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Abstract
We propose a Bayesian, noisy-input, spatial–temporal generalized additive model to examine regional relative 
sea-level (RSL) changes over time. The model provides probabilistic estimates of component drivers of 
regional RSL change via the combination of a univariate spline capturing a common regional signal over 
time, random slopes and intercepts capturing site-specific (local), long-term linear trends and a spatial– 
temporal spline capturing residual, non-linear, local variations. Proxy and instrumental records of RSL and 
corresponding measurement errors inform the model and a noisy-input method accounts for proxy 
temporal uncertainties. Results highlight the decomposition of regional RSL changes over 3,000 years 
along North America’s Atlantic coast. The physical process glacial isostatic adjustment prevailed before 
1800 CE, with anthropogenic forcing dominating after 1900 CE.
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1 Introduction
The Intergovernmental Panel for Climate Change (IPCC) in 2021 reported with ‘high confidence’ 
that global mean rates of sea-level rise increased from approximately 1.3 mm/year between 1901 
and 1971 to 3.7 mm/year between 2006 and 2018, with a further increase in rates predicted for the 
remainder of the 21st century (Masson-Delmotte et al., 2021, p. 5). In contextualizing the socio- 
economic risk that this sea-level rise poses for coastal communities, it is necessary to place historic 
and predicted changes in a longer term (pre-anthropogenic) context and to recognize that local sea 
level can diverge sharply from the global average.

Relative sea level (RSL) is the height of the ocean surface at any given location and time, meas
ured relative to the adjacent land (Church & Clark, 2013). Direct measurements of RSL (typically 
considered to be high accuracy and with low uncertainty) are made by a network of coastal tide 
gauges whose spatial distribution is highly uneven and whose temporal duration is typically lim
ited to the past ∼100 years or less (Church & White, 2011). Understanding RSL before tide-gauge 
measurements began requires proxies (physical, biological, or chemical features with an ‘observ
able and systematic relationship to tidal elevation’; Horton et al., 2018) that are preserved in dated 
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geological archives such as coastal sediment (e.g. Gehrels, 1994) or corals (e.g. Meltzner et al., 
2017). For the past 3,000 years (a period in Earth’s history called the late Holocene), it is possible 
to generate near-continuous proxy RSL reconstructions that overlap tide-gauge measurements 
(Kemp et al., 2013). The suite of late Holocene RSL proxy reconstructions is growing, but their 
global distribution is highly uneven (Ashe et al., 2019). However, the Atlantic coast of North 
America has a relatively large number of datasets (Figure 1) generated from sediment that accu
mulated in salt-marsh (e.g. Kemp et al., 2018) and mangrove environments (e.g. Khan et al., 
2022). We therefore focus on this region to develop a new statistical model for quantifying pat
terns, rates, associated uncertainties and possible causes of late Holocene RSL change from a com
bination of proxy reconstructions and tide-gauge measurements concurrently. A general 
discussion on how proxy records are developed is provided in Section 2, and we point the reader 
in the direction of Shennan et al. (2015) for a more detailed account of the methodologies em
ployed by the paleo sea-level community. In this article, we focus on analysing published data aris
ing from proxy RSL reconstructions. The proxy records contain RSL estimates throughout time 
for different locations, specifically along the Atlantic coast of North America, and have associated 
bivariate uncertainties, i.e. uncertainty in time and vertical uncertainty in RSL (Figure 2).

Tide gauges and proxy records can only capture RSL, which is the net outcome of a complex 
combination of physical processes operating on characteristic temporal (years to millennia) and 
spatial (site-specific to global) scales. These physical processes often act simultaneously and serve 
to reinforce or mask one another; they can change both the height of the sea-surface and that of the 
land differently through time and across space (Khan et al., 2022). Consequently, RSL measure
ments can display a rich variety of spatio-temporal patterns. A principal goal of sea-level research 
is to interrogate these patterns to identify and quantify the contribution from specific physical 
processes including (but not limited to) the multi-millennial and regional response of the solid 

Cedar Island,
 North Carolina

Placentia,
 Newfoundland

Swan Key,
 Florida

East River Marsh,
 Connecticut

1000 km

Atlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic OceanAtlantic Ocean

N

25°N

30°N

35°N

40°N

45°N

50°N

85°W 80°W 75°W 70°W 65°W 60°W 55°W 50°W
Longitude

L
at

it
u

d
e

Proxy Record Sites

Tide−Gauge Sites

Figure 1. Location of the 66 tide gauge sites and 21 proxy record data sites along the Atlantic coast of North America 
with four proxy record sites chosen as case studies to present results of our model.
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Earth to de-glaciation, decadal to centennial redistribution of ocean water by changing currents, 
and the recent (multi-decadal) acceleration of global average sea-level rise in response to a warm
ing climate (Church & Clark, 2013). This goal requires a means to decompose the site-specific RSL 
signal at each locality in the network into contributions at different temporal and spatial scales, 
while accounting for uncertainties in the underlying data.

The most widely used tool for decomposing late Holocene RSL is a model developed by Kopp 
et al. (2016, hereon K16) and its various extensions (Kemp et al., 2018; Walker et al., 2021). The 
K16 model decomposes RSL into three categories: (i) a non-linear signal common to all records in 
the dataset being analysed (termed global, irrespective of the geographic range of input data); (ii) a 
regional signal characterized by a linear rate of change over the past ∼2,000 years, and (iii) a local 
(site-specific) signal that operates in a non-linear fashion. Rather than representing specific phys
ical processes, these categories serve to represent groups of processes that operate at similar spatial 
and temporal scales informed by the data. K16 employs Gaussian Processes (GPs) for each com
ponent and, due to the associated computational burden that grows in proportion with the cube of 
the number of data points, relies on a maximum likelihood approach to estimate and fix model 
hyperparameters. These modelling decisions, that aim to reduce the computational burden of 
GPs, can impact uncertainty quantification (Ashe et al., 2019). In this article, we aim to propose 
an alternative method for estimating these complex, interdependent components, that improves 
uncertainty quantification whilst remaining computational feasible.

Our new spatio-temporal statistical approach to modelling RSL change uses Generalized 
Additive Models (GAMs). A GAM is a generalized linear model where ‘the linear predictor de
pends linearly on a sum of smooth functions of the predictor variable’ (GAMs; Wood, 2017, 
p. 161). GAMs flexibly model non-linear relationships using smooth functions (most commonly 
splines) and can reduce computational complexity when compared with GPs (for example those 
used in K16) as they do not require large matrix inversions. We place our model in a Bayesian 
framework that allows for the estimation of parameters conditioned on the RSL data with full ac
counting for, and propagation of, uncertainty. Similar to K16, our model partitions the total RSL 
signal into components that characterize distinctive spatial and temporal scales, which (to varying 
degrees) are associated with specific physical processes. These components are (i) a regional 
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Figure 2. Proxy records from four proxy sites along the Atlantic coast of North America used as illustrative case 
studies. The y-axis is relative sea level (RSL) in metres, where 0 m is present sea level and negative values indicate 
RSL below present. Each proxy record observation consists of paired age and RSL estimate at the corresponding 
site. The black dot represents the midpoint of the proxy sea-level reconstruction and the grey boxes of 1 standard 
deviation represent vertical and horizontal (temporal) uncertainty.
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component, a non-linear signal common to all sites along the Atlantic coast of North America, and 
equivalent to the global term in K16; (ii) a linear local component that contains unstructured ran
dom effects and is comparable the regional linear term in K16; and (iii) a non-linear local compo
nent, which is site-specific and varies smoothly in space and time. Similar to K16, any variation not 
addressed by the model is captured by a residual term.

Since the data points at each site have a bivariate error structure, and the decomposition re
quired involves differing structures, the simple application of default GAMs does not work in 
our case study. Previous methods, such as Cahill et al. (2015), provides guidance for how to model 
RSL with bivariate uncertainty. We follow K16 in accounting for the time error using the 
Noisy-Input uncertainty method of McHutchon and Rasmussen (2011). This method inflates 
the residual variance by a corrective term to compensate for noisy-input measurements using a 
smooth process. Whilst the original paper uses the method exclusively for GPs, we extend the ap
proach to spline terms. The RSL error is captured via a standard measurement error term added to 
the residual variance.

The structure of our article is as follows. Section 2 addresses the proxy records and tide-gauge data 
used in our analysis. Section 3 describes the main physical processes driving RSL changes and 
Section 4 discusses the previous modelling strategies employed by Kopp et al. (2016). Section 5 gives a 
detailed description of our statistical model with different splines representing each driver of RSL change 
and introduces the noisy-input method. The model validations are shown in Section 6, and the results for 
different drivers of RSL change and their associated rates are presented in Section 7. Section 8 provides 
concluding remarks for our approach for the Atlantic coast of North America.

2 Data
We use a combination of instrumental data from tide gauges and proxy records. This section dis
cusses the different sea-level data sets, including their collection methods and their associated 
uncertainties.

2.1 Tide-gauge data
Tide gauges are fixed to the land and regularly measure (for example hourly or to higher frequency) 
the height of the adjacent sea surface (Pugh & Woodworth, 2014a). For understanding RSL change, 
these observations are usually expressed as annual averages and held in the database maintained by 
the Permanent Service for Mean Sea Level (PSMSL; Holgate et al., 2013; Woodworth & Player, 
2003). The ∼1,500 stations in this global network display highly uneven distribution of data across 
space and through time and in addition individual records may have temporal gaps (Church & 
White, 2011). The earliest tide gauges records began in the late 17th or early 18th centuries in north
western Europe (Wöppelmann et al., 2006). Along the Atlantic coast of North America, the longest 
tide-gauge record in the PSMSL database is The Battery from New York City (since 1856 CE) 
(Holgate et al., 2013). Annual tide-gauge data from the PSMSL are treated as having fixed and 
known ages without uncertainty in elevation measurements (Holgate et al., 2013).

In our analysis, we use 66 tide-gauge sites along the Atlantic coast of North America (Figure 1). 
Tide gauges meeting at least one of the following criteria were included in our analysis; (i) record 
length exceeding 150 years; (ii) the nearest tide gauge to proxy site; (iii) within 1 degrees distance 
to a proxy site and longer than 20 years (Kopp et al., 2016; Walker et al., 2021). The addition of 
tide-gauge data supplements the long-term proxy records and provides additional insight into recent 
changes in RSL. Annual data for each tide gauge were downloaded from the PSMSL and expressed 
in metres relative to the average over 2000–2018 CE. This time window captures variability result
ing from the 19-year cycle in astronomical tides (Pugh & Woodworth, 2014b) and serves to make 
proxy and tide-gauge data comparable since the sediment cores used to develop proxy reconstruc
tions were recovered since ∼2000 CE. In addition, we further average tide-gauge data by decade to 
increase comparability with proxy reconstructions that are developed from 1 cm thick slices of core 
sediment that accumulated over a period of several years (depending on sedimentation rate) and are 
therefore inherently time averaged. At this step, we include an uncertainty in the tide-gauge data 
(±5 years for age and ±1σ for RSL). See Appendix A for additional information.
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2.2 Proxy records
Proxy-based reconstructions provide estimates of pre-anthropogenic RSL (Kemp et al., 2013). On the 
Atlantic coast of North America, these near-continuous proxy-based reconstructions are generated us
ing buried sequences of salt-marsh (at mid to high latitudes; Gehrels et al., 2020) or mangrove (low lat
itudes; Khan et al., 2022) sediment. Samples of this sediment are recovered in a core (a column of 
sediment extracted from the ground, where the oldest material is at the bottom and the youngest ma
terial is at the top) and interrogated in subsequent laboratory analysis to determine the age of the sample 
and the tidal elevation (height above a tide level) at which it accumulated (Horton & Edwards, 2006).

A history of sediment accumulation is established using an age-depth model (e.g. the Bchron 
(Parnell et al., 2008), Bacon (Blaauw & Christen, 2011), or Rplum (Aquino-López et al., 2018) 
packages in R). The input for an age-depth model are dates from a subset of depths in the sediment 
core, typically using radiocarbon measurements, an estimate of each core sample’s age is obtained 
(Törnqvist et al., 2015). In addition, the shallowest (i.e. most recent) part of the core can be dated 
by recognizing historic pollution and land use changes of known age in down-core profiles of elem
ental abundance, isotopic activity and isotopic ratios (Marshall, 2015). The output of the age- 
depth model is and estimate the age (with uncertainty) of every 1 cm thick sediment sample in 
the core with uncertainty. Comparisons indicate that sediment accumulation histories have little 
dependence on the specific age-depth model used (Wright et al., 2017).

A sea-level proxy is required to reconstruct RSL. A sea-level proxy is any physical, biological or 
chemical feature with an observable and systematic relationship to tidal elevation (Shennan et al., 
2015). Salt marshes and mangrove environments are vegetated by distinctive plant communities 
that are adapted to inundation by salt water, resulting in distinct and narrow elevation ranges 
(Redfield, 1972). This distribution makes salt-marsh vegetation a valuable sea-level proxy. 
Through reasoning by analogy, the observable distribution of plants in modern salt marshes enables 
interpretation of their analogous counterparts preserved in core material (Kemp & Telford, 2015). In 
this way, the paleo-marsh elevation (elevation with respect to tidal elevation at the time of formation) 
is reconstructed. Another sea-level proxy preserved in salt-marsh sediment is the remains of micro- 
fossils (e.g. foraminifera) that form distinctive assemblages with a strong relationship to elevation 
(Edwards & Wright, 2015). When using micro-fossils to reconstruct RSL a transfer function is re
quired that relates the abundance of specific micro-fossil families to tidal elevation using a dataset 
that is representative to the modern environment (Kemp & Telford, 2015). There are various transfer 
functions available using Frequentist (Horton & Edwards, 2006; Kemp et al., 2011; Sachs et al., 
1977) and Bayesian approaches (Cahill et al., 2016), which all estimate paleo-marsh elevation 
with uncertainty. The age of each core sample with a paleo-marsh elevation reconstruction is pro
vided by the age-depth model. Resulting in a single proxy RSL record comprised of stratigraphically 
ordered data points of age (with 1 sigma uncertainty) and RSL (with 1 sigma uncertainty).

We analyse 21 RSL proxy records (totalling 1,731 data points) located on the Atlantic coast of 
North America from the Florida Keys, USA to Newfoundland, Canada (Figure 1). There are 66 
tide-gauge records that meet our criteria for inclusion (Figure 1). The spatial scope of our analysis 
is restricted to this coastline because it has (by a considerable margin) the greatest concentration of 
available records. Results presented in this article are generated from all the proxy and tide-gauge 
records, yet we present four of these sites (Placentia Newfoundland Canada, East River Marsh 
Connecticut USA, Cedar Island North Carolina USA, and Swan Key Florida) as illustrative case 
studies throughout the remainder of the manuscript. The four sites were selected to provide diver
sity of location and therefore the processes causing RSL change during the past ∼3,000 years.

3 Drivers of RSL change
Spatio-temporal models recognize sea-level variability characteristic of different spatial and temporal 
scales rather than from specific processes. Each component estimated in the model may capture sev
eral contributing processes depending on the location and time interval under examination. These 
processes may act simultaneously and in directions that mask or exaggerate contributions from other 
drivers.

Transfer of mass between land-based ice and the ocean drives RSL change. Ice melt/growth re
turns or removes mass to the ocean as liquid water, which causes a rise/fall in global mean sea level 
(this process is termed barystatic) (Gregory et al., 2019). This contribution varies in magnitude 
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across timescales, but is common to all locations. In addition, changes in global temperatures alter 
the density of ocean water resulting in a sea-level change (rise/fall when water warms/cools becom
ing less/more dense); this process is known as a thermosteric contribution (Grinsted, 2015). The 
global term in the K16 model and the regional component in our model attempts to capture influ
ences from these processes.

Along the Atlantic coast of North America, the principal driver of RSL change during the pre- 
industrial late Holocene is glacial isostatic adjustment (GIA) (Engelhart et al., 2011; Walker et al., 
2021). GIA is the response of the Earth, the gravitational field, and the ocean to the growth or de
cay of ice sheets (Whitehouse, 2018). GIA can be reasonably approximated as a linear contribu
tion through time on this relatively short timescale, but with considerable variability along the 
coast (Engelhart et al., 2009). There are a family of physical models known as Earth-ice models 
that use a representation of the physical Earth structure (such as lithospheric thickness and prop
erties such as mantle viscosity) to predict changes in GIA that occur through loading and unload
ing of ice, and provide estimates of GIA rates. One such example of an Earth-ice physical model is 
the ICE5G VM2-90 (Peltier, 2004). It is important to recognize that other processes (e.g. tecton
ically driven vertical land motion) can mimic the linear trend of GIA. However, along the passive 
margin of the Atlantic coast of North America these non-GIA drivers are likely modest in magni
tude (Kopp et al., 2015). As a result, the linear local component in our model and the linear region
al term in the K16 may capture contributions from processes other than GIA that drive RSL 
changes during the Common Era at a linear rate (positive or negative).

There are processes with a spatially coherent structure where the signal is shared by some but 
not all sites (Stammer et al., 2013). One such process that can cause RSL to vary on decadal to 
multi-century timescales is the redistribution of existing ocean mass by shifts in prevailing patterns 
and strength of atmospheric and oceanic circulation (termed dynamic sea-level change) (Gregory 
et al., 2019). Dynamic sea level varies by site, but the magnitude of the difference from one site to 
the next is too small to be detected using proxy data due to the resolution. Some processes (e.g. 
sediment compaction: that can impact the height of the solid Earth surface with changes in sedi
ment volumes for each site; Horton et al., 2018) can drive RSL changes that are site-specific. 
Consequently, contributions from these processes lack spatial coherence and display an unpredict
able spatial structure. Therefore, site-specific RSL changes can vary markedly across closely 
spaced sites. More often than not, RSL proxy reconstructions are not generated with the goal 
of understanding site-specific processes (Walker et al., 2021). It remains important to quantify 
this component as a means to distil the contribution from processes acting at larger spatial scales. 
In our model, the structured (common to some, but not all sites) and unstructured (unique to one 
site) RSL variability on century timescales is captured by the non-linear, local component.

4 Previous statistical models for RSL change
In this section, we review previous work on modelling RSL change, focusing in particular on K16. 
The model was further extended in Kemp et al. (2018) and Walker et al. (2021), here, we focus on 
the simpler K16 model. We first review the structure of this model, which decomposes RSL into 
component parts before discussing how the model might be fitted to the data and the potential in
fluence of optimizing hyperparameters using maximum likelihood. K16 forms the basis upon 
which we build our new approach in Section 5.

The RSL measurements are recorded in units of height; with metres used by default. In cases 
where the scale of the change is relatively small, we use cm or mm instead for some plots and dis
cussion in the text. We write yij = y(xj, tij) for the RSL height at location xj (latitude and longitude) 
and time tij. These observations arise from the proxy records and tide gauges with j indexing the 
data site and i the observation. For the resolution of the data, the time is expressed in years CE. The 
K16 model can be written as:

yij = f (xj, tij) + w(xj, tij) + y0(xj) + ϵy
ij, (1) 

where f is the full RSL spatio-temporal field, w is a white noise process representing sub-decadal 
trends unexplained by the data due to resolution of data, y0 is a site-specific spatially variable ver
tical offset, and ϵy

ij is residual error. In K16 all the structured terms above are given Gaussian 
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Process prior distributions with stationary covariance functions.
A key complication is that the times tij associated with the proxy records are observed with un

certainty. Thus, the observed values t̃ij have measurement error, defined as:

t̃ij = tij + ϵt
ij. (2) 

Usually ϵt
ij is assumed iid normally distributed with known variance, though in reality the age- 

depth model through which the ages are estimated often provides skewed distributions. A previous 
attempt at resolving this issue can be found in Cahill et al. (2015), though across large, multi-site 
datasets the imposition of this assumption is believed to have minor effects on the outcome of the 
model (as shown in Parnell & Gehrels, 2015).

4.1 Decomposing the RSL field f
For the RSL process defined above as f, K16 use a spatio-temporal empirical Bayesian hierarchical 
model to partition the influence of the components into global, regional, and local scales. The 
fields that make up f are, as above, given stationary GP priors that can vary in time and space 
as controlled by the covariance functions (Ashe et al., 2019). The standard decomposition of f 
is written:

f (xj, tij) = c(tij) + g(xj)(tij − t0) + l(xj, tij), (3) 

where c(tij) is termed the global term, the temporal non-linear signal common across all sites, de
signed to capture changes such as barystatic sea level rise and thermosteric changes. g(xj) is a spa
tially varying term that captures slower processes such as long-term land level change (GIA) and 
vertical land motion driven by plate tectonics. The g term is multiplied by time t differenced from a 
reference point t0 to form a temporally linear field. Unlike the other components in K16, g is given 
a univariate normal prior distribution with the mean centred on the value obtained from an 
Earth-ice physical model (ICE5G VM2-90; Peltier, 2004) that estimates the GIA rate. l(xj, tij) is 
the local spatio-temporal field that describes factors such as dynamic sea level change, sediment 
compaction and tidal regimes. These terms are explained in more detail in K16.

Without strong prior information, it is difficult to separate out the magnitudes of the model 
components. To address this in K16, the hyperparameters are initially determined by maximizing 
the likelihood of the model conditioned on the observations as detailed in the supplementary ma
terial of Kopp et al. (2016), albeit with a specific constraint. This constraint ensured that the two 
timescale hyperparameters for Gaussian process priors for the global term (c(tij)) and the local 
term (l(xj, tij)) are greater than 100 years. By allowing the two timescale hyperparameters to differ, 
it enables the global term to have a different characteristic time scale from the geographically vary
ing local term. The model is then re-fitted using hyperparameters fixed at the values estimated via 
the maximum likelihood approach in order to estimate the components of the fields in an empir
ically Bayesian framework.

In our approach, we aim to avoid the empirical Bayesian approach of fixing parameter values to 
ensure that we capture and propagate the uncertainty associated with the hyperparameters. 
Instead, we opt for informed priors on model components, in contrast to the point estimate ap
proach employed in K16. However, a modular modelling approach is unavoidable due to the com
plexity of the decomposition and the innate confounding of many of the key terms which are 
discussed in Section 5.

5 A new approach based on GAMs
In this section, we outline a new approach to evaluating the different drivers of spatio-temporal 
RSL using proxy records and tide gauge data. With careful choices of the prior distributions of 
the hyperparameters, we aim to recover the components of RSL change through the standard tools 
of Bayesian inference. Subsequently, we estimate rates of RSL change at sites along the Atlantic 
coast of North America. We build our model inspired by the standard decomposition of the 
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RSL field f as described above. Our approach contains four main differences compared to the 
Kopp et al. (2016) (and subsequent) models: 

1. We focus on the high quality sites along North America’s Atlantic coast and aim to produce a 
regional RSL curve. Thus we avoid making statements about global sea-level change.

2. We use splines instead of GPs to avoid the computationally challenging inversion of the GP 
covariance matrices. The model, at its simplest, thus falls under the standard generalized addi
tive modelling paradigm.

3. We fit the model in two stages to maximize the regional variability that would otherwise be 
confounded with the local structure. This allows us to perform a more complete posterior 
analysis of the model hyperparameters that might otherwise have been fixed in K16.

4. We remove the spatial structure on the linear effect g in K16 and replace it with a univariate 
random effect on the slope. For the proxy records, we use an informed prior for the slope that 
is estimated using a linear regression for each site with data prior to 1800 CE (i.e. the pre- 
industrial time period defined by Neukom et al., 2019). This change is helpful because we 
have found the estimated values of the GIA rate from the Earth—ice physical model (e.g. 
Argus et al., 2014; Caron et al., 2018; Peltier, 2004) do not match the observed data well 
for the proxy record time period (Shennan et al., 2018; Vacchi et al., 2018). For the tide gauge 
records, the prior mean of the slope is taken from a physical Earth-ice model (ICE5G 
VM2-90; Peltier, 2004) with uncertainty taken from Engelhart et al. (2009). We refer back 
to this modelling choice in Section 8.

Below, we outline the full posterior distribution of the model and describe each term and its struc
ture. The temporal uncertainty in the data causes difficulties in fitting the model in one step, and we 
resort to McHutchon and Rasmussen (2011)’s noisy-input method to account for this uncertainty. 
We then discuss the prior distributions assumed for the hyperparameters, and the computational 
details of our model. In Section 7, we showcase the successful implementation of our model.

5.1 Model notation
We now provide a full outline of our notation for reference: 

• yij is an RSL observation in metres with i = 1, . . . , nj observations at site j with j = 1, . . . , m 
sites. We vectorize the full set of observations as y and the observations for each site as yj, de
scribed in equation (6).

• tij are the ages of each RSL observation, indexed and vectorized as above, described in equa
tion (6). We represent age in years of the Common Era (CE).

• xj is the 2-vector of a latitude and longitude pair for each site j, described in equation (6).
• zx is an index vector for the data sites that converts each site into a label, described in equation 

(7). Thus zxj = j.
• f (xj, tij) = fij is the mean sea-level process at site j and time tij, described in equation (7). We 

write f (x, t) as the mean process for a generic location and time, and continue with this nota
tion below for brevity.

• r(t) is the regional component at time t, described in equation (8).
• l(x, t) is the non-linear local component at location x at time t, described in equation (11).
• g(zx) is the linear local component at location x, described in equation (9).
• h(zx) is a site-specific vertical offset component at location x, described in equation (10).
• br(t) and bl(x, t) are sets of known b-spline basis functions corresponding to the regional (see 

equation (8)) and local components (see equation (11)), respectively.
• mg and sg are the mean and standard deviation parameters, respectively for the linear local cor

rection component (see equation (13)). These are site specific and so each is a vector of length m.
• βr, βl are the spline regression coefficient vectors of the regional (see equation (12)) and local 

(see equation (15)) components, respectively. βr is of length kr and βl is of length kl where kr 

and kl are the number of knots associated with each term.
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• βg (see equation (13)), βh (see equation (14)) are parameter vectors, each of length m, contain
ing the random effect coefficients for each site.

• σr (see equation (12)) and σl (see equation (15)) are the smoothness parameters associated 
with the regional and local spline terms, respectively.

• σh is the standard deviation of the site-specific offset (see equation (14)).
• syij is the known standard deviation of the RSL data point ij (see Section 5.5).
• stij is the known standard deviation of the age of data point ij (see Section 5.5).
• σ is a residual standard deviation parameter to capture any remaining variability in y (see 

Section 5.2).
• ϵt and ϵy are the error terms for time and RSL, respectively, which are assumed to be i.i.d and 

normal distributed (see Section 5.5).

5.2 Posterior distribution
The joint posterior distribution of our Bayesian hierarchical model is shown below:

p(σ2, βr, βl, βg, βh, σ2
r , σ2

l , σ2
h | y, br, bl, mg, s2

g , s2
y , s2

t )
􏽼�����������������������������������􏽻􏽺�����������������������������������􏽽

posterior

∝ p(y | f , σ2, s2
y , s2

t )
􏽼����������􏽻􏽺����������􏽽

likelihood

× p(βr | σ2
r )

􏽼����􏽻􏽺����􏽽
prior on regional parameters

× p(σ2
r )

􏽼�􏽻􏽺�􏽽
prior on regional smoothness parameter

× p(βl | σ2
l )

􏽼����􏽻􏽺����􏽽
prior on non−linear local parameters

× p(σ2
l )

􏽼�􏽻􏽺�􏽽
prior on non−linear local smoothness parameter

× p(βg |mg, s2
g)

􏽼�������􏽻􏽺�������􏽽
prior on linear local parameters

× p(βh | σ2
h)

􏽼����􏽻􏽺����􏽽
prior on site−specific vertical offset parameters

× p(σ2
h)

􏽼�􏽻􏽺�􏽽
prior on variance site−specific vertical offset parameters

× p(σ2)
􏽼�􏽻􏽺�􏽽

prior on error variance

(4) 

The likelihood p(y | f , σ2, s2
y , s2

t ) can be deconstructed thus:

p(y | f , σ2, s2
y , s2

t ) =
􏽙m

j=1

􏽙nj

i=1

N (yij | fij, σ2 + s2
yij

+ s2
tij

). (5) 

5.3 A fully specified GAM for decomposing the RSL field
The data level for the NI-GAM is described as:

yij = f (xj, tij) + ϵy, (6) 

where yij is the RSL, f (xj, tij) the mean sea level process and ϵy ∼ N(0, σ2 + s2
yij

) is the error vector 
with additional information provided in Section 5.1. Our version of the decomposition of the 
mean sea level field can be written as:

f (x, t) = r(t) + g(zx) + h(zx) + l(x, t). (7) 

All terms are as defined above: r(t) is the regional component. g(zx) is the linear local component 
represented by a random effect with zx representing each data site. h(zx) is the spatial vertical offset 

J R Stat Soc Series C: Applied Statistics                                                                                                      9
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlae044/7756353 by M
aynooth U

niversity user on 23 Septem
ber 2024



for each data site. l(x, t) is the non-linear local component. We represent r(t) using a spline:

r(t) =
􏽘kr

s=1

brs (t)β
r
s, (8) 

where βr
s is the sth spline coefficient, kr is the number of knots, and brs (t) is the sth spline basis func

tion at time t.
The linear local component, g(zx), is an unstructured random effect for each site that is formu

lated as:

g(zxj ) = βg
j t, (9) 

where βg
j is a slope parameter specific for each site j. This specification is in contrast to K16 where 

the linear effect, g, varies smoothly in space and is informed through the prior by GIA model- 
derived values. We found such a restriction to adversely affect model performance due the lack 
of agreement between the data and the provided GIA values, and the wide variation in values be
tween proximal sites (Engelhart et al., 2009).

The site-specific vertical offset h is a random effect used to capture vertical shifts associated with 
measurement variability between sites, ensuring the alignment of the 0 m RSL across all proxy re
cords, facilitating comparability among them. It is formulated as:

h(zxj ) = βh
j , (10) 

where βh
j contains the random effect coefficients for site j.

The non-linear local component l(x, t) is described with a spatio-temporal spline function for
mulated by:

l(x, t) =
􏽘kl

s=1

bls (x, t)βl
s, (11) 

where βl
s is the sth spline coefficient, kl is the number of knots and bls (x, t) is the sth spline basis 

function at time t and location x.
We use B-splines (de Boor, 1978) for both the regional and non-linear local terms. Our B-splines 

are constructed as piece-wise polynomials that join together at equidistant knots such that the first 
derivatives are equal (Eilers & Marx, 1996). For the regional component and the non-linear com
ponent, we use cubic B-splines as we are interested in the behaviour of the first derivatives. We can 
simply calculate these by differentiating the cubic B-splines and multiplying them with the poster
ior spline parameters to provide a posterior distribution for the derivative. For the non-linear local 
component, a tensor product is required to capture the variability over time and space (represented 
with longitude and latitude), which means that the individual covariates are combined product- 
wise (Wood, 2006). Many other basis function types and options are available (see, e.g. 
Dierckx, 1995; Wood, 2017), but we believe our approach balances both parsimony and compu
tational efficiency for our application area. In Appendix B, we undertake a GAM sensitivity study 
to examine different basis function options and the optimal number of knots.

5.4 Prior distributions
Within the process level each component is given a prior distribution. Our prior for the spline co
efficients of the regional component, βr

s is:

βr
s ∼ N(0, σ2

r ), (12) 

where σr is the standard deviation of the spline coefficient and fundamentally controls the 
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smoothness of the model fit.
Our prior for the linear local component for the proxy records is:

βg
j ∼ N(mgj , s2

gj
), (13) 

where mg j and s2
g j 

are the empirically estimated rate and associated variance, respectively, obtained 
using a linear regression for each site j using data predating 1800 CE (this timeframe is defined as 
the pre-industrial period by Neukom et al., 2019). For the tide-gauge records, we obtain mg j from 
a physical model (ICE5G VM2-90; Peltier, 2004) and s2

g j 
from previous studies (Engelhart et al., 

2009).
Our prior distribution for the site-specific vertical offset is:

βh
j ∼ N(0, σ2

h), (14) 

where σ2
h is the variance of the random intercept across data sites.

Our prior on the spline coefficient for the non-linear local component is given as:

βl
s ∼ N(0, σ2

l ), (15) 

where σ2
l is the variance of the spline coefficients over space and time. This parameter fundamen

tally controls the smoothness of the local non-linear effect.
The remaining hyperparameters of the model include σ2

r , σ2
h, and σ2

l . The standard deviation 
parameter σh represents the variability in the site specific vertical shift after taking account of 
the local linear trend. As it is measured in metres, it is more interpretable in a physical context 
and so we place an informative prior here. The vertical shifts can be quite variable with some 
sites sitting many metres above or below others. From revisiting the publications associated 
with our data (see Appendix A for the full list), shifted values spanning more than 5 m seem un
likely. As a result, we specify the standard deviation to have a Cauchy distribution with mode 
2.5 m but with a wide scale of a further 2 m (Gelman, 2006). For the variability of the spline 
coefficients across the knots, i.e. σ2

r and σ2
l , we expect considerably smaller variation but we 

have less information, thus we use a truncated Cauchy distribution centred on zero and with 
scale value 1.

5.5 Noisy-input uncertainty method
Our data are corrupted with measurement error in the RSL values and that arising from the tem
poral uncertainty associated with radiocarbon dating the fossil layers of sediment. McHutchon 
and Rasmussen (2011) describe an assumption for GPs that avoids the need for complex 
errors-in-variables models (e.g. Cahill et al., 2015; Dey et al., 2000) and instead adds an extra 
measurement uncertainty on the response variable. We adapt this noisy-input (NI) approach for 
our RSL GAM that we now term an NI-GAM.

The response variable y is assumed to be a noisy measurement with the true output given as ỹ:

y = ỹ + ϵy, (16) 

where the error term is given by ϵy ∼ N(0, s2
y + σ2) with sy being the known measurement standard 

deviation of the RSL data, and σ2 is the residual standard deviation of the model. Similarly, for the 
input measurements, t is assumed to be a noisy estimate of the true time value t̃:

t = t̃ + ϵt (17) 

with the error term given by ϵt ∼ N(0, s2
t ) where st is the known standard deviation of the date 
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obtained from the age-depth model (described in Section 2). As a result, a function for the response 
variable is formed in the following way:

y = f (x, t̃ + ϵt) + ϵy. (18) 

Following McHutchon and Rasmussen (2011), we use a first-order Taylor expansion about the 
latent state t̃ to obtain:

f (x, t̃ + ϵt) ≈ f (x, t̃) + ϵT
t

∂f (x, t̃)
∂t̃

. (19) 

Thus, the error in t can be approximated by an increase in the measurement error proportional to 
the derivative of f. McHutchon and Rasmussen (2011) calculate the derivative of the mean of the 
GP function, given as vector ∂ f̅ for the first order case and Δ f̅ for a D-dimensional matrix.

Analogously for our NI-GAM setting, the first-order terms are expanded to form a linear model 
with input noise:

y = f (x, t) + ϵT
t

∂ f (x, t)
∂t

+ ϵy. (20) 

The derivative of the posterior mean for f is obtained using a two-step method. First, the model is 
fitted ignoring the input uncertainty and then the slope of the posterior mean is calculated. From 
this, a corrective variance term can be calculated, s̃tij , which is used as an additional model error 
term in our subsequent full model fit, described in Section 5.6.

Intuitively, the presence of noise in the inputs (the time uncertainty) of the function is directly 
related to the variance of the outputs (RSL). The variance of input noise is intricately linked to 
the output (RSL) variability through the square of the posterior mean function’s gradient 
(McHutchon & Rasmussen, 2011). Consequently, corrupted input measurements have a stronger 
impact on rapidly changing output values than on those that remain constant, i.e. in areas with 
steep sea level gradients, greater time uncertainty results in increased output variability. The ad
vantage of this method is that the noise remains the same whether the measurement is considered 
an input or output measurement, and so all the data informs the input noise variance ensuring that 
the output dimensions are met, reducing the chance of over-fitting.

5.6 Model fitting and computational details
In previous sections, we have described our Bayesian hierarchical model structure using GAMs 
and the manner in which we account for uncertainty. In this section, we address how to fit our 
NI-GAM model and the decisions that influenced our model fitting strategy. We are constrained 
because we have to fit the model twice as part of the noisy-input uncertainty method, described in 
Section 5.5. We also found that a single model fit yielded poor convergence due to the unavoidable 
confounding between the regional, vertical shift, linear, and non-linear local terms. Thus, we use 
the two-stage NI process to our advantage by fitting a slightly reduced model at the first stage to 
estimate the regional term, and using the posterior as strong prior information in the second stage 
to provide the estimate of the non-linear local term. Our approach has some similarities to that of 
cut feedback or modularized Bayesian models (Plummer, 2015), but we do not explore these ave
nues further here.

The two steps of our model fit are: 

1. We first fit a simplified version of our process level model where we replace f (x, t) with 
f ∗(x, t), defined as:

f ∗(x, t) = r(t) + g(zx) + h(zx). (21) 

This removes the non-linear local component and so avoids the confounding issue. From this 
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model fit, we calculate the first derivative of the posterior mean of f ∗(x, t). The resulting slope 

estimate for each observation provides a corrective variance term, s̃2
tij

= s2
tij

∂ f ∗(xj, tij)
∂tij

􏼐 􏼑2
. This 

term is added to the other model error variances for the fit in the second stage.
2. In the second step, we fit the complete process model as defined in Section 5.5. The only 

changes being (i) the addition of the new noisy-input measurement variance term; (ii) the prior 
distribution on the regional spline terms now being βr

s ∼ N(mr
s, (sr

s)
2) where mr

s and sr
s are es

timated in the first model run; and (iii) the prior distribution on the vertical offset term being 
βh

s ∼ N(mh
s , (sh

s )2), where as above mh
s and sh

s are estimated in the first model run.

The second stage of model fitting integrates comprehensive error uncertainty, decomposing resid
uals into both a pure error component and a non-linear local space-time effect. Our subsequent 
results rely on this refined model fit, offering insights into model error and, critically, the extent 
to which local factors influence deviations from the main regional effect.

At each stage, our models are written using the Just Another Gibbs Sample (JAGS: Plummer, 
2003) software, which in turn is based on techniques described in Spiegelhalter et al. (2002). 
The JAGS language uses Gibbs sampling and the Markov Chain Monte Carlo (MCMC) algorithm 
to draw samples from the posterior distribution of the unknown parameters. We implement our 
approach using the rjags package in R (Plummer et al., 2016). For our models, we used 5,000 
iterations with a burn-in value of 1,000, thinning at 5 and 3 chains. Convergence diagnostics for 
the parameters are investigated using the coda package (Plummer et al., 2006) and the ShinyStan 
app that provides an interactive visualization tool for investigating model convergence (Gabry & 
Goodrich, 2017). All convergence diagnostics were checked and ensured to be satisfactory before 
the model results were interpreted. The code and data for our model are available on Github and 
on Zenodo, and the computational run time was 39 min on a 2019 MacBook Pro with a 1.4 GHz 
Quad-Core Intel Core i5 processor. Furthermore, NI-GAM is incorporated into the reslr pack
age in R, offering users a range of statistical models for analysing RSL data within Bayesian hier
archical frameworks (Upton et al., 2023).

6 Model validation
We examine the validity of our model using 10-fold cross-validation (10-CV). We run the 10-CV 
on 20 proxy sites and 7 tide gauge sites that have data exceeding 10 years of observations. We do 
not include the remaining sites because they are short in duration and provide relatively weak in
formation about model performance. We present the site-specific results for only the four case 
study sites with the remaining sites shown in Appendix B. We evaluate the model performance 
based on the out-of-sample empirical coverage and the root mean squared error (RMSE). The pre
diction intervals are created using posterior predictive simulations with the full error structure, i.e. 
ŷij ∼ N( f̂ij, σ2

yij
+ σ2

tij
+ σ2). The empirical coverage provides the percentage of occasions that the 

true RSL observation is within the model prediction interval (PI) for RSL. The RMSE provides in
sight into prediction performance in the same units as the response (metres).

The 10-CV for our full model obtained overall empirical coverage of 98.8% with the 95% predic
tion interval and 79.9% with the 50% prediction interval. The RMSE for the model is 0.14 m. An aver
age out-of-sample error of 14 cm is reasonable given the scale and variety of the data set. These are 
satisfactory for a model fitted to complex data such as ours, especially with the addition of the model 
error. The conservative empirical coverage values, which exceed the expected 50% and 95%, can be 
attributed to the consideration of the observed measurement errors in estimating the prediction inter
vals. By accounting for these errors, our model tends to generate wider prediction intervals, resulting in 
a greater proportion of true observations falling within the predicted uncertainty range.

Figure 3 presents the true RSL observations vs. the model-based RSL point estimates with 95% 
prediction intervals at each site and Table 1 provides a site-specific insight into the empirical cover
age for the model and the size of the prediction intervals. Three out of four sites have a coverage of 
100% due to the large prediction intervals arising from the bivariate uncertainties associated with 
the proxy data (Figure 2). Based on the RMSE, the best fitting case study site is Cedar Island in 
North Carolina, where the RMSE is 7 cm (Table 1). At the other end of the spectrum is Swan 
Key Florida, where the RMSE is larger at 19 cm (Table 1).
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Figure 3. True vs. predicted RSL values using 10-fold cross-validation (CV) using the 20 proxy records and 7 tide 
gauge sites that have data exceeding 10 years of observations. Illustrated are the outcomes from our case study 
locations: Placentia Newfoundland, East River Marsh Connecticut, Cedar Island North Carolina and Swan Key 
Florida. The predicted means are the red points with the vertical red lines representing the 95% prediction interval 
for each point. The identity line is shown in grey.

Table 1. Empirical coverage from the 10-fold cross-validation and the corresponding size of the prediction intervals 
(PI) used for model validation for our 4 chosen sites

Site name 95% Empirical 
coverage

95% Average PI 
width (m)

50% Empirical 
coverage

50% Average PI 
width (m)

RMSE 
(m)

Placentia, Newfoundland 0.99 0.36 0.81 0.12 0.10

East River Marsh, Connecticut 1.00 0.53 0.74 0.18 0.14

Cedar Island, North Carolina 1.00 0.29 0.85 0.10 0.07

Swan Key, Florida 1.00 0.77 1.00 0.27 0.19
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7 Results
In this section, we present the results from our Bayesian hierarchical RSL model. We consider the 
full model fit and its decomposition into the different components of RSL, i.e. regional component, 
linear local component and non-linear local component.

7.1 Full model fit and rate of change
The full model fit for the four case study sites are shown in Figure 4 (results from all 21 proxy sites 
are included in Appendix B). The model demonstrates how the RSL varies in time at each site. 
Overall, the model fits the data well. The 95% credible intervals for Swan Key Florida are larger 
due to the relatively large observation uncertainties at this site and the fit is notably smoother than 
the others. The data in Placentia, Newfoundland experience additional variability in the observa
tions compared with the other sites and this is reflected in a more variable total model fit.

Figure 5 shows the site-specific rates of change for the case study locations calculated as de
scribed in Section 5. The remaining sites are shown in Appendix B. Late Holocene rates of RSL 
change display century to multi-century scale variability around a stable mean at each site until 
the 19th and 20th centuries since when the rate of rise appears unprecedented for 3 out of 4 
case study sites. Rates fluctuate throughout the last 2,000 years but remain below 1.5 mm/year un
til the late 1800s in East River Marsh, Connecticut, and the early to mid-1900s in Cedar Island, 
North Carolina and Swan Key, Florida. The late 20th and 21st century rates at these sites are un
precedented in the last 2,000 years with the most recent rates of change being 3.06 ± 0.3, 
2.9 ± 0.5, and 2.9 ± 0.7 mm per year in East River Marsh Connecticut, Cedar Island North 
Carolina, and Swan Key Florida, respectively. Placentia Newfoundland does not experience the 
same uptick in rates that the other sites do with the most recent rate being 1.21 ± 0.4 mm per year.

7.2 Examining the decomposition of RSL
The RSL process level f consists of the regional component, the linear local component, the 
site-specific vertical offset, and a non-linear local component, all as described in Section 5. 
Figure 6 illustrates the decomposition in our case study sites and provides an insight into how the 
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Figure 4. The noisy-input generalized additive model (NI-GAM) fit (f (x, t)) for four selected sites along the Atlantic 
coast of North America. The four sites include: Placentia, Newfoundland, Canada; East River Marsh, Connecticut, 
USA; Cedar Island, North Carolina, USA; and Swan Key, Florida, USA. The black dots and grey boxes represent the 
midpoint and associated uncertainty, respectively, for each proxy record. The solid purple line represents the mean 
of the model fit with a 95% credible interval denoted by shading.
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components of RSL have varied over time for the Atlantic coast of North America by demonstrating 
the scale of the different components and how they interact over time. The total posterior model is 
obtained by the sum of these separate components as illustrated by the purple line in Figure 6.
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Figure 5. Rate of relative sea change found by taking the first derivative of the total model fit (f ′(x, t)) for four sites 
along the Atlantic coast of North America. The mean of the fit is the solid purple line with the dark shaded area being 
the 50% credible interval and the light shaded area being the 95% credible interval.
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Figure 6. The decomposition of the relative sea level process level for the four sites, with solid lines indicating 
means and shaded areas 95% posterior credible intervals. The blue curve represents the regional component (r). 
The brown curve represents the non-linear local component (l). The green line represents the site-specific vertical 
offset plus the linear local component (g + h). The purple line is the sum of all three components and represents the 
full noisy-input generalized additive model fit (f (x, t)).

16                                                                                                                                                    Upton et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlae044/7756353 by M
aynooth U

niversity user on 23 Septem
ber 2024



It is evident that the dominant driver of RSL change for these four sites until the late 1800s is the 
linear local component. After this interval, regional variability along the Atlantic coast of North 
America appears to take over and the total RSL trends at each site tend to reflect the RSL rise seen 
in the regional component. The non-linear local component is picking up the remaining variability 
and demonstrates that non-linear local effects on RSL variability are more apparent in Placentia 
and Swan Key compared to Cedar Island and East River Marsh.
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Figure 7. The noisy-input generalized additive model (NI-GAM) results for (a) the regional component (r (t)) and 
(b) the regional rate of change component (r ′(t)). (a) The regional component mean model fit represented with a solid 
line and the shading indicating the 50% credible interval in dark blue and 95% credible interval in light blue. The y-axis 
is the sea level in m with the x-axis representing the time across the last 3,000 years for the Atlantic coast of 
North America. (b) Rate of change for the regional component for the Atlantic coast of North America with the solid 
line representing the mean of the fit, the dark blue shaded area representing the 50% credible interval and the light 
blue shaded area representing the 95% credible interval. The y-axis is the instantaneous rate of change of regional 
sea level in mm per year.
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Figure 7a shows the regional component (common to all sites) for the 21 proxy sites and 66 tide 
gauge sites along the Atlantic coast of North America. As a reminder, the regional component is rep
resented with a spline in time that is common across all sites. Prior to 0 CE, sea level fluctuated from 
0.01 m to −0.13 m. From 0 CE to 1200 CE, variability of sea level reduced ranging from −0.12 m to 
−0.09 m. Following 1200 CE, a sharp increase in sea level can be seen with brief periods of stability 
from 1410 CE to 1560 CE and from 1800 CE to 1840 CE. After 1800 CE, sea levels are consistently 
rising and the most dramatic increase can been seen from the mid-1800s until the present day. 
Figure B1 in Appendix B demonstrates the underlying behaviour of the posterior samples for the re
gional component. Figure 7b shows the rate of change for the regional component along the 
Atlantic coast of North America. Rates fluctuated around 0 mm per year between −990 CE and ap
proximately 1800 CE, after that a continuous increase can be observed from around 1800 CE on
wards. The rate from the late 20th century is unprecedented when compared with the last 3,000 
years and is estimated to be 1.8 ± 0.5 mm per year. The regional sea-level rate observed in the 20th 
century reflects patterns across multi-decadal to centennial timescales, influenced by the resolution 
constraints and natural time-averaging inherent in proxy reconstructions, as well as the decadal aver
aging of tide-gauge data.

The linear local component is represented with a random slope effect as described in Section 5. As 
stated in Section 3, this parameter removes a long-term variation driven principally (but perhaps not 
exclusively) by GIA. Table 2 compares our empirically estimated values of this parameter for the proxy 
record sites in mm per year prior to 1800 CE. It is evident that there is significant variability in these 
values among different sites. For instance, areas like Swan Key, Florida, and East River Marsh, 
Connecticut, experience rates of 0.91 mm/year, whereas Placentia, Newfoundland, has a rate of just 
0.41 mm/year. To show a comparison with physical model-based GIA rates, Table 2 presents values 
obtained from the ICE5G - VM2-90 Earth-ice model (Peltier, 2004). It is evident that the data-driven 
rates and the GIA-model rates differ, with Swan Key Florida experiencing the greatest difference of 0.8  
mm/year. Whereas, East River Marsh, Connecticut has similar rates with a difference of only 0.05 mm/ 
year.

Figure 8 shows our non-linear local component that represents the spatially structured behaviour 
specific to each site. There are clearly different patterns of non-linear local sea-level change, which is 
to be expected given that the common source of variation across all sites has been captured by the 
regional component. Placentia Newfoundland and Swan Key Florida show non-linear local varia
tions in sea level ranging from 0.19 m to −0.12 m and 0.21 m to −0.25 m, respectively. On the other 
hand, Cedar Island North Carolina and East River Marsh Connecticut do not experience this level 
of variability with sea levels in the non-linear local component fluctuating close to zero.

8 Discussion
RSL change is the net result of multiple physical processes within the oceans, atmosphere, and sol
id Earth, that can alter the height of the land and/or sea surface (Church et al., 2001). The import
ance of specific processes varies markedly across space and through time, giving rise to a complex 

Table 2. The rate associated with the linear local component (g) for our four sites along the Atlantic coast of North 
America is given in mm per year

Empirical rate prior to 1800 CE 
(mm/year)

ICE5G-VM2-90 Earth-ice GIA rate (mm/year) 
(Peltier, 2004)

Placentia, Newfoundland 0.41 0.21

East River Marsh, 
Connecticut

0.91 0.96

Cedar Island, North 
Carolina

0.74 0.69

Swan Key, Florida 0.90 0.11

Note. These empirical rates were obtained using a linear regression through the data prior to 1800 CE (the time period 
marking a notable shift in global temperatures defined by: Neukom et al., 2019), which is used to inform the priors for the 
linear local component. ICE5G-VM2-90 Earth-ice GIA rate is from an Earth-ice physical model (Peltier, 2004).
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and evolving pattern of RSL change. Tide-gauge data and proxy records contain information 
about these processes and the sea-level community requires advanced statistical tools to decom
pose the net RSL signal into contributions from physical processes while accounting for uncertain
ties in the underlying data. The need for RSL decomposition motivated current modelling 
strategies such as the K16 model and our approach presented here.

Our approach provides a more computationally efficient method for decomposing the RSL signal. 
The process level of our model utilizes a spatio-temporal field decomposed into a regional component, 
a linear local component, and a non-linear local component. In contrast to K16 that uses GPs, we use 
splines to examine the different drivers of RSL. This is due to the computational complexity associated 
with the likelihood computation for a Gaussian Process being of O(n3) where n is the number of data 
points. In contrast, the likelihood computation for the equivalent spline with pre-computed basis func
tions is just O(n) (Wood, 2017). Thus, our model is fitted quicker than K16, allowing for further checks 
on the performance of our model, such as 10-fold cross-validation across extensive temporal records 
and numerous spatial sites. As the database expands, this discrepancy in run-time will magnify, result
ing in our approach becoming increasingly more efficient. The model validations presented in Section 6
highlight that the NI-GAM is effectively and efficiently capturing the different components of RSL 
along the Atlantic coast of North America. In addition, the construction of our GAM using spline basis 
functions and random effects allows for easy interpretability without the need for covariance matrices 
and correlation functions (Porcu et al., 2021). We can accurately model late Holocene RSL changes 
along the Atlantic coast of North America and the interpretability of GAMs allows for these changes 
to be easily examined (Figure 4).

Our approach attempts to deviate from the Empirical Bayesian framework as implemented by K16 
and related models. Piecuch et al. (2017) demonstrated that Empirical Bayesian methodologies can 
underestimate uncertainty when examining historic sea-level change along the Atlantic coast of 
North America. However, we recognize the difficulty of a fully Bayesian approach due to the con
founding nature of the regional, linear local, and non-linear local components. Instead, we opted to 
take advantage of the two-step fitting required by our use of the noisy-input method to take account 
of age errors. The first step of the modelling procedure obtains posterior distributions for the regional 
component and the site-specific vertical offset. The second step uses the resulting posterior estimates 
and uncertainties to inform the priors for the remaining linear local and non-linear local components, 
and the extra measurement variance contribution from the age uncertainties. The first step can be 
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Figure 8. The non-linear local component (l(x, t)) for our four sites along the Atlantic coast of North America. The 
y-axis represents sea level in metres. The brown solid line represents the mean of the model fit with the 50% 
credible interval in dark brown shading and 95% credible interval in the light brown shading.

J R Stat Soc Series C: Applied Statistics                                                                                                    19
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlae044/7756353 by M
aynooth U

niversity user on 23 Septem
ber 2024



thought of as estimating the main component of our model: the regional RSL curve, with the second 
step designed to decompose the residuals and ensure the uncertainty is properly calibrated. Our mod
elling strategy avoids fixing process model parameters, and severe confounding that would occur were 
we to fit the model in one step.

Considering the individual RSL components, pre-anthropogenic (before 1800 CE; Neukom et al., 
2019) RSL change along the Atlantic coast of North America is dominated by the linear local compo
nent that is principally capturing the contribution from ongoing GIA. However, there are some notable 
differences between the empirically estimated rates obtained from our models and the GIA rates ob
tained from the ICE5G-VM2-90 Earth-ice physical model (Table 2). There are several possible explan
ations for these discrepancies. First, a single Earth-ice model generates GIA predictions from a specific 
representation of the solid Earth (e.g. mantle viscosity and lithospheric thickness parameters) and his
tory of deglaciation. It is unlikely that any single Earth-ice model will perfectly estimate GIA at all pla
ces and all times because the parameters are uncertain and may vary by location (Roy & Peltier, 2015). 
In particular, locations close to the margins of former ice sheets (such as Newfoundland) may exhibit 
particularly pronounced differences in GIA estimated by different Earth-ice models. Systematic differ
ence between RSL predicted by specific Earth-ice models and proxy reconstructions on Holocene time
scales is well documented in eastern North America (Vacchi et al., 2018) and elsewhere (Shennan et al., 
2018). One such example is Placentia Newfoundland where our empirically estimated rate and the 
Earth-ice physical model GIA rate differ by 0.1 mm/year (Table 2). Second, physical Earth-ice models 
only estimate the contribution from GIA, while the empirical approach captures contributions from 
other processes such as vertical land motion from tectonic processes that may also be a linear driver 
of RSL change on the timescales under consideration. Although these non-GIA processes may be small 
on the passive margin of the Atlantic coast of North America, they are also unlikely to be zero at all 
sites. For example, Khan et al. (2022) reconstructed RSL at two sites (Snipe Key and Swan Key) in 
southern Florida where the predicted (by ICE5G-VM2-90 Peltier et al., 2015) rate of long-term change 
is 0.1 mm/year and the two sites were anticipated to share a common sea-level history given their prox
imity to one another and no indication of an unusual contribution from local-scale processes. The re
constructed rates of RSL rise were ∼0.75 mm/year at Snipe Key and ∼1.1 mm/year at Swan Key. This 
suggests that long-term RSL trends in Florida exceeded those predicted by an Earth-ice model. Similar 
rates of rise were reconstructed by previous studies (e.g. Hawkes et al., 2016; Scholl & Stuiver, 1967). 
This regional difference may be attributed to a contribution from non-GIA processes that are not in
cluded in Earth-ice models (e.g. tectonics), or limitations of the model (e.g. not including 3D Earth 
structure). The faster rate of rise at Swan Key compared to Snipe Key was interpreted by Khan et al. 
(2022) as evidence for a contribution to RSL rise from a local-scale process, possibly dissolution of 
the underlying carbonate bedrock.

After ∼1900 CE, the regional component dominates, and we see the regional rate of change in
crease markedly from 0.7 ± 0.5 mm/year in 1902 to 1.8 ± 0.5 mm/year at the end of the 20th cen
tury (Figure 7b). This change is the result of anthropogenic forcing of the climate system (Neukom 
et al., 2019), which drove sea-level rise through thermosteric and barystatic processes (Frederikse 
et al., 2020). Our estimate of regional sea-level rise during the 20th century represents trends sus
tained on multi-decadal to centennial timescales because of the natural time-averaging and reso
lution limits of the proxy reconstructions and our decadal average of tide gauge measurements. 
Despite our analysis using different sources of data, being limited in geographical scope to the 
Atlantic coast of North America and using a new approach, our estimated century-scale rate of 
historic sea-level rise is similar to those proposed in previous studies. Using global compilation 
of tide gauge-records (and no proxy data), Hay et al. (2015) concluded that global mean sea level 
rose at 1.2 ± 0.2 mm/year during the 20th century, while Frederikse et al. (2020) estimated a rate 
of 1.56 ± 0.33 mm/year since 1900 CE. Using the an extended version of the K16 model (proxy 
reconstructions from around the world supplemented with nearby tide gauge data), Walker 
et al. (2022) estimated global mean sea-level rise to be 1.4 ± 0.2 mm/year since 1940CE.

The regional component in our model is the term common among all sites (which are limited to 
the Atlantic coast of North America). This term cannot be directly compared to the global term in 
the K16 model which is common to sites in a dataset drawn (unevenly) from all ocean basins. 
Processes such as dynamic sea level change from ocean currents and the spatial fingerprint of 
ice melt could cause sea level in the western North Atlantic to depart from the global mean. For 
example, mass loss from the West Antarctic ice sheet would cause many of the sites used in our 

20                                                                                                                                                    Upton et al.
D

ow
nloaded from

 https://academ
ic.oup.com

/jrsssc/advance-article/doi/10.1093/jrsssc/qlae044/7756353 by M
aynooth U

niversity user on 23 Septem
ber 2024



study to experience sea-level rise approximately 1.2 times greater than the global average (e.g. Hay 
et al., 2017). The similarity between our estimate rate of regional rise during the 20th century and 
those thought to represent global rise in the K16 model may suggest that basin-scale sea-level 
changes in the North Atlantic Ocean were comparable to global trends, or that the distribution 
of proxy data biases efforts to estimate global trends toward the data-rich Atlantic Ocean.

The diverse trends captured by the non-linear local component, as shown in Figure 8, highlight the 
important influence site-specific processes can have on the RSL. At Placentia Newfoundland, the non- 
linear local component experiences large fluctuations with maximum peaks reaching values of ∼0.19  
m at around 250 CE and 1775 CE and minimum troughs of −0.12 m at around −450 CE and 1050 CE. 
This is a particularly pronounced degree of variability. The original study of the site by Kemp et al. 
(2018) recognized that the geomorphology at Placentia rendered it sensitive to site-specific RSL change 
due to the position of the salt marsh. The salt marsh is separated from the open ocean by a narrow inlet 
that is likely prone to opening and closing of the dynamic sediment barrier. In contrast, the East River 
Marsh record was generated exclusively through sediment in direct contact with bedrock to negate the 
potential influence of sediment compression as a driver of RSL change (Kemp et al., 2015). This con
trast is reflected in our estimate of the non-linear local component where variability is present with a 
slight increase in sea level followed by a fall at around 100 CE and from 650 CE onwards an increase. 
Thus the component is non-zero due to the presence of other processes that can affect individual sites or 
groups of sites (e.g. dynamic sea level change; Kemp et al., 2015).

There are a number of potential extensions to the NI-GAM model that have not been addressed in 
our paper. A future aim is to extend NI-GAM further to larger regions, e.g. North Atlantic, or poten
tially to examine global RSL trends. By encompassing a broader geographical scope, we gain more 
understanding of additional drivers of sea-level change, for example dynamic sea level change arising 
from ocean dynamics (as defined in Gregory et al., 2019). Our extension would require an additional 
parameter to capture this important driver. This term could incorporate insights into ocean basin 
structure through a hierarchical prior, offering a comprehensive understanding of oceanic variations. 
By adopting this approach, we could explore the implications of individual coastlines separately with
in the new hierarchical term, alongside the collective influence of the ocean. However, this poses a 
challenge as the network of proxy records and tide gauges is non-uniformly spread and biased to 
coastal regions in the Northern hemisphere. Previous attempts to resolve this spatial bias have used 
a variety of techniques, (e.g. Berrett et al., 2020; Church & White, 2011; Dangendorf et al., 2017; 
Hay et al., 2015; Jevrejeva et al., 2008; Wenzel & Schröter, 2010), yet have mostly focused on instru
mental data from tide gauges and satellites. Models like K16 and its extensions (e.g. Kemp et al., 2018; 
Khan et al., 2017; Walker et al., 2021) created a global component that may give insight into the 
changes in sea level common across many sites. Therefore, our model would require more compo
nents and further solutions to additional potential confounding issues. Yet, NI-GAM is an extendable 
modelling approach due the flexible structures of spline-GAMs and the Bayesian framework that al
lows for the inclusion of informed priors from future RSL analyses. Our modelling strategy is of 
course not limited to RSL changes. Rather it has the potential to be expanded to other areas of research 
that require the decomposition of a signal into different components that vary in time and space with 
complex measurement errors. One such example would be investigating historic temperature trends 
at a local and regional level to gauge the components that alter temperature spatially and temporally.
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Table A1. The 21 data sites used in our model and the associated reference for each location

Reference and proxy indicator Site name Empirical rate prior to 
1800 CE (mm/year)

ICE5G GIA rate 
(mm/year)  

(Peltier, 2004)

Donnelly et al. (2004): Plants (Gehrels 
et al., 2020): Foraminifera

Barn Island, 
Connecticut

1.00 0.99

Kemp et al. (2015) and Stearns and 
Engelhart (2017): Foraminifera

East River Marsh, 
Connecticut

0.91 0.96

Kemp et al. (2014): Foraminifera and 
plants

Nassau, Florida 0.42 0.28

Donnelly (2006): Plants Revere, Massachusetts 0.58 0.40

Kemp et al. (2011): Plants Wood Island, 
Massachusetts

0.52 0.40

Kemp et al. (2017, 2011): Foraminifera Sand Point, North 
Carolina

0.97 0.69

Kemp et al. (2017, 2011): Foraminifera Cedar Island, North 
Carolina

0.74 0.69

Kemp et al. (2013) and Cahill et al. 
(2016): Foraminifera, δ13C

Cape May Courthouse, 
New Jersey

1.19 1.24

Kemp et al. (2013) and Cahill et al. 
(2016): Foraminifera, δ13C

Leeds Point, New Jersey 1.69 1.41

Barnett et al. (2017): Foraminifera, 
testates

Les Sillons, Magdelen 
Islands

1.23 2.20

Gerlach et al. (2017): Foraminifera Little Manatee River, 
Florida

0.28 0.14

Kemp et al. (2018): Foraminifera Big River Marsh, 
Newfoundland

0.87 0.60

Kemp et al. (2018): Foraminifera, 
testates

Placentia, 
Newfoundland

0.41 0.21

Barnett et al. (2019): Foraminifera Saint Simeon, Quebec 0.93 2.33

Gehrels et al. (2020): Foraminifera Chezzetcook Inlet, 
Nova Scotia

1.76 0.63

Gehrels et al. (2020): Foraminifera Sanborn Cove, Maine 3.23 0.08

Khan et al. (2022): Mangrove Peat Snipe Key, Florida 0.66 0.13

Khan et al. (2022): Mangrove Peat Swan Key, Florida 0.90 0.11

Walker et al. (2021): Foraminifera Cheesequake, New 
Jersey

0.85 1.31

Kemp et al. (2017) and Stearns and 
Engelhart (2017): Foraminifera, δ13C

Pelham Bay, New York 0.8 1.31

Stearns and Engelhart (2017): 
Foraminifera, δ13C

Fox Hill Marsh, Rhode 
Island

1.00 1.07

Note. The site name is a combination of the site-specific name and the corresponding state. In addition, a comparison is 
made between the GIA rates we use from the data and GIA rates from physical models such as the ICE5G—VM2-90 
Earth-ice model (Peltier, 2004).
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Appendix A
Data
Table A1 provides a list of all the proxy record sites used along the Atlantic coast of North America in 
our model and Figure A1 represents the proxy data associated with the 21 proxy record sites used in 
our model with the grey boxes the 1 σ uncertainty in the age and RSL value and the black dots the mid
point of the uncertainty box. Table A1 gives the references associated with each proxy data site and 
more information in regard to data collection can be sourced here. In addition, Table A1 contains 
the GIA rate used to inform the prior for the linear local component calculated using a linear regression 
for the data prior to 1800 CE for each site (Neukom et al., 2019). This provides an estimate for the 
rebounding effect of the tectonic plate after a glacier melts (Whitehouse, 2018). In previous models, 

Table A2. The 66 tide-gauge data sites and their geographical coordinates used in our model from Holgate et al. 
(PSMSL 2013)

Longitude Latitude Site name ICE5G-VM2-90 GIA rate 
(mm/year) (Peltier, 2004)

−54.00 47.30 ARGENTIA 0.21

−74.40 39.40 ATLANTICCITY 1.41

−68.20 44.40 BARHARBOR,FRENCHMANBAY,ME −0.11

−76.70 34.70 BEAUFORT,NORTHCAROLINA 0.61

−63.60 44.70 BEDFORDINSTITUTE 0.49

−65.80 47.90 BELLEDUNE 1.98

−74.10 40.60 BERGENPOINT,STATENIS. 1.31

−53.10 48.70 BONAVISTA 0.36

−71.10 42.40 BOSTON 0.40

−64.00 44.70 BOUTILIERPOINT 0.49

−73.20 41.20 BRIDGEPORT 0.96

−70.60 41.70 BUZZARDSBAY 1.07

−61.90 47.40 CAPAUXMEULES 2.20

−75.60 35.20 CAPEHATTERAS,NORTHCAROLINA 0.69

−75.00 39.00 CAPEMAY 1.24

−83.00 29.10 CEDARKEYI 0.24

−63.10 46.20 CHARLOTTETOWN 1.67

−82.80 28.00 CLEARWATERBEACH 0.25

−67.20 44.60 CUTLER 0.08

−67.30 44.60 CUTLERII 0.08

−66.40 48.10 DALHOUSIE 2.12

−75.70 36.20 DUCKPIEROUTSIDE 0.67

−67.00 44.90 EASTPORT 0.08

−81.50 30.70 FERNANDINABEACH 0.42

−81.90 26.60 FORTMYERS 0.13

−70.70 43.10 FORTPOINT,NEWCASTLEISLAND −0.30

−63.60 44.70 HALIFAX 0.49

−80.10 25.90 HAULOVERPIER 0.11

−75.10 38.60 INDIANRIVERINLET 1.13

−81.60 30.40 JACKSONVILLE 0.28

−81.00 24.70 KEYCOLONYBEACH 0.07

(continued) 
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physical GIA models are used to inform the prior for the linear local component. Peltier (2004)
developed the ICE5G—VM2-90 Earth—ice physical model that provides a GIA rate for each site. 
We carried out a comparison between these techniques however, the data driven GIA rates were 
our preferred choice for the proxy records.

Table A2. Continued  

Longitude Latitude Site name ICE5G-VM2-90 GIA rate 
(mm/year) (Peltier, 2004)

−81.80 24.60 KEYWEST 0.13

−73.80 40.80 KINGSPOINT,NEWYORK 1.31

−58.40 49.10 LARKHARBOUR −0.82

−75.10 38.80 LEWES(BREAKWATERHARBOR) 1.13

−64.90 47.10 LOWERESCUMINAC 2.24

−81.00 24.70 MARATHONSHORES 0.07

−81.40 30.40 MAYPORT 0.42

−81.40 30.40 MAYPORT(BARPILOTSDOCK),FLORIDA 0.42

−80.10 25.80 MIAMIBEACH 0.11

−72.00 41.00 MONTAUK 0.99

−76.70 34.70 MOREHEADCITY 0.61

−72.10 41.40 NEWLONDON 0.99

−71.30 41.50 NEWPORT 1.07

−73.80 40.90 NEWROCHELLE 1.31

−74.00 40.70 NEWYORK(THEBATTERY) 1.31

−60.20 46.20 NORTHSYDNEY 1.51

−75.50 35.80 OREGONINLETMARINA,NORTHCAROLINA 0.91

−75.10 39.90 PHILADELPHIA(PIER9N) 1.24

−62.70 45.70 PICTOU 0.93

−72.20 41.20 PLUMISLAND 0.99

−59.10 47.60 PORTAUXBASQUES 1.19

−73.10 41.00 PORTJEFFERSON 0.96

−76.30 36.80 PORTSMOUTH(NORFOLKNAVYYARD) 0.67

−71.40 41.80 PROVIDENCE(STATEPIER) 1.07

−64.40 49.00 RIVIERE-AU-RENARD 1.12

−63.30 46.50 RUSTICO 1.67

−70.50 41.80 SANDWICHMARINA, 
CAPECODCANALENTRANCE

1.20

−74.00 40.50 SANDYHOOK 1.31

−52.70 47.60 ST.JOHN’S,NFLD. 0.41

−82.60 27.80 ST.PETERSBURG 0.26

−55.40 46.90 STLAWRENCE 0.59

−81.10 24.70 VACAKEY 0.07

−80.20 25.70 VIRGINIAKEY,FL 0.11

−73.80 40.80 WILLETSPOINT 1.31

−70.70 41.50 WOODSHOLE(OCEAN.INST.) 1.07

Note. Also, the GIA rate for each tide gauge site is provided using the ICE5G—VM2-90 Earth—ice physical model 
developed by Peltier (2004).
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Table A2 gives the reference name associated with each tide-gauge data site and its location 
along North America’s Atlantic coast using PSMSL database (Holgate et al., 2013). For each tide 
gauge site, the associated GIA rate is provided which is obtained using the ICE5G—VM2-90 
Earth—ice physical model developed by Peltier (2004). These GIA rates serve as the mean values, 
denoted as mgj , for each site j in the prior distribution of the linear local component, as described 
in Section 5.4, equation (13). Additionally, following the findings of Engelhart et al. (2009), we 
set the uncertainty associated with the GIA rate values for the tide gauge data to be 0.3 mm per 
year. This uncertainty value is used as the known variance, s2

gj
, for the prior distribution for the linear 

local component as described in Section 5.4, equation (13). In Figure A2, we plotted a subset of 27 
tide gauge sites with more than 50 observations each. The tide gauge data is averaged over a decade 
in order to match the sediment accumulation rate of the proxy records which is approximately every 
10 years along the Atlantic coast of North America.

Appendix B
Model Results and Validations for the Full Data Set
Section 7 showcases the results of four illustrative case studies and it is important to note that the 
model was executed on the complete dataset. In this section, we delve into the comprehensive re
sults derived from our extensive dataset comprising 21 proxy sites and 66 tide gauges. In addition, 
we present the results from the 10-fold cross-validation using the 21 proxy sites. Finally, we ex
plore the effects of altering the number of knots and types of basis functions in the GAM 
Sensitivity test section.

Results for Full Dataset
The model is run using 21 proxy sites and 66 tide gauge sites, yet we present the results of the proxy 
record sites as their long temporal trend provides insight into long-term changes in RSL along the 
Atlantic coast of North America. Figure B2 provides the total model fit for the 21 proxy sites along 
the Atlantic coast of North America, and Figure B3 provides the rates of change for the 

10 Posterior Samples
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Figure B1. Regional component (r (t)) of the noisy-input generalized additive model using 21 proxy sites and 66 tide 
gauge sites along the Atlantic coast of North America. The dark blue line highlights the mean posterior model fit and 
the dark blue shading indicated the 50% credible interval and the lighter blue shading is the 95% credible interval. 
The grey lines represent 10 posterior samples.
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corresponding 21 proxy sites. Figure B4 provides the decomposition of the NI-GAM into the total 
model fit and the three components; regional, linear local component with the site-specific vertical 
offset and non-linear local component for the 21 proxy sites. Figure B1 presents the regional com
ponent of the NI-GAM. The grey lines represent 10 randomly chosen posterior samples showing 
the underlying behaviour of the posterior for the regional component. Figure B5 provides the non- 
linear local component for each proxy record data site. In Figure B6, we illustrate the total model 
fit for tide gauge data where the data exceed 50 years of observations.

Model Validation
Model validation using 10-fold cross-validation was undertaken using data from 20 proxy 
sites and 7 tide gauge sites along the Atlantic coast of North America. The remaining data sites 
were not used in the 10-fold cross-validation as all sites had fewer than 10 data points. 
Figure B7 provides the true vs. predicted RSL for the 20 proxy sites and 7 tide gauge sites using 
10-fold cross-validation. In Table B1, we provide the empirical coverage for each data site in 

Table B1. Empirical 95% coverage for the 20 proxy sites (head of table) and 7 tide gauge (tail of table) sites along the 
Atlantic coast of North America with the associated prediction interval (PI) using 10-fold cross-validation

Site name Empirical 95% 
coverage

95% PI 
width (m)

Empirical 50% 
coverage

50% PI 
width (m)

RMSE 
(m)

Barn Island, Connecticut 1.00 0.33 0.53 0.11 0.09

Big River Marsh, Newfoundland 0.95 0.48 0.62 0.17 0.13

Cape May Courthouse, New Jersey 0.99 0.56 0.75 0.19 0.15

Cedar Island, North Carolina 1.00 0.29 0.85 0.10 0.07

Cheesequake, New Jersey 1.00 0.82 0.91 0.28 0.21

Chezzetcook Inlet, Nova Scotia 1.00 0.30 0.96 0.10 0.08

East River Marsh, Connecticut 1.00 0.53 0.74 0.18 0.14

Fox Hill Marsh, Rhode Island 0.96 0.44 0.66 0.15 0.13

Leeds Point, New Jersey 0.99 0.50 0.64 0.17 0.13

Les Sillons, Magdelen Islands 1.00 0.42 0.89 0.15 0.11

Little Manatee River, Florida 1.00 0.32 0.84 0.11 0.08

Nassau, Florida 1.00 0.33 1.00 0.12 0.08

Pelham Bay, New York 0.97 0.76 0.45 0.26 0.21

Placentia, Newfoundland 0.99 0.36 0.81 0.12 0.10

Saint Simeon, Quebec 1.00 0.65 0.90 0.22 0.16

Sanborn Cove, Maine 1.00 0.74 0.43 0.26 0.19

Sand Point, North Carolina 1.00 0.35 0.92 0.12 0.09

Snipe Key, Florida 1.00 0.93 0.98 0.32 0.23

Swan Key, Florida 1.00 0.77 1.00 0.27 0.19

Wood Island, Massachusetts 0.83 0.30 0.33 0.10 0.07

ATLANTICCITY 1.00 0.60 1.00 0.21 0.15

FERNANDINABEACH 1.00 0.45 1.00 0.15 0.11

HALIFAX 1.00 0.53 0.75 0.18 0.13

KEYWEST 1.00 0.41 0.91 0.14 0.10

LEWES(BREAKWATERHARBOR) 1.00 0.50 1.00 0.18 0.12

NEWYORK(THEBATTERY) 1.00 0.63 1.00 0.22 0.16

PHILADELPHIA(PIER9N) 1.00 0.52 1.00 0.18 0.13

Note. As a comparison, the prediction intervals are reduced to 50% intervals and the empirical coverage for the 50% is 
presented. The root mean square error (RMSE) is included in metres
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the 10 CV analysis. The empirical coverage indicates the percentage of times the true observa
tion lies within the prediction interval. A comparison is made between the 95% empirical 
coverage and the 50% empirical coverage. It is evident that the prediction intervals for our 
model are large resulting in 100% coverage in many sites. This is due to the large size of 
the prediction intervals resulting from the large bivariate uncertainty that arises from the 
proxy records. Also included in Table B1 is the root mean square error (RMSE) for the 20 
proxy sites and 7 tide gauge sites along the Atlantic coast of North America that gives an in
sight into the prediction errors.

Residual Analysis
To evaluate the efficacy of our models, we analyse the residuals, representing the differences 
between observed and predicted values, through residual plots (Baddeley et al., 2005). In 
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Figure B8. Residual analysis for the noisy-input generalized additive model highlighting. (a) Model run 1 represents 
the first step of our modelling approach and the residuals possess evidence for an underlying trend. (b) Model run 2 
presents the second step of our model which removed the underlying trend, highlighting the requirement of the two 
step modelling approach.
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Figure B8, our residual plot provides insights into model performance, aiding in the identifi
cation of patterns, trends in what should be identified as random noise. Figure B8a Model run 
1 represents the residuals after the first step of our modelling approach and demonstrates a 
discernible trend, indicating that the model has not fully captured underlying patterns in 
the data. In contrast, Figure B8b Model run 2 presents the residual plot after the second mod
el run that eliminates the discernible trend, presenting residuals that are random and evenly 
spread around the horizontal axis. By comparing the residual plots after each step of the 
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Figure B9. (a) Total model fit for the noisy-input generalized additive model using a range of knot values for the 
regional component. The grey boxes represent the bi-variate uncertainties associated with the proxy records and the 
black dot is the midpoint of the box. The coloured lines with corresponding 95% credible intervals represent a subset 
of sensitivity tests used to find the optimum regional knot setting. (b) The rate of change for the total model fit for the 
noisy-input generalized additive model using a range of knot values. The coloured lines with corresponding 95% 
credible intervals represent a subset of sensitivity tests used to find the optimum regional knot setting.
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modelling approach, we justify the adoption of a two-step modelling process, as outlined in 
Section 5.

GAM Sensitivity Study
As mentioned in Section 5, we use B-splines for our regional and non-linear local terms. In this 
section, we utilize a GAM sensitivity study to highlight the range of basis functions settings exam
ined and how our model choices provided satisfactory model fits as well as computational 
efficiencies.
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Figure B10. (a) The regional component for the noisy-input generalized additive model with the coloured lines and 
corresponding 95% credible intervals highlighted a subset of the knot settings examined during our sensitivity 
analysis. (b) The rate of change for the regional component for the noisy-input generalized model. The coloured lines 
represent 95% credible intervals for three different knot settings for the regional component, ranging from 13–3  
knots. Through our GAM sensitivity analysis, we deemed 23 knots as the optimum value for the regional component 
knot setting.
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Initially, we assessed the capabilities of the mgcv package developed by Wood (2015), which 
facilitates the fitting of various smoother functions and generalized additive models. However, 
this package lacks provisions for Bayesian analysis or the incorporation of uncertainties associated 
with input and output variables. Subsequently, we explored the jagam package by Wood (2016), 
leveraging the functionalities of mgcv while automatically generating corresponding JAGS model 
code, enabling Gibbs sampling. Nevertheless, challenges emerged when incorporating informed 
priors for the linear local component, leading to issues with model fits at certain locations. 
Consequently, to enhance flexibility in the model structure, we developed our own basis functions 
and JAGS scripts.

Following a comprehensive examination, we investigated both the individual components, the 
overall fit of the model and the corresponding rates for both. Our residual analysis demonstrated 
the importance of the diverse components within the RSL field. Additionally, it highlighted the ne
cessity for conducting multiple model runs to effectively incorporate uncertainty and capture in
herent patterns in the data. At the development stage of model, we commenced with the most basic 
model involving a spline in time and systematically progressed through a spline in space-time, 
eventually incorporating additional random effect terms. It is crucial to highlight that the structure 
and smoothness of basis functions associated with our regional (spline in time) and non-linear lo
cal components (spline in space-time) play a pivotal role in enhancing the performance and inter
pretability of statistical models. To create the basis functions, we draw inspiration from Eilers and 
Marx (2021). Central to our function are two key parameters: ‘nseg’ that determines the partition
ing length for equidistant knots, and ‘deg’ that specifies the degree of the underlying basis function. 
We systematically tested both the number of segments (‘nseg’) and the degree, thereby adjusting 
the number of knots accordingly. Leveraging the bs() function from Hastie (2017), we constructed 
the spline basis function from these calculated knots. Subsequently, we enhanced model efficiency 
by removing columns with zero values. In this section, we present our GAM sensitivity tests, offer
ing a representative sample of the extensive experimentation undertaken. We explore three dis
tinct configurations: one with a small number of knots, a medium setting, and a scenario 
involving a large number of knots, applied to both the spline in time and the spline in space-time. 
Despite exploring various alternatives, our cross-validation analyses consistently favoured a mod
erate number of knots for both time and space-time spline models, achieving a balance between 

Placentia,
 Newfoundland

Swan Key,
 Florida

Cedar Island,
 North Carolina

East River Marsh,
 Connecticut

−1000 0 1000 2000 −1000 0 1000 2000

−2

−1

0

1

2

−2

−1

0

1

2

Year (CE)

S
ea

 L
ev

el
 (

m
) Regional Knot Setting

13 knots

23 knots

33 knots

Figure B11. The linear local component for the noisy-input generalized additive model with the coloured lines and 
corresponding 95% credible intervals highlighted a subset of the knot settings for the regional component that were 
examined during our sensitivity analysis. The coloured lines represent three knot settings for the regional 
component; 13 knots in red, 23 knots in green, and 33 knots in blue.
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model fit and computational efficiency. While the mgcv package (Wood, 2015) used a generalized 
cross-validation technique to reduce computational demands, we opted for the 10-fold cross- 
validation method to better capture the complexity inherent in our data.

Regarding the regional component, we conducted comparisons with B-splines (Hastie & 
Tibshirani, 1986) and P-splines (Eilers & Marx, 1996). While both spline types involve coefficient 
estimation, P-splines introduce the added complexity of estimating penalty parameters to regulate 
smoothness (Wood, 2017). Unfortunately, issues arose with model convergence due to the add
itional penalty parameter for the P-spline. This was especially notable for the non-linear compo
nent, which involved modelling 3D splines across varied spatial sites and time series lengths. In this 
case, uneven spacing between knots was required, leading to the estimation of numerous coeffi
cients and penalties for each site and time frame, which was considerable when examining 21 
proxy locations and 66 tide gauge sites. As suggested by Wood (2017), the efficiency of 
P-splines diminishes with unevenly spaced knots, and identifiability issues arose with the complex 
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Figure B12. (a) The non-linear local component for the noisy-input generalized additive model with the coloured 
lines and corresponding 95% credible intervals highlighted a subset of the regional component knot settings. (b) The 
rate of change for the regional component for the noisy-input generalized model. The coloured lines represent 95% 
credible intervals for three different knot settings for the regional component, ranging from 13–33 knots.
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structure of the non-linear local component. Consequently, we reverted to using B-splines and fo
cused on fine-tuning the number of knots and validated our approach using 10-fold cross- 
validation, as discussed earlier. Figure B9a displays the overall model fit for the NI-GAM, and 
Figure B9b shows the corresponding rate of change for the model fit for the NI-GAM. We dem
onstrate a subset of sensitivity tests that we conducted to explore the interplay between model 
smoothness and efficiency focusing on the regional component and the corresponding rate. We 
found that examining the rate provides a very important insight into the required smoothness 
of the total NI-GAM. The plots demonstrates how the optimal fit for the data is achieved by se
lecting a range of knots between 13 to 33 knots for the regional component and the corresponding 
rate of change. In this case, 13 knots (red) results in an overly smooth fit, while 33 knots (blue) lack 
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Figure B13. (a) Total model fit for the noisy-input generalized additive model using a range of knot values for the 
non-linear local component. The grey boxes represent the bi-variate uncertainties associated with the proxy records 
and the black dot is the midpoint of the box. The coloured lines with corresponding 95% credible intervals represent 
a subset of sensitivity tests used to find the optimum non-linear local knot setting. (b) The rate of change for the total 
model fit using range of knot values for the non-linear local component. The number of knots for the non-linear local 
component ranges from 141 (red) to 333 (green) to 420 (blue).
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smoothness. With 23 knots (green), we achieve a balance, ensuring smoothness in the rates while 
effectively capturing trends in the data.

When investigating the sensitivity of the regional knot setting, we assessed the total model fit and 
corresponding rate as described previously, but also the individual components of the RSL field 
and their corresponding rates. Through the combination of model fit and smoothness of rates, 
an optimum number of knots was selected. In Figure B10a, we illustrate the different knot setting 
for the regional component, and Figure B10b depicts the corresponding rate for the regional com
ponent. When the 13 knots is used, as depicted in read in Figure B10, the large credible intervals 
and the varying intercept reflect how the model is struggling to identify which component should 
pick up the variability. This demonstrates how selecting the number of knots depends on the in
dividual component variability and how the components interact with each other. We identified 
that the prefer setting to be 23 knots as it significantly reduced uncertainty compared to the 
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Figure B14. (a) The non-linear local component for the noisy-input generalized additive model with the coloured 
lines with corresponding 95% credible intervals representing a subset of knot settings. (b) The rate of change for the 
non-linear local component using range of knot values for the non-linear local component. The number of knots for 
the non-linear local component ranges from 141 (red) to 333 (green) to 420 (blue).
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alternative with 13 knots and effectively balanced the variability among the remaining compo
nents of the NI-GAM. Following this, we investigate the impact of the regional component 
knot setting on the linear-local component. In Figure B11, we demonstrate how varying the num
ber of knots in the regional component reduces the size of the credible intervals for the linear local 
component and how the intercept (i.e. y offset term) varies. This underscores the importance of 
effectively managing confounding variables while balancing individual components, highlighting 
the crucial role of optimizing knot settings, especially for the regional component.

The final step for the sensitivity test for the regional component knot setting is to investigate the 
varying knots for the non-linear local component. In Figure B12a and b, we show how 13 knots 
(red) results in large uncertainties for the non-linear local component and using 23 or 33 knots 
reduced this uncertainty. In instances where one component exhibits less flexibility, the remaining 
component tends to become more variable. Consequently, we conducted these tests by maintain
ing a fixed setting for the non-linear local component knots while varying the regional component 
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Figure B15. (a) The regional component for the noisy-input generalized additive model with the coloured lines with 
corresponding 95% credible intervals representing a subset of knot settings. (b) The rate of change for the regional 
component using range of knot values for the non-linear local component. The number of knots for the non-linear 
local component ranges from 141 (red) to 333 (green) to 420 (blue).
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knot configuration. In the following section, we demonstrate the outcomes of modifying the non- 
linear local component knot setting and examine its effects on the overall model fit, as well as the 
other components and their corresponding rates.

A similar GAM sensitivity analysis was carried out for the knot settings associated with non- 
linear local component. This component requires a tensor product which results in significantly 
larger number of knots compared with the previous tests for the regional component knot setting. 
In Figure B13a and b, we show the overall model fit and rate for the NI-GAM with a subset of knot 
settings. Similar to the previous case, tests conducted to explore the interplay between model 
smoothness and efficiency focusing on the non-linear local component. Figure B13a and b demon
strates a subset of the knot settings examined for the non-linear local component. It is clear that 
varying the non-linear knots has minimal impact on the total model fit and the corresponding 
rate. This is in contrast to the impact of the regional knot setting shown in Figure B9b which im
pacts the smoothness greatly.

Figure B14a and b represents the impact the knot setting has on the non-linear local component. 
In this case, there are differing results based on the knot setting employed. We selected the knot 
setting 333 (green) based on a combination of model fit and smoothness in the rates.

In Figure B15a and b, highlights how the knot setting for the non-linear local component has 
minimal impact on the regional component. This results reflects the two step modelling procedure 
we employ and how the remaining variability is captured within the non-linear local component.

Similarly, we demonstrate the impact of the non-linear local component knot setting on the 
linear-local component. In Figure B16, we show how varying the number of knots in the non- 
linear local component does not impact the linear local component. Once again, this underscores 
our two-step modelling procedure and highlights how the remaining variability is contained with
in the non-linear local component.

In this GAM sensitivity study, we have demonstrated how basis functions serve as fundamental 
components, playing a crucial role in representing the relationship between predictors and the re
sponse variable in a flexible and non-linear manner. We have presented a subset of our sensitivity 
study, which helps address the modelling decisions we made to ensure the smoothness of the basis 
functions. We complemented this sensitivity study with the 10-fold CV techniques, as previously 
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Figure B16. The linear local component for the noisy-input generalized additive model with the coloured lines and 
corresponding 95% credible intervals highlighted a subset of the knot settings for the non-linear local component 
that were examined during our sensitivity analysis. The coloured lines represent three knot settings for the regional 
component; 141 knots in red, 333 knots in green, and 420 knots in blue.
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Figure B17. Prior predictive checks for the regional component varying the number of knots ranging from 13 knots 
(red), 23 knots (green), and 33 (knots). For each plot, the solid colour line denoted by y represents the real data, i.e. 
RSL. The yrep lines represent draws from the prior predictive distribution.
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mentioned, to assess the goodness-of-fit for different numbers of knots and determine the optimal 
number of knots that balance model complexity and efficiency.

Prior Predictive Tests
In this section, we employ prior predictive tests to validate our choice of priors, as recommended 
by Rubin (1984) and Gelman et al. (1996). Prior predictive checks can be used to assess the suit
ability of chosen prior distributions by generating data according to those priors and the model 
structure (Gabry et al., 2019). The observations play no role in the prior predictive checks, other 
than for comparison purposes. For the prior predictive checks, we use the ‘data’ block within 
JAGS to simulate data from the likelihood based solely on our prior assumptions (Plummer, 
2003). During our prior sensitivity analysis phase, we systematically changed the priors to better 
comprehend their impact and assess the robustness of the results across various prior specifications 
and confirmed our decisions using prior predictive checks (Winter & Depaoli, 2023). In 
Figure B17, we demonstrate the impact of changing the number knots for the regional component 
on the prior. This plot demonstrates that the priors are conservative, as the data falls within the 
intervals. If the plot were excessively tight, it would indicate overfitting; however, our models 
strike a balance, being slightly informed yet sufficiently conservative.
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