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A novel method for quantifying overdispersion in
count data and its application to farmland birds
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The statistical modelling of count data permeates the discipline of ecology. Such data
often exhibit overdispersion compared with a standard Poisson distribution, so that the
variance of the counts is greater than that of the mean. Whereas modelling to reveal the
effects of explanatory variables on the mean is commonplace, overdispersion is generally
regarded as a nuisance parameter to be accounted for and subsequently ignored. Instead,
we propose a method that models the overdispersion as a biologically interesting prop-
erty of a data set and show how novel inference is provided as a result. We adapted the
double hierarchical generalized linear model approach to create an easily extendible
model structure that quantifies the influence of explanatory variables on the overdisper-
sion of count data, and apply it to farmland birds. These data were from a study within
Irish agricultural ecosystems, in which total bird species abundance and the abundance
of farmland indicator species were compared on dairy and non-dairy farms in the winter
and breeding seasons. In general, overdispersion in bird counts was greater on dairy farms
than on non-dairy farms, and for total bird numbers, overdispersion was greatest on dairy
farms in winter. Our code is fitted using the Bayesian package Rstan, and we make all
code and data available in a GitHub repository. Within a Bayesian framework, this
approach facilitates a meaningful quantification of the effects of categorical explanatory
variables on any response variable with a tendency to overdispersion that has a meaning-
ful biological or ecological explanation.

Keywords: abundance, agricultural systems, Bayesian framework, ecological data.

Count data exhibiting overdispersion are a com-
mon occurrence in ecological statistical modelling
(e.g. O’Hara & Kotze 2010, Harrison 2015). Such
data arise when the variance of the counts is larger
than the mean, as opposed to the standard Poisson
probability distribution, which requires their
equality. Many reasons have been proposed for the
existence of overdispersion (Lind�en & M€antyniemi
2011, McMahon et al. 2013a). When explanatory
variables are available, it is common simply to
quantify their effect on the mean. However, the

overdispersion may also reflect biologically inter-
esting patterns, such as that of flocking (Lind�en &
M€antyniemi 2011), so its drivers warrant investiga-
tion. Flocking may be a mechanism to enable bird
species to source food more efficiently or to
increase protection against predation. We provide
an easily extendible route towards achieving
greater insight into the ecological meaning of
excess variance. We adapt the double hierarchical
generalized linear model approach of Lee and
Nelder (2006) which, to our knowledge, has yet
to be applied in empirical ecological studies.

Although Poisson is the most commonly used
probability distribution for counts, many exten-
sions and alternatives have been proposed to
model such data in the presence of overdispersion,
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such as quasi-Poisson models (Wedderburn 1974),
random-effects models (Bolker et al. 2008) and
negative-binomial models (McCullagh & Nelder
1989). Indeed, the negative binomial model that
we use can be seen as a marginalized gamma-dis-
tributed random effects model applied to Poisson
data (Agresti 2013). Further intense debate has
focused on whether a count distribution is valid
for overdispersed data at all, and whether it might
be better replaced by appropriate data transforma-
tion (e.g. via the square root or log) and use of a
more general model (O’Hara & Kotze 2010, Ives
2015). Our proposed approach neatly sidesteps
this question, as it accounts for, and allows greater
control of, the mean/variance relationship.

We adopt a Bayesian approach to statistical
inference. This has the advantages of being more
easily extendible, creating more coherent and
understandable probability distributions for the
user and allowing for prior information to be
incorporated in the analysis. However, our model
is agnostic to the inferential paradigm used, e.g.
maximum likelihood estimates. We fitted our
models using the Hamiltonian Monte Carlo pack-
age (RStan Stan Development Team 2015), as this
provides fast access to the full posterior distribu-
tion of the parameters. We provide all our code in
a GitHub repository (https://github.com/andrewc-
parnell/birds_od).

Our particular focus was on the modelling of
overdispersion, i.e. the incorporation of explana-
tory variables that allow the determination of the
underlying causes of excess variance. This has not
been the focus of much previous research
(although see Lind�en & M€antyniemi 2011), as
many studies treat any parameters associated with
overdispersion as constant across observations. In
contrast, our approach, with a re-parameterization
of the negative binomial distribution, allowed us
to examine overdispersion from a range of overdis-
persion relationships for which the quasi-Poisson
and the negative binomial are special cases.

Rather than treat overdispersion simply as a
nuisance parameter, and correct for its bias in sta-
tistical tests, it has been suggested that an appro-
priate approach would be to consider the
biological mechanisms that might plausibly under-
pin the phenomenon, such as flocking in birds,
and this logic might usefully be incorporated into
the modelling process. If so, the data should follow
a negative binomial distribution, with the mean–
variance relationship governed by an additional

parameter that quantifies the flocking or other
aggregation behaviour on the response variable
(McMahon et al. 2013a).

We tested the potential of the method with a
data set on farmland birds in Ireland, where varia-
tion in both mean abundance and flocking might
be expected between farm systems and seasons.
Our approach allows for the calculation of esti-
mates of overdispersion and quantitatively evalu-
ates the influence of explanatory variables, in this
case farm system (non-dairy and dairy) and survey
season (winter and breeding). We discuss the
wider use of this modelling approach in drawing
inferences from biological count data.

METHODS

Statistical models for overdispersion

The most common framework to deal with
overdispersion in count data is that of generalized
linear models (GLMs; McCullagh & Nelder 1989).
This approach broadly provides two distributions
on which to model overdispersion count responses,
namely, the quasi-Poisson and the negative bino-
mial. Perhaps the most important difference
between these two distributions for the problem at
hand is the behaviour of the variance with respect
to the mean. In the quasi-Poisson, the variance is a
linear function of the mean, whereas in the nega-
tive binomial, the variance is a quadratic function
of the mean. In either case, it could be argued that
such a strict relationship is overly prescriptive, and
further extensions are required explicitly to model
the overdispersion.

A body of research has been devoted to com-
paring and evaluating these two approaches (see
Ver Hoef & Boveng 2007 for a review). The GLM
paradigm allows for explanatory variables to be
included in the model via a link function applied
to the mean. However, there is surprisingly little
research on the parametric modelling of overdis-
persion. Lind�en and M€antyniemi (2011) propose a
specific new parameterization which bridges the
quasi-Poisson/negative binomial divide, but does
not allow for explanatory variables to be included
that more flexibly account for overdispersion.

A common motivation for the negative bino-
mial distribution is that it arises as a gamma ran-
dom effect applied to the mean or equivalently
variance, the two being mathematically linked in
the Poisson distribution. It is thus feasible to create
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overdispersed counts through the application of
random effects to the mean of a Poisson distribu-
tion through the link function. However, this
approach makes identification of the causal effects
hard, especially if there are multiple explanatory
variables. Our approach, in contrast, allows for
easy examination of the factors that cause variance
in excess of the mean.

Concurrently, in GLM modelling of count data
with overdispersion, there has been much debate
as to whether it is valid to transform the data (e.g.
via log or square-root transformations) prior to use
of standard linear models (see O’Hara & Kotze
2010, and Ives 2015 for both sides of this argu-
ment). One justification for using the linear model
approach is the increased control over the mean–
variance relationship, which can be entirely inde-
pendent, whereas, as noted above, using the GLM
approach assumes a prescribed relationship
between mean and variance. Our new approach
relaxes this constraint while remaining within the
GLM framework, and so perhaps allows for com-
promise in this debate.

Modelling approach

We expressed our univariate response variable as
counts yi for observation i = 1, . . . n. In our appli-
cation study below, there were two potential
response variables, although we considered only
univariate response models for illustration. Multi-
variate extensions are addressed in the Discussion.
Given the existence of overdispersion in the data,
we used a negative binomial distribution for y. We
used the alternative parameterization of the nega-
tive binomial:

yi �NB /i; lið Þ

where φi is the overdispersion parameter and li
the mean rate parameter, both constrained to be
> 0. The mean and variance of this distribution
were:

EðyiÞ ¼ li;VarðyiÞ ¼ li þ
l2i
/i

The log-link function was defined so that
logðliÞ ¼ b0 þ xTi b was dependent on any explana-
tory variables xi through parameters b and to fix
φi = φ and a single overdispersion parameter was
estimated.

If we wish to model the dependence of the
overdispersion parameter on the explanatory vari-
ables, it is not helpful to model φi through a link
function, as the overdispersion is linked to the
mean. For example, setting logð/iÞ ¼ c0 þ xTi c for
a new set of parameters c will yield a complex
excess variance relationship that depends on the
explanatory variables through both b and c. This is
exactly the case in the GAMLSS package in R (R
Development Core Team, 2005), which is widely
utilized in ecology (Katsanevakis et al. 2010, Kiff-
ner et al. 2011, Ourens et al. 2014). The interpre-
tation of how the explanatory variables cause the
excess variance is extremely difficult using this
parameterization.

As an alternative, we modelled the dispersion
via the re-parameterization hi ¼ l2i =/i which gave
VarðyiÞ ¼ li þ hi. Thus hi directly modelled the
overdispersion. As it is also necessarily positive, we
applied the log-link function to its value and con-
nected it to the explanatory variables, yielding
logðhiÞ ¼ c0 þ xTi c. We used this approach to mea-
sure separately the effect of the explanatory vari-
ables on the mean (via b) and the overdispersion
(via c). As will be seen in the Results, the interpre-
tation of these parameters was clearer than when
the traditional parameterization was used.

Our novel parameterization had further subtle
benefits. If we introduce the mean as an offset, i.e.
logðhiÞ ¼ c0 þ logðliÞ, a quasi-Poisson type vari-
ance–mean relationship is achieved. Alternatively,
if we add in a quadratic function of the mean, a
negative binomial formulation is achieved. In prac-
tice, we found it preferable to do neither of these,
and allowed the explanatory variables to guide the
behaviour of the variance relationship. Further-
more, it is conceivable that we might choose an
alternative to the log-link on hi, and so allow for
underdispersion. However, for brevity, we do not
explore that approach further here.

Finally, we did not perform any model selection in
this paper. As our approach is a re-formulation of the
negative binomial GLM, it is feasible to compute any
of the standardmetrics by which models can be com-
pared, including DIC (Spiegelhalter et al. 2002) or
the more recently introducedWAIC/WBIC (Watan-
abe 2013). Our goal here is to show how overdisper-
sion can be modelled better through this
transformation, rather than explicitly exploring the
causal or predictive structure of our data.

The modelling structure can be fully stated
hierarchically including potential offsets (oi) and
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random effects bi for the mean and ai for the over-
dispersion. We used:

yi �NBðl2i =hi; liÞ
logðliÞ ¼ oi þ b0 þ xTi bþ zTi bi

logðhiÞ ¼ oi þ c0 þ xTi cþ zTi ai

These random effects may allow for nesting,
and are given normally distributed priors, e.g.
bi �Nð0; r2bÞ in the univariate case. Substituting in
hi ¼ l2i =/i, as detailed above, yields the standard
negative binomial formation.

Model fitting

We fitted the models using the Bayesian Monte
Carlo package Stan (Stan Development Team
2015). The package works by simulating from the
posterior probability distribution of the parameters
given the data, using an efficient Hamiltonian
implementation of Markov chain Monte Carlo
known as the No U-Turn Sampler (NUTS; Hoff-
man & Gelman 2014). Bayesian modelling is now
routine in ecology (McCarthy 2007) and we do
not discuss the computational issues further. All
the modelling details, including Stan code, data,
and R code to check convergence of the fitted
model and produce the plots in this paper, are
available at the GitHub repository: https://github.-
com/andrewcparnell/birds_od.

Application study: farmland birds

Data from a study of bird populations within Irish
farmland were used to demonstrate our novel
approach (McMahon et al. 2013b). The rationale
behind this was to compare abundance patterns
between farm systems (non-dairy and dairy) and sur-
vey seasons (winter and breeding), as variations had
been observed previously (McMahon et al. 2013b).

Site selection

Farm selection for winter and breeding season bird
surveys provided a random selection of dairy and
non-dairy farms reflecting the proportional inci-
dence of farm types along a north–south gradient
of increasing intensity in grassland farming practice
in three separate geographical regions of the
Republic of Ireland, counties Sligo/Leitrim, Offaly/
Laois and Cork (Emerson & Gillmor 1999,

Lafferty et al. 1999). In total, 40 farms were
selected within each region (20 per year in each
sampling region), giving a total sample of 120 sur-
veyed farms. For further survey details, see McMa-
hon et al. (2012, 2013b).

Bird data

Each farm was surveyed once in the winter season
(December–February) and once in the breeding sea-
son (April–June). The same surveyor carried out all
surveys using a standardized protocol (McMahon
et al. 2013b). During the breeding season, surveys
were carried out between 07.00 and 12.00 h,
whereas during the winter season, surveys were car-
ried out between 10.00 and 15.00 h. The mean
duration (� sd) of surveys in the winter season was
61 � 13 min, and in the breeding season
67 � 18 min. The number, abundance and location
of bird species in field boundaries were recorded
directly onto site maps, including raptors seen hunt-
ing over fields and field boundaries. Other species
seen flying overhead, but not interacting with fields
or field boundaries, were not recorded. The bird
data were collated into total bird species abundance
and the abundance of specialist, farmland indicator
species (Gregory et al. 2004).

Exploratory data analyses

In the winter period, 60 farms were surveyed in
2007–2008, and 59 farms in 2008–2009. During
the breeding season, only 42 of the selected farms
could be surveyed in 2007 due to generally poor
weather conditions, and 59 farms were surveyed in
2008. A breakdown of all farms surveyed by
region and farm system is presented in Table 1.
All species recorded are presented in Supporting
Information Table S1.

A boxplot comparing overall bird abundance and
farmland indicator species abundance is shown in

Table 1. The region and system breakdown of the farms uti-
lized in the study.

Region System n

Cork Dairy 19
Non-dairy 20

Offaly/Laois Dairy 13
Non-dairy 27

Sligo/Leitrim Dairy 4
Non-dairy 36
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Figure 1, comparing non-dairy and dairy farms.
Higher counts were observed on dairy than on non-
dairy farms. The data were strongly overdispersed
with, in all cases, the variances being at least an
order of magnitude larger than means. Figure 2
shows similar boxplots for counts made in winter
and breeding season surveys. Counts were higher in
the winter than in the breeding season, although
this was less pronounced for farmland indicator spe-
cies compared with total bird abundance.

As part of an explanatory data analysis, we also
looked at other potential explanatory variables,
including calendar day of surveys, and a potential
offset – the duration of surveys. None of these
variables was found to be informative and we did
not explore these variables further.

Modelling

Our modelling strategy was to explore how the
two response variables, overall bird abundance and
farmland indicator species abundance, and the
overdispersion in these variables, were affected by
a number of explanatory variables, some of which
were included in the aforementioned plots. Our
explanatory variables included:

• System (non-dairy/dairy): Of key importance
was to determine how the counts were affected
by non-dairy or dairy farms. Figure 1 suggests
that counts were higher on dairy farms.

• Season (winter/breeding): Figure 2 suggests that
counts were higher in winter, although this may

have arisen through interactions with other vari-
ables.

• Region: Three regions were sampled as part of
the study (Sligo/Leitrim, Offaly/Laois and
Cork). We included this as a random effect
and quantified the variability between regions.

• Square: Within each region, a set of 10, 10-km
squares were chosen for sampling. This was a
nested random effect within region (i.e. there were
10, 10-km squares within each region), therefore
square was included to quantify its variability.

The two response variables were overdispersed
compared with a standard Poisson distribution and
our primary interest was in the causes of the
overdispersion. We fitted the models to each
response variable in turn with parameters as defined
in the Methods section above. The structure of the
relationship with the explanatory variables was:

logðliÞ ¼b0 þ b1dairyi þ b2winteri þ
b3dairyi �winteri þ bregioni þ bsquarenregioni

logðhiÞ ¼ c0 þ c1dairyi þ c2winteri þ
c3dairyi �winteri

For the region random effect we defined
bregioni �Nð0; r2regionÞ and for the nested square effect
within region we defined bsquarenregioni �Nð0; r2squareÞ.
Our aim was to estimate all of the unknown parame-
ters given the data. The posterior distributions of the
c inform us as to the role of the explanatory variables
in the overdispersion of the counts.

Dairy

Non-dairy

Dairy

Non-dairy

T
otal bird

abundance
F

arm
land indicator

species abundance

0 50 100 150 200 250

Count

System

Figure 1. Boxplots representing the model output of the mean and interquartile range along with lines that represent the 95% credi-
ble intervals of overall bird abundance and farmland indicator species abundance for non-dairy and dairy farms. [Colour figure can
be viewed at http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1474-919X]
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Model comparison, as stated above, was not the
main focus of this paper. Rather, our approach
allows for simpler interpretation of any given
model for overdispersion, despite the fact that the
fit might be equivalent to that of a standard (e.g.
GAMLSS) model. Further analysis (not shown)
using WAIC (Watanabe 2013) indicated that the
dairy by winter term in the mean and overdisper-
sion were important components in the model. It
is relatively straightforward to extend our code
using the loo package (Vehtari et al. 2016).

The Bayesian model we fitted requires prior dis-
tributions for all parameters. Best practice dictates
that informative prior distributions should be used
wherever possible, and weakly informative priors
to constrain the model fit otherwise. We placed
Nð0; 102Þ prior distributions on the b and c
parameters. This indicates that most of the
explanatory variables are unlikely to influence the
counts beyond a value of � 20 on the log scale, a
value that seems uninformative in the absence of
further information. For the random effect vari-
ance parameters, we used half-Cauchy t1ð0; 10Þ
distributions, which are only weakly informative
(Gelman 2006).

RESULTS

Model output

Figure 3 illustrates the posterior distributions of
expðb1Þ (mean effect of dairy), expðb2Þ (mean
effect of winter) and expðb3Þ (mean effect of the

interaction between dairy and winter). The winter
season and dairy farm effects increased total bird
abundance by a small but positive multiplicative
factor (95% credible intervals (CIs) were 0.95–
1.59 and 1.02–1.48, respectively). However, the
interaction between dairy and winter effects had
the greatest effect on observed mean total bird
counts (95% CI 1.82–3.71). Note that these are
multiplicative effects and should be interpreted
accordingly.

For farmland indicator species abundance, both
dairy and winter made a clear positive contribution
to recorded counts. The 95% CI was 1.93–2.67
and 1.43–2.71, respectively. However, the interac-
tion term was less well quantified and appeared to
make a relatively smaller contribution, with 95%
CI 0.52–1.48. These individual effects were dis-
cernible in exploratory plots (Figs 1 and 2), but
the models are of considerably greater help in
quantifying the relative scale of these effects, and
most especially in the interpretation of the interac-
tions (Fig. 3).

Figure 4 illustrates the posterior distributions of
expðc1Þ, the overdispersion effect on dairy, expðc2Þ,
the overdispersion effect in winter surveys, and
expðc3Þ, the overdispersion effect in interaction
between dairy and winter variables. These values
are the increase in variance due to the effect in
question. The interpretation is thus far simpler due
to the change in parameterization. For overall bird
abundance, the increase in overdispersion due to
the interaction between dairy and winter seemed
most pronounced (95% CI 12.17–73.27). For
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Figure 2. Boxplots representing the model output of the mean and interquartile range along with lines that represent the 95% credi-
ble intervals of overall bird abundance and farmland indicator species abundance for winter and breeding season. [Colour figure can
be viewed at http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1474-919X]

© 2016 British Ornithologists’ Union

Quantifying overdispersion in bird data 411

http://www.matrr.com


farmland indicator species abundance, the biggest
contributor was the effect of dairy farms (95% CI
14.69–55.60). However, these large effects were
sometimes poorly quantified.

DISCUSSION

To our knowledge, this is the first time that a sta-
tistical modelling approach has been applied that
has allowed direct quantification of the influence
of explanatory variables on overdispersion in count
data. To achieve this, we re-parameterized a GLM
using the negative binomial distribution, which
facilitates complete separation of effects on the
mean and data overdispersion within a Bayesian
framework. Several potential extensions of this
approach may be considered. One possibility is in
multivariate modelling of count data, for which a
copula approach might be most feasible (e.g.
Nikoloulopoulos & Karlis 2009). Other possibili-
ties stemming from the standard GLM literature
include application in the analysis of time series
components, spatial models or shrinkage priors for
variable selection. A more thorough analysis of our
current study data might involve use of the
approach in a further exploration of modelling
techniques to refine and optimize quantification of
explanatory variable effects, including species-spe-
cific models and how habitat at various spatial
scales might influence abundance and overdisper-
sion. Habitat features at farm and landscape scales,
including habitat composition and configuration,
could be tested to examine their influence on the

abundance and overdispersion of farmland bird
communities. In addition, the influence of specific
habitat features which are known to influence
specific bird species in winter, e.g. cereal stubble
and Yellowhammer Emberiza citrinella (Gillings
et al. 2005), could be modelled to examine their
influence on overdispersion along with abundance.

In the current application study, overdispersion
was most evident in counts of both total bird
abundance and farmland indicator species abun-
dance on dairy compared with non-dairy farms.
This may be a symptom of greater population
aggregation on farms with more intensive stocking
rates and nutrient inputs, which are greater on
dairy farms (McMahon et al. 2010, 2013b). In
general, overdispersion in the current data can be
interpreted most plausibly as evidence of popula-
tion aggregation in response to food availability.
For total bird abundance, this response is clearly
greater in the winter season, when flocking, includ-
ing the appearance of winter migrant species,
occurs. In contrast, the majority of bird species are
likely to become more strongly territorial (and
therefore more evenly dispersed) in the breeding
season. In comparison, the current analysis suggests
that the distribution of farmland indicator bird
species is less clear, and is possibly impacted by
the greater density of food resources on dairy than
on non-dairy farms. However, real ecological infer-
ence would best be sought from species-specific
analyses, rather than those using variables con-
structed from data aggregated across species, as in
this study. Therefore the results here are best
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Figure 3. Boxplots representing the model output for the mean effect interquartile range along with lines that represent the 95%
credible intervals of farm system, survey season and their interaction on the mean overall bird abundance and farmland indicator
species abundance. All but the interaction term for farmland indicator species abundance seem identifiable and well quantified. [Col-
our figure can be viewed at http://onlinelibrary.wiley.com/journal/10.1111/(ISSN)1474-919X]
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interpreted as proof, example application and
adaptation of a previously proposed concept, that
of Lee and Nelder (2006).

In the current application of this novel
approach to understand better the influence of
data dispersion in GLM modelling, added insight
is gained to support biologically meaningful inter-
pretation. Application of the approach should be
useful in many contexts beyond the analysis of
farmland bird data and, within a Bayesian frame-
work, to facilitate more meaningful quantification
of the effects of categorical explanatory variables
on any response variable with a tendency to
overdispersion that has a meaningful biological/
ecological explanation. Examples include species
that tend to aggregate within habitats, or indeed
parasites that congregate on specific hosts (Elston
et al. 2001, Johnson & Fritz 2014). The quantifica-
tion and comparison of overdispersion can enable
ecologists to understand more about the causes
and correlates of aggregation, and usefully inform
appropriate environmental management.

We demonstrate an innovative approach to
modelling overdispersed ecological data within a
flexible Bayesian framework. As with other
approaches, e.g. Lind�en and M€antyniemi (2011),
understanding the processes causing overdisper-
sion in count data is vital to fit a meaningful
model that best describes the biological system
involved. Rather than treating overdispersion as a

nuisance variable, this approach to the analysis of
overdispersed data can potentially add to ecologi-
cal understanding by quantifying its underlying
cause.
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SUPPORTING INFORMATION

Additional Supporting Information may be found
in the online version of this article:

Table S1. All species recorded in this study are
presented in Table S1.
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