning. Corwin Press,

2003.

[8] Joe Bergin, Achla Agarwal, and Krishna Agarwal. “Some deficien-

cies of C++ in teaching CS1 and CS2”. In: ACM SIGPlan Notices 38.6

(2003), pp. 9–13.

[9] Marat Boshernitsan and Michael Downes. “Visual Programming

Languages: A Survey”. In: Computer Science Division (EECS) (2004).

[10] Berkeley University of California. Beauty and Joy of Computing: An

AP CS Principles Curriculum. [Online; accessed 2023-08-08]. 2023. url:

https://bjc.edc.org/.

[11] Nora Ide McAuliffe Carl O’Brien Joe Humphreys. Concern over drop-

out rates in computer science courses. [Online; accessed 2023-08-02].

2016. url: http://www.irishtimes.com/news/education/concern-

over-drop-out-rates-in-computer-science-courses-1.2491751.

[12] Martin C Carlisle, Terry A Wilson, Jeffrey W Humphries, and Steven

M Hadfield. “RAPTOR: a visual programming environment for

teaching algorithmic problem solving”. In: Acm Sigcse Bulletin 37.1

(2005), pp. 176–180.

[13] Joey CY Cheung, Grace Ngai, Stephen CF Chan, and Winnie WY

Lau. “Filling the gap in programming instruction: a text-enhanced

graphical programming environment for junior high students”. In:

ACM SIGCSE Bulletin. Vol. 41. ACM. 2009, pp. 276–280.

[14] Charmain Cilliers, André Calitz, and Jéan Greyling. “The effect of

integrating an Iconic programming notation into CS1”. In: ACM

SIGCSE Bulletin. Vol. 37. ACM. 2005, pp. 108–112.

[15] Daniel C Cliburn. “Student opinions of Alice in CS1”. In: Frontiers in

Education Conference, 2008. FIE 2008. 38th Annual. IEEE. 2008, T3B–1.

107

https://bjc.edc.org/
http://www.irishtimes.com/news/education/concern-over-drop-out-rates-in-computer-science-courses-1.2491751
http://www.irishtimes.com/news/education/concern-over-drop-out-rates-in-computer-science-courses-1.2491751

Bibliography

[16] Stephen Cooper. “The design of Alice”. In: ACM Transactions on Com-

puting Education (TOCE) 10.4 (2010), p. 15.

[17] National Council for Curriculum and Assessment. Leaving certifi-

cate computer science draft curriculum specification. [Online; accessed

2023-08-02]. 2017. url: https : / / www . ncca . ie / media / 3184 / lc -

computerscience.pdf.

[18] Tebring Daly. “Minimizing to maximize: an initial attempt at teach-

ing introductory programming using Alice”. In: Journal of Computing

Sciences in Colleges 26.5 (2011), pp. 23–30.

[19] Stephen Davies, Jennifer A Polack-Wahl, and Karen Anewalt. “A

snapshot of current practices in teaching the introductory program-

ming sequence”. In: Proceedings of the 42nd ACM technical symposium

on Computer science education. ACM. 2011, pp. 625–630.

[20] Katherine Donnelly. Computer Science finally on the way for Leav-

ing Cert students. [Online; accessed 2023-08-02]. 2016. url: http :

//www.independent.ie/irish-news/education/computer-science-

finally-on-the-way-for-leaving-cert-students-34576921.html.

[21] Mark Dorling and Dave White. “Scratch: A way to logo and python”.

In: Proceedings of the 46th ACM Technical Symposium on Computer Sci-

ence Education. ACM. 2015, pp. 191–196.

[22] Wendy M DuBow, Beth A Quinn, Gloria Childress Townsend,

Rosario Robinson, and Valerie Barr. “Efforts to make computer

science more inclusive of women”. In: ACM Inroads 7.4 (2016),

pp. 74–80.

[23] Chaker Eid and Richard Millham. “Which Introductory Program-

ming Approach Is Most Suitable For Students: Procedural Or Visual

Programming?” In: American Journal of Business Education (Online) 5.2

(2012), p. 173.

108

https://www.ncca.ie/media/3184/lc-computerscience.pdf
https://www.ncca.ie/media/3184/lc-computerscience.pdf
http://www.independent.ie/irish-news/education/computer-science-finally-on-the-way-for-leaving-cert-students-34576921.html
http://www.independent.ie/irish-news/education/computer-science-finally-on-the-way-for-leaving-cert-students-34576921.html
http://www.independent.ie/irish-news/education/computer-science-finally-on-the-way-for-leaving-cert-students-34576921.html

Bibliography

[24] Stefano Federici. “A minimal, extensible, drag-and-drop implemen-

tation of the C programming language”. In: Proceedings of the 2011

conference on Information technology education. ACM. 2011, pp. 191–

196.

[25] Ryan Garlick and Ebru Celikel Cankaya. “Using alice in CS1: a quan-

titative experiment”. In: Proceedings of the fifteenth annual conference

on Innovation and technology in computer science education. ACM. 2010,

pp. 165–168.

[26] Daniela Giordano and Francesco Maiorana. “Use of cutting edge

educational tools for an initial programming course”. In: Global

Engineering Education Conference (EDUCON), 2014 IEEE. IEEE. 2014,

pp. 556–563.

[27] Linda Grandell, Mia Peltomäki, Ralph-Johan Back, and Tapio

Salakoski. “Why complicate things?: introducing programming in

high school using Python”. In: Proceedings of the 8th Australasian

Conference on Computing Education-Volume 52. Australian Computer

Society, Inc. 2006, pp. 71–80.

[28] JH Greyling, CB Cilliers, and AP Calitz. “B#: The development and

assessment of an iconic programming tool for novice programmers”.

In: Information Technology Based Higher Education and Training, 2006.

ITHET’06. 7th International Conference on. IEEE. 2006, pp. 367–375.

[29] Diwaker Gupta. “What is a good first programming language?” In:

Crossroads 10.4 (2004), pp. 7–7.

[30] Alden H Harken. “To block or not to block? That is the question”.

In: The Journal of Thoracic and Cardiovascular Surgery 149.4 (2015),

pp. 1040–1041.

[31] Brian Harvey and Jens Mönig. Snap! (Build Your Own Blocks). [Online;

accessed 2023-08-22]. 2023. url: https://snap.berkeley.edu/about.

109

https://snap.berkeley.edu/about

Bibliography

[32] A Hintze and B Romagosa. Snapp! [Online; accessed 2023-08-23].

2023. url: http://snapp.citilab.eu/.

[33] John M Hunt. “Python in CS1-not”. In: Journal of Computing Sciences

in Colleges 31.2 (2015), pp. 172–179.

[34] Hybrid Java Programming: A Visual-Textual Programming Language

Workshop. Accessed: 2023-07-31. url: https://www.cs.kent.ac.uk/

events/2019/UKICER2019/workshopchoice.html.

[35] Mirjana Ivanović, Zoran Budimac, Miloš Radovanović, and Miloš

Savić. “Does the choice of the first programming language influence

students’ grades?” In: Proceedings of the 16th International Conference

on Computer Systems and Technologies. ACM. 2015, pp. 305–312.

[36] Karin Johnsgard and James McDonald. “Using alice in overview

courses to improve success rates in programming i”. In: Software En-

gineering Education and Training, 2008. CSEET’08. IEEE 21st Conference

on. IEEE. 2008, pp. 129–136.

[37] Sara B Johnson, Robert W Blum, and Jay N Giedd. “Adolescent matu-

rity and the brain: the promise and pitfalls of neuroscience research

in adolescent health policy”. In: Journal of adolescent health 45.3 (2009),

pp. 216–221.

[38] Staffs Keele. “Guidelines for performing systematic literature re-

views in software engineering”. In: Technical report, Ver. 2.3 EBSE

Technical Report. EBSE. sn, 2007.

[39] James D Kiper, Elizabeth Howard, and Chuck Ames. “Criteria for

evaluation of visual programming languages”. In: Journal of Visual

Languages & Computing 8.2 (1997), pp. 175–192.

[40] Myungsook Klassen. “Visual approach for teaching programming

concepts”. In: 9th International conference on Engineering Education.

Citeseer. 2006, pp. 23–28.

110

http://snapp.citilab.eu/
https://www.cs.kent.ac.uk/events/2019/UKICER2019/workshopchoice.html
https://www.cs.kent.ac.uk/events/2019/UKICER2019/workshopchoice.html

Bibliography

[41] Roxane Koitz and Wolfgang Slany. “Empirical comparison of visual

to hybrid formula manipulation in educational programming lan-

guages for teenagers”. In: Proceedings of the 5th Workshop on Evalu-

ation and Usability of Programming Languages and Tools. ACM. 2014,

pp. 21–30.

[42] Michael Kölling. “The greenfoot programming environment”. In:

ACM Transactions on Computing Education (TOCE) 10.4 (2010), pp. 1–

21.

[43] Michael Kölling, Bruce Quig, Andrew Patterson, and John Rosen-

berg. “The BlueJ system and its pedagogy”. In: Computer Science Edu-

cation 13.4 (2003), pp. 249–268. doi: 10.1076/csed.13.4.249.17496.

[44] Stephen D Krashen. “Principles and Practice in Second Language

Acquisition”. In: Learning 46.2 (1982), pp. 327–69.

[45] Charalampos Kyfonidis, Nektarios Moumoutzis, and Stavros

Christodoulakis. “Block-C: A block-based visual environment for

supporting the teaching of C programming language to novices”. In:

(2015).

[46] Mikko-Jussi Laakso, Erkki Kaila, Teemu Rajala, and Tapio Salakoski.

“Define and visualize your first programming language”. In: Ad-

vanced Learning Technologies, 2008. ICALT’08. Eighth IEEE International

Conference on. IEEE. 2008, p. 324.

[47] Essi Lahtinen, Kirsti Ala-Mutka, and Hannu-Matti Järvinen. “A

study of the difficulties of novice programmers”. In: Acm Sigcse

Bulletin. Vol. 37. ACM. 2005, pp. 14–18.

[48] Vambola Leping, Marina Lepp, Margus Niitsoo, Eno Tõnisson,

Varmo Vene, and Anne Villems. “Python prevails”. In: Proceedings of

the International Conference on Computer Systems and Technologies and

Workshop for PhD Students in Computing. ACM. 2009, p. 87.

111

https://doi.org/10.1076/csed.13.4.249.17496

Bibliography

[49] Colleen M Lewis. “How programming environment shapes percep-

tion, learning and goals: logo vs. scratch”. In: Proceedings of the 41st

ACM technical symposium on Computer science education. ACM. 2010,

pp. 346–350.

[50] Andrew Luxton-Reilly. “Learning to program is easy”. In: Proceed-

ings of the 2016 ACM Conference on Innovation and Technology in Com-

puter Science Education. ACM. 2016, pp. 284–289.

[51] Lifelong Kindergarten Group at the MIT Media Lab. Scratch Statistics.

[Online; accessed 2023-08-02]. 2023. url: https://scratch.mit.edu/

statistics/.

[52] Louis Major, Theocharis Kyriacou, and O Pearl Brereton. “System-

atic literature review: teaching novices programming using robots”.

In: IET software 6.6 (2012), pp. 502–513.

[53] John Maloney, Mitchel Resnick, Natalie Rusk, Brian Silverman, and

Evelyn Eastmond. “The scratch programming language and envi-

ronment”. In: ACM Transactions on Computing Education (TOCE) 10.4

(2010), p. 16.

[54] Linda Mannila, Mia Peltomäki, and Tapio Salakoski. “What about a

simple language? Analyzing the difficulties in learning to program”.

In: Computer Science Education 16.3 (2006), pp. 211–227.

[55] Linda Mannila and Michael de Raadt. “An objective comparison of

languages for teaching introductory programming”. In: Proceedings

of the 6th Baltic Sea conference on Computing education research: Koli

Calling 2006. ACM. 2006, pp. 32–37.

[56] Yoshiaki Matsuzawa, Takashi Ohata, Manabu Sugiura, and Sanshiro

Sakai. “Language migration in non-cs introductory programming

through mutual language translation environment”. In: Proceedings

of the 46th ACM Technical Symposium on Computer Science Education.

ACM. 2015, pp. 185–190.

112

https://scratch.mit.edu/statistics/
https://scratch.mit.edu/statistics/

Bibliography

[57] Orni Meerbaum-Salant, Michal Armoni, and Mordechai Ben-Ari.

“Habits of programming in scratch”. In: Proceedings of the 16th an-

nual joint conference on Innovation and technology in computer science

education. ACM. 2011, pp. 168–172.

[58] Mendeley. Mendeley Reference Manager. [Online; accessed 2023-08-02].

2017. url: https://www.mendeley.com/.

[59] Susana Montero, Paloma Díaz, David Díez, and Ignacio Aedo. “Dual

Instructional Support Materials for introductory object-oriented pro-

gramming: classes vs. objects”. In: Education Engineering (EDUCON),

2010 IEEE. IEEE. 2010, pp. 1929–1934.

[60] Aidan Mooney, Joe Duffin, Thomas J Naughton, Rosemary Mona-

han, James F Power, and Phil Maguire. “PACT: An initiative to intro-

duce computational thinking to second-level education in Ireland”.

In: (2014).

[61] Aidan Mooney, Mark Noone, and Emily O’Regan. “Creation of a

Hybrid Programming Language”. In: (2019). Accessed: 2023-07-31.

url: http://ilta.ie/wp-content/uploads/2019/05/Edtech-19-

Book-of-Abstracts-1.pdf.

[62] Paul Mullins, Deborah Whitfield, and Michael Conlon. “Using Alice

2.0 as a first language”. In: Journal of Computing Sciences in Colleges

24.3 (2009), pp. 136–143.

[63] Uolevi Nikula, Jorma Sajaniemi, Matti Tedre, and Stuart Wray.

“Python and roles of variables in introductory programming: experi-

ences from three educational institutions”. In: Journal of Information

Technology Education 6 (2007), pp. 199–214.

[64] Keith Nolan and Susan Bergin. “The role of anxiety when learning

to program: a systematic review of the literature”. In: Proceedings of

the 16th Koli Calling International Conference on Computing Education

Research. ACM. 2016, pp. 61–70.

113

https://www.mendeley.com/
http://ilta.ie/wp-content/uploads/2019/05/Edtech-19-Book-of-Abstracts-1.pdf
http://ilta.ie/wp-content/uploads/2019/05/Edtech-19-Book-of-Abstracts-1.pdf

Bibliography

[65] Keith Nolan, Aidan Mooney, and Susan Bergin. “Facilitating student

learning in Computer Science: large class sizes and interventions”.

In: 2015.

[66] Mark Noone. Hybrid Java Online Tool. [Online; accessed 2023-08-21].

2023. url: https://snap.berkeley.edu/snap/snap.html#present:

Username=marknoone&ProjectName=HYBRID_JAVA_NEWORDER.

[67] Mark Noone and Aidan Mooney. “First Programming Language :

Visual or Textual?” In: International Conference on Engaging Pedagogy

(ICEP). 2017. url: http://icep.ie/wp-content/uploads/2018/01/

ICEP_2017_paper_Mark_N.pdf.

[68] Mark Noone and Aidan Mooney. “Visual and textual programming

languages: a systematic review of the literature”. In: Journal of Com-

puters in Education 5 (2018), pp. 149–174.

[69] Mark Noone and Aidan Mooney. “First Programming Language-

Java or Snap? A Short Course Perspective”. In: 10th Annual Interna-

tional Conference on Computer Science Education: Innovation and Technol-

ogy (CSEIT 2019). Bangkok, 2019. doi: 10.5176/2251-2195_CSEIT19.

148.

[70] Mark Noone, Aidan Mooney, and Keith Nolan. “Hybrid Java: The

creation of a Hybrid Programming Environment”. In: Irish Journal of

Technology Enhanced Learning 5.1 (2020).

[71] Mark Noone, Aidan Mooney, Amy Thompson, Frank Glavin, Mon-

ica Ward, Keith Nolan, Emer Thornbury, John Andrews, and David

Williams. “A Review of the Supports Available to Third-Level Pro-

gramming Students in Ireland”. In: All Ireland Journal of Higher Edu-

cation 14.2 (2022).

[72] Mark Noone, Amy Thompson, and Aidan Mooney. “An Overview

of the Redevelopment of a Computer Science Support Centre and

114

https://snap.berkeley.edu/snap/snap.html#present:Username=marknoone&ProjectName=HYBRID_JAVA_NEWORDER
https://snap.berkeley.edu/snap/snap.html#present:Username=marknoone&ProjectName=HYBRID_JAVA_NEWORDER
http://icep.ie/wp-content/uploads/2018/01/ICEP_2017_paper_Mark_N.pdf
http://icep.ie/wp-content/uploads/2018/01/ICEP_2017_paper_Mark_N.pdf
https://doi.org/10.5176/2251-2195_CSEIT19.148
https://doi.org/10.5176/2251-2195_CSEIT19.148

Bibliography

the Associated Pedagogy Impacts”. In: All Ireland Journal of Higher

Education 13.2 (2021).

[73] Brenda Parker. “Teaching experiences with Alice for high school

students”. In: Journal of Computing Sciences in Colleges 27.2 (2011),

pp. 148–155.

[74] Matthew Poole. “Design of a blocks-based environment for intro-

ductory programming in Python”. In: 2015 IEEE Blocks and Beyond

Workshop (Blocks and Beyond). IEEE. 2015, pp. 31–34.

[75] Cornelius Preidel, Simon Daum, and André Borrmann. “Data re-

trieval from building information models based on visual program-

ming”. In: Visualization in Engineering 5 (2017), pp. 1–14. doi: 10 .

1186/s40327-017-0055-0.

[76] Thomas W Price and Tiffany Barnes. “Comparing textual and block

interfaces in a novice programming environment”. In: Proceedings of

the eleventh annual International Conference on International Computing

Education Research. ACM. 2015, pp. 91–99.

[77] Keith Quille, Susan Bergin, and Aidan Mooney. “Programming: Fac-

tors that Influence Success Revisited and Expanded”. In: 2015.

[78] Abhiram G Ranade. “Introductory Programming: Let Us Cut

through the Clutter!” In: Proceedings of the 2016 ACM Conference on

Innovation and Technology in Computer Science Education. ACM. 2016,

pp. 278–283.

[79] William Robinson. “From Scratch to Patch: Easing the Blocks-Text

Transition”. In: Proceedings of the 11th Workshop in Primary and Sec-

ondary Computing Education. ACM. 2016, pp. 96–99.

[80] José-Manuel Sáez-López, Marcos Román-González, and Esteban

Vázquez-Cano. “Visual programming languages integrated across

the curriculum in elementary school: A two year case study using

115

https://doi.org/10.1186/s40327-017-0055-0
https://doi.org/10.1186/s40327-017-0055-0

Bibliography

“Scratch” in five schools”. In: Computers & Education 97 (2016),

pp. 129–141.

[81] Sergio Sandoval-Reyes, Pedro Galicia-Galicia, and Ivan Gutierrez-

Sanchez. “Visual learning environments for computer program-

ming”. In: Electronics, Robotics and Automotive Mechanics Conference

(CERMA), 2011 IEEE. IEEE. 2011, pp. 439–444.

[82] Cheryl Seals, Yolanda Mcmillian, Kenneth Rouse, Ravikant Agarwal,

Andrea Williams Johnson, Juan E Gilbert, and Richard Chapman.

“Computer Gaming At Every Age: A Comparative Evaluation Of

Alice”. In: i-Manager’s Journal of Educational Technology 5.3 (2008), p. 1.

[83] Short Course Coding Specification for Junior Cycle. Accessed: 2023-07-

28. url: https://curriculumonline.ie/getmedia/cc254b82-1114-

496e-bc4a-11f5b14a557f/NCCA-JC-Short-Course-Coding.pdf.

[84] Romenig da Silva Ribeiro, Leônidas de Oliveira Brandão, Tulio Vitor

Machado Faria, and Anarosa Alves Franco Brandäo. “Programming

web-course analysis: how to introduce computer programming?” In:

Frontiers in Education Conference (FIE), 2014 IEEE. IEEE. 2014, pp. 1–8.

[85] Wolfgang Slany. “Catroid: a mobile visual programming system for

children”. In: Proceedings of the 11th International Conference on Interac-

tion Design and Children. ACM. 2012, pp. 300–303.

[86] Neil Smith, Clare Sutcliffe, and Linda Sandvik. “Code club: bringing

programming to UK primary schools through scratch”. In: Proceed-

ings of the 45th ACM technical symposium on Computer science education.

ACM. 2014, pp. 517–522.

[87] TIOBE Software. TIOBE Index for July 2023. [Online; accessed 2023-

08-02]. 2023. url: http://www.tiobe.com/tiobe-index/.

[88] Elizabeth R Sowell, Paul M Thompson, Kevin D Tessner, and Arthur

W Toga. “Mapping continued brain growth and gray matter density

reduction in dorsal frontal cortex: Inverse relationships during posta-

116

https://curriculumonline.ie/getmedia/cc254b82-1114-496e-bc4a-11f5b14a557f/NCCA-JC-Short-Course-Coding.pdf
https://curriculumonline.ie/getmedia/cc254b82-1114-496e-bc4a-11f5b14a557f/NCCA-JC-Short-Course-Coding.pdf
http://www.tiobe.com/tiobe-index/

Bibliography

dolescent brain maturation”. In: Journal of Neuroscience 21.22 (2001),

pp. 8819–8829.

[89] Edward R Sykes. “Determining the effectiveness of the 3D Alice pro-

gramming environment at the computer science I level”. In: Journal

of Educational Computing Research 36.2 (2007), pp. 223–244.

[90] Brendan Tangney, Elizabeth Oldham, Claire Conneely, Stephen Bar-

rett, and John Lawlor. “Pedagogy and processes for a computer pro-

gramming outreach workshop—The bridge to college model”. In:

IEEE Transactions on Education 53.1 (2010), pp. 53–60.

[91] Christopher Watson and Frederick WB Li. “Failure rates in introduc-

tory programming revisited”. In: Proceedings of the 2014 conference on

Innovation & technology in computer science education. 2014, pp. 39–44.

[92] David Weintrop. “Blocks, text, and the space between: The role of

representations in novice programming environments”. In: Visual

Languages and Human-Centric Computing (VL/HCC), 2015 IEEE Sym-

posium on. IEEE. 2015, pp. 301–302.

[93] David Weintrop and Uri Wilensky. “To block or not to block, that is

the question: students’ perceptions of blocks-based programming”.

In: Proceedings of the 14th International Conference on Interaction Design

and Children. ACM. 2015, pp. 199–208.

[94] Kirsten N. Whitley. “Visual programming languages and the empir-

ical evidence for and against”. In: Journal of Visual Languages & Com-

puting 8.1 (1997), pp. 109–142.

117

A
A P P E N D I X 1 - S U M M E R C A M P S E S S I O N S

a.1 initial session materials

This appendix section covers all material related to the initial Summer

Camp tests. Included are slides for both sessions, the survey questions

that were administered and a raw data sheet.

a.1.1 java session material

118

A.1 initial session materials

119

A.1 initial session materials

120

A.1 initial session materials

121

A.1 initial session materials

122

A.1 initial session materials

123

A.1 initial session materials

124

A.1 initial session materials

125

A.1 initial session materials

126

A.1 initial session materials

a.1.2 snap! session material

127

A.1 initial session materials

128

A.1 initial session materials

129

A.1 initial session materials

130

A.1 initial session materials

131

A.1 initial session materials

132

A.1 initial session materials

133

A.1 initial session materials

a.1.3 survey questions

1. What age are you?

• 9 or younger

• 10 - 12

• 13 - 15

• 16 or Older

2. What gender are you? (Male, Female)

3. How would you rate the difficulty of Snap!? (1-10)

4. How would you rate the difficulty of Java? (1-10)

5. What was the hardest aspect of Snap! to learn?

• Variables

• Selection (if / else)

• Loops

• Drawing Shapes

134

A.1 initial session materials

6. What was the hardest aspect of Java to learn?

• Variables

• Selection (if / else)

• Loops

• Drawing Shapes

7. Did you enjoy the Snap! course? (Yes / No / It was OK)

8. Did you enjoy the Java course? (Yes / No / It was OK)

9. Which course did you prefer? (Snap! / Java)

10. What was your favourite thing from either course?

11. What was your least favourite thing from either course?

12. Which style of programming do you prefer?

• Text (Java)

• Blocks (Snap!)

• Both are equally good!

13. Would you like to learn more programming in the future? (Yes / No

/ Maybe)

14. Any other comments?

135

A.1 initial session materials

a.1.4 data sheet

136

B
A P P E N D I X 2 - F U L L C O U R S E S

b.1 full course materials

The materials provided to students for the Java and Snap! courses can be

found on Padlet:

• https://padlet.com/mark_noone1/snap

• https://padlet.com/mark_noone1/java

• https://padlet.com/mark_noone/hybridjava

You can also find all material including class plans and some additional

files here: https://tinyurl.com/mncoursematerials

137

https://padlet.com/mark_noone1/snap
https://padlet.com/mark_noone1/java
https://padlet.com/mark_noone/hybridjava
https://tinyurl.com/mncoursematerials

C
A P P E N D I X 3 - H Y B R I D J AVA B L O C K S

c.1 full list of all hybrid java blocks

This appendix contains an overview of all of the blocks created for Hybrid

Java. All blocks were placed under the "Control", "Sensing", "Operators",

and "Variables" sections of the Snap! User Interface.

Under the "Control" category the setup and section blocks can be seen;

the full list is presented in Figure C.1.

Under the "Sensing" category, blocks that can be used to make code

comments in the programs can be located. These blocks can be seen in

Figure C.2.

Under the "Operators" category, all of the blocks that are related to op-

erations (standard operators, increment / decrement, relational operators

and logical operators) are located. These blocks can be seen in Figure C.3.

Finally, under the "Variables" category, all of the remaining blocks, those

related to the creation of standard variables, Strings, arrays and all ele-

ments for manipulating these variables are located. These blocks can be

seen in Figure C.4, Figure C.5 and Figure C.6.

Using all of these blocks, the majority of programs that would be used

in a CS1 course can be created up until the point of Object Oriented Pro-

gramming.

Further examples and background can be found on the Padlet Repos-

itory used during the UKICER conference: https://padlet.com/mark_

noone1/hybrid-java-repository-nm96n0f3ar3a.

138

https://padlet.com/mark_noone1/hybrid-java-repository-nm96n0f3ar3a
https://padlet.com/mark_noone1/hybrid-java-repository-nm96n0f3ar3a

C.1 full list of all hybrid java blocks

Figure C.1: "Control" Blocks

Figure C.2: "Sensing" Blocks

139

C.1 full list of all hybrid java blocks

Figure C.3: "Operators" Blocks

140

C.1 full list of all hybrid java blocks

Figure C.4: "Variables" Blocks – Variables, Strings, Scanner

141

C.1 full list of all hybrid java blocks

Figure C.5: "Variables" Blocks – Random, Parse, Arrays

142

C.1 full list of all hybrid java blocks

Figure C.6: "Variables" Blocks – 2D Arrays

143

	Contents
	List of Figures
	List of Tables
	Abstract
	Acknowledgments
	Acronyms
	declaration
	Introduction & Background
	1 Introduction & Background
	1.1 Introduction
	1.2 Motivation
	1.3 Goals and Research Questions
	1.4 Contributions
	1.5 List of Publications
	1.6 Ethical Approval
	1.7 Thesis Overview

	2 Related Work
	2.1 Overview of Systematic Literature Review
	2.1.1 Introduction and Motivation
	2.1.2 Research Questions
	2.1.3 Background

	2.2 Method
	2.2.1 Introduction
	2.2.2 Resources Searched
	2.2.3 Search Terms
	2.2.4 Document Selection
	2.2.5 Quality Assessment
	2.2.6 Data Extraction and Synthesis

	2.3 Dataset
	2.3.1 Types of Studies
	2.3.2 Timeline of chosen publications
	2.3.3 Data Sources
	2.3.4 Dataset Discussion

	2.4 Results
	2.4.1 Research Question 1: Are there any benefits of learning a visual programming language over a traditional text-based language?
	2.4.2 Research Question 2: Does the choice of First Programming Language make a difference? What languages are the best ones to teach?
	2.4.3 Discussion

	2.5 Summary

	Course Development & Testing
	3 Initial Course Development
	3.1 Overview
	3.2 Initial Test Sessions
	3.2.1 Language Choice
	3.2.2 Sessions Overview
	3.2.3 Initial Pilot Test
	3.2.4 Data Collection
	3.2.5 Main Session Delivery
	3.2.6 Summer Camp Outcomes

	3.3 Full Courses
	3.3.1 Courses Overview
	3.3.2 Schools Testing

	3.4 Need for a Hybrid Model
	3.5 Summary

	Hybrid Programming
	4 Hybrid Java
	4.1 The Need for Hybrid Java and Introduction
	4.2 Additional Hybrid Programming Background
	4.3 Hybrid Java Development
	4.3.1 Block Sections

	4.4 Hybrid Java Testing
	4.4.1 Test 1: Undergraduate Survey
	4.4.2 Test 2: Computer Science Summer Camp
	4.4.3 Test 3: UKICER Workshop
	4.4.4 Iterative Development

	4.5 Building the Hybrid Java Curriculum
	4.6 Other Uses for Hybrid Java
	4.7 The Hybrid Java Package
	4.8 Summary

	Conclusions & Future Work
	5 Conclusions and Future Work
	5.1 Conclusions
	5.1.1 Research Questions
	5.1.2 Place for Hybrid Java

	5.2 Challenges
	5.3 Future Work
	5.3.1 Full Hybrid Java Delivery
	5.3.2 Further Testing Phases
	5.3.3 Object Oriented Programming
	5.3.4 Hybrid Java to Java translation
	5.3.5 Visual Feedback
	5.3.6 Other Language Options
	5.3.7 HJP Sharing

	Bibliography
	Appendix
	A Appendix 1 - Summer Camp Sessions
	A.1 Initial Session Materials
	A.1.1 Java Session Material
	A.1.2 Snap! Session Material
	A.1.3 Survey Questions
	A.1.4 Data Sheet

	B Appendix 2 - Full Courses
	B.1 Full Course Materials

	C Appendix 3 - Hybrid Java Blocks
	C.1 Full List of all Hybrid Java Blocks

