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A B S T R A C T   

Research producing evidence-based information on the health benefits of green and blue spaces often has within 
its design, the potential for inherent or implicit bias which can unconsciously orient the outcomes of such studies 
towards preconceived hypothesis. Many studies are situated in proximity to specific or generic green and blue 
spaces (hence, constituting a green or blue space led approach), others are conducted due to availability of green 
and blue space data (hence, applying a green or blue space data led approach), while other studies are shaped by 
particular interests in the association of particular health conditions with presence of, or engagements with green 
or blue spaces (hence, adopting a health or health status led approach). In order to tackle this bias and develop a 
more objective research design for studying associations between human health outcomes and green and blue 
spaces, this paper discussed the features of a methodological framework suitable for that purpose after an initial, 
year-long, exploratory Irish study. The innovative approach explored by this study (i.e., the health-data led 
approach) first identifies sample sites with good and poor health outcomes from available health data (using data 
clustering techniques) before examining the potential role of the presence of, or engagement with green and blue 
spaces in creating such health outcomes. By doing so, we argue that some of the bias associated with the other 
three listed methods can be reduced and even eliminated. Finally, we infer that the principles and paradigm 
adopted by the health data led approach can be applicable and effective in analyzing other sustainability 
problems beyond associations between human health outcomes and green and blue spaces (e.g., health, energy, 
food, income, environment and climate inequality and justice etc.). The possibility of this is also discussed within 
this paper.   

1. Introduction 

While there is considerable evidence-based research assuming or 
confirming the health benefits of nature particularly green and blue 
spaces (Frumkin, 2003; Völker and Kistemann, 2011; Calogiuri and 
Chroni, 2014; Gascon et al., 2015; Kindermann et al., 2021), a closer 
inspection of such studies reveal that they follow three broad ap
proaches or paradigm. The first group of studies are situated in prox
imity to particular or generic green (e.g., riparian forest, grassland etc.) 

and/or blue spaces (e.g., beach, coasts, river, stream etc.) and can be 
described as those employing the green and blue space-led approach, e.g., 
Mitchell et al. (2011), Wheeler et al. (2012); Völker and Kistemann 
(2014). The primary source of bias for the green and blue space-led 
approach is mostly specific individual or group interest in the poten
tial health impacts of particular or generic individual green and blue 
spaces (Völker and Kistemann, 2011; Bell et al., 2018). This bias may 
chiefly be a result of some emotional connection or historical attach
ment to green and blue space and/or their health impacts or 
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short-term/long-term academic research interest (Völker and Kiste
mann, 2014; Foley and Kistemann, 2015). It could also sometimes (to a 
lesser extent) be a result of convenience, i.e., ease of availability of green 
and blue space data (White et al., 2010; Foley, 2015). A second strand of 
studies was primarily driven by the availability of green and blue space 
data, with an additional emphasis on green and blue space indicators for 
testing human health and wellbeing, e.g., Normalized Difference Vege
tation Index (NDVI), quality of green or blue spaces, tree canopy or 
cover, tree-to-house ratio, the proportion of green and blue space to land 
or population, access and/or closeness to green and blue spaces etc. Such 
studies can be described as applying the green and blue space data led 
approach. Examples of previous studies employing this approach 
include Fuller et al., 2007, Wheeler et al. (2015), Amoly et al. (2014), 
Wilker et al. (2014); Smith et al. (2017). The major source of bias for the 
green and blue space data-led approach is convenience (i.e., ease of 
availability of green and blue space data) and specific expertise in 
handling and analyzing green and blue space data (Wheeler et al., 2015; 
Smith et al., 2017). A third approach includes studies designed to assess 
the impacts of particular or generic green and/or blue spaces on specific 
health conditions of interest. This can be described as the health led or the 
health status led approach. The main source of bias for health led or health 
status led approaches (like the green and blue space-led approach) is the 
specific individual or group interest in potential health impacts or health 
improvement benefits of particular or generic green and/or blue spaces 
(Fuller et al., 2007; Wilker et al., 2014). However, unlike the green and 
blue space-led approach, bias towards the health led, or health status led 
approach is more likely to be a result of short or long-term academic 
research interest rather than emotional connection or historical 
attachment (Amoly et al., 2014; Gascon et al., 2015). Bias towards the 
health led or health status led approach may also arise to a somewhat 
lesser extent due to the availability of health data or history/incidences 
of disease outbreaks in particular communities (Hartig et al., 2003; 
McFarlane et al., 2013). 

Noteworthy however, is the fact that it is not impossible to have 
studies with features of more than one of the approaches described, e.g., 
Fuller et al. (2007); Amoly et al. (2014) both have features of both 
green/blue space data led, and health/health status led approaches. 
However, irrespective of the approach or approaches adopted by indi
vidual green and blue space and health studies, they still provide 
considerable depth of evidence that green and blue spaces have health 
and wellbeing benefits. Despite the depth of evidence that such studies 
provide, they however also contain, to a greater or lesser degree, some 
level of implicit or inherent bias, which influences the choice of the 
population sample and/or health cases chosen for assessment, and un
consciously orients such studies in the direction of conceived hypothe
sis, i.e., that green and/or blue spaces have potential or verifiable health 
benefits (Groenewegen et al., 2006; Foley et al., 2018a). Bearing this in 
mind, there is a need to consider how to avoid the bias associated with 
these three approaches. Avoiding such bias will help ascertain the val
idity of the potential health benefits of green and blue spaces in a wider 
range of circumstances (Lachowycz and Jones, 2013; Arodudu et al., 
2017). 

To do this, our study beamed the searchlight on health data to pro
vide an alternative approach. This required developing a methodolog
ical framework that first identifies spatially referenced areas with good 
and poor human health outcomes (from collected/available health data 
sources) before testing if the presence of, or probable engagement with 
green and blue spaces play any role in the creation of such human health 
outcomes or not (Maas et al., 2006; Mitchell et al., 2015). We described 
this approach as the health-data led approach. This approach confirms 
and ascertains the potential or verifiable health benefits of green and 
blue spaces by relying on deductions from health data (Arodudu et al., 
2017; Foley et al., 2018a). The approach does not rule out or invalidate 
the possible impacts of other important factors, i.e., confounding and 
effect-modifying variables affecting human health outcomes, e.g., 
gender, age, race/ethnicity, climate/climate change, policy, income 

level, socio-economic deprivation, etc. (Pearson et al., 2014; Smith 
et al., 2017). It, however, focuses on identifying the best sample sites to 
investigate the impact of green and blue spaces on human health using 
available health data. In order to operationalize the health data-led 
approach, we need to devise a framework (i.e., a combination of tools, 
procedures and methods/methodologies) that can be applied to achieve 
that. In response to this, this methodological framework paper primarily 
provides synthesized insights and suggestions on the composition or 
features of such health-data led approach applicable for avoiding pre
vious inherent or implicit bias associated with assessing relationships 
between human health outcomes and green and blue space availability 
and/or contact, based on lessons from an initial, year-long exploration 
study. The secondary objective of the paper is to provide proof of 
concept of the new approach, hence the presentation of preliminary 
results and discussions of the one-year explorative case study in Section 
3. 

The methodological framework adopted for the initial one-year 
exploration case study identified places with good and poor human 
health outcomes by testing the capabilities of the Global Moran’s I 
Spatial Statistics/Clustering algorithm and the Anselin Local Moran’s I 
Spatial Statistics/Clustering algorithm (both from the ArcGIS software) 
on spatially referenced Irish health data at the national level. Health 
data applied as indicators of good and poor health outcomes (on which 
the two algorithms were tested) included spatially referenced Irish self- 
reported health, disability and mortality data (at the national level), 
while the green and blue space indicators tested by this study for the 
assessment of green and blue space and human health relationships 
included the Green Proportion Index (GPI), the Blue Proportion Index 
(BPI) and the Green and Blue Proportion Index (GBPI). See Section 2.2.3 
for the description of the green and blue space indicators and how they 
were computed. The indicators of good and poor health outcomes were 
the dependent variables (spatially referenced Irish self-reported health, 
disability, and mortality data), while green and blue space indicators 
were the independent variables (GPI, BPI and GBPI). The relationship 
between good and poor health outcomes and green and blue spaces was 
confirmed via the use of scatter plots and the application of simple linear 
regression modelling techniques. The confounding/effect-modifying 
variable investigated in this study is socio-economic deprivation. This 
was done using two indices derived from the Irish context for measuring 
socio-economic deprivation, namely SAHRU (Small Area Health 
Research Unit) and Pobal HP (Haase and Pratschke) deprivation 
index. Investigating confounding/effect-modifying variables helps 
ascertain the impact of other factors other than presence and/or absence 
and/or contact with green and blue spaces on human health outcomes in 
every study or context. Alternative methodological options that can be 
applied for each step in the methodological framework are suggested in 
relevant sub-sections in Section 2. Excerpts and a full version of the 
technical report from the one-year exploration case study can be found 
in Section 3 (Foley et al., 2018a). 

2. Methodology framework for a health-data led approach for 
investigating associations between green and blue spaces and 
human health outcomes 

Due to the centrality of the identification of spatially referenced 
areas with good and/or poor human health outcomes to the health data 
led approach, of great importance and requiring much attention will be 
the collection of health data and the creation of spatial health database 
or databases from them, i.e., spatial health data collection and spatial 
health database creation (Amoly et al., 2014; Gascon et al., 2015). This 
could be followed by or done in parallel with the collation and creation 
of spatial databases for the green and blue space indicators to be used to 
investigate the impact of green and blue spaces on different health 
outcomes (Mitchell et al., 2011; Wheeler et al., 2015). This process can 
be described as the spatial green and blue data collation and creation. 
This will be followed by the selection and testing of algorithms or 
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methods for choosing sample sites that will be used for assessing and/or 
confirming relationships between green and blue spaces and human 
health outcomes, i.e., sample site selection (Fuller et al., 2007; Beyer 
et al., 2014). This will be followed by the actual assessment and 
confirmation of relationships between human health outcomes and the 
availability or non-availability of green and blue spaces using relevant 
statistical analysis methods, tools, or techniques (e.g., simple linear 
regression modelling, analysis of variance etc.) (Maas et al., 2006; 
Mueller et al., 2016). After confirming the relationships between human 
health outcomes and the availability or non-availability of green and 
blue spaces, other statistical techniques (e.g., principal component 
analysis, multiple linear regression modelling etc.) will be applied for 
checking the impact or contributions of other important human health 
confounding and/or effect-modifying factors (Lachowycz and Jones, 
2013; Taghikhah et al., 2020). Furthermore, based on previously 
expressed uncertainties on the thresholds or limits of potential health 
benefits deliverable by green and blue spaces, the dynamic nature of 
their impacts on human health outcomes ought to be assessed using 
available modelling approaches or techniques, e.g., change/trend 
analysis, time series, spatio-temporal assessments, system dynamics etc. 
(Astell-Burt et al., 2014; Gascon et al., 2015; Sanders et al., 2015). 
Lessons from an initial year-long exploratory study applying this 
approach (i.e., the health-data led approach) in an Irish context are re
ported in the following subsections (Section 2.1-2.6). Preliminary results 
and discussions, as well as conclusions and recommendations on the 
potential wider application of the approach for other sustainability is
sues (e.g., health, energy, food, income, environment and climate 
inequality and justice issues/concerns etc.) was also discussed in the 
following sections (Sections 3 and 4). Conceptual diagrams showing 
each step of the proposed methodological framework, specific methods 
and indicators applied at each step of the methodological framework 
during the one-year explorative case study, alternative options for 
implementation of each step of the methodological framework, as well 
as likely problems to be encountered at each step of the implementation 
and how to address them can be found in Figs. 1–7. 

2.1. Spatial health data collection and database creation 

The initial step involved the collection and spatial referencing of 
health data types (often available only in vector format) that will be used 
in testing the associations between human health outcomes or condi
tions on the one hand and the availability and/or contact with green and 
blue spaces on the other hand. The exploratory study applied three 
vector-based datasets with different geographies at a national scale 
(covering the whole of the Republic of Ireland). These included sec
ondary data on self-reported health (provided at the small area and 

electoral district level for 2006–2016), disability (provided at settlement 
level for 2006–2011) and mortality (provided at intermediate level for 
2011–2014) (Foley et al., 2018a). The self-reported health and disability 
data were collected and made available by a national agency, the Cen
tral Statistics Office (CSO). The mortality data was initially collected and 
provided by another national agency, the General Register Office (GRO), 
but it was analyzed and re-aggregated to more workable geographies by 
the National Centre for Geocomputation, Maynooth University, Ireland. 
While other health datasets were explored, some were not made avail
able in formats that are easily workable or convertible for further 
analysis (e.g., hospital records). Some others were simply not collected 
at a national level, hence making national scale assessment impossible 
(e.g., primary care data). Five major issues that were encountered within 
this health data collection and spatial database creation process and how 
they can be addressed were discussed in the following subsections. A 
visual description of the initial step in the methodological framework is 
provided in Fig. 2. 

2.1.1. Data heterogeneity 
It is not unusual to find the same, and sometimes multiple health data 

types being collected and spatially referenced using different projection 
systems or represented using heterogeneous and non-uniform scales or 
geographies. This often occurs because of poor communication on the 
spatial units to be used for the transmission and dissemination of public 
health data (Foley et al., 2018a; Pu et al., 2020). It can also occur for a 
variety of reasons, such as the usage of different measurement units for 
different health conditions, as well as the adoption of different admin
istrative units by different health authorities/agencies concerned with 
reporting health data on different health conditions to the public (Rigby 
et al., 2017, Foley et al., 2018b). For example, within the initial, 
one-year exploratory case study, self-reported health data was reported 
at two scales namely Electoral Division (ED) and Small Area (SA) scales. 
Also, disability data was reported at Settlement (ST) scale; while mor
tality data was reported at an entirely newly derived geography referred 
to as Intermediate area (IA) geography or scale (Rigby et al., 2017; Foley 
et al., 2018a). Adopting uniform reporting units (i.e., data transmission 
and dissemination units) for all reported health conditions will not be 
possible because the health data often differ in kind and structure and 
can therefore not be aggregated into the same units (Foley et al., 2018b; 
Arodudu et al., 2019). This difficulty can however be addressed by 
aggregating and re-presenting all health data types available within a 
particular study at all scales or geographies represented within the same 
study i.e., health data types made available exclusively in one or two 
scales or geographies will be aggregated and re-presented in the other 
scales/geographies in which other health data types within the same 
study have been initially presented and vice versa, hence ensuring 

Fig. 1. A conceptual diagram demonstrating an overview of all steps involved in the proposed methodological framework.  
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uniformity and comparability across all health data types. For example, 
within the one-year exploration case study, self-reported health data 
that was initially presented at electoral division and small area scales 

were further aggregated and re-presented in intermediate area, county 
and settlement scales/geographies for uniformity and comparability. 
Disability data that was initially presented exclusively in settlement 

Fig. 2. Conceptual diagram showing the first step of the methodological framework (spatial health data collection and database creation), specific methods and 
indicators applied at the step during the one-year explorative case study, and likely problems to be encountered at the step, as well as how to address them. 

Fig. 3. Conceptual diagram showing the second step of the methodological framework (spatial green and blue space data collation/characterization), specific 
methods and indicators applied at the step during the one-year explorative case study, and likely problems to be encountered at the step, as well as how to 
address them. 
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scale was further aggregated and re-presented in electoral division, 
small area, county and intermediate area scales/geographies for uni
formity and comparability. Also, mortality data that was previously 
published in intermediate area geography exclusively was further 
aggregated and re-presented in electoral division, small area, county and 
settlement scales/geographies for uniformity and comparability. 
Boundary aggregation and re-presentation can be achieved using rele
vant GIS based operations, e.g., identity, union, merge, split, clip, 
dissolve, intersect, erase, buffer etc. One or more individual GIS oper
ations or combinations of GIS operations may help achieve the desired 
boundary aggregation. What works in each boundary aggregation 
instance is usually determined after one or more GIS based operations 
must have been tested or applied once or severally. 

2.1.2. Null data 
Spatial representation and reporting null data for different health 

conditions can be challenging, especially at finer scales (Rigby et al., 
2017; ESRI, 2020a). These often lead to having lots of zero or null data 
values associated with entire spatial data units, hence influencing the 
direction of further processing of the health data, i.e., selection of 
sample sites or spatial data units with zero values as the place with best 
or worst health outcomes depending on the unit or scale applied for 
presentation of the health conditions under consideration (Foley et al., 
2018a; ESRI, 2020b). This can, by default, introduce an unintended bias 
into subsequent steps of the assessment process (Arodudu et al., 2019, 
Foley et al., 2018b). To eliminate the unintended bias that zero values 
can introduce into the assessment process, upscaling via redistricting (i. 
e., re-demarcation or merging) of smaller spatial units and delineation of 
larger and more viable spatial units or geographies will be required. 

Fig. 4. Conceptual diagram showing the third step of the methodological framework (sample site selection using clustering algorithms), specific methods and in
dicators applied at the step during the one-year explorative case study, and alternative options for implementation of the step. 

Fig. 5. Conceptual diagram showing the fourth step of the methodological framework (confirmation of associations between green and blue space and health), 
specific methods and indicators applied at the step during the one-year explorative case study, and alternative options for implementation of the step. 
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Creation of new geographies previously unknown or unused but more 
fitting for the purpose of having more viable spatial units without null 
values, hence avoiding unintended bias or influence that zero values 
may cause in the process of selection of sample sites for modelling the 
relationships of human health outcomes, and green and blue spaces 
might be necessary. Redistricting can be achieved using the relevant 
individual as well as combinations of GIS based operations (e.g., iden
tity, union, merge, split, clip, dissolve, intersect, erase, buffer etc.). 

2.1.3. Privacy and confidentiality 
National policies and laws exist in most countries protecting the 

privacy and confidentiality of personal data on human subjects (human 
health data inclusive) for the sake of safeguarding national security and 
the safety of persons (Foley et al., 2018b; Arodudu et al., 2018). Such 
laws often prohibit revealing the identity and other personal 

information of persons or giving clues that make the identity and other 
personal information (health data inclusive) of persons traceable 
through whichever means (Rigby et al., 2017; Foley et al., 2018a). 
Consequently, spatial analysis of places with good or poor health out
comes (irrespective of the health indicators applied) and the assessment 
of their associations with green and blue spaces should be done in a way 
that the identity and personal health information of persons in such 
areas or regions remains concealed. The analyzers and/or users of the 
information should not be able to trace such data back to the person(s) 
or groups of people concerned. This can be ensured by avoiding doing 
such assessments at the finest scales available or by upscaling smaller 
spatial units via redistricting into larger spatial units, using suitable 
individual or combinations of GIS based operations. 

Fig. 6. Conceptual diagram showing the fifth step of the methodological framework (testing for confounding and effect-modifying variables), specific methods and 
indicators applied at the step during the one-year explorative case study, and alternative options for implementation of the step. 

Fig. 7. Conceptual diagram showing the sixth step of the methodological framework (dynamic modelling of association between green and blue spaces and human 
health outcomes), and alternative options for implementation of the step. 
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2.1.4. Choice of indicators 
Several indicators can be applied to describe the same health con

ditions or outcomes. Different indicators for representing the same 
health conditions or outcomes could be quantitative or qualitative in 
nature or even a mix of quantitative and qualitative measures (Smith 
et al., 2017, Foley et al., 2018b). While some health indicators for the 
same health condition or outcome may be sensitive to green and blue 
space indicators, some may not be and vice versa (Maas et al., 2006; 
Arodudu et al., 2019). The best health indicators for different health 
conditions or outcomes are those most sensitive to associations with 
greenspace and blue space availability or contact indicators (Groene
wegen et al., 2006; Foley et al., 2018a). To determine the best health 
indicators for testing the associations between a health condition or 
outcome and green and blue spaces, there is a need to test their levels of 
sensitivity and strengths of association using appropriate statistical 
methods e.g., regression analysis, analysis of variance, correlation 
analysis etc. (Lachowycz and Jones, 2013; Arodudu et al., 2018). 
However, the choice of indicators for this study was made based on 
available data (spatially referenced secondary data on self-reported 
health, disability, and mortality). 

2.1.5. Choice of assessment scales/geographies-the need for a multi-scale/ 
multi-geography assessment 

In addressing data heterogeneity issues, the aggregation and re- 
presentation of data at all scales or geographies represented in the 
health data types within the same study is suggested in Section 2.1.1. 
This solution creates a new decision point. This involves making choices 
on the most suitable assessment scales and geographies for confirming 
green and blue space and human health relationships on the one hand, 
and examining relationships between confounding variable indicators 
(e.g., socio-economic deprivation) and human health on the other hand. 
The choice of scales or geographies selected for spatial analysis of health 
outcomes (mostly in vector format), as well as confirming their re
lationships with green and blue spaces on the one hand, and with con
founding variable indicators on the other hand can impact the outcome 
of the study and the improvement recommendations following on from 
it. The one-year exploratory case study tested the relationships between 
green and blue space and human health outcomes at multiple scales/ 
geographies (county, electoral district, settlements, intermediate areas, 
and small areas) and found both weak and strong relationships at all 
scales/geographies. The study further compared the frequency and 
strength of associations at each scale/geography (in terms of R2 values 
obtained from scatter plot and single regression modelling). The com
parison revealed that the intermediate area scale/geography more 
frequently elicited stronger positive associations for examined green and 
blue space and human health outcome relationships than the four other 
geographies (county, electoral district, settlements, and small areas), 
hence its choice as scale of assessment for further confirmation of the 
effect of confounding variable indicators in the one-year exploratory 
case study (Foley et al., 2018a, Foley et al., 2018b). The use of the 
multi-scale or multi-geography assessment for the identification of the 
scale or geography at which green and blue space and human health 
relationships are most sensitive is therefore recommended by this study. 
This is because it can help facilitate an objective choice of sample sites 
for further confirmation of the effect of confounding variable indicators 
or alternative explanatory variable indicators (as the case may be). It can 
also help determine quantitatively the scale or geography at which the 
impact of green and blue space on human health outcomes is detecta
ble/measurable, as well as at what scale or geography should health 
improvements be planned or implemented. Such health improvements 
could be in form of qualitative or quantitative landscape based green 
and blue infrastructure planning/interventions; or in form of 
socio-economic planning e.g., determining the scale of provision of jobs, 
health facilities, industries, and other social amenities in particular 
areas/regions etc. 

2.2. Spatial green and blue space data collation/characterization 

This next step involves examining available green and blue space 
geodatabases and/or creating new ones that can be described as credible 
or reliable enough to be applied for assessing associations between 
health outcomes and green and blue space. Three major challenges often 
encountered in doing this and how they could be addressed based on 
lessons from the one-year exploration study are discussed in the 
following subsections, namely (i) resolution of available green and blue 
space data, (ii) dates of available greenspace and blue data, and (iii) 
choice of indicators. A visual representation of the second step in the 
methodological framework is illustrated in Fig. 3. 

2.2.1. Resolution of available green and blue space data 
The resolution of available raster based green and blue space data 

might be a direct or indirect indicator of the accuracy and/or precision 
levels of the data and the data characterization process (Groenewegen 
et al., 2006; Arodudu et al., 2019; Bulley et al., 2023). In other words, 
the better the resolution of the green and blue space data the more 
credible or reliable might be its potential for usage in assessing associ
ations between health outcomes and green and blue spaces (Maas et al., 
2006; Arodudu et al., 2018; Ogbodo et al., 2014). Higher resolution 
greenspace and blue space data are mostly products of primary data 
(satellite imageries, aerial photographs etc.) with equally high resolu
tions (in terms of spatial, spectral, temporal, and radiometric) (Foley 
et al., 2018a; Ibrahim et al., 2022). For a more accurate evaluation of 
relationships between green and blue space and human health, the use 
of higher resolution imageries is a highly favored recommendation 
(Arodudu, 2013, Foley et al., 2018b). Characterization of higher reso
lution images for obtaining higher resolution greenspace and blue space 
data should also be considered if they are not too expensive for the 
budget size of research projects requiring such assessments. 
High-resolution images are mostly only commercially available, very 
expensive and inaccessible by low-budget exploration studies. They can, 
however, be obtained free from previous public or private projects that 
have utilized them or purchased from substantial research grants that 
have proposed to use them for similar or other purposes. 

2.2.2. Dates of available green and blue space data 
In ideal cases, green and blue space data used for examining asso

ciations between health outcomes and green and blue spaces should be 
of the same dates (i.e., year). It, however, often happens that available 
green and blue space data are not characterized for the years we have 
corresponding health data. Sometimes, the dates of the primary data 
from which green and blue space data were characterized (satellite 
imageries, aerial photographs etc.) are different from the date they are 
released publicly or published. This is because it takes lots of time to 
process a reliable spatial geodatabase. At other times, you often find that 
there is no green or blue space data for years for which health data are 
available. In such cases, green or blue space data of closest dates to those 
of available health data are assumed to be representative of what is 
obtainable in the actual year for which health data is available. When
ever there is a need to choose green and blue space data most repre
sentative for testing the association of near-date health outcomes with 
available green and blue spaces, green and blue space data of years just 
before those of the year of the measured or reported health data should 
be reasonably assumed to be more representative as they are likely to 
have more impact on current and near-future health outcomes than 
those from years afterwards. In fact, green and blue data of the current 
year may also not be as effective or representative in evaluating the 
impacts of green and blue spaces on health outcomes as those of years 
shortly before year the health data were measured or reported, espe
cially if there was a drastic change in green or blue space properties and/ 
or compositions in the actual reference year. Green and blue space data 
of following years also may not be as representative as those of previous 
years before the year the health data were measured or reported because 
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the green and blue space might undergo significant change in properties 
and/or compositions after the year the health data was measured or 
reported. 

2.2.3. Choice of indicators 
As the case is with the choice of health indicators, indicators selected 

to represent the potential of green and blue spaces to confer health 
benefits need to be seen to be the most sensitive to the health indicators 
whose associations are being assessed (Arodudu et al., 2018, Foley et al., 
2018b). Previously, green, and blue space indicators that have been 
applied to assess relationships between green and blue space and health 
outcomes included the normalized difference vegetation index (NDVI) 
(Amoly et al., 2014; Beyer et al., 2014; Gascon et al., 2015), enhanced 
vegetation index (EVI) (Heo et al., 2020; Heo and Bell, 2023), proximity 
to green and blue space (Maas et al., 2006; Wheeler et al., 2012) etc. 
While some of these indicators (e.g., NDVI) have been applied often to 
confirm relationships between health outcomes and green spaces, they 
do not measure the role or impact of blue spaces on health outcomes i.e., 
NDVI classifies water bodies as zero (Beyer et al., 2014; Gascon et al., 
2015). In response to this, the one-year exploration study for investi
gating the health-data led approach for confirming relationships be
tween health outcomes and green and blue spaces further tested the 
capabilities of new green and blue space indicators to capture the po
tential of individuals and combinations of green and blue spaces to 
deliver or not deliver health benefits within the same context. The tested 
indicators included Green Proportion Index (GPI), Blue Proportion Index 
(BPI) and Green and Blue Proportion Index (GBPI). These three green 
and blue space indicators were measured as the proportion of green and 
blue spaces (individually or in combination with each other) within each 
boundary extent. They are usually measured between 0 and 1, with the 
highest value being 1 representing 100% green and/or blue space cover. 
The results suggest they can reveal the health benefits of greenspaces 
and/or blue spaces, hence could be further applied or tested alongside 
other previously used greenspace and blue space indicators in subse
quent studies. GPI, BPI and GBPI were obtained from raster-based 
CORINE (CO-ordination of infoRmatIon on the enviroNmEnt) land 
cover information for 2006 and 2012 (with a spatial resolution of 30 m) 
and Urban Atlas (UA) land cover data (with a spatial resolution of 2.5 
m). While urban atlas land cover data has better spatial resolution, it is 
only available for limited areas (mostly large urban centers in Ireland 
and their adjoining towns and counties namely Cork, Limerick, Dublin, 
Waterford, and Galway). CORINE land cover data on the other hand is 
available for the whole of Ireland but with less spatial resolution. Urban 
Atlas land cover data has more well-defined green space land cover 
classes, while CORINE has more well-defined blue space land cover 
classes. 

2.3. Sample site selection using clustering algorithms 

After collection, collation, creation/characterization of spatial health 
data and green and blue space data, the next step or process within the 
health data led approach involves choosing samples sites of good and 
poor health outcomes most suitable for testing associations between 
health outcomes and green and blue spaces. From the initial one-year 
explorative study, we inferred that data clustering methods can play a 
role in facilitating this objective. Since the identification of sample 
points of good and poor health outcomes is central to the health data led 
approach, we deduced that examining the potential role of data clus
tering methods for identifying and generating clusters of sample points 
of places with good and poor health outcomes for subsequent investi
gation of relationships between health outcomes and green and blue 
space could offer some new insights. 

During the one-year explorative study, we tested the Global Moran’s 
I Spatial Statistics/Clustering method and Anselin Local Moran’s I 
Spatial Statistics/Clustering method in ArcGIS software. Other data 
clustering methods that can also be applied include connectivity-based 

or hierarchical clustering (Agglomerative or bottom-up hierarchical 
clustering and Divisive or top-down hierarchical clustering), BIRCH 
(Balance Iterative Reducing and Clustering using Hierarchies), Affinity 
Propagation clustering, Centroid based clustering or k-means algorithm, 
mini-batch k-means, Mean Shift, Distribution based clustering (Gaussian 
mixture model), Density based clustering (DBSCAN-Density-based 
spatial clustering of applications with noise and OPTICS-Ordering points 
to identify the clustering structure), Spectral based clustering, grid based 
clustering (STING and CLIQUE) etc. The different data clustering 
methods mentioned have different underlying principles and statistical 
underpinnings that they can employ in generating clusters of sample 
points of places with good and poor health outcomes for subsequent 
assessment of associations between health outcomes and green and blue 
spaces. This will be discussed in the following subsections. A conceptual 
illustration of the third step in the methodological framework is depic
ted in Fig. 4. 

2.3.1. Global Moran’s I spatial statistics 
This clustering algorithm generates spatial data clusters from spatial 

health data, as well as other kinds of spatial data describing phenomena 
(Anselin, 1995; Getis, 2010). It is however susceptible to spatial auto
correlation, i.e., it also adds neighboring features that are close in 
attribute values to the generated clusters, as it considers them a product 
of or part of the generated cluster without prior checks (Anselin, 2005; 
Grieve, 2011). With regards to the health data led approach, the Global 
Moran’s I will identify places with good and poor health outcomes and 
their spatially autocorrelated surrounding areas, hence generating 
clusters based on the identified information. 

2.3.2. Anselin Local Moran’s I spatial statistics 
This clustering algorithm identifies statistically significant hot spots, 

cold spots and spatial outliers in spatial health data and other kinds of 
spatial data (Anselin, 2005; Helbich et al., 2012). Unlike the Global 
Moran’s I, which measures and considers spatial autocorrelation in 
determination of clusters, it applies False Discovery Rate (FDR) 
Correction which removes all spatially autocorrelated values leaving 
only statistically significant clusters and outliers (with 95% confidence 
level) (Li et al., 2007; Alvioli et al., 2016). With regards to the health, 
data led approach, it identifies places with good and poor health out
comes and generates a cluster from the information having filtered out 
surrounding spatially autocorrelated areas. It usually forms two types of 
cluster-LL (statistically significant cluster of low values) and HH (sta
tistically significant cluster of high values), as well as two types of 
outliers LH (feature with low values surrounded by features with high 
values) and HL (feature with high values surrounded by features with 
low values) (Anselin, 2005; Getis, 2010). 

2.3.3. Connectivity-based or hierarchical clustering (agglomerative or 
bottom-up hierarchical clustering and divisive or top-down hierarchical 
clustering) 

Connectivity-based, also known as hierarchical clustering, identifies 
the most similar objects as a cluster assuming that the neighbor objects 
are more related together in comparison to the other objects that are 
further away. The agglomerative clustering algorithm is the most pop
ular method in this category. This method groups health data in a set of 
clusters based on differentiations and similarities among provinces’ 
distances. It treats each object in the data as a potential cluster and then 
moves up the hierarchy while merging pairs of clusters together (Delil 
et al., 2017; Kassambara, 2019). Another kind of algorithm for hierar
chical clustering is divisive clustering. Unlike the previous method, here, 
clustering is progressed from top to bottom of the hierarchy. It considers 
the whole objects in the given dataset as a single cluster, and then 
recursively divides into multiple clusters from the root to the last pieces 
(Zhang et al., 2017). The disadvantage of employing hierarchical cluster 
analysis is its scalability. Clustering a large size of health data obser
vation with this method would be highly computationally expensive 
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(Dunning, 2020). 

2.3.4. Balance Iterative Reducing and Clustering using hierarchies 
The Balance Iterative Reducing and Clustering using Hierarchies 

(BIRCH) method is mainly used in clustering big data (Zhang et al., 
1996; Han et al., 2022). When the algorithm reads the input data, a 
compact version of the dataset is created, which is a summary of the 
original dataset containing as much information as possible (Zhang 
et al., 1995; Ramadhani et al., 2019). Then, instead of clustering the 
bigger dataset, the smaller summary dataset is clustered (Zhang et al., 
1997; Chiu et al., 2001). BIRCH is commonly used in integration with 
other clustering algorithms (Fichtenberger et al., 2013; Lang and 
Schubert, 2020). While it can rescale the dataset to a more affordable 
data size by summarizing, other methods can be utilized to enrich the 
clustering section performance (Zhang et al., 1999; Lang and Schubert, 
2022). In health research, it has been used for patient profiling and 
disease detection (Alashwal et al., 2019; Razzak et al., 2020; Shuai, 
2022). The major limitation of this algorithm is that it can only work 
with metric attributes, for example, vector values produced in a 
Euclidean distance, and it is unable to work with categorical attributes 
(Charest and Plante, 2014; Gupta, 2021). 

2.3.5. Affinity Propagation clustering 
The Affinity Propagation (AP) clustering algorithm was firstly 

developed by Frey & Dueck (2007). In this method, each cluster is 
randomly assigned an “exemplar” or sample. These data point subsets 
are iteratively refined until they end up with the best choice by 
comparing similarities via AP clustering which identifies the sample that 
best represents the cluster. Similar to the hierarchical clustering 
approach, it can categorize the objects by determining the similarity 
among them. Moreover, AP addresses the limitation of BIRCH and many 
other prototype-based clustering methods, such as K-means, as it is not 
limited to metrics attributes only (e.g., vector space structure). This 
method has application in clustering genetic codes (Jianjun and Jian
quan, 2018) and identifying functional networks of the brain (Zhang 
et al., 2015). AP can be a suitable approach for health data clustering 
since many similarity measurements that are applied in health appli
cations are not directly related to a clear vectorial description (Bod
enhofer et al., 2011). 

2.3.6. Centroid-based clustering (k-means algorithm) 
Centroid-based clustering is a method of clustering spatial health 

data into non-hierarchical clusters. One of the most applied algorithms 
of this method is k-means, where the given database with ‘n’ objects is 
split into a set of “K" clusters. This unsupervised machine learning al
gorithm starts with a randomly selected first set of centroids as an initial 
point of each cluster. Afterwards, it iteratively optimizes the position of 
the selected center points. This optimization halts when either the 
centroids have stabilized, and no more changes occur, or the defined 
number of iterations has been reached (Santhanam and Padmavathi, 
2014). This algorithm has limited application in health research but has 
been recently used in detecting subpopulations of cells (Wardani et al., 
2019). 

2.3.7. Mini-batch k-means 
As the name indicates, the Mini-Batch k-Means is a version of the 

standard k-means algorithm developed for big data. Instead of iterating 
over the entire dataset, it works with random batches to reduce sto
chastic noise and computational costs (Sculley, 2010). It selects a fixed 
number of data randomly and stores them in small size batches in the 
memory. Then, after selecting a random sample of data, it iteratively 
updates the batches and reduces the convergence time. In the health 
context, for example, gene data can be clustered quickly in a scalable 
and memory-efficient manner (Hicks et al., 2021). One limitation of this 
algorithm is that it can be easily trapped in the local optimal solutions, 
which can negatively impact the performance of clusters (Xiao et al., 

2018). 

2.3.8. Mean shift 
Mean shifts, also known as mode seeking algorithm, is a centroid- 

based algorithm that belongs to the unsupervised learning group of al
gorithms. It has many applications in image processing and computer 
vision. In contrast to the K-Means clustering algorithm, the number of 
clusters in this algorithm does not need to be pre-decided and will be 
automatically specified with respect to the data. It shifts data points 
towards the mode (i.e., cluster centroids are the highest density of 
datapoints in the region) and iteratively assigns the data points to the 
clusters. For any given dataset, this algorithm estimates the underlying 
probability density function by adding the individual kernels (e.g., 
Gaussian) (Tripathi, 2022). With regard to health research, mean shifts 
are widely used in mining medical images to extract association rules 
and hidden information (Cui et al., 2022). Its main limitation is related 
to expensive computational costs. 

2.3.9. Distribution-based clustering (Gaussian mixture models) 
Distribution-based algorithms group data points according to their 

likelihood of belonging to the same probability distribution. Instead of 
proximity (similarity/distance) and composition (density) in other al
gorithms, they consider probability as the clustering metric. The prob
ability of getting included in a cluster is higher for those data points that 
are closer to the cluster center. For example, the gaussian mixture model 
(GMM) is a method of such that assumes that the data have Gaussian 
distributions. Through an interactive optimization process for fitting 
data, it allocates data points to the K number of clusters, which their 
mean, covariance and mixing probability are estimated using the 
Expectation Maximization technique. Distribution-based algorithms 
have wide applications in patient and disease phenotype clustering to 
understand disease pathophysiology, predict treatment response 
(Alhasoun et al., 2018; Loftus et al., 2022). The advantage of this al
gorithm is that it is flexible, and the cluster shape does not need to be 
defined. However, if most data points do not belong to a predefined 
distribution, the algorithm can easily get trapped in an overfitting issue 
(Joshi, 2022). 

2.3.10. Density-based clustering (DBSCAN and OPTICS) 
Density-based clustering method uses areas of high and low data 

points concentration to form clusters that vary in shape and size. The 
extracted clusters have the highest degree of homogeneity as the noise 
and outliers are excluded (Kriegel et al., 2011). This method does not 
require a prior specification of the number of clusters. DBSCAN (Den
sity-based spatial clustering of applications with noise) and OPTICS 
(Ordering points to identify the clustering structure) are the two main 
algorithms of this method. DBSCAN groups contiguous regions in data 
that have the high density to form clusters and use low density points to 
distinguish them from the others. By determining the minimum number 
of data objects in a pre-selected radius, the algorithm determines 
whether the data points fit the cluster. It does the clustering operation by 
calculating the density reachability and density connectivity measures 
(Campello et al., 2020). In the DBSCAN method, only one set of 
hyperparameters (known as global parameters) can be selected to do the 
clustering for different densities. In addressing this issue, OPTICS was 
developed. Instead of explicitly producing a clustering data set, it cal
culates an augmented cluster ordering that includes a wide range of 
parameter settings to prioritize objects with higher density. In addition 
to ordering, for each object, two values of core-distance and a suitable 
reachability-distance will be stored and used in extracting clusters 
(Ankerst et al., 1999). Mining medical images (Celebi et al., 2005), 
phenotype clustering (Loftus et al., 2022), and medical diagnosis (Waqas 
et al., 2022) are only a few examples of density-based clustering method 
applications in the health domain. The limitations of this method are 
related to its low-performance in clustering high-dimensional data 
(Taghikhah et al., 2021) and its failure to deal with neck type datasets 
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with high variabilities of densities (Moreira and Santos, 2005). 

2.3.11. Grid-based clustering (STING and CLIQUE) 
The grid-based clustering method clusters data points using a multi- 

resolution grid data structure and grid cells. This structure is made up of 
a predetermined number of cells containing the object areas. STING (A 
Statistical Information Grid Approach) (Wang et al., 1997) and CLIQUE 
(Clustering In QUEst) (Agrawal et al., 1998, 2005) are two interesting 
algorithms of this method. The STING divides the spatial area into 
rectangular cells that are multi-level. Using a top-down approach, it 
iteratively partitions the high-level layer into several smaller cells in the 
next lower level. The higher level uses low-level statistics and parameter 
values for estimating its parameters and responding to queries. This 
algorithm is easy to parallelize and can be incrementally updated; 
however, it fails to detect any diagonal boundary for the clusters 
(DM365, 2020). CLIQUE is a combination of density- and grid-based 
methods that automatically identifies the high dimensional data 
sub-spaces to improve the clustering of the original space. It divides the 
dimensions into rectangular shaped units that have equal-length in
tervals and do not overlap and then connects the dense units to form a 
cluster within a subspace. This algorithm uses the size of input to scale 
linearly and can efficiently deal with scalability issues with the 
increasing number of dimensions in the data. Nevertheless, as its 
simplicity increases, the clustering accuracy drops. In health research, 
these algorithms are used for handling noisy data when clustering health 
behavior (Rabel et al., 2019) and detecting disease clusters (Neill and 
Moore, 2004). The main advantage of the grid-based clustering method 
is its short processing time. Irrespective of the number of data objects, 
the number of cells in each dimension has the greatest impact on its 
performance. 

2.3.12. Spectral clustering 
Spectral Clustering is an efficient algorithm for converting complex 

multidimensional datasets into low dimensional space through trans
forming the clustering problem into a graph-partitioning problem 
(Thanniru, 2022). Rooted in graph theory, this algorithm treats each 
data point as a graph and considers the edge connecting nodes to 
identify communities of nodes and segregate them for extracting clus
ters. It is a flexible, relatively fast (for small datasets), and 
easy-to-implement algorithm that makes no assumptions about the 
cluster forms and can be used for non-graphical data as well. With 
regards to applications in the health area, it is a powerful and versatile 
technique for medical image analysis (Schultz and Kindlmann, 2013), 
patient profiling (Pellicer-Valero et al., 2020), and care prioritization 
(Roman, 2021). One limitation of spectral clustering is related to its 
assumption about spherical position of data points in a cluster around its 
center, which might not be always relevant. The other shortcoming is 
that for large datasets, this algorithm is computationally expensive and 
inaccurate since computing the convex boundaries increases the 
complexity significantly (Thanniru, 2022). 

Many of the data clustering methods described in this paper have 
only been experimented with micro-level health data e.g. For patient 
profiling, disease detection, medical image analysis, care prioritization, 
health behavior observation, mining medical images, phenotype and 
gene analysis, disease pathophysiology, treatment response prediction, 
functional brain network identification, cell subpopulation detection 
etc. Noteworthy however is the fact that most studies evaluating the 
impact of green and blue space on human health are done at macro- 
level. There is therefore the need to test many of the data clustering 
methods suggested for application within the context of a health data led 
approach by this study for suitability at the macro-level. Nevertheless, 
the inherent spatial autocorrelation effect of the Global Moran’s I 
method and the removal of the spatial autocorrelation effect in the 
Anselin Local Moran’s I method, both methods were still found suitable 
for choosing places with good and poor health outcomes at macro-level 
from spatial health data, hence applicable for a health data led approach 

during the one-year exploratory study. There is however the need to still 
ascertain if the other clustering methods that have only been applied on 
micro-level health data and still have limited spatial health data appli
cations can do the same. 

2.4. Confirmation of associations between green and blue spaces and 
human health outcomes 

After choosing sample sites for assessing associations between health 
outcomes and green and blue spaces, the next step will be to empirically 
assess and confirm associations between them using appropriate statis
tical analysis methods e.g., single regression modelling, analysis of 
variance, correlation analysis etc. While most studies of this nature 
randomly apply these statistical methods, there needs to be improved 
understandings on when and why we use these different methods i.e., in 
what circumstance is one method more appropriate or valuable than the 
other (Lachowycz and Jones, 2013; Foley et al., 2018a). The motivation 
of the statistical method adopted by every study for confirming associ
ations between health outcomes and green and blue spaces is useful for 
reproducibility of studies of this nature. This exploratory study only 
assessed the individual relationships between green and blue indicators 
(independent variables) and good and poor health indicators (depen
dent variables) hence the use of scatter plots and single regression 
modelling. A visual illustration of this fourth step of the methodological 
framework can be found in Fig. 5. 

2.5. Testing for confounding and effect-modifying variables 

After an initial confirmation of relationships between health out
comes and greenspaces/blue spaces, there is also a need to check for the 
potential impacts of confounding (co-determinants of health outcomes) 
and effect-modifying variables (not co-determinants but affects co- 
determinants hence affects health outcomes) on health outcomes. Ex
amples of such variables may include gender, age, race/ethnicity, 
climate/climate change, policy, income level, socio-economic depriva
tion etc. Some of these variables may have more effects on health out
comes than presence, absence or contact with green and blue spaces 
while some have less, this needs to be ascertained in each study or 
context. In some cases, green and blue spaces may even be confounding 
or effect-modifying variables. Statistical methods that could be deployed 
for this include principal component analysis, multiple regression 
modelling etc. Due to the exploratory nature of this study, we applied 
scatter plots and single regression modelling as only individual re
lationships between the confounding variable (i.e., socio-economic 
deprivation) and health outcomes were tested and not joint relation
ships. A diagrammatic representation of this fifth step of the methodo
logical framework can be found in Fig. 6. 

2.6. Dynamic modelling of association between green and blue spaces and 
human health outcomes 

Dynamic modelling methods are developed to analyze the time 
dimension and sequence of actions in physical and non-physical sys
tems. After checking for confounding and effect-modifying variables, 
there is a need to also ascertain if the impacts of green and blue spaces on 
health outcomes have been static or dynamic. To do this, we can conduct 
change analysis, time series or spatio-temporal analysis to see if over 
time, the relationship between green and blue spaces and health out
comes has been dormant, active, continuous, or variable. Time series 
analysis is “an ordered sequence of values of a variable at equally spaced 
time intervals” (NIST, 2012). This method analyses the mechanism un
derlying the dynamics of observed patterns and provides feedback and 
feedforward predictions. Spatio-temporal analysis is an emerging field 
that considers both space and time dimensions of a phenomenon to 
extract the trajectories. In whatever form (i.e., either as change analysis, 
time series or spatio-temporal analysis), facilitating the dynamic 
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modelling of associations between health outcomes and green and blue 
spaces will be highly dependent on the availability of continuous and 
representative high-resolution green and blue space data, as well as 
spatial health data of as many years as possible. A graphical description 
of this sixth step of the methodological framework can be found in Fig. 7. 

3. Preliminary results and discussions 

Preliminary results from the one-year exploratory study applying the 
health data led approach (using national health data of Ireland-self- 
reported health data, mortality data and disability data) suggests 
higher probability of revealing both weak and strong relationships be
tween green and blue space indicators and health outcome indicators, as 
well as between confounding variables and health outcome indicators 
due to the objectivity associated with using clustering algorithms to 
arrive at the sample site choices (Arodudu et al., 2017; Foley et al., 
2018a). These results are explained in (i)-(iii). While previous ap
proaches only seek to show detected positive relationships between 
green and blue space, and human health indicators, the health data led 
approach adopted by this study applied two clustering algorithms 
(Global Moran’s I and Anselin Local Moran’s I Spatial Statistic
s/Clustering algorithms) for sample selection and revealed both weak 
and strong relationships between green and blue space indicators and 
health outcome indicators, as well as between confounding variables (i. 
e. socio-economic deprivation) and health outcome indicators both 
successively (i.e., one after the other-confirming relationship between 
green and blue space and health outcomes first, then followed by 
confirmation of relationships between socio-economic deprivation and 
health outcomes), as well as in parallel to each other (i.e., evaluating the 
relationships between green and blue space and health outcomes, and 
that between socio-economic deprivation and health outcomes at the 
same time). Two indices derived from an Irish context for measuring 
socio-economic deprivation were tested as indicators for the 

confounding variable (i.e., socio-economic deprivation). This includes 
the SAHRU- Small Area Health Research Unit index and the Pobal HP 
(Haase and Pratschke) deprivation index. Similarly, the results of testing 
socio-economic deprivation as a confounding or effect-modifying vari
able also suggests both weak and strong relationships between 
socio-economic deprivation indicators and good and poor health out
comes under different circumstances (Arodudu et al., 2017; Foley et al., 
2018a). The different shades of preliminary results obtained from the 
one-year exploratory study are described and presented in the following 
subsections i-ii; and Figs. 8–10. 

(i)Contrary to assumptions that higher proportion of green and blue 
spaces, and high level of affluence (i.e., low socio-economic deprivation) 
should result in better health outcomes, Fig. 8a suggests conversely that 
there could be close associations between places with high socio- 
economic affluence or low socio-economic deprivation (represented by 
SAHRU deprivation index) and long-term disability (represented by % 
long-term disability); Fig. 8b suggests that places with green spaces 
(represented by green proportion index) may still have relatively high 
self-reported poor health (represented by Kavanagh-Foley index of 
wellbeing); while Fig. 8c suggests that in certain circumstances, there 
might be closer associations between places with blue spaces (repre
sented by blue proportion index) and self-reported poor health (repre
sented by 3-point self-reported health data), especially when there are 
no frequent contacts between green and blue spaces and people in their 
neighborhoods. 

(ii)On the other hand, while Fig. 9a suggests that there might be a 
positive close association between high socio-economic affluence or low 
socio-economic deprivation (represented by SAHRU deprivation index) 
and low mortality rates (represented by life expectancy under the age of 
75), Fig. 9b and 8a suggests that there could still be a negative rela
tionship between high socio-economic affluence or low socio-economic 
deprivation (represented by another deprivation index-Pobal HP 
deprivation index) and another health indicator (long-term disability as 

Fig. 8. Different relationships observed between green and blue spaces and human health, as well as between socio-economic deprivation/affluence and human 
health (Foley et al., 2018a). 
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represented by % long-term disability). In contrast to Fig. 8c which re
veals close associations between blue space availability (represented by 
blue proportion index) and poor health indicator (represented by 3- 
point self-reported health data), Fig. 9c on the other hand confirms 

close associations between blue space availability (represented by blue 
proportion index) and low mortality rates (represented by life expec
tancy under the age of 75). Hence the difference in the impact of blue 
spaces in Fig. 8c and 9c may have been the level of contact between blue 

Fig. 9. Comparatively different relationships observed between green and blue spaces and human health, as well as between socio-economic deprivation/affluence 
and human health (Foley et al., 2018a). 

Fig. 10. Conflicting associations between socio-economic deprivation/affluence and health (Foley et al., 2018a).  
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spaces and the people living in their surrounding neighborhoods. This 
was however not further investigated within the framework of this one- 
year exploratory study. 

(iii)More specifically and in contrast to results in Fig. 8a, 9b and 
Fig. 10a found weak associations between high socio-economic afflu
ence or low socio-economic deprivation (represented by SAHRU depri
vation index) and long-term disability (represented by % long-term 
disability) at a different instance. This also contrast with results in 
Fig. 10b and c (but aligns with Fig. 8a and 9b) which indicates strong 
associations between high socio-economic affluence or low socio- 
economic deprivation and long-term disability after testing the re
lationships of two different socio-economic deprivation indices (SAHRU 
and Pobal HP deprivation indices) against the same health indicator 
(represented by % long-term disability) at different instances. In reality, 
the strong association of people with high socio-economic affluence or 
low socio-economic deprivation with long-term disability in these in
stances (Fig. 8a, 9b and 10b and 10c) might be as a result of deliberate 
government residency plan/policy, location or settlement of people with 
long-term disability (e.g., old people, retirees, refugees from war-torn 
countries etc.) in the same areas of jurisdiction with people of higher 
socio-economic influence in the society, hence the observed pattern. 
Fig. 10d (in contrast to Fig. 9a) also found weak associations between 
socio-economic deprivation (represented by SAHRU deprivation index) 
and long term-disability (represented by % long-term disability). 

Readers can find a full set of complete results of the study as pre
sented to and subsequently published by the funders, the Environmental 
Protection Agency of Ireland (EPA) in its EPA Research Report No. 264. 
https://www.epa.ie/publications/research/environment–health 
/Research_Report_264.pdf(epa.ie). 

4. Conclusions and recommendations 

This paper synthesized lessons learnt from the one-year exploration 
study applying the health data-led approach and shows a few results as a 
proof-of-the-concept. The methodology and results of the one-year case 
study are documented by Foley et al. (2018a). The Global Moran’s I 
Spatial Statistics/Clustering algorithm, and the Anselin Local Moran’s I 
Spatial Statistics/Clustering algorithm (both from the ArcGIS software) 
proved valuable tools in identifying places with good and poor health 
outcomes, as well as assessing relationships between green and blue 
spaces and health outcomes. Unlike previous studies that only seek to 
reveal detected positive relationships between green and blue space, and 
human health indicators, the objectivity associated with using the two 
clustering algorithm (namely Global Moran’s I and Anselin Local Mor
an’s I Spatial Statistics/Clustering algorithm) helped to reveal both weak 
and strong relationships between green and blue space indicators and 
health outcome indicators, as well as between confounding variables (i. 
e., socio-economic deprivation) and health outcome indicators using 
only scatter plots and single regression modelling methods. The choice 
of sample sites/locations by the algorithms can be a pointer to the po
tential causes or determinants of good and poor health because values of 
the independent variables (i.e., green and blue space indicators and 
confounder variables) can easily be associated with values of dependent 
variables (indicators of good and poor health outcomes) even before 
extensive confirmation of relationships. This is the reason, confirmation 
of relationships between green and blue space indicator and health 
outcome indicators, as well as between confounder variable indicator (i. 
e., socio-economic deprivation) and health outcome indicators under 
this exploratory study was done using only scatter plots and single 
regression modelling methods. At the initial exploratory stage of the 
analysis, the scatter plot and single regression modelling methods 
already revealed both weak and strong relationships between health 
outcomes and green and blue space indicators on the one hand, and 
between health outcomes and confounding variable indicators (i.e., 
socio-economic deprivation) on the other hand. The study therefore did 
not need an extra procedure to confirm the presence or absence of 

confounding variables as one had been identified already (socio-eco
nomic deprivation). That said, the use of multiple regression modeling, 
principal component analysis and other more advanced techniques will 
still be needed to further quantify and/or compare the impact or role of 
green and blue space indicators to those of other confounding variable 
indicators in determining good or poor health outcomes. Due to the 
effectiveness of the two clustering algorithms/methods deployed by this 
study, the testing of other machine and/or deep learning clustering al
gorithms and methods (e.g., connectivity-based, or hierarchical, BIRCH, 
Affinity Propagation, Centroid based, Distribution based, DBSCAN, 
OPTICS, STING and CLIQUE clustering methods) is highly recom
mended by this study to determine and compare their suitability for this 
same purpose. 

Also noteworthy is the fact that data-led or data-first principles and 
procedures recommended by this paper, which utilizes observed/char
acterized data and data clustering algorithms/methods for choosing 
sample sites for investigation of relationships, is not only valuable for 
assessing/confirming associations between good/poor health outcomes 
and green and blue spaces. It can also be applied for identifying places 
with good or poor conditions of living (e.g., in terms of food access, 
energy access, sustainable income, poverty levels, shelter access etc.), 
before confirming the impact of race, ethnicity, institutional exclusion, 
gentrification etc. In driving such living conditions/outcomes. This is 
because previous research of this nature often associates poor conditions 
of living with race, ethnicity, institutional exclusion, gentrification etc. 
by default (Bullard, 2001; Gardner-Frolick et al., 2022). Such studies 
need an initial evaluation and/characterization of living conditions to 
prove and substantiate claims of poor living conditions (Wing, 2005; 
Gonzales, 2022). This will help provide better intelligence information 
for environmental planning, especially with regards to prioritizing areas 
most badly affected by poor living conditions to ensure environmental 
justice and equity (Bullard, 2003; Martin, 2021). This is important for 
distribution of climate mitigation/adaptation projects, greenspace, 
food, renewable energy etc. A data-led or data-first approach or para
digm can also assist in answering specific space and time related ques
tions within the context of sustainability assessments. Previous 
sustainability assessment often concentrates on assessing the social, 
economic, and environmental impacts of products, processes, projects, 
plans and policies in-situ and at mid and/or end points without 
measuring the extent of problems that has been created over space and 
time (Martuzzi et al., 2010; Menton et al., 2020; Taghikhah et al., 
2022a). Within sustainability assessment contexts, the data-led or 
data-first paradigm suggested by this study can help confirm relation
ships between sustainability challenges and their driving or causative 
factors over space and time on the one hand, while also more accurately 
assist in defining the local, regional or national sustainability aspirations 
and/or sustainable development goals towards remedying them on the 
other hand (Song et al., 2020; Calderón-Argelich et al., 2021; Taghikhah 
et al., 2022b). The data-led or data-first paradigm is therefore valuable, 
transferable, effective, and applicable for providing relevant informa
tion for solving different sustainability problems, especially within the 
emerging fields of sustainability assessments/analysis, environmental 
sustainability, climate change mitigation and adaptation, climate jus
tice, energy justice, food justice, environmental justice and urban 
inequality as described above. 
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