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Abstract

Predictability is the result of both externally forced and internally generated vari-
ability on time scales such as seasonal, annual, and decadal (Meehl et al., 2014).
There have been improvements in the field of global decadal prediction. This is in
terms of a better understanding of the interactions that occur in our world and in
the improvement of the models that are being used. While the consensus is that
the models are accurate on a global scale, there is limited confidence in prediction
skill on a regional scale. There have been studies conducted on the model com-
ponents for target areas with some success. This is one of the motivators for this
thesis, which investigates the benefits of developing targeted decadal predictions
for stakeholder needs. The second motivator is how these predictions can be tai-
lored to stakeholder needs. It will explore the predictability of the North Atlantic
Ocean on a decadal time scale for oceanographic properties like ocean tempera-
ture, sea salinity, the subpolar gyre (SPG), and Atlantic Multidecadal Variability
(AMV). Making this information usable on a regional scale for Ireland would allow
tailoring for different applications such as fisheries. The fishery sector is of vast
importance to the Irish economy. The ability to predict changes in future stock
will support adaptation and fish stock management. The different stages of fish
development are dependent on oceanic variables like temperature and salinity so
decadal prediction skill for those variables would allow us to make statements on
potential changes in fish stock for a species such as Mackerel.
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CHAPTER 1
Application of tailored decadal
predictions for Eastern North

Atlantic Ocean

1.1 Introduction
The impacts of climate change have become clearer over the last few decades.
Changes in the atmospheric mode of the North Atlantic Oscillation (NAO) can
influence temperature on land resulting in warmer summers, in wintertime there
is an increase in precipitation and storminess (Curtis et al., 2016; Fan et al., 2016;
Dobrynin et al., 2018). There have been observations of warming sea surface tem-
peratures (SST) (Brown et al., 2016) with a possibility of previously cool waters
warming. There are a range of goods and services that humans obtain from the
ocean; from economic (the fishery industry) (Payne et al., 2021) to recreational
(Halpern et al., 2012). Climate variability strongly influences fish stocks with
changes in productivity resulting in major consequences for socio-economic sys-
tems that rely on these resources (Koul et al., 2021). These include a shift in
species abundance, distribution, and productivity, resulting in a complex and un-
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even distribution of the fish stock that hurts coastal communities (Mason et al.,
2021; Payne et al., 2021; Sandø et al., 2020). With an increasing threat of climate
change, expanding on the understanding of the impact of climate variability has
become more central (Koul et al., 2021).

Climate variability on inter-annual to decadal timescales can alter the size of on-
going long-term climate change (Koul et al., 2021). Human society and natural
ecosystems are vulnerable to climate variability and change (Smith et al., 2019).
Taking account of these changes in management systems can improve outcomes
for fishery catches and in turn profits under most climate scenarios (Mason et al.,
2021). The inclusion of climate information into the modelling of exploitable
resources, aids in the understanding of ecological processes but also forecasts fu-
ture states of the system on these timescales (Koul et al., 2021). A key aspect
of climate-adaptive management is the inclusion of forecasting and incorporating
future climate scenarios into management decisions (Mason et al., 2021). How-
ever, management systems can be restrictive to fishery companies that have access
to the scientific and technical ability to adapt to climate change (Mason et al.,
2021). Few sectors can make direct use from information from predictions besides
scientists and policymakers (Dunstone et al., 2022).

1.2 What is prediction?
To start to answer this we first need to know the difference between prediction and
predictability. Prediction is used for a forecast or projection. While predictability
is the result of both externally forced and internally generated variability (Meehl
et al., 2014). It is part of a physical and or mathematical system that characterises
“its ability to be predicted” (Meehl et al., 2014; Boer et al., 2016). A variety of
prediction systems have been around for a long time. This includes weather pre-
dictions and climate projections on a scale of up to 100 years. A new development
is predictions of a few months to a few years ahead, called seasonal and decadal
predictions. There are a variety of different designs of decadal prediction systems,
they consist of either multi-member single-model suites or based on multi-model
suites (Schuster et al., 2019). Skill is defined as the comparison of the obser-
vational data with the initialised hindcast or uninitialised historical simulations
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over a common period (Sgubin et al., 2021). Initialised hindcasts are retrospective
predictions initialised at a given past climate state (Sgubin et al., 2021).

Decadal predictions provide key information for a variety of sectors including agri-
culture, water management and others (Shaffrey et al., 2017; Mariotti et al., 2020).
It is an active research field that is growing yearly with varying distinct types of
models with a variety of applications that are socially relevant to suitable strate-
gies for adaption (Volpi et al., 2017; Schuster et al., 2019). It makes a bridge
between short seasonal to seasonal predictions and climate projections with a fo-
cus on annual, multi-annual to decadal time scales (Boer et al., 2016; Volpi et al.,
2017). It should be noted that while there has been an increase in the demand
for long term predictions. Challenges still exist in the development of skilful and
statistically reliable climate predictions (Shaffrey et al., 2017).

These short time scales can range from weather predictions to monthly or seasonal
predictions, the long-term time scales are climate change projections. Figure 1.1 is
one such example of the breakdown of the different types of prediction scales up to
climate projections. The weather predictions start with a first value problem and
use these to predict the following day, week, month, and season. For long-term
projections, these are mainly climate change focused, where they look beyond a
decade to a century, and these are mainly forced boundary-value problem-based.
These two regimes overlap for seasonal to decadal predictions, which incorporate
time scales of a few months to multiple years. Incorporating both aspects of the
other two-time scales to generate robust predictions. Seasonal to decadal predic-
tions is an area that has so much potential and applications. There are a vast
number of different prediction systems that exist and within each model, there are
numerous different kinds of components that have various interactions with each
other. The goal of these models is to attempt to replicate the state of the real-
world environment, these are called assimilation simulations. They also generate
prediction systems that are based on whether they are initialised or uninitialised,
with the aim being that the initialisation generates an improvement in prediction
skills. The model that will be used throughout this thesis is the Max Planck Insti-
tute earth system model (MPI-ESM-LR). In Chapter 4 the different components
of the MPI-ESM and how they interact with each other will be explored.
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Figure 1.1: Seasonal-to-decadal climate predictions (highlighted by the section
between the grey dashed lines) proceed from an initial condition problem at shorter
timescales to a forced boundary-value problem at longer timescales (from (Boer
et al., 2016) Figure 1).

The research will be divided into three parts, exploration into the understanding
of the physics of the ocean, the statistics post-processing sub-sampling to improve
prediction and the application of these predictions to fisheries. The first stage of
this research will be understanding Atlantic variability and its connection to the
Irish seas. This is the physical part that will identify predictors from the North
Atlantic Ocean for the Irish climate. Mechanisms are identified to be applied as
constraints within statistical post-processing including Atlantic sea surface tem-
perature variations, AMV, and subpolar gyre variability, SPG. This will allow for
advancing knowledge on Irish SST change and variability in an Atlantic context
and focus the research further on the sub-sequential stages. I will investigate its
effect on a selection of climate modes such as the AMV, and SPG, on ocean vari-
ables SST, and sea SSS at depth. This will begin the second stage of the statistical
analysis to improve prediction. Including AMV and SPG in the improvement of
the prediction, we see a positive effect on the prediction of temperature and salin-
ity at depth. While there have not been many studies conducted that included the
AMV as a mode in prediction systems. The investigation into the improvement
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of decadal prediction skills in the North Atlantic Ocean has begun in terms of
exploring the impact the SPG and AMV have on SST and SSS at depth. The first
results show that there is some good prediction improvement, however SSS shows
greater improvement than SST. The use of these mechanisms in prediction systems
to improve the prediction skill for the North Atlantic Ocean. The identified mech-
anisms will then undergo statistical post-processing such as sub-sampling, which
is a process that was developed to create better predictions on seasonal timescales.
This method will be adapted within the thesis for the development of predictive
capacity on decadal timescales. To use the understanding of the specific sources
for decadal predictability from the North Atlantic Ocean and then use this infor-
mation to tailor decadal predictions to stakeholder needs. Finally, how can this
information be communicated to the stakeholders, this can be achieved through a
simple infographic. But first, we need to get an understanding of the mechanism
and predictability of the North Atlantic Ocean.

The Max Planck Institute Earth system model low resolution “MPI-ESM-LR”
consists of 5 systems (ECHAM6, JSBACH, MPIOM, HAMOCC, and OASIS) that
interact with each other and will be used in this thesis (Brune and Baehr, 2020).
The initial exploration of decadal predictability was using the ECHAM6 data to
explore the atmospheric/oceanic interaction in the North Atlantic Ocean. The
MPIOM data contains just the ocean information which was explored at various
depth levels. Many different statistical tools are used to identify the physical
mechanisms in climate models, among them the Anomaly Correlation Coefficient
(ACC;(Dobrynin et al., 2018, 2019; Borchert et al., 2018)) and composite plots
(Borchert et al., 2018, 2019). The ACC is used to determine the prediction skill
of model predictions compared to reanalyses or observations. The significance
of each location of the predictions is determined using bootstrapping. Borchert
et al. (2018) determined that there is an indication for significant ACC in the
North Atlantic Ocean to be connected to low-frequency ocean dynamics, which
break down when the atmosphere contributes significantly to SST variability. The
composite plots used by Borchert et al. (2018, 2019) were used to distinguish
between the effects of warm and cold Ocean Heat Transport phases or subpolar
gyre SST phases on the surface SST over Europe.

5



1.3. Interactions and predictability in the Eastern North Atlantic Ocean

The ocean modes identified above were fed into the model to determine if there
was an improvement in prediction skill for SST and SSS at depth for the North
Atlantic Ocean. This allowed for the generation of composite plots to determine
if the SPG and the AMV had an impact on the prediction skill for both SST and
SSS at depth. The initial analysis illustrated that the internal mechanisms in the
model had more skill than taking the SPG, and the AMV into consideration. We
aim to improve decadal prediction skills in the North Atlantic Ocean using the
process of ensemble sub-sampling. Applying this methodology on seasonal scales
has demonstrated improved prediction skills for other climate modes.

1.3 Interactions and predictability in the
Eastern North Atlantic Ocean

In recent years there have been vast improvements in the field of decadal prediction
on a global scale based on the understanding of the mechanisms that occur in
the North Atlantic Ocean. The North Atlantic Ocean has already been shown
to be predictable on decadal timescales (Marotzke et al., 2016). Understanding
these interactions will allow for a greater understanding of how interconnected the
various cycles that occur are. How they can influence temperature and salinity not
only daily but on longer time scales such as multidecadal. This can be broken down
into two sections the oceanographic and atmospheric components. The focus is the
oceanographic components as they can be tailored for application for stakeholder
needs such as fisheries. It is important to understand both aspects as they both
contain drivers in the North Atlantic Ocean, with a key interest in the influence
on Ireland. One atmospheric pattern with a large effect on the Irish climate is
the North Atlantic Oscillation (NAO) (García-Serrano et al., 2015). Changes in
the amplitude and sign of the winter NAO are strongly linked to the patterns
of winter temperature, precipitation, and storminess (wave power/height) (Curtis
et al., 2016; Fan et al., 2016; Dobrynin et al., 2018).

The oceanic patterns that need to be considered are the Atlantic Meridional
Overturning Circulation (AMOC), the Subpolar Gyre (SPG), and Atlantic Mul-
tidecadal Variability (AMV), also referred to as the Atlantic Multidecadal Oscil-
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lation (AMO). All of which interact with temperature and salinity on a longer
time scale than their atmospheric counterparts. Some of the oceanic interactions
that occur in the North Atlantic Ocean that influence temperature and salinity are
AMOC, SPG, and AMV/AMO (Muir and Fedorov, 2015). Where variations of
the AMOC are believed to be an important driver of decadal to multidecadal cli-
mate variability and play an important role in the climate system by transporting
heat northwards in the Atlantic (Jackson et al., 2015; Muir and Fedorov, 2015).
On a longer timescale temperature is often referred to as AMV/AMO where vari-
ations in the AMOC are suggested to have some control or contribution to the
AMV/AMO, however, the physics behind the AMV/AMO remains uncertain and
a matter for debate (Muir and Fedorov, 2015; Brown et al., 2016). One of the
fundamental variables for the ocean circulation and global climate is salinity as
it provides the density of water masses that take part in the upper branch of the
AMOC (Friedman et al., 2017). There have been a variety of studies that point
to the SPG being a key component in the North Atlantic decadal climate variabil-
ity, with some of this variability being connected to the NAO (Born et al., 2015;
Buckley and Marshall, 2016).

Understanding the mechanisms within the North Atlantic Ocean, and how they
interact with both temperature and salinity is a key aspect of how they are rep-
resented in the model. Exploration of these variables will be conducted using the
Max Planck Institute Earth System Model (MPI-ESM). The initial investigation
will explore predictability at the surface for both temperature and salinity on a 2-
to-5-year lead time for the period 1966-2013. This was completed for both temper-
ature and salinity at depth for the initialised hindcast simulations and uninitialised
historical simulations. This allows for a comparison to be made on whether there
is an improvement in skill using an initialised simulation compared to uninitialised
simulations.

Chapter 4 determines if there is prediction skill in the Eastern North Atlantic
Ocean in the MPI-ESM for sea surface temperature and salinity also showing
areas of significance. This will be completed for three types of sea surface tem-
perature: the first from the atmospheric model (ECHAM6-Tas), and the oceanic
model (MPIOM- Tos, Thetao).
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1.4 Definition of the Atlantic multidecadal
variability (AMV)

The first predictor that will be used in this thesis is the Atlantic multidecadal
variability (AMV). Chapter 6 subsection 3.4.1 highlights the methodology I have
employed for calculating the AMV. AMV is the term used to describe the decadal
variability of North Atlantic SSTs, broadly characterised by decades of basin-wide
warm or cool anomalies, relative to the global mean (Sutton et al., 2018). Some
suggest that it arises from variations with the AMOC with influence from the
North Atlantic winds (Vecchi and Delworth, 2017). Figure 1.2 is an example of
the AMV for a longer time scale roughly 1880 to 2010. In this thesis a similar
process is used, however the AMV will be for a shorter time frame 1960-2013.

Figure 1.2: This figure shows an example of an Atlantic multidecadal variability
(AMV) time series for the years (1880-2010). The red areas are warm phases and
the blue areas are cold phases. (from (Vecchi and Delworth, 2017) Figure 1).

1.5 Definition of the Subpolar Gyre (SPG)
The second predictor that will be used in this thesis is the Atlantic multidecadal
variability (AMV). Chapter 6 subsection 3.4.2 highlights the methodology I have
employed for calculating the Subpolar gyre (SPG) index. Surface waters of the
eastern subpolar gyre in the North Atlantic are exceptionally warm and salty
compared to the surface waters at similar latitudes, leading to the supposition that
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the subpolar gyre is primarily supplied by the similarly warm and salty waters
of the subtropical gyre (Foukal and Lozier, 2016). The North Atlantic SPG is
attributed mainly to the passive advection of surface salinity anomalies of remote
origin (Born et al., 2016). Sea surface characteristics of the North Atlantic SPG
provide the environment for density-driven overturning, the warm surface water
loses heat to the atmosphere becomes denser and sinks to depth as it flows around
the SPG (Foukal and Lozier, 2016). Figure 1.3 is an example of an SPGI for a
similar time scale roughly 1960 to 2015. The SPGI that will be calculated in 6
will be for a similar time frame 1961-2013.

Figure 1.3: This figure shows an example of an subpolar gyre (SPG) index for
the years (1960-2015). Time series of observed SPG indices, salinity (SAL) in the
upper 500 m in the ENA (lines) and the NAO (bars). For all SPG indices, positive
values represent a strong SPG (from (Koul et al., 2020) Figure 3).

1.6 Case Study: Decadal Prediction along the
Western Irish Coast

In this case study the predictability of the surface of the ocean for both temper-
ature and salinity were explored along the Western Irish coast. The results show
that for this region, it is predictable and that the skill is significant. In this case
study I wanted to go beyond the surface and determine if the model system could
be skilful at depth and if it is significant. Studies have shown that both atmo-
spheric (North Atlantic Oscillation) and oceanic processes (sub-polar gyre) can be
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replicated within models in both initialised hindcast simulations and uninitialised
historical simulations (Andrews et al., 2015; Athanasiadis et al., 2017; Barcikowska
et al., 2018; Koul et al., 2019). However, there is limited research completed on
the predictability of potential temperature and salinity at depth, both on a global
and a regional scale just for the ocean. By having the ability to predict changes
in climate variables such as temperature and salinity for a target region, informed
decisions can be made about environmental and economic conditions.

Three transects were identified (Extended Ellett line, Porcupine Bank, Goban
Spur) to explore temperature and salinity at depth for the initialised hindcast
simulations and uninitialised historical simulations. This allows for a discussion
to be made on whether there is an improvement in skill using initialisation. Two
uninitialised historical simulations ("CMIP5", and "CMIP6") were used to high-
light the potential improvements that have developed between the simulations.
Allowing for a detailed examination of the different simulations and comment on
the prediction skill obtained.

1. Does the model system have prediction skill at depth for temperature?

2. Does the model system have prediction skill at depth for salinity?

3. Does the model system have prediction skill at depth for both initialised and
uninitialised simulations?

This study investigates the predictability within the Northeastern Atlantic at
depth with an initialised decadal prediction system. Both temperature and salinity
at the West Coast of Ireland are compared for 2 to 5 years ahead in a 16-member
initialised decadal prediction system and in two 16-member uninitialised histori-
cal simulations from the Max Planck Institute Earth system model for the period
1966-2013. We find that there is predictability in the upper levels of the North-
eastern Atlantic up to a depth of 1000m for temperature and salinity. For the
same period, we analysed water mass properties and prediction skills along three
transects (Extended Ellett line, Porcupine Bank, and Goban Spur).
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1.7 Application of tailored decadal predictions
for Irish Fisheries

There is a growing interest among many stakeholders in the coming decade, there
is an increasing need for decadal climate predictions (Smith et al., 2019). For this
Chapter 7, we begin to tailor the predictions more towards the use of the fishery
sector. This is achieved by getting a mean over the depth of 6 - 220m for both
temperature and salinity before the data undergoes analysis. At this depth, we
capture the habitable zone for mackerel and the spawning level. Temperature and
salinity are two important factors that influence the spawning habits of Atlantic
and Horseshoe mackerel. Having the ability to predict changes in either will help
create robust management strategies. To achieve this there first needs to be an
understanding of the physical mechanisms that influence temperature and salin-
ity. Then how are these variables represented in the model system and are they
predictable on decadal timescales? We know that international fisheries are a mas-
sive source of both food and revenue generation from an area of the environment
that is majority open access (Wilder, 1995). With a high demand for this source
commercial fisheries are experiencing increasing pressure from environmental con-
servation and the higher demand from competing vessels (Symes et al., 2015). This
demand could lead to unsustainable fishing practices which in turn can result in
over-fishing or over-exploitation of the species (Olson, 2011). To attempt to reduce
the economic impact this may have there was a move to privatise fishing rights
where access to fishing grounds where limited, a variety of quota systems were im-
plemented, and permit leasing (Olson, 2011). Observations have been made that
when it comes to the oceans shifts in species distributions happen faster compared
to those on land (Sumby et al., 2021). This has implications for fisheries as it
can result in drastic changes in species abundance, this is due to changes in the
reproductive or recruitment capacity (Sumby et al., 2021).

While prediction of such key global and large-scale indices is useful to scientists
and policymakers, there are few sector end-users who can make direct use of this
information in their operations (Dunstone et al., 2022). For many cultures and
countries fishing has been an integral part of society, whether it be part of the food
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sector or part of traditions that have been occurring for thousands of years. There
is a high demand for what comes out of the oceans globally, where strict protocols
are set in place to not only protect the species but also allow for the continuation
of fishing as an economic sector. These range from major fishing corporations
to smaller family-owned businesses. These processes by which the fishing sector
must abide by no matter what size of the corporation are fish stock management.
There have been a variety of practices that have been in place on a governance
level in recent times to maintain fish stocks this is referred to as sustainability.
Fishing is one of the oldest occupations where it was passed down generational
from parent to child, it allows for the passing of traditions that guarantee the
success of the enterprise from local ecological knowledge (Symes et al., 2015).
With the opportunity of other jobs there, some local fisheries find it difficult to
employ people from the area (Symes et al., 2015).

To help improve the biological health of fish stocks there was a reform in the Eu-
ropean Common Fisheries Policy (CFP) was released in 2013, this brought the
well-being of the species to the centre of European fisheries management (Fitz-
patrick et al., 2017; Bresnihan, 2019). There is also a move towards sustainable
practices where they aim to conserve both the fisheries and marine environments
by market-based approaches (Konefal, 2013). However, this is a difficult task as
successful governance of marine fisheries is a global issue that needs the support of
the international community (Fitzpatrick et al., 2017). To date, there are very few
examples of decadal climate services (tailored forecast products) for sector users.
This is despite the skill now demonstrated by retrospective decadal predictions
and the clear need of sector users for operational near-term climate predictions
delivered in the format of useful climate services (Dunstone et al., 2022). Instead,
end-users in different sectors typically require more regionally focused climate pre-
dictions of relevant variables, usually for a specific forecast range, period and/or
season (Dunstone et al., 2022).

The environmental pressures that drive most fish species are sensitive to changes
in salinity and temperature at depth (Mann and Drinkwater, 1994; Nelson et al.,
2016). The changes in temperature and salinity of the water could drive species out
of their normal living environments leading to a reduction in the amount available
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for fisheries (Nelson et al., 2016). To understand where these sensitivities are
coming from, they can be sourced back to the climatic factors originating from the
difference in pressure between the Icelandic Low and the Azores High (Mann and
Drinkwater, 1994). This difference is referred to as the North Atlantic Oscillation
(NAO), changes in this system have been known to cause a wide range of effects
within the marine systems (Marshall et al., 2001).

The NAO had the most influence in the winter months this resulted in an increase
around sea ice and increases in the volume of cold water at depth (Mann and
Drinkwater, 1994). One species this influence is the Atlantic cod, as these factors
are known to have an impact on temperature and salinity conditions (Mann and
Drinkwater, 1994). These are associated with poor growth and recruitment in
spring and summer (Mann and Drinkwater, 1994).

The fishery sector is of vast importance to the Irish economy. In 2019 it generated
€577 million and employed 16 thousand people. The ability to predict changes in
the future stock will support adaptation and fish stock management. The different
stages of fish development are dependent on oceanic variables like SST. Having the
ability to determine stock changes several years ahead will allow for the adaptation
of management strategies. Before the analysis of the model can be determined,
exploration into the current state of the fish stock needs to be considered.

Chapter 2 will provide some insight into the change of the mackerel stage 1 eggs
and the influence the variability of SST has on the density, and distribution has
eggs. Building on what was completed in the previous chapters on prediction skills,
I focus more on the Irish fishing grounds and the NE Atlantic northwest of Ireland.
This will allow for a comparison between the egg density for each section to be
compared to the predictability of each area for the time frame 1989 to 2014 with
a 2 to 5-year lead time. From the MPI-ESM the initialised hindcast simulation
will be used to extend this time frame up to 2019. With this information, I will
be able to see in the following 5 years if there is a temperature change.
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1.8 Effective communication of scientific
research

It has become evident that there is an urgent and growing need for climate infor-
mation that will inform governmental bodies to support the framework, e.g. for
disaster risk reduction (Smith et al., 2019). Chapter 2 section 2.4 discusses the dif-
ferent aspects of how scientific information is communicated. It is a challenge that
faces scientists, how can we effectively communicate our work to those who are not
directly involved in the topic? Whether these are fellow scientists, or the public
and the information being provided is credible (Smith et al., 2019). Care needs to
be taken when communicating with audiences that have a mixed understanding
of the concepts being discussed. As scientists, we strive to increase the public’s
knowledge and understanding of complex topics (Luisi et al., 2019). There are
a variety of different methods that aid in the distribution and communication of
scientific research, including presentations, posters, infographics, and community
engagement events. In the thesis using the key results obtained an infographic was
generated in chapter 7. An infographic was chosen as it allows of a balance of just
the right amount of imagery with the relevant text. As it allows the reader to gain
an understanding of such a complex topic in an easy-to-follow manner. Starting
from the observations to the prediction systems to how this can inform us about
the changes in the observations.

1.9 Research Questions
This thesis aims to establish that it is possible to tailor decadal predictions for
stakeholders’ needs. This thesis has 4 broad research questions:

1. What mechanisms that influence temperature and salinity in the North At-
lantic Ocean, are these variables predictable?

2. Can the North Atlantic Ocean’s predictive skill be improved using the sub-
sampling method?

3. Can the predictive skill in the North Atlantic Ocean be tailored for stake-
holder needs?
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4. How can this information relate to the fisheries and be communicated effec-
tively?

1.10 Thesis Contributions
While there have been improvements in how these predictions can be tailored to
suit stakeholder needs. Including having a better understanding of the interactions
that occur in our world and how these are represented in model environments that
are being used to replicate the real world. While the consensus is that the models
are confident on a global scale, there is limited confidence in prediction skills on a
regional scale. I will explore the predictability of the North Atlantic Ocean on a
decadal time scale for oceanographic properties like ocean temperature (SST), sea
salinity (SSS), the subpolar gyre (SPG), and so Atlantic Multidecadal Variability
(AMV). Making this information usable on a regional scale for Ireland would allow
tailoring for different applications such as fisheries. The fishery sector is of vast im-
portance to the Irish economy. Consequently, the ability to predict changes in the
future stock will support adaptation and fish stock management. Different stages
of fish development are dependent on oceanic variables such as temperature and
salinity. Having the ability to predict changes for these variables would allow us to
make statements on potential changes in fish stock for a species such as Mackerel.
In this thesis, I investigate the possibility of tailoring these decadal predictions for
both temperature and salinity for the Eastern North Atlantic Ocean.

Within this thesis, I explore how decadal predictions can be tailored to suit stake-
holders’ needs focusing on the Northeastern Atlantic Ocean. This is achieved
through the identification of the key oceanic variables that are important to the
stakeholders, how predictable they are and finally how predictable they are. Ex-
ploring the predictability of temperature and salinity for the northeastern Atlantic
Ocean with a focus on Ireland. Using different models and outputs I evaluate
the best simulations that provide the best potential for tailoring. Two unini-
tialised historical simulations and one initialised hindcast simulation are evaluated
to determine the output with the best skill. This comparison between the unini-
tialised historical simulations highlights the change in skill between the CMIP5
and CMIP6 simulations to my knowledge has not been explored in this context.
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This is achieved by exploring how well these simulations are predictable at depth
this is discussed further in chapters 4 and 5. The results of this research were
communicated to the stakeholders.

Following this initial investigation, I determined that the initialised hindcast sim-
ulation from the ocean model provided the best skill for tailoring. Using this
simulation, three target areas were identified that had no skill. Using two predic-
tors I had hoped to improve the skill for these areas. These results are discussed
further in Chapter 6. Work conducted using this method has mainly been con-
strained to the atmosphere, I have focused on the ocean. While this has not been
as successful, it shows promise as in certain areas there was an improvement in
skill. While this was not a noticeable improvement it shows that this technique
can be used within the ocean.

Communicating the findings of the predictability of both temperature and salinity
with the stakeholders, it was agreed that the final investigation would focus on
temperature. One of the reasons for this is that it is an important variable of
the target species would be mackerel. They had noticed that there was a shift in
the mackerel stock northwards in the last 30 years. I had asked to determine if
this shift was due to a change in the temperature of the spawning grounds. Work
on this topic mainly focused on using models and predictability to determine the
changes in stocks months in advance. They use the model outputs to inform their
biological models. In this contribution, I evaluate temperature from the initialised
hindcast simulation to determine how temperature will change in the future. How
this temperature change will impact egg density and distribution. This research
takes a statistical approach, adding an understanding of the model aspects that
can be incorporated into the biological models. Others that have explored similar
research focus more on a seasonal or even monthly time scale, I extend this time
scale to 1 year. This can allow for the development of biological models that can
predicted up to multiple years in advance.
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1.11 Thesis Structure
Chapter 2 discusses the mechanisms that occur in the North Atlantic Ocean and
their predictability on decadal time scales. This chapter also discusses the con-
nection of the AMV and SPG have with temperature and salinity. Whether they
can aid in the improvement of prediction skills, following this the application of
predictions is discussed as to why it is necessary. Chapter 3 presents the methods
that I will use throughout this thesis.

Chapter 4 uses both the initialised and uninitialised versions of the MPI-ESM to
explore the prediction skill for both temperature and salinity at the surface of the
Eastern North Atlantic Ocean on the decadal time scale. A paper in the review
in the journal Climate Dynamics summarizing the possibility of prediction skill at
depth within the MPI-ESM is presented in chapter 5. In Chapter 6, I examine the
possibility of improving predictability in areas of little or no skill and investigate
whether SPG or AMV can improve skill in these areas. In Chapter 7 I use the
prediction skill shown in the previous chapters to show potential changes in the
fish stock Mackerel in two locations. The first location is the West of Ireland and
the second is the NE Atlantic northwest of Ireland where the stock is potentially
migrating. This chapter will also contain the infographic that will be sent to the
stakeholders. Providing them with all the relevant information about the potential
migration of the stock. Finally, in Chapter 8, we conclude the thesis by showing
topics for future research.

17



CHAPTER 2
Literature Review

2.1 Introduction
This chapter highlights the relevant literature connecting the physical environment
with the model and how prediction can be tailored to the benefit of stakeholder
needs. Before any tailoring can occur there needs to be an understanding of the
physical mechanisms, the time scales that they interact and the predictability of
temperature and salinity. Next an exploration into how these predictions have
been tailored to suit the fishery industry that has been previously conducted.
Finally, background information on the fishery industry in Ireland and the target
species will be explored. The literature reviewed is necessarily selective given that
the topic will focus on tailoring temperature and salinity for two mackerel species
(Atlantic and horseshoe). This literature review is not limited to but focuses
primarily on;

• Literature: Tailoring of decadal prediction skill of physical mechanisms in
the Eastern North Atlantic Ocean.

• Species and location: Atlantic and horseshoe mackerel, Eastern North
Atlantic Ocean.
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• Variables: Sea surface temperature, salinity, and two predictors (AMV,
SPG).

Section 2.2 discusses the literature on the connection between the physical mech-
anisms in the Eastern North Atlantic Ocean and how they are represented in the
model on different timescales. Section 2.3 outlines how predictions have been tai-
lored previously, management systems in place, sustainability, and environmental
factors that impact fish stock. Section 2.4 explores how scientific research can
be effectively communicated to stakeholders, how infographics are a useful tool in
communication, and the challenges of scientific communication.

2.2 Predictability of the physical mechanisms
in the Eastern North Atlantic Ocean

To understand the processes that go into decadal prediction it is necessary to un-
derstand the mechanisms of variability that occur in the North Atlantic Ocean.
With a focus on temperature and salinity can be tailored for application for stake-
holder needs such as fisheries. It is important to understand both aspects as they
both contain drivers in the North Atlantic Ocean, with a key interest in the influ-
ence on fish stock. One atmospheric pattern with a large effect on Irish climate
is the North Atlantic Oscillation (NAO). Changes in the amplitude and sign of
the winter NAO are strongly linked to the patterns of winter temperature, precip-
itation, and storminess (wave power/height) (Curtis et al., 2016; Fan et al., 2016;
Dobrynin et al., 2018). The oceanic patterns that need to be considered are the
Atlantic Meridional Overturning Circulation (AMOC), the subpolar Gyre (SPG),
and Atlantic Multidecadal Variability (AMV), also referred to as the Atlantic Mul-
tidecadal Oscillation (AMO). Which interact with temperature and salinity on a
longer time scale than their atmospheric counterparts. An exploration into these
patterns with the model and what decadal predictions can offer will be discussed.
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2.2.1 Physical mechanisms in the Eastern North Atlantic
Ocean

The North Atlantic Ocean basin shows remarkable variability over decadal to
multidecadal timescales, which has received a considerable amount of attention
as it provides a large source of natural climate variability (Sun et al., 2015b).
On decadal to multidecadal timescales the North Atlantic Ocean basin exhibits
variability (Sun et al., 2015b). In the upper ocean that feedback that is closely
related is the Atlantic Multidecadal Variability (AMV) was found in surface po-
tential temperature (Delworth et al., 1993). The observed AMV is associated with
coherent multidecadal variations in the subpolar North Atlantic Ocean SST, sea
surface salinity, and upper hear/salt content (Yan et al., 2019). In the deeper
ocean what connects the large-scale circulation of the atmosphere in the polar
and subpolar North Atlantic Ocean is the oceanic SPG and deep convection zones
(Marshall et al., 2001). This process in turn controls the strength and variability
of the AMOC in the ocean and also determines large parts of the multidecadal
AMOC variability (Yeager, 2015). The subtropical gyre and the subpolar gyre are
two current systems that form the complex European Boundary Current System
that influences the circulation along the European continental slope (Moritz et al.,
2021). The North Atlantic Ocean current connects the subtropical gyre where the
warm and saline water masses move northward and the SPG where colder fresher
water masses move southward (Holliday et al., 2020; Moritz et al., 2021). It widens
as it crosses the North Atlantic Ocean, separating into branches east of the Mid-
Atlantic Ridge that flow into the Iceland Basin, the Rockall Trough, and southward
to re-join the STG (Holliday et al., 2020). Understanding the connection of these
processes aids in the predictability of the North Atlantic Ocean.

The NAO is a large-scale atmospheric circulation pattern and is the dominant
mode of atmospheric inter-annual variability over the North Atlantic Ocean, it
emerges from a dipole oscillation in normalized sea level pressure that occurs be-
tween the Icelandic Low and the Azores high (Hurrell, 1995; Davini and Cagnazzo,
2014; Herceg-Bulić and Kucharski, 2014; Chen et al., 2015; Cropper et al., 2015;
Sun et al., 2015a; Xin et al., 2015; Fan et al., 2016; Madrigal-González et al., 2017;
Dobrynin et al., 2018; Önskog et al., 2018). The NAO is shown to have large inter-
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annual and decadal variability over the last 50 years, switching from a negative
phase (1960’s) to a strong positive phase (1980’s, 1990’s)(Zhai et al., 2014). The
NAO is influenced by the sea surface temperature (SST) and the North Atlantic
Ocean SST by the NAO. While some studies such as Herceg-Bulić and Kucharski
(2014) describe that variations in SST in the North Atlantic Ocean may influence
NAO variability, others, like Gastineau and Frankignoul (2014), state the NAO
mainly forces North Atlantic Ocean SST. When there are persistent anomalies in
the NAO it can force some wind stress and heat flux anomalies that can amplify
or weaken the formation of the North Atlantic Deep Water masses, in turn, can
lead to a reinforcement or weakening of the AMOC with a couple years lag (Zhai
et al., 2014; Peings et al., 2016). Dobrynin et al. (2019) investigate the wintertime
NAO and its relationship with wave dynamics. They discuss that the better rep-
resentation of active wave generation leads to better prediction skills in regions of
direct NAO impact. The leading mode of variability in the large-scale circulation
over the North Atlantic Ocean in winter is the NAO, which strongly impacts the
weather and climate in the Euro-Atlantic sector (Parker et al., 2019). The winter
NAO dominates the inter-annual atmospheric variability in the Euro-Atlantic sec-
tor and largely contributes to regional surface climate variability (García-Serrano
et al., 2015). It is frequently regarded as the regional expression of the Arctic
Oscillation or northern annular mode (García-Serrano et al., 2015).

The various large-scale atmosphere-ocean interactions that occur in the Earth’s
climate can be separated using different timescales (Brune and Baehr, 2020). Ex-
amples of this large-scale atmosphere-ocean feedback on these decadal time scales
are the AMV and the Pacific decadal oscillation (PDO) (Brune and Baehr, 2020).
The oceanic interactions that occur in the North Atlantic Ocean that influence
temperature and salinity are AMOC, SPG, and AMV/AMO (Muir and Fedorov,
2015). The contribution of the AMV to global sea surface temperature (SST)
variability over the observational record is second only to El Nino-Southern Oscil-
lation (Brown et al., 2016). On a longer timescale temperature is often referred to
as AMV/AMO where variations in the AMOC are suggested to have some control
or contribution to the AMV/AMO, however, the physics behind the AMV/AMO
remains uncertain and a matter for debate (Muir and Fedorov, 2015; Brown et al.,
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2016; Peings et al., 2016). Where variations of the AMOC are believed to be an
important driver of decadal to multidecadal climate variability and play an impor-
tant role in the climate system by transporting heat northwards in the Atlantic
(Jackson et al., 2015; Muir and Fedorov, 2015). The leading mechanism of the ob-
served AMV was originally linked to the low-frequency variability of the AMOC,
some suggest that it is a direct response of the North Atlantic SST to changes in
external radiating forcings (Gastineau and Frankignoul, 2014; Yan et al., 2019).
Yan et al. (2019) explored this within the CMIP5 project and determined that
these external forcings were not the dominating observed AMV but were linked to
the multidecadal variations in the AMOC. One of the fundamental variables for
ocean circulation and global climate is salinity as it provides the density of water
masses that take part in the upper branch of the AMOC (Friedman et al., 2017).
The AMOC is the Atlantic component of the global thermohaline circulation, this
is driven by the temperature and salinity gradients in the ocean that modulate
deep convection in high latitudes (Peings et al., 2016). The connection between
the AMOC and the NAO shows that a reinforcement of the AMOC is generally
seen with a persistent positive phase in the winter NAO (Peings et al., 2016). One
of the key components in North Atlantic Ocean decadal climate variability points
to the Atlantic subpolar gyre (SPG) (Born et al., 2015). There have been a vari-
ety of studies that point to the SPG being a key component in the North Atlantic
Ocean decadal climate variability, with some of this variability being connected to
the NAO (Born et al., 2015; Buckley and Marshall, 2016).

AMV is a mode of climate variability affecting SST characterised by fluctuations
between anomalously warm and anomalously cool phases, with enhanced energy in
the inter-decadal band (Sun et al., 2015b; Sutton et al., 2018; Sgubin et al., 2021).
At low frequencies the SST in the North Atlantic Ocean shows a lot of variability,
it experiences alternating basin-wide warming and cooling with an approximate
periodicity of 70 years known as the AMV (Gastineau and Frankignoul, 2014).
The AMV is modulated to some extent by the fluctuations in the strength of the
AMOC which together with the North Atlantic Ocean subpolar gyre is influenced
by deep ocean density anomalies, particularly in the Labrador Sea; these influences
contribute to the especially high multiyear predictability in the North Atlantic
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Ocean (Sun et al., 2015b; Vecchi and Delworth, 2017; Merryfield et al., 2020). The
AMV is found to be closely related to climate variations over the Atlantic basin and
adjacent continents (Sun et al., 2015b; Moat et al., 2019). These impacts involve
decadal variations in temperature and rainfall patterns, hurricane activity, and sea
level changes (Sutton et al., 2018). In some cases, the magnitude of these impacts
is sufficient that, on time scales up to a few decades, the AMV influence may
dominate over the influence of longer-term climate change (Sutton et al., 2018).
Variations in the AMOC modulate a north-ward movement of near-surface warm
water and a compensating southward movement of deep, colder waters, driving
changes in ocean temperature (Vecchi and Delworth, 2017). Strong changes in
North Atlantic SST/AMV are linked to important climate impacts, including the
number of hurricanes, and the surface climate over the surrounding continents
(Ghosh et al., 2017; Robson et al., 2018). The origin of the AMV is not confined
to the ocean (Vecchi and Delworth, 2017). Shifts in the strength and position
of North Atlantic winds (NAO), can strengthen or weaken the AMOC and result
in multidecadal temperature swings in the Atlantic (Vecchi and Delworth, 2017).
Modelling suggests that Atlantic Ocean circulation responds to external forcing,
either through decadal variations in surface radiative forcing or through changes
in the NAO (Vecchi and Delworth, 2017).

Sea surface salinity is a fundamental variable for ocean circulation and global cli-
mate (Friedman et al., 2017). Resulting from the combined effects of evaporation,
precipitation, land surface runoff, oceanic advection, vertical mixing, and melting
and freezing ice (Friedman et al., 2017). As large-scale variations are thought to
reflect the net surface freshwater flux, which is difficult to measure directly, sea
surface salinity has been considered an indirect ocean rain gauge (Friedman et al.,
2017). Global trends since the 1950s show that salinification in saltier regions and
freshening in fresher regions provide evidence for such an intensification (Fried-
man et al., 2017). In the North Atlantic Ocean, it is of particular importance as
it contributes to the density of water masses that take part in the upper branch
of the AMOC (Friedman et al., 2017). Variations in salinity also contribute to
North Atlantic Ocean regional sea level change and Atlantic marine biodiversity
(Friedman et al., 2017).
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The interactions that were identified in the North Atlantic Ocean are illustrated
in Figure 2.1, involved in the processes are the NAO in the atmosphere, the Sub-
polar Gyre (SPG), the AMOC and the AMV. Where these components interact
with each other in different ways on different timescales.

Figure 2.1: Mechanisms that occur within the North Atlantic Ocean and how they
interact on timescales generated from the literature. Provides a simplification of a
selection of interactions in the North Atlantic Ocean that have an impact on both
temperature and salinity.

2.2.2 Predictability of physical mechanisms
There have been rapid advances in the observation and the modelling of the earth
system allowing for a revolution in our ability to forecast our planet’s weather
and climate, in decadal prediction there has been increasing scientific and public
attention (Borchert et al., 2019; Payne et al., 2017). The North Atlantic Ocean
has been identified as a key region that has pronounced forecast skill for different
parameters such are surface air temperatures or OHC (Kröger et al., 2018). Early
coupled global circulation models (CGCMs) revealed that intrinsic, low-frequency
SST surface air temperature and SLP variations in the North Atlantic Ocean and
Arctic Ocean were consistently associated with variations in the strength of the
AMOC, and in particular its slow thermohaline circulation component (Yeager
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and Robson, 2017). However, regarding surface temperature, there is generally
weak over continental regions and high over the ocean (Borchert et al., 2018). For
the North Atlantic SPG region, high forecast skill for SST and OHC arises from
the correct initialisation of the ocean flow. However, there are some limitations
as direct observations of oceanic flow are sparse (Kröger et al., 2018). One area
that has seen the most impressive results is in the oceanic domain, this is due to
the slow dynamics and the long memory of the ocean that readily lend themselves
to forecast timescales dramatically longer than in the atmosphere (Payne et al.,
2017). Allowing for the skilful forecast on an annual and even decadal scale for
temperature, upper ocean heat, and salt content (Payne et al., 2017). These are
not without fault, generating forecasts of biological systems is not straightforward,
with many models having the ability to produce forecasts of physical variables like
the ones mentioned previously, instead of the variables that have a direct interest
in marine resource management and ecosystem applications (Payne et al., 2017).
Using the Max Planck Institute for Meteorology Earth system model (MPI-ESM-
MR) Dobrynin et al. (2019) used a 10-member seasonal prediction system based on
the mixed resolution Coupled Model Intercomparison Project Phase 5 to correlate
(prediction skill) the observed and forecasted NAO index. Ocean general circula-
tion models (OGCMs) employing hindcast simulations have been used to study the
response of the ocean to changes in the NAO (Zhai et al., 2014). While progress
has been made with the OGCMS they are still limited due to the lack of observa-
tions as well as the complexity of the model itself (Zhai et al., 2014). An additional
source of seasonal to decadal predictability is variations in radiative forcing, which
provide significant skill on multiyear time scales (Merryfield et al., 2020). Much
of this skill arises from changes in greenhouse gases, but anthropogenic aerosols
may force decadal variations in AMV and PDV (Merryfield et al., 2020). Solar
variability, volcanic eruptions including through their influence on ENSO and pos-
sibly AMV, and the NAO affect climate on seasonal to decadal time scales and are
potentially important sources of predictability (Merryfield et al., 2020).

Within decadal predictability there are limitations of AMV as the influence of
external factors is removed, the main source of predictability of the climate at a
decadal to multidecadal time scale is the slow oceanic fluctuations (Peings et al.,
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2016). This is most evident when it comes to predicting SST, sea ice and oceanic
heat content in the subpolar North Atlantic gyre (Peings et al., 2016). Focusing on
the predictive skill of SST for the North Atlantic Ocean, one area that has shown an
improvement of skill is through initialisation (Meehl et al., 2014). The externally
forced response of the historical climate simulations does not capture well the
observed multidecadal sea surface variations in the subpolar North Atlantic Ocean
that are coherent with the observed AMV (Yan et al., 2019). While this is the case,
providing predictions of how Atlantic SST might change over the years to decades
ahead still is an important challenge for climate prediction (Robson et al., 2018).
On a sub-decadal time scale, the improvement of skill in the North Atlantic Ocean
region from this initialisation of SST, can in part be linked to the skilful prediction
of the AMOC from initialisation (Meehl et al., 2014). On the decadal time scale,
SST that occurs in the North Atlantic Ocean is often referred to as the AMV or
AMO and is linked with the AMOC (Meehl et al., 2014; Wen et al., 2016; Yan
et al., 2019; Merryfield et al., 2020). On decadal time scales climate variability is
largely modulated by the AMV and the NAO (Sgubin et al., 2021). The variability
of the AMV is not fully understood or constrained to the change in the AMOC but
also external forcings and the natural variability of the atmosphere (Wen et al.,
2016; Yan et al., 2019; Merryfield et al., 2020; Sgubin et al., 2021). Due to a lack
of long-term records, it is hard to connect the AMOC, SST, and the atmosphere
in observations (Wen et al., 2016; Peings et al., 2016). Peings et al. (2016) found
that the AMOC was reinforced followed by the warming of the SPG and a buildup
of the positive phase of the AMV, which also causes a reduction in the AMOC.
The connection between the AMV and the AMOC does have variation between
the models, this is in the anomalies and the timing of maximum correlation.

The North Atlantic Ocean SPG represents an important part of the widely studied
AMV, as a region it may experience important shifts which may impact the cli-
mate (Menary and Hermanson, 2018). The SPG of the North Atlantic Ocean
is a cyclonically circulating oceanic gyre that exhibits pronounced decadal-to-
multidecadal variability in its properties (Koul et al., 2022). Over the last sixty
years, periods of strong decadal trends in surface temperature of the SPG have
been observed cooling in the 1960s, warming in the 1990s and the recent cooling
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in the 2000s (Koul et al., 2022). The region may be predictable up to a decade
ahead, good initialisation of the North Atlantic SPG has shown to be important in
providing potential predictability in other regions (Menary and Hermanson, 2018).
The North Atlantic Ocean and particularly the North Atlantic SPG is a region
where hindcasts (retrospective climate predictions), which are initialised from ob-
servations, are found to have significant skill in capturing past variations of SST
(Robson et al., 2018). To build confidence that future predictions will remain skil-
ful, it is important to understand why hindcasts are successful, and if the dominant
mechanisms are robust (Robson et al., 2018). Process-based analysis of hindcast
has shown that skill is not simply due to the thermal inertia of the SPG (Robson
et al., 2018). Rather, the initialisation of ocean circulation plays an important
role for hindcasts to capture the major shifts in the SPG heat content (Robson
et al., 2018). Although there is significant skill at capturing previous shifts in
North Atlantic Ocean temperatures in current prediction systems, there are still
significant uncertainties (Robson et al., 2018). The majority of models used for
initialised climate prediction have also used low-resolution models (ocean resolu-
tion >1◦), which may not capture all the relevant processes in the North Atlantic
Ocean (Robson et al., 2018). The strength of ocean-atmosphere coupling and the
time scale of ocean adjustment may differ in high-resolution models compared to
low-resolution (Robson et al., 2018). To ensure that the best information is avail-
able to assess the robustness of predictions, and to guide model development, it is
important to understand the sensitivity of skill and mechanisms to the underlying
model used (Robson et al., 2018). SST in the North Atlantic Ocean including the
SPG can impact climate both locally and remotely (Menary et al., 2021). They are
potentially predictable on decadal timescales and successfully initialising them can
provide skill elsewhere (Menary et al., 2021). Analysis of the CMIP6 archive has
shown improvement since CMIP5 in multi-annual skill in SST in the NA SPG, in
both uninitialised and initialised simulations (Borchert et al., 2021; Menary et al.,
2021).

Several regions, such as the North Atlantic and Pacific Oceans, are characterised
by their variations on decadal to inter-decadal timescales, which are manifested
in substantial changes in sea surface temperature and ocean heat storage (van
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Oldenborgh et al., 2012). An important advantage of decadal climate predictions
compared to centennial climate projections is that their credibility can be assessed
by performing retrospective forecasts (also known as hindcasts) of the historical
period and comparing them against subsequent observations (Smith et al., 2019).
Because of their potentially large socio-economic impact, climate predictions over
interannual to decadal time scales have recently gained increased attention (van
Oldenborgh et al., 2012). Pohlmann et al. (2013) explored the improvement of
forecast skill in the tropics using the MPI-ESM in both its low-resolution and
high-resolution format. They found that for hindcast averaged over years 2 to 5
years lead time an additional improvement is achieved in the tropical pacific with
the higher model resolution. The ensemble mean generally outperforms individ-
ual ensemble members (Pohlmann et al., 2013). Müller et al. (2012) analyse the
predictive skill of the baseline-0 (b0) system. They show that the initialization
of MPI-ESM improves forecast skill with respect to the uninitialized experiment
predominantly over the North Atlantic for all lead times and over parts of Europe
for multiyear seasonal means. Although previous assessments have shown high
skill in decadal forecasts of surface temperature, confidence in predictions of pre-
cipitation and atmospheric circulation, which are vital for many climate impacts,
is much lower (Smith et al., 2019). Recent developments in seasonal forecasting
have highlighted the need for very large ensembles to achieve skilful predictions,
especially for precipitation and atmospheric circulation (Smith et al., 2019). Show
that decadal prediction can capture many aspects of regional changes, including
precipitation over land and atmospheric circulation in addition to surface temper-
atures Smith et al. (2019).

There have been vast improvements in the field of decadal prediction skill, one area
that has shown significant improvement is the introduction of the initialised hind-
cast. These are based on the re-forecasting of observational data that is known in
the models as assimilation runs. This initialised hindcast showed good prediction
skill and proved a good starting point for the improvement of predictability in the
North Atlantic Ocean. Identifying and understanding the mechanisms that are
involved in the North Atlantic Ocean and determining if there is a possibility that
they could be used as potential predictors. The results that Yeager and Robson
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(2017) have produced after investigating the subpolar gyre can improve decadal
prediction in the North Atlantic Ocean when looking at initialised hindcast. They
were looking at sea surface temperature and it shows that there is promise that
there is good prediction skill in the Northeastern Atlantic when looking at temper-
ature and the SPG. This will be expanded on in the work that I will be conducting
where both temperature and salinity will be explored at depth and compared to
the SPG/AMV to see if there is an improvement in decadal prediction at a 2-to-5-
year lead time. Both the SPG and the AMV were identified and calculated within
the models and then compared with the initialised hindcast to determine if there
was an improvement in the prediction skill in the area.

2.3 Tailoring of Decadal predictions for
stakeholder needs

To date, there have been a variety of different ways in which models have been
used in the fishery industry to detect changes in the density and distribution of
fish stock and egg larvae (Bartsch, 2005; Bruge et al., 2016; Koul et al., 2022;
Payne et al., 2022). Decadal predictions of the ocean could be invaluable in sup-
porting climate adaptation and sustainable development in coastal communities
and nations, particularly in the Global South where ocean dependency and cli-
mate risk are higher (Payne et al., 2022). With the majority using environmental
attributes for these studies (Koul et al., 2022; Payne et al., 2022), some explore
ecological attributes such as prey distribution (Bartsch, 2005). Individual-based
models (IBMs) are one approach that takes into consideration both the environ-
mental variables and the ecological attributes. The development of sophisticated
circulation models allows for IBMs to be a useful tool in the study of dispersal,
growth, and mortality of marine populations (Bartsch, 2005). A study conducted
by Koul et al. (2022) explored the decadal predictability of the SPG and how it
can influence cod stock in the Barents Sea. Payne et al. (2022) combined exist-
ing biological habitat models characterising the species’ environment preferences
with predictions of the physical environment from existing climate prediction sys-
tems to produce decadal-scale habitat predictions. Bruge et al. (2016) highlighted
that both the spawning activity distribution and the thermal spawning niche of
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North-East Atlantic mackerel (NEAM) have shifted northward between 1992 and
2013. The NEAM supports one of the most valuable fisheries in Europe and recent
distribution shifts into Icelandic and Greenlandic waters have driven the aforemen-
tioned conflict over fishing rights (Payne et al., 2022). It suggests that the NEAM
has tracked its thermal spawning niche in response to sea warming, although the
warming is not the only cause of this shift (Bruge et al., 2016).

When it comes to climate change a better understanding of spawning habitat char-
acteristics is necessary to be able to predict the impact on different fish species
(Ibaibarriaga et al., 2007). This needs to be considered in a multi-species con-
text because it is not always known to what extent different species share spawn-
ing habitats or whether conditions that are detrimental for one species can be
favourable for another (Ibaibarriaga et al., 2007). Longer climate scale projec-
tions allow for managers and practitioners to evaluate risk and plan for future
losses or gains in suitability. This in turn informs longer-term decision-making
processes such as national legislation or international negotiations (Mason et al.,
2021). Forecasting fish abundance depending on decadal climate variability is nec-
essary to devise timely interventions to ensure sustainable use of resources (Koul
et al., 2021). There are still some limitations when it comes to the application of
climate models to predict ecosystem processes at decadal timescales (Koul et al.,
2021). The climate has been shown to influence fish directly or indirectly through
recruitment, food availability, fecundity, growth, and migration (Koul et al., 2021).
With this being the case, climate variables are rarely included in the management-
oriented modelling and forecasting of fish populations (Koul et al., 2021). This
is due to the historically large impact of fishing mortality on commercial stock
biomass and due to forecasting being complicated by frequent transient and non-
stationary properties of climate impacts on fish stocks (Koul et al., 2021). In
addition to the climatic factors, fish experience the cumulative impacts of dif-
ferent drivers; fishing pressures and climate can have combined effects inducing
non-linear dynamics in fish stocks (Koul et al., 2021). International conflicts over
fishing rights can also arise as shifting fish stock starts to straddle international ju-
risdictions, an issue that is only expected to worsen: transboundary stocks impact
as many as 40% of exclusive economic zones in the future (Payne et al., 2022).
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Conflicts are already being seen, one such instance is the so-called North Atlantic
Ocean "mackerel war" between the European Union, Norway and Iceland, and the
Faroe Islands over access to Atlantic mackerel (Scomber scombrus) and is a lead-
ing cause of international disputes between democracies (Payne et al., 2022). The
ability to foresee such shifts can therefore potentially hold the key to both avoiding
conflict and adapting marine fisheries to a changing climate (Payne et al., 2022).

2.3.1 Fish stock management and sustainability
Climate change and other environmental pressures are not the only things that
need to be considered ecological pressures need to be included to a degree, climate
change is having an impact on marine organisms and ecosystem functions (Pitois
et al., 2012; Mason et al., 2021). Alongside the urgent need for bold action to
reduce GHG emissions is needed for adaptive management approaches to main-
tain desired fishery outcomes under changing and novel conditions (Mason et al.,
2021). It is a concept that the relationship between predator and prey influence
each other’s distribution is an ancient one (Rose and Leggett, 1990). This preda-
tion on prey needs to be examined also. This occurs at all phases throughout the
fish species life cycle (Paradis et al., 1996). It cannot be ignored that the death of
the larval is the result of two different causes, these being starvation and predation
(Paradis et al., 1996). Starvation occurs in a short time frame when the species has
not reached full maturity, giving the predation factor a greater source of mortality
(Paradis et al., 1996). At each developmental stage, the vulnerability to predation
changes depending on the size of the fish and the distribution of the fish (Paradis
et al., 1996). One way the larval fish can overcome this specific type of predator
is the process of rapid growth, this reduces the time in which the larval fish is in
a vulnerability window (Paradis et al., 1996). To promote biodiversity and sus-
tainability within fisheries, the expansion of the knowledge and understanding of
how climate variability influences this early stage of fish species and the connec-
tion to their environment (Pitois et al., 2012). As it stands, European fisheries
are highly exploited, and many are vulnerable to the effect climate change will
have on the ecosystem (Lynam et al., 2010). It is well known that fish usually
have spawning seasons these are certain times of the year and spawning habitats
which are specific places, these provide the suitable conditions for the offspring to
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survive (Miesner and Payne, 2018). If these conditions are compromised likely un-
der climate change reproductive success is likely to be at risk as spawning habitat
temperatures will exceed the tolerance limit of the most sensitive life stage, this
can then force species to reproduce at different times and/or places (Miesner and
Payne, 2018). One way in which climate change affects marine ecosystems is the
profound impact on the distributions of marine fishery resources (Dahlke et al.,
2020). There has been observed shifts in the spatial distributions of marine species
that have been observed in response to both gradual warming and extreme events,
and there is a need to understand how ecosystem factors, such as temperature,
can influence the current and future distributions of natural resources in the ocean
(Dahlke et al., 2020).

Fish stock management systems are the processes by which governments regulate
and monitor the amount of resources available in the seas. For hundreds of years,
the sea has been an area of exploitation where its resources have been a provid-
ing a constant source of wealth for the international community (Wilder, 1995).
However, the extent of this exploitation is becoming increasingly evident as the
state of global fisheries is considered in a “crisis” (Urquhart et al., 2013). A more
interdisciplinary approach is needed to help get a better view of the state of the
stocks, the environmental processes and the ecological interactions (Zimmermann
et al., 2019). By identifying these the hope is that they will help in the expla-
nation of the fish population dynamics, determining the key drivers behind the
dynamics can be used to improve the predictability of recruitment (Zimmermann
et al., 2019). It has been reported that 85 of marine fish stocks are under one
of the following categories; fully exploited, over-exploited, depleted or recovering
(Urquhart et al., 2013). In the last 50 years there has been a movement to develop
more sustainable fishing practices, an example of this is the Common Fisheries
Policy developed by the EU (Wilder, 1995; Bresnihan, 2019). Initially introduced
in 1983, a shared management system that all conservation measures are deter-
mined at the community level was subsequently reformed in 2013 bringing the
well-being of species into centre focus (Wilder, 1995; Bresnihan, 2019). On a Eu-
ropean level the community collectively manages all the stocks that are within 200
miles of the member states (Wilder, 1995). For those who have access to adequate
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scientific and technical capacity the incorporation of forecasts is a key aspect of
climate adaptive management (Mason et al., 2021). Understanding ecosystems in
general and environmental effects on the variability in abundance and distribution
of exploited fishery stocks in particular, are keys for future management strategies
(Denis et al., 2002).

2.3.2 Sustainability
A key consideration is the connection between the economic side of fish stock
management and how this interacts with the sustainability of fish species. Small-
scale fisheries (marine and inland) are estimated to account for over half of the
world’s fish catches and employ more than 90% of the world’s 35 million fishers
(Urquhart et al., 2013). These contribute not only economically, but socially and
culturally to society; however, these livelihoods are under threat from lack of
poverty (Urquhart et al., 2013). 88% of European quota stocks are considered
overfished (Urquhart et al., 2013). According to the UN, approximately “57%
of fish stocks are fully exploited and roughly 30% are overexploited” (Silver and
Hawkins, 2017). On a European scale, coastal fisheries are under pressure from
external and internal pressures for change, in terms of approaches to fisheries
management (Symes et al., 2015). On a local scale, the Irish seafood sector can
be divided into 3 distinct areas, a commercial fishing sector, an aquaculture sector
and a seafood processing sector (Vega et al., 2014). Among the 27 member states
Ireland is ranked eighth when it comes to the contribution to the overall value
added of sea fisheries (Vega et al., 2014). However, smaller fisheries are usually
the first to feel the effects of any policy changes, causing a lot more to go out of
business as they cannot compete with the larger companies. Outside of the EU
changes to the management style could negatively impact the implementation of
quotas, while these are more beneficial for sustainability, they may drive smaller
fisheries out of business. The over-exploitation of fish is not one that is inherently
obvious it is something that will be seen over several decades (Hannesson, 1996).
An example of this is in the period a fish species catches had increased fivefold from
20 million tonnes to in excess of 80 million tonnes (Hannesson, 1996). One example
of a fish stock that has almost completely depleted is the northeast Atlantic herring,
which has been in decline for many years (Hannesson, 1996).
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Quotas are one way in which fisheries are attempting the regulate the main output
of the industry (Wilder, 1995). Some of the possible ways to regulate the amount
of stock that has been harvested is by placing total allowable catch (TAC) or a
catch limit on a fishery (Wilder, 1995; Brox, 1996). This sets a limit on the amount
that a species can be harvested and once this is reached activity must stop, this
keeps the species within sustainable limits (Wilder, 1995; Brox, 1996). For these
quotas to work it is necessary to determine what is the level of exploitation that
ensures that the resource is sustainable (Wilder, 1995) i.e. the amount of fish that
can potentially be caught from a self-regenerating stock year after year without it
impacting the industry or the average size of the stock (Wilder, 1995). The highest
catch rate is known as the maximum sustainable yield (MSY), with the goal of
maintaining the productivity of the oceans by limiting the number of fish to the
number that can be replaced by the annual rate of new recruits (Wilder, 1995).
Other examples of the different types of quotas are boat quotas, group quotas,
company quotas, individual quotas, trade-able quotas, and area regulations (Brox,
1996). While not all of these quota systems worked when it came to capital and
sustainability, they did provide insight into where there was a monopoly in the
sector. An example of this is company quotas where those who had larger fleets
benefited compared to those who only had a couple of boats (Brox, 1996). The
larger fleets would be able to catch a larger amount leading to a greater investment
in boats and high-end equipment that would all for a greater yield (Brox, 1996).
This would lead to smaller fishing companies unable to compete with these larger
companies. To create a more equitable system individual quotas were put in place
where the TAC was equally divided among all the fishermen, yet this was not
a popular option (Brox, 1996). Tradeable quotas where companies, fishermen or
boats could buy and sell the number of fish they were allowed to catch (Brox,
1996). With these quotas in place, it does not guarantee that the number of fish
that are caught will be the correct species they are looking to catch (Bresnihan,
2019). One way to improve this system is to work with scientists and fishermen to
expand the knowledge of fish behaviour, their patterns and distribution, and their
improvement of fishing equipment and fishing practices (Bresnihan, 2019). This
will eliminate the uncertainty that is associated with fishing, but it will account
for some of it (Bresnihan, 2019).
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Other approaches that have been implemented are market-based, community-
based or co-management approaches (Olson, 2011). These are very different ap-
proaches with the market-based placing stakeholders in the fisheries above everyone
else, compared to the community-based or co-management where the focus is more
on the fishery as a cornerstone of the economy and a part of life in general (Olson,
2011). If there is a move towards the privatisation of fisheries it would create a
divide between “economic efficiency versus culture and community” (Olson, 2011).
One thing that is evident is that there needs to be a reduction of overcapacity in
order for any sort of sustainability (Pauly et al., 2002). When done correctly the
reduction of fleet size, should in theory lead to an increase of benefits from the
resources (Pauly et al., 2002). There are a variety of different studies of human-
environment adaptation, these have found that the natural resource policies and
programs that are promoted by both government and private sectors lack the un-
derstanding of the value of local knowledge, and social relations but instead, they
highlight technical fixes (Brewer, 2013). In an ideal world, the flow of informa-
tion from science to policy and practice would inform the managing environmental
systems (Dale et al., 2019). This information would be generated from a multidis-
ciplinary approach from both the social and natural sciences, including political
systems, and would inform policy (Dale et al., 2019). Taking the multi-discipline
approach requires that information be easily accessible between the scientist, the
fisheries and governments, however not everyone is willing to hand over informa-
tion that they want to analyse themselves. When there is cooperation amongst
the 3 areas more robust adaptation policies could be put in place in terms of
sustainability and allow for planning if there are changes in fish species.

A lot of work needs to be done in terms of sustainability in the fishery sector, there
is a heavy reliance on the use of quotas as a way of combating overfishing. While
there have been improvements such as making the well-being of the fish species a
part of policy as a way of improving fish stocks. To get a more detailed image of all
the factors that are influencing the fish stocks, there needs to be an investigation
of the impacts of both the environmental and ecological factors.
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2.3.3 Environmental and Ecological pressures
Other ways adaptation could be made is in the use of earth system models where
changes in spawning distributions can be predicted up to 5 years in advance (Mies-
ner and Payne, 2018). Environmental and ecological pressure impacts fish stocks
naturally without the added pressures of human activity. While overfishing is al-
ways associated with fisheries or governments, it may not be the only reason for
the decline in fisheries (Hamilton, 2007). Besides the human pressure that is im-
pacting fish species, there are also environmental pressures, such as wind, which
also impacts fishing operations and biological processes such as plankton produc-
tion (Lindegren and Brander, 2018). Climate change adaptation is necessary for
both biological systems as well as human ones, the human aspect is regarding
how fisheries and the associated management will adapt (Lindegren and Brander,
2018). These adaptations intersect in healthy marine ecosystems, and productive
fisheries, allowing fisheries production to be maximized (Lindegren and Brander,
2018). Climate change is another factor that needs to consider that will have an
impact on food systems (Nelson et al., 2016). Other factors need to be considered
such as environmental variation, and species interaction such as the predator/prey
relationship (Hamilton, 2007).

The environmental pressures that drive most fish species are sensitive to changes
in salinity and temperature at depth (Nelson et al., 2016). The changes in tem-
perature and salinity of the water could drive species out of their normal living
environments leading to a reduction in the amount available for fisheries (Nelson
et al., 2016). However, the spatial and temporal spawning distributions of many
fish species are out of the coverage capability of most research cruises, which limits
the understanding of the factors controlling spawning (Ibaibarriaga et al., 2007).
Even the limits of factors as basic as temperature are difficult to determine if
the cruise coverage does not expand over the whole spawning area and farther
(Ibaibarriaga et al., 2007). To understand where these sensitivities are coming
from, they can be sourced back to the climatic factors originating from the dif-
ference in pressure between the Icelandic Low and the Azores High (Mann and
Drinkwater, 1994). This difference is referred to as the NAO, changes in this sys-
tem have been known to cause a wide range of effects within the marine systems
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(Marshall et al., 2001). One species with this influence is the Atlantic cod, as these
factors are known to have an impact on temperature and salinity conditions (Mann
and Drinkwater, 1994). These are associated with poor growth and recruitment
in spring and summer (Mann and Drinkwater, 1994).

Climate change and other environmental pressures are not the only things that
need to be considered ecological pressures need to be included to a degree. It is
a concept that the relationship between predator and prey influence each other’s
distribution is an ancient one (Rose and Leggett, 1990). This is the predation on
prey also needs to be examined also, this occurs at all phases throughout the fish
species life cycle (Paradis et al., 1996). It cannot be ignored that the death of the
larval is the result of two different causes, these being starvation and predation
(Paradis et al., 1996). Starvation occurs in a short time frame when the species has
not reached full maturity, giving the predation factor a greater source of mortality
(Paradis et al., 1996). At each developmental stage the vulnerability to predation
changes depending on the size of the fish and the distribution of the fish (Paradis
et al., 1996). One way the larval fish can overcome this specific type of predator
is the process of rapid growth, this reduces the time in which the larval fish is in a
vulnerability window (Paradis et al., 1996). While this works for the most part the
relationship that exists between the two means that predators are drawn to areas
where the prey are most dense, this is completed by the prey they try to avoid areas
where the predator density is high (Rose and Leggett, 1990). In the prey species
the predation risk can induce the fight or flight response, while this is well known
among land animals there is very little information on the effect on aquatic animals
(Johnsson et al., 2001). An experiment on the effect of the exposure of predators to
prey showed that juvenile Atlantic salmon had an increased beat rate and rainbow
trout showed flight response (Johnsson et al., 2001). The predation factor needs to
be considered when producing a fish stock management system when determining
the volume of a catch. Taking into consideration that the ecological processes are
influenced by climatic conditions they have a link between the predator and prey
relationship (Stenseth et al., 2002). An example of this connection is the match
mismatch hypothesis where the growth and survival of cod larvae depend on how
well their main food source has reproduced (Stenseth et al., 2002). This highlights
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that all the levels of the food chain are interconnected and are sensitive to changes
in the environment.

2.3.4 Mackerel
The seas around Ireland are among the most productive and biologically sensitive
areas in EU waters (Marine Institute). Atlantic mackerel and horseshoe mack-
erel are among the most productive and valuable fish species for Irish Fisheries,
in 2022 Atlantic mackerel sold approximately €78 million and horseshoe mack-
erel approximately €17 million (Marine Institute). Atlantic mackerel is one of the
most abundant and widely distributed migratory fish species in the North Atlantic
Ocean (Jansen and Gislason, 2013). They live their entire life in the pelagic envi-
ronment (Jansen and Gislason, 2013). Mackerel is able to spawn in a wide range of
temperatures (8–18°C), and migrate in temperatures ranging from 5 to 15°C but
prefer temperatures between 9 and 13°C (Reid, 2001; dos Santos Schmidt et al.,
2023). However, the most suitable temperature for egg development seems to
range from 11 to 13°C (Ibaibarriaga et al., 2007; dos Santos Schmidt et al., 2023).
The distribution of mackerel is closely linked to these optimal ambient tempera-
tures, differing between the development stage (dos Santos Schmidt et al., 2023).
Early life stages (eggs and young larvae) drift passively with the currents until
they start undertaking vertical migrations (Jansen and Gislason, 2013). Young
juveniles begin to migrate horizontally, and mature adult individuals perform ex-
tensive horizontal migrations between overwintering spawning and feeding areas
(Jansen and Gislason, 2013).

The Northeastern mackerel spawn from the Mediterranean Sea in the south to the
Faroe Island in the North and from Hatton in the west to Kattegat in the east
(Jansen and Gislason, 2013). Spawning starts in January in the Mediterranean
Sea, February off the Portuguese coast, and ends in July north of Scotland and in
the North Sea (Jansen and Gislason, 2013). During the spawning season, the fish
are found along the whole European shelf break, from the Hebrides in the north to
the Cantabrian Sea in the south (Beare and Reid, 2002). Atlantic mackerel spawn
along the European shelf-edge from the Iberian Peninsula to the west of Scotland
(Bartsch, 2005). Spawning typically starts in January/February in the south and
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then moves progressively north following the seasonal warming, ending around
July to the west of Scotland (Bartsch, 2005). Usually, eggs take about 1 week
to hatch into larvae, at this stage eggs essentially drift passively (Bartsch, 2005).
Ocean warming is expected to continue to affect North-East Atlantic mackerel
spawning activity over the 21st century, with displacements toward the northwest
and differences in amplitude according to emission scenario and time frame (Bruge
et al., 2016). Consequences for the survival of early life stages could certainly be
detrimental when aberrant drift occurs in combination with these changes (Bruge
et al., 2016). Bruge et al. (2016) projections aim to allow the fishing industry
to anticipate the future distribution of mackerel shoals during the spawning pe-
riod, the implications in terms of future international management of the stock,
adaptation, and the planning of future ICES egg surveys.

Working in conjunction with the Marine Institute it was determined that the fish
species that will be of interest will be Atlantic mackerel (Scomber scombrus) and
horseshoe mackerel (Trachurus trachurus). This section will discuss the life cycle
of mackerel with the main focus on the egg stage. It will also discuss previous
studies that have been conducted on this species and what they have done. In my
approach, I will utilize the skill of the initialized hindcast simulations to determine
if there will be any change in the distribution of the mackerel fish stock. This will
be explored through the movement of the stock northward. This will be highlighted
in Chapter 7.

2.4 Effective communication of scientific
research

Scientists communicate to stimulate public understanding of science, including the
process and the result, our data (Coffin, 2021). Communication increases public
support for science (Coffin, 2021). We communicate so our findings can influence
policy, such as testifying at a hearing about anthropogenic sound regulations and
whale migration (Coffin, 2021). A starting point in improving scientific commu-
nication in a public forum is speaking with confidence and reducing apprehension
(Luisi et al., 2019). Recognising that the target audiences do not often come
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equipped with the vocabulary, experiences, at times the motivation to understand
and value the messages that STEM scientists want to convey (Luisi et al., 2019).
Having the awareness that science communication is more effective when consid-
ering the diversity within audiences, persuasive devices, audience attitudes and
beliefs, access to information, and empowerment strategies (Luisi et al., 2019).
It has become apparent that those with communication training as part of their
education are better prepared to communicate their research to various audiences
(Luisi et al., 2019). Communicating with the public focuses the attention on a
specific issue that requires a decision that would benefit from understanding the
related science (Luisi et al., 2019). When communicating research findings with the
public a problem arises with the broad range of specialities that occur (Jamieson,
1996). Finding a balance between two extremes: a warning that is issued too
early based on weak data may scare people and discredit science; a warning that
is issued too late may be useless for preventing a problem or mitigating its effects
(Jamieson, 1996).

At the social level, the success of scientists’ communication depends on their
awareness of the role that their work plays in the public discourse (Fischhoff and
Scheufele, 2013). Although scientists may know more than anyone about the facts
and uncertainties, applications of that science can raise complex ethical, legal, and
social questions, regarding which reasonable people may disagree (Fischhoff and
Scheufele, 2013). As a result, if scientists want to be effective in their commu-
nication, they must understand and address the perspectives of interest groups,
policymakers, businesses, and other players in debates over decisions that require
scientific expertise (Fischhoff and Scheufele, 2013). The social, behavioural, and
decision sciences have documented the many ways in which intuitions about others
and the effectiveness of communication can go wrong—and how those biases grow
with the distance between the parties (Fischhoff and Scheufele, 2013). The unique
ways of looking at the world that make scientists such indispensable sources of
information may also distance them from non-scientists (Fischhoff and Scheufele,
2013). Making the most of what science has to offer society requires the give-and-
take of two-way communication with lay people (Fischhoff and Scheufele, 2013).
Those interactions can be direct, as in classrooms and social settings, or indirect,
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through the mediation of research helping scientists to understand the public and
vice versa (Fischhoff and Scheufele, 2013). Ineffective communication can be costly
to science as well as to society (Fischhoff and Scheufele, 2013).

2.4.1 Different types of communication
There are a variety of ways in which science can be effectively communicated,
such as public forums (i.e. presentations oral and poster), reports in news or
through research articles, and infographics. The scientific information that the
public receives can come from various actors and sources (e.g., scientists, science
PR, science journalists) via various media/channels (e.g., newspapers, TV, press
releases, social media) (Weingart and Guenther, 2016). All of these have different
target audiences in mind but what needs to be clear in all forms is the uncertainties
within the research and approachable at all levels (Coffin, 2021). Using storytelling
or narratives could be one way of tailoring the information to suit the public,
through using a simplified version of the research yet still retaining the main mes-
sage (Negrete and Lartigue, 2004; Dahlstrom, 2014). However, storytelling is often
viewed as baseless or even manipulative (Dahlstrom, 2014). Narratives are easier
to comprehend, and audiences find them more engaging than traditional logical-
scientific communication (Dahlstrom, 2014). The sources from which non-experts
receive most of their science information are already biased toward narrative for-
mats of communication (Dahlstrom, 2014). Storytelling may provide an accurate
way of representing and communicating knowledge, an effective emotional trigger,
a lasting memory structure, an enjoyable medium and a powerful aid for learning
(Negrete and Lartigue, 2004). To present scientific information through stories,
novels, comics and plays should be regarded as an important means to transmit
information in the repertoire of both science teachers and communicators (Negrete
and Lartigue, 2004). Using YouTube for science and environmental communica-
tion has various advantages: it does allow passive consumption of the users, but it
also allows building communities and establishing dialogues with various audiences
(Allgaier, 2019).
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2.4.2 Infographics
Infographics can take various shapes and forms but may be grouped into three
main types of data graphics, maps, and diagrams (Otten et al., 2015). Infograph-
ics can be static, animated or interactive and seek to educate, inform, or persuade
the target audience (Beecher et al., 2023). The data visualizations range from sim-
ple graphs in elementary school classrooms to depictions of uncertainty in election
forecasts in news media, to complex data displays used by scientists and ana-
lysts (Franconeri et al., 2021). Infographics may also address challenges in health
communication to lay audiences with lower levels of literacy or language barriers
(Beecher et al., 2023). Multiple data visualizations, maps, or diagrams can be
combined into an overall visual composition with illustrations and selected text to
convey a larger story or narrative (Otten et al., 2015). Such large posters, panels,
or scrolling images are commonly considered to be infographics, although they
might also be called “story graphics” because they impose a narrative flow on the
data (Otten et al., 2015). When designed effectively, these displays leverage the
human visual system’s massive processing power, allowing rapid foraging through
patterns in data and intuitive communication of those patterns to other viewers
(Franconeri et al., 2021). It has been estimated that 56% of the total world pop-
ulation currently uses the internet compared with only 5% in 2000 (Kunze et al.,
2021). The internet and particularly social media have become essential means of
obtaining information, with a recent study estimating that approximately 75% of
patients make medical decisions influenced by online sources (Kunze et al., 2021).
The widespread use of social media in this context led to the development of alt-
metrics (also known as “alternative metrics”), a tool that measures and quantifies
the impact of research shared on social media (Kunze et al., 2021). Viewers of
infographics should read them out of interest but turn their attention toward the
original article or a source of more detailed information before making changes in
clinical decision-making or practice, as they can be oversimplified (Kunze et al.,
2021).
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2.4.3 Challenges of communicating science
One of the challenges that face scientist is how can our work be effectively commu-
nicated to those who are not directly involved in the field. Whether these are fellow
scientists or the general public. Care needs to be taken when communicating with
audiences that have a mixed understanding of the concepts being discussed. As sci-
entists, we strive to increase the public’s knowledge (Luisi et al., 2019). However,
there is a tendency to forget that not everyone has the same level of knowledge
(Luisi et al., 2019). There is a risk of the public being under-informed or even
misinformed when it comes to scientific issues. Misinformation can be broadly
defined as information that is incorrectly spread to others, possibly by accident.
Disinformation has sometimes been used to denote a specific type of misinforma-
tion that is intentionally false. There is a fine line between being misinformed and
uninformed. Being misinformed is believing in incorrect or counterfactual claims,
while uniformed is not having any awareness of the facts (Scheufele and Krause,
2019). The process by which we gather information about the state of the world
is characterised by assumptions, limitations, extrapolations, and generalisations
(Van Der Bles et al., 2020). This brings imprecision and uncertainties to the facts,
numbers, and scientific hypotheses that express our understanding of the world
around us (Van Der Bles et al., 2020). Even though scientists and other producers
of knowledge are usually well aware of the uncertainties around their findings, these
are often not communicated clearly to the public and other key stakeholders (Van
Der Bles et al., 2020). This lack of transparency could potentially compromise
important decisions people make based on scientific or statistical evidence (Van
Der Bles et al., 2020). Being open and transparent has both risk and reward, it
can restore public trust in science but will also invite criticism (Van Der Bles et al.,
2020). There are two kinds of uncertainty: epistemic uncertainty (uncertainty due
to limitations of the sample or methodology) vs. uncertainty about the future
that arises because we cannot know (i.e., randomness, chance; we cannot know
for certain what will happen tomorrow) (Van Der Bles et al., 2020). Although
uncertainty about the future is a widely acknowledged aspect of forecasts and pre-
dictions, epistemic uncertainty about the past and present is equally important
yet often overlooked in communication (Van Der Bles et al., 2020).
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One example where scientific communication fell short is the vaccination rate in
the United States (Luisi et al., 2019). Through repeated communications recom-
mending vaccines and pointing out the millions of lives they save, this was not
enough to convince people to get them (Luisi et al., 2019). This method of com-
municating is not enough, messages need to be designed to include evidence in a
way that is understandable and appealing to target audiences (Luisi et al., 2019).

2.5 Summary
To tailor predictions for stakeholders’ needs, the identification of what they are
looking for needs to be completed. In this case, working with the Marine Institute,
they identified that they wanted to try to determine if there was a northward shift
in the mackerel stock in the Eastern North Atlantic if this was associated with a
temperature change. As the time scale in which the thesis is decadal, I want to
know if there is prediction skill with the variables. The first step is to find out
what influences temperature and salinity and the time scales that are associated
with it. How the variables react within the model framework. The second step is
to determine what has been done before in terms of using predictions for fisheries.
The timescales on which previous work has been conducted are on a lesser time
scale than what I am working with. This holds the potential for the development
of better models. Finally, how can this information be effectively communicated
to stakeholder needs?

From the literature review in section 2.2 the main influences on temperature are
NAO etc. The decadal variability seen in temperature is referred to as the AMV.
Salinity is influenced by and on longer time scales is the AMOC. The AMOC is one
of the leading drivers in the North Atlantic however the influence it has on tem-
perature or salinity would not be as evident as using the SPG and AMV. Further
detail on the influence on skill they will have can be found in Chapter 6. Knowing
the drivers that impact temperature is an important factor in the spawning of
mackerel. While it is not the only factor that influences mackerel for this study I
take a statistical approach, the environmental and ecological were explored to get
an idea of what else is happening with the stock. it can be forgotten how these
predictions can be used, this is the management of fish stock within private fishing
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companies, as evidenced in the better regulation of policies surrounding the fishing
industry. while trying to factor in every aspect of the fish’s life cycle, the analysis
of temperature on a decadal time scale provides the basis for further research to be
conducted at a later date. It is important how this information is communicated
as it could easily be misinterpreted by those who are not familiar with such work.
while there has been usually a negative reaction to storytelling or narratives, they
can be very useful in communicating scientific research when done right. One of
the easiest yet challenging ways to communicate is through infographics. getting
the balance between visuals and text is often a challenge. After identifying how
each of the variables are represented within prediction systems the final task is
to determine how they are in decadal predictions. Some other information is the
various components that go into these systems that aid in providing prediction
skill, these include ensembles. As discussed, initialisation. It should also be noted
that how these systems are put together and run also impacts the. This will be
further explored in Chapter 3.
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CHAPTER 3
Models and Methods

3.1 The MPI-ESM model and components
There is a wide range of earth system models that exist, and these have mainly
been developed through government funding institutes that have the resources to
dedicate time in the improvement. Among these is a group called initialised Earth
System prediction, these have their set up conditions set to close to observations
and allowed to run for up to 10 years (Meehl et al., 2021). The model that will
be used for this thesis is the Max Planck Institute Earth system model low reso-
lution “MPI-ESM-LR” which consists of 5 systems that interact with each other
(Brune and Baehr, 2020). These are ECHAM6, JSBACH, MPIOM, HAMOCC,
and OASIS which can been seen in Figure 3.1. ECHAM6 is the atmospheric model,
MPIOM is the oceanic physics model, JSBACH is the terrestrial biosphere, and
HAMOCC is the oceans biochemistry. OASIS3 is a separate coupling program that
establishes the link between the different components, where energy, momentum,
water, and CO2 can be exchanged. The initial exploration of decadal predictabil-
ity was using the ECHAM6 data to explore the atmospheric/oceanic aspect of the
research, this was isolated to the MPIOM data which was explored various depth
levels.

The Hamburg Ocean Model, MPI-OM is the successor of the Hamburg Ocean
Primitive Equation (HOPE) model and has undergone significant development in
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recent years (Wetzel et al., 2004). The most notable change is in the treatment of
horizontal discretisation which has undergone transition from a staggered E-grid
to an orthogonal curvilinear C-grid (Wetzel et al., 2004). The treatment of the
sub-grid scale mixing has been improved by the inclusion of a new formulation
of bottom boundary layer slope convection, an isopycnal diffusion scheme, and a
Gent and McWilliams style eddy-induced mixing parameterisation (Wetzel et al.,
2004). The MPI-OM is an ocean general circulation model (OGCM) based on the
primitive equations representing thermodynamic processes (Wetzel et al., 2004).
It can simulate the oceanic circulation from small scales to gyre scales, in response
to atmospheric forcing fields (Wetzel et al., 2004). For an application on horizontal
scales smaller than 1 km, the hydrostatic assumption is no longer valid, and the
model must be reformulated in parts (Wetzel et al., 2004). The use of an ocean
circulation model requires a comprehensive understanding of ocean physics and the
numerical formulation (Wetzel et al., 2004). Many physical processes in the ocean
are still not well understood and therefore only crudely parameterised (Wetzel
et al., 2004).
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Figure 3.1: The Max Plank Institute Earth system model (MPI-ESM) highlighting
the 5 systems and how they interact with each other. ECHAM6 (atmosphere),
MPIOM (ocean physics), JSBACH (terrestrial biosphere) and HAMOCC (ocean’s
biogeochemistry). A separate coupling program, OASIS3, establishes the link
between the different components, in which energy, momentum, water and CO2
can be exchanged (From DKRZ, 2021).

From this model, the following simulations are used assimilation, initialised hind-
cast, and uninitialised historical simulations. These simulations are taken from the
MPI-ESM-LR MPIOM model and are visible in Figure 3.2. Figure 3.2 also high-
lights how each of the components are generated from the model and observations.
The initialised simulations are generated from observational data and allowed to
run for a period of 10-30 years (Schuster et al., 2019). Through initialisation from
the observational data decadal predictions have shown to provide more skill than
climate projections, this is through the exploitation of the arising from internal
variability from the observation data (Volpi et al., 2017). One of the key aspects
of these time-evolving climate predictions is the ability to internally generate the
naturally occurring variability with the natural system (Meehl et al., 2021). When
model components are brought into close correspondence with the observed state
this is referred to as initialisation, the predictions that are started from these states
are referred to as initialised predictions (Meehl et al., 2021).
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Figure 3.2: From the model three components are analysed; Assimilation Sim-
ulation (Internal Variability, External variability, Internal Observations), Unini-
tialised Historical Simulations (Internal Variability, External variability), Ini-
tialised Hindcast Simulations (Internal Variability, External variability, Internal
Observations up to a initialisation then Internal Variability, External variability
after initialisation). Internal Variability generates information from the climate
model (Green box) and External Variability (Orange box).

3.1.1 What are ensembles and lead times
Models use a range of ensembles, forcings, and initialisation which are combined
that allow for a variety of different results and predictions. One of these aspects
that is important in predictive skill and reliability is ensemble size, they range
from anything between 10 and 50 for most prediction systems (Meehl et al., 2021).
Ensembles are generated from the model, were it runs several times using slightly
different starting conditions generating a varying number of members to the en-
semble. Typically, the greater the number of ensembles the higher the anomaly
correlation coefficient (ACC) (Meehl et al., 2021). The initialisation is the inte-
gration of a vast amount of observational information into an Earth System Model
(ESM) which is central to s2d prediction (Meehl et al., 2021). Within the model
components the atmosphere is an area that has the most advanced data assimi-
lation techniques implemented, coupled ocean-atmospheric shows promise (Meehl
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et al., 2021). The coupling has the ability to reduce "initialisation shock" and
improve forecast prediction (Meehl et al., 2021). The lack of observations still
remains an obstacle, a way to get around this is to nudge reanalysis products in
the ocean and atmosphere to use as assimilation simulations (Meehl et al., 2021).
Despite limitations for decadal forecasts, it is possible to estimate the forecast
skill of numerical models by applying statistical methods (Thoma et al., 2015).
Lead-time is defined as the length of time from the issuing of the forecast to the
middle of the running mean window (Payne et al., 2022). In this study the the 2
to 5 year lead times are used to generate multi-year averages. For the initialisation
year 1961 the multi-year average is generated for the time span of 1963-1966. This
is completed for the time frame 1961 to 2008 for both the 4, 6 Chapters and 7
Chapter.

3.1.2 Initialised Hindcast
In recent times there have been vast improvements in the field of decadal predic-
tion skill, one area that has shown significant improvement is the development of
initialised hindcast simulations. Initialised hindcast simulations are retrospective
forecasts that are used to assess the ability of the model systems to predict climate
variability on inter-annual to decadal time scales (Schuster et al., 2019). Forecast
skill is measured by comparing initialized forecasts with observations and indicates
the “ability to predict” the actual evolution of the climate system (Boer et al.,
2016). Initialisation is the process of integrating a vast amount of observational
data into an ESM, this is central to the seasonal to decadal predictions (Schuster
et al., 2019; Meehl et al., 2021). They are allowed to run for a period of 10-30 years,
combining forecast elements from weather and seasonal forecast divisions (initial
conditions) as well as from long-term climate projections (boundary conditions)
(Schuster et al., 2019). Initialised products that have the longest forecast range
available are decadal prediction ensembles, which supply climate information up
to 10 years into the future (Befort et al., 2022). They can be made with a single
model or with multiple models (preferably). Also provides information, together
with targeted simulations, for understanding the physical mechanisms that govern
climate variation, and this is important for the science as well as for engendering
confidence in the forecasts (Boer et al., 2016).
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There are obstacles with initialised simulations, one being the lack of observa-
tions. One way around this issue is to nudge reanalysis products in the ocean and
atmosphere to use as assimilation simulations (Meehl et al., 2021). Another is
model limitations, where the ability of models to reproduce the observed climate
that can lead to model biases (Thoma et al., 2015). If the model is initialised in
the best possible way, the model forecast can be obscured by the drift toward the
model’s own inherent climate (Thoma et al., 2015). One way to take advantage of
the added value of the initialisation carried by decadal predictions is by selecting
those projections that are close to the ensemble mean (Befort et al., 2022). Befort
et al. (2020) highlighted this through constraining projection ensembles there is
significantly more skill at predicting near-surface air temperatures over the North
Atlantic Gyre region compared to the unconstrained climate projection ensemble.
The advantage of using sub-sampling approaches is that the resulting constrained
ensembles are physically consistent as they are based solely on climate projections
which are available for the entire period from the present up to the end of the
century (Befort et al., 2022).

3.1.3 Uninitialised historical simulations (CMIP5 and
CMIP6)

The differences in the CMIP6 experimental protocol compared to that of CMIP5
include more frequent hindcast start dates and larger ensembles of hindcasts for
each start date intended to provide robust estimates of skill (Boer et al., 2016).
Compared with CMIP5, the atmospheric and ocean resolution of CMIP6 improved;
it also includes new and more complex processes, including more complex land sur-
face processes, ice fields, and permafrost which improve the hydrological processes
(Guo et al., 2022). CMIP6 has improved the simulation performance of runoff
compared with CMIP5. However, GCMs still have great potential of further im-
provement in arid regions. Although the deviation still exists, it is gradually
decreasing (Guo et al., 2022). It shows that with the development of the climate
model, it is increasingly suitable to analyse the changes on a large scale (Guo et al.,
2022). In CMIP5, skill improvement through initialization was particularly high
in the North Atlantic subpolar gyre (SPG) region (Borchert et al., 2021). Predic-
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tions of decadal SPG SST variations were found to improve because initialization
synchronized modelled fluctuations in the Atlantic Meridional Overturning Circu-
lation (AMOC) and associated ocean heat transport with observations (Borchert
et al., 2021).

3.2 Post-Processing Methods
For this initial investigation, we analysed simulations with the Max Planck In-
stitute Earth system model (Giorgetta et al., 2013; Mauritsen et al., 2019) in
its low-resolution setup (MPI-ESM-LR) for the time period 1961-2013. In MPI-
ESM-LR, the oceanic component (MPIOM, Jungclaus et al., 2013) is set up with
a nominal horizontal resolution of 1.5◦ globally, actually corresponding to ≈ 1◦ in
the Northeastern Atlantic, and 40 levels vertically. The atmospheric component
(ECHAM6, Stevens et al., 2013) is configured with a spectral resolution T63, cor-
responding to ≈ 1.9◦ horizontal resolution globally, and 47 levels in the vertical.
In this thesis hindcasts and both uninitialised simulations ("CMIP5", "CMIP6")
are analysed for both potential temperature and salinity at the surface. Annual
mean values of model output variables are computed and then used to generate a
2-to-5-year lead year time series for the time frame 1958-2013 for each member.
For all simulations, we compute the 16-member ensemble mean.

3.3 Calculation of the Anomaly Correlation
Coefficient

Many different statistical tools are used to identify physical mechanisms in climate
models, among them the Anomaly Correlation Coefficient (ACC) seen in equation
1; (Dobrynin et al., 2018, 2019; Borchert et al., 2018) and composite plots (Borchert
et al., 2018, 2019). It is a measure of how well the forecast anomalies have rep-
resented the observed anomalies. In this instance, the forecast is the uninitialised
and initialised simulations (v) with the observed being the assimilation simulation
(o) for a given period of time (i). It highlights how well the predicted values from
the forecast model “fit” with the real-life data. The values obtained range from
+1 to -1. Where approaching +1 shows there is a good agreement and the forecast
anomaly has had value. Approaching -1 the agreement is in anti-phase and the
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forecast is unreliable. Anything around 0 there is poor agreement, and the forecast
has had no value.

ACC =
∑n

i=1(vi − v̄)(oi − ō)√∑n
i=1(vi − v̄)2(oi − ō)2

(1)

The initialised and uninitialised simulations quality of the ensemble mean is as-
sessed by calculating skill based on ACCs (Kröger et al., 2018). ACCs of the
initialised and uninitialised simulations are defined with respect to the assimila-
tion simulation (Kröger et al., 2018). Borchert et al. (2018) determined that there
is an indication for significant ACC in the North Atlantic to be connected to low-
frequency ocean dynamics, which break down when the atmosphere contributes
significantly to SST variability. We also calculate the differences of the result-
ing ACCs between the hindcasts and the uninitialised simulations. Typically, the
greater the number of ensembles the higher the anomaly correlation coefficient
(ACC) (Meehl et al., 2021). The composite plots used by Borchert et al. (2018,
2019) were used to distinguish between the effects of warm and cold Ocean Heat
Transport phases or subpolar gyre SST phases on the surface temperature over
Europe. Uncertainty is estimated by a bootstrapping of 500 repetitions with a
significance level of 5% (Wang et al., 2014).

3.4 Investigation into the improvement of skill
using sub-sampling.

The next step is the improvement of prediction skill. One method of improving the
prediction skill is a method known as subsampling. The sub-sampling method was
introduced by Dobrynin et al. (2018) and subsequently used by Dobrynin et al.
(2019) and Düsterhus (2020), who used this algorithm to increase prediction skill
of model prediction. It is an algorithm applied during post-processing that helps
in the improvement of prediction skill in regions where the simulations lack skill.
A predictor is needed that is relevant to the region either atmospheric or oceanic
indices for the region that can aid in the improvement of skill. The sub-selection
of members from hindcast ensembles is based on statistically predicted on chosen
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indices (Dalelane et al., 2020). For the North Atlantic Ocean, I have identified
two predictors that may help in the improvement of skill the SPG, and the AMV.
They both have decadal trends in the North Atlantic Ocean which will improve
the prediction skill on both temperature and salinity at depth. The calculations
of each predictor are outlined in the subsections 3.4.1 and 3.4.2. Two time series
is generated of the target region from the initialised hindcast simulation one with
the ensemble mean and the other containing the individual member means. These
time series are compared with the predictors, the 16 members, which are closest
to the predictors are then selected for a sub-sampled average. This was completed
for the AMV, SPG, and a combination of the two. Then the subsampled grids
were subtracted from the initialised hindcast leaving areas of improvement from
the predictors. Three areas (Southeast, Southwest, and North) from the initialised
hindcast simulation, with little prediction skill underwent further analysis to deter-
mine if the predictors could improve skill in these areas. These sites were analysed
using the assimilation simulation and the initialised hindcast simulation which
were compared to the time series of the SPG and AMV individually. Generated
from the MPIOM component from MPI-ESM-LR for the time frame 1966-2013
with a 2 to 5 years lead time for a depth mean of 6m – 220m for the initialised
hindcast simulation.

3.4.1 Calculation of AMV
The AMV was generated from the assimilation data from the MPI-ESM-LR.
Where the sea surface temperature (SST) was taken from the North Atlantic
region (60◦N,0◦,0◦,−75◦W) and a field mean was created. What this means is that
every grid point of the same field is weighted by area weights obtained by the input
field.

3.4.2 Calculation of SPG
The SPG was calculated using the principal coefficients of empirical orthogonal
function (EOFs) of sea surface height for the subpolar gyre region (60◦N,40◦S,40◦E,−75◦W).
The EOFs were calculated from the anomalies, from these EOFs the principal co-
efficients were calculated. A time series of these principal coefficients of EOFs
was created that will be used in the analysis. The initialised hindcast simulation,
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AMV and SPG were correlated with the assimilation simulation to determine if
there was skill based on the initialisation or through the predictors.

3.5 Tailoring of decadal predictions for
observational data: Stage 1 egg density

The data required for this type of estimate are the abundance of stage I mackerel
eggs, and the water temperature over the whole spawning area and season for this
species (Beare and Reid, 2002). In the context of the western spawning component
of the Northeast Atlantic Mackerel, this covers the western, shelf-edge area from
the corner of the Bay of Biscay to the North of Scotland, and the period from March
to July inclusive (Beare and Reid, 2002). In the context of the western spawning
component of the Northeast Atlantic Mackerel, this covers the western, shelf-edge
area from the corner of the Bay of Biscay to the North of Scotland, and the period
from March to July inclusive (Beare and Reid, 2002). The ICES triannual Atlantic
mackerel and horse mackerel egg survey, conducted from January to July covering
south Portugal to the north of Scotland (Reid, 2001; Ibaibarriaga et al., 2007).
The primary analysis is dedicated to mackerel and horse mackerel eggs, the survey
also provides samples of eggs and larvae for a range of other species, while these
are not routinely sorted and counted (Ibaibarriaga et al., 2007).

Data were available from nine triannual (1992, 1995, 1998, 2001, 2004, 2007, 2010,
2013, 2016, 2019) Mackerel and horse mackerel egg surveys (MEGS, 1992-2019).
The surveys covered the same basic sampling area with some variation between
years in their detail. This survey area has generally been extended over the years
to cover changes in the perception of the spatial scope of mackerel spawning. In the
first three years of the surveys (1992, 1995, 1998) very few samples were collected
north of 55 but the samples extend up to 65 in the final three surveys (2010, 2013,
2016). Data that obtained from these surveys also included surface temperature,
temperature at 20m, salinity at 20m, the species, number, egg per m2. It also
holds the ICES haul ID, survey, country, survey period, ship, depth upper and
lower, this is not as important.

For this analysis two species of mackerel were identified, the first Atlantic (Scomber
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scombrus) and the second Horseshoe (Trachurus trachurus). For each species of
mackerel, the density (egg per m2) and distribution were examined to determine
changes in the range of the stage 1 eggs. The absence of eggs was also considered.
Once this was obtained two areas were highlighted to roughly show the Northern
fishing grounds and a section to the north where the stock could potentially be
spawning. These two areas allowed for the exploration into the mean annual
temperature changed compared to that of the density of the fish stocks.

The next step was to explore these two target areas in the initialised hindcast
simulations in within the MPIOM for a grouped depth of 6m to 220m. Where an
ensemble mean is generated, and this is what is used in the generation of the ACC
plots. The model was initialised each November from 1989 – 2014 with a 2-to-5-
year lead time and contain 16 ensemble members and was detrended. Following
on from this the initialised hindcast simulation was extended forward five years to
2019, where error bars were added.

Finally, the last step was communicating this information to the stakeholders and
relevant individuals who do not necessarily have a background in models and
predictions. An infographic was developed that contained the key pieces of infor-
mation that is needed from both the observations and the model.
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CHAPTER 4
Predictability of the Physical

Mechanisms in the North
Atlantic Ocean

4.1 Introduction
Through consultation with stakeholders, the environmental factors that influence
spawning activity are temperature and salinity. This chapter aims to answer the
first question posed in the 1 chapter. Specifically, whether temperature and salinity
are predictable for the North Atlantic Ocean. In this research, temperatures will
be compared from two models an ocean model and an atmospheric model. From
the ocean model temperature was analysed in two forms the first from sea surface
temperature and the second from the depth profile of 6m. The purpose of this
is to narrow down which model that will be used further in the thesis. The first
half of this question dealing with the mechanism in the North Atlantic Ocean was
dealt with in the 2 chapter.

1. What mechanisms that influence temperature and salinity in the North At-
lantic Ocean, are these predictable?
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4.2 Simulations and methods
This chapter explores the predictability of the North Atlantic Ocean for tempera-
ture and salinity through the analysis of the data highlighted in Figure 4.1. The
variables are analysed on a 2-to-5-year lead time average for the time period 1961
to 2008 with a 16-ensemble member mean. The temperature in this region was
broken down into three different versions of the variable, the first is from the at-
mospheric model (ECHAM6) and the other two from the ocean model (MPIOM).
The ocean model consists of the SST that contains the atmospheric interactions
and the second is the potential temperature oceanic interactions, from the depth
data this will be from 6m. The salinity is from the MPIOM depth data where
the 6m was also used at the near-surface salinity. This initial exploration into the
data will allow us to determine what is predictable in this region and if there is
skill, it will also allow for a comparison between the different types of temperature
data this will allow for the exploration into the variability of the different models.
Within each of the different models, there will also be a comparison between ini-
tialised simulations and uninitialised simulations, this will allow us to see if there
is an improvement in skill from the initialisation. What is expected is that there
will be a skill for SST amongst all the models and little or no skill for the salinity.
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Figure 4.1: Schematic representation of the Anomaly correlation coefficient (ACC)
method for 16 ensemble members for the proposed variables in 1961-2008. The
proposed variables are taken from 2 systems (ECHAM6, MPIOM) in the Max
Plank Institute Earth system model (MPI-ESM). The uninitialised historical sim-
ulations are taken from the CMIP5 and CMIP6 simulations and the initialised
hindcast simulations are taken from decadal prediction. The simulations undergo
statistical analysis where for each ensemble member a 2 to 5 year mean is cal-
culated for each year, followed by an ensemble mean. The final step is the ACC
calculation where the variables for initialised hindcast simulation, uninitialised his-
torical simulation evaluated against assimilation simulation.

4.3 Predictability of Sea Surface temperature
from the ECHAM6 model

The first variable that was looked at was the SST from the atmospheric model
(ECHAM6), this was an initial exploration into what is capable within the model
and to determine if there was a difference between the ocean model (MPIOM). I
have analysed predictability for one initialised hindcast simulation and two unini-
tialised historical simulations ("CMIP5", "CMIP6") for the eastern North Atlantic
Ocean where the assimilation simulation was removed from each only leaving the
prediction skill, the results of the analysis are found in Figure 4.2. The initialised
hindcast simulation shows skill for the majority of the eastern North Atlantic
Ocean this is highlighted by the areas in red, and the areas in blue show that there
is little or no skill for that region (Figure 4.2 a and d). Both the uninitialised his-
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torical simulations show very few areas of skill compared to the initialised hindcast
simulations, I will first discuss the CMIP5 results followed by the CMIP6 results.
Uninitialised CMIP5 simulation (Figure 4.2 b) skill in the subpolar North Atlantic
region. Figure 4.2 c) shows the initialised hindcast simulations compared to the
uninitialised historical simulation CMIP5 and the difference between the two. The
uninitialised CMIP5 simulations have less skill over Eastern North Atlantic with
a small section of skill between Greenland and Iceland. When the initialised hind-
cast simulations are compared to the uninitialised CMIP5 simulations through
initialisation there is an improvement of skill in this region. Uninitialised CMIP6
simulation (Figure 4.2 e) has some skill in the subpolar North Atlaintic region, but
this is not significant. Figure 4.2 f) shows the initialised hindcast simulations com-
pared to the uninitialised historical simulation CMIP6 and the difference between
the two. While this does look promising there is little significant skill for Eastern
North Atlantic, the two main areas that show significant skill are over Greenland
and off Eastern Canada. This is what we would expect from this model as it is
more skilful over large land masses with some skill in small sections of the ocean.
This is clear for West of Ireland, it does show that there is an improvement in the
North Atlantic Ocean using initialised hindcast simulations. When these results
are compared with initialised hindcast simulations it is clear that the uninitialised
CMIP6 simulation is out preformed the CMIP5 simulation.

This allows for an initial investigation into the model systems and how predictabil-
ity in the atmospheric model is represented. While for this thesis the main focus
will now be shifted to the ocean model (MPIOM), this will allow for the predic-
tions be tailored to the fishery industry. To do this a decision needs to be made
on whether the MPIOM SST will be used or the potential temperature (6m) along
side of the salinity (6m) in chapter 7.
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Figure 4.2: Anomaly correlation coefficient (ACC) for SST (ECHAM6) for
initialised hindcast simulation (a and d), uninitialised historical simulation
(CMIP5(b), CMIP6 (e)) evaluated against assimilation at lead years 2-5. The dif-
ference between initialised hindcast simulation - uninitialised historical (CMIP5(c),
CMIP6 (f)) simulation. Generated from the MPI-ESM-LR; 1966-2013; initialised
each November; 2 to 5 years lead time; 16 ensemble members. The red is positive
correlation, the blue is negatively correlated and the black dots show significance.
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4.4 Predictability of Sea Surface temperature
from the MPIOM model

Alternative to the atmospheric SST is the ocean SST from the MPIOM, this has the
ability to generate finer resolution. For this variable I explored the predictability
for the eastern North Atlantic Ocean for initialised hindcast simulations and two
uninitialised historical simulations ("CMIP5", "CMIP6"). These are illustrated in
Figure 4.2 below where the initialised hindcast simulations are Figure 4.2 a and d,
the two uninitialised historical simulations ("CMIP5", "CMIP6") Figure 4.1 b and e
respectfully, the difference between the initialised simulation and the uninitialised
simulation Figure 4.2 c and f respectfully.

The initialised hindcast simulation result for the eastern North Atlantic Ocean
shows significant skill for the majority of the region, with a few areas with little
or no skill (Figure 4.3 a). Taking a closer look at Ireland and the surrounding sea
there is significant skill in the northwest region, as you move southward along the
European shelf there is little or no skill. Moving westward from France towards
Canada there is also reduced skill, a final area that does not show skill is in the
Norwegian Sea. The uninitialised historical simulation CMIP5 shows a completely
different picture, it is mixed more with areas that have particularly good skill
and areas that have little or no skill (Figure 4.3 b). These uninitialised CMIP5
simulations do have areas that have improved skill over the initialised hindcast
simulation, which is visible around Ireland and France where there was little or no
skill now has significant skill (Figure 4.3 c). The same can be seen in the area to
the north of Iceland, but just as there is improvements there is also little to no skill
around Canada and Greenland where there was previously significant skill. When
these two simulations are compared to each other the initialisation has improved
over the uninitialised CMIP5 simulation in the north and the CMIP5 performs
better to the southeast (Figure 4.3 c). The uninitialised CMIP6 simulations have
quite good significant skill for the region with small areas that have little or no
skill (Figure 4.3 e). Similar to the CMIP5 simulation it performs better around
Iceland and Ireland. With a small area in the middle of the North Atlantic Ocean
that has little or no skill, this also occurs around Canada and Greenland. When

62



4.4. Predictability of Sea Surface temperature from the MPIOM model

the initialised hindcast simulations and the uninitialised CMIP6 simulations are
compared it shows that the main improvement occurs in the ocean with little or
no skill around Ireland, Iceland and at the bottom of the region from France to
Canada (Figure 4.3 f).
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Figure 4.3: Anomaly correlation coefficient (ACC) for SST (MPIOM) for ini-
tialised hindcast simulation (a and d), uninitialised historical simulation (CMIP5
(b), CMIP6 (e)) evaluated against assimilation at lead years 2-5. The differ-
ence between initialised hindcast simulation - uninitialised historical (CMIP5 (c),
CMIP6 (f)) simulation. Generated from the MPI-ESM-LR; 1966-2013; initialised
each November; 2 to 5 years lead time; 16 ensemble members. The red is positive
correlation, the blue is negatively correlated and the black dots show significance.

64



4.5. Predictability of Potential temperature from the MPIOM model

4.5 Predictability of Potential temperature
from the MPIOM model

The final version of the temperature variable that will be discussed is the potential
temperature at 6m this is the closest to SST that is available from the depth data.
This main reason to explore this is to get an idea of the similarity to the other
SST from the MPIOM and then in chapters 6, and 7 this variable will be used.
Predictability of potential temperature (6m) for the eastern North Atlantic Ocean
was explored for initialised hindcast simulations and two uninitialised historical
simulations ("CMIP5", "CMIP6"). These are illustrated in Figure 4.4 below where
the initialised hindcast simulations are Figure 4.4 a and d, the two uninitialised
historical simulations ("CMIP5", "CMIP6") Figure 4.4 b and e respectfully, the
difference between the initialised simulation and the uninitialised simulation Figure
4.4 c and f respectfully.

The results obtain for potential temperature (6m) (Figure 4.4) is almost identical
to the SST of the MPIOM model (Figure 4.3), this is what was expected. The
initialised hindcast simulation result for the eastern North Atlantic Ocean shows
significant skill for majority of the region, with a few areas with little or no skill
(Figure 4.4 a and d). Taking a closer look at Ireland and the surround sea there
is significant skill in the northwest region, as you move southward towards France
there is little or no skill. Moving westward from France towards Canada there is
also reduced skill, a final area that does not show skill is north of Iceland. The
uninitialised historical simulation CMIP5 shows a completely different picture, it
is mixed more with areas that have particularly good skill and areas that have
little or no skill (Figure 4.4 b). This uninitialised CMIP5 simulations does have
areas that has improved skill over the initialised hindcast simulation, the is visible
around Ireland and France where there was little or no skill now has significant
skill (Figure 4.4 c). The same can be seen in the area to the north of Iceland, but
just as there is improvements there is also little to no skill around Canada and
Greenland where there was previously significant skill. When these two simulations
are compared to each other the initialisation has improvement over the uninitialised
CMIP5 simulation in the north and the CMIP5 preforms better to the southeast.
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The uninitialised CMIP6 simulations has quite good significant skill for the region
with small areas that have little or no skill (Figure 4.4 e). Similar to the CMIP5
simulation it preforms better around Iceland and Ireland. With a small area in
the middle of the North Atlantic Ocean that has little or no skill, this also occurs
around Canada and Greenland. When the initialised hindcast simulations and the
uninitialised CMIP6 simulations are compared it shows that the main improvement
occurs in the ocean with little or no skill around Ireland, Iceland and at the bottom
of the region from France to Canada (Figure 4.4 f).
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Figure 4.4: Anomaly correlation coefficient (ACC) for Potential Temperature
(MPIOM) (6m) for initialised hindcast simulation (a and d), uninitialised his-
torical simulation (CMIP5(b), CMIP6 (e)) evaluated against assimilation at lead
years 2-5. The difference between initialised hindcast simulation - uninitialised
historical (CMIP5(c), CMIP6 (f)) simulation. Generated from the MPI-ESM-LR;
1966-2013; initialised each November; 2 to 5 years lead time; 16 ensemble mem-
bers. The red is positive correlation, the blue is negatively correlated and the
black dots show significance.
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4.6 Predictability of Salinity from the MPIOM
model

The final variable that is of importance for the Eastern North Atlantic is salinity,
this was taken from the depth data of the MPIOM model where an initial depth
of 6m was explored. This is to give an insight into what predictability is like
for this variable and in the following chapters (6, 7) further analysis will be con-
ducted. The predictability of salinity (6m) for the eastern North Atlantic Ocean
was explored for initialised hindcast simulations and two uninitialised historical
simulations ("CMIP5", "CMIP6"). These are illustrated in Figure 4.5 below where
the initialised hindcast simulations are Figure 4.5 a and d, the two uninitialised
historical simulations ("CMIP5", "CMIP6") Figure 4.5 b and e respectfully, the dif-
ference between the initialised simulation and the uninitialised simulation Figure
4.4 c and f respectfully.

The initialised hindcast simulation result for salinity in the eastern North Atlantic
Ocean shows a similar picture to that of the temperature results of the MPIOM,
there is significant skill for most of the area with small areas of little or no skill
(Figure 4.5 a). These are found north of Iceland, near Canada and Greenland,
for Ireland and its surrounding seas there is a good significant skill. The unini-
tialised CMIP5 simulation shows very little skill at all, with the only areas that
have significant skill being north of Iceland, between Ireland and England (Fig-
ure 4.5 b). When you compare the initialised hindcast simulation to that of the
uninitialised CMIP5 simulation it is clear that for salinity (6m) initialisation has a
vast improvement in skill (Figure 4.5 c). For the uninitialised CMIP6 simulation,
the majority of the region shows little or no skill at all, with the exception of a
few areas that have some significant skill (Figure 4.5 e). Notably between Ireland
and the UK, there is significant skill, also between the UK and Iceland there are
areas of skill with some being significant. Overall when the uninitialised CMIP6
simulations are compared with the initialised hindcast it highlights the benefit
of the initialisation process, as the uninitialised simulations have very little skill
compared to the initialised hindcast simulations which have skill for majority of
the region (Figure 4.5 f).
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Figure 4.5: Anomaly correlation coefficient (ACC) for Salinity (MPIOM) for
initialised hindcast simulation (a and d), uninitialised historical simulation
(CMIP5(b), CMIP6 (e)) evaluated against assimilation at lead years 2-5. The dif-
ference between initialised hindcast simulation - uninitialised historical (CMIP5(c),
CMIP6 (f)) simulation. Generated from the MPI-ESM-LR; 1966-2013; initialised
each November; 2 to 5 years lead time; 16 ensemble members. The red is positive
correlation, the blue is negatively correlated and the black dots show significance.
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4.7 Discussion
In this Chapter 4 SST and salinity are shown to have predictability in the Eastern
North Atlantic in the MPI-ESM-LR and that it is skillful. This is the case for
both initialised hindcast and uninitialised historical ("CMIP6", "CMIP5") simula-
tions. I show predictability on a 2-5-year lead time in the Northeastern Atlantic
for potential temperature and salinity. The salinity initialised hindcast simula-
tions have good skill for the Eastern North Atlantic, SST showed a varying result
amongst the two different models. ECHAM6 SST initialised hindcast simulation
shows some skill but would require further analysis to improve skill in the Eastern
North Atlantic. MPIOM SST initialised hindcast simulations show that there is
skill and that the Eastern North Atlantic is predictable.

Prediction of Eastern North Atlantic Ocean SST ("ECHAM6", "MPIOM"), poten-
tial temperature 6m and salinity 6m can be improved with initialisation as in some
areas the initialised hindcast out-perform the uninitialised CMIP5/CMIP6 simu-
lations. This can be seen in the comparison plots between the initialised hindcast
and uninitialised historical simulations for both temperature and salinity for the
four variables. In Figures 4.2 and 4.3 the last column shows that salinity outper-
forms the initialisation on prediction skill compared to that of the uninitialised
historical simulations ("CMIP5", "CMIP6"). In the uninitialised historical simula-
tions, there was very little or no prediction skill from the model at this depth. The
improvement in skill between the CMIP5 and CMIP6 simulations obtained in our
results is what was also observed by Boer et al. (2016) and Guo et al. (2022).

The first step was to analyse temperature and salinity from the MPI-ESM model
and determine if there was predictability for the Eastern North Atlantic Ocean.
This was explored using the simulations discussed where I can compare initialised
and uninitialised simulations to determine if there is an advantage in one over
the other. From here I can identify regions of poor predictability and use these in
Chapter 6 where they can undergo the sub-sampling process. The results from this
study feed into the sequential chapters where they can be tailored to the Irish seas.
Understanding what decadal predictions will help in how these can be tailored in
Chapter 7 for stakeholders’ needs. Understanding the physical mechanisms in the
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North Atlantic Ocean will help identify interactions that might be useful in Chapter
6 when I am looking at the improvement in prediction skill of both temperature
and salinity. Before either of these can occur, I first to determined if they are
found within the model.

Through this comparison, of the two model outputs, the initialised hindcast sim-
ulations outperform the uninitialised historical simulations. The results shown in
this section were communicated to the stakeholders and through discussion I had
recommended a further exploration of both temperature and salinity. The first
was through an investigation into the predictability at depth as seen in Chapter
5. The following step was to determine if it is possible to improve skill as seen in
Chapter 6. That there is no need to further look at the atmospheric model and
that all further analysis will be conducted using the MPIOM initialised hindcast
simulation and the assimilation simulation.
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CHAPTER 5
Case Study: Predictability at

depth along the Irish coast

5.1 Introduction
The North Atlantic is an extensively studied region regarding the climatological
features involved within the ocean and how they interact with the atmosphere.
Studies have shown that both atmospheric climate variability pattern (North At-
lantic Oscillation) and oceanic climatological features (subpolar gyre) are well rep-
resented within models in both initialised hindcast simulations and uninitialised
historical simulations (Andrews et al., 2015; Athanasiadis et al., 2017; Barcikowska
et al., 2018; Koul et al., 2019). However, there is limited research completed on the
predictability of potential temperature and salinity at depth, both on a global and
a regional scale. Having the ability to predict changes in climate variables such
as temperature and salinity for a target region, informed decisions can be made
about environmental and economic conditions. Koul et al. (2019) demonstrated
that uninitialised historical simulations with the Max Planck Institute Earth sys-
tem model (MPI-ESM) as part of the Coupled Model Intercomparison Project
Phase 5 (CMIP5, Taylor et al., 2012), are well representing large-scale ocean dy-
namics and atmosphere-ocean interaction. The simulations used in Koul et al.
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(2019) form the first part of the Max Planck Institute Grand Ensemble (Maher
et al., 2019). Koul et al. (2019) examined subsurface salinity on three sections in
the North Eastern Atlantic (Rockall Trough, Faroe-Scotland Channel, and North
Sea entrance). It showed that in their uninitialised historical simulations, atmo-
spheric variability eventually influences the evolution of North Sea salinity (Koul
et al., 2019).

Previous work that was conducted on the North Eastern Atlantic was focused on
the Rockall Trough and in particular the Extended Ellett line (Holliday et al.,
2015; Humphreys et al., 2016; Jones et al., 2018). I will use the full length and
depth of the Extended Ellett line, which will act as our most northwest section.
Porcupine Bank West and Goban Spur Southwest comprise two other sections
along the west coast of Ireland as seen in Figure 5.1. All three sections begin on
parts of the continental shelf two being off the west coast of Ireland, Porcupine
Bank and Goban Spur head out to the open ocean (de Graciansky and Poag,
1985; O’Reilly et al., 2022). All three sections are influenced by both the North
Atlantic and different water masses. The Extended Ellett line is a multidecadal
hydrographic transect that is an extension of the Ellett line that is located between
Scotland and Iceland. It runs through the Rockall Trough, Hatton-Rockall Basin,
and Iceland Basin (Holliday et al., 2015; Humphreys et al., 2016; Jones et al.,
2018). The Porcupine Bank has surface salinities that are about 0.05 PSU less
than surface values in deeper water on either side (White, 1997; O’Reilly et al.,
2022). Goban Spur is a submarine plateau 250km southwest of Ireland in the
southwestern Celtic Sea and into the deeper ocean (Dingle and Scrutton, 1979;
de Graciansky and Poag, 1985; Huthnance et al., 2001; Moritz et al., 2021). The
Extended Ellett line captures the surface flow of warm, salty water from the North
Atlantic into the Nordic Seas and half of the returning deep, cold overflow current
(Humphreys et al., 2016). In turn, warm and saline pass through the Rockall
Trough water to the Nordic Seas, transforming it into fresh southward flowing
deep water (Holliday et al., 2020). Several water masses circulate around the
Porcupine Bank and Goban Spur that influence both temperature and salinity
along the shelf. The main water masses that influence both are Eastern North
Atlantic Water (ENAW, 200-700m), and Mediterranean Outflow Water (MOW,
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800-1000m) moving the high saline water mass northward and then returning as
denser water southward (Huthnance et al., 2001; O’Reilly et al., 2022). Lower
Deep Water is thought to circulate cyclonically around Goban Spur, Porcupine
Bank and the entrance to Rockall Trough (Huthnance et al., 2001).

Figure 5.1: The three sections are the EEL (dark orange line) most northward
section, moving south the next section is along Porcupine Bank (PB, red line),
and the most southerly section along Goban Spur (GS, navy line).

Large-scale atmosphere-ocean feedback that occurs in the North Atlantic gives the
ability to improve decadal predictability (Koul et al., 2020; Borchert et al., 2021).
Some studies suggest that the predictability improves on scales of 2-8 years and
others for even up to 10 years into the future (Borchert et al., 2018, 2019; Brune and
Baehr, 2020). The leading cause of inter-annual to decadal variability in salinity
is linked with the variability in the sub-polar gyre (Koul et al., 2020), one of the
regions in the North Atlantic that showed skill improvement with initialisation in
CMIP5 (Borchert et al., 2021).
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To expand on prediction in the North Eastern Atlantic, the uninitialised historical
simulations from both CMIP5 and CMIP phase 6 (CMIP6, Eyring et al., 2016)
from MPI-ESM will be explored, as well as initialised decadal predictions. I will
explore the predictability on a 2-5-year lead time. For this I analyse potential
temperature and salinity at depth along the Irish coast for the Extended Ellett
line, Porcupine Bank, and Goban Spur. The aim is to demonstrate the capability
of a state-of-the-art decadal prediction system to predict the three transects along
the West of Ireland.

5.2 Simulations and methods
For this study I analysed simulations with the Max Planck Institute Earth system
model (Giorgetta et al., 2013; Mauritsen et al., 2019) in its low-resolution setup
(MPI-ESM-LR) for the time period 1961-2013. In MPI-ESM-LR, the oceanic
component (MPIOM, Jungclaus et al., 2013) is setup with a nominal horizontal
resolution of 1.5◦ globally, actually corresponding to ≈ 1◦ in the North Eastern
Atlantic, and 40 levels vertically. The atmospheric component (ECHAM6, Stevens
et al., 2013) is configured with a spectral resolution T63, corresponding to ≈ 1.9◦

horizontal resolution globally, and 47 levels in the vertical.

I use the assimilation simulation with MPI-ESM-LR (Hövel et al., 2022; Brune
and Baehr, 2020), which covers the time period 1958-2019, both as a reference
and for the initialisation of predictions. Oceanic temperature and salinity pro-
files from EN4 (Good et al., 2013) are assimilated monthly with a 16-member
oceanic ensemble Kalman filter (Brune et al., 2015; Polkova et al., 2019) using
the Parallel Data Assimilation Framework (PDAF, Nerger and Hiller, 2013). Si-
multaneously, monthly mean atmospheric temperature, vorticity, divergence (all
only above 900hPa), and sea level pressure from ERA40 (Uppala et al., 2005),
ERA-Interim (Dee et al., 2011), and ERA5 (Hersbach et al., 2020) are nudged
into ECHAM6. CMIP6 external forcing (Eyring et al., 2016) is applied through-
out the whole assimilation, with historical forcing until 2014, and scenario forcing
SSP2-45 thereafter.

For the purpose of our study, I use a 16-member ensemble of initialised predictions
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("hindcasts") that have been started November 1st each year initialised between
1961-2008 from the assimilation with a 2-to-5-year lead time (Hövel et al., 2022).
Thus our analysis time period is between 1966 and 2013. Similar to the assimila-
tion, CMIP6 external forcing is applied to these hindcasts correspondingly.

Uninitialised simulations with MPI-ESM-LR have been part of both CMIP5 (Tay-
lor et al., 2012) and CMIP6 (Eyring et al., 2016) model intercomparisons. In this
study, I use the first 16 members of the CMIP5 MPI Grand Ensemble (Maher
et al., 2019), with CMIP5 historical external forcing until 2005, and CMIP5 sce-
nario RCP4.5 external forcing starting with 2006. I also use the first 16 members of
the CMIP6 MPI Grand Ensemble (Olonscheck et al., 2023), with the same CMIP6
external forcing as in assimilation and hindcasts.

I analyse the hindcasts and both uninitialised simulations ("CMIP5", "CMIP6") for
both potential temperature and salinity at depth. Annual mean values of model
output variables are computed and then used to generate a 2-to-5-year lead time
series for each member. For all simulations, I compute the 16-member ensemble
mean.

For the comparison of the simulations, the time series were detrended, and an
anomaly correlation coefficient (ACC) was estimated, with reference to the assim-
ilation. I also calculate the differences of the resulting ACCs between the hindcasts
and the uninitialised simulations. Significance is estimated by a bootstrapping of
500 repetitions and a significance level of 5% (Wang et al., 2014). The same
approach is used for estimating the skill along the transects.

5.3 Predictability of temperature and salinity
in the North Eastern Atlantic

I first investigate surface predictability of potential temperature and salinity within
the MPI-ESM on a lead time of 2 to 5 years for the North Eastern Atlantic. The
ACC is used to assess skill in both potential temperature and salinity for unini-
tialised historical and initialised hindcast simulations of the MPI-ESM-LR. Then
the initialised hindcast simulations are compared with the uninitialised histori-
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cal simulations (CMIP6) to determine if there was an improvement in skill due
to the initialisation. Initialised hindcast simulations for potential temperature
(Figure 5.2 a) demonstrate that the North Eastern Atlantic shows to have good
predictability apart from a small area of low predictability southwest of Ireland.
The salinity results (Figure 5.2 c) show that for the initialised hindcast simulation
the predictability has greater skill compared to the uninitialised historical sim-
ulation. For the potential temperature (Figure 5.2 b) highlights that there are
advantages for the initialised prediction for the open ocean, while the uninitialised
simulation performs better over the continental shelf close to the Irish coast. In
contrast, for salinity (Figure 5.2 d) the initialisation provides better predictability
for both the open ocean and the continental shelf around the Irish coast.
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Figure 5.2: Shows the anomaly correlation coefficient initialised hindcast against
assimilation for potential temperature (6m) (a) and seawater salinity (6m) (c)
for the North Eastern Atlantic and the difference between initialised hindcast
ACC and uninitialised CMIP6 ACC for the North Eastern Atlantic for potential
temperature (6m) (b) and seawater salinity (6m) (d). The areas shaded in red
highlight the regions that have good predictability, the orange line is the Extended
Ellet Line, the yellow line is the Porcupine Bank transect, and the navy line is the
Goban Spur. The red areas show that there is a positive skill, the blue shows that
there is negative skill and the black dots show that they are significant. Generated
from the MPI-ESM-LR; 1966-2013; initialised each November; 2 to 5 years lead
time; 16 ensemble members.

A common approach for predictions at depth is to calculate a mean over a group of
target depths. In this study I take an alternative approach and analyse predictabil-
ity for three sections off the Irish coast: Extended Ellet Line (EEL), Porcupine
Bank (PB), and Goban Spur (GS). The three sections are highlighted in Figure
5.1, together with the surface prediction skill at each of the locations. Overall
there is predictability (using the assimilation as reference) in both temperature
and salinity along the West of Ireland as seen in Figure 5.1, this can give an in-
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sight into what I could expect to see in the transects. In the next step, I investigate
the three transects at depth.

5.4 Water Mass Analysis in the model along
the three transects

The temperature-salinity diagrams for the three locations (EEL Figure 5.3, Porcu-
pine Bank Figure 5.4, Goban Spur Figure5.5) highlight that the initialised hindcast
simulations differ from the uninitialised simulations. These initialised hindcasts
are closer to the assimilation than uninitialised historical simulations for all three
transects. However, the CMIP5 and CMIP6 simulations show that they are po-
tentially picking up the MOW and Labrador Sea water movements at the transect
of the PB (Figure 5.4) and the GS (Figure 5.5). The uninitialised historical sim-
ulations show a more chaotic pattern in the upper ocean. While assimilation and
initialised hindcast simulations are not identical, they do show that at the surface
the water potential temperatures are higher and more saline compared to lower
depths. The salinity range is confined to a particular range for the assimilation
and hindcast simulations, but for the uninitialised ("CMIP5", "CMIP6") simula-
tions the range is much larger. From Figures 5.3, 5.4, 5.5 I observe that it is clear
that the long-term memory could be assigned to water masses in the area and this
can be potentially beneficial to the initialised hindcast simulations for increasing
the prediction skill.
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Figure 5.3: Potential temperature-salinity diagram using the assimilation (a), ini-
tialised hindcast (b), uninitialised historical (CMIP5) (c), uninitialised historical
(CMIP6) (d), for the EEL. The colours on the diagram indicate the depth which
Orange (6 - 82m), Yellow (100- 362m), Green (420 - 1085m), Blue (1220 - 2525m),
Darkgreen (2785 - 5720m). Generated from the MPI-ESM-LR; 1966-2013; ini-
tialised each November; 2 to 5 years led time; 16 ensemble members.
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5.4. Water Mass Analysis in the model along the three transects

Figure 5.4: Potential temperature-salinity diagram using the assimilation (a), ini-
tialised hindcast (b), uninitialised historical (CMIP5) (c), uninitialised historical
(CMIP6) (d), for the Porcupine Bank. The colours on the diagram indicate the
depth which Orange (6 - 82m), Yellow (100- 362m), Green (420 - 1085m), Blue
(1220 - 2525m), Darkgreen (2785 - 5720m). On plots (c) and (d) show the water
masses ENAW, and the LSW. Generated from the MPI-ESM-LR; 1966-2013; ini-
tialised each November; 2 to 5 years led time; 16 ensemble members.
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5.5. Predictability of Potential Temperature along the three transects

Figure 5.5: Potential temperature-salinity diagram using the assimilation (a), ini-
tialised hindcast (b), uninitialised historical (CMIP5) (c), uninitialised historical
(CMIP6) (d), for the Goban Spur. The colours on the diagram indicate the depth
which Orange (6 - 82m), Yellow (100- 362m), Green (420 - 1085m), Blue (1220 -
2525m), Darkgreen (2785 - 5720m). On plots (c) and (d) show the water masses
ENAW, MOW, and the LSW. Generated from the MPI-ESM-LR; 1966-2013; ini-
tialised each November; 2 to 5 years led time; 16 ensemble members.

5.5 Predictability of Potential Temperature
along the three transects

Building on the water mass analysis and the predictability of the surface I inves-
tigate whether the model can reproduce the potential temperature values in the
regions. I know that temperatures will decrease towards the north and west. Near
49°N the temperatures can reach about 16°C at the surface. At depth, the values
range in winter from 10-11°C to up to about 700 m. Below that they decrease
steadily to below 4°C at 2000 m (Huthnance et al., 2001). The closest section
that is at this slope is that of the Goban Spur. I expect that while the water
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moves north- and westward (away from the slope) the potential temperature will
decrease.

To estimate the capability of the model, I compare the absolute values of the po-
tential temperature from the assimilation simulation, which by design is the closest
to the observations, with the uninitialised historical ("CMIP5", "CMIP6") and ini-
tialised hindcast simulations. The results of the three sections are illustrated in
Figures 5.6,5.7,5.8. Overall results show that the model is within the limits of
values that have been observed for the regions, that as water is moving north-
ward there is a decrease in temperature. Across the three transects the hindcast
simulations are almost identical with the assimilation simulations with the upper
ocean showing a warmer temperature. Both the uninitialised historical ("CMIP5",
"CMIP6") simulations overestimate potential temperature by approximately 1.5
degrees Celsius above the assimilation for the EEL. At PB, all the simulations
appear to be within 0.5 degrees Celsius of the assimilation. Similarly, the same is
true for the GS section except that the CMIP5 results are approximately 2 degrees
warmer compared to the other results for this section. It is possible that unini-
tialised historical simulations could be overestimating the potential temperature
for these regions. Due to their initialisation, the hindcast is slightly more accurate
than the uninitialised historical simulations. Following on from this, I want to de-
termine if there is an improvement in prediction skill between the two simulations
because of this initialisation.
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5.5. Predictability of Potential Temperature along the three transects

Figure 5.6: Potential temperature values from the model for the assimilation (a),
initialised hindcast (b), uninitialised historical (CMIP5) (c), uninitialised historical
(CMIP6) (d) simulations along the EEL transects. The red areas show that there
is positive skill, the blue shows that there is negative skill and the black dots show
that they are significant. Generated from the MPI-ESM-LR; 1966-2013; initialised
each November; 2 to 5 years lead time; 16 ensemble members.
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5.5. Predictability of Potential Temperature along the three transects

Figure 5.7: Potential temperature values from the model for the assimilation (a),
initialised hindcast (b), uninitialised historical (CMIP5) (c), uninitialised historical
(CMIP6) (d) simulations along the Porcupine Bank transects. The red areas show
that there is positive skill, the blue shows that there is negative skill and the black
dots show that they are significant. Generated from the MPI-ESM-LR; 1966-2013;
initialised each November; 2 to 5 years lead time; 16 ensemble members.
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5.5. Predictability of Potential Temperature along the three transects

Figure 5.8: Potential temperature values from the model for the assimilation (a),
initialised hindcast (b), uninitialised historical (CMIP5) (c), uninitialised historical
(CMIP6) (d) simulations along the Goban Spur transects. The red areas show that
there is positive skill, the blue shows that there is negative skill and the black dots
show that they are significant. Generated from the MPI-ESM-LR; 1966-2013;
initialised each November; 2 to 5 years lead time; 16 ensemble members.

In a next step I analyse the predictability for the three transects, at the EEL
(Figure 5.9 a, d, g), the PB (Figure 5.9 b, e, h), and the GS (Figure 5.9 c, f, i).
A common theme for the initialised hindcast simulation for the three transects
is the predictability at depth. Starting with the EEL (Figure 5.9 a) there is a
region of lower predictability in the depth of about 1200 m. Above this level and
in the Iceland basin also partly below this level, the predictability is high. In
the CMIP6 simulation (Figure 5.9 d), I find high predictability only in the upper
1000 m, with even higher values than in the initialised simulation (Figure 5.9
g). At the PB, the initialised simulations (Figure 5.9 b) show a clear region of
predictability for the upper 300 to 400 m, and below 1500 m. In between these
depths, the predictability is lower. In the uninitialised CMIP6 simulations (Figure
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5.5. Predictability of Potential Temperature along the three transects

5.9 e) the main areas of high predictability can be found just below the surface
layer. Consequently, comparing the two simulations (Figure 5.9 h) shows that
initialisation is mainly beneficial for the surface layer and the depth. For the GS
(Figure 5.9 c), the initialised simulations show consistently high predictability for
most depths, while in the uninitialised CMIP6 simulation, high predictability is
confined to the upper 1400 m only (Figure 5.9 f). Consequently, initialisation is
beneficial to a higher prediction skill below 1400 m (Figure 5.9 i).
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5.5. Predictability of Potential Temperature along the three transects

Figure 5.9: Anomaly correlation coefficient against assimilation for potential tem-
perature at lead years 2 to 5, using the initialised hindcast (a-c), uninitialised
historical (CMIP6) (d-f), hindcast - uninitialised historical (g-i) for the EEL, Por-
cupine Bank, and Goban Spur. The red areas show that there is positive skill, the
blue shows that there is negative skill and the black dots show that they are signif-
icant. Generated from the MPI-ESM-LR; 1966-2013; initialised each November; 2
to 5 years lead time; 16 ensemble members.

When I investigate the uninitialised CMIP5 simulations Figure 5.10 I see that their
results are generally similar to the uninitialised CMIP6 simulations (Figure 5.9).
The main difference is that the upper layer of predictability for the PB and the
GS (Figure 5.10 b, c) extends deeper, but with smaller values. Compared to the
initialised simulation again the initialised hindcast dominates in the depth, while
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5.6. Predictability Sea Water Salinity along the three transects

in the upper layers, an inconsistent picture emerged (Figure 5.10 d, e, f).

Figure 5.10: Anomaly correlation coefficient against assimilation for potential tem-
perature at lead years 2 to 5, using uninitialised historical (CMIP5) (a-c), hindcast
- uninitialised historical (d-f) for the EEL, Porcupine Bank, and Goban Spur. The
red areas show that there is positive skill, the blue shows that there is negative skill
and the black dots show that they are significant. Generated from the MPI-ESM-
LR; 1966-2013; initialised each November; 2 to 5 years lead time; 16 ensemble
members.

5.6 Predictability Sea Water Salinity along the
three transects

I investigate whether the model could reproduce the salinity values that occur in
these regions. I expect that the water at the most southern transect (GS) will be
the most saline of the three transects. Salinity should be reducing when the water
moves further north through the PB towards the EEL.

What the salinity values (Figures 5.11, 5.12, 5.13) show that as the water moves
northward, it does become slightly less saline for assimilation, initialised hind-
cast and uninitialised historical (CMIP5/6) simulations. The hindcast simulations
(Figure 5.11 b, 5.12 b, 5.13 b) for the three sections are the ones that are for
salinity almost identical to the assimilation simulations (Figure 5.9 a, 5.10 a, 5.11
a). For the EEL the CMIP5 (Figure 5.11 c) and CMIP6 (Figure 5.11 d) simulation
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5.6. Predictability Sea Water Salinity along the three transects

also closely replicate the assimilation with the lowest depths being a bit fresher.
This also follows for PB transect where it is fresher at lower levels but a broader
saline range. Goban CMIP5 (Figure 5.13 c) and CMIP6 (Figure 5.13 d) results
show a more saline region in the upper ocean. In contrast to the initialised sim-
ulations which have a high saline depth of roughly less than 1000 m, both of the
uninitialised historical simulations extended to a depth of about 1300 m. The ini-
tialised hindcasts are highly saline to the west at the surface, for the uninitialised
historical simulations show this area to be a fresher region.

Figure 5.11: Sea water salinity values from the model for the assimilation (a),
hindcast (b), uninitialised historical (CMIP5) (c), uninitialised historical (CMIP5)
(d) simulations along the EEL. Generated from the MPI-ESM-LR; 1966-2013;
initialised each November; 2 to 5 years led time; 16 ensemble members.
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5.6. Predictability Sea Water Salinity along the three transects

Figure 5.12: Sea water salinity values from the model for the assimilation (a),
hindcast (b), uninitialised historical (CMIP5) (c), uninitialised historical (CMIP5)
(d) simulations along the Porcupine Bank. Generated from the MPI-ESM-LR;
1966-2013; initialised each November; 2 to 5 years led time; 16 ensemble members.
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5.6. Predictability Sea Water Salinity along the three transects

Figure 5.13: Sea water salinity values from the model for the assimilation (a),
hindcast (b), uninitialised historical (CMIP5) (c), uninitialised historical (CMIP5)
(d) simulations along the Goban Spur. Generated from the MPI-ESM-LR; 1966-
2013; initialised each November; 2 to 5 years led time; 16 ensemble members.

Similar to the potential temperature, the salinity values are compared for the ini-
tialised hindcasts, the CMIP6 (Figure 5.14) and CMIP5 (Figure 5.15) simulations.
The initialised hindcasts for the three transects (EEL, PB, GS) (Figure 5.14 a, b,
c) highlight that there is skill at most depth levels. Initialised hindcasts for EEL
(Figure 5.14 a) show a region with little or low skill at a depth of about 1200 m, but
besides that they demonstrate a consistently high predictability along the depth
range. In contrast to this, the uninitialised CMIP6 simulation has little skill in the
surface layer and at depth (Figure 5.15 d). Comparing the two simulations shows
(Figure 5.15 g) that the initialised hindcasts perform better in the upper couple
of hundred metres and in the deeper depths. Along the PB (Figure 5.15 b) the
initialised hindcasts have significant skill for the majority of the transect except for
its central part. The same transect within the CMIP6 simulation (Figure 5.15 e)

92



5.6. Predictability Sea Water Salinity along the three transects

shows two bands with high prediction skill in the upper layers. The difference (Fig-
ure 5.15h) between the initialised hindcast and the CMIP6 simulation illustrates
that initialisation outperforms the uninitialised simulations everywhere apart from
the two distinct bands. For the GS (Figure 5.15 c) there is a high predictability
of overall depth in the initialised prediction. In contrast, the CMIP6 results for
the GS (Figure 5.15 f) show low predictability in the surface layer, and at a depth
of about 1400 m. In the comparison (Figure 5.14 i) I see that the initialisation
benefits prediction skill in these two layers.

Figure 5.14: Anomaly correlation coefficient against assimilation for sea water
salinity at lead years 2 to 5, using the initialised hindcast (a-c), uninitialised histor-
ical (CMIP6) (d-f), hindcast - uninitialised historical (g-i) for the EEL, Porcupine
Bank, and Goban Spur. The red areas show that there is positive skill, the blue
shows that there is negative skill and the black dots show that they are significant.
Generated from the MPI-ESM-LR; 1966-2013; initialised each November; 2 to 5
years lead time; 16 ensemble members.

Figure (5.15 a, b, c) shows the ACC results for the CMIP5 simulation along the
three transects. There is very little skill at the surface, but high skill at depths
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5.7. Discussion

down toward 1400 m. In comparison with the initialised hindcasts at the EEL
(Figure 5.15 d), the main increase in skill due to initialisation can be found in
the depth and at the surface. For the PB (Figure 5.15 e) and the GS (Figure
5.15 f) I find a similar result. In general it can be said that between the CMIP5
and CMIP6 simulation the general pattern of skill improvement by initialisation
is comparable, but in the details it shows considerable differences. Especially it
shows that the CMIP5 simulation has much less consistent skill in that area than
the CMIP6.

Figure 5.15: Anomaly correlation coefficient against assimilation for sea water
salinity at lead years 2 to 5, using uninitialised historical (CMIP5) (a-c), hindcast
- uninitialised historical (d-f), for the EEL, Porcupine Bank, and Goban Spur. The
red areas show that there is positive skill, the blue shows that there is negative skill
and the black dots show that they are significant. Generated from the MPI-ESM-
LR; 1966-2013; initialised each November; 2 to 5 years lead time; 16 ensemble
members.

5.7 Discussion
The main aim for the study is to determine if the predictability seen for surface
variables in the North Atlantic can be replicated for potential temperature and
salinity in the North Eastern Atlantic at depth. Using two uninitialised historical
simulations and one set of initialised hindcast simulations I have assessed the
predictability at depth for the three transects (EEL, PB, and GS) using MPI-
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ESM. I show that there is predictability on a 2-5-year lead time in the North
Eastern Atlantic for potential temperature and salinity.

Prediction of North Atlantic potential temperature and salinity can be improved
with initialisation as in some areas the initialised hindcast outperforms the CMIP5/CMIP6
simulations. This can be seen in the comparison plots between the initialised hind-
cast and uninitialised historical simulations for both temperature and salinity along
the three transects. Three areas of importance were identified as the Extended El-
lett line in the north, the Porcupine Bank transect in the west, and Goban Spur
to the south along the Irish coast. The last row of plots on Figures 5.9 and 5.10
show that for temperature the main improvements due to initialisation occur at
the lower depths and that the upper ocean is well represented in all of the simula-
tions. For salinity (Figures 5.12 and 5.13) the results show that improvements in
prediction skill due to initialisation are not confined to larger depths, but also show
up at the surface. Taking a look at the absolute values temperature (Figures 5.6,
5.7, 5.8), salinity (Figures 5.11, 5.12, 5.13), and the temperature-salinity diagram
(Figures 5.3, 5.4, 5.5) show a better representation for both variables by the ini-
tialised simulation. This is especially at the surface in the North Eastern Atlantic.
Overall the results show that there is an improved predictability and representa-
tion at depth for both variables with the initialisation, with better performance
for salinity than temperature.

The results that I obtained for near-surface potential temperature are in line with
the current research. Borchert et al. (2018) explored this region looking at the
sea surface temperature (SST) and its connection with the ocean heat transport
and the Atlantic Multidecadal Variability and how they are interconnected with
each other. It was determined that on longer timescales SST is influenced and im-
pacted by ocean heat transport. Koul et al. (2019) explored uninitialised historical
simulations to show that open-ocean circulation can have an impact on North Sea
inflow. While Koul et al. (2019) investigated the historical simulations I went a
step further to determine if there is predictability along our three transects, by us-
ing initialised hindcast and uninitialised historical simulations. These simulations
were compared with the assimilation simulation, as a first step I looked at the
values that each simulation had generated followed by the temperature-salinity
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diagram then moved on to the prediction skill. This has produced results that
have highlighted that initialised simulations generally have improved predictabil-
ity compared with uninitialised simulations. By extending our analysis further to
the south compared to Koul et al. (2019), I show that also in these regions, the
potential temperature and salinity are well represented in the model. I analysed
a time period of 1961 to 2013, on a 2-to-5-year lead time to compare the results
with two uninitialised simulations. A future target would be to extend the time
frame as well as lead times. While these results look promising it should be noted
that due to limited observations, any references for the sub-surface ocean prior to
2004 might not be as reliable as they are since then with the Argo observational
network in place (Wong et al., 2020). Nevertheless, the results showed promising
insights into the ability of initialised simulations, even when discussions about the
benefit of initialisation are getting more traction (Borchert et al., 2021).

The ability to predict changes in the future fish stock will support adaptation for its
management, which is of vast importance for international coastal communities.
Through the analysis of both temperature and salinity at depth, I can identify
habitable zones and spawning grounds that may be predictable. It will also support
a better understanding of the life cycle and distribution of future fish habitats. Its
potential has already been demonstrated for the blue whiting (Miesner and Payne,
2018) and cod (Koul et al., 2021) in the wider North Eastern Atlantic context.

5.8 Conclusions
In this study, I explored the predictability within the Eastern North Atlantic at
depth using three transects the Extended Ellett Line, the Porcupine Bank, and
Goban Spur. To achieve this I first determined validity in the temperature/salinity-
space of the initialised and uninitialised simulations by comparing it to an assim-
ilation simulation. I followed this by determining the predictability of the two
categories of simulations and determining the impact of initialisation for the three
transects. I found that;

1. there is multi-year memory in the water mass properties of the initialised
predictions
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2. that prediction skill depends on variable, depth, and external forcing scheme

3. that improvements in prediction skill in the initialised system over unini-
tialised simulations are mostly in the upper ocean above 300 m depth and
in the deep ocean below 1500 m depth

4. that these improvements are more pronounced in salinity than in tempera-
ture
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CHAPTER 6
Investigation into improving

prediction skill for the Eastern
North Atlantic

6.1 Introduction
In chapters 4 the first investigation explored predictability in the Eastern North
Atlantic for surface temperature and salinity. Using the initialised hindcast simu-
lations from MPI-ESM-LR, the first step in the improvement of skill was to see, if
expanding the depth profile could be beneficial. Using the initialised hindcast sim-
ulations a mean of temperature and salinity was obtained over 6m to 220m for the
Eastern North Atlantic. The second step is to determine how correlated (against
the assimilation simulation) the predictors are. The AMV is highly correlated in
the Eastern North Atlantic and the SPG is highly correlated in the Norwegian
Sea. When talking about improving prediction skill, it is important to understand
that when referring to the correlation of the predictors it is the connection at that
location. Initialised hindcast simulations can have skill (which is measured with
ACC and the significance thereof), while the combination is the improved skill
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(or not improved, depending). The goal of this section encompasses two distinct
aspects of improving predictability in the Eastern North Atlantic.

1. Can the prediction skill of the initialised hindcast simulation be improved
upon using two predictors?

2. Can the prediction skill of the initialised hindcast simulation be improved
upon using grouped depth mean?

6.2 Simulations and methods
To answer these questions, I will be using both temperature and salinity from
the initialised hindcast simulation like what was completed in Chapter 4. I use
a mean of a group depth (6-220m) to determine if there was an improvement in
skill. Where they undergo the ACC and will highlight any areas that have skill
because of the initialisation. Next, there needs to be an understanding of how the
two predictors are correlated with the Eastern North Atlantic. For each location,
the predictor was correlated with the assimilation simulation to determine if it
is connected. I will answer the two questions posed by looking at the potential
temperature first followed by salinity.

The investigation into the potential improvement of prediction skills in the East-
ern North Atlantic Ocean has begun in terms of exploring the impact the SPG
and AMV have on temperature and salinity at depth. While it is important to
determine if a grouped depth mean of 6-220m can provide an improvement com-
pared to using one level i.e. the surface. This was completed using the initialised
hindcast simulations. The initialised hindcast simulations have shown to have skill
in the North Atlantic Ocean and this is also significant. There are a few regions
that do appear to have little skill. Using the regions identified with little skill
they will undergo the sub-sampling process Figure 6.1. The sub-sampling method
was introduced by Dobrynin et al. (2018), and subsequently used by Dobrynin
et al. (2019) and Düsterhus (2020), who used this algorithm to increase prediction
skill of model prediction. It occurs during post-processing which helps in the im-
provement of prediction skills. With the identification of those ensemble members
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who promise a better prediction skill on a climatic variable. This is achieved by
creating statistical predictors for each single prediction, which are then compared
to the ensemble members. The members, which are closest to the predictors are
then selected for a sub-sampled average.

To get into further detail on the change of predictability based on the predictors
the initial investigation explored the correlation between initialised hindcast sim-
ulations versus assimilation simulations, followed by one of the predictors (SPG,
AMV) versus assimilation simulations, then the difference between the two. This
should highlight areas in which the predictor performs the initialised hindcast sim-
ulations and potentially be used in the improvement of skill in a target area. Three
areas were identified with little or no skill in the initialised hindcast simulations;
two were in the south on either side of the North Atlantic Ocean, and the final
area was to the north around Iceland. At these locations, the predictors do show
some promise.
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Figure 6.1: Schematic representation of the sub-sampling method 16 ensemble
members for temperature and salinity from the initialised hindcast simulations in
1961-2008, for a 2 to 5 year lead time. The data is taken from the decadal pre-
diction system where the full ensemble series undergoes statistical analysis, the
assimilation simulation is used to create the two predictor time-series. The two
predictor time-series are correlated with the Northeastern Atlantic Ocean at each
location over the time frame. In every location and time we start with the output
of the 16 ensemble members generated by initialised hindcast simulations and only
select those members in which they agree with the predictor. Those selected en-
semble members are then correlated with the Northeastern Atlantic Ocean at each
location over the time frame.The final step highlighted three locations from the
Northeastern Atlantic Ocean that had no skill through the 16 ensemble members,
explored if the 8 sub-selected ensembles members improves skill.

6.3 Improving prediction skill for potential
temperature

The initialised hindcast simulation was evaluated against the assimilation simula-
tion from the MPI-ESM-LR for the time frame 1966-2013 on a 2 to 5 year lead
time. Next I the correlation between the two predictors (SPG and AMV) with the
assimilation simulation. These results can be found in figure 6.2, I will discuss the
initialised hindcast simulation, then AMV followed by the SPG. The initialised
hindcast (figure 6.2 a, c) already shows to be quite skillful and this is significant.
The AMV shows that the majority of the region has good skill and that this is
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significant. Some areas have little or no skill there is a large section off the coast
of Greenland. The SPG plot shows a different story. There was a smaller area of
significant positive skill mainly in the southern section, on the shelf and Norwe-
gian Sea. For the open Atlantic Ocean, there was very little or low skill. From
figure 6.2, some small areas are highlighted in the yellow boxes show to have that
have little or no skill, two in the south of the region and one in the north for the
initialised hindcast simulations. The two in the south will be referred to as the
Southeast which is negatively correlated and the Southwest. The north area is the
region in the Norwegian Sea, these will be further analysed to determine if there is
any improvement in skill through sub-sampling. While there appears to be some
improvement in these areas through using either of the predictors. Before that
is completed, I will explore how the sub-selection using both of these predictors
has an impact on the prediction skill compared to the initialised hindcast for the
North East Atlantic Ocean.

102



6.3. Improving prediction skill for potential temperature

Figure 6.2: ACCs for Potential Temperature for initialised hindcast simulation (a,
c), AMV (b), SPG (d) evaluated against assimilation at lead years 2-5. The differ-
ence between initialised hindcast simulation - uninitialised historical (CMIP5(c),
CMIP6 (f)) simulation. Generated from the MPI-ESM-LR; 1966-2013; initialised
each November; 2 to 5 years lead time; 16 ensemble members; depth mean 6m –
220m. The red is positive correlation, the blue is negatively correlated and the
black dots show significance. The yellow hatching shows whether there is a posi-
tive or negative correlation between the initialised hindcast simulations (a, c) and
the predictors (b, d).
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The next step of the analysis was to determine if the sub-sampled temperature
field (8 ensemble members), based on the predictors (SPG, AMV) showed any
improvement on the initialised hindcast simulations (16 ensemble members). From
the figure 6.3 it is clear that for this region there is a lot of significant skill for this
region for the initialised hindcast simulation. To get an idea of how correlated the
sub-sampled SPG is with the assimilation simulation this is highlighted in figure 6.3
b. There is a high correlation the for the majority of the Eastern North Atlantic,
there are a few areas in which skill is very low these being in the south and a bit to
the west. When this sub-sampled SPG is compared with the initialised hindcast
simulation figure 6.3 (c), it highlights the areas that show some improvement.
One such area is in the Norwegian Sea, with some skill improvement in the south.
Figure 6.3 (e) shows the correlation between the assimilation simulation and the
sub-sampled AMV for the Eastern North Atlantic. It shows that there is good
skill for the areas with little or low correlation. Figure 6.3 (f), is the sub-sampled
AMV compared with the initialised hindcast simulations. What it highlights is
that for the Eastern North Atlantic, the sub-sampled ensemble provides a slight
improvement in skill. Knowing that the sub-sample ensembles can improve skill
in certain areas of the Eastern North Atlantic on their own. The final step is to
determine if the combination of both predictors can improve skill. Where for each
coordinate it chooses the closest 8 ensemble members from either the SPG or the
AMV this is highlighted in figure 6.3 (g, h, i). Figure 6.3 (g) is the initialised
hindcast simulation (16 ensembles), and figure 6.3 (h) is the combined sub-sample
(SPG + AMV). What this combination of 8 ensembles highlights is that this duo
does not work for the improvement of skill (Figure 6.3 i). Moving forward this
combination will not be considered when trying to improve the skill in the three
locations highlighted in figure 6.3.
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Figure 6.3: Improvement of the prediction of Potential Temperature in the East-
ern North Atlantic due to more accurate prediction of the AMV, SPG, and both.
ACCs for Potential Temperature for initialised hindcast simulation (16 ensemble
members) (a, d, g), Sub-sampled initialised hindcast simulation (8 ensemble mem-
bers) (AMV (b), SPG (e), both(h)) evaluated against assimilation at lead years
2-5. The difference between initialised hindcast simulation sub-sampled initialised
hindcast simulation (8 ensemble members) (SPG (c), AMV (f), both (i)) simula-
tion. Generated from the MPI-ESM-LR; 1966-2013; initialised each November; 2
to 5 years lead time; depth mean 6m – 220m. The red is positive correlation, the
blue is negatively correlated and the black dots show significance. Red dots in the
right column indicate regions that became significant after sub-sampling.105
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The potential temperature results are highlighted in figure 6.4 with the first col-
umn being the comparison between the assimilation simulation and the initialised
hindcast simulation, the middle column being the SPG compared with the assimi-
lation simulation and the last column being the AMV compared to the assimilation
simulation. Figure 6.4 (a, b, c) shows the results for the southeast location, the
comparison shows that the two correlate -0.315. This is quite a poor correlation
and shows that the initialised hindcast simulations have no skill along this sec-
tion as previously discussed. When the sub-sampled SPG time series is compared
to the assimilation simulation it shows no improvement in the skill going up to
-0.323. The AMV time series shows some promising results with a correlation of
-0.177, while this is not a great improvement in skill it is still an improvement
over the initialised hindcast simulations. The southwest (figure 6.4 d, e, f) results
show that the comparison between the assimilation simulation and the initialised
hindcast simulation has a correlation value of 0.007. This is an improvement on
the previous site which was negatively correlated and this site is slightly positively
correlated. While this result is promising I can see if I can improve upon the skill
using the SPG and the AMV, following the previous site I expect the AMV to
show improvement over the SPG. The SPG result for the site shows a correlation
of -0.125 which follows the same as the previous site where the skill has declined
compared to the initialised hindcast. Similar to the previous site the AMV shows
an improvement in skill compared to the initialised hindcast, with a correlation of
0.201. For the North section (figure 6.4 g, h, i) of the sub-sampling, the initialised
hindcast simulations have an improved correlation with the assimilation simulation
of 0.225. The sub-sampled SPG time series when correlated with the assimilation
simulations has a result of 0.337. When this value is compared to that of the
initialised hindcast it is clear that there is some improvement in the prediction
skill. The sub-sampled AMV time series when correlated with the assimilation
simulated has a result of 0.145. Unlike previous sections, this result does not im-
prove the prediction skill of the region. From what is seen in the correlation, the
northern section is most impacted by the SPG index and the two lower sections
are impacted by the AMV. The correlations have been summarised and discussed
further in the discussion section (6.1).
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Figure 6.4: Time series for Potential Temperature from the three yellow hatched
areas (6.1), it was normalised and detrended. They will be referred to as South
East (a-c), South West (d-f), and North (g-i). Each location correlates the ini-
tialised hindcast simulation (16 ensemble members) (a, d, g), Sub-sampled ini-
tialised hindcast simulation (8 ensemble members) (SPG (b, e, h), AMV (c, f,
i)) against assimilation at lead years 2-5. The blue line is the ensemble mean for
the assimilation simulation, the red line is the ensemble mean for the initialised
hindcast simulation, and the grey dots are the ensemble members. The initialised
hindcast (16 ensemble members) when correlated with the assimilation at each
location is quite low, South East (-0.315), South West (0.007), North (0.225). The
sub-sampled (SPG) initialised hindcast (8 ensemble members) when correlated
with the assimilation at each location overall is poor, South East (-0.323), South
West (-0.125), North (0.337). The sub-sampled (AMV) initialised hindcast (8 en-
semble members) when correlated with the assimilation at each location has some
improvement, South East (-0.177), South West (0.201), North (0.145). Generated
from the MPI-ESM-LR; 1966-2013; initialised each November; 2 to 5 years lead
time; depth mean 6m – 220m.
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6.4 Improving prediction skill for salinity
The initialised hindcast simulation for group salinity depth (6m – 220m) provides
an improvement in skill compared to the single layer discussed in the previous
chapter. The majority of the Northeast Atlantic Ocean shows to be quite skilful
and also significant. There are still some areas that have little or no skill, these
include areas in the north, around the European shelf, the Labrador Sea and the
Continental shelf. When the AMV is correlated with the assimilation simulation
there is good skill for a lot of the region with a few areas with little or no skill.
There is a small area along the continental shelf that has little skill highlighted
by the blue colour, there is also a band of little skill off the Labrador Sea and
Norwegian Sea. This is not the case when it comes to the SPG correlated with
the assimilation simulation. The majority of the Eastern North Atlantic has very
little skill, with only small areas of significant skill. Around the Labrador Sea
and Norwegian Sea have skill and this is significant, there is also an area off the
Continental shelf that has some significant skill.

Figure 6.5 there are some small areas (highlighted in the yellow boxes) that have
little or no skill in the initialised hindcast simulations. The two are in the south of
the Eastern North Atlantic and one in the north in the Norwegian Sea. The two
in the south will be referred to as the southeast where it is negatively correlated
and the southwest is located off the coast of the Continental shelf. The north area
is the region of the Norwegian Sea, these will be further analysed to determine if
there is any improvement in skill through sub-sampling. While there appears to
be some improvement in these areas through using either of the predictors. Before
that is completed, I will explore how the sub-selection using both predictors has an
impact on the prediction skill compared to the initialised hindcast for the Eastern
North Atlantic. The AMV is correlated with the assimilation simulation for each
coordinate showing that for the Eastern North Atlantic, there is skill and that
this is significant (Figure 6.5 b). When the same is completed for the SPG, the
correlation is not as skillful or significant (Figure 6.5 d). The Nordic region shows
to have skill and this is significant.
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Figure 6.5: ACCs for Salinity for initialised hindcast simulation (a, c), AMV (b),
SPG (d) evaluated against assimilation at lead years 2-5. The difference between
initialised hindcast simulation - uninitialised historical (CMIP5 (c), CMIP6 (f))
simulation. Generated from the MPI-ESM-LR; 1966-2013; initialised each Novem-
ber; 2 to 5 years lead time; 16 ensemble members; depth mean 6m – 220m. The red
is positive correlation, the blue is negatively correlated and the black dots show
significance. The yellow hatching shows whether there is a positive or negative
correlation in the initialised hindcast simulations (a, c) and the predictors (b, d).
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Before a more detailed investigation occurs into these areas of yellow boxes I
wanted to explore the impact of sub-sampling using the two predictors (SPG,
AMV) on the initialised hindcast. The next step is to determine if the sub-sampled
temperature field using the predictors (8 ensembles) can improve the skill of the
initialised hind simulations (16 ensembles). This sub-sampled ensemble is based
on the initialised hindcast simulations. Figure 6.6 (a, d, g) shows the initialised
hindcast simulations (16 ensembles) before any sub-sampling has occurred. Figure
6.6 (b, e, h) shows the sub-sampled initialised hindcast simulations using either
the SPG or the AMV or the combination of both the AMV and SPG. Figure 6.6
(c, f, i) shows the difference between the two plots with the sub-sampled plots
subtracted from the initialised hindcast simulations, any areas that remain red
have some skill and the crosses show that they are significant. The initialised
hindcast has only two small areas that do not have any significant skill, one being
in the North in the Norwegian Sea and the second on the Continental shelf (Figure
6.6 a, d, g). The sub-sampled salinity field with the predictor SPG (8 ensembles)
initialised hindcast simulation is almost identical to that of the initialised hindcast
simulation (figure 6.6 B). The skill remains the same in the three areas that I am
trying to improve. This is evident in the comparison plot where you get some
improvement in the Norwegian Sea, but this is not significant (figure 6.6 c). There
is also some improvement in the south that is significant, but this is already quite
skilful, the area of the Continental shelf does show a slight improvement with
a small area of significant skill. The sub-sampled salinity field AMV initialised
hindcast simulation this similar to that of the initialised hindcast simulation with
reduced skill to the northeast of the Norwegian Sea and a section off the Labrador
Sea (Figure 6.6 e). When this sub-sample salinity field AMV (8 ensembles) is
compared to the initialised hindcast simulation (16 ensembles) it highlights the
areas that are improved upon, these being the red areas and the black crossed
means that these locations are significant (Figure 6.6 f). The final step in the sub-
sample of the salinity field is the combination of the two predictors (Figure 6.6 h,
i), this combination does not work. The full 16 ensembles of initialised hindcast
simulations have better skill compared to the 8 ensembles of the predictors.
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Figure 6.6: Improvement of the prediction of Salinity in the Eastern North Atlantic
due to more accurate prediction of the AMV, SPG, and both. ACCs for Potential
Temperature for initialised hindcast simulation (16 ensemble members) (a, d, g),
Sub-sampled initialised hindcast simulation (8 ensemble members) (AMV(b), SPG
(e), both(h)) evaluated against assimilation at lead years 2-5. The difference be-
tween initialised hindcast simulation - sub-sampled initialised hindcast simulation
(8 ensemble members) (SPG(c), AMV (f), both (i)) simulation. Generated from
the MPI-ESM-LR; 1966-2013; initialised each November; 2 to 5 years lead time;
depth mean 6m – 220m. The red is positive correlation, the blue is negatively
correlated and the black dots show significance. Red dots in the right column
indicates regions that became significant after sub-sampling.111
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Similar to the temperature results the salinity sections have been taken from the
same locations with two locations in the south and one in the North (Figure 6.7).
Figure 6.7 (a, d, g) is the comparison of the initialised hindcast with the assimila-
tion simulation. Figure 6.7 (b, e, h) the comparison of the sub-selected ensembles
of the initialised hindcast simulations based on the SPG. Figure 6.7 (c, f, i) the
comparison of the sub-selected ensembles of the initialised hindcast simulations
based on the AMV. I will discuss each location individually to determine if there
is any improvement in skill using this sub-selected time series. The first location
that will be discussed is the southeast location with the assimilation simulations
correlated to the initialised hindcast simulation, this results in a value of 0.455
(Figure 6.7 a). The sub-sampled SPG time series when correlated to the assim-
ilation simulation has a value of 0.361, this is similar to the result found in the
temperature results. The correlation of the AMV time series with the assimilation
simulation results in a value of 0.505 which gives a slightly better result than that
of the initialised hindcast simulation. For this location, the AMV provides a bet-
ter result than that of the full ensemble of initialised hindcast simulations and the
sub-sampled SPG time series. The next location that was explored was the south-
west when the initialised hindcast was correlated with the assimilation simulation
it gave a value of -0.095, this highlights that for this section there is little or no
skill with the initialised hindcast simulations. Using the SPG sub-sampled time
series the aim was to improve on this negative skill however the SPG did not have
the desired impact and performed worse than the initialised hindcast simulation
resulting in a value of -0.231. Using the other predictor sub-sample time series
of AMV showed to have an improvement in skill for this location with a value of
0.136.
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Figure 6.7: Time series for Potential Temperature from the three yellow hatched
areas (6.5), it was normalised and detrended. They will be referred to as South
East (a, b, c), South West (d, e, f), and North (h, i, j). Each location correlates
the initialised hindcast simulation (16 ensemble members) (a, d, g), Sub-sampled
initialised hindcast simulation (8 ensemble members) (SPG (b, e, h), AMV (c, f,
i)) against assimilation at lead years 2-5. The blue line is the ensemble mean for
the assimilation simulation, the red line is the ensemble mean for the initialised
hindcast simulation, and the grey dots are the ensemble members. The initialised
hindcast (16 ensemble members) when correlated with the assimilation at each
location is quite low, South East (0.455), South West (-0.095), and North (0.507).
The sub-sampled (SPG) initialised hindcast (8 ensemble members) when corre-
lated with the assimilation at each location overall is poor, South East (0.361),
South West (-0.231), North (0.428). The sub-sampled (AMV) initialised hindcast
(8 ensemble members) when correlated with the assimilation at each location has
some improvement, South East (0.505), South West (0.136), North (0.554). Gen-
erated from the MPI-ESM-LR; 1966-2013; initialised each November; 2 to 5 years
lead time; depth mean 6m – 220m.

113



6.5. Discussion

6.5 Discussion
This chapter was to explore whether skill could be improved in the North Atlantic
through the inclusion of two predictors on the variable fields. To the best of my
knowledge the first application of sub-sampling on decadal timescales. The two
oceanic processes that have the greatest influence in this region are the SPG and
AMV. Using the initialised hindcast simulation as a starting point, the prediction
skill was determined using the ACC. From this analysis three areas of where the
initialised hindcast did not perform too well. One of these sections where in the
Northern area and two more southern on either side of the North Atlantic. Before
a targeted analysis can occur the predictors were compared with the assimilation
simulation to determine how skillful they were. This did show that there was an
improvement in these three areas for either one of the predictors. Using this infor-
mation the targeted analysis was conducted. To make the most of the possibility
of improving skill a mean was made of the grouped depth to maximise the ability
to potentially improve the skill. This was completed for both temperature and
salinity for the years 1966-2013 on a 2 to 5 year lead time.

It is known that through initialisation there is an improvement in skill (Müller
et al., 2012; Pohlmann et al., 2013) which was highlighted previously at a surface
level. Taking a slightly different approach was undertaken, this was in the form of
a mean over the depth. With this approach, the aim is to increase the prediction
skill for this region. If this does not have the desired effect then the inclusion of
the predictors will take place. The initialised hindcast simulation (16 ensemble
members) of both temperature and salinity shows to have skill and that this is
significant in the Eastern North Atlantic. However, three locations were chosen
from the section above from the initialised hindcast where there was little or no
skill, from the initial exploration into the correlation of the two individual indices
shows that these regions have an improvement in skill. These locations were then
isolated out as a time series for further analysis to be conducted, using both SPG
and AMV time series for both these regions. The first variable that I have looked
at is the temperature followed by salinity at each of the locations, from henceforth
will be referred to as Southeast, Southwest and North. These sites were analysed
using the assimilation simulation and the initialised hindcast which were compared
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to the time series of the SPG and AMV individually.

The majority of the North Atlantic Ocean has shown to be quite skillful with a few
areas with little skill. Through the sub-sampling process on three of these areas, it
was found that there was an improvement with one or the other of the predictors.
It was expected that the northern area would be improved using the SPG and this
was shown to be true, the same with the AMV in the two southern areas table 6.1
and table 6.2. The tables (6.1 and 6.2) highlight the different location correlations
for both variables for the initialised hindcast and the two-predictor sub-sampled
ensemble members with the assimilation simulation.

Table 6.1 shows the temperature correlations between the full 16 ensemble mem-
bers of the initialised hindcast simulations and the 8 ensemble members of ini-
tialised hindcast simulations based on the predictors. It shows that there is an
improvement of skill using the sub-sampled ensembles of the AMV for the two of
the three locations. While the sub-sampled ensembles of the SPG for the two of
three locations does not show any improvement in skill. Table 6.2 Shows the salin-
ity correlations between the full 16 ensemble members of the initialised hindcast
simulations and the 8 ensemble members of initialised hindcast simulations based
on the predictors. It shows that there is an improvement of skill using the sub-
sampled ensembles of the AMV for the three locations. While the sub-sampled
ensembles of the SPG for the three locations does not show any improvement in
skill.

Overall, the salinity results show that the initialised hindcast simulations corre-
lated better than the temperature results. For both variables, results highlight
the two south locations show improvement with the AMV and the North shows
improvement using the SPG. This is not surprising as the Northern section of
the Atlantic Ocean is more affected by the SPG and the south is more affected
by the AMV. As a method sub-sample does show promise in its capabilities as a
method of improving skill. That moving forward in the tailoring of decadal pre-
dictions (Chapter 7) it is more beneficial to use the mean grouped depth (6-220m)
initialised hindcast simulations of temperature rather than just the SST.

In this instance it is clear that there is great potential for the sub-sampling method,
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however there was no great improvement in skill. For such a method to work
effectively the predictors chosen must relate to the areas. The two predictors
chosen in this case relate the North Atlantic Ocean and can impact temperature
or salinity, the results clearly show that they have no impact. While this was
a more generalised approach, it highlights the skill that the initialised hindcast
simulation in the Northeast Atlantic over the subsampling method. What did
show potential for the improvement of skill is moving from using the surface data
to a mean over a number of depth levels. Moving forward this will be referred to as
the mean depth and the range (6-220m) has been agreed upon with stakeholders.

Potential Temperature
Southeast Southwest North

Hindcast (16 mem-
bers)

-0.315 0.007 0.225

SPG (8 members) -0.323 -0.125 0.337
AMV (8 members) -0.177 0.201 0.145

Table 6.1: Summary of the different locations correlations for potential tem-
perature for the initialised hindcast and the two-predictor sub-sampled ensemble
members against the assimilation simulation

Salinity
Southeast Southwest North

Hindcast (16 mem-
bers)

0.445 -0.095 0.507

SPG (8 members) 0.361 -0.231 0.428
AMV (8 members) 0.505 0.136 0.554

Table 6.2: Summary of the different locations correlations for salinity for the
initialised hindcast and the two-predictor sub-sampled ensemble members against
the assimilation simulation

116



CHAPTER 7
Application of tailored decadal

predictions

7.1 Introduction
In chapters 4 and 6 the Eastern North Atlantic was found to be predictable on a
2 to 5 year lead time. The analysis in Chapter 4 explored the time frame 1961 -
2013 for temperature and salinity highlighting there was skill in the Eastern North
Atlantic using initialised hindcast simulation. In this same time frame, a grouped
depth mean of 6-220m for initialised hindcast simulations was shown to have skill
in this same region to determine if there was any improvement in skill (Chapter
6). Wanting to exploit this skill seen in the Eastern North Atlantic to tailor for
stakeholder needs, the methods employed in this chapter are highlighted in Figure
7.1. In this contribution the exploration shift in the distribution and density of
Atlantic (Scomber Scombrus) and horseshoe (Trachurus Trachurus) mackerel is
influenced by changes in temperature. To achieve this there are a few questions
that need to be answered;

1. Has there been a northward shift in the Mackerel stock in the last 20 years?
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2. Can the initialised simulation be used to predict changes in temperature up
to 2019?

3. How can this information be effectively communicated to stakeholders?

Figure 7.1: Schematic representation of how both the model data (1989-2015) and
the observational data (1992-2014) is initial explored to determine the similarity
between the two. Two regions have been identified for this study the NE Atlantic
northwest of Ireland (Northern Territory) and the West of Ireland (Irish Territory).
These regions under went statistical analysis. The model data undergoes time
series analysis and is extended out to 2019, this time series is then compared to
the observational data.

Identifying if there has been a northward shift in mackerel previously is the initial
step in the tailoring process. Using the observational data from the ICES survey
report stage 1 egg, two areas were identified. The first area identified was the West
of Ireland (Figure 7.2) and the section of the NE Atlantic northwest of Ireland. In
these two sections, the change in temperature and egg density was investigated.
Allowing for a comparison to the initialised hindcast simulations of temperature
for these two areas. Taking advantage of the predictability of the grouped depth
(6-220m) temperature on a shorter time frame 1989-2014 with a 2 to 5-year lead
time. This is roughly in line with the observational data from the ICES survey
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report for Atlantic and horseshoe mackerel in the time frame 1992-2014 and 1998-
2014 respectively. Two time series from MPI-ESM-LR were compared to evaluate if
the value obtained from initialised hindcast simulation and assimilation simulation
with the observational temperature data. The initialised hindcast simulation was
then extended to 2019, to determine if it was possible to predict temperature
changes. If this temperature change will impact the density and distribution of the
mackerel eggs. The final step is how to effectively communicate this information
to the stakeholders.

Figure 7.2: An illustration of the true extent of Ireland’s Territory in both land
mass and ocean with the border highlighted by the red line. The majority of the
territory is in the North Atlantic, on the shelf highlighted by the regions in orange
and the deeper ocean highlighted by the darkening blue colours (From Marine
Institute (2022))

7.2 Density and distribution of stage 1 eggs
The first step is to evaluate the changes in the distribution of both the Atlantic
mackerel and horseshoe mackerel. Determining if there is a northward shift in
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the spawning regions in the time frame 1992 to 2016. From 1992 the distribution
of the eggs has changed dramatically, this is highlighted in Figure 7.3. From
the years 1992 to 2004 the density of the stage 1 eggs is thinning as they were
highly compacted around Spain all the way up to Ireland. There also appears to
movement northward of the spawning grounds. This is made clearer in the surveys
that occur between 2007 to 2016 were there has been an increase in the egg density
around Scotland and Iceland that was not observed in the previous years. From
1992 to 1995 there is a reduction in the presence of eggs highlighted by the areas in
red but the density of the eggs has increased around the coast of Ireland compared
to the southern area. Similar is observed when moving onto 1998 there appears to
be a slight movement northward of the stock but this is in low density with the
higher density of stock spawning on the Spanish Coast. 2001 we see a rise in the
presence of stage 1 eggs this being a lower density than that has been observed
previously, it is also clear that the stock has moved further northward to the top
of Scotland. While 2004 we see a reduction in the distribution of the stock and in
density, after this year there appears to be a resurgence in the stock. 2007 is the
first year in which we see the stock moving and expanding further north but also
westward. This also shows a higher density around Ireland compared to previous
years. The trend continues on in the following survey of 2010 where there seems
to be a explosion with a string increase of eggs Northward around Scotland and
Iceland. There is a slight reduction as you move southward from Ireland towards
France. While this is the case the density of the eggs is as they are more spread
out. Moving forward to 2013 what was expected to see is the increase in density
in the NE Atlantic northwest of Ireland but this is not the case. There is a wider
spread of eggs in this region but this is not as dense. More eggs in the southern
section compared to the previous year. The final year that was observed is 2016.
It shows a reduction in the distribution of the stock through all areas. The section
around Spain and France shows a decline over the last 20 plus year. This is similar
with around Ireland where they also seem to be in lower density. The eggs can
be found in front of the Scottish coast, but no longer extend towards Iceland.
However, the density found in this regions has increased.
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Figure 7.3: Atlantic Mackerel (Scomber Scombrus) egg density data at each lo-
cation for every 3 years from 1992 - 2016, were the size blue circle represents the
density of eggs found and the red crosses shows that there have no eggs been found.

There are obvious changes in the distribution in the form of a northward shift from
the beginning till the end of the time frame. The density changes as well, which
is highlighted in Figure 7.4, where two areas of interest are identified. The first
highlighted in red being the West of Ireland and the second highlighted in black
is the NE Atlantic northwest of Ireland where the stock has potentially moved
to. In this section I explore the changes on a roughly 9 year period with the first
plot being 1992, the second plot being 2001 and the third plot being 2010. The
fourth plot shows six years after this as it is the last available year. The 1992
data set shows for the West of Ireland the Atlantic Mackerel covers the majority
of the area and the density is quite high. At this moment in time this stock has
slightly moved out of the fishing ground in the north east sector towards Scotland.
Jumping forward to 2001 the fish stock begins to show signs of a reduction in
both distribution and density in the stock found in the West of Ireland. This is
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highlighted by the red crosses on the Figure 7.4. The move of the stock northward
is more evident as it extends up and beyond Scotland with higher density than
what was seen previously. Moving forward to 2010, the West of Ireland saw a sharp
decline in the density of the fish stock, but the distribution has remained similar
to previous years. The biggest difference can be seen in the 2016 time series where
the stock in the West of Ireland has moved back towards the Irish coast. Here,
an increase of locations that have no eggs. There has also been a decrease in the
density of the stock. In the NE Atlantic northwest of Ireland is an increase in the
density of the stock but the distribution is not as extensive as the previously seen.
Between 1992 and 2001 there is a shift in the distribution towards Scotland while
this density is quite low between these two time frames. Focusing on Ireland it
is clear that there in the time span there is a lower density of eggs but also there
begins to show areas were they no longer find eggs that were previously found in
the area. Moving forward to the 2010 and 2016 years there is a dramatic change
in the distribution of the eggs compared to the previous two years. In the West of
Ireland there is a clear change in the spread of the eggs found and in the density
that they occur, particularly in 2016. Looking at the NE Atlantic northwest of
Ireland it shows that between these two time frames that the distribution went
from Scotland to Iceland then in 2016 it did not extend as far. Nevertheless, the
density was higher compared to the 2010 survey.
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Figure 7.4: Scomber Scombrus (Atlantic Mackerel) egg density data at each lo-
cation for every 3 years from 1992 - 2016, where each blue circle represents the
number of eggs found and the red crosses shows that there have no eggs been
found. The red box highlights the Irish territory and the black box highlights
Northern territory with the potential increase in temperature.

The second species of interest is the horseshoe mackerel, shown in 7.5 for the time
frame 1998 - 2016. What is immediately obvious by looking at the individual years
that there is a decline in the stage 1 eggs. At the beginning of the time frame
1992 the distribution of the stage 1 eggs ranges from the Spanish coast to just
past Ireland. There are some sampling sites that did not contain any of these
eggs at all. Moving forward to 1995 the sample area has been extend to include
around Portugal. It shows that the stock does extend that far south but there is
a reduction in the distribution and density of eggs. The decline is seen in 1998
where the stock still ranges from Portugal to just beyond Ireland. Stage 1 eggs
where only found in half in the surveyed area the density was also reduced in this
time frame. In 2001 the survey has shown that for most of the area there were
either low egg density or no eggs found at all. This is similar for 2004. 2007 there
appears to be a resurgence of the stage 1 eggs especially around Ireland and the
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Spanish coast, while the density does not seem to be as high as previous years. The
years 2010 and 2013 show a decline in the stage 1 eggs across the survey area the
density of the eggs is also quite variable in the but not as high as seen previously.
Where there is a real difference between the start and end of this time frame is in
2016. In the survey area there is very few eggs found and the density is quite low.

Figure 7.5: Trachurus Trachurus (Horse Shoe Mackerel) egg density data at each
location for every 3 years from 1998 - 2016, were the size blue circle represents
the density of eggs found and the red crosses shows that there have no eggs been
found.

There change in the density in the stage 1 eggs for horseshoe mackerel, this is
highlighted in 7.6. I will explore these changes for the West of Ireland highlighted
in red. The 1992 the stage 1 eggs are distributed evenly within the West of
Ireland, with the highest density being in the lower section. The year 2001 shows
an increase in the density of the eggs in this area and they take up a lot more of
the area, there was also more locations where the eggs where not found at all. This
does not change much in 2010 with exception to a slight reduction in the density
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of the eggs. The largest difference is in 2016 where there are little or no eggs in
the West of Ireland.

Figure 7.6: Trachurus Trachurus (Horse Shoe Mackerel) egg density data at each
location for every 3 years from 1992 - 2016, where each blue circle represents the
number of eggs found and the red crosses shows that there have no eggs been
found. The red box highlights the Irish territory and the black box highlights
Northern territory with the potential increase in temperature.

It is evident that there have been changes in the stage 1 egg for both of the mackerel
species from 1992 to 2016, whether this been in a reduction in the eggs themselves
or a change in the spawning grounds. One of the reasons for this is a change in the
optimal range in temperature for spawning. To get an idea if this temperature for
both regions highlighted in figures (7.2 and 7.6) was compared to the density. The
results are highlighted in figure 7.7 for the West of Ireland and figure 7.8 for the
NE Atlantic northwest of Ireland (Scotland and Iceland). For the West of Ireland
the temperature ranges from 13 degrees Celsius to below 11 degrees Celsius and
the Scottish fishing grounds the temperature ranges from about 12 degrees down
to about 9.5 degrees Celsius.
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Focusing on the West of Ireland first (figure 7.7) the beginning of the time series
(1992) has the highest egg density compared to the following years the temperature
for this year is approximately 13 degrees Celsius. This is the highest temperature
seen where it begins to decline until 2004 where it reaches approximately 11.5
degrees Celsius, what is also seen is that the egg density also reduces. 2007 - 2013
sees an approximate 1 degree Celsius increase in temperature this co-insides with
an increase in the egg density. After this year there is once again a decline in
temperature not as low as the previous years. In 2015 there is an increase in egg
density. This is the lowest temperature of the time frame comparable to 1998 but
the temperature seen at this year is also higher. Finally 2016 sees and increase to
approximately 12.5 degrees Celsius and this is also the lowest egg density that is
observed.

Figure 7.7: West of Ireland: Time series of temperature and egg density 3 years
from 1992 - 2016.

Figure 7.8Highlights the changes in both temperature and egg density for the
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potential NE Atlantic northwest of Ireland, this section is slightly short as obser-
vations only began in 1998. For majority of the time frame the egg density is in the
range about 20 eggs per m2 and the temperature ranges between 10 - 12 degrees
Celsius. In 2016 there is a massive spike in the egg density found in the region
to almost 4 times what was seen previously and in this year the temperature is
approximately 9.5 degrees Celsius.

Figure 7.8: NE Atlantic northwest of Ireland: Time series of temperature and egg
density 3 years from 1998 - 2016.

7.3 Prediction skill for West and NE Atlantic
northwest of Ireland up to 2014

Chapter 4 has demonstrated that the Eastern North Atlantic is predictable on a
decadal time scale and for the most part there is significant skill for this region.
Wanting to build further on this we explored the predictability of this region for
the time frame 1989 - 2014. Allowing for a comparison with the stage 1 egg density
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data. This is a considerably shorter time frame from the previous investigation
that looked at the time frame 1966 - 2013. In this instance there appears to be
change in the predictability of the Eastern North Atlantic, while the overall picture
still shows good skill for most of the region there has been a notable drop off of skill
in some areas. In the subpolar North Atlantic the predictability remains relatively
unchanged, the key difference is that skill is reduced in the southern section. Figure
7.9 highlights the results of this time frame along with the identification of the West
of Ireland (red box) and the NE Atlantic northwest of Ireland (black box). The
West of Ireland is a rough estimation of the fishing grounds and the major activity
zone for spawning of the stage 1 eggs. Within this region the prediction skill is
low. There is only a small section that contains any significant skill. A reason for
this is that most of the region is on the shelf where the skill is limited. The NE
Atlantic northwest of Ireland is a rough estimation in which the mackerel stage 1
eggs have been found in the later 3 years (2010, 2013, 2016) of the observational
data from the ICES survey report. This region shows to have more promise, for
the most part there is significant skill. Both regions are if interest in this study
with a focus on the NE Atlantic northwest of Ireland as it will help determine if
the shift in mackerel stock will be more likely to happen.

128



7.3. Prediction skill for West and NE Atlantic northwest of Ireland up to 2014

Figure 7.9: Anomaly correlation coefficient (ACC) for potential temperature
(MPIOM) for initialised hindcast simulation evaluated against assimilation at lead
years 2-5. Generated from the MPI-ESM-LR; 1991-2014; initialised each Novem-
ber; 2 to 5 years lead time; 16 ensemble members; depth mean 6-220m. The red
is a positive correlation the black crosses show significance. The black lined box
is the NE Atlantic northwest of Ireland and the purple shows the West of Ireland.

Having highlighted the predictability of the West of Ireland and the NE Atlantic
northwest of Ireland, a time series can be made of each location. Using the ini-
tialised hindcast and assimilation simulation for temperature a grouped mean (6-
220m) was compared with the two observational data (Figure 7.10 a, b). For both
locations it is evident that there has been an over estimation of the temperature
value for the two simulations. Figure 7.10 a, shows the West of Ireland comparing
the simulations with the observations the overall trend is still present. That there
is a decrease in temperature from 1992 till 2000, followed by an increase to 2005
then a steady decline. Figure 7.10 b, show the NE Atlantic northwest of Ireland
comparing the observational data with the simulations, they still over estimate the
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temperature values. However, these values are closer to the observational data.
Mackerel have only been observed since 1998, so there is only temperature val-
ues from 1998. The two simulations do capture the trend that is observed in the
observations for change in temperature. The West of Ireland remains the ideal
temperature range for the development of stage 1 eggs and the NE Atlantic north-
west of Ireland is in the range the is suitable for spawning.
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Figure 7.10: Time series for potential temperature (MPIOM) for initialised hind-
cast simulation (black line) evaluated against assimilation (blue line) at lead years
2-5. Generated from the MPI-ESM-LR; 1989 -2014; initialised each November; 2
to 5 years lead time; 16 ensemble members; depth mean 6-220m. This was com-
pared with the observational temperature data (red line) 1992 - 2014 for the a)
NE Atlantic northwest of Ireland and 1998 - 2014 for the b) West of Ireland.
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7.4 Prediction skill for West and NE Atlantic
northwest of Ireland upto 2019

Having identified the key target regions further exploration into the predictabil-
ity for the future was completed using the initialised hindcast simulations. The
initialised hindcast simulations for both territories are extending out to 2019 in
to determine what the change in temperature will be. This gives an actual value
of temperature from the model that can be compared with observations. This
value gives an insight to what the temperature of the region will be and how this
could influence the spawning changes. Figure 7.11 shows that for the both of the
locations the initialised hindcast simulations and observational simulations over
estimate the observational data. The time series for the West of Ireland (Figure
7.11 a) starts at a similar value, then they diverge but they do follow the trends.
When the initialised hindcast is extended out to 2019 it shows that there will be
an decrease in temperature. The time series for the NE Atlantic northwest of
Ireland (Figure 7.11 b) shows that between 2016 to 2019 there will be an increase
in temperature. In turn we can determine that for the West of Ireland there might
be a decrease in the density of eggs as the temperature exceeds the limits for de-
velopment. For the NE Atlantic northwest of Ireland tory the temperature range
there will be an increase in the density of eggs. As we have the observational data
from the ICEs report we can determine if the initialised hindcast simulation does
track the change in temperature (Figure 7.12) and the egg density (Figure 7.13).
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Figure 7.11: Time series for potential temperature (MPIOM) for initialised hind-
cast simulation (black line) evaluated against assimilation (blue line) at lead years
2-5. Generated from the MPI-ESM-LR; 1989 -2019; initialised each November; 2
to 5 years lead time; 16 ensemble members; depth mean 6-220m. This was com-
pared with the observational temperature data (red line) 1992 - 2014 for the a)
NE Atlantic northwest of Ireland and 1998 - 2014 for the b) West of Ireland.

The results of this are highlighted in figure 7.12 with the West of Ireland being on
top and the NE Atlantic northwest of Ireland being below. At the beginning of the
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the time series the initialised hindcast simulation, assimilation simulation closely
tracks with the observational data. Post 1995 the simulation time series divert
away from the observations. When the initialised hindcast simulation is extended
out to 2019 for the West of Ireland Figure 7.12 a, shows a decrease in temperature.
Post 1998 the simulation time series divert away from the observations. When
the initialised hindcast simulation is extended out to 2019 for the NE Atlantic
northwest of Ireland Figure 7.12 b, shows an increase in temperature. This is in
line with what is observed in the observational data. This means that the West
of Ireland will keep at the higher range for egg development and the NE Atlantic
northwest of Ireland will maintain the temperature for spawning.
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Figure 7.12: Time series for potential temperature (MPIOM) for initialised hind-
cast simulation evaluated against assimilation at lead years 2-5. Generated from
the MPI-ESM-LR; 1991-2019; initialised each November; 2 to 5 years lead time;
16 ensemble members; depth mean 6-220m. This was compared with the observa-
tional temperature data (red line) 1992 - 2019 for the a) NE Atlantic northwest of
Ireland and 1998 - 2019 for the b) West of Ireland.

Knowing the values that have been obtained from the initialised hindcast simula-
tions in the prediction up to 2019. The next step is to determine the confidence of
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these results. This was achieved by detrending the time series and calculating the
uncertainties, the results can be found in Figure 7.13 for the West of Ireland and
Figure 7.14 for the NE Atlantic northwest of Ireland. Figure 7.13 shows for the
early years 1989-1994 and then for 2012-2019 are below zero. The years 1995-2011
is variable is mostly positive.

Figure 7.13: West of Ireland: Detrended time series for the initialised hindcast
simulations (MPIOM) for initialised hindcast simulation evaluated against assimi-
lation at lead years 2-5 (Red line). Generated from the MPI-ESM-LR; 1991-2019;
initialised each November; 2 to 5 years lead time; 16 ensemble members; depth
mean 6-220m, with error bars (Black lines).

Figure 7.14 shows for the early years 1989-1996 and then for 2012-2019 are below
zero. The years 1997-2011 is variable is mostly positive.
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Figure 7.14: NE Atlantic northwest of Ireland: Detrended time series for the
initialised hindcast simulations (MPIOM) for initialised hindcast simulation eval-
uated against assimilation at lead years 2-5 (Red line). Generated from the MPI-
ESM-LR; 1991-2019; initialised each November; 2 to 5 years lead time; 16 ensemble
members; depth mean 6-220m, with error bars(Black Lines).

From the initialised hindcast simulations, I can determine that there will be a shift
northward with the Atlantic mackerel stock. As the West of Ireland temperature
range is on the higher end of the scale for ideal egg development. The NE Atlantic
northwest of Ireland shows warming within range of the ideal spawning grounds.
Figure 7.5 shows the change in egg density for the West of Ireland (figure 7.15 a)
and the NE Atlantic northwest of Ireland (Figure 7.15 b). The West of Ireland
shows a decline in egg density since 1992 with the lowest amount in 2016 with
a slight increase in 2019. The NE Atlantic northwest of Ireland shows very little
spawning occurring in these waters up to 2013, with a spike in 2016 and a decrease
in 2019. However, the amount of eggs found in 2019 in the NE Atlantic northwest
of Ireland is still double the amount found in the West of Ireland for the same
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year.

Figure 7.15: Time series for Egg Density data from the observational data from
the ICES survey report for Atlantic mackerel. Plot a) shows the changes in egg
density in the NE Atlantic northwest of Ireland for the time frame 1992-2019.
Plot b) shows the changes in egg density in the West of Ireland for the time frame
1998-2019.
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7.5 Effective communicate of scientific research
One aspect of this project is how can this information be communicated to those
who do not necessarily have a background on this topic. To achieve this an info-
graphic is developed that includes all the key information. How do we get from the
observations to the model to the prediction and what does all of this mean? Using
the information above I have compiled the main takeaway from the observations,
and the predictions system found in the info-graphic (Figure 7.16). The info-
graphic starts with the title (Potential Migration of Mackerel into the NE Atlantic
northwest of Ireland) this sets the tone of the main message. This being the change
in spawning locations from the West of Ireland to the NE Atlantic northwest of
Ireland. However it does leave out any potential indication of what causes this
change, with the aim of guiding the reader to go through the info-graphic to get
the answer. This story was told using the the essential results and connected
using arrows which show the path in which the data should be reviewed. Starting
with the change in egg distribution, followed by skill of the initialised hindcast
simulations in the Eastern North Atlantic, ending with if this skill can detect
changes in temperature. The final message being that using initialised hindcast
simulations can predict the temperature. That from this prediction, it can detect
the changes in the egg distribution and density up to 2019.
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Figure 7.16: Info-graphic connecting the observational data from the ICES survey
report with the model. Highlighting that the model can predict potential shifts in
mackerel stock.
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7.6 Discussion
This chapter demonstrated that there is a shift of the stock towards the north
within the observations. One of the main driving forces for this shift is the change
in temperature of the spawning grounds. What the observations tell us is that
the fish stock is moving northward between each survey. That horseshoe mackerel
even seems to be a decline in the numbers. While these are every three years it
could be that there be some missing information in the years between. Previous
chapters 4 and 6 have shown that the temperature pattern in the North Atlantic
is robust within the MPI-ESM-LR. In this section, I will discuss the results from
the MPI-ESM-LR can capture the temperature change and even have skill in the
change of temperature which impacts the stock. I will finally discuss how this
information can be put together to effectively communicate the findings with the
stakeholders.

The first task was to determine if there was any change in the mackerel stock in
the observations. Through plotting out the egg density and distribution changes
over the years it is clear the the for both Atlantic mackerel and horseshoe mackerel
has shifted. It is noted from 1998 that there is a northward shift. The observations
for this data are collected every 3 years and the NE Atlantic northwest of Ireland
was only recently (from 1998) included in the sampling locations. Beare and
Reid (2002) has explored this data set from 1997-1998, to investigate the spatio-
temporal change in spawning activity. The focus was the change around the West
of Ireland, showing that since 1977 the fish stock has been making a northward
shift. In part, they attributed this shift to the rate at which sea surface temperature
increased in the spawning season. The temperature range in the West of Ireland
maintains the ideal egg development temperature of 12 to 13°C (Ibaibarriaga et al.,
2007). But the NE Atlantic northwest of Ireland has now become in range for as
a suitable spawning site, mackerel are able to spawn at a range of temperature
(8–18°C) (Reid, 2001).

Knowing that temperature is the main driving force for spawning the focus from
MPI-ESM-LR was temperature from the initialised hindcast simulations. This has
previously shown to good skill in the NE Atlantic northwest of Ireland and some
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skill in the West of Ireland up to 2014. When this time series is extended out to
2019 through the initialised hindcast simulations, the NE Atlantic northwest of
Ireland is showing that temperature will increase in the region but not as high as
it was around 2019. Making this region ideal a spawning ground but not one for
the development of the eggs. In contrast the West of Ireland appears to decrease
in temperature back towards the higher range of temperature for egg development.
What is expected that after 2014 the egg density in the NE Atlantic northwest of
Ireland should see a increase in eggs and the West of Ireland see a decrease. When
the egg density data is reviewed past 2014 to 2019 this is what is seen.

While there are some challenges with comparing the observational data (ICES -
Mackerel and horse mackerel egg surveys (MEGS, 1992-present)) and the model
(Initialised hindcast and assimilation simulations), this being in terms of the length
of the time series. The ICES study is only conducted every three years and is
limited to roughly the spawning season. Some inferences can be made on the
time series of the temperature and the egg data, this being in the rough changes
they have had over time. There is the potential to be missing some key changes in
temperature or the areas where there might be a sharp increase could be connected
to variability in the month in which the temperature reading was collected. One
thing that could have also been changed is the methods in which the temperature
was recorded or if it was recorded at all. Trying to make a yearly mean out of a
few months’ worth of observational data while does give insight, it can be difficult
to compare to a time series that has full yearly means. While the model data has
shown to be quite skillful, it too is also not perfect. This data is predicted up
to 2019 using the initialised hindcast simulation on a 2 to 5 year lead time, to
my knowledge this has not been conducted before. Koul et al. (2021) explores the
skilful prediction of cod stocks using initialised hindcast simulations with lead year
1, lead year 4 and lead year 10. By completing a lead time analysis skill began to
decline after lead year 5. Similarly to the work presented here it does show that it is
possible to provide extended predictions that are in a usable fashion for fisheries.
The final challenge will be how to effectively communicate this information to
stakeholders. The info-graphic Figure 7.16 has a balance of keeping the information
to a generalised audience, which is difficult in some aspects with the complicated
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model information. Through the use of figure descriptions is one way to get around
it, and the arrows provide the questions that will explained in each plot.

Overall this sections does show that it is possible to tailor decadal predictions
for stakeholder needs. Chapters 4 and 6 providing the understanding of what is
predictable, can this be improved upon. At each stage of this thesis the results
obtained helped guide the decision making for the following chapter. These re-
sults where summarised into an infographic that was communicated with informed
stakeholders. Further discussion will be help with stakeholders to improve this in-
fographic for a wider audience. This thesis also provides the necessary background
and methodology on how decadal predictions can be useful in place of observational
data.
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CHAPTER 8
Conclusions

8.1 Introduction
This thesis explores the tailoring of decadal temperature and salinity predictions
in the Eastern North Atlantic region. In Chapter 1, I put forward four questions
concerning whether it is possible to exploit the predictability of the Eastern North
Atlantic to detect potential shifts northward in mackerel stock. In this chapter, I
will answer these questions individually, and then conclude the findings presented.
Each step will use the previous information to make informed decisions on how
the approach will be in this case. Finally, I will conclude with future work.

8.2 Interactions and predictability in the
Eastern North Atlantic Ocean

In Chapter 4, we explored the predictability within the Eastern North Atlantic at
the surface level for both temperature and salinity from the MPI-ESM. From this
model, three versions of the temperature were used, one from ECHAM6 (SST) and
two from MPIOM (SST, potential temperature), and salinity. To achieve this we
first determined validity in the temperature/salinity-space of the initialised hind-
cast and uninitialised historical ("CMIP6", "CMIP5") simulations by comparing it
to an assimilation simulation. We followed this by determining the predictability
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of the two categories of simulations and determining the impact of initialisation for
the variables. To get a better understanding of the origin of the predictability the
physical mechanisms of the North Atlantic were explored in chapter 2, along with
how these are present in the models. The decadal SST and salinity prediction skill
shown in chapter 4 and an exploration of the predictability of SST and salinity at
depth was discussed in chapter 5. Through these chapters, I answer the research
question of this chapter:

• What are the mechanisms in the North Atlantic that influence temperature
and salinity and are these predictable on a decadal timescale?

We found that there was skill from the initialisation hindcast simulations most
notable for the salinity, the uninitialised historical simulations show that at the
surface there was little skill. While the temperature also showed to be skillful for
initialised hindcast simulation and the uninitialised historical simulations also had
skill in this region. Between the two different versions of the uninitialised historical
simulations, there have been improvements. The CMIP5 simulations show that in
the subpolar region, there is little skill. Compared to the CMIP6 counterpart this
region now shows to have significant prediction skill. Through this analysis, the
second section of the question has been answered. Both temperature and salinity
are found to be predictable at a 2 to 5 year lead time.

8.3 Investigation into improving prediction
skills for the North Atlantic Ocean

The main aim of this section is to explore the possibility of improvement of pre-
diction skill for three target areas that have little skill in the North Atlantic.
The initialised hindcast simulation shows to have the most promise in this region
in terms of skill for SST and salinity. Moving forward temperature and salin-
ity were analysed using the initialised hindcast and utilising two predictors (SPG
and AMV). In this approach a grouped depth mean was obtained (6-220m) to
determine if this could also aid in answering the question;
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• Can the skill in the North Atlantic be improved upon using the sub-sampling
method?

The initial investigation conducted in Chapter 4 shows that there was prediction
skill in the Eastern North Atlantic Ocean for SST and salinity. In Chapter 6, the
first step in the improvement of skill was to see if expanding the depth profile could
be beneficial. Using the initialised hindcast simulations a mean of temperature
and salinity was obtained over 6m to 220m for the Eastern North Atlantic. It
is evident that this grouped mean (6-220m) figure 5.8 (a, c) has improvement in
skill compared to just looking at the SST figure 4.1, most notably along the shelf
edge. The second step is to determine how correlated (against the assimilation
simulation) the predictors are. The AMV is highly correlated in the Eastern
North Atlantic and the SPG is highly correlated in the Norwegian Sea. However,
there are still regions that have little skill with the initialised hindcast simulations
this is where the predictors (AMV, SPG) come in. For two of the locations,
the sub-sampling of the AMV shows to improve the skill for temperature and the
three locations for salinity. While the sub-sampled SPG only showed improvement
in one of the locations for temperature and showed no improvement for salinity.
Depending on the region, sub-sampling can be of benefit to improve prediction
skill, when the right predictors are chosen. The AMV has proven beneficial for
most of the region while SPG had its limits to the Northern NEA. While in the
target sub-sample sites there was an improvement in skill, they do not represent
the fishery industry sites. Moving forward it would be more beneficial to use the
grouped mean of the initialised hindcast simulations with the grouped depth mean
compared to the predictors.

8.4 Application of tailored decadal predictions
for Irish Fisheries

While both temperature and salinity are important factors for the spawning of
Mackerel, the change rate of temperature is felt more immediately than salinity.
Chapter 7 aims to determine if there may be a shift in Mackerel stock due to the
temperature change and can the MPI-ESM-LR detect this change. Working in
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conjunction with the Marine Institute Climfish project, observational data from
the ICE’s survey was obtained for both species of mackerel. Henceforth referred
to as the observational data. Using the skill of initialised hindcast simulations of
SST from Chapter 6 we aim to answer the following question;

• Can the prediction skill in the Eastern North Atlantic Ocean be tailored to
stakeholder needs?

The ACC plot of the initialised hindcast (Figure 6.6) shows that for the West of
Ireland there is some skill in this region but it is not significant. Similarly the
same can be said for the NE Atlantic northwest of Ireland where the ACC of
the initialised hindcast (Figure 6.6) shows to have skill and that this is signifi-
cant. Meaning that there is not as much confidence in the West of Ireland results
compared to the NE Atlantic northwest of Ireland. They aid in showing what is
possible for areas where the skill is significantly better.

From the observational data stage 1 egg data showed that there was a northward
shift in the mackerel stock in the mid-2000s to 2014. Within the MPI-ESM-LR
on the 1989-2014 time frame, the initialised hindcast simulation for temperature
there is good skill in the northward section and skill around Ireland. The focus is
on the northward section a time series analysis of this area was conducted from
1989 - 2014 and then projected up to the year 2019. When compared with the
observational egg data the initialised hindcast simulation follows the temperature
trend yet overestimates the value in the West of Ireland. What this means is
that for the West of Ireland, the initialised hindcast simulation can detect the
temperature change and that there should be an increase in the egg density. The
NE Atlantic northwest of Ireland is predicted to increase in temperature post-2014,
this is in line with what is seen in the observational temperature data. What this
means is that there is the possibility of seeing an increase in the egg distribution
in the area, this was seen in 2016 when there was an increase in egg density. In
2019 the egg density was almost half what was seen previously in the NE Atlantic
northwest of Ireland, that same year in the West of Ireland the egg density was
almost half.
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This has answered the question of whether the prediction skill in the Eastern
Atlantic Ocean can be tailored, in this case, to detect changes in the Mackerel
stock.

8.5 Effective communication of scientific
research

Finding an effective way to communicate research to a wide target audience is
not always the easiest of tasks for scientists. Focusing on developing these skills
is now becoming an integral aspect within universities. There are a variety of
ways in which scientific information is communicated, the main form is through
presentations. Other mediums are posters, papers, info-graphics, and community
meetings. While mostly these are within the specific target audience having the
ability to tailor these to suit the knowledge level of all attendees is difficult. Finding
the best way to communicate what the predictions mean with their implications
led me to ask;

• How can this information relate to the fisheries and be communicated effec-
tively?

Knowing that the model can catch the change in temperature in both the West
of Ireland and the NE Atlantic northwest of Ireland and that this matches with
the observations found in the regions. How can this complex topic be simply
but effectively communicated with the stakeholders? A presentation would be
too detailed, while an info-graphic allows for the information to be condensed to
highlight the main points of the research. The main talking point from the research
that needs to be conveyed to the stakeholders is that there is a shift northward
in the stock. In both the initialised hindcast simulations and the observations
up to 2019. The info-graphic mainly contains plots of these results, starting with
observation, moving to the predictability in the model (2014) to the predicted
(2019). The idea of this was to show that this northward shift has been evident
in the observation and the initialised hindcast simulations. Building confidence
in the prediction up to 2019 that shows the same shift in the optimal range of
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temperature for egg development. The plots contain explanations of what the
viewer is looking at with arrows guiding them to the next part of the story.

8.6 Overall Conclusions
By breaking it down into these topics we get an understanding of the physical
mechanisms that occur in this region and how they influence each other in the
real world. This aids in the understanding of how the variables can be predictable
within the model. Once a determination on the predictability for the region has
been identified, sub-sampling can be applied to improve prediction skill in areas
with low skill. The next stage of the process is the connection to the stakehold-
ers. In this case, stage 1 mackerel egg data was analysed. Using the stage 1 egg
information we can track the change over the years in both density and distri-
bution. While there was temperature and salinity data from the ships, it is very
inconsistent. From the observational data, the Irish fishing grounds and the NE
Atlantic northwest of Ireland were identified. These regions were then explored
in the model environment. The final stage of this work is to communicate the
model information in a useful and applicable way. In conclusion, this thesis has
demonstrated the chain from the prediction of climatological factors towards the
application towards the fishing industry and the scientific communication of the
results towards the stakeholders. I will finish on how this work can be furthered.

8.7 Limitations
While the focus of this research was the application of tailored decadal predictions,
this mainly focused on the modelled produced data. The observational data that
was obtained was limited to the ICES data from the Marine Institute. This data is
triannual, with any temperature or salinity data not completely compatible with
the model data. This work does attempt to breach these gaps between the observed
and modelled world. The work conducted in Chapter 4 used the modelled-based
observations (assimilation simulation), this could indirectly cause a bias in the
results.

Further investigation into sub-sampling (Chapter 6) could aid in the improvement
of skill in the West of Ireland. There could be greater inclusion of the biological
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components with these statistical components moving forward. This will allow
for greater insight into what could be causing this shift northward. It can not be
ignored that the human element could also have a negative impact on the survival
of the stock. Incorporation of other types of models and using observational data
instead of assimilation.

8.8 Thesis Contributions
The work that has been conducted throughout this thesis has several contributions,
of which some will be published. The first is the changes in skill between the
initialised hindcast versus uninitialised historical simulations moving from CMIP5
to CMIP6 versions of models. This was explored in Chapters 4 and in 5, with
the latter being prepared for resubmission. That these simulations can also be
explored on a regional scale, with a degree of confidence in the skill.

The approach in this thesis was from the statistical analysis of a prediction system
on a singular variable. The work conducted in Chapter 7, is in preparation for
a paper in conjunction with the marine institute. Using the MPI-ESM-LR ini-
tialised hindcast simulations for temperature shows great promise in the shift of
mackerel northward. This is still a great leap forward as previous study that ex-
plored the spawning distribution of blue whiting mainly focused on monthly data
(Miesner and Payne, 2018). This study could bridge the gap between the seasonal
predictions into the decadal predictions as a tool to inform fish stock management
decisions.

8.9 Future Work
Fish stock management must not just consider the human aspect but also the envi-
ronmental and ecological influences that impact fish catch and their sustainability.
The human aspect is having a massive impact on the number of fish within the
oceans with several tonnes of fish being removed each year. A lot more needs to
be done in terms of policy to protect what remains in the ocean and a new system
other than quotas needs to be put in place as their application is not sufficient.
However, what needs to be taken into consideration is that the policies will impact
greater, the smaller community fisheries which may not be able to compete with
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larger corporations. This may lead to the loss of local knowledge and traditional
fishing practices, which are usually far more sustainable than mass commercial
fishing. What is also needed to make informed decisions is the availability of qual-
ity data with long records. These records can be obtained from fishing vessels
that routinely track sea temperature and to an extent salinity. From here it is
clear that there is a need for a link between the fisheries and scientists who can
use this data to develop models that could be used to predict potential changes
in environmental factors. Which in turn influences the effectiveness of spawning
and density distribution in either a positive manner or negative depending on the
accuracy of the models. Understanding the mechanisms involved there is the hope
that we will gain great insight into the change in the density and distribution of
species. It is clear that by understanding the environmental and ecological factors
they have the greatest impact on the fish species at the larval stage. It should
be noted that this is also the stage in which the larval fish are under the greatest
threat from predation. It would stand to reason that this is the key stage at which
the fish should be protected or maintained; this could be using the process known
as fish farming. This is usually an inland process where fish species are matured
in a controlled environment allowing for maximum yield of adults without any
risk of predation (Silver and Hawkins, 2017). However, this process is still highly
contested, over the benefits, cost, and its future (Silver and Hawkins, 2017). As it
stands there is no clear answer on how to improve the sustainability of fish stocks
without a drastic overhaul of the fishing industry itself.

One clear thing is that there is great potential on this topic whether it is on the side
of natural or political science. On the natural science side, the identification of the
key drivers and habitable zones associated with fish productivity could be used to
develop models that can predict potential changes in the density and distribution
of the fish species. To achieve this access to earth system models and larval data is
needed, which would require cooperation with the relevant bodies. This will allow
to get an insight into the potential predictability of important species for the
Irish fisheries sector and with it the possibility of improving the current fish stock
management systems in Ireland. The application for such research would allow
countries such as Ireland to develop a climate service that could revolutionise the
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8.9. Future Work

sector.

On the political side, there is a need for an in-depth analysis of all the current
policies in place and at what level they are currently having the most impact. It
would identify where there is a possibility for change in these policies and find
out where they are falling short. The natural science side must translate the
scientific information across to those who would not be familiar with models and
the uncertainty that surrounds them. This would then allow for decisions about
fish stock management to be made with the highest quality information available.
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Abstract

This study investigates the predictability within the North Eastern
Atlantic at depth with an initialised decadal prediction system. For both
temperature and salinity at the West Coast of Ireland are compared
for 2-to-5-years ahead in a 16-member initialised decadal prediction sys-
tem and in two 16-member uninitialised historical simulations from the
Max Planck Institute Earth system model for the time period 1966-2013.
We find that there is predictability in the upper levels of the North
Eastern Atlantic up to a depth of 1000m for temperature and salinity.
For the same time period we analyse water mass properties and predic-
tion skill along three transects (Extended Ellett line, Porcupine Bank,
Goban Spur). Along these transects, we find (1) that there is multi-year
memory in the water mass properties of the initialised predictions, (2)
that prediction skill depends on variable, depth, and external forcing
scheme, (3) that improvements in prediction skill in the initialised system
over the uninitialised simulations are mostly in the upper ocean above
300m depth and in the deep ocean below 1500m depth, and (4) that
these improvements are more pronounced in salinity than temperature.

Keywords: Decadal Prediction, Earth System Model, North Eastern
Atlantic, Potential Temperature, Salinity
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1 Introduction

The North Atlantic is an extensively studied region in terms of the processes
involved within the ocean and how they interact with the atmosphere. Studies
have shown that both atmospheric (North Atlantic Oscillation) and oceanic
processes (sub-polar gyre) can be replicated within models in both initialised
hindcast simulations and uninitialised historical simulations (Andrews et al,
2015; Athanasiadis et al, 2017; Barcikowska et al, 2018; Koul et al, 2019).
However, there is limited research completed on the predictability for potential
temperature and salinity at depth, both on a global and a regional scale just for
the ocean. By having the ability to predict changes in climate variables such as
temperature and salinity for a target region, informed decisions can be made
about environmental and economic conditions. Koul et al (2019) demonstrated
that uninitialised historical simulations with the Max Planck Institute Earth
system model (MPI-ESM) as part of the Coupled Model Intercomparison
Project Phase 5 (CMIP5, Taylor et al, 2012), are well representing large scale
ocean dynamics and atmosphere-ocean interaction. The simulations used in
Koul et al (2019) form the first part of the Max Planck Institute Grand Ensem-
ble (Maher et al, 2019). Koul et al (2019) examined subsurface salinity on
three sections in the North Eastern Atlantic (Rockall Trough, Faroe-Scotland
Channel, and North Sea entrance), and showed that in their uninitialised his-
torical simulations atmospheric variability eventually influences the evolution
of North Sea salinity.

Previous work that was conducted on the North Eastern Atlantic was
focused on the Rockall Trough and in particular the Extended Ellett line. We
will use the full length and depth of the Extended Ellett line, which will act
as our most northwest section. Porcupine Bank west, and Goban Spur south-
west make up two other sections along the west coast of Ireland as seen in
figure 1. All three sections lie on parts of the continental shelf off the west
coast of Ireland, with the Porcupine bank and Goban Spur heading out to
the open ocean. All three sections are influenced by both the North Atlantic
Ocean and different water masses. The Extended Ellett line is a multidecadal
hydrographic transect that is an extension of the Ellett line that is located
between Scotland and Iceland. It runs through the Rockall Trough, Hatton-
Rockall basin, and Iceland basin (Holliday et al, 2015; Humphreys et al, 2016;
Jones et al, 2018). The Porcupine Bank has surface salinities that are about
0.05 PSU less than surface values of that in deeper water either side (White,
1997; O’Reilly et al, 2022). Goban Spur is a submarine plateau 250km that
extends away south-west of Ireland in the southwestern Celtic Sea, and into
the deeper ocean (Dingle and Scrutton, 1979; de Graciansky and Poag, 1985;
Huthnance et al, 2001; Moritz et al, 2021). The Extended Ellett line captures
the flow of warm, salty water from the North Atlantic into the Nordic Seas
and half of the returning deep, cold overflow current (Humphreys et al, 2016).
In turn the Rockall Trough supplies warm and saline water to the Nordic
Seas, where it is transformed into fresh southward flowing deep water (Hol-
liday et al, 2020). There are several water masses that circulate around the
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Porcupine Bank and Goban Spur that influence both temperature and salinity
along the shelf. The main water masses that influence both are North Eastern
Atlantic Water, and Mediterranean Outflow Water (MOW) moving the high
saline water mass northward and then returning as denser water southward
(Huthnance et al, 2001; O’Reilly et al, 2022). Lower Deep Water is thought to
circulate cyclonically around Goban Spur, Porcupine Bank and the entrance
to Rockall Trough (Huthnance et al, 2001).

Large-scale atmosphere-ocean feedback that occurs in North Atlantic
Ocean gives the ability to improve decadal predictability (Koul et al, 2020;
Borchert et al, 2021). Some studies suggest that the predictability improves on
scales of 2-8 years and others for even up to 10 years into the future (Borchert
et al, 2018, 2019; Brune and Baehr, 2020). The leading cause of inter-annual
to decadal variability in salinity is linked with the variability in the sub-polar
gyre (Koul et al, 2020), one of the regions in the North Atlantic that showed
skill improvement with initialisation in CMIP5 (Borchert et al, 2021).

To expand on prediction in the North Eastern Atlantic, the uninitialised
historical simulations from both CMIP5 and CMIP phase 6 (CMIP6, Eyring
et al, 2016) from MPI-ESM will be explored, as well as initialised decadal
predictions. We will explore the predictability on a 2-5-year lead time. For this
we analyse potential temperature and salinity at depth along the Irish coast
for the Extended Ellett line, Porcupine Bank, and Goban Spur. The aim is to
demonstrate the capability of a state-of-the-art decadal prediction system to
predict the waters on the West of Ireland.

2 Simulations and methods

For this study we analysed simulations with the Max Planck Institute Earth
system model (Giorgetta et al, 2013; Mauritsen et al, 2019) in its low-resolution
setup (MPI-ESM-LR) for the time period 1961-2013. In MPI-ESM-LR, the
oceanic component (MPIOM, Jungclaus et al, 2013) is setup with a nominal
horizontal resolution of 1.5◦ globally, actually corresponding to ≈ 1◦ in the
North Eastern Atlantic, and 40 levels vertically. The atmospheric component
(ECHAM6, Stevens et al, 2013) is configured with a spectral resolution T63,
corresponding to ≈ 1.9◦ horizontal resolution globally, and 47 levels in the ver-
tical.
We use a weakly coupled assimilation with MPI-ESM-LR (Hövel et al, 2022;
Brune and Baehr, 2020), which covers the time period 1958-2019, both as a
reference and for the initialisation of predictions. Oceanic temperature and
salinity profiles from EN4 (Good et al, 2013) are assimilated monthly with a
16-member oceanic ensemble Kalman filter (Brune et al, 2015; Polkova et al,
2019) using the Parallel Data Assimilation Framework (PDAF, Nerger and
Hiller, 2013). Simultaneously, monthly mean atmospheric temperature, vortic-
ity, divergence (all only above 900hPa), and sea level pressure from ERA40
(Uppala et al, 2005), ERA-Interim (Dee et al, 2011), and ERA5 (Hersbach
et al, 2020) are nudged into ECHAM6. CMIP6 external forcing (Eyring et al,
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2016) is applied throughout the whole assimilation, with historical forcing until
2014, and scenario forcing SSP2-45 thereafter.
For the purpose of our study, we use a 16-member ensemble of initialised
predictions (”hindcasts”) that have been started November 1st each year ini-
tialised between 1961-2008 from the assimilation with a 2-to-5-year lead time
(Hövel et al, 2022). Thus our analysis time period is between 1966 and 2013.
Similar to the assimilation, CMIP6 external forcing is applied to these hind-
casts correspondingly.
Uninitialised simulations with MPI-ESM-LR have been part of both CMIP5
(Taylor et al, 2012) and CMIP6 (Eyring et al, 2016) model intercomparisons.
In this study, we use the first 16 members of the CMIP5 MPI Grand Ensem-
ble (Maher et al, 2019), with CMIP5 historical external forcing until 2005,
and CMIP5 scenario RCP4.5 external forcing starting with 2006. We also use
the first 16 members of the CMIP6 MPI Grand Ensemble (Olonscheck et al,
2023), with the same CMIP6 external forcing as in assimilation and hindcasts.
We analyse the hindcasts and both uninitialised simulations (”CMIP5”,
”CMIP6”) for both potential temperature and salinity at depth. Annual mean
values of model output variables are computed and then used to generate a
2-to-5-year lead year time series for each member. For all simulations we com-
pute the 16-member ensemble mean.
For the comparison of the simulations a detrended anomaly correlation coeffi-
cient (ACC) is estimated, with reference to the assimilation. We also calculate
the differences of the resulting ACCs between the hindcasts and the unini-
tialised simulations. Uncertainty is estimated by a bootstrapping of 500
repetitions and a significance level of 5% (Wang et al, 2014). The same
approach is used for estimating the skill along the transects.

3 Results

3.1 Predictability of temperature and salinity in the
North Eastern Atlantic

We first investigate surface predictability of potential temperature and salin-
ity within the MPI-ESM on a lead time of 2-to-5-years for the North Eastern
Atlantic. The ACC is used to assess skill in both potential temperature and
salinity for uninitialised historical and initialised hindcast simulations of the
MPI-ESM-LR. Then the initialised hindcast simulations are compared with
the uninitialised historical simulations (CMIP6) to determine if there was any
improvement in skill due the initialisation. Initialised hindcast simulations
for potential temperature (Figure 2a) demonstrate that the North Eastern
Atlantic shows to have good predictability apart from a small area of low pre-
dictability southwest of Ireland. The salinity results (Figure 2c) show that for
the initialised hindcast simulation the predictability has an improvement over
that of the potential temperature. Comparing the initialised hindcast predic-
tion with the uninitialised historical simulation for the potential temperature
(figure 2b) highlights that there are advantages for the initialised prediction
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for the open ocean, while the uninitialised simulation performs better over the
continental shelf close to the Irish coast. In contrast, for salinity (figure 2d)
the initialisation provides better predictability for both the open ocean and
the continental shelf around the Irish coast.

A common approach for predictions at depth is to calculate a mean over
a group of target depths. In this study we take an alternative approach and
analyse predictability for three sections off the Irish coast: Extended Ellet Line
(EEL), Porcupine Bank (PB), and Goban Spur (GS). The three sections are
highlighted in figure 2, together with the surface prediction skill at each of the
locations. Overall there is predictability (using the assimilation as reference)
in both temperature and salinity along the West of Ireland as seen in figure 2,
this can give an insight to what we could expect to see in the transects. In a
next step we investigate the three transects at depth.

3.2 Water Mass Analysis in the model along the three
transects

The temperature-salinity diagram (figure 3) highlights that the initialised
hindcast simulations differ from the uninitialised simulations. These initialised
hindcasts are closer to the assimilation than uninitialised historical simula-
tions for all three transects. However, the CMIP5 and CMIP6 simulations show
that they are potentially picking up the MOW and Labrador Sea water move-
ments at the transect of the PB (figure 3h,k) and the GS (figure 3i,l). The
uninitialised historical simulations show a more chaotic pattern in the upper
ocean. While assimilation and initialised hindcast simulations are not identi-
cal, they do show that at the surface the water potential temperatures are
higher and more saline compared to lower depths. The salinity range is con-
fined to a particular range for the assimilation and hindcast simulations, but for
the uninitialised (”CMIP5”, ”CMIP6”) simulations the range is much larger.
From figure 3 we observe that it is clear that the long-term memory could be
assigned to water masses in the area and this can be potentially beneficial to
the initialised hindcast simulations for increasing the prediction skill.

3.3 Predictability of Potential Temperature along the
three transects

Building on the water mass analysis and the predictability of the surface we
investigate whether the model can reproduce the potential temperature values
in the regions. We know that temperatures will decrease towards the north
and west. Near 49°N the temperatures can reach about 16°C at the surface. At
depth the values range in winter from 10-11°C to up to about 700 m. Below
that they decrease steadily to below 4°C at 2000 m (Huthnance et al, 2001).
The closest section that is at this slope is that of the GS. We expect that while
the water moves north- and westward (away from the slope) the potential
temperature will decrease.
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To estimate the capability of the model, we compare the absolute values of
the potential temperature from the assimilation simulation, which by design
is the closest to the observations, with the uninitialised historical (”CMIP5”,
”CMIP6”) and initialised hindcast simulations.The results of the three sections
are illustrated in figure 4. In the first column is the EEL (figure 4a,d,g,j), in
the second column the PB (figure 4b,e,h,k) and the last column the GS (figure
4c,f,i,l). Overall results show that the model is within the limits of values that
have been observed for the regions, that as water is moving northward there is
a decrease in temperature. Across the three transects the hindcast simulations
are almost identical with the assimilation simulations with the upper ocean
showing a warmer temperature. Both the uninitialised historical (”CMIP5”,
”CMIP6”) simulations overestimate potential temperature by approximately
1.5 degrees Celsius above the assimilation for the EEL. At PB, all the simu-
lations appear to be within 0.5 degrees Celsius of the assimilation. Similarly,
the same is true for the GS section except that the CMIP5 results are approxi-
mately 2 degrees warmer compared to the other results for this section. It is the
possibility that uninitialised historical simulations could be overestimating the
potential temperature for these regions. Due to their initialisation, the hind-
cast are slightly more accurate than the uninitialised historical simulations.
Following on from this, we want to determine if there is any improvement on
prediction skill between the two simulations because of this initialisation.

In a next step we analyse the predictability for the three transects, at the
EEL (figure 5a,d,g), the PB (figure 5b,e,h), and the GS (figure 5c,f,i). A com-
mon theme for the initialised hindcast simulation for the three transects is the
predictability at depth. Starting with the EEL (figure 5a) there is a region
of lower predictability in the depth of about 1200 m. Above this level and in
the Iceland basin also partly below this level, the predictability is high. In the
CMIP6 simulation (figure 5d), we find high predictability only in the upper
1000 m, with even higher values than in the initialised simulation (figure 5g). At
the PB, the initialised simulations (figure 5b) show a clear region of predictabil-
ity for the upper 300 to 400 m, and below 1500 m. In between these depths,
the predictability is lower. In the uninitialised CMIP6 simulations (figure 5e)
the main areas of high predictability can be found just below the surface layer.
Consequently, comparing the two simulations (figure 5h) shows that initialisa-
tion is mainly beneficial for the surface layer and the depth. For the GS (figure
5c), the initialised simulations show consistently high predictability for most
depths, while in the the uninitialised CMIP6 simulation high predictability is
confined to the upper 1400 m only (figure 5f). Consequently, initialisation is
beneficial to a higher prediction skill below 1400 m (figure 5i).

When we investigate the uninitialised CMIP5 simulations (figure 6) we see
that their results are generally similar to the uninitialised CMIP6 simulations
(figure 5). The main difference is that the upper layer of predictability for
the PB and the GS (figure 6b,c) is extending deeper, but with smaller values.
Compared to the initialised simulation again the initialised hindcast dominate
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in the depth, while in the upper layers an inconsistent picture emerged (figure
6d,e,f).

3.4 Predictability Sea Water Salinity along the three
transects

We investigate whether the model could reproduce the salinity values that
occur in these regions. We expect that the water at the most southern transect
(GS) will be the most saline of the three transects. Salinity should be reducing
when the water moves further north through the PB towards the EEL.

What the salinity values (figure 7) show that as the water moves north-
ward, it does become slightly less saline for assimilation, initialised hindcast
and uninitialised historical (CMIP5/6) simulations. The hindcast simulations
(figure 7d,e,f) for the three sections are the ones that are for salinity almost
identical to the assimilation simulations (figure 7a,b,c). For the EEL the
CMIP5 (figure 7g) and CMIP6 (figure 7j) simulation also closely replicate the
assimilation with the lowest depths being a bit fresher. This also follows for PB
transect where it is fresher at lower levels but a broader saline range. Goban
CMIP5 (figure 7i) and CMIP6 (figure 7l) results show a more saline region in
the upper ocean. In contrast to the initialised simulations which have a high
saline depth of roughly less than 1000 m, both of the uninitialised historical
simulations extended to a depth of about 1300 m. The initialised hindcasts
are highly saline to the west at the surface, for the uninitialised historical
simulations show this area to be a fresher region.

Similar to the potential temperature, the salinity values are compared for
the initialised hindcasts, the CMIP6 (figure 8) and CMIP5 (figure 9) simula-
tions. The initialised hindcasts for the three transects (EEL, PB, GS) (figure
8a,b,c) highlight that there is skill at most depth levels. Initialised hindcasts
for EEL (figure 8a) show a region with little or low skill at a depth of about
1200 m, but beside that they demonstrate a consistent high predictability
along the depth range. In contrast to this the uninitialised CMIP6 simulation
has little skill in the surface layer and at depth (figure 8d). Comparing the
two simulations shows (figure 8g) that the initialised hindcasts preform bet-
ter in the upper couple of hundred metres and in the deeper depths. Along
the PB (figure 8b) the initialised hindcasts have significant skill for the major-
ity of the transect except for its central part. The same transect within the
CMIP6 simulation (figure 8e) shows two bands with high prediction skill in the
upper layers. The difference (figure 8h) between the initialised hindcast and the
CMIP6 simulation illustrates that initialisation out-preforms the uninitialised
simulations everywhere apart from the two distinct bands. For the GS (figure
8c) there is high predictability over all depth in the initialised prediction. In
contrast, the CMIP6 results for the GS (figure 8f) shows low predictability in
the surface layer, and at a depth of about 1400 m. In the comparison (figure
8i) we see that the initialisation benefits prediction skill in these two layers.

Figure (9a,b,c) shows the ACC results for the CMIP5 simulation along the
three transects. There is very little skill at the surface, but high skill at depths
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down toward 1400 m. In comparison with the initialised hindcasts at the EEL
(figure 9d), the main increase in skill due to initialisation can be found in the
depth and at the surface. For the PB (figure 9e) and the GS (figure 9f) we
find a similar result. In general it can be said that between the CMIP5 and
CMIP6 simulation the general pattern of skill improvement by initialisation is
comparable, but in the details it shows considerable differences. Especially it
shows that the CMIP5 simulation has much less consistent skill in that area
than the CMIP6.

4 Discussion

The main aim for the study is to determine if the predictability seen for surface
variables in the North Atlantic can be replicated for potential temperature
and salinity in the North Eastern Atlantic at depth. Using two uninitialised
historical simulations and one set of initialised hindcast simulations we have
assessed the predictability at depth for the three transects (EEL, PB, and GS)
using MPI-ESM. We show that there is predictability on a 2-5-year lead time
in the North Eastern Atlantic for potential temperature and salinity.

Prediction of North Atlantic potential temperature and salinity can be
improved with initialisation as in some areas the initialised hindcast out-
preform the CMIP5/CMIP6 simulations. This can be seen in the comparison
plots between the initialised hindcast and uninitialised historical simulations
for both temperature and salinity along the three transects. Three areas of
importance were identified as Extended Ellett line in the north, the Porcupine
Bank transect in the west, and Goban Spur to the south along the Irish coast.
The last row of plots on figures 5 and 6 show that for temperature the main
improvements due to initialisation occur at the lower depths and that the upper
ocean is well represented in all of the simulations. For salinity (figures 8 and 9)
the results show that improvements in prediction skill due to initialisation are
not confined to larger depths, but also show up at the surface. Taking a look
at the absolute values (figures 4 and 7) and the temperature-salinity diagram
(figure 3) show a better representation for both variables by the initialised
simulation, especially at the surface in the North Eastern Atlantic. Overall
the results show that there is an improved predictability and representation
at depth for both variables with the initialisation, with better performance for
salinity than temperature.

Results that we obtained for near surface potential temperature are in line
with the current research. Borchert et al (2018) explored this region look-
ing at the sea surface temperature (SST) and its connection with the ocean
heat transport and the Atlantic Multidecadal Variability and how they are
interconnected with each other. It was determined that on longer timescales
SST is influenced and impacted by ocean heat transport. Koul et al (2019)
explored uninitialised historical simulations to show that open-ocean circu-
lation can have an impact on North Sea inflow. While Koul et al (2019)
investigated the historical simulations we went a step further to determine if
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there is any predictability along our three transects, by using initialised hind-
cast and uninitialised historical simulations. These simulations were compared
with the assimilation simulation, as a first step we looked at the values that
each simulation had generated followed by the temperature-salinity diagram
then moving onto the prediction skill. This has produced results that have
highlighted that initialised simulations generally have improved predictability
compared with uninitialised simulations. By extending our analysis further to
the south compared to Koul et al (2019), we show that also in these region,
the potential temperature and salinity are well represented in the model. We
analysed a time period of 1961 to 2013, on a 2-to-5-year lead time to com-
pare the results with two uninitialised simulations. A future target would be to
extend the time frame as well as lead times. While these results look promising
it should be notedthat due to limited observations any references for the sub-
surface ocean prior to 2004 might not be as reliable as they are since then with
the Argo observational network in place (Wong et al, 2020). Nevertheless, the
results showed promising insights into the ability of initialised simulations, even
when discussions about the benefit of initialisation are getting more traction
(Borchert et al, 2021).

The ability to predict changes in the future fish stock will support adapta-
tion for its management, which is of vast importance for international coastal
communities. Through the analysis of both temperature and salinity at depth
we can identify habitable zones and spawning grounds that may be predictable.
It will also support the better understanding of the life cycle and distribu-
tion of future fish habitats. Its potential has already been demonstrated for
the blue whiting (Miesner and Payne, 2018) and cod (Koul et al, 2021) in the
wider North Eastern Atlantic context.

5 Conclusions

In this study we explored the predictability within the Eastern North Atlantic
at depth using three transects the Extended Ellett Line, the Porcupine
Bank, and Goban Spur. To achieve this we first determined validity in the
temperature/salinity-space of the initialised and uninitialised simulations by
comparing it to an assimilation simulation. We followed this by determin-
ing the predictability of the two categories of simulations and determined the
impact of initialisation for the three transects. We found that (1) there is multi-
year memory in the water mass properties of the initialised predictions, (2)
that prediction skill depends on variable, depth, and external forcing scheme,
(3) that improvements in prediction skill in the initialised system over unini-
tialised simulations are mostly in the upper ocean above 300 m depth and in
the deep ocean below 1500 m depth, and (4) that these improvements are more
pronounced in salinity than in temperature.
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Fig. 1 The three sections are the EEL (dark orange line) most northward section, moving
south the next section is along Porcupine Bank (PB, red line), and the most southerly section
along Goban Spur (GS, navy line).

6 Figures
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Fig. 2 Shows the anomaly correlation coefficient initialised hindcast against assimilation
for potential temperature (6m) (a) and sea water salinity (6m) (c) for the North Eastern
Atlantic and the difference between initialised hindcast ACC and uninitialised CMIP6 ACC
for the North Eastern Atlantic for potential temperature (6m) (b) and sea water salinity
(6m) (d). The areas shaded on red highlight the regions that have good predictability, the
orange line is the Extended Ellet Line, the yellow line is the Porcupine Bank transect, and
the navy line is the Goban Spur. The red areas show that there is positive skill, the blue
shows that there is negative skill and the black dots show that they are significant. Generated
from the MPI-ESM-LR; 1966-2013; initialised each November; 2 to 5 years lead time; 16
ensemble members.
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Fig. 4 Potential temperature values from the model for the assimilation (a-c), initialised
hindcast (d-f), uninitialised historical (CMIP5) (g-i), uninitialised historical (CMIP6) (j-l)
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Fig. 5 Anomaly correlation coefficient against assimilation for potential temperature at
lead years 2 to 5, using the initialised hindcast (a-c), uninitialised historical (CMIP6) (d-f),
hindcast - uninitialised historical (g-i) for the EEL, Porcupine Bank, and Goban Spur. The
red areas show that there is positive skill, the blue shows that there is negative skill and
the black dots show that they are significant. Generated from the MPI-ESM-LR; 1966-2013;
initialised each November; 2 to 5 years lead time; 16 ensemble members.
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Fig. 6 Anomaly correlation coefficient against assimilation for potential temperature at lead
years 2 to 5, using uninitialised historical (CMIP5) (a-c), hindcast - uninitialised historical
(d-f) for the EEL, Porcupine Bank, and Goban Spur. The red areas show that there is
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are significant. Generated from the MPI-ESM-LR; 1966-2013; initialised each November; 2
to 5 years lead time; 16 ensemble members.
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Fig. 7 Sea water salinity values from the model for the assimilation (a-c), hindcast (d-
f), uninitialised historical (CMIP5) (g-i), uninitialised historical (CMIP5) (j-l) simulations
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2013; initialised each November; 2 to 5 years led time; 16 ensemble members.
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Fig. 8 Anomaly correlation coefficient against assimilation for sea water salinity at lead
years 2 to 5, using the initialised hindcast (a-c), uninitialised historical (CMIP6) (d-f),
hindcast - uninitialised historical (g-i) for the EEL, Porcupine Bank, and Goban Spur. The
red areas show that there is positive skill, the blue shows that there is negative skill and
the black dots show that they are significant. Generated from the MPI-ESM-LR; 1966-2013;
initialised each November; 2 to 5 years lead time; 16 ensemble members.

Fig. 9 Anomaly correlation coefficient against assimilation for sea water salinity at lead
years 2 to 5, using uninitialised historical (CMIP5) (a-c), hindcast - uninitialised historical
(d-f), for the EEL, Porcupine Bank, and Goban Spur. The red areas show that there is
positive skill, the blue shows that there is negative skill and the black dots show that they
are significant. Generated from the MPI-ESM-LR; 1966-2013; initialised each November; 2
to 5 years lead time; 16 ensemble members.
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