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Topology in many-body physics usually emerges as a feature of equilibrium quantum states. We show that
topological fingerprints can also appear in the relaxation rates of open quantum systems. To demonstrate this we
consider one of the simplest models that has two topologically distinct phases in its ground state: the Kitaev chain
model for the p-wave superconductor. After introducing dissipation to this model we estimate the Liouvillian
gap in both strong and weak dissipative limits. Our results show that a nonzero superconducting pairing opens a
Liouvillian gap that remains open in the limit of infinite system size. At strong dissipation this gap is essentially
unaffected by the topology of the underlying Hamiltonian ground state. In contrast, when dissipation is weak,
the topological phase of the Hamiltonian ground state plays a crucial role in determining the character of the
Liouvillian gap. We find, for example, that in the topological phase this gap is completely immune to changes
in the chemical potential. On the other hand, in the nontopological phase the Liouvillian gap is suppressed by a

large chemical potential.
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I. INTRODUCTION

Topological condensed matter embraces the idea that band
structures can have nontrivial topologies and that these ex-
otic forms can radically influence the behavior of matter.
This idea has been around for several decades and has been
enormously successful, with direct applications for metrology
[1-4], spintronics [5], and quantum information processing
[6-9]. The majority of works in this area focus on the equilib-
rium properties of matter, where topology most clearly arises
in quantities calculated by integrating over momentum-space
parametrizations of the single-particle excitation bands. Other
indicators of topology (e.g., ground-state degeneracies [10],
equivalences between local ground-state correlators [11,12],
bulk-boundary correspondences [13,14], and tensor network
classifications [15-17]) can be used beyond the implicitly
noninteracting band theory of solids.

The fingerprints of topology are not, however, constrained
to the equilibrated realm. Indeed, there has been much evi-
dence of topology in recent years on numerous frontiers such
as Floquet systems [18-21], non-Hermitian models [22-24],
and entanglement transitions in weakly measured models
[25-28], along with proposals to engineer topological steady
states in open quantum systems [29-39].

In this paper, we ask whether coherent topological quan-
tum effects can affect the relaxation behavior of a system.
We do this by focusing on the example of the Kitaev chain
[6] (i.e., the spin-1/2 transverse XY model) in the presence
of local bulk dephasing. Our first key result is that p-wave
pairing is directly responsible for a Liouvillian gap that scales
quadratically with the pairing strength, A, and inversely to the
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dissipative rate, €. Moreover, the gap remains open even as the
system size N — oo. This result applies where the strength of
dissipation, €, is far greater than any component of the Hamil-
tonian. We arrive at this result analytically via a perturbative
mapping of the whole model to an XXZ chain. Crucially we
see that, although the anisotropy massively boosts the relax-
ation rate, the details of underlying quantum order are largely
inconsequential.

This is in contrast to the weakly dissipative regime, where
we show that this picture is effectively reversed. Here, al-
though the gap still remains constant with respect to system
size, it now effectively scales linearly with the product of Ae.
Crucially, in this regime, we also see that the underlying order
of the Hamiltonian can have a striking effect on the system’s
relaxation rates. For example, when the underlying Hamilto-
nian is in a topological phase, the Liouvillian gap evaluates
to be independent of the chemical potential . Outside of this
region, the gap is parametrically reduced at a rate that tends to
1/./w for large pi.

We obtain these results in the framework of “operator
quantization” [40,41], making use in particular of the struc-
ture of the Liouvillian superoperator in the canonical matrix
representation [42—44]. In the strongly dissipative regime this
allows us to directly identify the relevant effective subspace in
the kernel of the dissipator, and within that subspace construct
an effective perturbation theory that reveals the mapping to
the XXZ model. In the weakly dissipative limit, this same
representation enables projections of the dissipative terms into
the kernel of the Hamiltonian commutator and, from this, to
calculate an approximation of the Liouvillian gap. By extrap-
olating to the thermodynamic limit we can then show that
the resulting evaluation for the gap is distinctly topological
in character.

©2024 American Physical Society
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FIG. 1. The Kitaev chain Hamiltonian in Eq. (1) can be visual-
ized as a ladder with odd Majorana operators on one leg and even
Majorana operators on the opposite leg. The representation of the
Liouvillian in terms of the creation and annihilation superoperators
in Eq. (18) can similarly be visualized as a ladder with Majorana
operators that can hop across the bonds.

The methodology we use can be applied for a number of
dissipative processes but is particularly transparent in cases
where the dissipative jump operators are Hermitian. We show
how this works with the example of bulk dephasing, and we
provide an additional example for the Hermitian formulation
of the simple symmetric exclusion process (SSEP) [45] in
Appendix B. We argue, however, that it can also give insight
into other processes that do not have Hermitian jump operator
formulations, showing in particular how it also explains the
observed behavior of the TXY-TASEP system [44]. A similar
methodology was used to study a dissipative quantum com-
pass model [46] and the dissipative quantum Ising chain [47].
Here similar sharp transitions in the gap behavior are also
observed. Other atypical relaxation behaviors have been found
in Sachdev-Ye-Kitaev (SYK) models subject to dissipation
[48,49]. Therein, treating the system in the Keldysh formalism
one can find a Liouvillian gap dependent only on the fixed
ratio of number of Majorana and Lindblad jump operators,
Hamiltonian coupling, and dissipation strength. Moreover, a
rich variety of anomalous relaxation rates can be found in
open quanutm circuits [50]. In this context, both exponential
and nonexponential behaviors of the relaxation rate may be
obtained.

II. MODEL AND SYMMETRIES

A. Hamiltonian and Lindblad master equation
We consider a system of 2N Majorana fermions {7;}7Y,

with the anticommutation relations {J;, 7/} = 28, ;1 and the
quadratic Hamiltonian (see Fig. 1)

. N . N—1
A 0 N N ! 5 5
H = _? ; Von—1Von + E ;[(A + w)y2n—1y2n+2
+ (A — WP Pons1]. M

The Hamiltonian may also be written in two equivalent forms
that are perhaps more familiar to some readers. In terms of
the Dirac fermion creation and annihilation operators a, =
(P2n—1 + i92,)/2 and El}; = (#2n—1 — i¥21)/2, the Hamiltonian
H is the Kitaev model for a p-wave superconducting chain
of N sites [51]. In this case, w is the chemical potential, w
is the hopping strength, and A is the superconducting pairing
strength. Alternatively, after a Jordan-Wigner transformation

the Hamiltonian A is the quantum XY model for a chain
of N spin-1/2 particles, with u interpreted as magnetic field
strength and A as the XY anisotropy.

An important property of the Hamiltonian in Eq. (1) is that
its ground state has a symmetry-protected topological phase
transition at |u| = 2w (if A # 0) [51]. Another important
property of Eq. (1), and of quadratic Hamiltonians in gen-
eral, is that it can be easily reduced to its normal form H=
S (Bl By — BuBY) via a Bogoliubov transformation,

2N
Bi=) Wy )
j=1

Here, B; and B, are Dirac fermion creation and annihilation
operators obeying the anticommutation relations {B;{ By} =
Suw, o €{1,...,N}.

To model an interaction with an external environment, we
suppose that the quantum state p evolves by the Lindblad
master equation [52,53]

fi—f = —iH(p) +D(p) = L(p), 3)

which is comprised of two parts, the Hamiltonian commutator
H(p) = [H, p], and the dissipator

D(p) =) (inﬁ»i‘; — S0l —

ﬁéiffn). (4)

We choose Lindblad jump operators of the form
énZ—i\/EJA/anl)A/Zm ne {],2,,N} (5)

In terms of the Dirac fermions 4, these Lindblad operators are
b, = L/e(@,a — a}a,). Alternatively, after a Jordan-Wigner
transformation, the Lindblad operators in the spin-1/2 picture
are £, = /€8%, representing local qubit dephasing.

The combination of the commutator and the dissipator in
Eq. (3) is referred to as the Liouvillian L. We note that bold
symbols H, D, I represent superoperators, i.e., linear maps
that take operators to operators.

Dephasing has wide application in nonstationary dynam-
ics [54], environment assisted procesess [55-57] and discrete
time crystals [58,59]. In the context of this paper, dephasing
acts as an illustrative example of a class of dissipative pro-
cesses for which our methodology can be applied.

B. Matrix representation of the Liouvillian superoperator
We introduce strings of Majorana operators defined as
DY =909 7o' ©)

where the bitstring ¥ indicates which p; are present (v; = 1)
or absent (v; = 0) in a given operator string ['". Using the
Hilbert-Schmidt inner product Tr(A'B) between any two op-
erators A and B, it is straightforward to show that the operators
['7//2N are orthonormal, i.e., Tr[(I"")T"7']/2Y = §"7. The
4N operators "7 /+/2N therefore form an orthonormal basis for
the 4"V -dimensional space of superoperators.

The Majorana operator basis {I""} allows us to represent
superoperators in a convenient matrix form. For example, the

Liouvillian superoperator I can be represented as a matrix £
with the elements

£ = Te (D7) L)), (7
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Another way of thinking about this is to vectorize the quantum
state p — |p)), e.g., by stacking the rows of the 2" x 2V ma-
trix p to make a single 4" -dimensional vector | p)). The action
of a superoperator on p is then a matrix multiplication applied
to the vector |p)). For example, the Liouvillian superoperator
becomes

L) — LIp)) = (H+D)lp)), (®)

where

H=—iHI-T®HA"),

D= Z <z* ® 40, — —JI@M — 55,{6*@}1) )
are the matrix representations of the superoperators H and
D, respectively. In this framework, the matrix elements of
L in the Majorana operator basis [Eq. (7)] are equivalently
written as

L = (r1LIr’y). (10)

Moreover, following Prosen [40], we view the vectorized
operator basis |I'")) as a set of Fock “states” with occupation
of “operator modes” given by the indices ¥. Analagous to the
usual fermionic Fock states, we can then define creation and
annihilation superoperators:

- ; ly,T™),  ifv; =0
"0 = 8, oly, ")) = 11
GIIr™) = 8., 0ly;T™)) {O, o —1, (D
GIT™)) = 8, by, T = 1 =0 )
e [ s R T T

which obey the usual fermionic anticommutation relations
{G;, g } =36, and {G;, G} = (G, gj.}} = 0. We also define
the number superoperator '

2N
N =Y g6lg; (13)

J=1
which has the property that N'|I'7)) = [5[|T"")), i.e., the Ma-
jorana strings are eigenoperators of A/ and the eigenvalue
is the number of Majorana operators appearing in |[I'")) =

|AU1AV7 AV2N>>

yl 7/2 )/ZN . . . . .
We note that the creation and annihilation superoperators in

Egs. (11) and (12) are defined via multiplication by the created
or annihilated operator y; from the left, i.e., |y; I'")). However,
we can also show, using the commutation relations {;, ;:} =
28;;1, that this is equivalent to

GIr") = =8, o(—=DV|I7y;)), (14)

G;IT™) = 8,1 (=DN My, (15)

where the created or annihilated operator now multiplies from
the right. It follows from Egs. (11) and (12) that |y;I"")) =

(G + Q}')|F‘7)) and it follows from Egs. (14) and (15) that
IM7y)) = (=N (G; — GDITT)), so that
lyip)) = (G;+G)lp)). (16)

o)) = (=1DN(G; = GDln)). (17)

These equations can be used to rewrite the Lindblad master
equation in the superoperator matrix representation (in terms
of the superoperator creation and annihilation operators). A
short calculation shows that the Hamiltonian commutator
—iH(p) = —i[H, p] — H|p)) is expressed as

N
H=—u Z(QZH—IQ;, + g;,,,lgn)
n=1
N—1
+(A+w) D (Gon1G, sy + 3 Gons2)
n=1
N—1
+(A—w)Y (GuGhiy + G5, Gons). (18)

n=1

Similar to the original Hamiltonian H in Eq. (1), this effective
Hamiltonian in the superoperator picture is conveniently visu-
alized as Majorana operators hopping on a two-leg ladder with
sites of odd and even indices on opposite legs (see Fig. 1).
The dissipator given in Eqgs. (4) and (5), transformed to the
superoperator matrix representation, D — D, is expressed as

N
D=e€Y (93, ;. Gu-111G3, Gl = ). (19)

n=1

The total Liouvillian superoperator is the sum £ = H + D.

C. Symmetries of the Liouvillian superoperator

The matrix representation of the superoperator £ = H +
D provides a convenient framework to identify its symmetries.
For example, it commutes with the number superoperator
N given in Eq. (13), i.e., [£, N] = 0. This means that the
matrix £ has a block structure in the Majorana operator basis,
with blocks labeled by the eigenvalues |5|*> of A”. We denote
the block corresponding to the || eigenspace as Ligp. The
superoperator matrices 7 and D also individually commute
with AV and have blocks denoted H 2 and D)y, respectively.

Another symmetry of our Liouvillian £ is related to the
superoperator defined as

=G +G)G+G) -G +Ghy). (20)

This superoperator has the properties that PGP~ = —Q,T
and PGP~
g, — —Q;. and QJT. — —G;). It is not difficult to see that
our Liouvillian £ 1s invariant under this transformation, i.e.,
PLP~! = L = [L,P] =0. Despite first appearances, this
symmetry has a fairly simple physical interpretation: since
P? = (—=1)V its eigenvalues are +iV. It turns out that the
+ (-) eigenvalue is obtained when the superoperator P acts
on density matrices |p)) with exclusively positive (nega-
tive) number parity. This is because P|p)) = [I'"=!p)) [from
from Eq. (16)], where I'"=! = (—=i)"6®" is proportional to
the state number parity operator. The conservation of P
by the Liouvillian £ therefore corresponds to the conservation
of the state number parity 6Z®N during the dynamics.

Another consequence of the symmetry PLP~! = L is
that any eigenoperator L|a)) = A4|a)) of the Liouvillian also
has the eigenoperator P|a)) with the same eigenvalue A,.

= —@; (i.e., it implements the transformation
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If Pla)) # |a)) then the corresponding eigenvalue is de-
generate. Also, if the eigenoperator |a)) is in the N = [§|?
symmetry sector of the number superoperator then its part-
ner eigenoperator Pla)) is in the N = 2N — |v|> symmetry
sector. However, N/ and P do not commute, so £ is not
diagonalizable in both eigenbases simultaneously.

III. RELAXATION RATES IN THE STRONG AND WEAK
DISSIPATIVE LIMITS

It is straightforward to verify that for Hermitian jump oper-
ators the maximally mixed state po = 1/2V is a steady state
of our Lindblad master equation, i.e., £|I)) = 0. However,
from the previous section, we see that when parity symme-

try is present we can also expect that the state P|T'0)) =

IT'")) is also a steady state, £|T'")) = 0. Steady states with
well- deﬁned parity will therefore come in the form |p)) =
(I10)) £ [1)))/2V.

Computing relaxation rates (inferred from the size of the
Liouvillian gap) can be difficult for large systems. In the
following section, we study this analytically by making ap-
proximations in two parameter regimes of interest: the strong
and weak dissipative limits, i.e., the limits where the Hamilto-
nian component of the dynamics is weak or strong compared
to the dissipative process.

The key feature we want to address is the role that Cooper
pair creation and annihilation A plays in the steady-state
relaxation rate. In cases where the eventual steady state is,
up to parity considerations, a featureless infinite-temperature
thermal state, there should be a significant effect that can
be argued heuristically: Cooper pair creation and annihi-
lation will drive the system towards half filling and the
infinite-temperature steady-state is naturally dominated by
such half-filled states. One might reasonably expect then that
Cooper pair creation and annihilation might help reduce the
time it takes to reach this infinite-temperature state.

A. Strong dissipative limit: Projection to the kernel of D

We begin by considering the limit where the Hamiltonian
term H is a small perturbation to the dissipator term D (i.e.,
€ > w, |Al, |[1]), the strong dissipative limit. In this limit,
it is possible to construct an expansion of the Liouvillian
Leg=LO + LD 4 £@ 4 ... where L™ are the nth-order
perturbations of the degenerate kernel of D.

The kernel of the dissipator (i.e., the set of states 1Z:))
that are annihilated by D) is that in which all Majorana
basis operators Ifﬁ)) have the property that v,y = v, V1
[which can be verified by applying Eq. (19) to such states
and using the properties in Eqgs. (11) and (12)]. We note that
the operators |I'")) with vy,_; = vy, can be visualized using
Fig. 1: they are Majorana strings for which all rungs of the
ladder are either occupied by Majoranas (vy,—1 = vy, = 1) or
unoccupied (vy,—1 = vy, = 0). States ['")) that do not have
matching occupation numbers on either side of the ladder rung
come with an energy penalty of 2¢ for each unmatched rung
[60].

Defining the kernel projector as P =), 1Z))((Z:] and
QO =1 — P, we formally write out the effective Liouvillian

terms to third order as [61-68]

L = pDP,

LY = PHP,

£ = puup
HoH

£® = puEnEup
HEHSH
~YenZupur + Pupnlur). @
2\ D2 D2

The expression £ is easily seen to vanish because P projects
to the kernel of D. The situation is similar for £ because H
takes us completely out of the kernel so that ((Z|H|Z =0
(see also Appendix A). Similar considerations also apply to
L3 although to see why the first term vanishes requires a bit
more thought.

At second order within the degenerate subspace, the ma-
trix £® does not vanish and can be represented by (see
Appendix A)

L? =7 Z Ty n+
with J = (w? — A?)/4e, A, = (w? + A?)/(w? — A?), and
=ttt % = —i(fn+ £7), 82 =%}, 2], where £F

are are deﬁned as

B ) + Ad(EiEr, — 1)), 2

=iGl G . (23)

These operators create or destroy pairs of Majorana operators
on the rungs of the ladder in Fig. 1. It can be verified (using
the fermionic anticommutation relations for G, and G!) that
they obey the spin SU(2) commutation relations [%}, ri]
+26, v7;", etc., and can therefore be interpreted as Pauli ma-
trices in the space of superoperators.

The effective Liouvillian in Eq. (22) is identical to the
Hamiltonian for an XXZ chain, with a shift in energy so that
its eigenvalues are always negative semidefinite. Its maximum

energy states are therefore the zero-energy eigenstates |f‘“:6))

2 =iGu_1Gm, %,

and |[I'"=")) which are related to the maximally mixed state
Poc)) = |T7=0y) /2 = |1})/2" and the spin-parity operator
IP7=T)) = (—i)V|6®N)), respectively.

The excited energy eigenstates of the XXZ chain can be
solved by employing Bethe ansatz techniques [69]. Finding
the eigenvalue of £® with smallest nonzero absolute value
will therefore provide us with an estimate of the Liouvillian
gap in the weak quantum limit. The closest-to-zero-energy
eigenstates live in the sector with one t-spin excitation,
spanned by the states f,f|f‘7’:0)) (i.e., in the |V| = 2 block,
in the language of Sec. II C). These excitations correspond to
single magnon states which have energy [70,71]

2 2 2 2
& = wi— A7 cos(k) — u (24)
€ €

resulting in a relaxation gap of Egp & —2A%/€ at k = 0. We
consider only the ferromagnetic case here to find the gap. The
signs of J and A, depend on whether w > A or w < A, pro-
ducing positive or negative couplings, respectively. We always
have J and A, of the same sign. Moreover, the eigensystem of
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the model is identical under exchange of w and A so we can
obtain the antiferromagnetic case from the ferromagnetic one.
The gap is robust as the system length N — oo and, as the
system maps directly to the XXZ chain, we can also work out
the higher excitation sectors via Bethe ansatz methods.

Recall that the parameter p, corresponding to the chemical
potential of the Kitaev model, determines the phase transi-
tion. In the case of u > 2w, Majoranas in the ladder picture
(Fig. 1) are dimerized. Hence, there is no nonlocal degree of
freedom. Conversely, for u < 2w, the Majoranas are paired
with Majoranas on adjacent rungs, leaving the first and last
Majoranas unpaired at the boundaries. This is the nonlocal
fermion degree of freedom manifest. Moreover, in this regime
the model exhibits a nonzero winding number [51].

Interestingly, the p parameter does not appear at all on the
second order, contributing only at higher orders (fourth and
above). This means that signatures of the quantum phase tran-
sition are essentially washed out in this limit. We will show
that this situation changes dramatically in the weak dissipative
limit, and that the underlying effects of topology are clearly
visible in the expression of the Liouvillian gap.

B. Weak dissipative limit: Projecting to the kernel of H

We need to take a different strategy to approach the weak
dissipative limit (¢ < w, |A], |u|). To do this, we first define,
using the free modes of the Hamiltonian, a set of vectorized
operators that lie in the kernel of . Then, we expand the de-
phasing term in this basis and show that, for low quasiparticle
excitation numbers, this effective Lindbladian permits a direct
solution.

Using the decomposition of quadratic Hamiltonians into
normal modes as in Eq. (2), we propose a convenient set of
superoperators:

B, = Z WG+ Gh). (25)

Acting on the identity these superoperators create the normal
mode operators:

1B.)) = B, 18D

It is clear, therefore, that these vectorized operators |8 ) =
B;[ B,/ |1)) are eigenstates of the Hamiltonian commutator su-
peroperator

= Bi|I)). (26)

HIBIB)) = (w0 — 0B Bu)) 27)

and are supported in Hy, i.e., the |9]?> = 2 block of H.

It was shown in Ref. [42] that to enumerate states in the
kernel of H one can symmetrically “supercreate” terms that
have creation and annihilation operators of the same free-
fermion modes 8, e.g.,

K,=B,B! —B!B,. (28)

Operating with a /C operator on the identity element (maxi-
mally mixed state) gives

Kall)) = |Ka)) = 18,85 = BiB)). (29)
and from here one can span the full kernel of H with the states

K Ky K)o | Koy Koy o Koy )). (30)

Next we expand the dissipative terms of £ in this basis and use
the result to gain insight into the behavior of the Liouvillian
gap in the weak dissipative limit. Of particular interest is the
behavior of the || = 2 block,

[L:Z]n,m = <<Kn|£|Km)) 3D

To work out the functional form for these states we start by
assuming a system with periodic boundary conditions, such
that, in the Majorana basis, the normal modes [Eq. (25)] can
be expressed using (see Appendix D)

_ pikla/2] jmod(a,2) Y
Wor = T(vk + (=1)med@Dyy - (32)

where

1 Ek 1 Ek jarg Ay
S e L 33
W=\g o % 2 2EC (33)

for e = —u —2wcosk, E; = VS,% +|A?, and Ag =
2iA sin k. For two particles this gives the state

Ki)) =Y Way vk | Var V) (34)

ap,a
with Wy, 4, & = iIm(W, s W 1),
L sin(kg ), mod((a; — az),2) =0,
Warark = [(—1)med@. g cos(kd,) + | Ay sin(kd
e k k| sin(kd,)],
(35)

and

This expression is purely imaginary if we take A € R. To
probe the weak dissipative limit we can now project to the
two-particle block to produce the £, using the states |Kj))
in Eq. (34). Combining the expressions (see Appendix E)
for the states |K;)) and the dissipator expressed in Majorana
superoperators yields

[Lolkw = ((Kk|DIKy))

N
*
=€ E Won—1 2mxWom—1.2mp — €Ny g

m=1
1 ErEx
= — —€eN$
en;NzEkEk/ €Ok
€ ~ ~
(Lol = N(Ilﬁk)(lﬁkfl —N), (36)

where we have defined thNe vector |1ﬁk) = & /E; with nor-
malized form |y) = J ') and Jj = (J|) = X 1 /EL.
In total, then, by projecting to the two excitation kernel |Kj))
we obtain the submatrix

L2 = (I ] = N), (37)
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FIG. 2. (a) The Liouvillian gap for u € {0,4} and A € {0, 1}. (b) Plot of the Liouvillian gap with respect to A in the topological (u = 1)
and trivial (u = 3) phases, respectively. (c) The gap plotted against p at fixed A. Here we see the change in behavior at the phase transition
1 = 2w, marked by the dashed line. For all plots coherent hopping w = 1.

from which we can directly read off the principal
eigenvalue as

€ |AL? Nooo / |Ac]?
Eoup = —— —_— — dk . 38
gap N Xk: Ekz € Ekz ( )

This is our approximation for the Liouvillian gap in the
weak dissipative limit. Substituting A; = 2iAsink, E; =
Vel + A7, and &g = —pu — 2w cos k gives

12A sin(k)|?

Eory = — dk - . (39
&P ¢ /_,, (u + 2w cos(k))? + |2A sin(k)|? (39

In Appendix F, we show how this expression can be evaluated
as a contour integral. Remarkably we find that within the
topological region (Ju| < 2w), the integral is independent of

i, giving

Eoap = 4mE (40)

wH+ A

In the nontopological region (|¢| > 2w) this transitions to

Eoap = 4me

A? |1l )
3 3 1), @D
w* — A7\ /u? — 4w? + 4A2

which decays as 1/4/[u] when || > 2w (see Fig. 2).

The constant (with respect to p) relaxation gap is highly
unusual and reminiscent of the behavior of the topological in-
dex or winding number for the XY system (see, e.g., Ref. [72]).
Translating into the spin language it implies that across the
full ferromagnetic region the first-order response of the sys-
tem is entirely independent of any applied transverse field.
Conversely, when the parameters of the Hamiltonian enter the
paramagnetic regime, the relaxation gap experiences a sharp
dropoff as the field amplitude is made larger. Crucially, neither
expression depends on the system length N which therefore
means that it is possible to engineer a robust and precisely
controlled excitation gap in the thermodynamic limit. Such
systems, with constant (in length) relaxation gaps, are often
referred to as rapidly mixing [73-78].

In the model considered the jump operators ¢ are Her-
mitian and result in steady states Poo = (f‘6 + "1y /2V with
well-defined parity. We note that for non-Hermitian jump op-
erators [e.g., the totally asymmetric simple exclusion process

(TASEP) model of Appendix B] the steady state can be quite
different, and can be understood on a perturbative level as an
iteratively dressed thermal state [44].

We also note that some recent work has shown that the
order of limits—whether the weak dissipative limit or the
thermodynamic limit is taken first—can have a drastic effect
on the Liouvillian gap. In particular, Ref. [79] showed that,
surprisingly, if the thermodynamic limit N — oo is taken
first, then the Liouvillian gap can remain open in the weak
dissipative limit ¢ — 0. However, in this section, since we
take the weak dissipative limit first, the gap [in Eq. (39)] is
proportional to € in the thermodyamic limit.

IV. CONCLUSION

In this paper, we have demonstrated how operator quan-
tization can be used to estimate the Liouvillian gap in open
quantum systems, in the two extreme ratios of stochasticity
(classical) and coherence (quantum). The first key idea is to
transform to the canonical Majorana basis for the superopera-
tor of the Liouvillian and exploit the block-diagonal structure
(associated with excitation number symmetry) therein. In the
case of Hermitian jump operators, where the steady state is
the infinite-temperature maximally mixed state, it is possible
to solve within each block separately, without worrying about
coupling to others. Focusing primarily on the two-excitation
block of the Liouvillian, in which we generally find the
smallest gap, we are able to treat both strong classical (weak
quantum) and weak classical (weak dissipative) regimes using
degenerate perturbation theory.

In the strong classical regime, where jump operators dom-
inate, the perturbative analysis maps to an XXZ model on
the second order. Crucially there is no dependence on the
external magnetic field (chemical potential in the fermionic
picture) until the fourth order, implying that details of the
underlying Hamiltonian are essentially irrelevant at this scale.
However, a more technical analysis shows that the underlying
Hamiltonian can have a dramatic effect on the behavior of the
system in the limit of weak dissipation. Moreover, we show
that the topological fingerprints within the XY Hamiltonian
distinctly affect the behavior of the Liovillian gap.

Finally, it is also worth commenting on the integral ex-
pression for the complex gap function, which arises from the
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momentum-space parametrization of the free-fermion eigen-
modes of the single-particle Hamiltonian. In this latter sense,
there is a clear analogy to be made with expressions that arise
in the context of topological winding numbers (see, e.g., Ref.
[72]), whereby the topological character of the bulk physics
can be condensed to a single index that also involves an inte-
gration over the full single-particle Brillouin zone. In that situ-
ation, although a ground-state gap is necessary for the integral
to be well posed, the value of this gap is typically determined
by the smallest bulk single-particle excitation energy. On the
other hand, a nonzero topological index is a property of the
full band structure and typically manifests in peripheral ways
such as ground-state degeneracies, or the number of single-
particle edge states. One of the general insights that we now
have from this analysis here is that we can see how it is also
this full set of free-fermion modes that collectively determine
the Liouvillian gap (and hence the steady-state relaxation
times) when the classical noise is not too strong.

Our findings reveal two promising applications. First, they
offer a novel method for detecting topological transitions:
In the weak dissipation regime, topological phases exhibit
significantly larger Liouvillian gaps compared to their non-
topological counterparts at equivalent anisotropy levels. This
marked difference in relaxation rates provides a distinctive
experimental signature of the transition. Second, they suggest

J

a pathway to accelerated state preparation. While the Liou-
villian gap typically diminishes with increasing system size,
we discovered that introducing even minimal spin anisotropy
can dramatically accelerate the “cooling” process toward the
desired steady state.
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APPENDIX A: DERIVATION OF THE EFFECTIVE XXZ
MODEL FOR £® IN THE WEAK QUANTUM LIMIT

Here we derive Eq. (22), the expression for £? with the
matrix elements [£®]77 = ((I'7|H2|["")) restricted to the
kernel of D. The kernel of D is spanned by the operators |I""))
with the property that v,,_; = vy, foralln =1,2,..., N.

First, we use the expression for H [Eq. (18)], as well as the
property that vy, = vy, foralln = 1,2, ..., N, to compute

N N
HIPT)) = (A +w) Y (Gon1G5,10 + G5y 1Gon)ITD) + (A = w) Y (G231 + G3,G2nr)IE)). (A1)

n=1

n=1

From this expression we can immediately see that the first-order correction vanishes:

(LD = (7 HITY)) =0, (A2)

when V), _, = v}, since each individual term vanishes, e.g., <<Fﬁ’|g2,1,1g§n+2|rﬁ)) =0.
Next, we apply the H superoperator to the expression in Eq. (A1) to obtain

(L7177 = (TV|HA|EY))

= (A +w)* Y (L7 (Gon1G3,pp + Ghy 1 Goni2) Gow—1Ghy g + G Gow42)IE7))

nn'

H(A = w) Y (7G2Gt + G2, Gon1)Gow Gay sy + Gay GowrsDITT))

n,n'

+ (A7 = w) Y (T (G2-1G5 0 + Gape1 Gons2)Gon Gl oy + Gy Gaw s DIET))

n,n’

+ (A7 = w) Y (7G2St + G3,Gon1)(Gow1G0 2 + Gy 1 Gaw+2)IE7)). (A3)

n,n’'

Now, thinking in terms of Fig. 1 in the main text, only terms that involve a Majorana hopping from one rung to the next, followed
by the reverse hop, will survive the projection back into the kernel. This gives

(L1 = (T [H2E))

n

—(A+w) Y (T 1(Gon1G5,_1Ghs2Gns2 + Gay Gonc1Gans2 G )ITT)

—(A = w) Y (07 1(GnGl, G841 Gonst + G5, GonGons1 Gy DITT)

n

+2(A% = w) Y UV 1(G2n-1G20G5 11 Gnra + Gan 1930 Gons1Gans2)IE7)). (A4)

n
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In the last line we substitute 7,

[LO)7 = (T [H2E))

= iGsn1Gan and £ = iG] _ GJ to obtain

= —(A+w) > (07 (Gon-1G3,_ 19311292 + G3,_1Gon1G2n42G3, 1 )ITT))

n

—(A —w) Z«Fﬁ’|<g2ng;,1g;n+lgz,,+l +G3,G20G241G3,, DITT))

+2(A% — 2)2 (TV1GE 8+ & 8 DIED). (A5)
Finally, since v,,—; = vy, we have
Gon-1G3,_1IT7)) = G2 G5, IT7)) = Gon1G3,_1G2a G5, IT7)) = 2,727 117)), (A6)
Gry1G2ntI07)) = G1,G0IT7)) = GJ,1Gon1G3,G04IT7)) = 2,74, 1T7)). (AT)
We can substitute Egs. (A6) and (A7) into the first two lines of Eq. (AS) to obtain
(LT = —(A+w) Y (VI 856k g + 8 8 G BHDIT™)
—(A—w) Y (VI I L R DIET)
+2(A% = w?) Y (T (G20-1G20G3, 11 Gnrr + Gane 1933 Gons1Gans2)IE7)). (A8)
n
Adding the first two lines together, and replacing the £*’s with £%/%/2’s, gives our final expression:
[L2)F = (T |[ (A w )Z —#i0,) — (AT —w )Z (CRANER ,,H)}F“’»
_ 1_”‘)/ 2 AZ (w2 + Az) ,\Z,w AXAx A\ y 1"‘7/
_(< |(w - ) MZ(H n+1 +Z n n+l+ n n+l) | >>
= ((Fﬁ’|461[2 (B85, + 2080 ) + Aa(2325, —ﬁ)}rﬁ/)), (A9)

where we have defined the coupling J = (w? — A?)/4€ and
anisotropy A, = (w? + A?)/(w? — A?).

APPENDIX B: EXAMPLES WITH DISSIPATION
MODELED BY EXCLUSION PROCESSES

1. Symmetric simple exclusion process

The same expression also arises in the treatment of stochas-
tic hopping. Consider, for example, the Hermitian process

sz 1—\/_0' Ux+1+\/_0' x+1’
by = eo ol —eo o, (B1)

This choice of Hermitian jump operators has the nice property
that it preserves what we call excitation number symmetry.
When looking at the superoperator matrix representation of
the Liouvillian (IL) this leads to a hierarchy of blocks that can
be solved individually [45].

As in the main text we project to the two-particle kernel of
the commutator

L), = (Ki|DIKi))
4 ( erep ArAyp sinksink/
—e— 2 4 K . (B2
N \ E.Ey. EEy

from which we can extract the nontrivial eigenvalues exactly

from the two-level model,
4 7
Hegr = Eﬁ|: v W'q&)} —dely, (B3)

@y I

where |V/), = ex/Ex and |<$) =sink x Ay/E; and
= (YY) = Yk &t/EL, Jg = (D1d) = 3, (sink)>Af/EL.
A first-order estimate of the gap is then
4e , de [Ag|?
€gap=ﬁfw—e=—ﬁ;E—kz, (B4)

which, as N — oo, is four times the expression given in
Eq. (38). In the next subsection we also show how the
same expression arises, again on a perturbative level, for
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, N-1
_ + X 4 X X
1 Y v y - Y \
“Yhop 4 =1
8 N-—1
Y v Y Y]
-1+ + | -
X x | X
\ z=1
N—-1
r o X X| n Yy Y] X Y] v
X y v Ix v I bulk
=1
N1 . terms
AN
“Yhop =1 . Z_Z
16 No1
Y 7 Y Xz .
-1 -1 +i +i
Y 7 X X 7
=1 -
= 7Y T Y .77 X .T X
+i +i -1 -i | J
\ b Zz_vl X 7

8
Il
—_

a P +i [: - + 7] + [
Z >< Z ( Y | '/ ) left
v T T boundary
-\ -1 201
I I 7 + -
B % B R | I | right
4 - - boundary
+ YI + N 20T
Z Iz Z | A
P Z Tz |z 7 Z

FIG. 3. Full TASEP Linbladian superoperator in the canonical basis. We use the shorthand X = o*,Y = 0", Z = ¢* for the Pauli operators
in the canonical basis (see Ref. [42]). Only terms highlighted commute with the excitation number operator . For the Hermitian SSEP only
these highlighted terms appear, albeit multiplied by an overall constant of 4.

the TASEP dissipator that encodes nonsymmetric and non-
Hermitian stochastic hopping.

2. Totally asymmetric simple exclusion process

In this section we include more details on another pro-
cess, namely, the TASEP, that produces a similar Liouvillian
gap when combined with the XY Hamiltonian. Some of the
discussion is of further relevance to the related SSEP model
examined in the main text.

Temme et al. [80] considered the totally asymmetric sim-
ple exclusion process (TASEP) with coherent hopping (i.e.,
H|a_o, the XX model). In the bulk the model consists of
N — 1 stochastic terms,

EX = WUX_O’;],

and two boundary terms which specify particle creation (hop-
ping on of spin down) on the left-hand side and particle

Vie{l,....N—1}, (BS)

annihilation (hopping off of spin down) on the right:

by =NaoT, by =/Boy. (B6)

The full Lindbladian operator for the TASEP is given di-
agrammatically in Fig. 3. For TASEP we typically assume
open boundary conditions for both Hamiltonian and stochastic
terms. To produce the precise effective description we could
then use single-particle fermionic operators from this open
boundary scenario. However, to simplify things we instead
assume that we can use periodic momentum fermionic cre-
ation and annihilation operators to make the zero excitation
energy kernel of H. The situation is more complicated here
since the superoperator matrix is not block diagonal but using
the arguments of Ref. [44] we note that we can project onto
the s = 2 block for small y, «, 8 and end up with a situation

0.35

0.3

025

02

0.15F

0.1F

0.05 -

max (4 —28@)) /e

0.06 0.08 0.1

1/N

0.04

FIG. 4. Smallest relaxation gaps of |¥|*> = 2 (red) and |7|> = 4 (blue) sectors for onsite bulk dephasing in the weak € — 0 classical limit.
Left: The parametrized gaps overlaid for N = 50. Right: The |¥|?> = 4 becomes approximately equal to twice the ||> = 2 gap as N is increased.
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very similar to Eq. (B1):

. N—1
L? =y X (Jy Y)Y (| + Jpld)(B])
y a+p
—<V—ﬁ+ N ) (B7)

which, using essentially the same analysis in the main text,
leads to a gap that tends to Eg,p as defined in the main text in
the N — oo limit.

APPENDIX C: THE FOUR EXCITATION NUMBER GAP

A key assumption in the main text is that the ||> = 2 sector
generically contains the smallest gap. We do not have an an-
alytical proof for this. However, we can analyze here how the
|V]? = 4 gap scales, for simplicity restricting the discussion to
just the case of dephasing. The general result is that, although
we have not been able to find a simple representation in terms
of a small number of projections for the |V|> = 4 case, the
lowest energy gap nonetheless approaches twice the |7]> = 2
gap as the system size is increased (see Fig. 4). A similar
analysis suggests that the pattern holds for higher sectors, un-
derlining our justification for focusing on the |7|> = 2 sector.

APPENDIX D: MODIFIED BOGOLIUBOV
TRANSFORMATION

On the N-rung ladder we can use a Bogoliubov trans-
formation, with sites labeled by r = (x,y), whereby y =0
denotes the lower portion of the ladder, y = 1 the upper por-
tion, and x = 1, ..., N the rung. The free-fermion modes are
defined by

Bl =Y W (D1)
r |

where

ikx

~/ 2N,

Unfurling the N-rung ladder to a 2N site chain we need to
replace the indexing using r with another site label denoted
by a € {1, ..., 2N}. Starting from the expressions above we
can note that using the numbering convention of Fig. 1, for a
given r = (x, y) we have

/a
X = ceﬂ(—),
2

y =mod (a, 2). (D3)

Wik = (o + (=) we). (D2)

Thus, the new expression for the free modes will now use

_eikTa/2]

V2N
_eik[a/Z] —i mod(a,2)
_ ( ) (uk + (_l)mod(a,Z)vk).

V2N

Wa P = (imod(a,Z)vk 4 (_i)mod(a,Z)uk)

(D4)
Furthermore, to construct symmetric two-particle states such
as |Ky)) = I,Bkﬁ; — ﬁ;ﬂk)), we need to determine

KDy = > (War W, = Wt Way i) [ Ve Vao)

ap,ap

=Y im(Wa, kW, ) 1Va Va))- (D5)

ap,a

since for some s, ¢t € C, itis easy to see that s - t* — s* -t = {Im(s - t*). Then, with this in mind we can find

* —
Wal,kWuz,k -

[ _eik [a/2] (_i)mod(al ,2)

V2N

eik( [ay/21—[a2/27) l-mod(ul ,2)+mod(ay,2)

(e + (=1 )‘"““““”vk)} [

_e—ik [a/2] (_I_l')mod(ag.l)

V2N

(uy + (—1 )mOd(“z’z)vZ)]

= [(_l)mod(al,Z)uk + vl + (_l)mod(az,Z)vlf]

2N
eikéﬂ mod(a;,2)+mod(a,,2)

— [Imi(_l)mod(ml) +ukvk +ukv;:(_l)mod(a1,2)+mod(a2,2) 4 |v|i(_1)mod(ag,2):|7

2N

where we define &, = [a;/2] — [ay/2]. Now consider if a;, a, have equal or distinct parity. If equal then mod(a;,?2) +

mod(a,, 2) = 2 mod(ay, 2), yielding

eikéa (-1 )mod(a] )

Wa, kW o = N [(— D™D (juf? + |v]?) + w (v + v])]. (D6)
Recall that
1 1 .
u -z 8]( — _ - g_kelargAk, (D7)
2 2E; 2 2E;
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Then we have

ik,
WdlykWat,k = N [1 + (“k(vk + v;(k))(_l)mod(al,Z)]
o [ T o 1 e |
T Z_Ekk 2 Taz(emgm + e A (— et
eik& B 1
=N _1 ~E E? — &7 cos (argAk)(—l)mOd(”"2)i|
kS, A
- eZN _1 B % cos (argAk)(—l)mOd(a"z)].

Then finally for the equal-parity case we have
. . [ [ Akl mod(a;,2)
im (W, W ) = N sin(kd,)| 1 — - cos (argAp)(—1) I
k

i ~
= —sin(kd,), for Ay € iR.
Nsm( ), for Ay €

and gy = —u — 2t cosk and E; = Vé‘]% + | A¢|>. Moreover, u; = uy, |u|,% + |v|,% =1, |u|,% — |v|,% = & /Ey, and E1<2 — s,% = | A%

(D8)

(D9)

(D10)

(D11)

(D12)

This is always the case when A € R as A, = 2iA sin k. Next we consider the case where a; and a, have different parity. In this

case mod(ay, 2) + mod(ay, 2) = 1, in particular, (—1)m°4@-2) = _(—)mod@.2)
eiksﬁi
VV"I’kWai,k = _2N [luli(_l)mod(m,Z) + uve + ukv;(k(_l)mod(a|,2)+mod(az,2) _ |U|]%(—l)m°d(a"2)]
ieik&, 5 s o
= N [(|u|k _ |U|k)(_1)m0 (a1,2) + wi (v — v,f)]
l'eikS,, £

€k d(ar,2 1 1 €k, iargA —iargAy
= K(—pymod@2y . [— 4 T J7 %K 2Ar _ A
T \/2 - 2Ek\/2 25, )

lelk&, e A
_ |:_k(_1)m0d(a1,2) — i% sin argAk]
k

N | E
ik,
= oNE ligp(—1)mod@-2) 1| A, | sinargAg].
k
Then we can obtain
/ * _ i mod(a;,2) 3 . % .
itm(W,, (W, ) = ﬁ[(_l) e cos(kd,) 4+ | Ax| sin(k8,) sin arg Ay ]
k

- NLE[(—l)m"dW%k cos(k8,) -+ | Ay sin(k8,)], for A, € C.
k

Thus, we have the result stated in the main text,

{;—' sin(k8,),  mod((ar — a2),2) =0,
Wal,az.k =

A%Ek[(—l)m"d(“l’z)ek cos(kd,) + | Ax] sin(k8,)].

APPENDIX E: KERNEL PROJECTION CALCULATION

We begin with the form of the dissipation in the matrix representation of superoperators,

N
D=¢€Y (I3, ;. Gon-111G},. Goul = I,

n=1
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and note the definition of the free-fermion modes using the same Majorana superoperators,
2N
By=) Wi(G;+3). (E2)
j=1

Note that in the r = (x, y) indexing system, those r = (x, 1) are odd in n indexing and those r = (x, 2) are even in n indexing.
Recall that the |v|?> = 2 states K can be defined by G as

N
Kill)) = > Waamt 20 4(Gaa—1 + Gay ) Gowr + G3)ID), (E3)

a,a'=1
where
L sin(kd,), mod((a; — az),2) =0

1\,+Ek[(—1)’“"‘“‘”’2)8;< cos(k8,) + | Ay|sin(k3,)] otherwise,

Wal,az,k = (E4)

and §, = [41 — [51. Then the object we need to calculate is the principal eigenvalue of /3,((2,1 = ((Kx|D|Ky)),

N N N N
E,(fi/ =€ Z Z ZWZZ,Lgar,szbq,zb',k' ((V2aV2arllGh 12 Gon111GE, s Goullya—1vaw)) —€ Z((Kk|Kk’))- (ES)

a,a’'=1b,b'=1 n=1 Comm n=1

Focusing first on the commutators, notice that we can write them in the following way:
Comm = {(y2a V2a-111G3, > Gon111G3,, GanllVap-1725))
= (V2w V20-11 G2t + G2 ) Gont = G N Gon + G3,)( G2 = G, V26-172))
= — (V20 V2a11Gonr + Gh ) Gon + Gh ) Gont — G )N Gon — Gi ) V2o—1V20))
= (Y20 V2a-11(Gan1 + G, )N Gan + G5 ) Gont — Ga D8 alVap—1))
= ((V2a V2a11G2n—1 + Ga ) Gan + G, )8 nB1y 1))

= Sb,nab’,n<<y2a’ Y2a—1 |y2nfly2n))
- (Sa,naa’,n(Sh,n(Sb’,m (E6)

The second expression for Comm has additional terms compared to the first but these are zero inside the expectation between
two-excitation states. Now reinserting this into the expression for £,(<2,1, we obtain

N N N N
2
Ll =« Z Z Z Wao 120 sWab—1.26 k' 8a.n8a n8b.n8y n — € Z((KHKk'))
a,a=1b,b'=1 n=1 n=1
N
=e€ Z(Wi‘;,_l_z,,,kWZn—l,zn,k' — ki) (E7)
n=1

Now note the simplification of Wy, 4, «, for a; = 2n — 1, a; = 2n and hence, 8, =0:

—i8k

Wan—1,20k = NE, (E8)
We are able now to write the elements of the |v|?> = 2 block of the Liouvillian as
@) N |
Lo =e ; (m BB 6;(,1«), (E9)
which in compact form as a matrix is given by
LY = (D)1= N). (E10)

for |), = &x/Ey. Extracting the principal eigenvalue of this matrix then leaves us with the following expression for the
Liouvillian gap:

€ |Ak?
Eoap = —— . Ell
wap v Ek i (E11)
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APPENDIX F: EVALUATION OF THE GAP INTEGRAL

Here we present an approach to calculate the gap integral [Eq. (38)] by contour integral. We write it explicitly as it has
appeared thus far, with minor modifications:

e /” " 12A sin(k)[2 )
gp = € —x (u+2wcos(k))? + |2A sin(k)|?

We begin with a change of variables, trading & for z in the following way:

z = exp(ik), dz = ie*dk, dk = —iz"'dz. (F2)
This then gives
A2 -4 = 1)
Eoap = —i€ % dz . F3
o 22+ 2w? + A?) + 2wz +22) + (w? — A1) +2) )

After some rearrangement the integral is written as
2 2
-1
Eup = —iAZe ?{ dz 1) .
(w? — A?)Z + 2wzt + (u? + 2(w? + A?)Z + 2wuz? + (w? — A?)z

At this point the integrand is in a suitable form to discuss which values of z are poles. In particular one can see that they all come
from the denominator, which we find from solving the equation

(F4)

(w? — ADZ + 2wuz + (1 4+ 2(w* + A2 4+ 2wz + (w? — A*)z =0. (F5)

Solving this question gives, in addition to the obvious pole at zero, four others which come in two pairs. In total, the poles of the
integral are

20 =0, (F6)
= —;(Zwu—i—ZA;)j: ;\/MZAZ—}- w22 4+ 2wuAe, (F7)
! d(w? — A?) 2(w? — A?)
1 1
e ——— (2 QML)+ ———— P AT + w2 — 2wp AL, F8
% = =g = an QWK T 240) z(wz_Az)\/u + w2 — 2wpAL (F8)

where we have introduced another variable ¢ which we define as
=2 —4w? +4A2, (F9)

Having obtained the poles explicitly we can next compute the residue of the integral at each of the poles using the ¢ variable:

Res(z0) = WA (F10)
+ F1
Res(zi) = m\/wZ;Z + u2A2 £ 2puwAL, (F11)
+1
Res(zF) = m\/ng2 + u2A?2 = 2uwAL. (F12)

(

We can write these residues in a final compact form leading to for ¢ a positively oriented simple closed curve (here the unit

the expressions circle at the origin) and a; a pole in the interior of the curve.
1 These poles are 7y, zf, and z;r , which yield
Res(zo) = m,
. lwe + pA| e _ 4meA? Ar|we + pnA|l  Am|lwe — pA|
Res(z)) =Fr—5—5— gap = T A2 2 _ A2 2 _ A2
! 2A(w? — A2) w?— A (w* — A%)¢ (w? — A%
2
£y _ lwé — Al :M -1 1 Al — A
RCS(Zz)—im. (F13) w2 — A2 +2A§(|w§+ﬂ | |U)§ n |) .
Finally, recall the residue theorem (F15)
% f(z)dz = 2mi Z Res(f, ax), (F14) A subtle distinction can be seen from the poles between the
¢ X topological and nontopological regions. The relevant poles are
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A=04, p=25 A=04, p=15
D D 2y 2t
— or o - o - o _'ESD — oF ° OO
E 21 Z9 ZEL 21 20 E Zi Zj; 20
N C s C
' Re (2) ~ Re(?)

(a) Poles in the trivial region.

(b) Poles in the topological region.

FIG. 5. There is a subtle difference between the pole structure of the gap integrand in the topological and nontopological regimes. In both
cases the poles of relevance are those labeled as zp, zl*, and z; . We can see that the + poles lift off the real axis and become complex when

1 < 2w, i.e., inside the topological region.

20, 2}, and z;’ . Within the topological region the +-poles lift
off the real axis and become complex. Outside of this region
the relevant poles remain all real, this distinction is shown in
Fig. 5. From this point, we can make a brief analysis of this
expression to understand further how this simplifies for the
two phases of the quantum model, i.e., || < 2w or [u| > 2w.
First assume that { € R. Then we have four cases:

(G) If |lwe + Al > 0,
lwe + Aul — |we — Aul =2uA.

(1) If lwe £ Aul <0,
lwe + Apl —lwe — Aul = =2pA.

(i) If lwe + Al > 0& lwe — Aul| <0,
lwe + Apl — |we — Apl =2ws.

(v) If lw¢ + Aul <0 & |lwe — Apl > 0,
lwe + Apl — |we — Aul = —2w¢.

These cases lead to the four corresponding cases for the
gap integral:

igiAAzz (% —-1), for case (i)
]‘L’z’iAAzz ( — % - 1), for case (ii)
Bar = | dgen (-1+%)= A5 for case (iii) (F16)
wr—A2 A T ow+A?
2 _ .
i’z’iAAz ( —1- %) = wf—i, for case (iv).

Finally, how do these cases correspond to the actual phase
transition at || = 2w? Consider how we have split the case
by the quantity w¢ £ pA. This quantity changes sign when it
Crosses zero, i.e., when

w¢ £ puA =0,

w?(u? — 4w? +4A%) = u*A?,

P =A%) = 4w’ — A?),

= |ul = 2w, (F17)

provided that w? # A%, which is the case throughout this
work.
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