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A B S T R A C T

Environmental monitoring is crucial to our understanding of climate change, biodiversity loss and pollution.
The availability of large-scale spatio-temporal data from sources such as sensors and satellites allows us to
develop sophisticated models for forecasting and understanding key drivers. However, the data collected from
sensors often contain missing values due to faulty equipment or maintenance issues. The missing values rarely
occur simultaneously leading to data that are multivariate misaligned sparse time series. We propose two
models that are capable of performing multivariate spatio-temporal forecasting while handling missing data
naturally without the need for imputation. The first model is a transformer-based model, which we name SERT
(Spatio-temporal Encoder Representations from Transformers). The second is a simpler model named SST-ANN
(Sparse Spatio-Temporal Artificial Neural Network) which is capable of providing interpretable results. We
conduct extensive experiments on two different datasets for multivariate spatio-temporal forecasting and show
that our models have competitive or superior performance to those at the state-of-the-art.
1. Introduction

The importance of spatio-temporal forecasting has increased sig-
nificantly in recent years due to the availability of large-scale spatio-
temporal data from various sources such as sensors and satellites
(Hamdi et al., 2022). Spatio-temporal forecasting involves predicting
how data vary over space and time, which is critical for a wide range
of applications such as water quality forecasting (Deng et al., 2022).
A common approach to modelling spatio-temporal data is to use a
multivariate time series structure, where each time series is associated
with a variable at a specific location (Wikle, 2015). Stochastic methods
such as state space models (Durbin and Koopman, 2012) and Gaussian
processes (GPs) (Ren and Han, 2014) are commonly employed for
this purpose. In particular, autoregressive models and its variants,
such as vector autoregression (VAR) (Sims, 1980), have been widely
used to predict future trends while accounting for randomness. These
approaches, complemented by machine learning techniques, provide a
comprehensive toolkit for handling the complexities of spatio-temporal
data analysis.

Spatio-temporal data often contain missing values which is a com-
mon problem in environmental monitoring, and can be caused by
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sensor failure, malfunction or communication problems (for example
see Fig. 1). A common remedy for forecasting with missing data is to
impute the missing values using a variety of methods such as mean
substitution, interpolation, or advanced techniques like multiple impu-
tation (Van Buuren, 2018; Stekhoven and Bühlmann, 2012). However,
these methods are not always effective as they may introduce biases
or fail to accurately capture the underlying patterns in the data. For
instance, mean substitution can oversimplify the data’s complexity,
leading to a loss of variability and potentially masking important
signals. Advanced techniques like multiple imputation, while more
sophisticated, might not always be suitable for all types of data or
missingness patterns. They may lead to models that are overfitted to
the imputed values. Therefore it is important to design models that
can handle missing data naturally whilst simultaneously learning the
underlying patterns in the data without resorting to imputation.

We propose a new model that is capable of performing multivari-
ate spatio-temporal forecasting named SERT (Spatio-temporal Encoder
Representations from Transformers). Our model is an extension of
the well-known transformer architecture that has shown remarkable
success in natural language processing and also image analysis (Devlin
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Fig. 1. An example of our environmental monitoring dataset; a multivariate environmental time-series with missing values.
et al., 2018; Dosovitskiy et al., 2020). SERT is designed to capture the
complex joint temporal and spatial dependencies among the input vari-
ables. An important feature of our proposed model which differentiates
it from the many other available methods is its ability to handle missing
data more naturally without requiring any missing value imputation.

In addition to the SERT model, we introduce an interpretable sim-
plified version that provides insights into the underlying factors that
drive the predicted values, which can assist in decision and policy-
making. Our proposed simplified model is named SST-ANN (Sparse
Spatio-Temporal Artificial Neural Network) and removes the trans-
former layers from the SERT structure. Despite being less accurate
than SERT, it is capable of providing insightful results with faster
computation time while similarly being able to handle missing values.
Depending on the complexity of the problem, the required accuracy and
the available computational resources, the user can fit both SERT and
SST-ANN, using the former to provide more accurate forecasts and the
latter to forecast and gain insights about how the results were obtained.

To evaluate the performance of our proposed models, we conducted
extensive experiments on two different datasets for multivariate spatio-
temporal forecasting. We fitted our models to a simulated dataset to
assess their ability to function under different levels of sparsity. We
also evaluated the performance of the models on a real-world dataset,
including missing values, of environmental variables in Dublin Bay
for 7 h ahead forecasting. Our experimental results show that our
models are competitive with state-of-the-art models for multivariate
spatio-temporal forecasting.

Our paper is organized as follows. In Section 2, we provide a
brief overview of related work on models developed for analysing
sequential data in general and spatio-temporal forecasting applied to
environmental monitoring in particular. In Section 3, we describe the
proposed SERT and SST-ANN models in detail. In Section 4, we present
the experimental results and analysis. Finally, in Section 5, we conclude
the paper and discuss future directions of research.
2

2. Related work

In this section we provide a brief overview of the recent devel-
opments in deep learning models for sequential data analysis and
spatio-temporal models for environmental monitoring, and also meth-
ods for handling missing data and adding interpretability to deep
learning models applied to time series data.

2.1. Deep learning models for sequential data

Deep learning models, which are fundamentally built upon neural
networks, have revolutionized the way complex applications, such as
multi-modal learning, are approached (Barua et al., 2023). Among
these models, Recurrent Neural Networks (RNNs) have been one of
the most popular deep learning models for sequential data (Li et al.,
2018). However, RNNs suffer from the vanishing gradient problem
which makes them unable to learn long-term dependencies in the
data. To address this problem, Long Short-Term Memory (LSTM) net-
works (Hochreiter and Schmidhuber, 1997) and Gated Recurrent Unit
(GRU) networks (Cho et al., 2014) were introduced. These models have
been applied to various tasks such as machine translation (Bahdanau
et al., 2014), speech recognition (Graves et al., 2013), and time series
forecasting (Lim and Zohren, 2021). Although these new variations
of RNNs perform better by mitigating the risk of the vanishing gradi-
ent problem, they are still somewhat limited in modelling long-range
dependencies due to the recursion used in their operations.

More recently, a new type of deep learning model named transform-
ers was introduced (Vaswani et al., 2017). Transformers rely on the
self-attention mechanism, which enables them to learn dependencies
between input and output sequences without recursion, significantly
reducing the maximum path length of network signals to the theoretical
minimum of (1) (Zhou et al., 2021). This capability is a significant
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advantage of transformers over recurrent methods and has contributed
to their superior performance. Furthermore, the original architecture of
transformers includes an encoder and a decoder network. The encoder
network is responsible for learning the representation of the input
sequence, while the decoder network is responsible for generating the
output sequence based on the learned representation. Models developed
on the transformer architecture include BERT (Devlin et al., 2018),
which uses only the encoder part, and GPT (Radford et al., 2018)
which uses only the decoder part. These models have been applied
to various tasks in natural language processing such as question an-
swering (Devlin et al., 2018), text classification (Sun et al., 2019), and
text summarization (Liu and Lapata, 2019). Overall, transformers have
proven themselves to be more effective than recurrent based models in
many applications, especially in natural language processing.

An essential step in leveraging transformer-based models involves
obtaining high-quality, contextualized embeddings of the input data.
This process is primarily facilitated by the encoder network, which
is comprised of multi-head attention mechanisms and feed-forward
layers within the transformer architecture. These embeddings cap-
ture the context of each element in the input data, reflecting their
meaning in relation to the entire set of input tokens. After encoding,
the embeddings are often passed through a linear layer to generate
the final predictions. This approach has been validated by numerous
studies, demonstrating its effectiveness across a variety of tasks. For
instance, in grammatical error correction, transformer-based models
have significantly outperformed conventional models, showcasing their
advanced language processing capabilities (Alikaniotis and Raheja,
2019). Additionally, these models have proven to be extremely ver-
satile, finding utility in domains beyond traditional NLP tasks. An
example includes polymer property prediction, where a transformer
model, referred to as TransPolymer, has demonstrated superior perfor-
mance in accurately predicting properties across diverse datasets (Xu
et al., 2022). These examples underscore the broad applicability and
effectiveness of transformer-based models in capturing and utilizing
complex patterns in data.

2.2. Deep learning models for spatio-temporal data

The application of deep learning models for spatio-temporal fore-
casting is not new. For example, Zhang et al. (2018) used an LSTM to
forecast daily land surface temperature, Xiao et al. (2019) developed a
deep learning model that utilizes convolutional long short-term mem-
ory as the building block for predicting sea surface temperature fields,
and Mendil et al. (2022) introduced MCxM, a deep learning approach
specifically designed for emergency pollution forecasting. However, the
application of transformers to spatio-temporal forecasting is relatively
new and challenging because transformers have been mainly devel-
oped in the field of natural language processing (NLP). Nonetheless
researchers were inspired by the success of transformers in NLP and
started adapting them to spatio-temporal forecasting which can be
formulated as a sequence-to-sequence problem, where the input is a
sequence of historical observations of multiple variables at different
locations, and the output is a sequence of future predictions of the same
variables at the same locations. A common approach for sequence-to-
sequence modelling is to use an encoder–decoder architecture, where
an encoder network maps the input sequence into a latent represen-
tation, and a decoder network generates the output sequence from the
latent representation (Sutskever et al., 2014). Grigsby et al. (2021) used
this idea to develop a new model called Spacetimeformer and applied
it to traffic prediction and weather forecasting. However, to the best
of our knowledge, the application of transformers to environmental
monitoring is limited to the recent work by Yu et al. (2023) who used a
3

transformer-based model for hourly 𝑃𝑀2.5 forecasting in Los Angeles.
2.3. Addressing missing values in modelling

As mentioned in the introduction, a major challenge in spatio-
temporal forecasting in the environmental monitoring context is deal-
ing with missing values. A common approach for dealing with the
missing values is imputation (Van Buuren, 2018) before conducting any
analysis. In time series modelling care needs to be taken to avoid in-
troducing bias; last observation carried forward is a common approach.
An alternative used in the literature is that of a Bayesian framework
which enables defining a prior distribution over the missing values so
that they can be inferred with the other unobserved parameters when
fitting the models. For example, Shoari Nejad et al. (2022) proposed
a Bayesian model (called VARICH) for spatio-temporal modelling of
turbidity data with many missing values. However, this approach is
computationally expensive and requires a large number of samples
from the posterior distribution to obtain acceptable results and thus
is not suitable for large spatio-temporal datasets.

To address the missing data problem in time series, Horn et al.
(2020) proposed a novel approach to encode multivariate time se-
ries using set functions and introduced a new model called SeFT for
classifying time series with irregularly sampled clinical data. More re-
cently, Tipirneni and Reddy (2022) proposed a new transformer based
model called STraTS that represents each observation as a triplet of the
form (time, variable name, value). As opposed to SeFT, STraTS uses
a learnable positional encoding and a Continuous Value Embedding
(CVE) scheme that is a one-to-many feed-forward network. STraTS was
developed to perform multivariate time series forecasting during the
pre-training phase and classification as the final task on irregularly
sampled clinical data. It has been shown to have higher accuracy than
its predecessor, the SeFT model, when applied to the classification of
clinical time series. Both SeFT and STraTS can handle missing values
without requiring any imputation. To the best of our knowledge, none
of these novel methods have been applied to environmental monitoring
challenges; we adapt STraTS to a spatio-temporal setting.

2.4. Interpretability of deep learning models

Deep learning models are often considered as black-box models
because they are hard to interpret (Buhrmester et al., 2021). However,
in many applications, it is important to understand the model’s decision
making process (Du et al., 2019). Some authors have proposed methods
to help interpret the results of deep learning models. For example,
SeFT uses the attention mechanism in its architecture and the authors
of the work showed that the attention weights can be used to gain
insights into the importance of input data, including multiple variables.
Similarly, Castangia et al. (2023) used a transformer-based model
to forecast floods and employed attention maps extracted from the
attention layers of the transformer model for interpretation. Tipirneni
and Reddy (2022), inspired by Choi et al. (2016) and Zhang et al.
(2020), took a different approach and proposed an interpretable version
of the STraTS model, called STraTS-I, which uses an almost identical
structure to their STraTS model but instead uses encoded inputs directly
to the output layer as opposed to STraTS that uses the contextualized
inputs to the output layer. Their approach allows for the calculation of
a contribution score for each input observation towards the prediction,
achieved by multiplying the encoded input, attention weights, and
output layer weights. This modification aims to compensate accuracy
for interpretability while both models have similar computational com-
plexity. We follow a similar simplification routine in the creation of our
SST-ANN approach explained in Section 3.3.

3. Proposed methods

In this section we first define the problem followed by the details of
the general model architectures that we use to build SERT and SST-ANN
to address the problem. We then introduce a modification for encoding
location information in the models’ input data. Finally, we describe the
masked loss function that we use for training the models.
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Fig. 2. An example of a sample of a spatiotemporal dataset to be used for training our proposed models where ℎ is the desired forecast horizon.
Fig. 3. Schematic diagram of the SERT model.
3.1. Problem definition

We have a dataset 𝐷 = {(𝑇𝑗 , 𝑌𝑗 ,𝑀𝑗 )}𝐽𝑗=1 where 𝑇𝑗 is a multivari-
ate time series consisting of triples (time, variable, value) written as
{(𝑡𝑖, 𝑓𝑖, 𝑣𝑖), 𝑖 = 1,… , 𝑁}. 𝑌𝑗 is the values (and associated variables) for
a future time horizon for which we want the model to forecast. 𝑀𝑗 is a
binary vector indicating whether each of element in 𝑌𝑗 is observed for
sample 𝑗 in the dataset. 𝑀𝑗 is used in the loss function (see Section 3.5
for details) for masking the unobserved values in the forecast window.
A schematic of a sample from the dataset is shown in Fig. 2. The goal is
to learn a model 𝐺 that maps 𝑇𝑗 to 𝑌𝑗 , i.e., 𝐺(𝑇𝑗 ) = 𝑌𝑗 , without imputing
the missing values in 𝑇𝑗 or aligning the time series.

3.2. SERT

We first describe the data encoding scheme and then the model
architecture including an encoder network and a linear layer. The
schematic diagram of the model is shown in Fig. 3. We will slightly
modify this structure to show an alternative approach for encoding the
location information in Section 3.4.

Data Encoding Scheme The input data to our model is a multivariate
time series dataset 𝑇 that consists of 𝑁 time series, each of
which is associated with a time series variable 𝑓 which is a
sequence of observation values 𝑣’s. Accordingly, an individual
data point 𝑖 is represented as a triplet (𝑡𝑖, 𝑓𝑖, 𝑣𝑖) where 𝑡𝑖 is time,
𝑓𝑖 is the variable name and 𝑣𝑖 is the measured value of the
data point. To use the triplet in the model, we encode each
component into an embedding and then add the embeddings
together. Let 𝑒𝑓𝑖 ∈ 𝑅𝑑 be the embedding of the variable name
𝑓𝑖 which can be encoded similar to words using a lookup table,
𝑒𝑡𝑖 ∈ 𝑅𝑑 be the embedding of the time index 𝑡 which can be
encoded using a continuous value embedding (CVE) scheme
which is a one-to-many feed forward neural network (Tipirneni
and Reddy, 2022) and 𝑒𝑣𝑖 ∈ 𝑅𝑑 be the embedding of the value
𝑣𝑖 which can also be encoded using the CVE. The embedding of
the triplet 𝑖 is then defined as 𝑒𝑖 = 𝑒𝑓𝑖 + 𝑒𝑡𝑖 + 𝑒𝑣𝑖 . The size of the
embedding vector 𝑑 is a hyperparameter of the model.
4

Encoder Network Similar to the well-known BERT model (Devlin
et al., 2018), the main component of our model is the encoder
part of the transformer model introduced by Vaswani et al.
(2017). Since transformers have become very common, we omit
the details of the architecture and refer the reader to Vaswani
et al. (2017) for the full description. Intuitively, we can think
of the encoder network as layers that take the triplet embed-
dings of the input data and transform them into contextualized
embeddings that capture the long-range dependencies within a
time series as well as cross dependencies between different time
series.

Linear Layer After obtaining the contextualized embeddings of the
input data using the encoder network, we then flatten the em-
beddings and apply a linear layer to them to generate the
predictions. The linear layer is a feed-forward network with a
single hidden layer and a ReLU activation function.

3.3. SST-ANN

The SST-ANN model is a simplified version of the SERT model that
consists of only the triplet encoding and a linear layer to the output
with no transformer structure in between. SST-ANN first encodes the
input data using the triplet encoding scheme and then uses the em-
beddings as the input to single layer feed forward network to generate
the predictions. Since there is no transformer structure in between, the
SST-ANN model is much faster than the SERT model and, using the
embeddings and the weights of the linear layer, we can compute a
contribution score for each observation to the final prediction. This
is useful for interpretability and variable importance analysis. More
formally the output of the model can be expressed as follows:

𝑦̂𝑘 =
𝑁
∑

𝑖=1
𝑐𝑖 + 𝑏, with 𝑐𝑖 = 𝑊 𝑇

𝑖𝑘 ⋅ 𝑒𝑖, (1)

where 𝑦̂𝑘 is the prediction of variable 𝑘, 𝑐𝑖 is the contribution of the
triplet (𝑡𝑖, 𝑓𝑖, 𝑣𝑖) to the prediction, 𝑁 is the number of observations in
the input sample, 𝑏 is the bias term, 𝑒 are the embeddings of the triplet
𝑖



Computers and Geosciences 188 (2024) 105601A.S. Nejad et al.
Fig. 4. Schematic diagram of the SERT model with a separated location embedding
layer.

and 𝑊𝑖𝑘 is the vector of output weights associated with the embedding
𝑒𝑖 and the target variable 𝑘.

Using the contribution scores, we can define a variable importance
index. We first calculate the average contribution value of all obser-
vations belonging to the same variable as the average contribution of
that variable. This calculation can be performed for a single sample to
gain insights into the importance of the predictor variable for a specific
target prediction, or for multiple samples used in multiple predictions
to obtain an overall understanding of the predictor variable’s impor-
tance in general. Next, we compute the importance of each variable by
normalizing the absolute value of the average contribution values for
the variables. More formally, we can express this as:

𝐼𝑘 =
|𝑐𝑘|

∑𝐾
𝑘=1 |𝑐𝑘|

× 100 (2)

where 𝐼𝑘 is the importance (in percentage) and 𝑐𝑘 is the average
contribution value of the variable 𝑘.

3.4. Location encoding

We consider two different approaches to encode the location infor-
mation in the input data. The first approach is to encode the location
information together with the variable name 𝑓𝑖 in the triplet encoding
scheme. For example, our naming scheme for the variables can be
𝑓𝑖 = {𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛}𝑖 ⋅ {𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒}𝑖 where {𝑙𝑜𝑐𝑎𝑡𝑖𝑜𝑛}𝑖 is the location of the
time series 𝑖 and {𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒}𝑖 is the variable name of the time series 𝑖
(e.g. Tolka.Turbidity). This approach uses the exact same architecture
explained in Section 3.2. The second approach is to encode the location
information separately from the variable name. This way the input time
series are all assumed to arise from the same location and the location
embedding is concatenated to the contextualized embeddings before
the linear layer is used for prediction. In this approach, we need to
structure the dataset such that all the time series from the same location
are grouped together. Formally, we can define the grouped dataset as
𝐷′ = {(𝑇 𝐿

𝑗 , 𝑌 𝐿
𝑗 ,𝑀𝐿

𝑗 )}
𝐽 ′

𝑗=1 where 𝐿 ∈ 𝑆 is the location and 𝑆 is the set
of all locations. This approach needs a minimal modification to the
previously described architecture and its schematic diagram is shown
in Fig. 4.

The first approach is similar to how the Spacetimeformer model
(Grigsby et al., 2021) encodes the location information while the sec-
ond approach is similar to how the STraTS model (Tipirneni and Reddy,
2022) encodes the non-temporal information (patient demographics in
their work).

3.5. Masked loss function

We use a masked Mean Squared Error (MSE) loss function to train
our models. Masking in the loss function is used to handle the missing
5

values in the output data. The masked MSE loss function is defined as
follows:

 = 1
𝐽

𝐽
∑

𝑗=1

𝐾
∑

𝑘=1
𝑚𝑗
𝑘

(

𝐲̃𝑗𝑘 − 𝐲𝑗𝑘
)2

(3)

where 𝐲𝑗𝑘 is the ground truth, 𝐲̃𝑗𝑘 is the predicted value, and 𝑚𝑗
𝑘 is the

mask value of the target variable 𝑘 in sample 𝑗.

4. Experiments

In this section, we will describe the experiments we conducted
to evaluate the performance of our proposed models. We evaluated
our models using both a simulated dataset and a real-world dataset.
The primary objective of the simulation experiment is to investigate
how the models perform under different sparsity levels. The real-world
experiment aimed to serve as a proof of concept for the models’ ability
to conduct spatiotemporal multi-step ahead forecasting in real-world
scenarios.

To assess the effectiveness of our models, we compared them with a
baseline Naive forecaster model, which simply uses the present hour’s
observation as the next hour forecast. We also compare our models
against a VAR model which is common for multivariate time series
modelling, the LSTM model and the STraTS model. Since the Naive
forecaster and LSTM model cannot handle missing values, we first
imputed these values using a forward filling method (Van Buuren,
2018, p. 16). The source code for our experiments is available at https:
//github.com/Aminsn/SERT2023.

4.1. Sparsity analysis

We first simulate a dataset that consists of 16 time series each
with 40,000 observations. Then, we use this dataset to compare the
predictive performance of the previously mentioned models. The total
length of the time series matters for the models’ performance in terms
of the number of observations, which could affect both deep learning
and classical models differently. Deep learning models are believed to
require more observations to perform well. Here, we aim to replicate
a scenario typical of multiple sensor data, which usually encompasses
large, high-frequency datasets.

We denote 𝑌𝑡 ∈ 𝑅16 as the vector of observations at time 𝑡 generated
from the following process:

𝑌𝑡 = 2 + 0.4𝑌𝑡−1 +𝑋𝑡 + 𝑠𝑡, 𝑠𝑡 ∼ 𝑀𝑉𝑁(0, 𝛴) (4)

where 𝑠𝑡 is spatial random effect with mean zero and variance–covaria-
nce matrix 𝛴 that is generated with:

𝛴 = 𝑈 ⋅ 𝑈𝑇 , 𝑈 ∈ 𝑅16×16, 𝑈𝑖,𝑗 ∼ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−1, 1), (5)

and 𝑋𝑡 ∈ 𝑅16 is the vector of temporal effects generated as:

𝑋𝑇
𝑡 =

[

10 sin(𝑝1𝑡), cos(𝑝2𝑡), 𝑝3𝑡,−𝑝3𝑡

+ 10 sin(𝑝1𝑡), 5 sin(𝑝2𝑡), 12 cos(𝑝2𝑡), 7 sin(𝑝2𝑡), 8 cos(𝑝2𝑡),

2 sin(𝑝2𝑡), 3 cos(𝑝2𝑡), 12 sin(𝑝2𝑡), 18 cos(𝑝2𝑡), 4 sin(𝑝2𝑡),

15 cos(𝑝2𝑡), 11 sin(𝑝2𝑡), 10 cos(𝑝2𝑡)
]

(6)

where 𝑝1 = 0.005, 𝑝2 = 0.0005 and 𝑝3 = 0.002. The simulated data
includes multiple time series with various characteristics including
seasonality, trend, a combination of seasonality and trend, and different
levels of noise. Fig. 8 in the appendix demonstrates these time series.

We use the first 37,000 time steps to train the models and the
remaining 3000 time steps to evaluate the performance of them. We
used the model structure shown in Fig. 3 to train our proposed models.
We trained all models for 1 step ahead forecasting using the previous
10 h of observations. The input length acts as a hyperparameter of
the model, akin to the order in classical autoregressive models. In this
example, we have chosen an input length of 10 for convenience across

https://github.com/Aminsn/SERT2023
https://github.com/Aminsn/SERT2023
https://github.com/Aminsn/SERT2023
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Fig. 5. (a) Performance of all the models used on the simulated dataset. (b) Comparison of SST-ANN, STraTS, and SERT zoomed in.
Table 1
RMSE of the models for 7 h ahead forecasting of the 7 environmental variables in Dublin bay.
Model Dissolved oxygen Precipitation Salinity Temperature Turbidity Water level Wind speed

Naive 0.64 1.19 1.22 0.21 0.93 1.87 0.8
LSTM 0.65 0.89 0.8 0.41 0.81 0.5 0.82
STraTS 0.53 0.88 0.7 0.18 0.72 0.38 0.76
SERT (ours) 0.49 0.88 0.67 0.18 0.72 0.4 0.73
SST-ANN (ours) 0.51 0.88 0.73 0.45 0.88 0.63 0.79
all models. The appropriate length, or number of lags, for prediction
is more a characteristic of the data than of the models themselves.
Naturally, a model that utilizes all relevant information is anticipated
to perform better. For a fair comparison, we ensure that all models
are fed the same quantity of input data. We consider five different
sparsity levels to fit the models. Accordingly, we remove 𝑛% of the
observations randomly for 𝑛 = {0%, 20%, 40%.60%, 80%}. We use the
root mean squared error (RMSE) as the evaluation metric. The results
are presented in Fig. 5.

4.2. Real dataset; environmental monitoring in Dublin bay, Ireland

The dataset includes hourly measurements from 2017-01-01 to
2021-12-31. An example of the data is shown in Fig. 1. The locations of
the data are shown in Fig. 6. We use the data from the first four years
to train the models and the last year to evaluate their performance.
We train the models using the previous 10 h of observations as the
input and forecasting seven hours ahead (forecasting only 1 or 2 h
ahead is a relatively trivial task, and forecasting > 12 h ahead reduces
the performance of models that cannot account for non-seasonality).
We use the same evaluation metric as in the simulated dataset. We
tried both location encoding approaches (explained in Section 3.4) with
our proposed models on the real-world dataset and found that the
second approach, depicted in Fig. 4, performed better and here we only
report the results of the superior approach. The results are presented in
Table 1.

We utilized the same computational resources (a single NVIDIA
P100 GPU) to train the models. The specifications and speed perfor-
mance details of the models are reported in the Table 2.
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Table 2
Computational specifications of the fitted models.

Model Specifications Sec/epoch

Naive – –
LSTM units = 60 2
STraTS d = 60, # of heads = 6, k = 6 230
SERT d = 60, # of heads = 6, k = 6 40
SST-ANN d = 60 9

4.3. Interpretability of the SST-ANN model

The results of the variable importance for the real-world dataset
experiment are presented in Fig. 7. The sign of the average contribution
score 𝑐𝑗 (explained in Section 3.3) is multiplied by the importance index
𝐼𝑗 to give an insight into the direction of the average contribution of
the predictor variable to the prediction of the target variable. In this
example, we only consider the contributions of water level, tempera-
ture, wind speed and precipitation to predictions of turbidity, dissolved
oxygen and salinity, since we know that the former variables could
affect the latter variables but not vice versa. According to the results,
temperature followed by precipitation are the most important variables
in predicting the target variables. However, one should take caution
and not interpret these numbers as they would in a causal model.
Instead, the application of variable importance in SST-ANN should be
more closely compared to the concept of variable importance as used
in a random forest model (for example, see Archer and Kimes (2008)).

5. Conclusion

In this paper, we proposed two novel models for spatio-temporal
forecasting called SERT and SST-ANN. SERT is a transformer-based
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Fig. 6. Buoys measuring various environmental variables in Dublin Bay. The 4 main environmental variables (Turbidity, Salinity, Dissolved Oxygen, Temperature) are available at
the number buoys. The weather measurements (Rainfall, Wind Speed) come from Dublin Airport. The water level variable comes from Howth Harbour.
Fig. 7. Variable importance of the selected variables in predicting the target variables.

model, meaning it utilizes the encoder component of the original trans-
former architecture, albeit with certain modifications. Specifically, it
substitutes the conventional positional encoding with a triplet encoding
schema. This adjustment enables SERT to efficiently process sparse
spatio-temporal data. SST-ANN, on the other hand, is a simple ANN
model combined with triplet encoding of the input data.

Furthermore, we showed that STraTS, a model originally developed
for sparse and irregularly sampled clinical time series classification, can
be used for spatio-temporal forecasting, especially when missing values
are present in the data. SERT’s architecture closely resembles that of
STraTS, but there is a key difference: STraTS employs a fusion self-
attention layer prior to its prediction layer, while in SERT, this has been
7

substituted with a simpler flattening layer. Although their prediction
accuracies are similar, with SERT being slightly more accurate, this
adjustment makes SERT faster and better suited for environmental
forecasting.

Our proposed approaches do not require aggregation or missing
value imputation techniques, and avoid the problems introduced by
such methods. We evaluated the performance of the proposed models
on a simulated dataset with varying levels of sparsity and showed that
in general increasing sparsity has a negative effect in the performance
of all the models, but SERT followed by STraTS and SST-ANN are more
robust to the increase in sparsity. We also evaluated the performance of
the proposed models on a real-world dataset of environmental variables
in Dublin Bay, Ireland. The results indicate that SERT outperformed the
other models in 7-hour ahead forecasting for 6 out of the 7 variables,
with 3 of them being on par with STraTS while demonstrating signifi-
cantly faster performance. We demonstrated that our proposed models
are capable of forecasting various environmental variables using sparse
data. Given the prevalence of issues such as sensor malfunctioning
leading to missing values, our models remain applicable for utilizing
incomplete information to inform decision-makers about future events.
For instance, forecasting a surge in water levels could be crucial for
implementing preventive measures. We then showed how SST-ANN can
be used to interpret the predictions of the model by calculating and
using the contribution score of the input data to develop an importance
index using the average contribution scores. This approach can improve
our understanding of the model’s decision-making process, similar to
the utilization of other interpretable machine learning approaches in
geoscience and environmental analysis (see, for example, Reichstein
et al. (2019)). We demonstrated the performance of our proposed mod-
els on long multivariate time series data that are rich in time but poor
in location. However, these models can also be effectively applied to
other sampling scenarios, such as short time series from many locations
or long time series from several locations. It is important to note,
however, that an increase in the number of inputs for analysis leads to
higher computational costs. Specifically, the self-attention mechanism
in transformers exhibits a time and space complexity that is quadratic
with respect to the length of the input sequence (Keles et al., 2023).
Despite this, computations can be efficiently parallelized on modern
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Fig. 8. Multivariate simulated time series data along with the predicted values from SERT for one step ahead forecasting, covering both training and test periods.
GPUs, offering a significant advantage over recurrent methods, which
require sequential processing.

We introduced two different methods to encode the location in-
formation in our proposed models, including encoding the time series
variable name with the location name simultaneously and encoding
the location name separately. The first location encoding scheme ac-
counts for the interactions among variables from different locations,
thereby attempting to learn a more complex relationship in the data.
In contrast, the second approach assumes that relationships among
variables do not vary across locations. Depending on the true nature of
the data-generating process, as well as the data quality and quantity,
one approach may perform better than the other. For example, the first
approach is typically expected to require more data because it aims
to learn a more complicated relationship. Meanwhile, the second ap-
proach might perform poorly in scenarios where significant interaction
exists between variables from different locations. However, neither of
these methods takes into account the distance between the locations,
which is a limitation of our work. We believe future research should
focus on incorporating this information into the models, as it has
the potential to improve forecasting performance and be utilized for
spatiotemporal interpolation tasks.

Moreover, future work could consider incorporating uncertainty
estimation into the proposed models. Enhancing SERT and STT-ANN
to offer prediction with confidence intervals could present significant
advantages. This enhancement can be achieved through model-agnostic
methods like conformal prediction (Fontana et al., 2023) or by modify-
ing the model’s structure and loss function to predict data distribution
parameters rather than mere point predictions. Such adjustments can
significantly improve the sustainability of geoscientific explorations
under conditions of uncertainty. These advancements allow for a more
nuanced understanding of the reliability of predictions and associated
risks, thereby fostering more informed decision-making processes. This
approach enhances the scope of field-scale applicability of our pro-
posed models across geographic spectra by providing a framework for
handling the inherent uncertainties in geoscientific data. This leads
to more sustainable exploration strategies that can adapt to diverse
environmental conditions and data variability.

Computer code availability

Software name: SERT
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