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A B S T R A C T

The rising prevalence of neurodegenerative diseases such as dementia
and Parkinson’s disease poses a critical challenge as the global pop-
ulation continues to age. Enhancing cognitive reserve through cog-
nitive training, particularly via neurofeedback (NFB), has become a
promising strategy to counteract cognitive decline. This thesis presents
a comprehensive study on the development and evaluation of a novel
NFB training system designed to enhance attention in healthy adults.
The system leverages event-related potentials (ERPs) and iterative
learning control (ILC) to dynamically personalise task difficulty, thereby
optimising training efficiency and engagement.

The research is underpinned by extensive data collection, involv-
ing a large-scale clinical trial with a significant sample size of healthy
adult participants. The trial rigorously tested the system efficacy, pro-
viding robust evidence of its effectiveness. Participants were divided
into groups, with one group receiving ILC-adapted training and oth-
ers following traditional or random difficulty protocols. The results
demonstrate that the ILC group not only completed the training more
rapidly but also achieved substantial improvements in attention, vali-
dated by both behavioural metrics and neurophysiological markers.

Further investigations within this thesis address the system practi-
cality, including studies on reducing the number of EEG electrodes to
improve usability. The potential transferability of attentional improve-
ments to motor skill acquisition in surgical training is also explored,
revealing insights that guide future research in this domain.

In conclusion, this thesis contributes significantly to the field of
cognitive training by showcasing the potential of ERP-based NFB sys-
tems in enhancing attention through large-scale, real-world clinical
trials. The findings open new avenues for applying such systems
in broader cognitive training and rehabilitation contexts, with rec-
ommendations for future studies to explore long-term impacts and
cross-domain applicability.
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1
I N T R O D U C T I O N

1.1 motivation and objectives

The global population is aging rapidly. In 2022, nearly 19% of people
living in Europe and North America were 65 years old or older, a
figure projected to rise to almost 27% by 2050 [1]. This demographic
shift is not confined to specific regions but is a global trend, with over
16% of the world population expected to be over 65 years old by 2050,
up from less than 10% in 2022 [1]. Aging is often accompanied by an
increased prevalence of diseases that impair cognitive abilities, such
as dementia and Parkinson’s disease. The incidence of these condi-
tions, and the associated burden on individuals, families, and society,
has already increased and is expected to continue growing in tandem
with the aging population [2, 3]. While significant research efforts
are focused on disease-modifying treatments that aim to slow, halt,
or reverse the progression of such diseases, most current therapies
primarily focus on symptom management [4, 5].

Given the challenges of treating these progressive diseases, and the
anticipated rise in their occurrence, there is a growing emphasis on
prevention strategies, aimed at promoting healthy aging. These strate-
gies include lifestyle factors like physical activity, smoking abstinence,
alcohol consumption reduction, and social engagement [6]. A key
concept in healthy aging and the prevention of cognitive decline is
cognitive reserve, which refers to the ability of the brain to adapt and
maintain function, despite damage or disease [7]. Cognitive reserve is
influenced by both genetic and environmental factors, including ed-
ucation and lifestyle choices [7]. Regular participation in cognitively
stimulating activities has shown promise in enhancing cognitive re-
serve and reducing the risk of developing dementia later in life [6].

One method for intentionally boosting cognitive reserve is cog-
nitive training. This involves a series of tasks designed to enhance
specific cognitive functions such as memory, attention, and problem-
solving skills. Research has demonstrated the effectiveness of cogni-
tive training in both preventing and treating diseases like dementia
[8] and Parkinson’s [9]. Beyond healthy aging, cognitive training can
be beneficial for individuals in professions or activities requiring high
levels of cognitive functioning, such as surgery [10], military [11], and
athletics [12].

Neurofeedback (NFB) training, a form of cognitive training using
brain-computer interfaces (BCIs), where users receive real-time feed-
back based on their brain activity, allowing them to self-regulate this
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activity, has shown promising results [13, 14]. However, there are
concerns about the efficacy of NFB training due to a lack of large-
scale and well-controlled clinical trials [15]. Furthermore, the use of
NFB training is mostly limited to lab environments [16]. Factors such
as long setup and training times, along with high associated costs,
present significant barriers to its practical application in real-world
settings [17].

Building on the potential of NFB-based cognitive training, and ad-
dressing current challenges in this field, this research aims to develop
and evaluate an accessible, and effective, NFB training system. The
objectives of this project are to:

• Demonstrate that NFB training can effectively improve cogni-
tive function in healthy adults through rigorously designed clin-
ical trials, providing robust evidence of its efficacy.

• Enhance the efficiency of training, enabling faster cognitive im-
provements, through the use of iterative learning control (ILC)
to dynamically adapt task difficulty based on user performance.

• Ensure practicality and usability by minimising the number of
electrodes required, thereby reducing setup time and making
the system more scalable and user-friendly.

• Demonstrate the applicability of the system in real-world envi-
ronments.

Ultimately, the goal is to create an NFB training system that can be
easily deployed as an intervention in real-world settings.

1.2 main contributions

This thesis makes the following key contributions, some of which are
tied to specific research questions:

• Development of a novel NFB training system: A system de-
signed to enhance attention in healthy adults. This system uses
event-related potentials (ERPs), instead of the typical frequency
bands for NFB, and employs an ILC controller to optimise task
difficulty. The controller automatically adjusts the task difficulty
based on user performance, accommodating changes due to fac-
tors such as learning effects or fatigue.

• Rigorous evaluation of ILC-controlled training: The effective-
ness of ILC-controlled training is rigorously evaluated through
simulations and a large-scale clinical trial involving a substan-
tial cohort of healthy adults. Although the trial did not involve
patients, it was registered as a clinical trial because it adhered
to the strict protocols of intervention-based research. The study
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systematically tested neurofeedback training interventions to as-
sess their effects on cognitive function, aligning with formal clin-
ical trial criteria. This registration ensured transparency, ethical
oversight, and adherence to trial design standards, thereby rein-
forcing the reliability and generalisability of the findings.

– Research Question 1: Can ILC enhance the efficiency of
NFB training to improve attention in healthy adults?

• Reduction of electrodes: Several studies are conducted to ex-
plore and enhance the system practicability by reducing the
number of electrodes required for training. This reduction not
only minimises setup time and cost but also enhances user com-
fort, making the system more accessible and feasible for use in
real-world contexts beyond laboratory settings.

– Research Question 2: How does the number of electrodes
affect the usability, accuracy, and effectiveness of the NFB
system?

• Exploration of training transfer effects: The impact of the train-
ing on motor skill acquisition and retention in surgical trainees
is investigated, successfully demonstrating the deployment of
the NFB system in a large scale, real-world setting.

– Research Question 3: Can attentional improvements gained
from NFB training transfer to motor skill learning?

• Contributions to open science: The studies described in this
thesis generated substantial datasets comprising 151 NFB ses-
sions with 132 participants. These sessions include EEG signals
recorded from a wide variety of settings, with electrode configu-
rations ranging from 4 to 32 electrodes, and environments span-
ning from shielded rooms to typical office settings. Where par-
ticipants consented to further use of their data, these datasets
will be made available in online repositories to facilitate fu-
ture research. Additionally, the code used for the experiments
is freely available to support future research and foster trans-
parency.

1.2.1 List of Publications

This section lists the publications that resulted from the work de-
scribed in this thesis.

1.2.1.1 Journal Publications

• In Preparation:

– Noble, S.C., Rente, M.N., Ward, T., Morris, S., Ringwood,
J.V., "Evaluating the effect of P300-based neurofeedback on
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surgical training", IEEE Transactions on Neural Systems and
Rehabilitation Engineering

– Rente, M.N., Noble, S.C., Ward, T., Ringwood, J.V., Morris,
S., "Investigating the use of cognitive simulation and neu-
rofeedback training for improving retention of motor skills
in surgical training", Surgical Innovation

– Noble, S.C., Ward, T., Ringwood, J.V., "Investigating the ef-
ficacy of P300-based neurofeedback training with minimal
electrode sets", IEEE Transactions on Biomedical Engineering

– Noble, S.C., Ward, T., Ringwood, J.V., "Multi-Condition
EEG Dataset from Neurofeedback Training with a P300

Speller", Data in Brief

• Published:

– Noble, S.C., Woods, E., Ward, T., Ringwood, J.V., "Acceler-
ating P300-based neurofeedback training for attention en-
hancement using iterative learning control: A randomized
controlled trial," Journal of Neural Engineering, vol. 21, no. 2,
026006, 2024

– Noble, S.C., Woods, E., Ward, T., Ringwood, J.V., "Adap-
tive P300-based brain-computer interface for attention train-
ing: Protocol for a randomized controlled trial," JMIR Re-
search Protocols, vol. 12, e46135, 2023

1.2.1.2 Conference Publications

• In Press:

– Noble, S.C., Ward, T., Ringwood, J.V., "Assessing the im-
pact of environment and electrode configuration on P300

speller performance and EEG signal quality," Proc. 2024
IEEE International Conference on Engineering in Medicine and
Biology (EMBC), Orlando, FL, USA, 2024

• Published:

– Noble, S.C., Ward, T., Ringwood, J.V., "Comparing the ef-
fect of electrode selection on P300 speller performance,"
Proc. 2023 IEEE International Conference on Systems, Man, and
Cybernetics (SMC), Honolulu, HI, USA, 2023

– Noble, S.C., Ward, T., Ringwood, J.V., "A phenomenologi-
cal model of cognitive performance as a measure of atten-
tion in a P300-speller task," Proc. 2022 IEEE International
Conference on Systems, Man, and Cybernetics (SMC), Prague,
Czech Republic, 2022
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1.3 thesis outline

This thesis is organised into four parts. The first part includes this in-
troduction, along with a literature review and technical background,
providing the necessary context for the rest of the thesis. In Chapter 2,
attention as a cognitive function is explored, along with how it can be
trained using NFB. Different types of NFB and methods for task diffi-
culty adaptation are also discussed. Chapter 3 introduces ILC, which
is used in this thesis to adapt task difficulty in NFB training.

The second part of the thesis details the core developmental work,
including system development, modelling, and control design, as de-
scribed in Chapter 4.

The third part presents the experimental work, encompassing data
analysis and experimental studies, which are discussed in Chapters
5, 6, and 7.

The fourth and final part of the thesis provides the conclusions in
Chapter 8.





2
N E U R O F E E D B A C K T R A I N I N G F O R AT T E N T I O N
E N H A N C E M E N T

2.1 introduction

NFB training is a method of closed-loop brain training where individ-
uals learn to modulate their brain activity through real-time feedback
based on that activity. It relies on neural plasticity, the ability of the
brain to change its structure, as well as operant conditioning, a learn-
ing process driven by (positive or negative) reinforcement [18].

Specifically, in NFB training, a person’s brain activity of interest is
measured with one or more of the neuroimaging methods explained
in the following paragraph. This measured brain activity is used to
provide feedback to the person, who attempts to control it by self-
regulating their brain activity, thus creating a feedback loop. Over
time, this self-regulation can lead to a change in brain patterns and/or
behaviour [18]. An illustration of this feedback loop, showing differ-
ent neuroimaging methods and feedback modalities, is provided in
Figure 2.1.

Figure 2.1: Neurofeedback (NFB) loop with possible feedback modalities,
neuroimaging methods and brain activity measurements. Taken
from [18].

9
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There are generally five different neuroimaging methods used for
NFB, which are used on their own, or combined for multi-modal NFB
systems [18]:

• Electroencephalography (EEG) and Magnetoencephalography
(MEG): Non-invasive methods that measure the cortical electri-
cal and magnetic activity of the brain, respectively, through the
skull. These methods have high temporal resolution but rela-
tively low spatial resolution.

• Electrocorticography (ECoG): An invasive method that improves
spatial resolution by measuring electrical activity directly from
the brain’s cortex.

• Functional magnetic resonance imaging (fMRI) and Functional
near-infrared spectroscopy (fNIRS): Methods that detect oxy-
genated and deoxygenated blood within the brain, offering greater
spatial resolution but low temporal resolution.

EEG-NFB is the most commonly used modality and was the first
modality to be used for NFB. The emergence of EEG-NFB began in
the 1960s and 1970s. Kamiya [19] was the first to demonstrate the
learned control of brain waves through reward. Concurrently, Ster-
man [20] applied NFB training to treat seizure disorders in cats, and
later humans. Despite facing criticism and a decline in research dur-
ing the 1970s, interest in EEG-NFB has resurged due to advancements
in BCI technologies [15]. Today, EEG-NFB is utilised for treating var-
ious mental and mood disorders, such as schizophrenia, depression,
dementia, ADHD, and in cognitive rehabilitation after brain injuries
or stroke [13].

However, EEG-NFB is not limited to individuals with cognitive
deficits; it also offers potential benefits for healthy individuals, such
as enhancing cognitive skills [14] or motor performance [21].

This thesis focuses on using EEG-NFB for attention enhancement.
The fundamentals of EEG are introduced in Section 2.2. Attention is
further described in Section 2.3, with explanations of its importance,
neural substrates, and correlates. The different types of EEG-NFB are
described in Section 2.4, focusing on how they modulate the neural
substrates and correlates of attention. An overview of common per-
sonalisation methods in EEG-NFB is provided in Section 2.5, before
concluding the chapter in Section 2.7.

2.2 electroencephalography

EEG is a method to measure the electrical activity of the brain. This is
done by attaching electrodes to certain locations on the scalp [22]. The
International 10-20 system was previously the standard for electrode
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placement. However, it has been modified to accommodate more elec-
trodes and is now referred to as the 10-10 system [23]. This system
can be seen in Figure 2.2. Electrodes are usually not in direct contact
with the scalp, so an electroconductive gel is applied to bridge the
gap. The measured electrical activity is then amplified by the EEG
amplifier. The output of this amplifier is a time-series of voltage for
each electrode [22].

Figure 2.2: Electrode placement according to the 10-10 system. Taken from
[23].

Various features are extracted from these time-series. The most im-
portant for EEG-NFB are spectral features (the amplitude of EEG sig-
nals at different frequencies), slow cortical potentials (SCPs), which
are direct current (DC) shifts in EEG signals, and patterns occurring
in response to stimuli or events, known as ERPs. These features will
be discussed in more detail in Section 2.2.1, Section 2.2.2, and Sec-
tion 2.2.3, respectively.

2.2.1 Spectral Features

EEG signals are often analysed in the frequency domain, where differ-
ent frequency bands and their associated behaviours or psychological
states are defined. These bands are called EEG rhythms.

The most well-known rhythm is the alpha rhythm, observed in re-
laxed but awake states, particularly with eyes closed. The low-frequency
delta rhythm is associated with deep sleep, but also cognitive process-
ing, and is often observed in ERP studies. The theta rhythm is typi-
cally associated with drowsiness, and high activity in this rhythm
is considered abnormal when resting. However, theta activity is also
associated with attention and working memory. The beta rhythm is
most commonly observed in frontal regions and is associated with
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cognitive processing and the sensorimotor system. The high-frequency
gamma rhythm in temporal regions is associated with memory [24].

An overview of EEG rhythms with their frequency bands, location,
and associated state is given in Table 2.1.

Table 2.1: EEG rhythms and their associated behaviour or psychological
state.

Rhythm Band (Hz) Location Behaviour /
Psychological State

Delta <4 variable deep sleep,
cognitive processing

Theta 4-7 frontal and
temporal

drowsiness,
attentional
processing

Alpha 8-13 occipital and
parietal

mentally inactive
but awake

Beta 13-25 frontal and central sensorimotor
functions, cognitive
processing

Gamma >25 temporal memory processes

2.2.2 Slow Cortical Potentials

SCPs are relatively slow DC shifts in EEG signals that occur in re-
sponse to stimuli. They can last from several hundred milliseconds to
several seconds. Negative SCPs are associated with cognitive process-
ing, while positive SCPs reflect an attenuation of cortical excitability,
which is often observed in behavioural inhibition [25].

2.2.3 Event-Related Potentials

ERPs, formerly known as evoked potentials (EPs), are brain signals
that occur in response to stimuli or events. They are commonly used
as a tool to study the mind and brain in cognitive psychology and
neuroscience, as well as in BCIs [26].

An ERP signal usually consists of several (overlapping) ERP com-
ponents, which are in the form of a positive or negative voltage peak
happening a certain time after the stimulus onset, although there are
some anticipative ERP components that occur pre-stimulus. The nam-
ing convention for ERPs is P for a positive peak and N for a negative
peak, followed by either the number of the peak in the waveform, i.e.
P1 for the first peak and P2 for the second peak, or the latency in mil-
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liseconds, i.e. the P300 is a positive peak that occurs approximately
300 ms after the stimulus onset [26].

Different components, which are distinguished by their polarity, la-
tency, and source in the brain, are associated with different cognitive
processes. It should be noted that the same label for a component can
refer to different cognitive processes, depending on the source of the
component and the sensory modality, i.e. visual or auditory. However,
this mostly affects early components [26].

Since all brain activity that is not in response to the given stimu-
lus or event is considered noise in the ERP signal, it is important to
improve the signal-to-noise ratio (SNR) to obtain a clear ERP wave.
This is typically achieved by averaging the ERP signal over several
trials [22]. Machine learning algorithms are commonly used for ERP
classification and can nowadays achieve over 90% accuracy even with
single trials [27, 28], although classification performance is highly de-
pendent on EEG signal quality.

An overview of common (visual) ERP components is presented in
the following paragraphs.

An early visual ERP component is the P100. It usually occurs 100

ms to 130 ms after a visual stimulus and is modulated by selective
attention and arousal [29].

The P100 is often followed by the N100 component, which reflects
spatial attention and discriminative processing in the brain. It consists
of several subcomponents that typically happen between 100 ms and
200 ms post-stimulus [29]. One of the subcomponents is the N170,
labelled as such due to its latency of usually around 170 ms. The
N170 is evoked by face perception [30].

Later visual components are often observed due to the so-called
oddball paradigm. In the oddball paradigm, a frequent stream of
common stimuli is interspersed with infrequent, uncommon stimuli,
or target stimuli, that the participant was told to attend to. While the
P200 with a typical latency of approximately 200 ms is not as well
understood as some other components, it is believed to occur in re-
sponse to the oddball paradigm with simple targets [31].

Several components are grouped together and commonly referred
to as the N200 component. The anterior N200, also known as N2b,
reflects response inhibition in the go/no-go paradigm, where a but-
ton press is required for one type of stimulus (go) but not for another
(no-go) [32]. It also reflects the detection of a mismatch of attended
stimuli. The posterior N200, which is also called N2c, usually occurs
in response to the oddball paradigm [33].

Similarly to the N2, the P3 can also refer to several components
depending on the source of the component. While the so-called P3a,
which originates in frontal brain regions, and the P3b, which is mostly
observable in parietal brain regions, both respond to stimulus changes,
i.e. the oddball paradigm, the P3b is only elicited if these changes are
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task-relevant. The general labels P3 and P300 usually refer to the P3b
[33].

A subset of ERPs are steady-state visual evoked potentials (VEPs).
They occur when stimuli are presented at a fast rate and the brain
activity starts to synchronise with the stimulus frequency. Thus, the
steady-state response consists of two sine waves, one at the stimulus
frequency and another, less dominant, one at twice the stimulus fre-
quency [34]. Due to their robustness against noise, steady-state VEPs
are particularly valuable for BCI applications.

Another type of VEP commonly used in BCI systems is the code-
modulated VEP. Code-modulated VEPs use uniquely coded visual
sequences that allow for rapid and accurate detection of user inten-
tions [35]. For diagnostic purposes, motion-onset VEPs are often em-
ployed; these occur in response to the onset of motion within a visual
stimulus and typically include components such as the P100, N200,
and P200 [36].

The error-related ERP is a negative peak following an incorrect re-
sponse, also known as the error-related negativity (ERN). Notably,
this component is response-locked, occurring a specific time after an
incorrect response, rather than being stimulus-locked. The ERN is
usually followed by a positive wave, which peaks approximately 400

ms after the incorrect response. This is called the error positivity (Pe).
It is only present when the participant is aware of the error, whereas
the ERN occurs regardless of the participant’s awareness [37].

2.3 attention

2.3.1 Importance of Attention in Cognitive Functioning

This thesis focuses on the cognitive ability of attention. Attention is a
fundamental cognitive ability, crucial for effective functioning in daily
life. It underlies the ability to focus on specific tasks, filter out irrel-
evant information, and manage multiple tasks simultaneously. This
ability is fundamental for learning, memory, and overall cognitive
performance. Attention is particularly important in various daily ac-
tivities, such as driving, where the ability to selectively focus on the
road and ignore distractions is vital for safety. In academic and pro-
fessional settings, attention facilitates absorbing and applying new
information, problem-solving, and critical thinking.

Attention is defined as the selectivity of processing and can be clas-
sified into selective and divided attention. Selective attention is the
ability to focus on one stimulus while ignoring other stimuli, whereas
divided attention is the ability to focus on more than one stimulus at
once, in other words, multi-tasking [38].

Attention can be bottom-up, driven by external stimuli, such as
a loud noise that demands immediate attention, or top-down, where
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attention is controlled voluntarily based on the goals of the individual
[39].

However, attention is not a static ability and can be affected by
both normal aging and various diseases and conditions. Age-related
cognitive decline often includes a reduction in attentional capacity,
making it harder for older adults to concentrate and filter out dis-
tractions. Diseases and conditions such as dementia, stroke, attention
deficit hyperactivity disorder (ADHD), and autism spectrum disor-
ders can significantly impair attentional processes [40]. For instance,
individuals with ADHD may struggle with sustained selective atten-
tion [41], while those with autism might find it challenging to shift
attention between tasks [42]. Stroke and dementia patients may expe-
rience deficits in both selective and divided attention, affecting their
ability to process information and respond to environmental stimuli
effectively [40].

Given its crucial role and the widespread impact of attentional
deficits, enhancing attention through targeted interventions is essen-
tial. This thesis focuses on attention enhancement because improving
this cognitive ability can significantly benefit individuals at all stages
of life.

2.3.2 Neural Substrates and Correlates of Attention

Attention is a complex cognitive function supported by various brain
regions and networks. Understanding its neural substrates and corre-
lates aids in developing targeted interventions to enhance attentional
capacities. This section explores networks of brain regions that under-
lie attention (neural substrates) and neurophysiological markers that
are associated with attention (neural correlates).

Figure 2.3: Brain regions involved in the dorsal attention network (DAN),
shown in blue, and the ventral attention network (VAN), shown
in orange. Adapted from [43].
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2.3.2.1 Dorsal Attention Network

The dorsal attention network (DAN) is involved in all forms of selec-
tive attention. It mainly includes the frontal eye field (FEF), a brain
region responsible for voluntary eye movement, and the intraparietal
sulcus (IPS), a brain region responsible for perceptual-motor coordi-
nation, which are shown in blue in Figure 2.3 [44].

2.3.2.2 Ventral Attention Network

The ventral attention network (VAN) is another network associated
with attention. While the DAN is always active in selective (visual)
attention, the VAN is suppressed during top-down attention and ac-
tive in bottom-up attention. It includes the temporoparietal junction
(TPJ), involved in information processing, and the ventral frontal cor-
tex (VFC), associated with decision-making. These regions are illus-
trated in orange in Figure 2.3 [44].

2.3.2.3 EEG Rhythms

The main EEG rhythm associated with attention is the alpha rhythm.
Decreased alpha activity is hypothesised to reflect attention directed
towards external stimuli [45]. This suppression of alpha activity has
been found to correlate with the amplitude and latency of the P300

ERP [46]. Conversely, increased alpha activity has been observed in
internally directed attention, such as during mental imagery or arith-
metic [45].

High theta rhythm activity is associated with inattentiveness, while
high beta activity reflects focused attention [47].

High-frequency EEG rhythms (beta and gamma) are believed to be
related to stimulus selection, which is necessary for selective attention
[48].

2.3.2.4 Event-Related Potentials

While there are no ERPs that are directly elicited by attention, several
are modulated by it. These include the P100, N100, N200, and P300,
previously discussed in Section 2.2.3. Specifically, the amplitude of
these components is amplified with increased attention [49].

2.4 types of eeg-neurofeedback

This section provides an overview of the different types of EEG-NFB
reported in the literature. While EEG-NFB is applied across a range
of areas, including treatments for mental health conditions such as
schizophrenia, depression, and anxiety, as well as for pain manage-
ment and epilepsy [50], this section focuses specifically on applica-
tions designed to enhance attention. The majority of literature in this
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area focuses on using NFB to treat ADHD, e.g. [51–54]. However, it
has also been applied to other clinical populations, such as those with
mild cognitive impairment (MCI) [55, 56] or stroke [57], as well as
healthy populations, e.g. [58–60].

The most popular type of EEG-NFB is rhythm-based. This means
that the target for self-modulation is at least one EEG rhythm, dis-
cussed in Section 2.2.1. This type is explained further in Section 2.4.1.

Another type of EEG-NFB used to enhance attention, though less
frequently than rhythm-based NFB, is SCP-based NFB. SCPs have
been explained previously in Section 2.2.2. This type of NFB is dis-
cussed in Section 2.4.2.

Lastly, an emerging type of EEG-NFB is ERP-based, where the
target of self-modulation is a specific ERP component instead of a
rhythm (see Section 2.2.3 for details on ERPs). This type of EEG-NFB
is discussed in Section 2.4.3.

2.4.1 Rhythm-Based

The most commonly used NFB target for attention enhancement is
the downregulation of the theta-beta ratio (TBR), aiming to increase
beta rhythm activity while simultaneously decreasing theta activity.
As discussed in Section 2.3.2.3, low theta and high beta activity have
been associated with attention, making the TBR an obvious target.
The TBR protocol is sometimes accompanied by the downregulation
of higher frequencies to improve the specificity of the NFB protocol
[51, 61, 62].

Other targets for rhythm-based NFB include the up- or downregu-
lation of activity in the alpha rhythm, treated in [63–65] and [66–68],
respectively. Upregulation of the beta rhythm is also a popular pro-
tocol for attention training [56, 69, 70], sometimes accompanied by
the simultaneous downregulation of alpha activity [55, 71]. The theta
rhythm on its own has also been targeted, with specific protocols for
both upregulation [72, 73] and downregulation [74].

Numerous studies have applied the TBR protocol to treat ADHD
in both children and adults, e.g. [51–53]. These studies have reported
positive effects on symptoms that were maintained up to 25 months
later [51, 52], as well as task performance in cognitive/attentional
tests [53, 54]. Improved performance in cognitive tasks has also been
observed following a single session of alpha downregulation NFB in
adults, with and without ADHD [68]; and in children with ADHD
following a course of alpha upregulation [75], as well as with beta
upregulation [69, 72], and theta upregulation [72].

The TBR protocol has also been applied to child epilepsy [61], as
well as to stroke patients [57], both with improved task performance
in cognitive tests. Cognitive functioning, including attention, has been
successfully improved in the elderly, with and without MCI, using
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beta upregulation [56, 70] and theta upregulation [73]. All discussed
rhythm-based protocols have also been used to enhance cognitive abil-
ities in healthy children and adults, e.g. [58, 59, 64, 67, 73, 76].

Studies using these protocols often report EEG changes in one or
more of the targeted rhythms, e.g. [51, 57, 74], with some observing
changes in non-targeted rhythms [63, 77, 78]. These changes are often
only observed in experimental groups, and not control groups that
receive sham-NFB, where feedback is not based on the participant’s
own brain activity as they believe, but rather based on recorded or
simulated signals (e.g. [51]). However, participants in these sham-
control groups often experience the same behavioural outcomes as
the experimental groups (e.g. [52]), which has led to the efficacy of
NFB being questioned and criticised as potentially being a placebo
effect [79].

To address this, researchers commonly employ rigorous study de-
signs to distinguish genuine NFB effects from placebo responses. These
include using active control tasks, blinding participants to group al-
location, and incorporating objective outcome measures (both brain
activity and behavioural measures). Such strategies enhance the relia-
bility of NFB findings by helping to rule out placebo-driven improve-
ments and strengthen the case for NFB efficacy [80].

One older study also observed an increased P300 amplitude follow-
ing TBR-NFB [60], while another reported increased P300 and N100

amplitudes following alpha downregulation [68]. An fMRI study ob-
served changes in gray and white matter, in brain regions associated
with the DAN, following NFB training with a beta upregulation pro-
tocol [76]. Similarly, Ros et al. [67] observed changes in the connectiv-
ity of brain regions associated with the VAN following just a single
half-hour alpha downregulation NFB session.

Rhythm-based NFB protocols have several notable strengths that
contribute to their widespread use and established presence in the
literature. One major strength is their extensive validation through
numerous studies, which have demonstrated their efficacy in enhanc-
ing cognitive performance and attention across diverse populations.
This extensive research base provides a solid foundation for the con-
tinued application and refinement of these protocols.

Another key strength is the inherent flexibility of rhythm-based
NFB. Since EEG rhythms are always present in brain activity, train-
ing can be adapted to various tasks and feedback mechanisms. This
flexibility allows practitioners to tailor interventions to specific cogni-
tive goals or individual needs, enhancing the practical applicability
of NFB in both clinical and non-clinical settings.

However, rhythm-based NFB also has its weakness. One significant
limitation is the fixed nature of the rhythms typically used in these
protocols. These standard rhythms may not be optimal for every in-
dividual, as individual differences in EEG spectra can influence the
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effectiveness of the training. Research has shown that individualising
the target rhythms for NFB can lead to better outcomes, suggesting
that more personalised approaches may be necessary to maximise
efficacy [69, 81].

2.4.2 Slow Cortical Potential-Based

SCP-based NFB targets the up- and downregulation of SCPs, typically
with a 50/50 split. SCP has not been used as extensively as rhythm-
based NFB, with some applications in epilepsy and migraines [82].
For attention, it has been used to treat people with ADHD, with some
studies reporting improved symptoms and performance in cognitive
tasks [83, 84], while others did not find improvements to be superior
to control groups [85–87].

Some studies report a change in SCPs following NFB training [84,
88], while some observed a decrease in P300 amplitude which is be-
lieved to reflect the adaptation to the given task, leading to reduced
attentional processing being required [85, 88]. One study observed in-
creased activation in the prefrontal cortex, following SCP-based NFB
training, but also saw this change in the control group, who received
electromyography (EMG)-based NFB training [83].

2.4.3 Event-Related Potential-Based

Given the relevance of ERPs like the P300 and N200 to attention, as
discussed in Section 2.3.2.4, their potential as biomarkers for condi-
tions such as ADHD [89], and evidence suggesting that ERPs are
modifiable via NFB training as mentioned in Section 2.4.1, it is logi-
cal to consider targeting ERPs for self-modulation directly. However,
while rhythm-based EEG-NFB is well established, there has been less
research on the use of ERP-based NFB training. Rieger et al. [90] in-
vestigated the use of the N100, an auditory ERP component associ-
ated with attention, for NFB treatment of hallucinations in individu-
als with schizophrenia, but did not find the training to be effective.
Musso et al. [91] successfully used NFB based on the auditory P300

for language training in patients with aphasia. Mismatch negativity
(MMN), a subcomponent of the auditory N200, was used as the tar-
get in NFB for working memory training in patients with subjective
cognitive decline [92].

Fouillen [93] used P300-based video games for attention training
in children with ADHD. While she found improved symptoms that
were maintained 2 months post-training, this was also the case in
the control group who played the same game with gaze-based feed-
back. However, only the NFB group maintained improved task perfor-
mance in cognitive tests at the 2-month follow-up. Li et al. [94] used
a P300-based video game for cognitive training in healthy adults and
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reported improved P300 amplitude and latency post-training, as well
as decreased alpha activity. Both Jacoby [95] and Arvaneh et al. [96]
used a P300 speller, traditionally a BCI used for communication, for
cognitive training in healthy adults. These studies reported improved
performance in cognitive tasks [96], as well as increased P300 ampli-
tudes [95, 96] and decreased alpha activity [96]. Arvaneh et al. [96]
did not observe these training effects in the control group, which com-
pleted the P300 speller training without receiving feedback.

Another study later reported that a single session of P300-based
NFB training with a variation of the P300 speller leads to changes in
gray matter in brain regions that are associated with the DAN and
sustained visual attention [97], further supporting the use of ERP-
based NFB training for attention enhancement.

ERP-based NFB has several notable strengths. One major strength
is the well-researched nature of ERPs and their close association with
specific cognitive processes, such as attention and working memory.
This allows for highly targeted interventions that can specifically ad-
dress deficits in these cognitive areas. The personalisation aspect is
another significant advantage, as ERP-based NFB typically involves
creating a personalised classifier for each individual, which could in-
crease the specificity and effectiveness of the training.

However, there are also weaknesses associated with ERP-based NFB.
A significant limitation is the fixed nature of the scenarios required to
elicit ERPs, such as the oddball paradigm for P300, which makes the
training less flexible compared to rhythm-based NFB. Additionally,
while ERP-based NFB shows promise, there is relatively less research
on its use compared to rhythm-based NFB, resulting in fewer estab-
lished protocols and less evidence to support its widespread appli-
cation. Furthermore, the high specificity of ERP-based NFB, while a
strength, can also be a weakness as the training may become too nar-
rowly focused, potentially overlooking broader cognitive processes
that are important for overall cognitive function. Lastly, due to the
repetitions required to accurately measure ERPs, the feedback fre-
quency is slower compared to rhythm-based or SCP-based NFB. The
importance of feedback frequency has been demonstrated in [98],
showing that more frequent feedback leads to greater training effects.

2.5 personalisation of eeg-neurofeedback

Personalisation of NFB can be achieved in several ways. As discussed
in Section 2.4.1, targeted rhythms can be personalised based on an
individual’s baseline brain activity and needs. This section, however,
focuses on the personalisation of task difficulty.

Adjusting the task difficulty ensures that participants continuously
work harder to receive positive feedback. This can be achieved by
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directly adjusting the threshold needed for positive feedback or by
modifying task conditions.

Personalising feedback thresholds or task difficulty is crucial be-
cause participants’ confidence in their ability to control the signal
and their motivation significantly influence NFB outcomes [18]. Both
overly easy (consistently good feedback) and overly difficult (consis-
tently bad feedback) training can negatively impact motivation and
the overall effectiveness of the training.

In rhythm-based and SCP-based NFB, threshold adjustments are
typically made according to specific rules, such as adjusting the thresh-
old to maintain an 80% reward rate [61, 85], or by a certain percent-
age after two successful trials [66, 99]. These threshold adjustments
are often done manually and sometimes not reported in studies, even
though they might significantly impact training efficacy.

In ERP-based training, task difficulty adjustments, similar to these
rule-based threshold adjustments, have been reported [93].

Jacoby [95] reported a performance plateau after three sessions of
P300 speller training, hypothesising that the task might not be engag-
ing enough to maintain participant motivation. Arvaneh et al. [96]
addressed this issue by progressively reducing the number of repe-
titions based on participants’ performance, to maintain engagement.
Notably, reducing the number of repetitions in ERP-based training
increases feedback frequency, aligning the training more closely with
the real-time nature of rhythm-based NFB, which is beneficial for
learning and maintaining participant engagement [98].

Outside the context of NFB training, several methods adapt the
P300 speller to each individual, often referred to as early stopping.
These methods continuously assess the probability of each stimulus
being the target for each repetition and terminate once this proba-
bility surpasses a specific threshold [100, 101] or stabilises, i.e. when
additional repetitions no longer provide new information [102]. Early
stopping adapts the speller to the user’s brain signals in real-time,
which can reduce both task duration and mental fatigue by avoiding
unnecessary repetitions. However, in contrast to the approach used by
Arvaneh et al. [96], early stopping methods prioritise operational effi-
ciency rather than fostering cognitive engagement, as Arvaneh et al.’s
approach does by intentionally reducing repetitions to challenge par-
ticipants. This deliberate increase in task difficulty, even at the cost of
initial performance dips, is designed to drive attention enhancement
and sustained learning over time.

2.6 challenges and limitations of eeg-neurofeedback

Despite the promising results demonstrated by various NFB train-
ing methods, as discussed in previous sections, the practical use of
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NFB remains limited [16]. Several factors contribute to the lack of
widespread, real-world applications of NFB.

Firstly, there are concerns about the efficacy and NFB-specific treat-
ment effects due to a lack of large-scale, well-controlled studies. Specif-
ically, the absence of double-blind, sham-controlled clinical trials is a
significant issue [15]. Most NFB research comprises small exploratory
studies rather than rigorously designed randomised controlled trials,
limiting the strength of evidence for NFB interventions [21]. To ad-
dress this, recent guidelines and recommendations within the NFB
community have called for well-designed, rigorously analysed stud-
ies to adequately evaluate the efficacy of NFB interventions [80].

While the lack of double-blind, sham-controlled studies is a signifi-
cant issue in NFB research, it is also one that poses considerable prac-
tical and ethical challenges. In the case of this thesis, double-blinding
was not feasible as the project was conducted primarily by a single re-
searcher, making it difficult to implement a double-blind design. Ad-
ditionally, a sham-control group was not included, as obtaining eth-
ical approval for a sham condition involving deception would have
been particularly challenging. These factors often contribute to the
limited implementation of such rigorous designs.

Secondly, there is a lack of research investigating the transition
from laboratory research to real-world application of NFB interven-
tions [16]. While some studies have shown that NFB can be applied
in real-world contexts [103, 104], these studies are few, and compre-
hensive investigations into real-world deployment are needed.

Significant barriers to the real-world applicability of BCIs, includ-
ing NFB, are the long training times required before achieving ad-
equate control or good performance, which increases the cost of in-
terventions and can negatively impact user motivation [17]. Motiva-
tion is a critical factor in the success of NFB training, as it directly
influences engagement and outcomes [18]. Additionally, the time-
consuming setup of wet electrode EEG systems, along with the typ-
ically user-unfriendly software, requiring expert operation, further
limit the usability and applicability of NFB in non-laboratory settings
[17].

2.7 summary

This chapter explores NFB, EEG, attention, and its neural substrates.
Initially, it introduces the concepts and history of NFB. The section on
EEG explains the technology and the significance of different brain
wave patterns in relation to cognitive functions.

Attention is then discussed, emphasising its importance in cogni-
tive functioning and detailing its neural substrates and correlates. Key
brain networks involved in attention, such as the DAN and VAN, are
examined along with neurophysiological markers of attention.
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The chapter reviews different types of EEG-NFB, focusing on rhythm-
based and ERP-based NFB methods. Rhythm-based protocols, target-
ing the TBR, alpha, beta and theta rhythms, are well-studied and have
been used to enhance cognitive performance and attention across var-
ious populations, including individuals with ADHD, stroke patients,
and healthy adults. Despite their efficacy, limitations such as the fixed
nature of rhythms are noted.

ERP-based NFB, targeting specific ERP components such as the
P300, offers a more personalised approach. Although promising, with
studies showing cognitive improvements and neural changes, ERP-
based methods are less flexible and not as extensively researched as
rhythm-based protocols. The need for specific scenarios to elicit ERPs
and slower feedback compared to rhythm-based methods are among
the limitations.

Personalisation of NFB is also discussed, highlighting the impor-
tance of adjusting feedback thresholds and task difficulty to maintain
participant motivation and engagement.

In conclusion, while ERP-based NFB holds potential for enhancing
cognitive functions, particularly attention, current evidence is insuffi-
cient for its widespread application, and practical use is limited. The
challenges identified include the lack of well-controlled, large-scale
studies, limited research on real-world applications, and the practical
issues of system setup and training duration.

To address these challenges, this thesis focuses on demonstrating
the applicability of ERP-based NFB in practical settings. By conduct-
ing rigorously controlled studies, this research aims to provide robust
evidence for the efficacy of ERP-based NFB in enhancing attention.
The use of ILC is explored to optimise training efficiency and reduce
the time required to achieve meaningful results, making the system
more suitable for real-world use. Additionally, the thesis investigates
ways to streamline the system setup by reducing the number of elec-
trodes, thereby enhancing usability and scalability. These efforts aim
to bridge the gap between laboratory research and real-world appli-
cations.

By directly addressing these limitations, this thesis seeks to estab-
lish a robust foundation for the practical application of ERP-based
NFB, paving the way for its broader adoption in various real-world
contexts.
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I T E R AT I V E L E A R N I N G C O N T R O L

3.1 introduction

As discussed in Chapter 2, ERP-based NFB training has shown promise.
However, a significant usability issue with NFB in general is the long
training time to see results. This issue is exacerbated in ERP-based
NFB due to the trial averaging needed for robust detection of ERPs.
Not only does trial averaging slow down the training, but it also sig-
nificantly reduces the feedback frequency, possibly making it chal-
lenging for users to recognise and adjust their brain activity effec-
tively. As mentioned in Section 2.5, the number of trials in ERP-based
systems can modulate task difficulty. Personalising task difficulty in
NFB training, which can significantly improve motivation and user
engagement, by adapting the number of trials may therefore acceler-
ate the training and increase feedback frequency.

In this thesis, ILC is explored as a means to adapt task difficulty
in ERP-based NFB training, potentially enhancing its efficiency and
usability. ILC is a control technique designed to learn from past ex-
periences, specifically applied to repetitive systems, where the same
task is repeated multiple times, with each repetition referred to as
a run. Its inherent feedback structure allows it to naturally adapt to
small system changes. NFB training similarly involves task repetition
within a system that is inherently complex and time-varying due to
factors such as learning and fatigue, changes to which ILC can effec-
tively adapt. Due to its learning capabilities, ILC can automate task
difficulty adaptation, reducing the need for human intervention to
manually adjust task conditions, thereby further enhancing system
efficiency and usability.

Inspired by the need for precision in industrial robots performing
repetitive pick-and-place tasks, ILC was independently developed by
Uchiyama [105] and Arimoto et al. [106] in the late 1970s and 1980s.
ILC assumes perfect repetition of tasks and aims to eliminate tracking
errors over multiple runs by considering past inputs and errors to de-
termine the new input for the next run, thus learning from previous
experiences. Initially used in industrial robotics and semiconductor
manufacturing [107], ILC has found applications in the biomedical
world, including exoskeleton control [108] and stroke rehabilitation
[109].

ILC can be generally described by

uk+1(·) = f(ek+1(·), ..., ek−s(·),uk(·), ...,uk−v(·)), (3.1)
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where k = 1, 2, ...,N is the run index, uk is the input in run k and ek
is the error between the reference r and the output yk [110], i.e.

ek(·) = r(·) − yk(·). (3.2)

s and v in Equation (3.1) determine the order of the ILC algorithm.
For instance, in a first-order algorithm, both s and v are unity, mean-
ing that the algorithm relies solely on information from the most re-
cent run [110]. On the other hand, higher-order ILC algorithms incor-
porate data from multiple previous runs [107]. The control law can be
based exclusively on historical data, known as previous-cycle learn-
ing, or it might include the error from the current run, referred to
as current-cycle learning. Some approaches even combine past and
current run data [107], or use predictions of future errors [110].

First-order, previous-cycle, ILC is the most common and often takes
the form of Equation (3.3) [111]:

uk+1(t) = uk(t) + f(ek(t+ 1)), (3.3)

where t is discrete time and k is the run number.
In comparison, typical feedback control can be expressed like this:

uk(t) = f(ek(t− 1)). (3.4)

The primary aim of ILC design is to eliminate the tracking er-
ror ek(t), meaning the control input uk should be adjusted so that
limk→∞ ek = 0 [110]. This process is referred to as convergence of the
tracking error. For ILC to successfully converge, it typically requires
that the reference signal remains constant across all runs, each run
has the same finite length, and the initial conditions are reset identi-
cally at the beginning of each run [110]. However, some algorithms
have been developed that relax one or more of these constraints, of-
fering more flexibility in certain applications [112–114].

There are a number of ways to determine the function f in Equa-
tions (3.1) and (3.3). ILC algorithms can use a model of the system,
or can be data-driven, meaning they do not require (accurate) knowl-
edge of the underlying system. An overview of these algorithms is
presented in Section 3.2. Common application areas of ILC, both in
the industrial and biomedical domains, are discussed in Section 3.3.

3.2 types of iterative learning control algorithms

This section provides a broad overview of various ILC update laws,
distinguishing between classes of algorithms.

As the name suggests, in model-based ILC, the update law is de-
rived from the system model. Considering the equation

y = Gu, (3.5)
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where G is a linear model of the system, this means that the update
law makes use of G in some way. In Equation (3.5), G is a general
system mapping that transforms the input u to the output y. While G

could be a specific transfer function or a super-vector form of a state-
space model [110], here it is used as a generic placeholder to illustrate
the concept of input-output transformation. The exact nature of G is
not specified as it is meant to represent a variety of possible system
dynamics.

Fundamentally, model-based ILC algorithms use the inverse of G

or an approximation thereof [111]:

uk+1(t) = uk(t) + γG−1ek(t+ 1), (3.6)

where γ is a constant learning gain. Since G transforms u from in-
put to output space, G−1 transforms the error e from output to input
space. Assuming that the system model is perfect, G is invertible, and
γ = 1, model inverse-based ILC algorithms would lead to the elimi-
nation of the tracking error from the first run. However, in practice,
this ideal set of conditions is rarely met [111]. Model inverse-based
ILC can achieve fast convergence with an accurate system model, al-
though determining the model inverse is not always possible [111].

On the other hand, model-free algorithms do not require an ex-
plicit system model, making them more flexible but sometimes less
precise. One of the simplest, and first, model-free ILC algorithms is
the Arimoto algorithm:

uk+1(t) = uk(t) + γek(t+ 1), (3.7)

where γ is a constant [106]. This P-type algorithm was popular due to
its simplicity, however, monotonic convergence of the tracking error is
not guaranteed [115]. This means that the tracking error may increase
before it decreases. Other algorithms may also use the derivative
and/or integral of the error to create PD- and PID-type algorithms
[107]. The performance of these model-free algorithms is highly de-
pendent on the choice of γ.

The most popular class of ILC algorithms is based on optimisation.
In optimal ILC, uk+1 is determined by minimising a cost function
that uses predictions of the error for different inputs or controller
parameters. This means that these algorithms do not directly use a
system model in the update law, but require a model to make predic-
tions. One popular optimal ILC algorithm is norm-optimal iterative
learning control (NOILC):

Jk+1(uk+1) = ||ek+1||
2 + ϵ2||uk+1 − uk||

2, (3.8)

where ϵ is a constant [111]. Similarly, in parameter-optimal iterative
learning control (POILC), a cost function is minimised to determine
γ in Equation (3.7) for each run [110],

Jk+1(γk+1) = ||ek+1||
2 + ϵ2||γk+1||

2. (3.9)
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POILC solves the problem of asymptotic convergence in the classic
Arimoto algorithm [110].

In data-driven ILC, a system model is estimated based on input-
output relationships observed in previous runs [116]. This estimated
model can then be employed in optimal ILC algorithms (e.g. [117]),
leveraging the convergence properties of these algorithms without
requiring a pre-defined system model.

The choice of algorithm depends on whether a system model is
available or can be determined, the level of uncertainty, the presence
of disturbances, and the specific requirements of the control system.

Model-based ILC algorithms typically achieve strong performance
with monotonic convergence, making them particularly valuable in
applications requiring high precision. Although ILC can handle some
degree of model uncertainty, significant uncertainties may substan-
tially impair the controller effectiveness. In contrast, model-free ILC,
while potentially less accurate than model-based approaches, offers
the advantages of reduced complexity and easier implementation.

3.3 typical applications of iterative learning control

While ILC was inspired by industrial robots carrying out pick-and-
place tasks and initially found application in manufacturing, its appli-
cation areas today are widespread. This section will give an overview
of how ILC has been used in industrial and biomedical domains.

3.3.1 Industrial Applications

In the industrial sector, ILC has been used extensively in robotics
[107]. Robotic systems often have very complex dynamics that are dif-
ficult to model accurately, making ILC an attractive choice for repet-
itive tracking tasks. ILC has been applied to control actuators in var-
ious robot types, including robotic arms [118], wheeled robots [119],
and gantry robots [120].

Another common application area is batch processes, where high
precision is required in the presence of model uncertainties and dis-
turbances. Examples of batch processes where ILC has been applied
include injection moulding, where a specific velocity profile must be
maintained [121, 122], and the motion control of wafer scanners [123].

ILC has also been applied to urban traffic management, specifically
for controlling traffic signals [124, 125]. Another example of ILC appli-
cations are the control of autonomous vehicles [126] and trains [127,
128].
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3.3.2 Biomedical Applications

ILC is also widely used in the biomedical domain, particularly in
training and rehabilitation, where repetitive tasks are common. These
systems, which include medical devices interacting with human users,
often change over time due to factors like learning and fatigue. ILC
can naturally adapt to these variations. Additionally, model-free and
data-driven ILC does not require detailed system knowledge, an im-
portant feature in the biomedical domain where system models can
be highly complex and difficult to identify.

The main application of ILC in the biomedical domain is the con-
trol of functional electrical stimulation (FES) for rehabilitation. In FES,
the nerves in the body are stimulated with electrical impulses to trig-
ger muscle movements. This stimulation has been shown to be effec-
tive for rehabilitation of paralysis or weakness and gait assistance in
patients following stroke or spinal cord injury [129]. ILC algorithms
have been used to control the intensity of FES for upper [130, 131]
and lower [132] limbs.

In a related field and drawing on the initial application area of
industrial robotics, ILC has been used for robotic rehabilitation [133,
134].

3.4 summary

ILC has traditionally been applied to perfectly repetitive tracking
problems, where it learns from past runs to eliminate tracking er-
rors over time while adapting to minor system changes. Due to its
learning abilities, ILC can achieve good control performance without
requiring an accurate system model. Although initially used in in-
dustrial processes, ILC has also found applications in the biomedical
field, particularly in rehabilitation. These application areas share the
challenge of dealing with highly complex, repetitive, systems where
developing precise models is difficult, and where dynamics often
vary between runs.

As discussed in Chapter 2, the efficacy of NFB training may be
significantly influenced by task difficulty, which should therefore be
carefully controlled. Given the parallels between NFB training and
applications that are typically targeted for ILC, it makes sense to use
ILC to adapt task difficulty, even though NFB is not a trajectory track-
ing problem. This approach leverages the feedback mechanism inher-
ent in ILC to adaptively adjust training parameters, ensuring that the
training remains challenging yet achievable.

While model-based ILC algorithms typically lead to better control
performance, the complexity involved in modelling an NFB training
system makes a model-free approach more suitable for this novel ap-
plication. A model-free algorithm is also less complex, which can im-
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prove the usability and acceptability of the system. The development
and evaluation of an ILC controller for task difficulty adaptation are
discussed in the next chapter.



Part II

S Y S T E M D E V E L O P M E N T
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4.1 system overview

As discussed in Chapter 2, ERP-based NFB training remains under-
explored, despite promising evidence of its effectiveness. The P300

speller, in particular, appears to be an efficient tool for P300-based
NFB, enhancing attention in healthy adults [95, 96].

In this thesis, the use of ERP-based NFB for attention enhancement
in healthy adults, using a P300 speller and ILC for the personalisation
of task difficulty, is investigated. This chapter provides an overview
of the NFB system, as illustrated in Figure 4.1, and describes its de-
velopment.

Figure 4.1: Overview of the neurofeedback (NFB) training system.

The system comprises three main components:

• The human: The person undergoing NFB training is an inte-
gral part of the system. They perform a task while their EEG is
recorded, and feedback is provided based on this data.

• The P300 speller: The P300 speller serves simultaneously as the
training task and feedback mechanism. A brief explanation of
how a P300 speller works and how it can be used for NFB train-
ing, along with an overview of possible design choices, is pro-
vided in Section 4.2. This section also outlines the development
of the speller.

• The controller: The ILC controller adapts the training difficulty
based on the user performance. A model of performance in the
P300 speller is developed to facilitate controller design, enabling

33
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simulation testing. The model and controller development are
detailed in Section 4.3.

4.2 p300 speller design and implementation

The P300 speller is a widely used BCI application that uses the P300

component. Farwell and Donchin [135] developed the P300 speller in
the 1980s as a communication tool for individuals with severe paraly-
sis, including patients with locked-in syndrome. The speller functions
like an on-screen keyboard, presenting the user with a grid of sym-
bols, such as letters and numbers, where each symbol in the grid
is highlighted or flashed. These flashes typically occur per row and
column in the grid. The user focuses on the symbol they wish to se-
lect, generating a P300 wave when the target symbol is flashed. In
this thesis, the user is instructed to select a specific letter, which is
highlighted in blue, by counting every time the letter is flashed. This
method is known as copy-spelling. Figure 4.2 shows what the P300

speller looks like.

(a) (b)

Figure 4.2: Screenshots of P300 speller used in this thesis. (a) The previously
selected letter is highlighted in grey, regardless of whether it was
correct or not, while the next target letter is highlighted in blue.
(b) Row 5 is being flashed, indicated by an increase in font size
and a change in font colour to white. The previous and current
target letters, as well as previously selected letters, are displayed
at the bottom of the window.

To enhance the SNR of the ERP, each symbol in the grid is flashed
multiple times, allowing the EEG signals to be averaged across all
flashes. This averaging process improves the reliability of the recorded
signals, facilitating a more accurate evaluation of the P300 response.
EEG signals, in response to each flash, are called trials. Target trials
refer to EEG signals associated with the flashes of the row and col-
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umn containing the symbol the user wants to select. This means that
for each flash, per row and column, there are 2 target trials. Nontar-
get trials refer to EEG signals corresponding to the flashes of all other
rows and columns, resulting in 10 nontarget trials for each flash per
row and column.

Figure 4.3 shows the mean EEG response to target and nontarget
trials for four different individuals. Both types of trials result in oscil-
lations, representing steady-state VEPs due to the flashes. However,
target trials result in higher amplitude oscillations. These higher am-
plitudes correspond to the P300 (positive amplitudes) and N200 (neg-
ative amplitudes) components.

(a) (b)

(c) (d)

Figure 4.3: Example of EEG responses to target and nontarget trials in the
P300 speller for four different individuals from the study de-
scribed in Chapter 5. The x-axis represents time from stimulus
onset (0 ms) to 550 ms.

Traditionally, the number of flashes per row and column is fixed.
However, as discussed in Section 2.4.3, the P300 speller has been used
as an NFB training tool, with the number of flashes serving as the task
difficulty parameter of the speller [96, 98]. This section discusses the
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possibilities of turning a P300 speller into an NFB tool, and how it
was implemented.

4.2.1 Design Choices

By definition, in NFB training, the user is provided with feedback
based on their real-time brain activity. While not necessarily a require-
ment of NFB training, as seen in Section 2.5, training difficulty is often
adapted. Therefore, to turn a P300 speller into an NFB training tool, it
is necessary to extract some output from the P300 speller that reflects
user brain activity. This output is then used to provide feedback to
the user and to adapt the conditions of the spelling task to modulate
its difficulty. Several possible outputs and task conditions are consid-
ered, and the benefits and drawbacks of each are discussed in the
following sections.

4.2.1.1 Possible Outputs

There are two possible types of metrics to use for feedback: the user
performance and their brain signals. The performance in the P300

speller is measured by spelling accuracy, which is the percentage of
correctly identified letters in a run. A run in the P300 speller is de-
fined as any sequence of letters or symbols spelled in one go, which
could be a few letters, a word, or a sentence. In the remainder of this
thesis, a run is always a single word. The benefits of using spelling
accuracy are its ease of calculation and interpretability. As a standard
metric in the P300 speller, spelling accuracy is well-documented in
the literature. However, spelling accuracy only indirectly reflects the
user P300 wave and may be influenced by external factors, such as
movement artifacts. For example, a user might subconsciously move
their head every time the target letter flashes, which could be detected
by the EEG system.

Regarding brain signals, there are four main metrics considered:
P300 amplitude, P300 latency, total power, and alpha power. P300

amplitude is positively correlated with cognitive abilities [46]. While
P300 amplitude is commonly used as a strength metric, P300 ampli-
tude calculation is not well-defined. Some approaches measure the
voltage difference between the baseline and peak within a specified
time window, while others use the voltage difference between the
positive and negative peaks. Variations in the definition of the base-
line and the chosen time window can greatly affect the results [26].
Total power, which quantifies EEG signal strength across all rhythms
within a specified time window, provides an alternative that can indi-
rectly indicate P300 strength without requiring peak definition. How-
ever, like P300 amplitude, total power remains sensitive to specific
signal processing choices.
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P300 latency is the time between stimulus onset and the point at
which the maximum positive amplitude peak occurs within a speci-
fied time window. Again, the choice of an appropriate time window
is crucial but not well-defined. Similar to P300 amplitude, latency is
known to correlate with cognitive abilities [46].

The final brain signal metric considered is alpha power, represent-
ing the strength of EEG signals in the alpha rhythm. Although alpha
power is associated with attentional engagement and correlates with
the P300 [46], it is not directly targeted by the P300 speller, and thus
changes in alpha power may not reliably reflect training progress. For
this reason, alpha power is less suitable as a feedback metric in the
context of the P300 speller.

Given the lack of clear standards for calculating P300 amplitude
and latency, the sensitivity of all brain signal metrics to specific sig-
nal processing steps, and the established efficacy of spelling accuracy
as feedback in ERP-based NFB studies [96, 98], it was decided to use
spelling accuracy. The objectivity and simplicity of spelling accuracy
will facilitate the design of an adaptation algorithm that is computa-
tionally efficient and interpretable.

Nevertheless, all brain signal metrics discussed here will be em-
ployed in subsequent sections to assess underlying brain processes
and cognitive engagement during training. These metrics provide
complementary insights into the brain’s response, allowing a more
comprehensive evaluation of training effects.

4.2.1.2 Possible Task Conditions

There are two possible task conditions that potentially modulate dif-
ficulty: the timing of flashes and the number of flashes. Both condi-
tions theoretically affect P300 strength, meaning that when these are
adjusted, the user must improve their focus to maintain performance,
thereby enhancing attention. The conditions also make the training
more fast-paced, which may help keep users engaged.

By adjusting the inter-stimulus interval (ISI), which is the time be-
tween flashes, or by reducing the number of flashes, the target-to-
target interval (TTI), i.e. the time between target stimuli, is modified.
It is known that increasing the TTI increases P300 strength [46]. Con-
versely, decreasing the TTI may reduce P300 strength. The ISI is usu-
ally a fixed parameter of the P300 speller, so it is unclear how the
ISI should be adapted based on the user’s performance. Additionally,
the ISI is limited to a few hundred milliseconds, making it uncertain
whether changing the timing of the flashes would sufficiently alter
P300 strength.

Reducing the number of flashes decreases the SNR, since there are
fewer trials to average, in addition to decreasing the TTI. Unlike tim-
ing adjustments, changing the number of flashes is more straightfor-
ward, with a clear range and minimum step size. Evidence suggests
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that adapting the number of flashes influences the efficacy of NFB
training using a P300 speller [98].

Changing the number of flashes to adapt the speller difficulty is
an obvious choice, as it potentially modulates the P300 strength in
two ways: by decreasing the SNR, and the TTI. It is also a preferable
choice, as it is more clearly defined, and there is supporting evidence
for its use in modulating task difficulty [96].

4.2.2 Implementation

An open-source software platform for BCI applications, OpenViBE
[136], is used to implement the P300 speller. The software comes with
two versions of a P300 speller. The only difference between the two
versions is the use, or absence, of a spatial filter. The standard version
of the OpenViBE P300 speller does not use a spatial filter; instead,
it uses all EEG channels directly for target classification. In contrast,
the xDAWN P300 speller uses the xDAWN spatial filter to reduce
the incoming EEG channels to a predefined number of components
[137]. The spatial filter is designed to optimise the SNR in ERPs. It
uses the covariance matrices of the signal (in this case, target trials)
and noise (nontarget trials) to calculate spatial filters that are linear
combinations of the EEG channels [137]. Modified versions of both of
these spellers are used in this thesis. How the spellers work, and the
modifications, are briefly outlined in this section.

Both versions of the speller use a linear discriminant analysis (LDA)
classifier to distinguish between target and nontarget trials [138]. In
this implementation, the trials are 600 ms long, starting with stimu-
lus onset. This classifier is trained for each user at the start of every
experimental session, using EEG signals from two calibration runs.

In OpenViBE default P300 spellers, each individual trial is classi-
fied as either target or nontarget, before voting is conducted to select
the row and column with the most target classifications. However, in
other speller implementations, and more commonly, trials are first av-
eraged, and only then classified into target and nontarget rows and
columns. Since this is the more common classification approach in a
P300 speller, the code is modified to reflect this. In this classification
approach, the average of all trials is calculated for each row and col-
umn, before each row and column is classified as target or nontarget.
The row and column with the highest probability of belonging to the
target class are then selected, even if the probability is below 50%.

Additionally, OpenViBE default P300 spellers do not calculate the
spelling accuracy at the end of a run. Spelling accuracy calculation
is implemented, as spelling accuracy is needed for feedback and the
task difficulty adaptation module. The spelling accuracy is calculated
by checking whether the selected row and column match the actual
target row and column, and increasing a counter if they do. At the
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end of a run, the count of correct letters is divided by the total letter
count to get the spelling accuracy for that run.

Finally, to facilitate comparison of the task difficulty adaptation
module developed in this thesis with an existing approach [96], spelling
accuracy must be calculated for each number of flashes up to the one
actually used. This is referred to as cumulative spelling accuracy in this
thesis. This means that classification and subsequent spelling accu-
racy calculation need to be performed using only the first 12 trials (2
target and 10 nontarget trials), then the average of the first 24 trials,
and so on, until the average of all trials is used.

4.3 development of task difficulty adaptation module

4.3.1 Model and Simulation of Performance in a P300 Speller

This section details the development of a phenomenological model
of performance in a P300 speller. This model is created to facilitate
easy and frequent testing of the controller, described in Section 4.3.2.
Testing the controller through human experiments would be imprac-
tical and could lead to biased comparisons due to unavoidable con-
founders. Therefore, developing a model and using simulation is the
preferred approach.

Another reason for the model development is that ILC can be model-
based, as discussed in Chapter 3. Having a system model therefore
opens up the possibility of using it in the controller.

To understand the behaviour that should be modelled, the dataset
described in Section 4.3.1.1 is analysed. The model structure is then
explained in Section 4.3.1.2, followed by an overview of the model
training process in Section 4.3.1.3. The simulation developed using
this model is outlined in Section 4.3.1.4.

4.3.1.1 Overview of the Training Dataset

The Akimpech dataset [139] is a publicly available dataset containing
raw EEG data from 30 healthy individuals who completed several
runs of a P300 speller task, along with classifier weights.

The experiments consisted of four sessions. In the first session,
three runs were completed without feedback to collect calibration
data. In the second session, all participants copy-spelled the word
“SUSHI” with 15 flashes per row and column. In the third session, all
participants completed three free-spelling runs with 15 flashes, allow-
ing them to choose which words to spell. In the fourth session, both
the number of runs and the number of flashes varied for each partici-
pant. The number of letters spelled in each of these free-spelling runs
ranged between 2 and 15. Some participants did not participate in the
fourth session, resulting in a range of 4 to 11 runs across participants
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in sessions two to four. Only data from sessions two to four are used
in this analysis, as the first session did not include feedback.

9 of the 30 participants in the dataset are excluded due to poor
or incomplete data. The remaining 21 participants are split into 16

training and 5 validation participants.
The cumulative spelling accuracy is calculated for each participant.

Figure 4.4 shows the mean spelling accuracy, termed J1, for all partic-
ipants in the first 4 runs.

Figure 4.4: Mean spelling accuracy, J1, for all participants, over the first 4

runs.

J1 represents the absolute performance of a participant. However,
in NFB training, absolute performance is not the primary focus. For
this reason, spelling accuracy is divided by the number of flashes,
denoted as J2 = J1/f, where f is the number of flashes. J2 indicates
performance relative to task difficulty and is the metric targeted for
maximisation during training. The mean J2 for all participants, over
the first 4 runs, is shown in Figure 4.5.

Figure 4.6 illustrates the progression of J2 for participant 20 over
all runs, depicting the participant’s learning curve. This learning evo-
lution is what the phenomenological model aims to capture.

Based on the observations from this dataset, the following behaviours
are identified:

• Behaviour 1: If performance is perfect and task difficulty remains
constant, then performance does not change. While long-term
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Figure 4.5: Mean spelling accuracy per number of flashes, J2, for all partici-
pants, over the first 4 runs.

Figure 4.6: Example progression of J2 over all runs. The sequence of flashes
used is specified at the top of the figure. The absolute spelling
accuracy, J1, for each run is given in brackets.
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factors like fatigue or loss of motivation might eventually alter
performance, this behaviour holds for the few runs simulated.

• Behaviour 2: If performance is not perfect with a constant diffi-
culty level, performance typically improves.

• Behaviour 3: Changes in task difficulty impact performance.

Additionally, it is assumed that there exists an optimal task diffi-
culty level that challenges the individual without causing excessive
frustration [140]. Therefore, Assumption 1 posits that performance im-
provement is maximized at this optimal task difficulty and decreases
as the actual task difficulty deviates further from this optimal level.

4.3.1.2 Model Structure

The proposed model tracks the progression of participant performance
(in terms of spelling accuracy per number of flashes) over P300 speller
runs, representing the participant learning curve during training. Spelling
accuracy per number of flashes can be viewed as an indirect measure
of participant attention level, or overall cognitive ability.

The model is defined by the following equation:

J2(k) = J2(k− 1) +βe(k− 1) + γ∆t(k), (4.1)

where J2(k) is the spelling accuracy achieved in run k divided by the
number of flashes f(k) used in run k. β and γ are parameters deter-
mined in Section 4.3.1.3. e(k) represents the error in a run, defined as

e(k) =
1− J1(k)

f(k)
, (4.2)

and ∆t(k) is the change in task difficulty in run k relative to the
optimal task difficulty, defined as

∆t(k) =
f(k− 1) − f(k)

1+ |f0(J2(k− 1)) − f(k)|
. (4.3)

f0 is the optimal task difficulty, which is defined as the number of
flashes that maximises J2(k− 1).

This model satisfies Behaviour 1 since e(k− 1) and ∆t(k) are zero
if the performance in run (k − 1) is perfect and the task difficulty
does not change. Behaviours 2 and 3 are satisfied due to the inclusion
of the second term, e(k− 1), and the third term, ∆t(k), respectively.
Finally, Assumption 1 is addressed by incorporating f0 in ∆t(k). The
model thus fulfills all the behavioural requirements identified in Sec-
tion 4.3.1.1.
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4.3.1.3 Parameter Estimation

The parameters β and γ in Equation (4.1) are estimated using least-
squares, subject to the constraint that the maximum possible spelling
accuracy is 100%. The parameter values obtained using least-squares
are listed in Table 4.1.

Table 4.1: Estimated model parameter values.

Parameter Value

β 1

γ 0.068

Figure 4.7 shows the model fit for all participants in terms of mean-
squared error (MSE) and the coefficient of determination (R2), which
assesses how well the model explains variance in the data. Figure 4.7b
excludes the R2 scores for participants 5, 6 and 12 to allow for a better
scale. The R2 values for these participants are −0.3333, −8.6550 and
−1.0313, respectively.

(a) (b)

Figure 4.7: Model fit for all participants. (a) Mean-squared error (MSE). (b)
Coefficient of determination, R2. Participants 5, 6 and 12 are ex-
cluded to allow for better scale.

An average MSE of 0.0015 on the training data, and 0.0011 on the
validation data, is achieved. The average R2 on the training data is
5.42% (83.75% when the same participants as above are excluded)
and 94.15% on the validation data.

This discrepancy between the R2 score on training and validation
data can be explained by the fact that the randomly selected valida-
tion participants performed reasonably well in the P300 speller task,
whereas some training participants, particularly participants 5, 6, and
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12, performed poorly. This suggests that the model is good at captur-
ing strong performance, but struggles to simulate poor performance.

Figure 4.8 shows the actual data and the simulated learning curve
of validation participants 8 (second-best model fit in terms of MSE)
and 17 (worst model fit in terms of MSE). The best validation partic-
ipant (index 10) is not shown because they only completed the first
four runs with a constant number of flashes and 100% spelling accu-
racy, leading to perfect model fit by default.

Figure 4.8: Model output and measured data of validation participants 8

and 17. The sequence of flashes used is specified at the top of the
figure.

While the model can accurately simulate the learning curve of par-
ticipant 8, there is a larger error in the last three runs for participant
17. However, the model still captures the overall trend of the learning
curve.

4.3.1.4 Simulation

This section outlines the development of a performance simulator
in a P300 speller using the model described in Section 4.3.1.3. The
simulation is developed to enable quick and easy testing, and initial
tuning, of the controller, described in Section 4.3.2.

For the simulation, noise, characterised by the residuals in J1 from
the model described in Section 4.3.1.3, is added to the model to en-
sure that different runs of the simulation are unique and to represent
the inter- and intra-participant variations in performance observed
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in reality. Figure 4.9 shows a histogram of the residuals for both the
training and validation data. As can be seen, the distributions for
both the training and validation data are similar, with most residuals
centered around zero. Several different distributions are fitted to the
histogram of the residuals to model the noise. It can be seen that a
Cauchy distribution models the residuals most accurately.

Figure 4.9: Histogram of model residuals (J1, %) with possible distributions.

The Cauchy distribution is therefore chosen for the simulation,
with the following specification:

f(x) =
1

πγ(1+ (x−x0

γ )2)
, (4.4)

where x0 is the location parameter, defined as the peak of the distri-
bution, which in this case is 0, and γ is the scale parameter, defined
as the half-width at half-maximum, which is 5.06 for the distribution
of the residuals. The equation for the Cauchy distribution therefore
becomes:

f(x) =
1

5.06π(1+ ( x
5.06)

2)
. (4.5)

To implement a simulation, an arbitrary starting run with 10 flashes
and a J1 performance per flash, as shown in Table 4.2, is defined. This
performance is chosen to resemble the mean curve observed in the
Akimpech dataset. 10 runs are then simulated using the model de-
scribed in Section 4.3.1.3 with additive noise drawn from the Cauchy
distribution (Equation (4.5)) to determine performance in a given
run. This simulation is then used for the design of an ILC controller
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and subsequent evaluation of different task difficulty adaptation ap-
proaches, discussed in Section 4.3.2.

Table 4.2: Starting performance in simulation.

Number of flashes Spelling accuracy

1 0.4

2 0.5

3 0.6

4 0.7

5 0.8

6 0.9

7 1

8 1

9 1

10 1

4.3.2 Iterative Learning Controller Development

As discussed in Section 3.4, using ILC to adapt the task difficulty in
NFB training is a logical approach. As mentioned in Section 4.2.1, the
number of flashes per row and column is chosen as the task difficulty
parameter in the P300 speller, which is adapted based on spelling
accuracy. Recalling the typical framework of ILC:

uk+1 = uk + ϵg(ek), (4.6)

this means that the input u represents the number of flashes, and
the error e represents the percentage of incorrect letters in a run, i.e.
ek = 1 − J1,k. ϵg(ek) therefore is the change in number of flashes
based on the error. Unlike traditional ILC, both u and e are scalars.

This section describes the development of the ILC controller for
task difficulty adaptation, as well as the results of a comparison to an
existing approach and random difficulty levels.

4.3.2.1 Control Design

The first step in the control design is defining the requirements. If
a person performs very well during training, the training should be-
come more difficult, as strong performance could indicate that they
are not sufficiently challenged. In the context of the P300 speller, this
means that if the spelling accuracy is high, the number of flashes
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should decrease, reducing the SNR and making the task more diffi-
cult. Conversely, if a person performs poorly, i.e. the spelling accuracy
is low, the task should either remain the same or become easier. This
means that the number of flashes should either stay the same or in-
crease. The change in the number of flashes should be proportional
to the spelling accuracy, i.e. the higher or lower the spelling accuracy,
the greater the increase or decrease, respectively.

Another requirement for the controller is that it should be simple
enough to be easily interpreted by end-users and clinicians, aiding
in its acceptability and allowing for tuning without the need for an
engineer or technician.

Different functions for g(ek) are tested in simulation based on the
main requirement described above. The first function considered is

g(ek) = 1.5ek − 1, (4.7)

shown in Figure 4.10a. This function results in a more aggressive
controller, which increases task difficulty as soon as about one-third
of a run is correct. The maximum step size for a difficulty increase
is twice as large as the maximum step size for a difficulty decrease.
This function could lead to user frustration due to low performance.

A similar, more balanced, function is also considered;

g(ek) = 2ek − 1, (4.8)

shown in Figure 4.10b. With this function, the threshold for a diffi-
culty increase or decrease is 50%, and the maximum step size is the
same for both. This function could potentially be more acceptable to
users, though it may result in slower training than the first function
(Equation (4.7)).

(a) (b)

Figure 4.10: Penalty functions, g(ek), considered for the controller in Equa-
tion (4.6). (a) Equation (4.7). (b) Equation (4.8).

It is also considered to use a function that is flatter around the
threshold, so that only small changes occur near the threshold while
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larger step sizes happen with more extreme errors. This behaviour
could be achieved with a piecewise linear function or a polynomial
function. However, these more complex functions may complicate the
algorithm without significantly improving performance, so they have
not been pursued.

Instead, Equation (4.8) is chosen due to its more balanced behaviour
and lower likelihood of causing frustration. This function also results
in better performance in simulation compared to Equation (4.7) and
a polynomial function.

In addition to the function g(ek), the parameter ϵ in Equation (4.6)
needs to be determined. Since g(ek) is unity at 100% and 0% error,
ϵ can be interpreted as the maximum difficulty increase or decrease.
Different values for ϵ are tested in simulation, but it is ultimately
decided that the maximum step size should depend on the current
difficulty level. There should not be drastic changes when the diffi-
culty is very high (i.e. the number of flashes is low), but the step size
can be large when the training is easy, particularly at the beginning
of a session when the optimal task difficulty is first being approached.
It is found in simulation that ϵ = uk

2 leads to the best results.
This results in the following algorithm:

uk+1 = uk +
uk

2
(2ek − 1), (4.9)

which can be simplified to

uk+1 = uk(ek + 0.5). (4.10)

4.3.2.2 Comparison to Other Approaches in Simulation

To evaluate the developed ILC controller, and test the hypothesis that
using ILC to adapt task difficulty accelerates NFB training, a compar-
ative simulation study is conducted using the simulation described
in Section 4.3.1.4.

The ILC controller is compared to the task difficulty adaptation
approach used in [96], referred to as the Benchmark algorithm, and to
a random difficulty adjustment, referred to as the Random approach.
The different approaches are explained in more detail in Section 5.3.

Early stopping, which personalises the number of flashes in the
P300 speller (discussed in Section 2.5), is not simulated here. The
primary reason is that the simulation used in this study focuses on
performance across multiple runs, while early stopping typically re-
quires EEG data to determine when to stop the task. Since EEG data
are not simulated, applying early stopping is not feasible in this con-
text.

Additionally, the goal of both the ILC and the Benchmark algo-
rithm is to challenge the user and drive learning by continuously
increasing task difficulty in response to the user’s performance. In
contrast, early stopping aims to optimise the number of flashes based
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on the user’s current ability, without necessarily pushing for continu-
ous improvement. However, early stopping could complement ILC in
cases where the task difficulty set by the ILC is too easy. In such cases,
early stopping could help identify a more appropriate difficulty level,
and this information could then be used by the ILC to adjust the dif-
ficulty for subsequent runs, ensuring an even more effective training
experience.

The simulation is repeated for 50 iterations. The three metrics, J1,
J2, and f, are then averaged over all runs to simplify the statistical
analysis, as illustrated in Figure 4.11. Due to non-normality in the
data, between-group differences are analysed using Kruskal-Wallis
tests, followed by Tukey-Kramer Nemenyi tests, to investigate where
significant differences lie. A detailed explanation of all statistical meth-
ods used in this thesis can be found in Appendix A.

(a) (b)

(c)

Figure 4.11: Simulation metrics calculated across runs for the different task
difficulty adaptation approaches. (a) Mean J1. (b) Mean J2. (c)
Mean f. Statistical analysis by Kruskal-Wallis tests, p < 0.001
***, p < 0.01 **.
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A Kruskal-Wallis test shows a significant difference in J1 between
the different task difficulty adaptation approaches (χ2(2) = 19.99, p <

0.001). A Tukey-Kramer Nemenyi test reveals that the ILC approach
is significantly different from the two other approaches (Benchmark:
p < 0.001, Random: p = 0.004).

Similarly, J2 is significantly different between all groups (χ2(2) =

86.07, p < 0.001), with the ILC approach resulting in higher J2 com-
pared to the other approaches (Tukey-Kramer Nemenyi, Benchmark:
p < 0.001, Random: p < 0.001).

Lastly, a Kruskal-Wallis test reveals significant differences in f (χ2(2) =
124.73, p < 0.001), with a Tukey-Kramer Nemenyi test showing that
all approaches result in significantly different number of flashes with
a p-value below 0.001.

Although J1 is statistically significantly different with the ILC ap-
proach compared to the other approaches, the difference is small, and
all approaches result in an average spelling accuracy higher than 80%
(ILC: 84.5%, Benchmark: 89.0%, Random: 87.6%). However, f is signif-
icantly lower in the ILC group, resulting in a higher J2 in that group.
This suggests that the ILC approach leads to faster training without
significantly affecting performance.

4.4 summary

This chapter describes the development of an ERP-based NFB train-
ing system using a P300 speller and ILC to dynamically adapt task
difficulty.

The design choices and implementation of the P300 speller for NFB
training are discussed, followed by an explanation of a phenomeno-
logical performance model. This model facilitates efficient testing of
ILC controllers in simulation.

The design of the ILC controller is then presented, alongside results
from a comprehensive simulation study that compares the ILC con-
troller to a benchmark adaptation approach and random adaptation.
The findings from this comparative study demonstrate that the ILC
controller significantly accelerates the training process while main-
taining high performance. The controller therefore addresses one of
the key challenges in NFB training: enhancing training efficiency.

The ILC controller has two main hyperparameters: the penalty func-
tion g(ek) and the learning rate ϵ. These parameters were tuned us-
ing the simulation developed in this chapter, capturing a high level
of performance in the P300 speller (as discussed in Section 4.3.1.3).
The tuning is effective within the controlled simulation environment,
yielding satisfactory performance.

However, performance in the P300 speller can vary significantly
between individuals and even across sessions for the same individ-
ual. This variability is due to the dynamic nature of the “system”,
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which changes with factors like signal processing, experimental con-
ditions, and individual cognitive abilities. Consequently, fixed hyper-
parameters may not consistently achieve optimal performance across
all users or conditions. Tuning the controller for each individual and
training session would likely yield the best results, achieving faster
convergence to an optimal level of training difficulty. Advanced ILC
algorithms like NOILC might offer enhanced performance if they in-
corporate an individualised model of the system, potentially achiev-
ing convergence within a few runs of the speller.

It is important to note, however, that true convergence is not fully
attainable in this dynamic system because of the constant changes in
user state, environmental conditions, and signal variability. Therefore,
the controller must continuously adapt to maintain effective perfor-
mance rather than reaching a stable, unchanging state.

Since the training in this thesis is limited to a single session, it is
not feasible to tune the controller for each individual. Therefore, the
controller with the hyperparameters described in Section 4.3.2.1 is
used throughout the remainder of the thesis.

The effectiveness of the ILC controller in optimising training speed
and maintaining user engagement is further validated through a clin-
ical trial with human participants, which is detailed in the following
chapter. This next step is crucial to confirm that the ILC can deliver
the same benefits observed in simulation, thus solidifying its poten-
tial for real-world NFB applications.





Part III

E X P E R I M E N TA L W O R K





5
AT T E N T I O N T R A I N I N G I N H E A LT H Y A D U LT S

5.1 motivation

To test the efficacy of the ERP-based neurofeedback training system
with adaptive task difficulty using ILC, as described in Chapter 4 of
this thesis, a clinical trial aiming to train attention in healthy adults
within a single neurofeedback training session is conducted. Based
on the simulation results presented in Section 4.3.2, the hypothesis is
that using ILC leads to a quicker training session than the benchmark
algorithm by Arvaneh et al. [96], without compromising training effi-
cacy. ILC is therefore compared to the benchmark algorithm, as well
as to random task difficulty, to compare the efficacy between person-
alised and non-personalised training.

Arvaneh et al. [96] already demonstrated that receiving feedback
in the P300-based neurofeedback training is crucial in enhancing at-
tention, i.e. that there is no training effect without feedback, so the
focus of this study is the adaptation of task difficulty.

By establishing a pre-registered clinical trial with a peer-reviewed
protocol, this research also aims to address the concerns raised in
Chapter 2 about the lack of well-controlled NFB studies. This ap-
proach ensures that the study meets high standards of scientific rigor
and reliability.

This chapter outlines the study design in Section 5.2 and gives an
overview of the different task difficulty adaptation approaches in-
cluded in the study in Section 5.3. The analysis of study outcomes
is described in Section 5.4, with the results presented in Section 5.5.
These results are interpreted and discussed in Section 5.6 and a brief
summary of this study is given in Section 5.7.

5.2 study design

This is a single-blind, 3-arm randomised controlled trial. It was ap-
proved by the Maynooth University Ethics Committee (BSRESC-2022-
2474456) and pre-registered on ClinicalTrials.gov (NCT05576649). The
study protocol underwent peer-review prior to the commencement of
the clinical trial [141].

51 healthy adults, with no self-reported history of neurological dis-
eases or conditions, and normal or corrected-to-normal vision, were
recruited. Of the 51 recruited participants, 4 did not complete the
experiment, and 2 were excluded from the analysis due to a minor
adjustment in the ILC controller. The sample size was selected based

55



56 attention training in healthy adults

on a previous study [96] that demonstrated significant results with a
similar number of participants.

Participants were randomly assigned to one of 3 groups, which
are described in Section 5.3. The groups consisted of 15 participants
each, with mean ages of 27.2 (±10.3), 26.1 (±9.4), and 27.4 (±10.6)
for the ILC, benchmark, and random difficulty groups, respectively.
Each group included 6 female participants, and one participant in the
random difficulty group preferred not to disclose their gender.

Each participant completed a single experimental session that lasted
no more than 2 hours. The experiments were conducted in an electri-
cally shielded, sound attenuated and dimly lit room on the Maynooth
University campus.

All participants gave informed consent prior to the experiment and
an allergy patch test for the electroconductive gel was performed.

The following subsections describe each task the participants com-
pleted in detail.

5.2.1 Questionnaire

Participants were instructed to complete two questionnaires. The first
questionnaire, referred to as the fatigue-boredom questionnaire and
inspired by Arvaeh et al.’s study [96], asked participants to rate the
following four questions on a 10-point Likert scale:

Q1: How tired are you now?

Q2: How alert do you feel?

Q3: How bored do you feel?

Q4: Do your eyes feel tired?

This questionnaire was completed before and after the training to
assess the training impact in these aspects.

The second questionnaire was the NASA task load index (TLX)
[142], to be completed only at the end of the training. It was used to
assess the subjective workload of the training. The NASA TLX con-
tains the following questions, to be scored on a scale between 1 and
20:

Q1 – Mental Demand: How mentally demanding was the task?

Q2 – Physical Demand: How physically demanding was the task?

Q3 – Temporal Demand: How hurried or rushed was the task?

Q4 – Performance: How successful were you in accomplishing what
you were asked to do?

Q5 – Effort: How hard did you have to work to accomplish your
level of performance?
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Q6 – Frustration: How insecure, discouraged, irritated, stressed and
annoyed were you?

5.2.2 Random Dot Motion Task

Before and after the NFB training, participants completed the random
dot motion (RDM) task to assess changes in cognitive abilities.

In the RDM task, moving dots on the screen are observed, where
a fraction of the dots will move coherently in one direction, while
the rest of the dots are moving in random directions. The participant
then has to indicate the direction the coherent dots are moving in, of-
ten with a button press or joystick. The task usually involves discrete
trials, where a fraction of dots are always moving coherently, with
breaks in-between. However, in this study, a continuous version of
the RDM task is used. In the continuous version of the task, the dots
transition from incoherent motion, where all dots are moving in ran-
dom direction, to coherent motion, where a fraction of dots moves
in the same direction, in a continuous manner. This version of the
task was used in [96] and is used here for better comparability. Fig-
ure 5.1 shows a schematic of the RDM task, where the coherence level
is the percentage of dots that move in the same direction. In this spe-
cific task, the dots move either left or right during coherent motion
phases.

Participants were asked to indicate the direction of the coherent
motion by pressing the left or right arrow key once they are sure of
the motion direction.

Figure 5.1: Schematic of Random Dot Motion (RDM) task. The task is to in-
dicate the direction a fraction of dots are moving in. The dots
switch between incoherent and coherent motion in certain inter-
vals. For illustrative purposes, two target trials with coherence
levels (i.e. percentage of coherently moving dots) of 40% and
30%, respectively, are shown.

An average of 118 dots, with a size of 6 by 6 pixels each, are dis-
played in a circular aperture of 5

◦ at a viewing distance of 70 cm,
resulting in a dot density of approximately 10.8%. Each dot is black
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against a grey background. The dots are moving at a speed of 3.33
◦/s.

The incoherent motion lasts for either 3.1, 4.2, or 5.7 seconds, and the
coherent motion always lasts for 1.9 seconds.

The code for this task was developed using PsychoPy [143]. The
stimuli are presented on an LED monitor with a refresh rate of 60 Hz
and a resolution of 1920 x 1080 pixels.

To familiarise participants with the task and reduce learning effects,
they first completed 3 practice runs of 6 trials each, where verbal feed-
back of hits, misses and false alarms was given. In the first practice
run, the coherence levels alternated between 80% and 60%, in the sec-
ond run between 40% and 30%, and in the final run, between 25%
and 20%.

Following these practice runs, participants completed the pre-training
run of 40 trials without feedback. Here, the coherence level was either
25% or 19%, chosen randomly. The same was repeated after the train-
ing to evaluate any changes in attention.

5.2.3 P300 Speller Task

For the NFB training, participants copy-spelled 9 words, i.e. com-
pleted 9 runs, of the P300 speller described in Chapter 4. The runs
are detailed in Table 5.1.

Table 5.1: Runs in the P300 speller.

Stage Run Word Number of flashes Feedback

Calibration
1 THE

12

No

2 QUICK No

3 DOG Yes

Training
4 BEAUTIFUL 10 Yes

5 – 8 BEAUTIFUL varying Yes

Post-Training 9 DANCE 12 Yes

The first 2 runs, ‘THE’ and ‘QUICK’, are used to collect training
data for the LDA classifier and xDAWN spatial filter. The third run is
used to evaluate the BCI: If less than 2 letters are selected correctly, the
classifier and spatial filter are retrained with the data from that run. In
that case, participants are asked to copy-spell the word ‘FOX’, using
12 flashes per row and column, to reassess the speller. If less than
2 letters are correct, the training is stopped at that point. However,
this did not happen in this study, with all participants achieving at
least 2 correct letters in the third run. These first 3 runs make up the
calibration stage.
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The next stage is the training stage. First, participants spell the
word ‘BEAUTIFUL’ with 10 flashes per row and column. They then
repeat this run 4 times with a varying number of flashes according
to their assigned group; how the number of flashes is adapted is ex-
plained in more detail in Section 5.3.

To compare post-training performance in the speller between groups,
all participants copy-spelled the word ‘DANCE’ with 12 flashes per
row and column, which is the post-training stage.

5.2.3.1 EEG Acquisition

During the P300 speller task, EEG signals for each participant are
recorded using the Ant Neuro eego rt amplifier [144] with a 32-channel
waveguard cap [145], with electrodes positioned according to the stan-
dard 10-10 system [23]. AFz and CPz serve as the ground and refer-
ence electrodes, respectively. During the online use of the P300 speller,
all EEG signals are filtered between 1 and 20 Hz using a 4th-order
Butterworth filter and then downsampled by a factor of 4. This EEG
recording system and these settings for online use of the P300 speller
are maintained across all studies described in this thesis.

The xDAWN spatial filter [137], previously explained in Section 4.2.2,
is applied to reduce the 32 EEG channels to 3 xDAWN components,
which maximise the difference between target and nontarget trials.

5.2.4 Automation of Experimental Sessions

All studies described in this thesis are automated using batch files to
mitigate the possibility of human error, such as starting the wrong
run or failing to save a recording properly. Automation also standard-
ises the experiments, reducing inter-session variability. Additionally,
automating the experimental sessions increases efficiency by eliminat-
ing time spent searching for files and inputting session information,
which helps participants remain engaged and focused throughout the
session. Lastly, the use of batch files streamlines log file creation and
reduces errors, simplifying subsequent data analysis.

The batch files automatically launch all required programs, includ-
ing the EEG acquisition software, the RDM task, the P300 speller with
varying inputs for each run, and MATLAB for task difficulty adapta-
tion. A button press is required between different tasks and runs of
the P300 speller to allow participants to take breaks as needed.

To anticipate technical and non-technical issues, a secondary batch
file was created for each study, enabling the experiment to be re-
sumed from any point.
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5.3 task difficulty adaptation approaches

5.3.1 Iterative Learning Control Group

In the ILC group, the number of flashes, i.e. task difficulty, in the
training runs is adapted by the iterative learning controller. The de-
velopment of the controller is described in Section 4.3.

As a reminder, the update law of the controller is

uk+1 = uk(ek + 0.5), (5.1)

where uk is the number of flashes in run k, and ek is the percentage
of incorrectly identified letters. This means that the number of flashes
is increased if more than half the letters in a word are incorrect, and
decreased otherwise.

5.3.2 Benchmark Group

For participants in the benchmark group, the number of flashes is
adapted by the algorithm of Arvaneh et al. [96],

uk+1 =
uk + uk(66)

2
, (5.2)

where uk is the number of flashes in run k, and uk(66) is the lowest
number of flashes that would have resulted in at least 66% spelling
accuracy in the previous run. The algorithm therefore sets the number
of flashes in the next run to the average of the number of flashes in
the previous run that was actually used, and the number of flashes
that would have resulted in 66% accuracy.
uk(66) is determined by assessing the spelling accuracy for each

number of flashes from 1 to the number of flashes actually used. This
is done by only considering the EEG signals associated with the first
flash for classification of target trials, then the average EEG signals
associated with the first two flashes for each row and column, and
so on until the average EEG signals in response to all flashes are
considered.

If the spelling accuracy in a run is lower than 66%, the number of
flashes is increased by 1 in the next run:

uk+1 = uk + 1. (5.3)

5.3.3 Random Difficulty Group

As the name suggests, in the random difficulty group, the number of
flashes is set to a random number between 1 and 10. This is done to
include a wide range of difficulty levels, that do not go below the ini-
tial difficulty level (10 flashes per row and column), are unpredictable
and non-personalised.
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This group is included to compare the two personalised adaptation
approaches to a non-personalised approach. To allow for a fair com-
parison, the task difficulty in the non-personalised approach should
still vary and not remain the same throughout the training so there
is no bias due to an easier task difficulty [146], and the task difficulty
should be unpredictable, similar to the other approaches, and not in-
crease systematically.

While the task difficulty for participants in this group does not
adapt based on their performance, they do indeed undergo NFB train-
ing as the feedback they receive in the P300 speller is genuinely based
on their brain signals.

5.4 data analysis

5.4.1 Offline EEG Processing

The recorded EEG signals are processed in a similar fashion to Ar-
vaneh et al. [96]. This includes bandpass filtering the signals between
0.5 and 35 Hz with a Hamming-windowed sinc filter, and re-referencing
to Fz. Only electrodes C3, Cz, C4, P3, Pz, and P4 are included in this
analysis, following the protocol of Arvaneh et al. [96], due to the
prominence of the P300 component in these centro-parietal regions
of the brain [46].

EEG signals are segmented into baseline-corrected epochs of 150

ms to 550 ms post-stimulus, where the 150 ms period preceding
the stimulus is used as the baseline. Any epochs with an amplitude
greater than 75 µV, or with a voltage step of more than 150 µV within
a 200 ms window, are excluded from analysis as these are likely
caused by artifacts.

5.4.2 Questionnaire

The scores from the fatigue-boredom questionnaire are analysed us-
ing repeated measures analysis of variance (ANOVA) with stage (pre-
and post-training), questions (fatigue, alertness, boredom, eye fatigue)
and group (ILC, benchmark, random difficulty) as factors. This is
done on ranked scores due to non-normality of the data.

This is followed by one-way ANOVA for normally distributed data
and a Kruskal-Wallis test for non-normally distributed data, to inves-
tigate between-group differences, as well as paired t-tests and Wilcoxon
signed-rank tests for within-group differences.

The scores for each question, as well as the total score, from the
NASA TLX are analysed using one-way ANOVA and Kruskal-Wallis
tests for between-group differences.
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5.4.3 Random Dot Motion Task

Performance in the RDM task is assessed using three key metrics: re-
sponse time (RT), accuracy, and a combined score of accuracy divided
by RT. The inclusion of a combined score allows for a holistic measure
of performance, considering that improvements in either accuracy or
RT may not fully represent a participant’s progress.

Repeated measures ANOVA with stage (pre- and post-training)
and group (ILC, benchmark and random difficulty) are conducted to
analyse changes in all three metrics. These tests are done on ranked
data for accuracy to account for the non-normal distribution.

For all metrics, one-way ANOVA and Kruskal-Wallis tests are per-
formed for between-group differences, and paired t-tests and Wilcoxon
signed-rank tests for within-group differences.

5.4.4 P300 Speller Task

The first outcome from the P300 speller task that is analysed is the
spelling accuracy, which is defined as the percentage of correctly iden-
tified letters in a run. For a fair comparison, spelling accuracy analysis
includes only runs where feedback was provided and the number of
flashes remained constant (runs 3, 4, and 9), ensuring uniformity in
the conditions across all participants and groups. Between-group dif-
ferences are analysed by Kruskal-Wallis tests due to non-normality of
the data.

Since the hypothesis of the study is that ILC accelerates the training,
another important outcome is training length. Here, training length
is defined as the total number of flashes in the variable runs (i.e. runs
5 to 8), to ensure a fair comparison. This approach accounts for vari-
ations in breaks, as well as loading and setup times, which would
affect the total time comparison. Between-group differences in train-
ing length are assessed using Kruskal-Wallis tests.

The EEG signals that were recorded during the P300 speller task
are analysed in terms of P300 amplitude, latency, total power and
power in the alpha band. The P300 amplitude is defined as the voltage
difference between the minimum and maximum in the target epoch
average (peak-to-peak voltage). This is chosen to account for epoch
drift and to include the N200, which is closely related to the P300

[26]. The P300 latency is defined as the time between stimulus onset
and the positive peak (maximum voltage) in the target epoch average.

The total power is calculated by averaging the squared samples in
the epoch average. It is included since the P300 amplitude alone may
not accurately reflect increases in P300 strength; such increases could
be a general rise in amplitude rather than a single distinct peak. The
total power is calculated for both target and nontarget trials, sepa-
rately.
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The alpha power is defined as the power between 7 and 12 Hz,
calculated in the same way as the total power. The calculation is per-
formed exclusively for the 150 ms period following stimulus onset in
nontarget trials, provided these did not immediately succeed target
trials. It is included to evaluate participants’ attentional state, since al-
pha power desynchronisation is known to be correlated with selective
attention [147].

All EEG metrics are analysed by first calculating the average of
the metric for each stage (calibration, training and post-training), and
then calculating the ratio of training to calibration, and post-training
to calibration, for each metric. If a ratio is greater than unity, it means
that the metric increased compared to calibration (baseline), and if it
is less than unity, the metric decreased.

Repeated measures ANOVA with stage and group indices as fac-
tors (on ranked data if necessary) is applied to all ratios. For total
power ratios, repeated measures ANOVA is conducted for each stage
individually, with trial (target and nontarget) and group as factors.
For all EEG metrics, one-way ANOVA and Kruskal-Wallis tests are
used for between-group differences, and paired t-tests and Wilcoxon
signed-rank tests for within-group differences.

5.4.5 Correlation between P300 Speller Task and Random Dot Motion Task

To investigate how the training (i.e. the P300 speller task) influences
attention improvement, as measured by the RDM task, correlation
analysis is conducted between performance and EEG changes in the
speller task, and performance in the RDM task. The hypothesis un-
derlying the P300-based training is that, by increasing the task dif-
ficulty, participants are encouraged to improve their focus to main-
tain performance. It is therefore expected that participants with good
speller performance have rather small improvements in the RDM task,
since they are not sufficiently challenged to improve their attention.
Similarly, participants with large (positive) EEG changes should have
larger increases in the RDM task.

For the P300 speller, minimum and average spelling accuracy in
feedback runs are included in the correlation analysis, as well as all
EEG metrics. The minimum spelling accuracy is also included, since
the average might not capture the level of challenge accurately, due
to easier runs at the beginning of the training.

For the RDM task, the ratio of post-training to pre-training RT and
accuracy are used.

Pearson’s correlation coefficient is used for normally distributed
data, and Spearman’s correlation coefficient otherwise.
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5.4.6 Post-Hoc Sensitivity Analysis

Despite randomised group allocation of participants, a baseline im-
balance in boredom and eye fatigue is observed according to the
fatigue-boredom questionnaire, as presented in Section 5.5.1. This is
not taken into account in the primary statistical analysis described in
this section, which is why a sensitivity analysis, where the baseline
for boredom and eye fatigue are factored in, is conducted.

Due to imbalanced distribution of scores, as shown in Table 5.2 and
Table 5.3, the baseline scores cannot be treated like continuous vari-
ables and therefore covariates. That is why the scores are aggregated
and then treated as categorical factors, with low, medium and high
levels. How the scores are aggregated is detailed in Table 5.2 and
Table 5.3.

To investigate between-group differences of all outcomes, a two-
way ANOVA test for normally distributed data and an aligned rank
transformation (ART) ANOVA for non-normal data are conducted,
both with baseline level and group as factors.

Table 5.2: Distribution and aggregation of baseline boredom scores.

Level Low Med High

Likert Score 0 1 2 3 4 5 6 7 8 9 10

ILC 5 3 1 3 0 3 0 0 0 0 0

Benchmark 4 7 1 1 0 1 1 0 0 0 0

Random Difficulty 0 2 5 1 5 1 1 0 0 0 0

Table 5.3: Distribution and aggregation of baseline eye fatigue scores.

Level Low Med High

Likert Score 0 1 2 3 4 5 6 7 8 9 10

ILC 3 4 2 1 2 2 0 1 0 0 0

Benchmark 4 2 2 1 1 1 4 0 0 0 0

Random Difficulty 0 0 1 3 0 3 4 3 1 0 0

5.5 results

5.5.1 Questionnaire

Figure 5.2 shows the scores of the fatigue-boredom questionnaire.
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The repeated measures ANOVA on the ranked scores of the fatigue-
boredom questionnaire reveals a significant main effect of group (F(2,42) =

7.94, p < 0.001), stage (F(1,44) = 28.03, p < 0.001), and question
(F(3,132) = 28.44, p < 0.001). Significant interactions between stage
and question (F(3,132) = 3.31, p = 0.020), and question and group
(F(6,264) = 2.16, p = 0.046) are also revealed.

A Kruskal-Wallis test shows that there is a significant difference in
pre-training boredom scores (χ2(2) = 7.30, p = 0.026) specifically be-
tween the benchmark and random difficulty groups (Tukey-Kramer
Nemenyi: p = 0.03). Similarly, a significant difference in pre-training
eye fatigue scores is observed between groups (χ2(2) = 11.93, p =

0.003), with a Tukey-Kramer Nemenyi test showing that the random
difficulty group is different from the others (ILC: p = 0.004, bench-
mark: p = 0.018).

A significant increase in tiredness is observed in all groups (ILC:
t(14) = −2.98, p = 0.010; benchmark: t(14) = −3.06, p = 0.009; ran-
dom difficulty: W = 7, p = 0.021). Additionally, participants in the
ILC and benchmark groups experienced a significant increase in eye
fatigue (ILC: t(14) = −4.58, p < 0.001; benchmark: W = 0, p = 0.001).
Participants in the ILC group reported significantly higher levels of
boredom post-training (W = 2, p = 0.029).

Table 5.4 shows the scores of the NASA TLX questionnaire.
A Kruskal-Wallis test reveals a significant difference in physical

demand (χ2(2) = 8.35, p = 0.015) between the benchmark and random
difficulty groups (Tukey-Kramer Nemenyi: p = 0.024). There are no
significant differences in the other questions and the total score (i.e.
the sum of all question scores).

Table 5.4: Mean NASA Task Load Index (TLX) scores for all 3 groups. Total
score is the sum of all questions. Standard deviation is shown in
brackets.

Question ILC Benchmark Random Difficulty

Mental demand 14 (2.95) 10.50 (5.55) 13.80 (3.82)

Physical demand 3.27 (2.96) 3.53 (4.93) 8.00 (5.89)

Temporal demand 10.50 (4.47) 7.47 (4.21) 9.93 (5.11)

Performance 8.87 (2.61) 7.20 (4.21) 6.80 (4.33)

Effort 13.9 (2.77) 13.00 (3.80) 12.70 (3.51)

Frustration 7.00 (4.57) 5.87 (4.24) 7.60 (5.67)

Total score 57.5 (11.10) 47.6 (13.50) 58.90 (17.00)
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(a) (b)

(c) (d)

Figure 5.2: Scores of the fatigue-boredom questionnaire. (a) Q1 - Fatigue. (b)
Q2 - Alertness. (c) Q3 - Boredom. (d) Q4 - Eye Fatigue. Statistical
analysis by paired t-test and Wilcoxon signed-rank test, 0.001 ⩽
p < 0.01 **, p ⩽ 0.05 *.
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5.5.2 Random Dot Motion Task

Figure 5.3 illustrates the performance in the RDM task for all groups
and the three performance metrics analysed in this study.

Although an average decrease in RT is observed across all groups,
it is not statistically significant according to a repeated measures
ANOVA. There are also no significant between-group differences in
either stage.

In contrast, a significant main effect of stage is revealed by a re-
peated measures ANOVA on ranked accuracy (F(1,44) = 10.91, p =

0.001). One-way ANOVA and Kruskal-Wallis tests confirm that there
are no significant between-group differences. Paired t-tests and Wilcoxon
signed-rank tests show that all groups experienced a significant in-
crease in accuracy (ILC: t(14) = −3.83, p = 0.002; benchmark: t(14) =
−2.54, p = 0.024; random difficulty: W = 15, p = 0.036).

Despite this significant increase in accuracy in all groups, only the
ILC group achieved a significant increase in score, defined as accu-
racy divided by RT (t(14) = −2.79, p = 0.015).

5.5.3 P300 Speller Task

5.5.3.1 Spelling Accuracy

All participants demonstrated high proficiency with the P300 speller,
as evidenced by the high average spelling accuracy across common
runs that provided feedback, shown in Table 5.5. There are no statis-
tically significant differences between groups according to a Kruskal-
Wallis test.

Table 5.5: Mean spelling accuracy (%) in the P300 speller runs that provided
feedback and that were the same for all groups. Standard devia-
tion is shown in brackets.

Group Run 3 Run 4 Run 9

ILC 97.80 (8.61) 100.00 (0.00) 100.00 (0.00)

Benchmark 97.80 (8.61) 98.50 (3.91) 98.70 (5.16)

Random Difficulty 97.80 (8.61) 94.10 (10.20) 96.00 (8.28)

5.5.3.2 Training Length

Figure 5.4 shows the training length in terms of total number of
flashes in the variable runs for all groups.

A Kruskal-Wallis test reveals a significant between-group differ-
ence (χ2(2) = 22.30, p < 0.001). This difference lies between the ILC
group and the others according to a Tukey-Kramer Nemenyi test
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(a) (b)

(c)

Figure 5.3: Performance in the Random Dot Motion (RDM) task. (a) Accu-
racy (%). (b) Response time (RT, s). (c) Score, calculated as accu-
racy divided by response time. Statistical analysis by paired t-test
and Wilcoxon signed-rank test, 0.001 ⩽ p < 0.01 **, p ⩽ 0.05 *.
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(benchmark: p = 0.007, random difficulty: p < 0.001). The differ-
ence in training length between the benchmark and random difficulty
groups is not significant (p = 0.255).

Figure 5.4: Training length in terms of total number of flashes in runs 5 to 8.
Statistical analysis by Kruskal-Wallis tests, p < 0.001 ***, p < 0.01
**.

5.5.3.3 P300 Event-Related Potential

A repeated measures ANOVA on P300 amplitude ratios, as pictured
in Figure 5.5, reveals a significant main effect of stage (F(1,44) =

20.13, p < 0.001), and group (F(2,42) = 4.74, p = 0.011). A one-way
ANOVA shows that there is a significant difference in the training-
to-calibration amplitude ratio between the ILC and random difficulty
groups (F(2,42) = 3.25, p = 0.049, Tukey test: p = 0.044).

There are significant differences between training-to-calibration and
post-training-to-calibration amplitude ratios in the ILC group (t(14) =
3.4, p = 0.002) and the random difficulty group (t(14) = 4.42, p <

0.001).
There are no significant between- or within-group differences in

P300 latency, which is shown in Figure 5.6, according to a repeated
measures ANOVA test on ranked data.

5.5.3.4 Total Power

As can be seen in Figure 5.7, there is an average increase in post-
training total power of 4% in the ILC group and 18% in the bench-
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Figure 5.5: P300 amplitude ratios. Statistical analysis by one-way ANOVA/
Kruskal-Wallis tests and paired t-tests/ Wilcoxon signed-rank
tests, p < 0.001 ***, p < 0.01 **, p ⩽ 0.05 *.

Figure 5.6: P300 latency ratios. Statistical analysis by one-way ANOVA/
Kruskal-Wallis tests and paired t-tests/ Wilcoxon signed-rank
tests.
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mark group in target trials, and a decrease of 3% and 4% in the
ILC and benchmark groups, respectively, in nontarget trials. In the
random difficulty group, post-training total power decreased both in
target and nontarget trials by 10% and 6%, respectively.

According to a repeated measures ANOVA on the ranked total
power ratios, there is a significant main effect of stage (F(1,44) = 26.19,
p < 0.001), and group (F(2,42) = 3.25, p = 0.041).

Conducting a repeated measures ANOVA on the ranked training-
to-calibration ratios only revealed a significant main effect of group
(F(2,42) = 4.79, p = 0.011). There are no significant between-group or
between-trial differences in the post-training-to-calibration ratios.

A significant difference in nontarget training-to-calibration ratios is
found between the ILC and benchmark groups (χ2(2) = 6.64, p = 0.036,
Tukey-Kramer Nemenyi: p = 0.030).

Significant within-group differences between both target and non-
target training-to-calibration and post-training-to-calibration ratios is
found in the ILC group (target: W = 108, p = 0.004, nontarget:
W = 107, p = 0.005) and random difficulty group (target: W = 101,
p = 0.018, nontarget: t(14) = 2.91, p = 0.011).

(a) (b)

Figure 5.7: Total power ratios. (a) Target trials. (b) Nontarget trials. Statistical
analysis by one-way ANOVA/ Kruskal-Wallis tests and paired t-
tests/ Wilcoxon signed-rank tests, 0.001 ⩽ p < 0.01 **, p ⩽ 0.05
*.

5.5.3.5 Alpha Power

Figure 5.8 shows the training-to-calibration and post-training-to-calibration
alpha power ratios.

A repeated measures ANOVA test on ranked data shows a signifi-
cant main effect of stage (F(1,44) = 9.64, p = 0.003), and a significant
interaction of stage and group (F(2,42) = 3.70, p = 0.029).
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There is a significant between-group difference in training-to-calibration
ratios (F(2,42) = 5.93, p = 0.005), specifically between the ILC group
and the others according to a Tukey test (benchmark: p = 0.006, ran-
dom difficulty: p = 0.034).

In the ILC group, the post-training-to-calibration ratios are sig-
nificantly lower than the training-to-calibration ratios (t(14) = 5.46,
p < 0.001).

Figure 5.8: Power in the alpha band (7 to 12 Hz) in nontarget trials. Sta-
tistical analysis by one-way ANOVA/ Kruskal-Wallis tests and
paired t-tests/ Wilcoxon signed-rank tests, p < 0.001 ***, p < 0.01
**, p ⩽ 0.05 *.

5.5.4 Correlation between P300 Speller Task and Random Dot Motion Task

No correlation is found between spelling accuracy in the P300 speller
task and RDM task performance within the ILC and random dif-
ficulty groups. However, a significant negative correlation emerges
between mean spelling accuracy and RDM accuracy ratio (ρ(13) =

−0.64, p = 0.010), as well as between minimum spelling accuracy
and RDM accuracy ratio (r(13) = −0.58, p = 0.023), in the benchmark
group.

Furthermore, a significant negative correlation between training-
to-calibration latency ratio and RDM RT ratio is found both in the
benchmark group (r(13) = −0.53, p = 0.045) and the ILC group
(r(13) = −0.65, p = 0.008).
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Additionally, a significant positive correlation between training-to-
calibration alpha ratio and RDM RT ratio is observed in the ILC group
(r(13) = 0.56, p = 0.032).

5.5.5 Post-Hoc Sensitivity Analysis

The post-hoc sensitivity analysis, which considers baseline boredom
and eye fatigue levels, identifies three outcomes with results differing
from the primary analysis. This indicates that these outcomes are
influenced by baseline levels of boredom and/or eye fatigue.

The first outcome is the NASA TLX scores, where significant dif-
ferences are found in mental demand between the benchmark and
random difficulty groups when eye fatigue is taken into account (two-
way ANOVA: F(2,42) = 4.08, p = 0.025; Tukey: p = 0.042). In contrast
to the primary analysis, no significant between-group differences are
found in physical demand when eye fatigue is included as a factor in
ART ANOVA.

The second outcome that is different is the P300 spelling accu-
racy. In run 4, significant differences in spelling accuracy are revealed
when baseline boredom levels are considered (ART ANOVA: F(2,42) =

4.81, p = 0.014). Contrast tests showed that the difference between
the ILC and benchmark groups is tending to significance (p = 0.059),
while the difference between the ILC group and random difficulty
group is significant (p = 0.023). The same goes for run 9, where a sig-
nificant between-group difference is found (F(2,42) = 5.60, p = 0.008),
again between the ILC group and the others (benchmark: p = 0.048,
random difficulty: p = 0.011).

The last outcome that is affected by baseline boredom and eye fa-
tigue levels is the P300 amplitude. A two-way ANOVA test indicates
that there are no significant between-group differences in training-
to-calibration amplitude ratios when eye fatigue baseline levels are
taken into account.

All other study outcomes seem to be robust against the observed
baseline imbalances.

5.6 discussion

In this study, three different methods to adapt the task difficulty in
P300-based NFB training are compared. A summary of the main find-
ings, along with the statistical tests used, results, and their implica-
tions, can be found in Appendix B.

All groups show significant improvements in the RDM task. This
finding indicates that P300 speller-based attention training is effec-
tive across various task difficulty adaptation methods. However, it is
found that the ILC controller developed in this thesis (Section 4.3) ac-
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celerates the training significantly compared to the other approaches,
without compromising the training efficacy.

Participant feedback through questionnaires shows that the train-
ing was both tiring and mentally demanding, which is to be ex-
pected as the training is meant to be challenging. Additionally, par-
ticipants reported an increase in eye fatigue and boredom. Eye strain
might be mitigated in future studies by encouraging participants to
take frequent breaks away from the screen. While frequent breaks
between each run were offered in this study, most participants pre-
ferred to continue the training without breaks. Although boredom
scores slightly increased after the training, they are still low.

Interestingly, some participants rated the training as being physi-
cally demanding despite no physical aspect being present in the train-
ing. It is believed that for these participants, the high mental demand
of the training and the increase in tiredness was perceived as physical
demand.

Overall, the NASA TLX scores are mostly neutral, indicating an ac-
ceptable workload of the training and that the training is challenging
but not overly frustrating.

The peak-to-peak P300 amplitude increased for all groups during
the training, with it being the highest in the ILC group. The ILC group
is the group with the lowest number of flashes, which supports the
hypothesis that decreasing the number of flashes drives the attention
improvement and therefore P300 amplitude increase.

Further positive EEG changes are observed in the ILC and bench-
mark groups, with a power increase in target trials and power de-
crease in nontarget trials, as well as a decrease in alpha power af-
ter the training. This indicates that participants in these groups were
more focused on target trials and less distracted by nontarget trials.
The decreased alpha power also indicates that they were in a more
focused state post-training.

However, these positive changes are not observed in the random
difficulty group, where total power decreased in both target and non-
target trials, and alpha power increased post-training. This means
that non-personalised training might not be as effective as person-
alised training.

A significant negative correlation between P300 spelling accuracy
and accuracy ratios in the RDM task is found, indicating that higher
spelling accuracy during training corresponded to lesser improve-
ment in RDM task accuracy. This makes sense, since it might mean
that the training was not sufficiently challenging to improve attention.
Similarly, a positive correlation between alpha power and RT ratios
in the RDM task is observed, which means participants with lower al-
pha power, i.e. participants in a more focused state, improved their RT
post-training. An unexpected negative correlation is found between
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P300 latency and RT ratios. A positive correlation would be expected
as lower latency is associated with faster reaction times [46].

The post-hoc sensitivity analysis due to baseline imbalances shows
that perceived mental and physical demand, P300 spelling accuracy,
as well as P300 amplitude, are all affected by baseline boredom and/or
eye fatigue levels. However, the main outcomes of this study, i.e. RDM
performance and training length, are unaffected by the baseline im-
balances.

The study shows that the ILC and benchmark adaptation approaches
are similar in terms of efficacy, however, the ILC algorithm is faster
and more computationally efficient than the benchmark algorithm,
since only the spelling accuracy for the number of flashes that was
actually used needs to be calculated for the ILC algorithm.

While the ILC controller used in this study significantly acceler-
ates training without compromising efficacy, further enhancements
may be possible. For example, fine-tuning ILC parameters specifically
for each individual could allow for more precise adaptation to each
user’s unique cognitive responses and engagement levels, potentially
improving convergence speed and overall efficiency. However, such
an approach would require sufficient data from each individual prior
to tuning the controller, which is not feasible within a single training
session.

In contrast, commonly used early stopping methods, as discussed
in Section 2.5, could assist the ILC in converging faster by filtering
out unnecessary repetitions, especially during early stages of train-
ing. However, as these approaches primarily adapt to current per-
formance without challenging the user’s cognitive engagement, they
may not, in isolation, produce the same attention-enhancing effects
as the ILC, which intentionally pushes users by progressively adjust-
ing task difficulty. Future research could compare the ILC adaptation
with early stopping methods to determine if they can achieve similar
training effects or if the ILC adaption approach yields more sustained
attention improvements.

5.7 summary

This chapter describes an attention training study with healthy adults
to compare different, personalised and non-personalised, task diffi-
culty adaptation approaches.

The results of the study are promising with statistically significant
improvements in the RDM task and positive EEG changes with the
personalised approaches, despite only a single training session.

The ILC controller developed in this thesis is significantly faster
than the other approaches, while being computationally more effi-
cient than the benchmark algorithm.





6
O P T I M I S I N G T H E E X P E R I M E N TA L P R O T O C O L

6.1 motivation

The results from the study described in Chapter 5 show that the pro-
posed P300-based neurofeedback training can effectively train atten-
tion in healthy adults. The results also demonstrate that personalising
the task difficulty in the training session leads to better outcomes, and
that using ILC to adapt the task difficulty accelerates the training.

However, the experimental procedure was not optimal. While us-
ing all available 32 EEG channels means that the signal quality was
very good, setting up the EEG cap took a long time. For some par-
ticipants, setting up the EEG cap even took longer than the training
itself. Other disadvantages include increased cost of the EEG system,
higher processing power requirements, greater discomfort for partic-
ipants and the need for a large amount of electroconductive gel. The
aim was therefore to reduce the number of electrodes used for the
training.

Another suboptimal aspect of the training in the previous study
was that there were only 4 runs with adaptive task difficulty in the
training. This meant that the optimal task difficulty was not achieved
for some participants. To mitigate this issue, it was desired to increase
the number of adaptive runs, so that there are more opportunities for
finding a participant’s optimal task difficulty.

This chapter outlines the development and testing of a refined
training protocol featuring fewer electrodes and more adaptive runs,
thus making the NFB system a more practical intervention. Initially,
the most crucial electrodes for target trial classification were identi-
fied through offline data analysis, detailed in Section 6.2. Subsequent
steps included a comparative study of electrode sets (Section 6.3) and
an evaluation of the new protocol’s effectiveness and participant sat-
isfaction (Section 6.4).

6.2 electrode selection : offline data analysis

6.2.1 Determining Electrode Sets

Many different methods have been proposed for electrode selection
in P300 speller applications. Often, these methods use an iterative
search, where electrodes are either removed from (sequential reverse
selection) or added to (sequential forward selection) the set, with clas-
sification results assessed after each change. However, the iterative na-
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ture of these methods makes them relatively slow and computation-
ally intensive [148]. Other approaches determine relevant electrodes
based on factors such as correlation with the target signal, neurosci-
entific insights into the source of the signal of interest, or the SNR of
each electrode [149].

In this study, xDAWN spatial filtering is chosen to guide electrode
selection for two main reasons. First, xDAWN has demonstrated ef-
fectiveness in optimising P300 signals by weighting channels based
on their contribution to signal detection, thus providing a reliable in-
dication of SNR for each electrode [137]. Second, leveraging xDAWN
weights for electrode ranking is both efficient and practical, as this
information is already available in the dataset from Chapter 5, which
serves as the basis for electrode selection in the current study.

In the previous study, described in Chapter 5, the xDAWN spatial
filter was used to reduce the 32 EEG electrodes to 3 xDAWN compo-
nents. At the start of each session, this filter is customised for the par-
ticipant, assigning unique weights to each electrode. Figure 6.1 shows
an example of these weights. For each of the 3 xDAWN components,
there is a weight for each electrode, resulting in 96 weights.

Figure 6.1: Heatmap showing scaled xDAWN weights for each electrode.

For this analysis, 5 electrode sets, comprising 32, 16, 8, 6, and
4 electrodes, respectively, are selected to align with the number of
electrodes commonly used in EEG research. To identify which elec-
trodes to include in each set, the weights assigned by the xDAWN
spatial filter are leveraged. Specifically, the 32 electrodes are ranked
according to the frequency with which they appear among the top
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16 highest-weighted electrodes across the 47 participants from the
study of Chapter 5. Consequently, the 4 electrodes with the highest
frequency of appearance are allocated to the 4-electrode set, the top
6 to the 6-electrode set, and so forth, ensuring that each set is com-
posed of electrodes most indicative of significant signal contributions
as determined by their xDAWN weights. To maintain symmetry in
the electrode sets, adjustments are made based on the electrode po-
sitions. For example, P3, P4, O1, and O2 are selected instead of the
top-ranked P3, P4, O1, and Oz for the 4-electrode set.

In addition to the sets determined using the ranking, a 4-electrode
set inspired by literature is included for benchmarking, based on the
findings of Speier et al. [150]. They report comparable performance
in a P300 speller between 4 electrodes (PO7, PO8, Pz and POz) and 32

electrodes. As PO7 and PO8 were not included in the original setup,
P7, P8, Pz, and POz are selected as the closest alternatives.

To simplify reference to each set, a naming convention is adopted
based on the number of electrodes in each set: Set 32 (32 electrodes),
Set 16 (16 electrodes), Set 8 (8 electrodes), Set 6 (6 electrodes), Set 4

(4 electrodes based on ranking), and Set 4L (4-electrode set based on
the literature findings of Speier et al. [150]). Figure 6.2 shows which
electrodes are included in the six sets that are analysed.

Figure 6.2: Electrode sets used in the analysis. AFz and CPz are used as
ground and reference, respectively. Set 32: all electrodes shown
on the image. Set 16: electrodes of any colour. Set 8: all electrodes
coloured in red, green and blue. Set 6: all electrodes coloured in
red and blue. Set 4 (based on ranking): all electrodes coloured
in blue. Set 4L (based on [150]): all electrodes coloured in purple
and red.



80 optimising the experimental protocol

6.2.2 Evaluating Electrode Sets

The 6 electrode sets described in Section 6.2.1 are analysed by replay-
ing the experiment outlined in Chapter 5 for all participants across
all sets, using the recorded EEG signals. Specifically, the spelling accu-
racy achievable with each electrode set and the xDAWN spatial filter
impact on their performance are investigated. Consequently, a total
of 12 configurations are examined, encompassing the 6 sets both with
and without the application of the xDAWN spatial filter.

To achieve this, the cumulative spelling accuracy is calculated for
each participant across a range of 1 to 12 flashes, aligning with the
maximum number of flashes used in Chapter 5. This is done by only
considering the EEG signals in response to the first flash per row and
column for classification, then the EEG signals in response to the first
two flashes per row and column, and so on until the EEG signals in
response to all 12 flashes per row and column are used for classifica-
tion. This results in a curve of spelling accuracy against number of
flashes for every configuration, as can be seen in Figure 6.3 for the
grand mean. Given the similarity of curves across all configurations,
namely, the logarithmic relationship between spelling accuracy and
number of flashes, the analysis is simplified by computing the mean
spelling accuracy across all flash counts, yielding a single value per
configuration.

Subsequently, the differences in mean spelling accuracy between
configurations are assessed employing a Friedman test, complemented
by paired t-tests and Wilcoxon signed-rank tests, with Bonferroni ad-
justments, for pairwise comparisons.

The resolution of spelling accuracy in the P300 speller is very small,
e.g. a 1-letter difference in the word ‘BEAUTIFUL’ corresponds to an
11% difference in spelling accuracy. This indicates that a statistically
significant outcome in the aforementioned pairwise comparisons may
not translate to practical significance, as the observed difference be-
tween any two configurations could be minimal, potentially less than
the difference of a single letter, despite statistical significance. To ad-
dress this, pairwise equivalence testing is conducted using the two
one-sided tests (TOST) procedure [151].

The null hypothesis for a difference test posits that there is no dif-
ference between two or more populations, implying that a significant
outcome indicates a non-zero difference. Conversely, the null hypoth-
esis for an equivalence test suggests that any difference lies outside
predefined bounds, which represent the minimum meaningful differ-
ence for the study context. Thus, a significant result from an equiva-
lence test indicates that the observed difference is within these speci-
fied bounds [151].
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Figure 6.3: Grand mean spelling accuracy achieved with different electrode
sets, with and without using the xDAWN spatial filter. Standard
deviation illustrated by shading.
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Testing data for both differences and equivalences can therefore
reveal whether there are any differences (difference test), and whether
those differences are practically meaningful (equivalence test).

6.2.3 Results

6.2.3.1 Difference Tests

Given that only the spelling accuracies for Sets 32 and 16 without the
xDAWN spatial filter, and Set 4L with the xDAWN filter, conformed
to normal distribution, a Friedman test is conducted, which reveals a
significant effect of configuration on mean spelling accuracy (χ2(11) =
352.37, p < 0.001).

The mean spelling accuracy of each configuration is plotted in Fig-
ure 6.4, illustrating comparisons within sets regarding the xDAWN
spatial filter (Figure 6.4a, and between sets with the filter (Figure 6.4b)
and without (Figure 6.4c). Paired t-tests are conducted for sets with
normally distributed data, as mentioned, and Wilcoxon signed-rank
tests for the remaining sets.

Figures 6.4a–6.4c demonstrate that Sets 32, 16, and 8 perform better
with the xDAWN spatial filter, whereas Sets 6, 4, and 4L show im-
proved accuracy without it. Consequently, the optimal configurations
for each set are plotted to facilitate direct between-set comparisons,
as shown in Figure 6.4d.

6.2.3.2 Equivalence Tests

To assess the practical equivalence between configurations, pairwise
equivalence tests are performed. The t-TOST procedure is applied
for normally distributed configurations (Sets 32 and 16 without the
xDAWN spatial filter, and Set 4L with the filter) and the Wilcoxon
TOST method for the others. Upper and lower equivalence bounds
are established at 11%, reflecting the highest resolution of spelling ac-
curacy observed in Chapter 5. This threshold corresponds to a 1-letter
difference in the word ‘BEAUTIFUL’, serving as the benchmark for
meaningful difference. A significant p-value indicates that the differ-
ences between configuration pairs fall within the predefined bounds,
suggesting practical equivalence.

Mirroring the approach in Section 6.2.3.1, the mean spelling accu-
racy for each configuration is plotted to visually compare within-
set (Figure 6.5a) and between-set equivalences. This includes analy-
ses with the xDAWN spatial filter (Figure 6.5b) and without it (Fig-
ure 6.5c), as well as the optimal configurations for each set (Fig-
ure 6.5d).
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(a) (b)

(c) (d)

Figure 6.4: Differences in mean spelling accuracy within and between elec-
trode sets. (a) Within-set differences with and without the
xDAWN spatial filter. (b) Between-set differences with the
xDAWN spatial filter. (c) Between-set differences without the
xDAWN spatial filter. (d) Between-set differences with the best
configuration for each set. Statistical analysis by paired t-tests
and Wilcoxon signed-rank tests, p < 0.001 ***, p < 0.01 **,
p ⩽ 0.05 *.
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(a) (b)

(c) (d)

Figure 6.5: Equivalences in mean spelling accuracy within and between elec-
trode sets. (a) Within-set equivalences with and without the
xDAWN spatial filter. (b) Between-set equivalences with the
xDAWN spatial filter. (c) Between-set equivalences without the
xDAWN spatial filter. (d) Between-set equivalences with the best
configuration for each set. Statistical analysis by t-TOST and
Wilcoxon TOST, p < 0.001 ***, p < 0.01 **, p ⩽ 0.05 *. TOST
= two one-sided tests.
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6.2.4 Discussion

The findings from the preceding section indicate that the xDAWN
spatial filter enhances spelling accuracy for larger electrode sets (Sets
32, 16, and 8), while it appears to diminish performance in smaller
sets (Sets 6, 4, and 4L). Application of the xDAWN spatial filter sig-
nificantly increases spelling accuracy in the 32- and 16-electrode con-
figurations, yet significantly reduces it in the smaller configurations
of Sets 6 and 4. Interestingly, whether or not the xDAWN spatial fil-
ter is used does not make a difference in the 8-electrode set and the
4-electrode set based on [150] (Set 4L) as the spelling accuracy with
these sets is statistically not significantly different, and equivalent, in-
dicating that there is no meaningful difference. Nevertheless, using
the xDAWN spatial filter still leads to better spelling accuracy on av-
erage in Set 8, and poorer spelling accuracy in Set 4L.

Accordingly, employing the xDAWN spatial filter for Sets 32, 16,
and 8 is recommended, while its use is advised against for Sets 6, 4,
and 4L.

Focusing on these configurations, the analysis reveals no signifi-
cant or practical differences between Sets 6 and 4L, or between Sets
4 and 4L. Although Sets 6 and 4 are equivalent, they exhibit a statis-
tically significant difference, suggesting a discernible but not practi-
cally meaningful disparity. The same goes for Sets 32 and 16, when
the xDAWN spatial filter is used; Sets 32 and 8, with the xDAWN
spatial filter; Sets 16 and 8, with the xDAWN spatial filter; and Set 8,
with the xDAWN spatial filter, and Set 6, without the xDAWN spatial
filter.

Given that these results derive from offline data analysis, experi-
mental validation is crucial to assess how factors such as frustration
may impact performance across different sets. Additionally, since the
data were recorded in an electrically shielded room, the results may
be more favorable than those typically expected in less controlled,
real-world, conditions.

Informed by this data analysis study, it is decided to proceed with
Sets 16 and 8 using the xDAWN filter, and Sets 6 and 4L without it, for
further experimental comparison using real-world data. The choice
to proceed with Set 4L over Set 4 is motivated by their statistical and
practical equivalence, with a slightly better performance observed in
Set 4L.

6.3 electrode selection : study

6.3.1 Study Design

To validate the findings of the data analysis study detailed in Sec-
tion 6.2, a within-subjects study involving 10 healthy adults with-
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out known neurological conditions and with normal or corrected-
to-normal vision was undertaken. The study was approved by the
Maynooth University Ethics Committee (BSRESC-2023-36713). It in-
volved participants completing several P300 speller runs across dif-
ferent electrode sets. The electrode sets included in this study are
Sets 16 and 8 with the xDAWN spatial filter, and Sets 6 and 4L with-
out the xDAWN spatial filter (see Figure 6.2). The P300 speller runs
are described in more detail in Section 6.3.1.1.

The study was conducted in two different locations, with 5 par-
ticipants in each. This approach anticipated the extension of the next
study, described in Chapter 7, across several institutions and aimed to
assess the impact of location on spelling accuracy and EEG data qual-
ity for the selected sets. Both sites were office environments, aligning
with the anticipated settings of subsequent studies and facilitating
the collection of data reflective of real-world conditions. Photographs
of these locations can be seen in Figure 6.6.

(a) (b)

Figure 6.6: Study locations, with 5 participants in each. (a) Location 1. (b)
Location 2.

6.3.1.1 P300 Speller Task

Given the findings from the study detailed in Chapter 5, which re-
vealed that training could lead to fatigue and eye strain, as well as
exhibit learning effects, the sequence of electrode sets for each partic-
ipant was randomised to mitigate these concerns.

In the attention training study of Chapter 5, the number of flashes
progressively decreased due to the strong performance of the partici-
pants. The number of flashes in each run was therefore decreased to
simulate this behaviour.

The first two runs were used to collect calibration data. The words
are ‘THE’ and ‘QUICK’ with 12 flashes per row and column, as in
Chapter 5.

Once the BCI system was calibrated, participants were instructed
to copy-spell the word ‘DANCE’ 3 times for each of the 4 electrode
sets under comparison, totaling 12 runs. For the first iteration of each
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set, 10 flashes per row and column were used, reducing to 5 flashes
for the second, and further to 3 flashes for the final iteration.

The selection of ‘DANCE’, a word used in the study of Chapter 5

yet comprising only 5 letters, aimed to maintain brevity. Opting for
longer words would have unduly extended the duration of the train-
ing, especially considering the thrice-repeated spelling task for each
set.

6.3.2 Data Analysis

6.3.2.1 Spelling Accuracy

Spelling accuracy is a critical outcome measure for the P300 speller,
highly influenced by electrode selection, as demonstrated in the data
analysis study of Section 6.2. Examination of the spelling accuracy
also permits validation of the simulation results.

Similar to the data analysis study, the mean spelling accuracy for
each participant is calculated across all runs. Subsequently, a Fried-
man test is conducted to analyse differences in spelling accuracy be-
tween sets. This is followed by paired t-tests and Wilcoxon signed-
rank tests for pairwise comparisons. The effect size (Cohen’s D [152]
and correlation coefficient [153]) is also calculated for all pairwise
comparisons due to the small sample size of the study. These tests are
conducted without initially taking the different locations into account.
The data are then split by location and Friedman/repeated measures
ANOVA tests and paired t-tests/Wilcoxon signed-rank tests are con-
ducted again. Finally, within-set differences between the locations are
analysed using Wilcoxon rank-sum tests and Student’s t-tests.

6.3.2.2 Predicted Training Length

In the study described in Chapter 5, the total number of flashes, re-
flecting training length, was a key outcome, with the aim of acceler-
ating training using ILC over other methods of task difficulty adjust-
ment. Since the number of flashes in the current study was fixed, the
predicted number of flashes is analysed instead. The predicted num-
ber of flashes for the next run is determined by the ILC controller,
using the actual number of flashes (i.e. 10, 5, and 3) and the spelling
accuracy from each run. This is done for all 3 runs for each set, and
the total predicted number of flashes is then calculated as the sum of
the predicted number of flashes of these 3 runs. This yields a single
performance measure for each set and each participant; the predicted
training length.

The same statistical tests as for spelling accuracy are used for the
predicted training length to compare between-set differences without
taking location into account, between-set differences within each lo-
cation, and within-set differences between the locations.
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6.3.2.3 P300 Amplitude

The P300 amplitude at POz and Pz, common electrodes across the 4

sets included in this study, is also analysed. Target epochs were ex-
tracted from the 150 ms to 550 ms post-stimulus period of the EEG
signals. These are baseline-corrected, where the 150 ms period preced-
ing a stimulus is used as the baseline. The P300 amplitude is defined
as the difference between the negative and positive peak in these tar-
get epochs. The amplitude is averaged across trials and runs for each
participant and set. The same analysis as for spelling accuracy and
predicted training length is then conducted.

6.3.2.4 Effect of Location on Data Quality

To explore potential sources of variation between locations, the mains
electrical noise is analysed in relation to the EEG signals at POz and
Pz. Although 50 Hz was outside the passband of the filter used (1-
20 Hz), high power at 50 Hz could still indirectly impact the filtered
signal, potentially introducing artifacts or distortions.

To analyse the noise, the power at 50 Hz in the raw EEG signals,
which is a measure of the electrical noise in the environment, is cal-
culated first. Then, the average power between 1 and 20 Hz from the
same target epochs as described in Section 6.3.2.3, which is a measure
of the task-relevant EEG activity, is calculated. Both the noise power
and the EEG activity power are averaged over all runs and sets for
each participant as they are very similar. Lastly, the average power at
50 Hz is divided by the average power of the EEG activity to get the
noise-to-signal ratio (NSR), and the ratios are converted to decibels
(dB = 10log10(µV

2/Hz)).
Student’s t-tests are then conducted to analyse the difference in

NSR between the locations. The effect size using Cohen’s D measure
[152] is also calculated due to the small study sample size.

6.3.2.5 Comparison to Offline Data Analysis Results

Aiming to validate the data analysis study results (Section 6.2), Wilcoxon
rank-sum tests and Wilcoxon TOST are conducted with ± 11% equiv-
alence bounds to examine differences and equivalences in spelling
accuracy between experimental and simulated data.

6.3.2.6 Comparison to Performance with 32 Electrodes

To compare the spelling accuracy achieved with the different sets in
the current study with that achieved using 32 electrodes in the study
described in Chapter 5, Wilcoxon rank-sum tests and Wilcoxon TOST
with ± 11% equivalence bounds are conducted.
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6.3.3 Results

6.3.3.1 Spelling Accuracy

A Friedman test reveals that the choice of electrode set significantly
affects spelling accuracy (χ2(3) = 10.14, p = 0.017), when location is
not considered. While the pairwise comparisons do not show any
significance, the effect sizes between the 16-electrode set and all other
sets are large (4-electrode set: r = 0.68, 6-electrode set: r = 0.54, 8-
electrode set: r = 0.70).

Exclusively for Location 1, a Friedman test indicates significant dif-
ferences in spelling accuracy across the sets (χ2(3) = 9.13, p = 0.028).
Again, there are non-significant, but large, effect sizes between the 16-
electrode set and all other sets (4-electrode set: r = 0.92, 6-electrode
set: r = 0.86, 8-electrode set: r = 0.91).

In Location 2, repeated measures ANOVA shows no significant dif-
ferences in spelling accuracy among electrode sets (F(3,15) = 0.77, p =

0.534). Nevertheless, there are medium effect sizes between the 16-
electrode set and all other sets (4-electrode set: d = 0.69, 6-electrode
set: d = 0.40, 8-electrode set: d = 0.65).

Comparing within-set differences across locations reveals a signifi-
cant difference in the 16-electrode set (U = 23, p = 0.029). However,
large effect sizes are present in all other sets as well (4-electrode set:
r = 0.60, 6-electrode set: d = 1.33, 8-electrode set: d = 1.21).

The mean spelling accuracy for all sets across both locations, as il-
lustrated in Figure 6.7, varies notably between the two locations for
each set. Although these differences are mostly not statistically sig-
nificant, the large effect sizes suggest that with a larger sample size,
these differences might reach statistical significance.

6.3.3.2 Predicted Training Length

Disregarding location, a significant difference in predicted training
length is observed, as determined by a Friedman test (χ2(3) = 9.88,
p = 0.020). While not significant, there are medium to large effect
sizes between the 16-electrode set and all other sets (4-electrode set:
r = 0.68, 6-electrode set: r = 0.48, 8-electrode set: r = 0.63).

In Location 1, significant differences in predicted training length
between sets are noted (χ2(3) = 10.20, p = 0.017). Again, these differ-
ences lie between the 16-electrode set and the others as evidenced by
large effect sizes (4-electrode set: r = 0.92, 6-electrode set: r = 0.87,
8-electrode set: r = 0.91).

In Location 2, no significant differences in predicted training length
are found between sets (χ2(3) = 2.02, p = 0.568), though medium effect
sizes are observed between the 4- and 16-electrode sets (r = 0.55), and
the 8- and 16-electrode sets (r = 0.43).
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Figure 6.7: Mean spelling accuracy (%) in all sets and both locations. Statis-
tical analysis by Student’s t-tests and Wilcoxon rank-sum tests,
0.01 ⩽ p ⩽ 0.05 *.

Echoing the findings in spelling accuracy, a significant difference
in predicted training length emerges between locations for the 16-
electrode set, according to a Wilcoxon rank-sum test (U = 2.5, p =

0.041), but not the others. The effect sizes for the other sets are medium
to large (4-electrode set: r = 0.57, 6-electrode set: d = 1.20, 8-electrode
set: r = 0.46).

Predicted training length for all sets across both locations is de-
picted in Figure 6.8. It can be seen that, in both locations, the average
predicted training length is similar across the 4-, 6- and 8-electrode
sets, with the 16-electrode set resulting in shorter training. The train-
ing length is longer for all sets in Location 2, compared to Location
1.

6.3.3.3 P300 Amplitude

A Friedman test indicates no significant differences in P300 amplitude
among sets, independent of location, both for EEG signals measured
at Pz (χ2(3) = 1.44, p = 0.696) and at POz (χ2(3) = 3.36, p = 0.339). Pair-
wise comparisons confirm this result at Pz; however, at POz, there is
a non-significant but large effect size between the 4- and 16-electrode
sets (r = 0.53).
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Figure 6.8: Predicted training length, measured by total predicted number
of flashes. Statistical analysis by Student’s t-tests and Wilcoxon
rank-sum tests, 0.01 ⩽ p ⩽ 0.05 *.

For Location 1, there are no significant differences according to
repeated measures ANOVA, neither at Pz (F(3,15) = 0.78, p = 0.529)
nor at POz (F(3,15) = 0.53, p = 0.668).

Looking at Location 2 only, there are also no significant differences
at Pz (F(3,15) = 0.61, p = 0.620) or POz (F(3,15) = 2.55, p = 0.105).
However, there are large effect sizes between the 4-electrode set and
all other sets (6-electrode set: d = 1.09, 8-electrode set: d = 1.10, 16-
electrode set: d = 1.93).

While within-set differences in P300 amplitude between the loca-
tions are non-significant at Pz and POz, there are medium to large
effect sizes at POz for the 4-electrode set (d = 1.12), 8-electrode set
(d = 0.79) and 16-electrode set (d = 1.01).

Figure 6.9 shows the P300 amplitude as measured at Pz and POz.
As can be seen in the boxplots, the mean P300 amplitude is quite
similar across electrode sets, with higher amplitudes at Location 1.
These within-set differences are more pronounced at POz, compared
to Pz.

6.3.3.4 Effect of Location on Data Quality

Although the difference in mains noise relative to EEG activity (NSR)
is non-significant at both Pz (t(8) = −1.06, p = 0.328) and POz (t(8) =



92 optimising the experimental protocol

(a) (b)

Figure 6.9: Mean peak-to-peak amplitude in 150 ms to 550 ms window post-
stimulus. (a) Measured at Pz. (b) Measured at POz. Statistical
analysis by Student’s t-tests.

−1.28, p = 0.239), the effect size between the locations is medium at
Pz (d = 0.67) and large at POz (d = 0.81).

The mean NSRs can be seen in Figure 6.10, which shows that the
noise relative to EEG activity is higher in Location 2.

(a) (b)

Figure 6.10: Mean noise-to-signal ratio (NSR) at both locations. (a) Mea-
sured at Pz. (b) Measured at POz. Statistical analysis by Stu-
dent’s t-tests.

6.3.3.5 Comparison to Offline Analysis Results

The comparison of spelling accuracy for the 4-electrode set between
this experiment and the data analysis study of Section 6.2 reveals no
significant equivalence (W = 135.00, p = 0.067) or difference (U =

215.00, p = 0.682) between simulated and experimental data. This
means that the comparison is inconclusive.
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The same is true for the 6-electrode set (equivalence: W = 129.00,
p = 0.198; difference: U = 207.00, p = 0.564) and the 8-electrode set
(equivalence: W = 79.00, p = 0.248; difference: U = 174.00, p = 0.204).

Only the comparison between the simulated and experimental data
with the 16-electrode set yields conclusive results (equivalence: W =

115.00, p = 0.006; difference: U = 267.00, p = 0.509). This means that
the simulated and experimental data are statistically and practically
the same.

(a) (b)

(c) (d)

Figure 6.11: Comparison of spelling accuracy with different electrode sets in
experiment and simulation. (a) 4-electrode set. (b) 6-electrode
set. (c) 8-electrode set. (d) 16-electrode set. Statistical analysis
by Wilcoxon rank-sum tests.

6.3.3.6 Comparison to Performance with 32 Electrodes

The analysis comparing spelling accuracy using the 4-electrode set
with that achieved using 32 electrodes in the previous study (Chap-
ter 5) demonstrates a significant difference (U = 71.00, p < 0.001),
with no equivalence found (W = 13.00, p = 0.841), suggesting dis-
tinct performance outcomes.
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Figure 6.12: Mean spelling accuracy achieved with different electrode sets.
Data from the 4-, 6-, 8- and 16-electrode sets comes from the cur-
rent study, and the data from the 32-electrode set comes from
Chapter 5. Equivalence tests by Wilcoxon TOST, 0.001 ⩽ p <

0.01 **. TOST = two one-sided tests.
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The same is true for the 6-electrode set (equivalence: W = 33.00,
p = 0.819; difference: U = 113.00, p = 0.011) and the 8-electrode set
(equivalence: W = 16.00, p = 0.579; difference: U = 90.00, p = 0.002).

In contrast, the 16-electrode set is not statistically significantly dif-
ferent (U = 255.00, p = 0.682) and equivalent (W = 88.00, p = 0.004)
to the spelling accuracy with 32 electrodes.

6.3.4 Discussion

This study evaluates P300 speller performance across 4 electrode con-
figurations (4, 6, 8, and 16 electrodes) in two different locations. The
study reveals comparable spelling accuracy among the 4-, 6-, and 8-
electrode sets, with the 16-electrode configuration demonstrating en-
hanced performance in both locations. Similarly, the predicted train-
ing length, if the ILC controller would have been used to adapt the
number of flashes, is similar for the low electrode sets, and lower for
the 16-electrode set. Consistently, the P300 amplitude measured at
Pz and POz (common electrodes across all sets) shows no significant
variation between sets.

Notably, across all metrics, performance is inferior in Location 2

when compared to Location 1. The greater level of electrical noise
relative to EEG activity in Location 2 could partly explain this per-
formance disparity. However, it is believed that this is not the only
reason for the disparity. Most participants in Location 2 asked for
breaks between runs due to eye strain, with one participant request-
ing the lights to be dimmed. In contrast, no participant in Location 1

asked for any breaks. In Location 2, the bright artificial light reflect-
ing off the white wall behind the monitor likely contributed to in-
creased eye strain among participants. While the increased eye strain
and other environmental factors specific to Location 2 might have af-
fected participant attention and therefore performance in the speller,
the possibility cannot be discounted that the performance disparity
between the locations is incidental and caused by the different par-
ticipants, other environmental/situational factors such as the time
the experiment was conducted, or slight differences in experimental
setup. Future studies should ideally employ a within-subjects experi-
ment design with a larger sample size to more definitively ascertain
the impact of location on P300 speller performance.

Despite these considerations, the findings clearly indicate superior
performance of the 16-electrode set across all evaluated metrics. It is
also the only set that is equivalent to both the simulated results and
the performance with 32 electrodes. The simulated performance with
the 16-electrode set is also equivalent to the 32-electrode set. These
results indicate that it can be assumed that the results in Chapter 5

could be replicated using only 16 instead of 32 electrodes, without a
loss in performance.
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It remains unclear whether the observed reduction in spelling ac-
curacy with smaller electrode sets adversely impacts the efficacy of
attention training. Since using less electrodes not only saves time
and resources (both in terms of electroconductive gel and computing
power) but also reduces participant discomfort, a slight loss in perfor-
mance might be a worthwhile trade-off. Given the similarity between
the 4-, 6- and 8-electrode sets, it is decided to conduct a replication
of the attention training study (Chapter 5) using the 4-electrode set,
knowing that if the 4-electrode set results in worse outcomes than
the previous study, the 16-electrode set could still be used in future
studies.

6.4 evaluating the new protocol : study

6.4.1 Study Design

To explore the effects of using a smaller electrode set, which is pre-
sumed to yield inferior performance in the P300 speller, on the atten-
tion training outlined in Chapter 5, the study is replicated with 10

healthy adults. The study was approved by the Maynooth University
Ethics Committee (BSRESC-2023-36713). Except for two participants,
the study took place in Location 2 due to logistical constraints, as it
was the only environment available for conducting the experiments
without interruptions, despite the limitations noted in the preceding
section. The study procedure is mostly the same as the study of Chap-
ter 5; however, the current study employed 4 electrodes without using
the xDAWN spatial filter, in contrast to the previous use of 32 elec-
trodes with the filter.

Moreover, the number of runs and the selection of words for copy-
spelling was modified. In the Chapter 5 study, the adaptive part of the
training consisted of spelling the word ‘BEAUTIFUL’ 5 times, which
means that the number of flashes was only adapted 4 times. Aiming
to increase the adaptation opportunities offered by the ILC controller,
6-letter words were chosen over a 9-letter word, and 8 different words
were incorporated into the adaptive training segment. In contrast to
the Chapter 5 study, different words were chosen for each run to
enhance engagement, following previous participant feedback that
repeating the same word was monotonous and varied letters could
improve focus. Furthermore, in Chapter 5, there was a post-training
word with a fixed number of flashes to allow for comparison between
groups. Since there was no comparison between different groups in
this study, this post-training run was not necessary. The calibration
and evaluation runs remain the same. Consequently, the overall train-
ing length, in terms of the total letter count, is comparable between
the new (59 letters) and previous study (61 letters). However, 50 of
the 59 letters are in the adaptive part of the training in the new study,
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compared to only 45 of 61 letters in the previous study. The runs are
described in more detail in Section 6.4.1.3.

The remainder of the study procedure remains unchanged. All
tasks are briefly described in the following subsections.

6.4.1.1 Questionnaire

Participants completed identical questionnaires to those used in Chap-
ter 5. These included the fatigue-boredom questionnaire, where par-
ticipants rated their fatigue, alertness, boredom, and eye fatigue on a
10-point Likert scale before and after the training, and the NASA TLX
questionnaire for assessing mental, physical, and temporal demands,
effort, subjective performance, and frustration, completed post-training.
Further details on the questionnaires are provided in Section 5.2.1.

6.4.1.2 Random Dot Motion Task

Mirroring the study of Chapter 5, participants undertook 40 trials
of the RDM task without feedback before, and after, the training. To
familiarise participants with the task, 3 introductory runs consisting
of 6 trials each were conducted, accompanied by verbal feedback. The
RDM task is elaborated upon in Section 5.2.2.

6.4.1.3 P300 Speller

This study employed the identical P300 speller setup as used in Chap-
ter 5. Participants were tasked with copy-spelling 11 words, listed in
Table 6.1. For data analysis, runs are categorised into calibration, early
training, and late training phases, as outlined in the table.

6.4.2 Data Analysis

6.4.2.1 Questionnaire

Changes in fatigue, boredom, alertness, and eye fatigue are assessed
using paired t-tests and Wilcoxon signed-rank tests applied to the
fatigue-boredom questionnaire scores. Descriptive statistics are com-
puted for the scores from both the fatigue-boredom questionnaire and
the NASA TLX.

6.4.2.2 Random Dot Motion Task

The RDM task is analysed in terms of three metrics. The first metric is
accuracy, which is the percentage of correct trials in the task run. The
second metric is RT, which is the average time between coherent mo-
tion onset and button press for correct trials only. Given that accuracy
and RT are interrelated and their individual analysis offers an incom-
plete view of task performance, a composite score is calculated as
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Table 6.1: Runs in the P300 speller.

Stage Run Word Number of flashes

Calibration
1 THE

122 QUICK

3 DOG

Early Training

4 WIZARD 10

5 HUMBLE

varying
6 JOKERS

7 UNLOCK

8 THRIVE

Late Training
9 JUNGLE

varying10 SHADOW

11 FROZEN

Note: ‘Varying’ in the Number of flashes column indicates the adaptation of
flashes based on ILC controller adjustments.

the ratio of accuracy to RT. The difference in these metrics between
pre- and post-training is analysed by conducting paired t-tests and
Wilcoxon signed-rank tests.

Two study participants were significantly distracted during the post-
training run of the RDM task; one participant struggled to stay awake,
and another participant’s phone rang, which noticeably impacted
their performance in the task. Consequently, the analysis of RDM task
performance is repeated excluding these two distracted participants.

6.4.2.3 P300 Speller

The performance in the P300 speller task is analysed similarly to the
study described in Chapter 5. Training length in terms of total num-
ber of flashes, as well as spelling accuracy, are assessed to compare
these to the results in Section 5.5.3.

Additionally, changes in EEG signals are examined, focusing on
P300 amplitude, total power during target and nontarget trials, and
alpha power in nontarget trials. For this analysis, epochs from 150 ms
to 550 ms post-stimulus, with baseline removal, where the 150 ms
period preceding a stimulus is used as the baseline, are extracted.
The amplitude is defined as the difference between the positive and
negative peak in target epochs. The total power is calculated by av-
eraging the squared samples in target and nontarget epoch averages,
respectively. For alpha power analysis, signals are bandpass filtered
between 7 and 12 Hz. The 150 ms period following a nontarget stimu-
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lus that did not immediately follow a target stimulus is then isolated.
The power is then calculated in the same way as the total power.

Paired t-tests are conducted to compare EEG metrics in the cali-
bration stage and early training stage, and calibration stage and late
training stage, respectively.

6.4.2.4 Comparison to Previous Study

The outcomes of this study are benchmarked against the results from
the ILC group in the preceding study (Chapter 5), using a variety of
statistical tests for comprehensive comparison.

Fatigue-boredom questionnaire scores are analysed using repeated
measures ANOVA, using ranked data for non-normally distributed
datasets. For NASA TLX scores, Wilcoxon rank-sum tests and Stu-
dent’s t-tests are used.

Performance metrics of the RDM task are compared by repeated
measures ANOVA (on ranked data if necessary).

Wilcoxon TOST and t-TOST for equivalence testing, alongside Wilcoxon
rank-sum tests and Student’s t-tests for difference testing, are con-
ducted to compare spelling accuracy between this study and the pre-
vious one. Consistent with prior analyses, an equivalence bound of
11% is set.

The mean number of flashes is compared to the mean number of
flashes in the previous study using Wilcoxon rank-sum tests and Stu-
dent’s t-tests. Since the number of runs is different between the stud-
ies, the total number of flashes is not comparable.

EEG changes are compared by Wilcoxon rank-sum tests and Stu-
dent’s t-tests.

6.4.3 Results

6.4.3.1 Questionnaire

Figure 6.13 shows the pre- and post-training scores for each question
of the fatigue-boredom questionnaire. While fatigue scores increased
post-training, this increase is not significant, according to a paired
t-test (t(9) = −0.92, p = 0.38). On average, self-reported alertness
decreased after the training, but this is also not significant (t(9) =

1.60, p = 0.144). A non-significant increase in boredom according to
a Wilcoxon signed-rank test (W = 0, p = 0.174) is observed. Only eye
fatigue increased significantly post-training (t(9) = −4.63, p = 0.001).

Figure 6.14 shows the NASA TLX scores for each question. It can
be seen that mental demand, performance and frustration yielded
the highest scores. It should be noted that a high score for perfor-
mance means that participants perceived their performance as poor.
On the other hand, physical and temporal demand, and frustration
were scored low to neutral, on average.
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(a) (b)

(c) (d)

Figure 6.13: Scores of the fatigue-boredom questionnaire. (a) Q1 - Fatigue.
(b) Q2 - Alertness. (c) Q3 - Boredom. (d) Q4 - Eye Fatigue. Sta-
tistical analysis by paired t-test and Wilcoxon signed-rank tests,
0.001 ⩽ p < 0.01 **.
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Figure 6.14: Scores of the NASA Task Load Index (TLX) questionnaire.

6.4.3.2 Random Dot Motion Task

Figure 6.15 shows the accuracy, RT and score in the RDM task before
and after the training. This figure shows all participants. It can be seen
that the changes between pre- and post-training are small, and are
found to be non-significant, as confirmed by Wilcoxon signed-rank
tests and paired t-tests (accuracy: W = 23.5, p = 0.953, RT: W = 38,
p = 0.322, score: t(9) = −0.92, p = 0.383).

When the two participants who were distracted in the post-training
RDM task are excluded from analysis, these results change. While
changes in accuracy are still non-significant (W = 10.5, p = 0.612),
there is now a non-significant but large effect size in RT (r = 0.55), and
a significant increase in score post-training (t(9) = −3.39, p = 0.012).
These changes can be seen in Figure 6.16.

6.4.3.3 P300 Speller

The spelling accuracy over the course of the training (runs 4 to 11)
is depicted in Figure 6.17. The training sessions averaged a spelling
accuracy of 62.29%, with a standard deviation of 10.60%.

Figure 6.18 shows the number of flashes for each adaptive run (i.e.
runs 5 to 11). On average, 7.1 flashes per row and column (± 3.8) were
used in each run, with an average total of 49.6 flashes (± 26.3).

Figure 6.19a presents the average P300 amplitude across differ-
ent training stages, revealing no significant changes. This observa-
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(a) (b)

(c)

Figure 6.15: Performance in the Random Dot Motion (RDM) task. (a) Accu-
racy (%). (b) Response time (RT, s). (c) Score, calculated as ac-
curacy divided by response time. Statistical analysis by paired
t-tests and Wilcoxon signed-rank tests.
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(a) (b)

(c)

Figure 6.16: Performance in the Random Dot Motion (RDM) task, with two
participants that were distracted excluded from analysis. (a) Ac-
curacy (%). (b) Response time (RT, s). (c) Score, calculated as ac-
curacy divided by response time. Statistical analysis by paired
t-tests and Wilcoxon signed-rank tests, 0.01 ⩽ p ⩽ 0.05 *.
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Figure 6.17: P300 spelling accuracy throughout the training.

Figure 6.18: Number of flashes per row and column throughout the training.
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tion is supported by paired t-tests, which show no significant dif-
ference when comparing the amplitude in the early training stage
to the calibration stage (t(9) = 0.75, p = 0.475), as well as the late
training stage to the calibration stage (t(9) = −0.65, p = 0.530). Fig-
ure 6.19b illustrates the early-training-to-calibration and late-training-
to-calibration ratios. It can be seen that the late-training-to-calibration
ratio is slightly above unity on average, indicating a slight (non-significant)
increase in P300 strength.

(a) (b)

Figure 6.19: P300 peak-to-peak amplitude. (a) Mean amplitude in each stage.
(b) Amplitude ratios of the different stages. Statistical analysis
by paired t-tests.

Analysis of total power in target epochs, detailed in Figure 6.20,
shows that while the increase from the calibration to the early train-
ing stage is not statistically significant (t(9) = 0.55, p = 0.593), a
significant reduction in power is observed from calibration to the late
training stage (t(9) = 2.31, p = 0.046).

The changes in total power of nontarget epochs, which can be seen
in Figure 6.21, are not significant (calibration to early training: t(9) =
1.42, p = 0.189, calibration to late training: t(9) = 1.76, p = 0.112).

The same goes for alpha power following nontarget stimuli, pre-
sented in Figure 6.22, where changes from calibration to early train-
ing and calibration to late training are non-significant (t(9) = 1.00,
p = 0.342 and t(9) = 1.95, p = 0.083, respectively).

6.4.3.4 Comparison to Previous Study

There is no statistically significant difference in fatigue-boredom ques-
tionnaire scores between the current study and the one in Chapter 5,
according to repeated measures ANOVA. NASA TLX questionnaire
performance scores significantly differed (U = 38.5, p = 0.004), with
participants in the current study rating their performance as worse
than participants in the previous study (mean score of 11.1 (± 4.04)
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(a) (b)

Figure 6.20: Total power of target trials. (a) Mean power in each stage. (b)
Power ratios of the different stages. Statistical analysis by paired
t-tests, 0.01 ⩽ p ⩽ 0.05 *.

(a) (b)

Figure 6.21: Total power of nontarget trials. (a) Mean power in each stage.
(b) Power ratios of the different stages. Statistical analysis by
paired t-tests.
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(a) (b)

Figure 6.22: Alpha power in nontarget trials. (a) Mean power in each stage.
(b) Power ratios of the different stages. Statistical analysis by
paired t-tests.

and 8.9 (± 2.61), respectively). No significant differences exist in the
other questions.

Similarly, there are no statistically significant differences in the
RDM task (accuracy, RT and score), according to repeated measures
ANOVA.

A significant difference in spelling accuracy is observed (t(23) =

6.83, p < 0.001), with the current study achieving a mean of 62.29%
(± 10.60%), compared to 88.44% (± 7.19%) in the previous study. The
accuracies are not equivalent within 11% (t(23) = 3.96, p = 1).

The mean number of flashes is also statistically significantly differ-
ent (U = 13, p < 0.001), with an average of 7.1 (± 3.8) flashes in the
current study, and only 3.3 (± 0.5) flashes in the previous study.

Comparing the training-to-calibration ratios from the previous study,
to the early-training-to-calibration ratios from this study, reveals a sig-
nificant difference for all EEG metrics (P300 amplitude: t(23) = −3.16,
p = 0.005, total target power: U = 20, p = 0.001, total nontarget
power: U = 15, p < 0.001, alpha power: t(23) = −3.24, p = 0.004). No
significant differences exist between the post-training-to-calibration
and late-training-to-calibration ratios.

6.4.4 Discussion

This study replicates the experiment detailed in Chapter 5, using a
reduced electrode set of only 4 electrodes and incorporating a greater
number of shorter words. The study outcomes in terms of question-
naire scores, performance in the RDM task and P300 speller, and EEG
changes throughout the training are analysed.

Consistent with previous findings, participants experienced eye fa-
tigue as a result of the training, corroborating feedback from Sec-
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tion 6.3 regarding significant eye strain, particularly in Location 2.
The questionnaire scores are quite similar to the previous study. This
suggests that the perceived training workload remains consistent re-
gardless of electrode count, varying setups, and environmental condi-
tions. Only the perceived performance is different between this study
and the study of Chapter 5. This is expected as the spelling accuracy
was indeed lower in this study compared to the one in Chapter 5.

In Chapter 5, a significant increase in accuracy in the ILC group
was seen, but not in RT. In the current study, accuracy changes were
minimal, with a notable trend toward improved RT among partici-
pants. This is in line with the results of the study by Arvaneh et al.
[96], although a significant change is only observed when two par-
ticipants who were heavily distracted during the post-training RDM
task are excluded from analysis.

As anticipated, spelling accuracy within the P300 speller task is
significantly lower in this study compared to Chapter 5, likely at-
tributable to the reduced electrode configuration. The reduced spelling
accuracy resulted in a much higher number of flashes in the training.
While almost all participants in the ILC group in the Chapter 5 study
reached a single flash per row and column at the end of the training,
no participant in this study got to less than 3 flashes per row and
column.

Contrary to the study of Chapter 5, which demonstrated an in-
crease in target power and a decrease in alpha power post-training,
the current study failed to replicate these positive EEG signal changes.
This is likely caused by the poor performance eliminating the training
effect seen in Chapter 5.

The rationale behind using fewer electrodes is primarily to expedite
the experiment setup process, a significant consideration given that
the setup duration often exceeded the training time in the Chapter 5

study. Using 4 electrodes sped up the setup significantly, with less
than 10 minutes for most participants. However, the current study
results show that the training itself was significantly longer as a result
of using less electrodes, and the training effect was significantly lower.
This indicates that the primary advantage of using fewer electrodes
is negated.

Considering these study outcomes and previous findings described
in this chapter suggesting equivalence between 16- and 32-electrode
configurations, 16 electrodes will be used in future studies.

6.5 summary

This chapter describes three different studies, comprising both exper-
imental and analytical approaches. Motivated by the lengthy setup
time observed in the study of Chapter 5 and limited use of the ILC
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controller, these studies aim to refine the attention training protocol
detailed in Chapter 5.

• Electrode Selection: Offline Analysis

– Overview: Offline analysis using data from Chapter 5 to
identify optimal electrode configurations with fewer than
32 electrodes, based on xDAWN weights. P300 speller per-
formance is assessed with electrode sets ranging from 4 to
32 electrodes, with and without using the xDAWN spatial
filter.

– Key findings: Larger electrode sets (32, 16, and 8 electrodes)
achieved higher accuracy with the xDAWN spatial filter,
while smaller sets (6 and 4 electrodes) performed better
without it.

• Electrode Selection: Study

– Overview: Within-subjects study with 10 healthy adults to
compare 4 electrode sets (16, 8, 6, and 4 electrodes) identi-
fied in the offline analysis. The study was conducted in two
different office locations to assess P300 speller accuracy in
real-world conditions.

– Key findings: The 16-electrode set achieved the best over-
all performance in both locations, while the 4-, 6-, and 8-
electrode sets had comparable but lower accuracy. Perfor-
mance was generally lower in Location 2, possibly due to
environmental factors like lighting causing increased eye
strain.

– Implications: The 16-electrode set was validated as the most
efficient configuration, achieving shorter predicted train-
ing times and high accuracy even in less controlled en-
vironments. However, reduced P300 speller performance
does not necessarily compromise training efficacy.

• Evaluating the New Protocol: Study

– Overview: The study in Chapter 5 was replicated with only
4 electrodes to explore the impact of a minimal electrode
set on training efficacy.

– Key findings: The 4-electrode setup resulted in significantly
lower spelling accuracy, longer training times, and less pro-
nounced EEG changes, suggesting reduced training effi-
cacy.

– Implications: Reduced P300 speller performance significantly
compromises training effectiveness. This means that the
saved time, resources, and cost due to a small electrode
set are not a worthwhile trade-off in this case.
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Given these outcomes, it can be concluded that future studies should
employ a 16-electrode setup, which offers a balance between reduced
setup time and maintained P300 speller performance. However, fu-
ture research should investigate whether an electrode set between 8

and 16 electrodes might provide an even better trade-off, further re-
ducing setup time while still maintaining training efficacy.



7
AT T E N T I O N T R A I N I N G F O R I M P R O V E D M O T O R
S K I L L L E A R N I N G I N S U R G I C A L T R A I N I N G

7.1 motivation

The P300-based attention training developed in this research project
proved effective, as demonstrated in Chapter 5, where the ILC con-
troller significantly accelerated the training process. However, the
attention improvements in both Chapter 5 and Section 6.4 were as-
sessed using the RDM task described in Section 5.2.2. While the RDM
task is a highly specific and effective metric for evaluating attention in
a controlled environment, exploring how attentional improvements
following NFB training transfer to real-world scenarios is of signifi-
cant interest.

This chapter describes a study conducted to assess the efficacy and
feasibility of P300-based attention training in a real-world context,
specifically within surgical training.

Surgical training must meet high standards, yet teaching opportuni-
ties are often limited due to the demanding schedules of experienced
surgeons and increasing numbers of surgical trainees [10, 154]. Con-
sequently, developing methods to accelerate surgical training without
compromising skill acquisition is crucial.

Attention plays a role in motor learning in several ways. Firstly,
selective attention significantly affects motor skill performance, as
demonstrated by studies using dual-task paradigms. In these studies,
participants perform a motor task alongside a cognitive task (such
as mental arithmetic), requiring divided attention, which often leads
to a decrease in performance [155]. In the context of surgical skills,
dual-task paradigms have shown that divided attention negatively
impacts performance, particularly among novice surgeons, affecting
either the secondary cognitive task [156, 157] or both the primary
and secondary tasks [158]. This suggests that enhancing selective at-
tention during surgical training could enhance skill acquisition and
performance.

Additionally, the concept of externally focused attention, where in-
dividuals concentrate on visual information and task-relevant cues
rather than internal sensations, has been proposed to improve motor
learning and skill retention [159]. Studies have shown that directing
attention externally enhances the learning and retention of various
athletic motor skills [155, 160]. This theory suggests that interventions
aimed at improving sustained visual attention, such as P300-based
NFB training, could positively impact surgical motor skills.

111
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Table 7.1: Number of participants in each study group.

Group 1 Group 2 Group 3 Group 4 Group 5

17 16 18 18 19

Given these considerations, it is hypothesised that the NFB atten-
tion training developed in this thesis will enhance surgical skill per-
formance in surgical trainees.

In this study, medical students are introduced to surgical tasks for
the first time, with some students undergoing one or two NFB train-
ing sessions. Their performance is assessed both immediately after
learning the tasks and again up to 7 weeks later, comparing outcomes
between those who received NFB training and those who did not.

The study design is detailed in Section 7.2. Data analysis methods
are explained in Section 7.3, followed by the results in Section 7.4.
These results are discussed in Section 7.5, and the chapter concludes
in Section 7.6.

7.2 study design

The study involved 5 groups of medical students, with the aim of 20

participants in each group. The sample size was determined based on
previous literature, which investigated the use of cognitive training
in surgical education [154]. Students were recruited from the Royal
College of Surgeons in Ireland and University College Dublin, with
experiments conducted at those universities and the Beacon Hospital.
Ethical approval was obtained from all participating institutions.

A total of 261 students enrolled in the study, with 115 attending the
workshop described below. 84 NFB training sessions were conducted
with 65 students (i.e. 19 students participated in two sessions). After
losing 27 students to follow-up, 88 students are included in this anal-
ysis. The distribution of participants across the groups is shown in
Table 7.1.

Figure 7.1 gives an overview of the tasks that were completed by
each group. All participants, who were naive to surgical tasks, at-
tended a workshop where they learned suturing and laparoscopic
surgery skills from a surgeon. These skills were tested in two sessions:
the first test was conducted shortly after the workshop (on the same
day for most participants), and the second test occurred between 1

and 7 weeks later (with an average of 3 weeks) to evaluate skill reten-
tion. The surgical tasks are described in more detail in Section 7.2.1.

After the first test, participants completed a questionnaire on their
sleep hygiene during the 4-week period preceding the study, includ-
ing questions on sleep length and quality. They also filled out the
NASA TLX after both tests to assess their subjective workload during
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the surgical tasks. However, the data from these questionnaires is not
yet available and is therefore not included in this analysis.

Group 1 participants did not undergo any additional training; they
only completed the workshop and the two tests. Group 2 participants
performed cognitive simulation techniques between the two tests, as
described in Section 7.2.3. Participants in Groups 3, 4, and 5 com-
pleted a single NFB training session before the first test, detailed in
Section 7.2.2. Additionally, Group 4 completed a second NFB session
before the second test. Group 5 participants received both NFB train-
ing before the first test and engaged in cognitive simulation between
the tests.

Upon completing the study, all participants received a suturing
training kit, including custom-made synthetic skin and suturing sup-
plies. They were also offered refreshments after the second test.

Figure 7.1: Overview of study procedure.

7.2.1 Surgical Training

All participants attended a surgical training workshop, lasting up to
3 hours, where an experienced surgeon taught various surgical skills.
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After instruction, students practiced these skills, receiving help and
feedback from the surgeon, who also answered their questions.

Participants completed two tests, where their surgical skills were
recorded on video for later evaluation. The first test took place shortly
after the workshop, and the second test occurred between 1 and 7

weeks later. The surgical tasks that were evaluated in these tests are
described in the following subsections.

7.2.1.1 Suturing Task

In the suturing task, participants performed various suturing tech-
niques on synthetic skin while their hands and the synthetic skin
were recorded. To ensure anonymity, all participants wore white la-
tex gloves and were asked to remove any jewelry.

These recordings were later independently analysed and scored by
3 different experienced surgeons according to a scoring sheet, which
evaluates the quality of the suturing technique. At the time of writing
this thesis, the scoring of this task has not been completed, and is
therefore not included in the analysis and results presented in this
chapter.

7.2.1.2 Laparoscopic Simulation Task

Participants also completed a laparoscopic simulation task using a la-
paroscopic training box, similar to the one shown in Figure 7.2. They
were instructed to move pegs from one side of the board to the other,
passing the pegs between tools in mid-air. Participants were told to ig-
nore any dropped pegs. They were only able to see the board through
a screen in front of them, which was recorded.

Figure 7.2: Example of laparoscopic training box with peg board. Source:
[161].

The laparoscopic simulation task was scored according to a modi-
fied version of the McGill Inanimate System for Training and Evalu-
ation of Laparoscopic Skills (MISTELS) [162]. The score is measured
in time (seconds) required to complete the task, with a penalty of 15
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seconds added for each dropped peg. Thus, a lower score indicates
improved performance, reflecting faster task completion and fewer
errors. Both task completion time and accuracy have been shown to
deteriorate under dual-task conditions [158, 163], which suggests that
these metrics are impacted by attention. Due to the objectivity of this
score, the recordings for this task were assessed by only one person.

7.2.2 Attention Training

Groups 3, 4, and 5 completed one or two NFB training sessions, each
lasting less than an hour, including setup. These sessions were con-
ducted shortly after the workshop and before the first test. Due to
scheduling issues, some participants had a longer interval between
the workshop, training, and testing. Group 4 participants completed
the attention training again before the second test.

The attention training followed the protocol described in Section 6.4,
with the modification of using 16 electrodes instead of 4. An overview
of the training session is provided in Table 7.2 for reference.

Table 7.2: Runs in the P300 speller.

Stage Run Word Number of flashes

Calibration
1 THE

122 QUICK

3 DOG

Early Training

4 WIZARD 10

5 HUMBLE

varying
6 JOKERS

7 UNLOCK

8 THRIVE

Late Training
9 JUNGLE

varying10 SHADOW

11 FROZEN

Note: ‘Varying’ in the Number of flashes column indicates the adaptation of
flashes based on ILC controller adjustments.

7.2.3 Cognitive Simulation

Participants in Groups 2 and 5 were instructed to use cognitive simu-
lation techniques, involving the visualisation of the surgical tasks, as
frequently as possible between the two tests. Recognising the link
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between motor imagery and motor execution [164, 165], cognitive
simulation is emerging as an effective training technique in surgical
training [10, 154, 166].

Participants were guided by an app called “Surgical CogSim”, de-
veloped by Amodisc, and their activity levels on the app were moni-
tored to assess adherence to the study protocol.

Although the results of the cognitive simulation groups are in-
cluded in this chapter for completeness, the cognitive simulation as-
pect is not the primary focus and is therefore not analysed in detail.
Cognitive simulation was included in this study as both an alterna-
tive and complementary cognitive training method to NFB training.
This approach allowed for a comparison of the effectiveness of each
method individually, as well as in combination, to determine whether
one is superior or if their combination provides greater benefits.

7.3 data analysis

7.3.1 Offline EEG Processing

The EEG signals are processed similarly to the procedures outlined
in Section 5.4.1, with one difference. The signals are re-referenced to
FC1 instead of Fz, as the Fz electrode is not used in this study. FC1

was chosen because it is the closest available electrode to Fz. Electrode
selection (C3, Cz, C4, P3, Pz, P4), filtering, epoch segmentation, and
rejection follow the methods detailed in Section 5.4.1.

7.3.2 Surgical Training

A repeated measures ANOVA is conducted to analyse the scores
across the stages (first test, second test) and between groups. The
analysis is performed on ranked data to address non-normality in
some conditions. The time interval between the first and second tests
is included as a covariate, as it may significantly impact the scores.

Post-hoc Kruskal-Wallis tests are used to explore between-group
differences for both tests, while paired t-tests and Wilcoxon signed-
rank tests are applied to examine within-group differences.

7.3.3 Attention Training

The outcomes analysed in this study mirror those in Section 5.4.4 and
Section 6.4.2.3. For Group 4, only the first session is included in this
analysis, with a separate analysis of the repeat NFB sessions detailed
in Section 7.3.3.1.

Performance in the P300 speller is assessed by analysing the to-
tal number of flashes in the session and the mean spelling accuracy



7.4 results 117

across all runs. Due to non-normality in the data, Kruskal-Wallis tests
are used to investigate between-group differences in these outcomes.

Changes in EEG signals are investigated using P300 peak-to-peak
amplitude, total power in target and nontarget trials, and alpha power
in nontarget trials. Repeated measures ANOVA tests on ranked data
are conducted to compare these metrics across different training stages.
Post-hoc Kruskal-Wallis tests examine between-group differences, while
paired t-tests and Wilcoxon signed-rank tests analyse within-group
differences.

7.3.3.1 Repeat Neurofeedback Session

To investigate changes in P300 speller performance and EEG signals
across NFB sessions, paired t-tests and Wilcoxon signed-rank tests are
conducted on mean spelling accuracy, total number of flashes, and
the early-training-to-calibration and late-training-to-calibration ratios
of the previously mentioned EEG metrics.

Agreement between the xDAWN spatial filter weights across the
two sessions is assessed using intraclass correlation coefficients (ICCs)
[167] for each participant. An ICC of 0 indicates no agreement, while
an ICC of 1 signifies perfect agreement.

7.3.4 Correlation between Attention Training and Surgical Training

Following the approach outlined in Section 5.4.5, potential correla-
tions between attention training and surgical task performance are
investigated.

The metric used for the surgical training task is the difference in
scores between the first and second tests. Attention training perfor-
mance is quantified by mean and minimum spelling accuracy. Changes
in EEG signals are quantified using the early-training-to-calibration
and late-training-to-calibration ratios of P300 amplitude, total power
of target and nontarget trials, and alpha power of nontarget trials.

Pearson’s correlation coefficient is applied to normally distributed
data, while Spearman’s correlation coefficient is used for non-normal
data. These tests are conducted without considering group assign-
ments, as there are no significant between-group differences in the
metrics used.

7.4 results

7.4.1 Surgical Training

A repeated measures ANOVA on the laparoscopic simulation task
scores, with time difference between tests as a covariate, reveals a
significant main effect of stage (F(1,87) = 10.00, p = 0.002). The time
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difference does not significantly affect the scores (F(1,87) = 0.12, p =

0.729), so it is excluded from subsequent analyses.
There are no significant between-group difference in the first test

(χ2(4) = 1.95, p = 0.745) or the second test (χ2(4) = 0.85, p = 0.932)
according to Kruskal-Wallis tests. Paired t-tests and Wilcoxon signed-
rank tests indicate that participants in Group 3 had significantly lower
scores in the second test compared to the first (t(17) = 3.40, p = 0.003),
whereas no significant differences are observed between tests in the
other groups.

Figure 7.3a shows the scores for both tests in each group, while the
difference in scores between the tests is presented in Figure 7.3b to
highlight the individual improvement (negative difference) or deterio-
ration (positive difference) of scores in each group. It can be seen that
all groups improved on average, with the largest average improve-
ment seen in Group 3.

(a) (b)

Figure 7.3: Scores of the laparoscopic simulation task. (a) Score in each test.
(b) Difference in score between second and first test.Spelling ac-
curacy in the P300 speller. Statistical analysis by Kruskal-Wallis
tests and paired t-tests/Wilcoxon signed-rank tests, 0.001 ⩽ p <

0.01 **.

7.4.2 Attention Training

7.4.2.1 P300 Speller Performance

Figure 7.4 and Figure 7.5 show the spelling accuracy and total num-
ber of flashes for each group. The data indicate that most participants
maintained relatively high spelling accuracy throughout the experi-
ment, even as the number of flashes progressively decreased.

Kruskal-Wallis tests confirm that there are no significant between-
group differences in spelling accuracy (χ2(2) = 0.26, p = 0.877) or
number of flashes (χ2(2) = 1.35, p = 0.508).
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(a) (b)

Figure 7.4: Spelling accuracy in the P300 speller. (a) Mean accuracy (%) in
each run, standard deviation illustrated by shading. (b) Mean
accuracy (%) over all runs. Statistical analysis by Kruskal-Wallis
tests.

(a) (b)

Figure 7.5: Number of flashes in the P300 speller. (a) Mean number of flashes
in each run, standard deviation illustrated by shading. (b) Total
number of flashes over all runs. Statistical analysis by Kruskal-
Wallis tests.
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7.4.2.2 EEG Signals

A repeated measures ANOVA on mean P300 amplitude across differ-
ent training stages reveals a significant main effect of stage (F(2,108) =

480.99, p < 0.001). A Kruskal-Wallis test confirms that there are no
significant between-group differences in any of the three stages. All
groups experienced a significant increase from the calibration stage,
in both the early (Group 3: t(17) = −5.23, p < 0.001, Group 4: t(17) =
−4.83, p < 0.001, Group 5: W = 12, p < 0.001) and late training stage
(Group 3: t(17) = −6.76, p < 0.001, Group 4: W = 0, p < 0.001, Group
5: W = 0, p < 0.001). Mean P300 amplitude in each stage, along with
the ratios of different stages compared to calibration, are presented
in Figure 7.6.

(a) (b)

Figure 7.6: P300 peak-to-peak amplitude. (a) Mean amplitude in each stage.
(b) Amplitude ratios of the different stages. Statistical analysis
by Kruskal-Wallis tests and paired t-tests/Wilcoxon signed-rank
tests, p < 0.001 ***, p < 0.01 **, p ⩽ 0.05 *.

Similarly to the P300 amplitude, the total power in target trials
increased significantly from the calibration stage (F(2,108) = 74.14,
p < 0.001) in all groups, in both the early training (Group 3: W = 27,
p = 0.008, Group 4: W = 25, p = 0.007, Group 5: W = 21, p = 0.002)
and the late training stages (Group 3: W = 8, p < 0.001, Group 4:
t(17) = −5.03, p < 0.001, Group 5: W = 8, p < 0.001). The total target
power is illustrated in Figure 7.7.

A repeated measures ANOVA test on total power of nontarget trials
also reveals a significant main effect of stage (F(2,108) = 121.23, p <

0.001). A significant increase from calibration to early training stages
is seen in Group 3 (t(17) = −4.07, p < 0.001) and Group 5 (W = 30,
p = 0.007), and in all groups from calibration to late training stages
(Group 3: t(17) = −4.95, p < 0.001, Group 4: t(17) = −2.55, p = 0.021,
Group 5: W = 0, p < 0.001). Figure 7.8 shows the total nontarget
power in the different stages.
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(a) (b)

Figure 7.7: Total power in target trials. (a) Mean total power in each stage. (b)
Total power ratios of the different stages. Statistical analysis by
Kruskal-Wallis tests and Wilcoxon signed-rank tests, p < 0.001
***, p < 0.01 **, p ⩽ 0.05 *.

(a) (b)

Figure 7.8: Total power in nontarget trials. (a) Mean total power in each
stage. (b) Total power ratios of the different stages. Statisti-
cal analysis by Kruskal-Wallis tests and paired t-tests/Wilcoxon
signed-rank tests, p < 0.001 ***, p < 0.01 **, p ⩽ 0.05 *.
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A significant effect of stage on alpha power is also observed
(F(2,108) = 235.47, p < 0.001). While all groups experienced a signif-
icant increase in alpha power in the late training stage compared to
the calibration stage (Group 3: W = 3, p < 0.001, Group 4: W = 23,
p = 0.005, Group 5: W = 15, p = 0.002), only Group 3 experienced
a significant increase from the calibration to the early training stage
(W = 22, p = 0.006). The alpha power can be seen in Figure 7.9.

(a) (b)

Figure 7.9: Alpha power in nontarget trials. (a) Mean alpha power in each
stage. (b) Alpha power ratios of the different stages. Statisti-
cal analysis by Kruskal-Wallis tests and paired t-tests/Wilcoxon
signed-rank tests, p < 0.001 ***, p < 0.01 **, p ⩽ 0.05 *.

7.4.2.3 Repeat Neurofeedback Sessions

The only outcome where significant differences between the first and
second NFB session are revealed by a Wilcoxon signed-rank test is
mean spelling accuracy (W = 115, p = 0.016). The mean spelling
accuracy achieved by each participant in Group 4 in the two session
is illustrated in Figure 7.10.

Figure 7.11 shows the xDAWN weights and ICC for each partic-
ipant in Group 4. The agreement between weights across sessions
is highly variable, with even the highest ICC values indicating only
moderate agreement between xDAWN weights across sessions.

7.4.3 Correlation between Attention Training and Surgical Training

No significant correlations are found between spelling accuracy, EEG
changes, and scores on the laparoscopic simulation task.
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Figure 7.10: Mean spelling accuracy (%) over all runs in both neurofeedback
(NFB) training sessions. Red line is line of equality.

Figure 7.11: xDAWN weights for each participant in both neurofeedback
(NFB) training sessions. Red line is line of equality, Intraclass
Correlation Coefficient (ICC) is shown in brackets after the par-
ticipant ID.
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7.5 discussion

This study explores the effects of NFB training and cognitive simula-
tion on surgical skills. However, the results presented here are based
on preliminary data, as only a portion of the study data was available
at the time of writing. Consequently, these findings may not fully rep-
resent the outcomes of the study.

No significant differences in laparoscopy scores are found between
groups in either of the two tests. Only Group 3, which received a
single NFB training session, showed a significant improvement in the
second test. Given that the two other NFB groups did not show simi-
lar improvements, the observed effect in Group 3 is likely coincidental
rather than a result of the NFB training.

There is also no significant correlation between performance and
EEG changes in the attention training and performance in the la-
paroscopy task. This correlation is explored to determine whether
attention training may only enhance surgical skills in participants
who performed well, were sufficiently challenged, or showed posi-
tive EEG responses to the training. The lack of correlation suggests
that this was not the case.

These findings could suggest that the attention improvements re-
sulting from NFB training may not transfer to the skills required
for the laparoscopy task. Another possible explanation is that one
or two training sessions may be insufficient to produce such transfer
effects. While a single session was sufficient to show improvements
in the RDM task, as demonstrated in Chapter 5, NFB training is typ-
ically conducted over 10 or more sessions spanning several weeks or
months to achieve lasting changes [50]. This extended training period
might be especially important for facilitating far transfer effects, such
as those investigated in this study. Additionally, the laparoscopy task
may have been too simple to benefit from the enhanced attentional
control fostered by NFB training. Given that this was the easier of
the two tasks included in the study, the suturing task, which involves
a more detailed assessment of technique, may provide a better mea-
sure of the effects of NFB training on surgical skills. The more de-
tailed assessment categories in the suturing task may offer stronger
evidence of transfer effects or provide insight into how enhanced at-
tention might influence suturing skills.

Given the study findings, which did not support the hypothesis
of transfer effects, it might have been beneficial to include the RDM
task alongside the surgical tasks to better understand the relation-
ship between NFB-related attention improvements and surgical skill
acquisition. Including the RDM task as an additional measure could
have allowed for direct correlations between improvements in visual
attention and performance in the surgical task, offering a more com-
prehensive view of the transferability of training effects.
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Interestingly, the analysis of EEG signals reveals that most partici-
pants in the NFB groups exhibited a stronger P300 response, as well
as higher total power in target trials during the later stages of train-
ing. These results are consistent with those observed in Chapter 5 and
Section 6.4. However, unlike participants in previous studies, these
participants also showed increased alpha power and total power in
nontarget trials. This increase in nontarget activity may suggest that
the NFB training led to heightened overall brain activity.

Repeat NFB sessions in Group 4 provided an opportunity to anal-
yse performance and EEG changes across sessions. While most met-
rics remained stable, a slight decrease in spelling accuracy was ob-
served in the second session for some participants. This decline could
be attributed to reduced motivation, as the novelty of the experi-
ment may have diminished. Additionally, the timing of the sessions
may have played a role, with the first session conducted during the
semester and the second session typically occurring during or after
exam time, potentially affecting participant focus and engagement.

The stability of xDAWN spatial filter weights across NFB sessions
is also examined. In Section 6.2, these weights were used to identify
electrode sets, and their stability across sessions could have implica-
tions for personalising electrode configurations in long-term training.
However, the agreement of xDAWN weights is low for most partici-
pants and moderate for a few, suggesting that xDAWN weights may
not be reliable for this purpose.

The deployment of the NFB system in this study is notable be-
cause it involved a real-world setting with a large number of users:
84 sessions with 65 participants, whose primary interest was surgi-
cal training rather than merely participating in an NFB experiment.
This real-world application study demonstrates the feasibility of in-
tegrating NFB training into professional training environments. By
reducing the number of electrodes to 16, the setup time was halved
compared to the initial study in Chapter 5, enabling the training of
up to 7 participants per day. This scalability is crucial for practical
application in real-world settings and could be further enhanced by
the use of dry electrodes, which would further reduce setup time and
might improve participant comfort.

Not all participants undergoing the NFB training were equally mo-
tivated or interested in the training, which likely limited its training
effects. Motivation is known to be a critical factor in the success of
NFB training, as it directly impacts engagement and the ability to
achieve the desired cognitive changes [18]. The observation that mo-
tivation varied among participants suggests that incorporating gam-
ification elements and introducing a reward system could enhance
participant engagement and motivation. This would likely make the
training more effective, especially in real-world settings where main-
taining participant interest can be challenging.
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A significant advantage of the NFB training over the self-guided
cognitive simulation was its structured and supervised nature, which
ensured consistent adherence to the study protocol. This consistency
allows for more reliable comparisons within the NFB groups. In con-
trast, the self-guided cognitive simulation lacked direct oversight, mak-
ing it challenging to verify whether participants were fully engaged
or correctly following the prescribed training. This lack of control po-
tentially affects the outcomes and may contribute to the absence of
significant improvements in that group.

7.6 summary

This chapter presents the preliminary results from a study investigat-
ing the effects of P300-based NFB training on surgical skills. While
these preliminary findings do not support the hypothesis that atten-
tion training directly improves surgical skills or their retention, they
provide valuable insights into the application of NFB in a real-world
setting.

The study successfully demonstrates the feasibility of deploying
the NFB training system outside a controlled laboratory environment,
involving a large number of users. By reducing the number of elec-
trodes from 32 to 16, the system was able to achieve practical setup
times, making it scalable and suitable for integration into professional
training environments.

These achievements highlight the system’s potential for real-world
applications, even though further analysis, particularly of the sutur-
ing task, is needed to draw definitive conclusions about the transfer
of attention training to surgical skills.
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C O N C L U S I O N S

8.1 summary of achievements

This thesis presents the development and rigorous evaluation of an
ERP-based NFB training system for attention enhancement in healthy
adults, using a P300 speller and ILC to personalise task difficulty. As
discussed in Chapter 2, ERP-based NFB is not widely used, despite
showing promising results, largely due to concerns about the lack
of well-controlled studies, limited research outside the lab, and the
long training time required. The aim of this thesis is to address these
concerns and demonstrate the system’s effectiveness and potential be-
yond lab environments. The primary objectives outlined in Chapter 1

are to establish the effectiveness, efficiency, practicality, and applica-
bility of the NFB system. In pursuit of these objectives, this thesis
addresses the following research questions:

1. Can ILC enhance the efficiency of NFB training to improve at-
tention in healthy adults?

2. How does the number of electrodes affect the usability, accuracy,
and effectiveness of the NFB system?

3. Can attentional improvements gained from NFB training trans-
fer to motor skill learning?

These objectives and research questions guided the research process
and are systematically addressed throughout this thesis.

To improve efficiency, an ILC controller is chosen to dynamically
adapt task difficulty, providing a straightforward yet effective method
for optimising the training process. The controller is designed based
on the specific requirements of the training, and is initially tested and
compared to existing approaches in simulation. The results demon-
strate that the ILC controller can enhance training efficiency by ac-
celerating the NFB training without significantly impacting perfor-
mance.

These results are then verified in a clinical trial described in Chap-
ter 5, where healthy adults were tested in a cognitive task before
and after undergoing the NFB training. Three different task difficulty
adaptation approaches are compared. The study shows that P300-
based training effectively enhances attention, with all groups demon-
strating improved performance in a cognitive task. This supports the
use of P300-based NFB training for attention enhancement. Addition-
ally, the group with ILC personalisation completed the training in
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the least time, without compromising training efficacy, further sup-
porting the simulation results and demonstrating that using ILC for
task difficulty adaptation accelerates training. This directly addresses
Research Question 1, confirming that ILC-based adaptation improves
training speed and efficiency in ERP-based NFB systems.

To enhance the practicality and usability of the system, additional
studies explore the feasibility of reducing the number of electrodes
used. It is found that as few as 4 electrodes can achieve good per-
formance in the P300 speller, comparable to 6- and 8-electrode sets,
although performance is highly dependent on the environment. How-
ever, the positive training effects observed in Chapter 5 could not be
replicated with only 4 electrodes, likely due to diminished perfor-
mance and the increased number of flashes required during train-
ing. Consequently, a 16-electrode setup is used in subsequent stud-
ies, effectively halving the setup time compared to the initial study
outlined in Chapter 5. This finding addresses Research Question 2

by demonstrating that, while reducing the number of electrodes im-
proves usability, a minimum of 16 electrodes is necessary to retain
system effectiveness and achieve robust training outcomes.

To demonstrate the system’s applicability in real-world settings, the
NFB training system is evaluated in a more realistic context: surgical
skills training. Preliminary results from this study suggest that the at-
tention improvements observed in Chapter 5 may not directly transfer
to surgical skill performance, thereby addressing Research Question
3. However, these conclusions are tentative, as more comprehensive
analysis, including potential effects on suturing tasks, is required.
Nonetheless, the surgical training study successfully demonstrates
the large-scale deployment of the system outside a lab environment.

In summary, this thesis demonstrates that an ERP-based NFB sys-
tem with task difficulty controlled by ILC can effectively enhance
attention in healthy adults. This contributes to the growing body of
evidence supporting ERP-based NFB, an area that remains underex-
plored. By achieving the objectives of demonstrating effectiveness, ef-
ficiency, practicality, and real-world applicability, this research lays
a foundation for further exploration of NFB training in real-world
settings and its potential impact on specific skill transfers.

8.2 future directions

There are some limitations to the studies conducted in this thesis,
which open up future directions for this research:

• Further System Development: While the current system demon-
strates the benefits of applying ILC for task difficulty adap-
tation in NFB training, there are opportunities for further re-
finement. The speller model and simulation developed in Sec-
tion 4.3.1 were based on a single train-test split from a sin-
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gle dataset. Although this was sufficient for tuning and initial
testing of the ILC controller, incorporating more datasets, such
as those collected in this thesis, and applying cross-validation
could improve the model’s generalisability and robustness. This
would also support the implementation of more advanced con-
trol strategies, such as NOILC [110]. The well-defined proper-
ties and algorithms associated with ILC provide a rich frame-
work that can be further exploited to optimise this NFB system.

Additionally, incorporating features like early stopping [101] in
the speller, or experimenting with different classifiers, could en-
hance the system efficiency and user experience.

Another area for improvement is the further investigation of
electrode configurations, which could significantly enhance the
practicality of the training by reducing setup time and increas-
ing user comfort. Based on the results discussed in Chapter 6,
the optimal number of electrodes to balance setup time with
performance is likely somewhere between 8 and 16 electrodes
when using the xDAWN spatial filter. Intermediate configura-
tions between 8 and 16 electrodes were not explored, as EEG
caps typically come preconfigured with either 8 or 16 electrodes.
The decision to use 16 electrodes was made to fully use the
available resources and avoid underusing the equipment. How-
ever, future work could investigate intermediate configurations,
which may offer a more efficient balance between signal quality
and practical considerations like setup time and user comfort.
Additionally, exploring other spatial filtering or signal process-
ing methods beyond xDAWN could enable the use of smaller
electrode sets while maintaining performance. Alternatively, dry
electrodes could be explored to further improve the system. Dry
electrodes eliminate the need for electroconductive gels, mak-
ing the system more user-friendly and easier to deploy in real-
world settings. Future research should explore the feasibility
of dry electrodes in ERP-based NFB training, including their
impact on signal quality, user experience, and overall training
outcomes.

• Further Investigation of Training Transfer Effects: The prelim-
inary results from the surgical skills study in Chapter 7 suggest
limited transfer effects of the attention training to surgical tasks.
Given these outcomes, it is crucial to conduct more comprehen-
sive studies to investigate the broader transfer effects of NFB
training. Future research should investigate the limits of train-
ing effects by testing its impact on a range of different, more
realistic, cognitive tasks beyond the RDM task, particularly to
better understand its potential in real-world applications.
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• Alternative Stimulus Modalities: While the current NFB train-
ing uses visual stimuli to elicit P300 responses, exploring alter-
native stimulus modalities, such as auditory stimuli, could offer
additional benefits. The auditory P300, for example, might pro-
vide a more immersive experience and could be more suitable
for some training environments or individuals who respond
better to auditory cues. Incorporating multiple modalities, or
allowing customisation based on participant preference, could
enhance both the effectiveness and engagement of NFB training.
Furthermore, combining visual and auditory stimuli may po-
tentially improve attentional control and cognitive processing
by leveraging multi-sensory integration [168]. Future research
should investigate the impact of these different modalities on
training outcomes, as well as on user experience and engage-
ment levels.

• Cognitive Rehabilitation: The NFB training in this thesis is
solely focused on attention enhancement in healthy adults, mean-
ing that no insights are gained on whether the system could be
effective for cognitive rehabilitation in neurodiverse or diseased
populations, such as people with dementia or Parkinson’s dis-
ease. While [93] reports interesting results for the use of P300-
based NFB in children with ADHD, other studies investigat-
ing P300-based NFB are also limited to healthy adults [94–96].
Therefore, investigating the efficacy of the system for cognitive
rehabilitation in these patient populations, rather than focusing
solely on cognitive enhancement in healthy individuals, is a ma-
jor future direction for ERP-based NFB research.

• Long-term Training: Apart from the surgical skills study de-
scribed in Chapter 7, only one session of NFB training was
completed, with no long-term follow-up. In the surgical skills
study, some participants completed two sessions and a follow-
up was conducted between 1 and 7 weeks post-training, which
is still relatively short-term. Consequently, no conclusions can
be drawn about the efficacy of long-term training and how long
the training effects last post-training. Since [95] reports a plateau
effect after just three sessions of P300-based NFB, investigating
long-term training, and its effects post-training, is an impor-
tant endeavour. This could be done separately or in conjunc-
tion with cognitive rehabilitation of individuals with cognitive
deficits. An interesting aspect of long-term training is the pos-
sibility of further training personalisation, such as customising
electrode sets to allow for fast setup with high classification ac-
curacy. Another potential area for personalisation is tuning the
ILC controller, where the maximum step size or penalty func-
tion could be adjusted for each individual, and over time.
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• Gamification: As discussed in Section 5.5.1 and Section 6.4.3.1,
participants reported increased boredom after the training. Fur-
thermore, while some participants were competitive and aimed
for the best spelling accuracy, others did not care about receiv-
ing good or bad feedback, since it was inconsequential. Both
boredom and lack of motivation can significantly impact the
training efficacy [18]. This is why gamification of the NFB sys-
tem should be considered in future work. For instance, [95] uses
a matching pairs card game, where cards are flipped by focus-
ing on their flashes, to gamify the oddball paradigm. This type
of gamification could enhance participant engagement. Addi-
tionally, introducing rewards along with feedback could moti-
vate participants to actively seek positive feedback.
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A P P E N D I X





A
S TAT I S T I C A L M E T H O D S

This appendix provides an overview of the statistical methods used
throughout this thesis. These methods are grouped according to their
function, and justifications are provided for why specific tests were
chosen based on the characteristics of the data (e.g. normality, re-
peated measures, and the number of groups).

a.1 comparing group means

a.1.1 Two Groups

The starting point for comparing the means of two independent groups
was Student’s t-test, which tests the null hypothesis that the means
of the two groups are equal, taking into account the variances of the
groups. This test assumes that the data are normally distributed [169].

When the assumption of normality was not met, the non-parametric
Wilcoxon rank-sum test (also known as the Mann-Whitney U test)
was used. The Wilcoxon test compares the ranks of the data to as-
sess whether one group tends to have higher or lower values than the
other, making it appropriate for non-normal distributions [169].

a.1.2 Three or More Groups

When comparing three or more independent groups, ANOVA was
used to assess whether there were any significant differences between
the group means. ANOVA is an extension of the Student’s t-test and
assumes normally distributed data [169].

When the assumption of normality was violated, the Kruskal-Wallis
test was used as a non-parametric alternative to ANOVA. Similar
to the Wilcoxon rank-sum test, the Kruskal-Wallis test compares the
ranks of data across groups rather than their actual values [169].

When significant differences were detected by ANOVA or the Kruskal-
Wallis test, post-hoc pairwise comparisons were conducted to deter-
mine which specific group means were significantly different. For
ANOVA, Tukey’s Honest Significant Difference (HSD) test, commonly
referred to as the Tukey test, was used [169]. For the Kruskal-Wallis
test, the non-parametric Tukey-Kramer-Nemenyi test was performed
for pairwise comparisons [170].
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a.2 comparing repeated measures

a.2.1 Two Measures

For repeated measures, such as pre- and post-training measures in
the same participant, the paired t-test was applied, provided the data
met normality assumptions. The paired t-test tests the null hypothesis
that the mean difference between paired observations is zero [169].

If the data were not normally distributed, the Wilcoxon signed-rank
test (the non-parametric alternative to the paired t-test) was used.
This test ranks the differences between paired observations and is ap-
propriate for handling non-normal data in repeated measures [169].

a.2.2 Three or More Measures

For repeated measures data with more than two measures, repeated
measures ANOVA was used to assess significant differences between
time points or conditions within the same group. This test extends
the paired t-test to accommodate more than two conditions [171].

When normality assumptions were violated, the Friedman test served
as a non-parametric alternative to repeated measures ANOVA. The
Friedman test ranks each time point individually within subjects,
making it appropriate for non-normal data in repeated-measures de-
signs involving a single group [170].

a.3 comparing repeated measures across groups

When repeated measures were compared across groups, repeated
measures ANOVA was employed to examine both main effects and
interactions. This analysis determines whether differences between
time points or conditions are consistent across groups, thus account-
ing for both within-group and between-group variations [171].

For data that were non-normally distributed, a non-parametric ap-
proach was taken by performing repeated measures ANOVA on ranked
data [172]. Since the Friedman test does not extend to multi-group
comparisons, this ranked ANOVA served as an alternative to capture
interaction effects across groups.

a.4 comparing group means with baseline adjustment

When comparisons needed to account for both group differences and
an additional categorical variable, such as baseline measurements,
two-way ANOVA was used. This approach tested for interactions be-
tween the two factors, group and baseline, while allowing for com-
parisons of main effects across both factors. The two-way ANOVA
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assumes normally distributed data within each group and baseline
category [169].

When normality assumptions were not met, the non-parametric
alternative, ART ANOVA, was used. ART ANOVA preserves main
effects and interactions by ranking data within each factor level, mak-
ing it a suitable choice for factorial designs with non-normal data
distributions [173].

a.5 equivalence testing

Equivalence testing was used to determine whether two groups were
statistically equivalent within a predefined margin. This was done
using the TOST procedure. The null hypothesis in equivalence testing
is the opposite of traditional tests: it posits that the means of the
two groups are not equivalent, i.e. the difference between the two
group means is greater than a pre-specified equivalence margin. The
alternative hypothesis is that the difference between the group means
falls within the equivalence margin, indicating that the groups are
statistically equivalent [151].

For data meeting normality assumptions, the t-TOST procedure
was applied, which uses the Student’s t-test described above. For non-
normally distributed data, the Wilcoxon-TOST method was used as
a non-parametric alternative, applying the Wilcoxon rank-sum test to
assess equivalence [151].

a.6 effect size estimation

To complement hypothesis testing, effect sizes were sometimes re-
ported to quantify the magnitude of differences observed between
groups. For parametric tests, Cohen’s D was used to measure the ef-
fect size, expressing the difference between two means in terms of
standard deviations [152]. This provided insight into the practical sig-
nificance of results beyond p-values. For non-parametric tests, Spear-
man’s correlation coefficient was used as an alternative to Cohen’s D,
to estimate the effect size based on ranked data [153].

a.7 correlation and association

When exploring relationships between two continuous variables, Pear-
son’s correlation coefficient was applied for normally distributed data
to measure the strength and direction of the linear relationship be-
tween the variables [169].

For non-normally distributed data, Spearman’s correlation coeffi-
cient was used, which assesses monotonic relationships based on
ranked data rather than actual values. This non-parametric measure
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is appropriate when the relationship between variables may not be
strictly linear but still follows a consistent pattern [169].

In addition, the ICC was used to assess reliability in measurements,
particularly for evaluating test-retest stability over time. ICC is valu-
able for determining consistency in repeated measurements or assess-
ing inter-rater reliability in subjective evaluations [167].
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Table B.1: Summary of Key Results.

Outcome Statistical
Test

Result Implication

Pre-
training
boredom
scores

Kruskal-
Wallis

Higher in random
difficulty group
than benchmark
group (p = 0.03)

Baseline boredom
differs between
groups, impacting
spelling accuracy
(as shown in sensi-
tivity analysis).

Pre-
training
eye fa-
tigue
scores

Kruskal-
Wallis

Higher in ran-
dom difficulty
group than ILC
and benchmark
groups (p = 0.004,
p = 0.018)

Baseline eye
fatigue differs
between groups,
impacting per-
ceived mental and
physical demand,
as well as P300 am-
plitude (as shown
in sensitivity anal-
ysis).

Post-
training
tiredness
increase

Paired
t-test,
Wilcoxon
signed-
rank

Significant increase
in all groups (p <

0.05)

Training induced
significant fatigue,
as expected for a
challenging task.

Post-
training
eye fa-
tigue
increase

Paired
t-test,
Wilcoxon
signed-
rank

Significant increase
in ILC and bench-
mark groups (p ⩽
0.001)

Training induced
significant eye
strain, likely due
to extended screen
exposure.

Post-
training
boredom
increase

Wilcoxon
signed-
rank

Significant increase
in ILC group (p =

0.029)

Training may be-
come boring for
some participants.
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Table B.1: Summary of Key Results (Continued).

Outcome Statistical
Test

Result Implication

Perceived
Physical
Demand

Kruskal-
Wallis

Higher in random
difficulty group
than benchmark
group (p = 0.024)

Perceived physical
demand may re-
flect mental fatigue
from training.

RDM task
accuracy

Paired
t-test,
Wilcoxon
signed-
rank

Significant increase
in all groups post-
training (p < 0.05)

All adaptation
methods improve
RDM task accu-
racy, supporting
training efficacy.

RDM task
score

Paired
t-test,
Wilcoxon
signed-
rank

Significant increase
in ILC group only
(p = 0.015)

Only the ILC
group achieved
a significant im-
provement in score
(accuracy/RT),
suggesting en-
hanced training
efficacy.

Training
length

Kruskal-
Wallis

Lower in ILC
group than bench-
mark and ran-
dom difficulty
groups (p = 0.007,
p < 0.001)

ILC controller
significantly accel-
erates training.

P300 am-
plitude

One-way
ANOVA

Higher in ILC
group compared to
random difficulty
group during train-
ing (p = 0.044)

Supports hypoth-
esis that reduced
flashes drive
attentional im-
provement.
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Table B.1: Summary of Key Results (Continued).

Outcome Statistical
Test

Result Implication

Total
power
(post-
training)

- Higher in target
trials and lower
in nontarget tri-
als compared to
baseline in ILC
and benchmark
groups; lower in
both target and
nontarget trials in
random difficulty
group

Indicates improved
focus and reduced
distractibility with
personalised task
difficulty.

Alpha
power
(post-
training)

- Lower compared
to baseline in ILC
and benchmark
groups; higher in
random difficulty
group

Suggests more
focused brain state
post-training with
personalised task
difficulty.

RDM
accu-
racy and
spelling
accuracy

Pearson’s
correla-
tion

Negative correla-
tion in benchmark
group (p = 0.01)

Higher spelling
accuracy correlates
with lesser RDM
improvement, im-
plying task may
not be challenging
enough for high
performers.

RDM RT
and alpha
power

Spearman’s
correla-
tion

Positive correlation
in ILC group (p =

0.032)

Indicates more fo-
cused participants
had faster reaction
times.
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