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• Grass is a reservoir of antimicrobial resis-
tance genes (ARGs)

• We identify grass as a reservoir of ARGs in
the environment

• The grass resistome is more expansive, di-
verse than soil resistome

• Microbiotas in soil and grass had similar
contents but varied in the relative abun-
dances

• The interactions of ARGs, mobile genetic
elements and ARGs, and ARGs and mi-
crobes differed between soil and grass
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Grasslands cover a large proportion of global agricultural landmass used to feed herbivores and ruminants and link the
environment to the food chain via animals onto humans. However, most scientific studies of antimicrobial resistance
andmicrobiomes at the environmental – animal nexus have focused on soil or vegetables rather than grasslands. Based
on previousmicrobiome phyllosphere-soil studies we hypothesised that themicrobiome and resistomes across soil and
grass would have a core of shared taxa and antimicrobial resistance genes (ARGs), but that in addition eachwould also
have a minority of unique signatures. Our data indicated grass contained a wider variety and higher relative abun-
dance of ARGs and mobile genetic elements (MGEs) than soil with or without slurry amendments. The microbiomes
of soil and grasswere similar in content but varied in the composition proportionality.While therewere commonalities
across many of the ARGs present in soil and on grass their correlations with MGEs and bacteria differed, suggesting a
source other than soil is also relevant for the resistome of grass. The variations in the relative abundances of ARGs in
soil and on grass also indicated that either the MGEs or the bacteria carrying the ARGs comprised a higher relative
abundance on grass than in soil. We conclude that while soil may be a source of some of these genes it cannot be
the source for all ARGs and MGEs. Our data identifies grass as a more diverse and abundant reservoir of ARGs and
MGEs in the environment than soil, which is significant to human and animal health when viewed in the context of
grazing food animals.
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1. Introduction

The United Nations declaration on antimicrobial resistance (AMR),
which all 193 member states signed and the WHO declaration of priority
pathogens, highlights the importance of the AMR problem (WHO, 2014;
United Nations, 2016). Each year, AMR results in approximately 1 million
disability-adjusted life years (DALYs) lost in EU/EEA countries (OECD,
2018). Antimicrobial resistant bacteria and genes can be transferred from
the environment to food animals and via the food chain to humans either
in or as food-borne pathogens or commensals. Many different classes of an-
timicrobials currently used to treat infections in humans and animals were
discovered and developed between the 1940s and 1980s. However, since
1990 only three novel classes of antimicrobials have been launched:
pleuromutilins, lipoglycopeptides, and oxazolidinones. These new classes
have limited or no activity against the gram-negative pathogens such as
Escherichia coli or Klebsiella pneumoniae, which are on the WHO's priority
list (Brown and Wright, 2016). Therefore, we need to preserve our current
arsenal of antimicrobials. Onemode of action is to limit the transfer of AMR
genes and bacteria from the environment to animals and humans via the
food chain. However, we need to understand the resistome andmicrobiome
of the animal food source before we can limit the transfer.

The phyllosphere (aerial surface of plants) is estimated to cover over
109 km2 and contain 1026 bacterial cells, making it one of the largest micro-
bial habitats on earth (Lindow and Brandl, 2003). In Europe, grasslands
covering more than a third of the European agricultural area are used to
feed herbivores and ruminants and provide important ecosystem services
(Schils et al., 2022). Grass in the field is in a constant interactive relation-
ship with the soil in its rhizosphere. The soil likewise is within a constant
relationship with the grass. Therefore, neither exists in isolation but in a
symbiotic relationship. However, they are rarely studied together. The
microbiome and resistome on grasslands are rarely studied (Grady et al.,
2019; Massoni et al., 2021). To ensure sustainable agriculture and healthy
ecosystems we need to understand the grassland microbiomes and
resistomes and how these (both soil and grass) change with the addition
of slurry (Laforest-Lapointe et al., 2016; Vandenkoornhuyse et al., 2015).
Studies to date analysing the impact of manure on the microbiome and
resistome of grassland have focused solely on the soil and have not included
the grass (Santamaría et al., 2011; Jechalke et al., 2013; Udikovic-Kolic
et al., 2014; Ding et al., 2014; Gonçalo et al., 2020).

Overlaps of microbiomes and resistomes have been detected in the
plant-soil ecosystem, suggesting the possibility of dissemination of mi-
crobes and antimicrobial resistance genes (ARGs) between soil and plants
(Wang et al., 2022). Fresh produce contaminated with enteric pathogens
have been frequently reported to originate from environmental sources
with wild animals or agricultural activities (Alegbeleye et al., 2018). The
microbiome of soil has been found to overlap with those in the leaves and
flowers of grape vines and between lettuce roots and soil amended with
poultry litter (Zarraonaindia et al., 2015; Zhang et al., 2019). However,
the provenance of phyllosphere microorganisms is not yet established
(Massoni et al., 2021). A recent study estimated that at least 25 % of the
Arabidopsis thaliana phyllosphere bacteria reached the phyllosphere from
the soil (Massoni et al., 2021). These bacteria represented 40 % of the bac-
terial taxa detected. However, the microbiomes did not converge between
soil and leaves/flowers where the phyllosphere was not in contact with
the soil. In contrast a study of two perennial grasses (switchgrass and
miscanthus) identified soil as a major reservoir of leaf microorganisms
(Grady et al., 2019). These studies however did not investigate the shared
resistomes across soil and phyllosphere. Previous phyllosphere studies in-
vestigated either the microbiome or targeted antimicrobial resistant bacte-
ria or genes on vegetables (Zhang et al., 2019). Based on previous
phyllosphere-soil microbiome studies we hypothesised that the
microbiome and resistomes of soil under the grass and grass would have
a core of shared taxa and resistance genes, but that in addition each
would also have a minority of unique signatures. We introduced pig slurry
treated and comparedwith untreated to understand if the application of the
pig slurries would alter the common microbiome and resistome of the soil
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and grass or the individual elements of each in the short term. This is a
unique study, as previous studies have focused on soil and not included
grass in relation to resistomes, or have compared only microbiomes across
soil and phyllosphere.

2. Materials and methods

2.1. Field side, plot preparation, and slurry application

The field trial was conducted from August to October 2019 in Teagasc
Research Facilities in Johnstown Castle, Wexford, Co. Wexford, Ireland.
No farm animals were present on this land for the seven months prior to
the field trial. The pig slurry samples were described previously (19).
Briefly, pig slurry was collected from an Irish pig farm in agreement with
the farm owner. The slurry was treated with three methods, storage for
4months, compost for 8weeks, andAD for 90 days. Products of slurry treat-
ments and the fresh collected raw slurrywere spread on field plots based on
the phosphorous content following the EU regulations. One hundred 1 m
wide x 1 m long plots were randomly established in the field for control
without slurry application and slurry application. Each slurry type was
spread on 20 plots, which were designed for sample collection for
5 timepoints with 4 replicates each.

2.2. Soil and grass sampling

Soil coreswere collected from four random plots on thefield prior to the
slurry application for the soil background analysis (T-1). A standard agro-
nomic corer was used to collect 10 cores at the depth of 10 cm along a W-
shaped path. These cores were mixed well in a clean plastic sampling bag
to make a composite sample.

During the field trial, soil cores were collected from control (no slurry
applied) (4 plots) and slurry applied plots (4 plots per treatment) fortnightly
for the first 3 timepoints, and at 2.5 months post-T0 for the last time points.
Grass samples were randomly collected in thefield before trimming to 5 cm
for slurry spreading (T-1). During the field trial, grass was harvested to get
approximately 200 g from control (no slurry applied) (4 plots) and slurry
applied plots (4 plots per treatment) fortnightly for the first 3 timepoints,
and at 2.5 months post-T0 for the last time points.

Soil and grass samples were transferred to the laboratory immediately
andwere processedwithin 24 h. Soil sampleswere stored at−80 °C for fur-
ther molecular analysis. Grass samples were rinsed with PBS buffer (Oxoid)
as previously described for leaf washes (Walsh et al., 2011). The resulting
buffer was used for microbial testing and to extract microbial DNA for
further molecular analysis.

2.3. DNA extraction

Total DNAwas extracted from 0.25 g of each soil sample replicate using
the DNeasy PowerSoil Kit (Qiagen). The PBS washes of 50 g of each grass
sample replicatewere centrifuged at 3000g for 15min. The resulting pellets
were used for DNA extractions using the DNeasy PowerSoil kit (Qiagen).
The quality and quantity of extracted DNAwere examined using a DeNovix
DS-11 spectrophotometer and Invitrogen Qubit Fluorometer (dsDNA high-
sensitivity assay kit) (Waltham, MA). DNA was extracted in triplicate from
each sample and extracts were pooled to obtain a single DNA sample per
experimental unit at each time point.

2.4. Metagenomic sequencing and HT-qPCR arrays

Extracted DNA from soil and grass samples were prepared using
Illumina TruSeq DNA library preparation kits before sequencing on the
Illumina NextSeq 500 platform (paired-end, 2 × 150 bp sequencing) in
Teagasc Next Generation DNA Sequencing Facility. DNA samples were
also used for HT-qPCR arrays. The HT-qPCR arrays were performed using
the SmartChip™ Real-Time PCR system (TakaraBio, CA, USA) by
Resistomap Oy (Helsinki, Finland). The mix of DNA samples with primer
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sets and the qPCR reagents were loaded in each 100 uL reaction well of the
SmartChip™with 5182 wells. A primer set of 216 pairs of primers targeted
186 ARGs conferring resistance to major antibiotic classes, 6 integrons,
22 MGEs, and total bacterial genes 16S rRNA was used in the qPCR array.
The melting curves and Ct values were analysed using default parameters
of the SmartChip™ qPCR software. The qPCR was conducted in three
technical replicates for each DNA sample.

2.5. Data analyses

2.5.1. Metagenomics
The adapter sequences were trimmed from shotgun sequencing raw

reads in the fastq format using Cutadaprt (V2.10). We used Sickle (v1.33)
with the minimum window of quality score of 20 to remove the low-
quality reads with the length <20 bp. The FastQC (v 0.11.9) was used to
examine the quality of filtered reads before assembly with Megahit
(v1.2.6, −-kmin-1pass –presets meta-large). The assembled contigs were
subjected to Kaiju taxonomic classifier (v1.2.6, parameters: –kmin-1pass –
presets meta-large) to assign the taxonomy profile for each sample. The
microbial communities were analysed in the MicrobiomeAnalyst online
platform (Dhariwal et al., 2017).

The microbial genome annotation on filtered reads was carried out
using Prokka (v 1.14.6, default settings) (Seemann, 2014). The protein
FASTA files resulted from the Prokka software were used to identify the
KEGG Orthologs (KOs) by Kofamscan (v 1.3.0) (Aramaki et al., 2020).
The KEGG pathways were assigned by MinPath software (v 1.5) based on
the Ko's lists (Ye and Doak, 2009). Data were analysed and visualised
using Calypso online (Zakrzewski et al., 2017).

2.5.2. qPCR
The qPCR data of the samples were filtered based on the following

criteria: (1) a gene was detected in at least two technical replicates;
(2) the Ct values ≤27; and (3) the amplification efficiency was in the
range of (1.8–2.2). The relative gene copy number was calculated in
Eq. (1) in the work of Chen et al., 2016 10. The gene relative abundance
was identified by dividing the relative copy numbers by the 16S rRNA
gene copy number. The data was then visualised in the MicrobiomeAnalyst
online platform (Dhariwal et al., 2017).

Relative gene copy number ¼ 10 27−Ctð Þ= 10=3ð Þ ð1Þ

2.5.3. Correlation analysis
The interaction between (1) ARGs andMGEs; and (2)microbial commu-

nities and ARGs were analysed through Spearman's correlation analysis
with the SciPy package (Virtanen et al., 2020). The correlation between
ARGs and MGEs was considered strong and significant when Spearman's
rank value |r| > 0.85 and p < 0.05 and |r| > 0.5 and p < 0.05 between
microbial communities and ARGs. The Cytoscape software (v3.8.2) was im-
plemented to build the network based on strong and significant Spearman's
correlations (Shannon et al., 2003). The ARG and MGE genes showed high
interaction between genes, so we set the threshold |r| > 0.85 to build a
network with appropriate nodes and edges tomanage these properly. How-
ever, the ARGs vs Phyla did not build a formative network if |r| was set
>0.85 (network with very few nodes and edges). Therefore, the correlation
network in soil was formed based on Spearman's correlation r> 0.5 and the
network in grass based on Spearman's correlation r > 0.6. Higher ARG,
MGE and phyla abundance were detected in grass samples than in soil,
thus bigger, more interactive networks were built in grass than soil. The
correlation values are Spearman's rank correlation coefficient (Spearman's
correlation: R, rho). These values measure the interaction/association
(strength and direction of association) between two variables on at least
an ordinal scale. The interaction/association between two variables can
be positive (increase together) or negative (one increase, another decrease)
in the range [−1,1]. The interaction/association is strongerwhen the abso-
lute value |r| is higher, close to 1.For the current research, an absolute value
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of the correlation coefficient ≥ 0.3 was estimated as the appropriate
threshold. In our case, depending on the interaction, we set the strong
correlation at different coefficient values.

3. Results

The dynamics of the microbiomes and resistomes of soil and grass were
measured prior to pig slurry application and over a time course up to ten
weeks after slurry application in field trial experiments performed to repli-
cate agricultural practices. The applications of four different treated pig
slurries were compared with a control to which no slurry was applied.
There were no significant changes in the microbiomes nor resistomes of
the soil or grass associated with the application of the slurries.

3.1. Soil and grass microbiomes

We detected 6944 OTUs in soil and 6774 OTUs in grass. Almost all gen-
era present on grass (98.7 %) were also detected in the soil microbiomes.
However, the relative abundances of the genera varied across grass and soil.

3.2. Microbial compositions of soil and grass over time and slurry treatments

After quality trimming and assembling, metagenomic sequencing reads
were assigned to Bacteria, Archaea, Virus and other unclassified organisms
with Kaiju (Dataset S1). The most abundant phyla and genera were
assigned and compared (Figs. S1, S2).

3.3. Alpha diversity: Chao1 and Shannon PCoA of soil vs grass

The alpha diversities of themicrobiomeswere compared using the Chao
1 (richness: number of taxonomic groups) and Shannon indexes (evenness:
distribution of abundances of the groups) (Fig. 1). Krustall-Wallis was used
to determine statistical significance across all samples. Chao 1 richness
values varied but were not significantly different across all samples (p =
0.22249). The Shannon indexes of evenness levels were significantly higher
in soil samples compared with those in grass samples (p = 0.00032885).
The composition of the microbiomes was also analysed through principal
coordinate analysis (PCoA) based on Bray-Curtis dissimilarity (Fig. 2,
PERMANOVA test, p< 0.001). The soil control (without slurry application)
and soil treatment (with slurry application) formed absolute overlapping
clusters. The grass control and treatment samples also overlapped with
each other. However, the soil and grass clusters were completely separated
with no overlap.

3.4. Beta-diversity

The composition of the microbial communities was assessed at the phy-
lum level for all samples (Fig. S1). The top three most abundant phyla
across the soil and grass sample groups with and without slurry were con-
sistent in taxa but varied in relative abundances across soil and grass; the
phyla Proteobacteria and Actinobacteria were dominant in all samples.
However, the abundance profiles of the remaining phyla differed. Soil sam-
ples were represented by the two most abundant phyla: Proteobacteria
and Actinobacteria, while other phyla in the top ten were observed at
lower (<6 %) relative abundances. Grass samples were characterised
mainly by 3 most abundant phyla: Proteobacteria, Actinobacteria,
and Bacteroidetes, other phyla were found at very low abundance levels
(<2 %) (Dataset S2). The main phyla on grass were the same as on Galium
album (Aydogan et al., 2018) and perennial grasses switchgrass (Panicum
virgatum L.) and miscanthus (Miscanthus x giganteus): Proteobacteria and
Bacteroidetes (Grady et al., 2019). These also agree with several other
phyllosphere communities (Bodenhausen et al., 2013; Kinkel, 1997; Knief
et al., 2010; Lindow and Brandl, 2003; Rastogi et al., 2013; Vorholt,
2012). The soil phyla were also similar to those previously determined
(Janssen, 2006; Mhete et al., 2020). The application of different treated
slurry did not impact the bacterial compositions of soil or grass.



Fig. 1.Microbial Diversity a) Chao 1 (richness) values vary but are not significantly different across all samples; b) The Shannon indexes (evenness) were significantly higher
in soil samples compared with those in grass samples.
Grass and soil samples were divided into 5 groups: Control (Soil-C and Grass-C) contained soil and grass samples collected from field plots without pig slurry application;
Storage (Soil-St and Grass-St): samples collected from field plots with application of pig slurry product of storage treatment, Fresh (Soil-F and Grass-F) samples collected
from field plots with application of raw pig slurry without treatment, Compost (Soil-Cp and Grass-Cp) samples collected from field plots with application of pig slurry
compost, and AD (Soil-AD and Grass-AD) samples collected from filed plots with application of AD digestate of pig slurry.
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The relative abundance profiles at genus level were highly similar
between slurry treated and untreated samples in both soil and grass across
the timepoints (Fig. S2) . The abundance profile was notably different
between soil and grass samples. In contrast to the abundance order at
the phylum level, soil samples were predominated by the genus
Bradyrhizobium, while other genera were detected at a very low relative
abundance level. Among grass samples, the two most abundant genera
were Pseudomonas and Sphingomonas, other genera in the top ten were
found at the lower relative abundances but at values greater than in soil.
The predominance of Pseudomonas and Sphingomonas was consistent with
Fig. 2.PERMANOVAPCoA: The soil control (without slurry application) and soil treatme
treatment samples also absolutely overlap with each other. However, soil clusters are co
Soil and Grass controls contained soil and grass samples collected from the field plots
samples collected from the field plots where different treated products of pig slurry (sto
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findings of other phyllosphere microbiomes (Bodenhausen et al., 2013;
Grady et al., 2019; Kinkel, 1997; Knief et al., 2010; Lindow and Brandl,
2003; Rastogi et al., 2013; Vorholt, 2012).

3.5. Characteristics of the resistomes and mobile genetic elements (MGEs) of soil
and grass over time and under slurry treatments

A total of 140 different ARGs and 24 different MGEs were detected
across all samples (Dataset S3). The detected ARGs were divided into 11
main antibiotic classes to which they conferred resistance: aminoglycoside,
nt (with slurry application) formabsolute overlapping clusters. The grass control and
mpletely separated from grass clusters.
without pig slurry application. Soil and Grass treatments contained soil and grass
rage, compost, and AD) were spread onto.
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beta-lactam, multi-drug resistance (MDR), macrolide-lincosamide-
streptogramin B (MLSB), colistin, phenicol, quinolone, sulfonamides, tetra-
cycline, trimethoprim, and vancomycin. Four MGE groups were identified
comprising integrons, transposons, insertional sequences, and plasmid-
associated genes. In total 116 genes (ARG and MGE) were detected across
the soil and within at least one soil sample and 158 genes across the grass
and within at least one grass sample. The relative abundance of total
ARGs in grass samples was consistently higher in all samples than in soil
samples (Fig. S3). Soil at time 0 prior to the application of composted slurry
had an unusually high ARG relative abundance, not consistent across the
other soil samples. All ARGs and MGEs present in soil were detected in
grass samples. Those absent from soil but present in grass comprised amino-
glycoside, beta-lactam, carbapenem, chloramphenicol, quinolone, tetracy-
cline, and vancomycin resistance genes, in addition several MGEs were
detected only in grass. As grass contained a wider variety and higher rela-
tive abundance of ARGs and MGEs we conclude that while soil may be a
source of some of these genes it cannot be the source for all ARGs and
MGEs as some are absent from the soil.

Clinically important plasmid mediated resistance genes detected in-
cluded several blaCTX-M genes (in soil and grass), carbapenem resistance
genes (blaNDM, blaIMP, blaVIM and blaOXA-48 in both soil and grass, and blaKPC,
Fig. 3.Resistome alpha diversity (a and b). The resistome alpha diversity (Chao 1 (a) and
All treatment samples in both soil and grass have notable higher values of Chao 1 and S
The MGE alpha diversity (c and d). Grass sample groups have a significantly higher rich
compared with soil; however, the differences are not significant.
Grass and soil samples were divided into 5 groups: Control (Soil-C and Grass-C) contain
Storage (Soil-St and Grass-St): samples collected from field plots with application of pi
from field plots with application of raw pig slurry without treatment, Compost (Soil-C
compost, and AD (Soil-AD and Grass-AD) samples collected from filed plots with applic
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blaOXA-51 in grass), colistin resistance genesmcr1 in soil and grass andmcr4
in one grass sample type and the quinolone resistance genes qepA in all soil
and grass and qnrB in all grass samples. At the threshold of over 20 % prev-
alence and over 0.01 relative abundance, 13 genes were found in core
resistome shared across all soil and grass samples (Fig. S4). Among them,
only three genes (tetG, qepA, and intI1_1) were found at 100 % prevalence
in all samples. Thefivemost abundant ARGs conferred resistance to amino-
glycosides, beta-lactams, quinolones, tetracyclines, or vancomycin. The
total relative abundances of the detected ARGs in soil and grass samples
did not significantly increase due to slurry application (Fig. S3). The highest
relative abundance within the grass samples, but not the soil samples
occurred at timepoint 4 (ten weeks following slurry application). The
control samples also contained this increase, suggesting a factor other
than slurry is the contributing factor(s).

The alpha diversities of the resistomes and the MGEs were compared
separately using the Chao 1 and Shannon indexes (Fig. 3). Krustall-Wallis
was used to determine statistical significance across all samples. Richness
values for ARGs and MGEs were significantly different across all samples
(p = 3.0132e-05 and 9.7868e-05, respectively), with higher values for
the grass samples than the soil. The evenness levels for ARGs but not
MGEs were significantly higher in grass samples compared with those in
Shannon (b) indexes) is significantly higher in the grass samples than in soil samples.
hannon indexes in comparison with control samples.
ness (c) (Chao 1) of MGE than soil groups. The evenness (d) is also higher in grass

ed soil and grass samples collected from field plots without pig slurry application;
g slurry product of storage treatment, Fresh (Soil-F and Grass-F) samples collected
p and Grass-Cp) samples collected from field plots with application of pig slurry
ation of AD digestate of pig slurry.
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soil samples (p= 4.6731e-05). The composition of resistomes and MGEs
was analysed through principal coordinate analysis (PCoA) based on
Bray-Curtis dissimilarity (Fig. S5, PERMANOVA test, p < 0.001). The
ARGs and MGEs detected in control soils (without slurry application)
and treated (with slurry application) formed overlapping clusters. The
ARGs and MGEs grass control and treatment samples also overlapped
with each other. This indicates a similar resistance gene profile in soil
with/without treatments, as well as in grass with/without treatment.
The majority of soil clusters were separated from grass clusters for
ARGs with overlaps in four grass treated samples and five soil treated
samples (total sample n = 50). Further separation and overlap (n =
15 soil with 15 grass samples) was observed in relation to the MGEs
across soil and grass samples.

3.6. Network analysis

3.6.1. Association between ARGs and MGEs
The network analysis based on strong and significant Spearman's corre-

lations (r > 0.85 and p < 0.05) between ARGs and MGEs was employed to
understand the co-occurrence of ARGs and MGEs across all the grass and
soil samples (Fig. 4, Dataset S4). There were only positive interactions
found (i.e. no negative correlations) when analysing the network between
ARGs and MGEs in soil and grass samples. These results indicate the co-
location or co-association of these ARGs with MGEs and the potential for
dissemination of these genes via horizontal gene transfer within soil and
grass microbial communities. The larger the size of the nodes the greater
the degree of the interactions.Within the soil networks six different clusters
were identified comprising one large and five smaller clusters. The ARGs of
greatest clinical significance were contained within the large cluster with
the MGEs (predominantly repA, IncP, IncW, tnpA, orf37-IS26) acting as the
central linking components. The grass networks formed two clusters, one
large and one small. Similarly, to the soil the MGEs (repA, IncW, IncN,
tnpA, IncF, IncQ and int1) act as the main linkers of the ARGs, but some of
the MGEs differed from the soil (repA, IncW, tnpA). While some ARGs
were present across all samples they were not always clustered with the
same MGE e.g., qepA correlated with intI3_2, IncW_trwAB, IncN_rep,
tnpA_3, IncQ_oriT, intI1_4 and repA in the grass and IS1111, repA, tnpA_3
and orf37-IS26 in the soil samples. Thus, while the ARGwas detected across
all samples it may be moving either on the same MGEs (repA, tnpA) or on
different MGEs across the samples, indicating multiple potential modes of
mobility for the same genes within and across different samples.

3.6.2. Correlation analysis between microbial taxa and ARGs
The relationship and interaction between microbial phyla and ARGs

were investigated in the network based on Spearman's correlation anal-
ysis (Fig. 4B). The network in soil comprised 44 nodes (from 14 micro-
bial phyla and 30 ARGs), and 42 edges (built from 14 negative and 28
positive correlations). A positive correlation indicates the presence of
both items together, a negative correlation indicates the presence of
one item but the absence of the other. The network in grass consisted
of 70 nodes (27 phyla and 43 ARGs), and 179 edges (built from 15 neg-
ative and 164 positive correlations). Thus, the soil networks were sim-
pler than the grass networks. In soil Fusobacteria and Proteobacteria
had the most positive interactions with ARGs. These results indicated
their role as primary ARG hosts. Actinobacteria had positive correla-
tions with tetM and negative interactions with blaKPC_2. These phyla
did not produce the same results in the grass samples. The grass
networks were more complex and included many more ARGs and
phyla interactions, most of which were positive. In contrast to soil,
Proteobacteria were relatively low in interactions with ARGs, their
only interaction with ARGs was a negative interaction with dfrA12.
The relative abundances of Proteobacteria in soil and grass samples
was not significantly different (Fig. S1). The main grass phyla with
ARG networks were Spirochaetes and Aquificae, neither of which were
correlated with ARGs in the pig slurry (Do et al., 2022). Therefore, the
slurry was not the source of these bacteria.
6

4. Discussion

While studies have suggested that soil is an important source of bacte-
rial transfer to the phyllosphere (Bodenhausen et al., 2013; Copeland
et al., 2015; Grady et al., 2019; Massoni et al., 2021; Tkacz et al., 2020;
Vorholt, 2012;Wei andAshman, 2018; Zarraonaindia et al., 2015), no stud-
ies have analysed the commonality of the total resistome between soil and
the phyllosphere andwe have yet to identify any studies that have analysed
the total resistome of grass. This study showed that the grass phyllosphere
contained both a wider array of ARGs andMGEs and a larger relative abun-
dance of these genes than the soil. Soil is a recognised and well-studied res-
ervoir and source of a wide range and relative abundance of ARGs (Cytryn,
2013; Forsberg et al., 2012; Van Goethem et al., 2018). While the classes of
antimicrobials to which the ARGs conferred resistance were present both
on grass and in soil there were unique many ARGs only present in the
grass samples. There was also significantly higher evenness and richness
in the grass resistomes than the soil resistomes. The grass phyllosphere
contained ARGs and MGEs not detected in soil e.g. qnrB and IncF, respec-
tively, and multiple versions of the same ARG types e.g. blaCTX-M 1–6 in
grass relative to blaCTX-M 1–4 in soil. Network analysis identified that
where the same ARGs and MGE genes were detected in soil and grass
samples the correlation between these ARGs and MGEs did not occur in
both grass and soil. Thus, while some ARGs were present across grass and
soil the specific mobile elements capable of moving the ARGs between
different bacteria were significantly different. These data suggests that the
ARGs either did not move from soil or that they moved into new MGEs
once present on grass. The former ismore likely due to the number ofmove-
ments required across the wide range of ARGs. In addition, the correlation
between ARGs or MGEs and bacteria were different in soil and grass, indi-
cating that the common ARGs and MGEs either moved from the bacteria
in soil to different bacteria when on grass or that the common ARGs and
MGEs were mobilised by bacteria from sources other than soil. Our data in-
dicates that while there are commonalities acrossmany of the ARGs present
in soil and on grass their modes of movement, correlations with MGEs and
bacteria differ, suggesting a source other than soil is also relevant for the
resistome of grass. The variations in the relative abundances of ARGs in
soil and on grass also indicate that either the MGEs or the bacteria carrying
the ARGs comprise a higher relative abundance on grass than in soil.

Our data identifies grass as a more diverse andmore abundant reservoir
of ARGs and MGEs in the environment than soil. As the microbiome of the
grass samples was consistent over time and with other studies we suggest
that these resistome findings may also be representative of grass globally
(Aydogan et al., 2020, 2018; Ding and Melcher, 2016; Doherty et al.,
2021; Grady et al., 2019; Hestrin et al., 2021) but at least the resistome is
not due to a unique grass microbiome. However, this requires further veri-
fication. In Europe, grasslands covering more than a third of the European
agricultural area are used to feed herbivores and ruminants. Should our
findings be reproduced across grasslands then this represents a very large
reservoir of ARGs that is connected directly to the food chain.

Our study has identified commonalities across the phyla of soil and
grass, which were not significantly impacted by slurry. A number of studies
have demonstrated that slurry-derived ARB and their ARGs may persist in
soil for a fewweeks and up to years and that these ARGs can be horizontally
transferred into native soil bacteria (Binh et al., 2009; Chee-Sanford et al.,
2001; Heuer et al., 2011; Heuer et al., 2008; Heuer and Smalla, 2007;
Jechalke et al., 2013; Schmitt et al., 2006; Udikovic-Kolic et al., 2014;
Wichmann et al., 2014). Previous studies have examined the impact of
slurry application on the levels of ARGs in the phyllosphere of leafy vegeta-
bles (Chen et al., 2016, 2017), or changes in ARGs abundance and dissem-
ination (Marti et al., 2013; Murray et al., 2019; Tien et al., 2017). Mobile
genetic elements such as intI1 and genes encoding transposase have been
detected in leaf endophytes, as well as in the phyllosphere of lettuce
(Wang et al., 2015; Zhu et al., 2017), maize (Chen et al., 2016), Brassica
chinensis L (Chen et al., 2019a), and Coriandrum sativum L (Chen et al.,
2019b). Slurry-amended soils have been associated with increased detec-
tion of ARB and ARGs on lettuce and root vegetables; however, this has
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not been associatedwith all crops or ARGs (Marti et al., 2013; Rahube et al.,
2014; Wang et al., 2015). Our results agree with the latter studies,
although many ARGs were detected. The results contrast with our own
previous studies on soil and lettuce (Gekenidis et al., 2020). This raises
the question of whether this is unique to grass rhizosphere and
phyllosphere.

The microbiome compositions, the evenness and the PCoA were signif-
icantly different between soil and grass. This finding is in agreement with
Vorholt et al., (Massoni et al., 2021) who found that the communities on
leaves not in contact with the soil did not converge with the soil communi-
ties. However, other environmental factors (but not slurry) may have con-
tributed to these significant differences. Few studies have compared the
microbiomes of soil and grass phyllosphere. Yan et al., 2020 compared
soil and grass across Australian urban and national park environments,
but not agricultural use (Yan et al., 2020). They identified an overlap of
87.6 % in the total genera identified in the grass phyllosphere with the
soil genera. Our study identified a 98.7 % overlap in genera across grass
and soil. The Shannon index and the PCoA of Yan et al., demonstrated sta-
tistically significant differences between both, which agrees with the data
in this study (Yan et al., 2020). While there were overlaps in the genera
detected across grass and soil in this study the relative abundances varied
considerably. This suggests that while genera are shared across soil and
grass, the phyllosphere provides a selective environment for the relative
abundances of genera different to the soil to flourish and that filtering of
the composition occurs on the grass. Bradyrhizobium (soil genera high,
grass low) are an example of a large proportion of the soil genera composi-
tion, which was not detected on grass. They are nitrogen-fixing symbiotes,
with a niche in the roots of plants. Thus, survival on plant surfaces is
unlikely. The major grass genera included Pseudomonas and Sphingomonas,
which have been previously identified as major genera on plants and grass
specifically. Acinetobacter spp. was also detected on grass in the top 10
abundances; these are potential opportunistic pathogens of humans.
Other genera detected in relatively high abundances on grass by Shade
et al., e.g. Methylbacterium or Bacillus were not detected in the ten most
abundant genera in this study (Grady et al., 2019).

5. Conclusions

While scientists have focused much of the environmental resistome
analysis on soil as a resistome reservoir and link between the animal
and environment this study identified the importance of grass as a reser-
voir of ARGs in addition to the soil resistome. The data identifies grass
as a more expansive, diverse and persistent reservoir and source of
ARGs, MGEs and differential abundance of microbiomes to soil. Grass
and plants must be included as they directly link the environment
back to the animal or human eating the plant and we have demonstrated
the wide array of ARGs linked toMGEs present on grass, which is greater
than in soil.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2022.159179.
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