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Tidal barrage operation optimization using
moment-based control

Agustina Skiarski, Nicolás Faedo, and John V. Ringwood

Abstract—As decarbonization of energy systems be-
comes imperative and the deployment of intermittent
renewables increases, the operation of electrical grids be-
comes challenging. In this sense, tidal barrage schemes can
supply clean and predictable energy with more flexibility
than the more traditional wind and solar plants. However,
the high infrastructure costs associated with tidal barrage
plants, together with ecological and environmental issues,
hinder their deployment. An optimal operation is key to
maximise energy output and assure project feasibility.

Recently, Ringwood and Faedo [1] introduced a novel
approach to tidal barrage control by applying moment-
based optimal control, previously used to solve wave en-
ergy control problems, with promising results. The model
consists of a two-way tidal barrage scheme, where an
analogy is made between latching/declutching algorithms
applied in WEC control and holding/sluicing from tidal
barrage operation. This preliminary study has a number
of simplifying assumptions, leaving a pathway to further
examine the optimal control problem.

This paper extends the results of the analysis from
[1] by adding enhancements to the model. Minimum
and maximum head values are added to account for the
turbine’s operational limits. The basin is modelled such
that the surface area is a polynomial function of the water
level, instead of assuming a constant surface area, which
will affect the operational head of the optimal solution.
Furthermore, a weighted cost function is introduced to
penalise the parasitic energy consumption of the sluice
gates, with an analysis of the impact of different weights.

Index Terms—Marine renewable energy, tidal barrages,
wave energy, optimal control.

I. INTRODUCTION

THERE is an increasing concern worldwide regard-
ing climate change and reducing CO2 emissions.

In an attempt to reduce the carbon intensity of en-
ergy systems, some renewable technologies, such as
wind and solar, have rapidly deployed during the last
decades. Among the different renewable energies avail-
able, tidal range energy has the advantage of utilizing
the tidal resource, which is highly predictable and en-
ables more flexible operation compared to others, given
its inherent storage characteristics. There are several
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operating plants around the globe, the oldest one being
La Rance, in France, which has been operating for over
50 years [2].

A tidal barrage scheme consists of an embankment
bounding a coastal landform, such as an estuary or
bay, which creates an artificial reservoir separated from
the open sea. As the tide changes, a hydraulic head
is created between the reservoir and the sea. Turbines
are placed along the embankment so that this poten-
tial energy can be transformed into mechanical (and,
subsequently, electrical) energy when the basin is filled
or emptied. The embankment has sluice gates as well
to achieve a desired head and increase the potential
energy of the water.

However, one of the major drawbacks of tidal bar-
rage schemes is the high investment cost that the dam
requires, which results in a high Levelized Cost of
Electricity (LCoE). In order for tidal barrages to be
economically competitive, it is key to optimise their
operation so as to maximise the energy output. Several
strategies have been developed for the control of tidal
barrages. Fixed operation schemes are commonly im-
plemented, where the control variables (such as start-
ing head, finishing head, holding time, among others)
are predefined and remain constant [3]–[7]. Another
approach is to use the duration of each generation,
holding and sluicing period or the turbine flow as
control variables, in order to adapt the operation to
the change in tidal levels, by means of gradient-based
optimization [8]–[10], genetic algorithms [11], [12] or
model predictive control [13].

This paper uses moment-based theory as a mathe-
matical framework for solving the energy-maximizing
optimal control problem (OCP) for tidal barrage
schemes. Moment-based analysis was introduced in
[14] as a model reduction tool for linear and nonlinear
systems, and first used for solving an optimal control
problem in [15] and [16], specifically for wave energy
applications. More recently, [1] used these advances
in wave energy control to solve the OCP relating to
tidal barrage operation, with a number of simplifying
assumptions. In this paper, we extend the results of [1]
and add enhancements to the barrage model.

The remainder of this paper is organised as follows:
Section II shows the equations used to describe the
operation of a tidal barrage plant, and presents the two
study cases used for the Matlab simulations, both from
the Cumberland Basin in the Bay of Fundy, Canada.
Section III gives a brief outline of the moment-based
framework and describes the optimal control problem
in terms of a moment-based nonlinear program. Sec-
tion IV presents the results of the simulations from both
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study cases, and the conclusions are outlined in Section
V.

II. TIDAL BARRAGE MODEL

In a tidal barrage plant, electrical energy is gener-
ated when the basin is filled or emptied through the
turbines located in the embankment. The plant can
operate on ebb (i.e. energy is generated when the basin
is emptied) or on flood (when the basin is filling). If the
turbines are reversible, the operation can be two-way
(generating both on ebb and flood). The turbines can
also operate as pumps to increase the operating head,
with a higher overall energy yield. The tidal barrage
scheme modelled in this paper is capable of two-way
generation, though constraints can be used to simulate
a one-way (ebb or flood) generation.

A. Governing equations

As previously mentioned, energy generation in tidal
barrages is based on the potential energy of the water
given by a hydraulic head:

H(t) = ni(t)− no(t), (1)

where ni(t) ∈ R is the inner basin level and no(t) ∈ R is
the open sea level. The sea level can be represented as
a harmonic function, where each sinusoid corresponds
to a particular temporal tidal constituent. In this paper,
the tide is represented as a monochromatic function of
the form:

no(t) = C +At cos(ωtt), (2)

where At is the tidal amplitude, ωt = 2π
Tt

is the
frequency corresponding to the lunar semidiurnal tidal
period Tt, and C is a constant such that the water level
is referenced to chart datum. For this analysis, other
semidiurnal tidal frequencies, as well as the diurnal
and lower tidal frequencies, are omitted for clarity of
illustration. However, such components can be natu-
rally captured within the control scheme presented.

Assuming a 0D model [17], the rate of change in the
basin inner level is proportional to the net water flow
that enters and leaves the basin:

Ab(ni(t))ṅi(t) = −Qt(t)−Qs(t), (3)

where Ab(ni(t)) ∈ R is the wetted surface area inside
the basin, Qt(t) ∈ R is the flow through the turbines
and Qs(t) ∈ R is the flow through the sluice gates. Note
that the area Ab is a function of the inner basin level to
account for the irregular topology of the estuary where
the barrage is located.

The flow through the sluice gates is defined by:

Qs(t) = Cdssign(H(t))
√
2g|H(t)|As(t), (4)

where Cds is the coefficient of discharge for the sluice
gates. The mechanical power generated by the turbine
is:

Pt(t) = ρgη(H(t))H(t)Qt(t), (5)
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Fig. 1. Efficiency function used to define the minimum and maxi-
mum operational heads.

where ρ is the water density, g is the gravitational
acceleration and η(H(t)) is the efficiency of the tur-
bine, which is modelled in this paper as a non-linear
function of the head. The extracted energy (neglecting
other losses) over an interval Ω = [t1, t2] ⊂ R+ is:

Et(t) = ρg

∫
Ω

η(H(t))H(t)Qt(t)dt, (6)

which is the function that we want to maximise in the
optimal control problem.

B. Study case: Cumberland Basin

The Cumberland Basin is located in the Bay of
Fundy, Canada, where the tidal range resource is the
second largest worldwide [18]. In order to test the
performance of the model, two study cases of the
Cumberland Basin are presented, using the parameters
from the study in [19].

1) Case 1: The aim in Case 1 is to compare the results
from the optimization model presented in this paper
with the results from [19]. Table I shows the parameters
used in the simulations, where the following assump-
tions hold:

• The basin area Ab is constant (i.e. vertical walls),
• no electrical losses are modelled,
• the tide is sinusoidal and with constant amplitude

(monochromatic).
The maximum head hmax is selected so that the

power never exceeds the installed capacity of 1085 MW
[19]. In order to implement minimum and maximum
head limits for the turbine operation, the efficiency is
modelled as a sigmoid function of the operating head
η(H), such that the efficiency approaches unity when
the operating head is between the minimum and maxi-
mum limits, and zero otherwise, as seen in Fig. 1. Note
that the purpose of modelling the turbine efficiency
is to establish the limits where the turbine operates,
rather than modelling the real efficiency curve.

2) Case 2: In a basin, the irregular topology of the
site causes the wetted surface area to vary with the wa-
ter level. Case 2 includes this variation as Ab(ni), which
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TABLE I
PARAMETERS FOR THE BASE CASE, ADOPTED FROM [19]

Parameter Value Unit

Basin surface area Ab 86 km2

Tidal amplitude At 5 m
Tidal period Tt 12.42 h
Sluice discharge Cds 1 -
Maximum basin level Nmax

i 10 m
Maximum turbine flow Qmax

t 24290 m3/s
Maximum gate area As 8387 m2

Minimum head hmin 2.3 m
Maximum head hmax 8 m
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Fig. 2. Wetted surface area function of inner basin level used in Case
2 for modelling the basin topology.

was neglected in Case 1, where vertical basin walls
were assumed. As there is no detailed parametrization
of the topology of the Cumberland Basin as far as the
authors know, a generic polynomic function is used,
in order to show the capabilities of the model. [19]
suggests that the topology of the Cumberland Basin
is such that the surface area at high water is about
three times larger than at low water. Furthermore,
literature suggests that, in many cases, the basin profile
has a concave shape [6], [10], [20], [21]. In this sense,
the proposed basin area is deemed to be a quadratic
function of the inner basin level as shown in Fig. 2.

Moreover, a cost term is added to the objective
function in respect of sluice gate operation to penalise
power consumption of the gate servomotors. This en-
sures that an optimal solution is achieved without
incurring excessive parasitic energy use. By use of the
Stone-Weierstrass theorem [22], the energy required to
move the gates is modelled as a polynomial (quadratic)
weighted function of the velocity of the gates. As-
suming that the sluice gates have a rectangular shape,
the change in sluice gate area Ȧs is proportional to
the sluice gate velocity. Therefore, the weighted cost
function is formulated in terms of Ȧs

2
.

III. OPTIMAL CONTROL PROBLEM

The aim of the proposed optimal control problem
(OCP) is to maximise the energy generated by control-

ling the pair (Qt, As) with a given input outside tidal
height variation no

1. Hence, using the formulation in
Section II, the constrained OCP can be defined in terms
of the problem P :

(P ) :

(Q
opt
t , Aopt

s ) = arg max
(Qt,As)

ρg

∫
Ω

η(ni − no)(ni − no)Qtdt,

subject to:

Ab(ni)ṅi = −Qt − Cds sign(ni − no)
√
2g |ni − no|As,

0 ≤ ni ≤ Nmax
i (basin water level limits),

|Qt| ≤ Qmax
t (turbine flow limits),

0 ≤ As ≤ Amax
s (sluice gate opening limits).

(7)

A. Moment-based control
Here, we introduce the basic concepts behind the

moment-based representation as developed in [16].
First, we consider a nonlinear single-input-single-
output continuous-time system described, for t ∈ R+,
by the set of equations

ẋ = f(x, u)

y = h(x),
(8)

with x(t) ∈ Rn, u(t) ∈ R and y(t) ∈ R, and f :
Rn × R → Rn and h : Rn → R the state transition and
output mappings, respectively. Now, we consider that
the input u can be described by the following signal
generator:

θ̇ = Sθ

u = Lθ,
(9)

where θ(t) ∈ Rν , S ∈ Rν×ν and LT ∈ Rν . The resulting
interconnected system has the form of

θ̇ = Sθ

ẋ = f(x, Lθ)

y = h(x).

(10)

Suppose that the initial condition of the signal gen-
erator θ(0) is such that the pair (S, θ(0)) is reachable.
Then, there exists a mapping π defined by

∂π(θ)

∂θ
Sθ = f(π(θ), Lθ), (11)

such that the moment of the system is h ◦ π. In the
case that the output is equal to the state of the system,
i.e. the mapping h is the identity then, for any fixed
trajectory θ(t), the steady-state response of the system
is yss(t) = π(θ(t)) [1], [16].

B. OCP formulation in the moment-based framework
Consider the linear signal generator G for t ∈ R+

defined by

G :

{
θ̇ = Sθ,

no = Lno
θ,

S = 0⊕
[

0 ωt

−ωt 0

]
, (12)

1From this point forward, the time dependence of the variables is
omitted for the sake of simplicity.
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with an initial condition θ(0) ∈ R3, such that the
pair (S, θ(0)) is reachable, and LT

no
∈ R3. The signal

generator G maps the output vector no, i.e. the outside
tidal level, onto X = span{1, cos(ωtt), sin(ωtt)}, which
is consistent with the description given by (2).

Note that the pair (Qt, As), which are the controlled
variables, cannot be accurately described by G as they
might not belong to the subspace X . Therefore, we
define an extended signal generator G such as:

G :


θ̇ = Sθ,

Qt = LQt
θ,

As = LAs
θ,

no = Lnoθ,

S = S⊕

(
d⊕

p=2

[
0 pωt

−pωt 0

])
, (13)

where d determines the order of the signal generator,
ν = 2d+1, and the set of vectors {LQt

T
, LAs

T
, Lno

T} ⊂
Rν . Then, the infinite-dimensional characterization of
the pair (Qt, As) can be described with a finite-
dimensional map, where the new control variables are
(LQt

, LAs
).

The state transition mapping f(ni, no) is defined by
the state constraint in (7). As the state variable ni is the
output of the system, the mapping h(ni) in this case is
the identity. The steady-state output can therefore be
approximated, for a sufficiently large ν, in terms of:

nss
i ≈ π(θ) ≈ Lni

θ. (14)

To compute the solution for (14), a Galerkin-like
approach is taken to solve the state constraint in system
(7). By noting that:

ṅi = Lni θ̇ = LniSθ, (15)

a residual map R : R+ → R is defined by replacing
{no, ni, Qt, As} in terms of the signal generator G as
follows:

R :=
(
Ab(Lni

θ)SLni
+ LQt

)
θ

+

(
Cds sign((Lni

− Lno
)θ)
√
2g
∣∣(Lni

− Lno
)θ
∣∣)LAs

θ.

(16)

In order to minimise the residual map R, we require
it to be orthogonal to the function space spanned by
{θi}νi=1, that is:

〈
R, θ

T
〉
= 0 → R(Lno , Lni , LQt , LAs) = 0. (17)

With the purpose of enforcing the state and input
inequality constraints in a computationally efficient
way, a direct time collocation is applied at a finite set
of Nc ∈ N instants T = {ti}Nc

i=1 ⊂ Ω [1].
As mentioned in Section II-B, the cost term on the

sluice gate operation from Case 2 is implemented as
a quadratic function C : R+ → R continuous over the
interval [0, Amax

s ] ⊂ R+:

C = kWgȦs
2
= kWg(LAs

θ̇)2

= kWg(LAs
Sθ)(LAs

Sθ)T,
(18)

where Wg ∈ R+ is a non-dimensional weighting coef-
ficient and k ∈ R+ is used to scale the quadratic term

so that C is the same order of magnitude as the output
energy.

If we consider the efficiency as a function of the
head η(Lniθ − Lnoθ), the OCP can now be described
in terms of the following moment-based nonlinear
program (NP):

(̃P ) :

(LQt

opt
, LAs

opt
) = arg max

(LQt ,LAs )[
ρg

∫
Ω

η(Lni
θ − Lno

θ)(Lni
θ − Lno

θ)(LQt
θ)dt− C

]
,

subject to:

R(Lno , Lni , LQt , LAs) = 0,

Lni
Ani

≤ Bni
,

LQtAQt ≤ BQt ,

LAs
AAs

≤ BAs
,

(19)

where the pairs of matrices (Ani ,Bni), (AQt ,BQt), and
(AAs

,BAs
) correspond to the collocation of the set of

inequality constraints [23].

IV. RESULTS

The equations developed in Section III are pro-
grammed in Matlab and the optimization problem
is solved with the nonlinear programming solver
fmincon. The interval Ω consists of two tidal periods
of the lunar semi-diurnal constituent M2, and the time
collocation method is implemented with the set T
uniformly distributed on Ω and a step size of 0.1 h.

Regarding transcription of the OCP problem P into a
finite-dimensional moment-based NP P̃ , the harmonic
order of the signal generator d is chosen by analysing
the resulting energy output for d = [1, 40]. Fig. 3 shows
the energy E yielded for each value of d normalised by
the energy corresponding to d = 40 (Ed=40). It can be
seen that, for values of d larger than 10, the energy E
is above 98% of Ed=40, so the solution for those cases
can be practically considered to be optimal. The chosen
harmonic order is d = 20, which corresponds to 99.6%
of Ed=40, and presents a less oscillatory response than
with a lower number of harmonics.

A. Case 1
This study case aims to compare the results of the

model with those seen in [19]. To this end, operation is
assumed to be one-way (ebb) generation. Fig. 4 and
5 show the resulting operation for two lunar semi-
diurnal cycles. The basin level stays between 7 m
and 8.7 m, which is consistent with ebb-generation
operation, where the water is kept in the upper half
of the basin. The maximum power is 900 MW, and the
annual generated energy yielded by the model is 3.4
TWh, which coincides with the value in [19].

To illustrate the performance of the model without
constraining the plant operation to one-way genera-
tion, Fig. 6 shows that the optimal solution corresponds
to a two-way generation scheme. With the same peak
power of 900 MW, the overall energy output is 3.9
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Fig. 3. Analysis of energy output for the set of values d = [1, 40]
as a fraction of the energy corresponding to harmonic order d = 40
(Ed=40).
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Fig. 4. Optimised operation with one-way generation. Top: inner
basin level ni (solid line), and input sea water level no (dashed line).
Bottom: gate area operation As (solid line), maximum gate opening
(red horizontal line) and instant power output (dotted line).
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Fig. 5. Optimised turbine flow Qt and turbine flow limits (horizontal
lines) with one-way generation.
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Fig. 6. Optimised operation with two-way generation.

TWh, almost 15% above the energy for one-way gen-
eration.

From the two-way generation results, it can be seen
that the operation of the turbines and sluice gates
adopts a ’bang-bang’ like behaviour, which can be
explained by the large basin area. The larger the basin,
the slower the inner water level changes, and so the
turbines and sluice gates operate at their maximum
flow capacity. If the basin area were smaller, the sluic-
ing requirements would be smaller in order to maintain
the desired head. This also explains the fact that the
inner basin levels never reach the limits, as there is not
enough flow to completely empty or fill the basin.

B. Case 2
As detailed in Section II-B, Case 2 adds two features

to the model: function for the basin topology, as shown
in Fig. 2, and a cost term to account for the sluice
gate operation. The weighting coefficients from the cost
function Wg ∈ R+ are defined on the interval [0, 500].
An example of the resulting operation is shown in Fig.
7 with a weight Wg = 250. Due to the augmented
weighted cost function, the operation of the sluice
gates is smoother than that seen for Case 1. On the
other hand, the operating basin levels are slightly lower
compared to Fig. 6, which can be explained by the
basin profile variations. According to Fig. 2, the basin
area at lower water levels is smaller and thus the basin
can be filled and emptied faster, which allows for more
flexibility to achieve a desired head. However, because
the basin area remains relatively large, the impact on
the overall operation is small.

In Fig. 8, the resulting energy output and mean
squared velocities for different values of Wg are shown.
The mean squared velocity of the sluice gates, v2, for
the interval Ω is shown as a fraction of the value
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Fig. 7. Optimization results for Case 2, with a weight coefficient
Wg = 250.

corresponding to Wg = 0, v2Wg=0. Similarly, the turbine
energy E on the horizontal axis of Fig. 8 is shown as a
fraction of the energy corresponding to Wg = 0, EWg=0.

It can be seen that the sluice gate velocity decreases
rapidly for low values of Wg . That is, with a small
penalty in the sluice gate operation, the velocity can
be considerably reduced without incurring excessive
losses in plant performance. Note that, for the selected
values of Wg , the mean squared velocity decreases up
to 45% while the energy penalised is below 1%, which
is considered negligible. If the OCP is defined with
a higher order signal generator (i.e. more harmonics,
leading to a more faithful representation), the impact
on energy will increase due to the increase in power
from the optimised solution.

To further illustrate this point, Fig. 9 shows the
change in sluice gate area for different values of
the weight Wg , computed in terms of the finite-
dimensional moment-based NP as LAsSθ, which is
proportional to the instantaneous sluice gate velocity
v. When opening the gates, the peak value decreases to
almost half by employing a cost function with weight
Wg = 250, while roughly doubling the opening time.
On the other hand, the opening of the gates has a
smaller variation when further increasing the weight
to Wg = 500.
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Fig. 8. Energy generation and mean squared velocity of the sluice
gates for Wg = [0, 500], both as a fraction of the values with Wg = 0.
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Fig. 9. Variation in sluice gate area for weighting coefficients Wg = 0
(blue), Wg = 250 and Wg = 500.

V. CONCLUSION

In this paper, moment-based control is used to op-
timise the operation of a tidal barrage plant in the
Cumberland Basin, Canada. Starting from the model
developed in [1], we add minimum and maximum
operational head limits to the turbine. By forcing one-
way generation, the results of the simulation can be
shown to coincide with those from [19].

Furthermore, a quadratic function for the basin
topology, together with a weighted cost function for
gate operation, were added to the model. The basin
area variation results in a lower operating basin level,
but the operation is still similar to that of the case with
vertical walls due to the relatively large dimensions of
the estuary.

The weighted cost function gives smoother sluice
gate operation with a modest reduction in the turbine
energy output. However, it was seen that the decrease
in energy is less than 1% compared to the simulation
with no cost function. On the other hand, the gate
velocity decreases faster with low values of weight Wg ,
meaning that a low penalty can significantly reduce
the gate velocity with little loss in energy. Adding
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this penalty ensures that the optimised operation will
not over-utilise the servomotor of the sluice gates and
increase parasitic energy use. Qualitatively, a decrease
in velocity and a smoother operation could also result
in lower loads on the structure of the gates, as the
water would have a quasi-hydrostatic behaviour, and
therefore have an impact on maintenance costs.

There are several other aspects that can be improved
in order to make the model more realistic. Future work
could involve modelling a more accurate efficiency
curve that represents the performance of the turbine,
based on turbine Hill charts. Another topic to consider
is the impact of the barrage on local hydrodynam-
ics, which in this paper are neglected and can be
modelled numerically using Navier-Stokes equations.
Furthermore, the tidal excitation force could be more
accurately modelled by adding more tidal constituents
and simulating a complete tidal cycle.
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