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Abstract

Let G be a connected graph, suppose that v is a vertex of G, and denote the subgraph formed

from G by deleting vertex v by G \ v. Denote the algebraic connectivities of G and G \ v by α(G)

and α(G \ v), respectively. In this paper, we consider the functions φ(v) = α(G) − α(G \ v) and

κ(v) = α(G\v)
α(G) , provide attainable upper and lower bounds on both functions, and characterise the

equality cases in those bounds. The function κ yields a measure of vertex centrality, and we apply

that measure to analyse certain graphs arising from food webs.

AMS Subject Classifications: 05C50, 15A18, 15A42

1. Introduction and Preliminaries

Let G be a connected graph on n vertices, and label the vertices of G with the numbers 1, . . . , n.

The Laplacian matrix for G is the n×n matrix L(G) = D−A, where A is the (0, 1) adjacency matrix

for G, and D is the diagonal matrix of vertex degrees. It is well-known that L(G) is a symmetric

positive semi-definite matrix, and that 1, the vector of all ones, is a null vector for L(G). In the

case that G is connected, then 0 is a simple eigenvalue of the matrix L(G); more generally, it is not

difficult to establish that the multiplicity of 0 as an eigenvalue of L(G) coincides with the number of

connected components in G. Order the eigenvalues of L(G) in nondecreasing order. The algebraic

connectivity of G, denoted henceforth by α(G), is the second smallest eigenvalue of the Laplacian

matrix L(G). Thus it follows that G is connected if and only if α(G) > 0. As is shown in [6], we

have α(G) = min{uT L(G)u|uT 1 = 0, uT u = 1}. We note also that an eigenvector of L(G) associated

with α(G) is known as a Fiedler vector.

As the term “algebraic connectivity” suggests, α(G) provides an algebraic measure of how con-

nected the graph G is; there is a wealth of results to support that statement, beginning with the
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pioneering work of Fielder on the subject [6]. The surveys [1] and [9] provide overviews of work on

algebraic connectivity and Fiedler vectors for graphs.

Given a connected graph G and a vertex v of G, we let G \ v denote the subgraph formed from

G by deleting v and all edges incident with it. In this paper, we consider the relationship between

α(G) and α(G \ v). The following key result from [6] serves as a starting point for our investigation.

Theorem 1.1. Let G be a graph, and suppose that v is a vertex of G. Then

α(G) ≤ α(G \ v) + 1. (1.1)

Theorem 1.1 provides some information on the relationship between α(G) and α(G \ v), but as

the following example shows, it is possible for α(G \ v) to be greater than, equal to, or less than

α(G), depending on the choice of the vertex to be deleted.

Example 1.2. Consider the graph H formed from the path on 5 vertices by appending a pendant
vertex at the centre of the path (see Figure 1 below). It is straightforward to determine that
α(H) = 3−

√
5

2 (which is approximately 0.3820). If v is any of the non-pendant vertices 2, 3, 4 of H,
then H \ v is disconnected, so that α(H \ v) = 0. If v is vertex 6 in Figure 1, then α(H \ v) = 3−

√
5

2 .
Finally, if v is either of the pendant vertices 1, 5, we find from a Matlab computation that α(H \ v)
is approximately 0.5188.

1 2 3 4 5

6

Figure 1: Graph for Example 1.2

In the light of the above considerations, we make the following two definitions. Given a connected

graph G, for each vertex v of G, we define φ(v) = α(G) − α(G \ v), and we define κ(v) = α(G\v)
α(G) ;

note that we suppress the explicit dependence on G for both functions. Evidently φ(v) is positive,

0, or negative according as κ(v) is less than 1, equal to 1, or greater than 1, respectively. For

succinctness, we focus on κ for the remainder of the discussion in this section. In the event that

κ(v) < 1, we can take the interpretation that vertex v and its incident edges serve to increase

the algebraic connectivity of G. Similarly, if κ(v) > 1, then v and its incident edges decrease the
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algebraic connectivity of G, while if κ(v) = 1, then v and its incident edges have no effect on the

algebraic connectivity of G. Thus we find that κ can be used to provide a relative measure of the

contribution to α(G) of a particular vertex (and its incident edges). Hence, κ can thought of as

providing a measure of importance, or centrality (see [5]), for the vertices of the graph: those vertices

with low values of κ may be viewed as being important to the connectivity properties of the graph

(as measured by α(G)), while those vertices with high κ values can be considered to diminish the

connectivity of the graph.

In this paper, we develop the theory around the functions φ(v) and κ(v). Specifically, we give

tight upper and lower bounds on both quantities, and characterise the equality cases in each. We

also estimate the number of vertices for which φ(v) ≥ 0 (equivalently, κ(v) ≤ 1). Finally, we consider

several examples of graphs arising from food web data, compute the values of κ for those examples,

and contextualise the results.

Throughout, we will used standard notation, terminology and results from graph theory and

matrix theory. The reader is referred to [10] and [7] for the relevant material.

2. Bounds on φ(v)

In this section, we consider the function φ(v), and provide some bounds on that quantity. It

follows from (1.1) that for any connected graph G, and any vertex v of that graph, we have φ(v) ≤ 1.

Our first result characterises the case of equality in (1.1). Here we denote the neighbourhood of a

vertex v - i.e. the set of vertices in G adjacent to v - by N(v), and we denote the degree of vertex

v by dG(v). Given a vector w, we refer to the set of indices corresponding to its nonzero entries as

the support of w.

Theorem 2.1. Let G be a connected graph on n ≥ 3 vertices, and let v be a vertex of G. We have
φ(v) = 1 if and only if there is a Fiedler vector for G whose support is a subset of N(v).

Proof: Suppose first that φ(v) = 1 and let dG(v) = m. The Laplacian matrix for G is given by

L(G) =


L11 L12 0

L21 L22 + I −1

0T −1T m

 , where the last row and column corresponds to vertex v, the m

rows and column preceding that correspond to N(v), and where L(G\v) =

[
L11 L12

L21 L22

]
. Let w be

a Fiedler vector for L(G \ v), partitioned as

[
w1

w2

]
. Letting z be the vector


w1

w2

0

 , we find that

α(G\ v)zT z +wT
1 w1 +wT

2 w2 = (α(G\ v)+1)zT z = α(G)zT z ≤ zT L(G)z = wT L(G\ v)w +wT
2 w2 =

α(G \ v)wT w + wT
2 w2 = α(G \ v)zT z + wT

2 w2 (here the inequality follows from the fact that for any

vector u orthogonal to 1, α(G)uT u ≤ uT L(G)u). We now conclude that necessarily w1 = 0 and that
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z must be a Fiedler vector for G. Hence z is a Fielder vector for G whose support is a subset of

N(v).

Conversely, suppose that G has a Fiedler vector y whose support is a subset of N(v). Write

L(G) as

[
L̃ + D −x

−xT m

]
, where L̃ is the Laplacian matrix for G \ v and where D is a diagonal

matrix with ones in the diagonal positions corresponding to vertices in N(v), and zeros elsewhere.

Write y as y =

[
ỹ

0

]
. Since yT L(G)y = α(G)yT y, we have ỹT L̃ỹ + ỹT Dỹ = α(G)ỹT ỹ. Hence,

ỹT L̃ỹ = α(G)ỹT ỹ − ỹT Dỹ = (α(G)− 1)ỹT ỹ, the last inequality following from the fact that y (and

hence ỹ) has support in N(v). Thus we find that α(G \ v) ≤ α(G) − 1, and since we always have

α(G \ v) ≥ α(G)− 1, we conclude that φ(v) = 1.

2

Suppose that we have graphs G1 and G2. The join of G1 and G2, which we denote G1 ∨G2, is

the graph formed from the disjoint union of G1 and G2 by adding all possible edges between vertices

of G1 and vertices of G2. From Theorem 2.1, it is straightforward to determine that if we take a

graph H and an isolated vertex v and form G = H ∨ {v}, then α(G) = α(H) + 1, so that equality

holds in (1.1). In particular, we find that for a graph on n vertices having a vertex v of degree n−1,

we have φ(v) = 1. What can we say about φ(v) if the degree of vertex v is n − 2? The following

example suggests that the answer to that question can be quite subtle.

Here we use the notation i ∼ j to denote the fact that vertex i is adjacent to vertex j; by a mild

abuse of that notation, we use G \ { i ∼ j} to denote the graph formed from G by deleting the edge

between vertex i and vertex j.

Example 2.2. Suppose that n ≥ 4 is even. Let Pn−1 denote the path on n− 1 vertices, labeled so
that i ∼ i + 1, i = 1, . . . , n − 2. Consider the graph on n vertices given by (Pn−1 ∨ {n}) \ {n

2 ∼ n};
evidently vertex n has degree n− 2 in that graph. In this example, we will show that if n = 4, 6, 8
then φ(n) = 1, while if n ≥ 10, then φ(n) < 1.

Let G = Pn−1 ∨ {n}; certainly α(G) = α(Pn−1) + 1 by Theorem 2.1. We have the following
eigenvalues for L(G) : 0; n; and λj = 2(1 − cos( πj

n−1 )) + 1, j = 1, . . . , n − 2. Further, we have the

following orthonormal basis of eigenvectors for L(G) : for λj , wj =
√

2
n−1


cos( θj

2 )
cos( 3θj

2 )
...

cos( (2n−3)θj

2 )
0

 , where

θj = πj
n−1 , j = 1, . . . , n − 2; for 0, wn−1 = 1√

n−1
1; and for n, wn =

 −1√
n(n−1)

1√
n−1

n

 . Let Q be the

orthogonal matrix given by Q =
[

w1 w2 . . . wn

]
.

Next, let G̃ be the graph formed from G by deleting the edge n
2 ∼ n (here n

2 corresponds to the
middle vertex of Pn−1). Letting L̃ be the corresponding Laplacian matrix, we have L̃ = L− (en

2
−
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en)(en
2
−en)T . Consequently, we find that QT L̃Q = QT LQ−QT (en

2
−en)(en

2
−en)T Q. Let xT be the

vector
[

0 −
√

2
n−1 0

√
2

n−1 0 . . . 0 (−1)
n−2

2

√
2

n−1 0 −
√

n
n−1

]
. Then QT (en

2
−en) =

x, and we find that QT L̃Q =


λ1

. . .
λn−2

0
n

−xxT . This last is permutationally similar

to



λ1

λ3

. . . 0
λn−3

0
0 M


, where M =


λ2

λ4

. . .
λn−2

n

 − yyT , and where

yT =
[
−

√
2

n−1

√
2

n−1 . . . (−1)
n−2

2

√
2

n−1 −
√

n
n−1

]
.

In order to estimate α(G̃), we need to estimate the smallest eigenvalue of M . By considering
the leading 2 × 2 principal submatrix of M , and applying interlacing, it follows that the smallest
eigenvalue of M is bounded above by 1

2

(
λ2 + λ4 − 4

n−1 −
√

(λ2 − λ4)2 + 16
(n−1)2

)
. This last is, in

turn, less than 1
2 (λ2 + λ4)− 4

n−1 , so if 1
2 (λ2 + λ4)− 4

n−1 < λ1 then we have α(G̃) < α(Pn−1) + 1.
Note that the inequality 1

2 (λ2 + λ4)− 4
n−1 < λ1 is equivalent to

2 cos(
π

n− 1
)(1− cos(

π

n− 1
))(2 cos(

π

n− 1
) + 1)2 <

4
n− 1

. (2.2)

Since cos( π
n−1 ) > 1− π2

2(n−1)2 , we find that if 9 π2

(n−1)2 < 4
n−1 , then certainly (2.2) holds. It now

follows that if n ≥ 24, then (2.2) holds, which yields α(G̃) < α(Pn−1) + 1. For n = 14, . . . , 22, com-
putations on Matlab show that 1

2

(
λ2 + λ4 − 4

n−1 −
√

(λ2 − λ4)2 + 16
(n−1)2

)
< λ1, so that α(G̃) <

α(Pn−1) + 1 for these values of n.
Finally, computations with the corresponding Laplacian matrices reveal that for n = 10, 12, we

have α(G̃) < α(Pn−1) + 1, while for n = 4, 6, 8, we have α(G̃) = α(Pn−1) + 1.
Consequently, it follows that for the graph G̃, we have φ(n) = 1 provided that n = 4, 6, or 8,

while φ(v) < 1 for n ≥ 10.

Our next result provides an attainable lower bound on φ which serves as a companion to (1.1).

Here Km denotes the complete graph on m vertices, while the disjoint union of graphs G and H is

denoted by G ∪H.

Theorem 2.3. Let G be a connected graph on n ≥ 3 vertices. Then for any vertex v of G, φ(v) ≥
−(n − 2). Equality holds in the lower bound if and only if G = (Kn−2 ∪ K1) ∨ K1, and v is the
pendant vertex of that graph.

Proof: Suppose first that G \ v 6= Kn−1. Then α(G \ v) ≤ n − 3 (see [6], for example), and so we

find that φ(v) = α(G) − α(G \ v) > −(n − 3) > −(n − 2). Next, suppose that G \ v = Kn−1,

and that dG(v) = m. It is straightforward to determine that α(G) = m, so we find that φ(v) =
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α(G)−α(G \ v) = m− (n− 1) ≥ −(n− 2), as desired. Moreover, we also find that φ(v) = −(n− 2)

if and only if G \ v = Kn−1 and m = 1. 2

The following result will prove useful in some of our subsequent analysis.

Lemma 2.4. Let G 6= Kn be a connected graph on n ≥ 3 vertices, and let dG(n) = m. Write the
Laplacian matrix L(G) as

L(G) =
[

L̃ + D −x
−xT m

]
,

where L̃ is the Laplacian matrix for G\n. Let w be a Fiedler vector for L(G), written as w =
[

w̃
wn

]
.

Then

α(G \ n) ≤ α(G) +
(m− n−2

n−1α(G))w2
n − w̃T Dw̃

w̃T w̃ − w2
n

n−1

= α(G) +
(m− n−2

n−1α(G))w2
n −

∑
i∼v w2

i

w̃T w̃ − w2
n

n−1

. (2.3)

In particular, if mw2
n ≤ w̃T Dw̃ + α(G)w2

n
n−2
n−1 , then φ(n) ≥ 0; further, if strict inequality holds in

the former, then φ(n) > 0.

Proof: Note that w̃T 1 = −wn, and consider the vector u = w̃ + wn

n−11. Note that in fact u is

not the zero vector, otherwise it follows that G = Kn, contrary to our hypothesis. Evidently

uT 1 = 0, uT u = w̃T w̃− w2
n

n−1 , and uT L̃u = w̃T L̃w̃. Since w is a Fielder vector for L(G), we find that

w̃T L̃w̃ + w̃T Dw̃− 2wnxT w̃ = α(G)(w̃T w̃ + w2
n), and also that −xT w̃ + mwn = α(G)wn. Combining

these, we find that uT L̃u
uT u

= α(G) +
(m−n−2

n−1 α(G))w2
n−w̃T Dw̃

w̃T w̃− w2
n

n−1

. The conclusions now follow upon noting

that α(G \ n) ≤ uT L̃u
uT u

. 2

Our next two remarks show how certain entries in a Fielder vector can yield information on φ.

Remark 2.5. Let G be a connected graph, and suppose that v is a vertex for which there is a
Fiedler vector whose entry corresponding to v has minimum absolute value. Then φ(v) ≥ 0. This is
clear if G is a complete graph; in the case that G is not a complete graph, we adopt the notation of

Lemma 2.4. Referring to (2.3), it follows that φ(v) ≥
P

i∼v w2
i−mw2

v+ n−2
n−1 α(G)w2

v

w̃T w̃− w2
v

n−1

. From the hypothesis

that wv has minimum absolute value in the Fiedler vector w, we find that
∑

i∼v w2
i ≥ mw2

v. Hence,
φ(v) ≥ 0.

For a connected graph G with Fiedler vector w, we say that a vertex v is a characteristic vertex

if wv = 0 and there is a vertex i such that i ∼ v and wi 6= 0.

Remark 2.6. Let G be a connected graph on three or more vertices. If v is a characteristic vertex
of G, then φ(v) > 0. This is clear if G is complete, so suppose that G is not a complete graph.
As v is a characteristic vertex, we have wv = 0 and

∑
i∼v w2

i > 0. From (2.3), we find that

φ(v) ≥
P

i∼v w2
i

w̃T w̃
> 0.

6



Remark 2.7. Let G be a connected graph on at least three vertices. If α(G) has multiplicity two
or more as an eigenvalue of L(G), then φ(v) ≥ 0 for every vertex v of G. To see this, note that
since α(G) has multiplicity at least two, for each vertex v of G, there is a Fielder vector whose entry
corresponding to v is 0. The conclusion now follows from Remark 2.5.

In light of the remarks made in Section 1, we may take the view that a vertex v of a graph does

not diminish the algebraic connectivity provided that φ(v) ≥ 0 (equivalently, κ(v) ≤ 1). Our next

result discusses the number of such vertices.

Theorem 2.8. Let G be a connected graph on n ≥ 3 vertices, and suppose that for some k ∈ IN,
we have α(G) > (k − 1)n−1

n−2 . Then there are at least k vertices of G, say u1, . . . uk, such that
φ(ui) ≥ 0, i = 1, . . . , k.

Proof: The conclusion is readily verified if G = Kn, so we suppose henceforth that G is not complete.

Let w be a Fiedler vector for G, and partition the vertex set of G into subsets S1, . . . , Sr so that: i)

if v1, v2 ∈ Si, then |wv1 | = |wv2 |; and ii) if v1 ∈ Si, v2 ∈ Sj , and i < j, then |wv1 | < |wv2 |.
We claim that for each i = 1, . . . , r− 1, if | ∪i

j=1 Sj | < k, then for each u ∈ ∪i+1
j=1Sj , φ(u) ≥ 0. We

prove the claim by induction on i, and begin with the case i = 1.

Suppose that |S1| < k. Since each vertex in S1 corresponds to an entry in w of minimum

absolute, from Remark 2.5, we see that if u ∈ S1, then φ(u) ≥ 0. Next consider a vertex u ∈ S2,

and let dG(u) = m. Suppose that u is adjacent to p vertices in S1, and note that 0 ≤ p ≤ k− 1, the

latter inequality following from the hypothesis that |S1| < k. Then from the hypothesis on α(G), we

find that
∑

i∼u w2
i + α(G)w2

u
n−2
n−1 > (m − p)w2

u + (k − 1)w2
u = (m + k − p − 1)w2

u ≥ mw2
u. It now

follows from (2.3) that φ(u) > 0. Hence, for each u ∈ S1 ∪ S2, φ(u) ≥ 0.

Now we suppose that the claim holds for some i0 with 1 ≤ i0 ≤ r − 2, and that | ∪i0+1
j=1 Sj | < k.

Then certainly |∪i0
j=1Sj | < k, so by the induction hypothesis, for each u ∈ ∪i0

j=1Sj , φ(u) ≥ 0. Suppose

now that u ∈ Si0+1, that dG(u) = m, and that u is adjacent to p vertices in ∪i0
j=1Sj . As before, we

find that
∑

i∼u w2
i +α(G)w2

u
n−2
n−1 > (m− p)w2

u +(k− 1)w2
u = (m+k− p− 1)w2

u ≥ mw2
u. Hence from

(2.3), φ(u) > 0, completing the proof of the induction step, and hence of the claim.

Next, we prove that there are at least k vertices whose corresponding value of φ is nonnegative.

First note that by Remark 2.5, each vertex of S1 yields a nonnegative value for φ, so in particular

if |S1| ≥ k, then the desired conclusion follows. On the other hand, if |S1| < k, then there is some

index i1 with 1 ≤ i1 ≤ r − 1 such that | ∪i1
j=1 Sj | < k ≤ | ∪i1+1

j=1 Sj |. By the claim, we then find that

each vertex in ∪i1+1
j=1 Sj yields a nonnegative value for φ, and again the conclusion holds. 2

Remark 2.9. Let u be one of the vertices that is shown in Theorem 2.8 to yield a nonnegative
value for φ. A careful analysis of the proof of Theorem 2.8 shows that the only situation in which
φ(u) can be 0 is if the Fiedler vector w has some zero entries, and in addition u is a vertex in S1

such that N(u) ⊂ S1.
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The following consequence of Theorem 2.8 provides a lower bound on the number of vertices

yielding a nonnegative value for φ.

Corollary 2.10. Let G be a connected graph on n ≥ 4 vertices. Then there are least bα(G)(n−2)
n−1 c+1

vertices u for which φ(u) ≥ 0.

Proof: Let k = bα(G)(n−2)
n−1 c+ 1, so that k− 1 ≤ α(G)(n−2)

n−1 . We claim that in fact k− 1 < α(G)(n−2)
n−1 ,

and note that once the claim is established, the conclusion will follow immediately from Theorem

2.8.

To see the claim, suppose to the contrary that k − 1 = α(G)(n−2)
n−1 . Then α(G) = (k−1)(n−1)

n−2 , and

as α(G) is an algebraic integer, in fact α(G) must be an integer in this case. Since n − 2 ≥ 2, and

since n − 1 and n − 2 have no common factors, it must be the case that n − 2 divides k − 1. We

conclude that k − 1 = n− 2, which in turn implies that α(G) = n− 1. This last is impossible, since

for any graph H on n vertices, either α(H) = n or α(H) ≤ n − 2 (see [6]). We thus conclude that

the case k − 1 = α(G)(n−2)
n−1 cannot arise, completing the proof of the claim. 2

Remark 2.11. Observe that for the graph G = Kn \ {1 ∼ 2}, we have bα(G)(n−2)
n−1 c + 1 = n − 2.

Note that for this graph G there are precisely n− 2 vertices u for which φ(u) ≥ 0.

3. Bounds on κ(v)

In this section, we consider connected graphs, and provide upper and lower bounds on κ; as

above, we will suppress the explicit dependence of κ on the underlying graph. We begin with a

couple of simple observations.

Remark 3.1. Let G be a graph such that α(G) ≥ 1. Then for any vertex v of G we have κ(v) ≥
1 − 1

α(G) . To see the inequality, note that from (1.1), we have κ(v) = α(G\v)
α(G) ≥ α(G)−1

α(G) = 1 − 1
α(G) ,

as desired.

Remark 3.2. Let G be a connected graph, and recall that a vertex u of G is a cutpoint if G \ u is
disconnected. It is straightforward to see that for any connected graph G, and any vertex v of G,
κ(v) ≥ 0, with equality if and only if v is a cutpoint.

Our first result of this section provides an attainable lower bound on κ when the vertex in

question is not a cutpoint.

Theorem 3.3. Let G be a connected graph G on n ≥ 3 vertices, and suppose that v is a vertex of
G that is not a cutpoint. Then κ(v) ≥ 2−2 cos( π

n−1 )

3−2 cos( π
n−1 ) . Equality holds in the lower bound if and only if

either
a) G = Pn−1 ∨ {v}, or
b) G = (Pn−1 ∨ {n}) \ {n

2 ∼ n}, n = 4, 6, or 8, and vertex v coincides with vertex n.
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Proof: Since α(G) ≤ α(G\v)+1, we have κ(v) = α(G\v)
α(G) ≥ α(G\v)

α(G\v)+1 ≥
2−2 cos( π

n−1 )

3−2 cos( π
n−1 ) , the last inequality

following from the fact that for any connected graph H on m vertices, α(H) ≥ 2−2 cos( π
m ); we note

also that α(H) = 2− 2 cos( π
m ) if and only if H = Pm. Thus the desired inequality for κ(v) holds.

Suppose now that κ(v) =
2−2 cos( π

n−1 )

3−2 cos( π
n−1 ) . Then necessarily we must have G \ v = Pn−1, and

α(G) = α(Pn−1) + 1. Without loss of generality we take vertex v to be n. If dG(n) = n− 1, then we

are in case a).

Suppose next that dG(n) ≤ n − 2. Let x be a Fiedler vector for Pn−1, normalized so that

xT x = 1, and let y be the vector formed from x by appending a 0 in the n-th position. Suppose

that vertex i of G is not adjacent to vertex n. By considering the quadratic form yT L(G)y, we find

that α(G) ≤ yT L(G)y = α(Pn−1) + 1 − x2
i . In particular, we see that if α(G) = α(Pn−1) + 1, then

necessarily xi = 0. We conclude that n is even, i = n
2 , and that vertex n is adjacent to every other

vertex except n
2 in G. Hence G = (Pn−1 ∨ {n}) \ {n

2 ∼ n}, and referring to Example 2.2, we find

that necessarily n is either 4, 6 or 8, so that condition b) holds.

Finally, from Example 2.2, we find readily that if either a) or b) holds, then κ(v) =
2−2 cos( π

n−1 )

3−2 cos( π
n−1 ) . 2

The following result will be useful in establishing an upper bound on κ.

Lemma 3.4. Let G be a connected graph on n ≥ 3 vertices, and suppose that v is a pendant vertex
of G. If α(G) < 1, then κ(v) < n− 1.

Proof: Without loss of generality, we take v to be vertex n, adjacent to vertex n − 1 in G. Let w

be a Fiedler vector for G, and note that from the equation L(G)w = α(G)w we find that wn =
1

1−α(G)wn−1. Referring to (2.3), it follows that α(G \ v) ≤ α(G) +
(1−n−2

n−1 α(G)) 1
(1−α(G))2

w2
n−1−w2

n−1

wT w+w2
n−1−

1
(n−1)(1−α(G))2

w2
n−1

,

where w is the vector formed from w by deleting the entries in positions n−1 and n. From the Cauchy-

Schwartz inequality, and the fact that wT 1 = 0, we find that wT w ≥ (wn−1+wn)2

n−2 =
(

2−α(G)
1−α(G)

)2 w2
n−1

n−2 .

It now follows that α(G \ v) ≤ α(G) +
(1−n−2

n−1 α(G)) 1
(1−α(G))2

−1

( 2−α(G)
1−α(G) )

2 1
n−2+1− 1

(1−α(G))2(n−1)

. Simplifying this last inequality

yields α(G \ v) ≤ α(G) + α(G)(n − 2)
(

2−α(G)−n−2
n−1

(2−α(G))2−n−2
n−1+(n−2)(1−α(G))2

)
< α(G)(n − 1), the last

inequality since 1 < 2− α(G). The conclusion now follows. 2

We now use Lemma 3.4 to prove an attainable upper bound on κ.

Theorem 3.5. Let G be a connected graph on n ≥ 3 vertices. Then for any vertex v of G, κ(v) ≤
n− 1. Equality holds in the upper bound if and only if G = (Kn−2 ∪K1)∨K1, and v is the pendant
vertex of that graph.

Proof: Let G̃ be formed from G by (if necessary) deleting all but one edge incident with v, so that

v is pendant in G̃. Since α(G) ≥ α(G̃), we certainly have κ(v) ≤ α(G\v)

α(G̃)
= α(G̃\v)

α(G̃)
.

Let w be the vertex of G̃ that is adjacent to v. If dG̃(w) ≤ n − 2, then α(G̃) < 1 (see [8] for

example), and in that case, it follows from Lemma 3.4 that κ(v) < n − 1. On the other hand, if
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dG̃(w) = n − 1 (and hence dG(w) = n − 1), we have α(G̃) = 1, so that α(G̃\v)

α(G̃)
= α(G̃ \ v) ≤ n − 1.

Thus we have κ(v) ≤ n− 1, as desired.

Suppose now that κ(v) = n− 1. From the argument above, we find that necessarily α(G \ v) =

n − 1, so that G \ v = Kn−1. It must also be the case that α(G) = 1, from which we deduce that

v must be pendant in G. Hence G = (Kn−2 ∪ K1) ∨ K1, and v is the pendant vertex of G. The

converse implication for the equality case is straightforward. 2

Theorem 3.6. Let G be a connected graph on n ≥ 3 vertices. There is at least one vertex v of G
such that κ(v) ≤ n−1

n .

Proof: The conclusion follows immediately if G = Kn, so henceforth we assume that G 6= Kn.

Suppose to the contrary that for each vertex v of G, κ(v) > n−1
n . Let w be a Fiedler vector for

G. Then referring to (2.3), it must be the case that for each vertex v of G,

(dG(v)− n−2
n−1α(G))w2

v −
∑

i∼v w2
i∑

i 6=v w2
i −

w2
v

n−1

>
−α(G)

n
. (3.4)

Rearranging (3.4) yields

n(dG(v)− n− 2
n− 1

α(G))w2
v − n

∑
i∼v

w2
i > α(G)(

n

n− 1
w2

v −
n∑

i=1

w2
i ). (3.5)

Summing (3.5) over all vertices v in G yields

−
(

n2 − 2n

n− 1

)
α(G)

n∑
i=1

w2
i > −

(
n2 − 2n

n− 1

)
α(G)

n∑
i=1

w2
i ,

a contradiction.

We conclude that for some vertex v, it must be the case that κ(v) ≤ n−1
n . 2

Corollary 3.7. Let G be a connected graph on n ≥ 3 vertices. Then min{κ(v)|v ∈ G} ≤ n−1
n .

Equality holds in the inequality if and only if G = Kn.

Proof: The inequality follows immediately from Theorem 3.6, so we need only characterize the

equality case. Observe that if G = Kn, then for each vertex v we have G \ v = Kn−1, so that

κ(v) = n−1
n , and hence min{κ(v)|v ∈ G} = n−1

n .

Suppose now that min{κ(v)|v ∈ G} = n−1
n and that G 6= Kn. We find from the proof of Theorem

3.6 that it must be that case that κ(v) = n−1
n for every vertex v. Further, we also find that equality

must hold in (2.3) for each vertex of G.

Let w be a Fiedler vector for G, and suppose without loss of generality that wn 6= 0. Write L(G)

as L(G) =

[
L̃ + D −x

−xT m

]
, where L̃ is the Laplacian matrix for G\n, and write w as w =

[
w̃

wn

]
.

10



Since equality holds (2.3) for vertex n, it must be the case that u = w̃ + wn

n−11 is a Fiedler vector

for G \ n.

Consequently, we have

L̃w̃ =
n− 1

n
α(G)w̃ +

α(G)
n

wn1. (3.6)

From the eigenequation for L(G), we also find that

L̃w̃ + Dw̃ − wnx = α(G)w̃, (3.7)

and that

−xT w̃ + mwn = α(G)wn. (3.8)

We find from (3.6) and (3.7) that Dw̃ − wnx = α(G)
n (w̃ − wn1). Multiplying this equation by xT ,

using the facts that xT D = xT and xT x = m, we find that xT w̃ − wnm = α(G)
n (xT w̃ − wnm); from

(3.8) we thus have −α(G)wn = α(G)
n (−α(G)wn). Since wn 6= 0, it must be the case that α(G) = n.

Hence G = Kn, contrary to our hypothesis. 2

4. Applications of κ to food webs

In this section, we consider several graphs arising from food webs, and discuss the various values

of κ for vertices in those graphs. A food web is a graph that is used to represent certain relationships

within an ecosystem. The vertices of the graph correspond to the various species (or sometimes

collections of similar species) present within an ecosystem; for each pair of vertices in a predator/prey

or consumer/resource relationship, the graph contains an edge between the predator vertex and the

prey vertex.

There is an obvious lack of symmetry in the relationship between predator and prey, and one

might reflect that asymmetry by representing the ecosystem as a directed graph (with directed arcs

oriented from a predator vertex to a prey vertex). However, since effects due to changes to predator

and prey species can propagate throughout a food web, it has been argued (see [2] and [13]) that

there is merit in considering a food web as an undirected graph, as described above. We adopt that

convention here, and consider the food webs below as undirected graphs.

In this section, we consider four different food webs, and discuss the κ values for the vertices in

each graph . (All computations were done in Matlab, and the results reported here are rounded to

four decimal places.) We note in passing that in the food web context, κ(v) measures the relative

change in the algebraic connectivity due to the removal of the species corresponding to vertex v.

Our approach here is inspired in part by [5], where various notions of vertex centrality are considered

and compared for a number of food webs.

A common feature to all four examples is that each graph contains just a handful of vertices

whose corresponding κ value is small, while almost all of the remaining vertices yield values of κ
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close to 1. This observation suggests that many of the vertices in these graphs make at most a

marginal contribution to the algebraic connectivity, while just a few vertices in these graphs can be

considered central.

Example 4.1. Our first food web is based on data for the Ythan estuary in Scotland. The resulting
graph G has 134 vertices, primarily representing birds, fishes, invertebrates, and metazoan parasites
[3]. Computations yield the value α(G) = 0.6687.

There are eight vertices of G for which the value of κ is equal to 0, and they correspond to the
following categories: redshank, fatherlasher, flounder, ragworm, small crustacean, periwinkle, genus
Enteropmorpha, and particulate organic matter. Evidently each of these eight vertices is a cutpoint
of G, and an analysis of the graph shows that in fact each of these eight vertices includes at least one
pendant vertex in its neighbourhood. For all remaining vertices of G, the corresponding computed
values for κ lie between 0.9459 and 1.0307.

Example 4.2. Our next food web is associated with a Shoal grass ecosystem in the St. Marks
National Wildlife Refuge, Florida. The vertices in the graph primarily represent macroinverte-
brates, fishes, and birds [3]. The corresponding graph G has 48 vertices, and a computed value of
α(G) = 1.5875. For this graph, the four smallest values of κ are: 0.5396 (micro-epiphytes); 0.5446
(benthos-eating birds); 0.5981 (deposit-feeding peracaridan crustaceans); and 0.5992 (epiphyte-
grazing amphipods). Note that these values are not especially close to the lower bound of Remark
3.1, as 1 − 1

α(G) = 0.3701. All remaining vertices yield values of κ between 0.7282 and 1.1548. The
graph in Figure 2 below shows the κ values in ascending order for the St. Marks food web.

Example 4.3. Our third food web example arises from data for a coral reef on the Puerto Rico
- Virgin Islands shelf complex. The corresponding graph G has 50 vertices, primarily representing
fishes, other vertebrates, invertebrates, and basal groups [4]. The computed value of the algebraic
connectivity is α(G) = 1.9794.

For this graph, the two smallest values of κ are: 0.4975 (large sharks/rays, carnivorous); and
0.5027 (benthic autotrophs). In contrast to Example 4.2, both of these κ values are close to the
lower bound of Remark 3.1, namely 1− 1

α(G) = 0.4948. The largest value of κ is 2.9384 (kyphosidae,
herbivorous); it is interesting to note that the vertex corresponding to this species is adjacent to
just two others in G, namely the vertices yielding the smallest two κ values. All remaining values of
κ lie between 0.9993 and 1.0007. Finally, we remark that the two smallest values for κ correspond,
respectively, to the pair of entries in the Fiedler vector of smallest absolute value, while the largest
value for κ corresponds to the entry in the Fiedler vector of maximum absolute value.

Example 4.4. Our last food web example is derived from data for the Northeast US shelf ecosystem.
Here the graph G has 81 vertices, again representing fishes, other vertebrates, invertebrates, and
basal groups [4]. The computed value for the algebraic connectivity is α(G) = 7.5421. For this
graph, the eight smallest values of κ are: 0.8755 (cancer crabs); 0.8755 (other crabs); 0.8763 (clams,
mussels); 0.8791 (scallops); 0.8793 (phytoplankton); 0.8812 (lobsters); 0.8851 (detritus); and 0.8852
(urchins). It is worth remarking that the vertices corresponding to cancer crabs, and to other crabs,
have the same neighbourhoods in G. As in Example 4.3, these eight κ values are quite close to
1− 1

α(G) = 0.8674, the bound of Remark 3.1. The maximum value of κ is 1.2516 (snails), while all
remaining vertices yield values of κ lie between 0.9928 and 1.0023.

We computed a Fiedler vector for this example (it is unique up to scalar multiple), and found
the ordering of indices that places its entries in ascending order. We then arranged the values of κ

12



0 10 20 30 40 50
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Figure 2: Increasingly sorted κ values for the St. Marks food web

according to the same ordering of indices; the results are displayed in Figure 3 below. From that
Figure, we see that the minimum entry in the Fiedler vector corresponds to the maximum value for
κ, while the next eight most negative entries in the Fiedler correspond to the eight smallest κ values
noted above.

5. Conclusion

In this paper, we introduce the functions φ(v) and κ(v), which measure the absolute and relative

changes in the algebraic connectivity of a graph G upon deletion of a vertex v. We provide upper

and lower bounds on both quantities, and characterise the equality cases in those bounds. We also

give a lower bound on the number of vertices v such that φ(v) ≥ 0, and an upper bound on the

minimum value of κ(v) as v ranges over the vertices of the graph G. Finally, we explore a notion

of vertex centrality arising from the function κ, and apply that notion to several graphs associated

with food web data.
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Figure 3: κ values sorted according to the Fiedler vector for the shelf ecosystem
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