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Abstract

The primary focus of this thesis is the investigation of the quantum algorithm

for linear systems of equations (HHL) for the valuation of multi-asset options,

a particular type of financial instrument. Quantum computing has the possi-

bility to revolutionize many fields that are computationally intensive, such as

quantitative finance. We extend the previous works on quantum solutions to the

Black-Scholes equation for option pricing and provide its proof-of-principle im-

plementation. We transform the problem of pricing a multi-asset option into a

system of linear equations and employ the quantum algorithm due to Harrow,

Hassidim and Lloyd to find its solution. Certain numerical characteristics of

the matrix representing the system of linear equations determine a vital role in

whether computational advantage can be achieved. The central question of this

thesis is whether we can perturb the matrix that is to be inverted in the direction

of more favourable numerical characteristics without compromising the accuracy

of the final solution in representing the present value of the multi-asset option.

Through specific examples, we show that this perturbation does not compromise

the accuracy of the calculated value for the option.

After an introduction to options and their underlying mathematical description,

we provide a derivation for the Black-Scholes equation using stochastic calcu-

lus and its corresponding solution for the vanilla European option through the

Feynman-Kac formula. We continue with the numerical methods of finite differ-

ence approximations to convert the problem into a system of linear equations.

Finally, after presentation of the quantum algorithm, we proceed with numer-

ical simulations to determine (a) whether the aforementioned perturbation can

be ameliorated with modified boundary conditions and (b) whether a working

end-to-end quantum algorithm for option pricing for the case of a single-asset

European option maybe achieved. Our simulation provides a proof-of-principle

demonstration of the quantum algorithm.
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Chapter 1

Option Pricing

The primary focus of this thesis is the application of the quantum algorithm

for linear systems of equation (HHL) to the valuation of multi-asset options. In

financial markets, assets are broadly defined as possessions which have value in an

exchange or market [15]. Assets can either be classified as tangible, intangible or

financial. Natural resources, property or any other entity whose value is derived

from (a) its material presence and or (b) the commercial utility of its physical

characteristics falls under the tangible assets class. Conversely, intangible assets

are immaterial entities whose value is not derived from their physical form such

as patents, copyrights and intellectual property. Meanwhile, financial assets or

financial instruments may be defined as claims against the income or wealth

of a business firm, household or unit of government represented usually by a

certificate, receipt, computer record file, or other legal document, and usually

created by or related to the lending of money [42]. Examples include money,

equities, debt securities and derivatives. Options belong to this latter class of

derivatives. As the name suggests, derivatives derive their value from the value

of other separate assets [24].

1.1 Options

Derivatives can be broadly divided into two classes, forward and future contracts

and option contracts [24]. Forward contracts are an agreement between two

parties to exchange an asset for a specified price at a predetermined date, whereas

futures refer to a set of standardised forward contracts that are traded on an

exchange. In this scenario, the seller of the asset to be exchanged is said to adopt
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a short position and the buyer is referred to as adopting a long position. Options

however can be thought of as an asymmetric contract wherein one party, called

the holder has the right but not the obligation to execute a mutual transaction

with the secondary party, called the writer. More precisely, a call option between

two parties prescribes the right to the holder to buy an underlying asset at a

mutually-agreed upon price (strike) on or before a specified date (maturity) from

the writer [24]. A put option refers to an almost identical contractual agreement

however the holder has a right to sell rather than buy. It is clear that the holder

of an option has an economic advantage over the writer in the respect that they

can choose to execute the transaction only if it is favourable. Option pricing,

broadly speaking refers to the assigning of a fair valuation that a holder should

be willing to pay to the writer for this luxury.

1.1.1 Single-asset options

The first division of option types are whether their value is contingent upon a

single-asset or multiple asset. We first focus on the simpler and more traded case

of single-asset options. The two most well known and traded option styles are

European and American options. European options allow execution of a potential

transaction between the two parties only at maturity. American options allows

execution of a possible transaction anytime between commencement of the option

and maturity. The payoff for either option style at execution are given as:

Payoff
put

Euro. = max (K − S(T ), 0) Payoff
call

Euro. = max (S(T )−K, 0)

Here, the variable S(T ) refers to the value of the underlying asset at maturity, K

refers to the strike price. Payoff refers to the overall profit the holder will receive

if the transaction is executed if the underlying asset’s price is S(T ). Strictly

speaking, if we consider the European call option, the holder will receive a return

of S(T ) − K at maturity as they can purchase the underlying asset at K and

immediately resell the asset to the market at the market price S(T ). However,

the holder will only follow through with the transaction if the asset’s market

price is greater than the strike price at which they can buy it. Otherwise, they

would be voluntarily paying more than the market price for the asset. In the

latter case, the presence of the max( , 0) in the payoff function reflects the fact
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that the holder will only execute the trade if financially favourable to do so. As

American options can be executed at any stage during the lifetime of the option,

the theoretical payoff functions for a put and call option are:

Payoff
put

Amer. = max
t∈[0,T ]

(K − S(t), 0) Payoff
call

Amer. = max
t∈[0,T ]

(S(t)−K, 0)

Where the variable S(t) refers to the value of the underlying asset at a time

t. European and American options are often referred to as vanilla option styles

whereas exotic option styles such as Asian or Bermudan also exist however are

traded with much less frequency. For Asian options, the average performance of

the underlying asset determines the value of the option. More precisely, the payoff

is not determined by the underlying price at maturity but rather by the average

underlying price over some pre-set period of time. Furthermore within an option

of this type, there exists various mathematical definitions of “average” such as

arithmetic, geometric, continuous, etc. [52] For the sake of brevity, unless stated

otherwise, all payoffs below will represent the “put” option of the corresponding

option style.

PayoffAsian = max
(
K − S̄avg, 0

)
Bermudan options are similar to American options, however the buyer has the

right only to exercise a trade at a set (always discretely spaced) number of times:

PayoffBermudan = max
t1,...tn

(K − Sti , 0)

For the sake of completeness, the last two main option types within the exotic

class are binary options and barrier options. Options are used as risk mitigation

strategies in financial markets. Options can be used to hedge an investment,

whereby it effectively acts as a form of insurance. For example if one has a large

position in a certain stock, taking out a put option would increase in value in the

event of the stock price falling, therefore mitigating potential losses. Hedging and

leveraging are the two primary motivations for options as a financial instrument.
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1.1.2 Multi-asset options

For the body of this work, we will primarily focus on multi-asset options, however

often the same principles that govern how single-assets trade also apply to the

multi-asset case. Furthermore, within the class of multi-asset options, we will

focus on European style multi-asset options, that is options which have a terminal

payoff function and that can only be executed at maturity [43]. One class of multi-

asset options are rainbow options, so called as the payoff function depends on

multiple individual assets, each one being referred to as a ‘colour’ of the rainbow

[38]. One common subclass of options within rainbow options are Worst-of and

Best-of options. Worst-of (W.O) and Best-of (B.O) options are options wherein

for each case you effectively receive, at maturity, a ‘vanilla’ European put option

on the worst and best performing asset in the basket respectively:

PayoffW.O = max (K −min (S1(T ), S2(T ), ..., Sn(T )) , 0)

PayoffB.O = max (K −max (S1(T ), S2(T ), ..., Sn(T )) , 0)

Another type of option within the subclass of rainbow options are so called ‘Best

of assets or cash’ [38] where the payoff function is just the maximum value of the

strike K versus all the values of the underlying asset at maturity:

PayoffB.o.A.o.C = max (S1, S2, ..., Sn, K)

For the case of basket options, the payoff is determined by a weighted average of

each of the underlying assets at maturity.

PayoffBasket = max

(
K −

n∑
i=1

wiSi(T ), 0

)

1.2 Pricing strategies for options

The variables of option type, strike price and spot price of the underlying asset as

well as maturity are not sufficient to evaluate the price of an option. Statistical

parameters characterising the tendency for the underlying asset price to fluctuate

in price, volatility along with parameters describing current market conditions

such as the risk-free interest rate are also necessary to price an option. Volatility σ
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here represents the uncertainty the market has with respect to future movements

in the price of the asset and risk-free interest rate, r, or just interest rate refers

to the rate of return on a near risk-less investment. The volatility of an asset can

be calculated from historical data on its performance and the risk-free interest

rate is often taken to be the rate of returns for US Treasury bonds [7].

1.2.1 Single-asset options

There primarily exists two methods for the case of the evaluation of single-asset

European and American style options. We will first examine the Black-Scholes-

Merton model or shortened to the Black-Scholes model for the evaluation of

European single-asset options. We will then review the ‘binomial’ and ’trinomial’

pricing models which are applicable to both European and American options.

European Options

The Black-Scholes model for the case of single-asset European option type with

vanilla style options was described in the seminal work [6]. This celebrated model

was conceived by Black and Scholes under certain reasonable assumptions about

market dynamics and efficiency which leads to the reformulation of the problem

as the solution to a parabolic differential equation with the ‘initial’ condition

just being the value of the option at maturity, i.e. just the payoff function. The

Black-Scholes equation for one underlying asset is given by:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

where the variables V refers to the price of the option, S the value of the un-

derlying asset, σ the volatility of the underlying asset and r the risk-free interest

rate. An analytic solution was derived for the partial differential equation and

terminal conditions associated with the European put and call options thereby

enabling the rapid and efficient valuation of options. The exact solution is given

by:

Vcall = Φ(d+)S0 − Φ(d−)Ke
−rT

Vput = Φ(−d−)Ke−rT − Φ(−d+)S0

13



where S0 is the current value of the option and Φ is the error function. The

variables d+ and d− are defined as:

d+ =
1

σ
√
T

(
ln

(
S0

K

)
+

(
r +

σ2

2

)
T

)
d− = d+ − σ

√
T

American Options

The essential difference that affects the valuation techniques between American

and European options is that American options allow early-exercise whereas Eu-

ropean options do not. This means that there does not exist a future point in

time (i.e. maturity) in which the value of the option is known explicitly. Math-

ematically speaking, the boundary condition has been transformed from a fixed

boundary condition to a free boundary condition. This flexibilty significantly

complicates evaluation methods for American options [54]. Hence, an analytic

expression for the value of American call or put option cannot be derived un-

der the assumptions of the Black-Scholes model (except in the special case of an

American call with no dividends). Analytic solutions involving infinite series ex-

pansions have been found [18], however numerical techniques must be employed

to approximate the expressions. The binomial model, first outlined by Cox, Ross

and Rubenstein in [12] is one of the most well known pricing strategies. The

idea is to discretize time into small periods and construct a binomial tree that

bifurcates the tree at each time-step. With each bifurcation, the authors assume

the asset price either increases or decreases by a multiplicative factor each with

an associated probability. The value of the option at present is then calculated

by evaluating the price of the option at the final layer of nodes and then recur-

sively calculate the value of the options at previous time-steps given the current

values. The binomial model can also be used to calculate both the value of Eu-

ropean and American options, however it is considerably more computationally

expensive than the analytic expression of the Black-Scholes model for the case of

European options.
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1.2.2 Multi-asset options

Options which are contingent upon two or more risky underlying assets are called

multi-asset options. The dynamics of multi-asset options are governed by a multi-

dimensional variant of the Black-Scholes equation. Similar to the case of single-

asset options, different types of multi-asset options are distinguished by their

payoff functions [29]. The multi-dimensional variant of the Black Scholes is given

by:

∂V

∂t
+

1

2

d∑
i,j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj

+
d∑

i=1

rSi
∂V

∂Si

− rV = 0 (1.1)

where the variables d refers to the number of underlying assets comprising the

option, Si is the value of the ith underlying asset comprising the option, ρij is

the correlation between the underlying assets Si and Sj, σi is the volatility of the

asset Si, r is the risk-free interest rate and V is the value of the option. The

quantities (σ̂)ij = ρijσiσj form the entries of the covariance matrix that jointly

governs the evolution of the prices of all of the underlying assets that govern

the prices. It can be shown [29] that for non-dividend paying options that the

solution to (1.1) subject to some terminal pay-off condition:

V (T, S1, S2, ..., Sd) = P (S1, S2, ..., Sd)

has the following analytic solution for the price of the option V0:

V0 =
e−rT

(2πT )
d
2 | det(σ̂)| 12

∫ ∞

0

...

∫ ∞

0

P (η1, η2, ..., ηd)∏d
k=1 ηk

exp

(
− α⃗

T (σ̂)−1α⃗

2T

)
dη1...dηd

(1.2)

where the components of α⃗ are defined as:

(α⃗)i = ln

(
Si

ηi

)
+

(
r − σ2

i

2

)
T

As highlighted in [29], this integral in equation (1.2) is notoriously difficult to

evaluate numerically with singularities in the integrand at the boundary of the

integration region I = [0,∞)d. However, for special types of multi-asset options,

closed form solutions exist, for example Worst-of and Best-of options [30]. An-

other such example is an European exchange option involving two assets where
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the payoff function is defined as:

V (T, S1, S2) = max (S1(T )− S2(T ), 0)

The price of the option in this instance is a modified Black-Scholes model however

with a new volatility parameter σ̃ =
√
σ2
1 + σ2

2 − 2ρσ1σ2 and risk-free interest

parameter set to zero. Under the assumption of non-dividend paying options, the

present value of the option can be expressed as:

VExchange = S1(0)Φ(d1)− S2(0)Φ(d2)

where d1 and d2 are defined as:

d1 =
ln
(

S1(0)
S2(0)

)
+ σ̃2T

2

σ̃
√
T

d2 = d1 − σ
√
T (1.3)

Apart from these specific multi-asset option types, we have to resort to numerical

methods for the evaluation of the remaining options within this family. These

numerical techniques include but are not limited to the finite difference method,

Monte Carlo methods [3], higher dimensional equivalents of the binomial method

(multinomial tree methods)[46] to name but a few. Our focus is the application

of the finite difference method to multi-asset options with fixed terminal payoff

conditions.
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Chapter 2

Introduction to Stochastic

Calculus

In this chapter, we outline a mathematical framework to describe how the prices

of assets evolve as well as interpreting concepts such as ‘market efficiency’ as a

useful mathematical statement that we can utilize to price options. To charac-

terize the dynamics of underlying asset prices, the field of stochastic calculus is

required. We first review measure theory, the basis of stochastic calculus, before

illustrating how the dynamics of underlying asset prices and their associated prob-

ability distributions can be captured cogently through the language of stochastic

calculus. To conclude we show how the closed-form expression for the price of

a European call or put option (originally derived by Black and Scholes as previ-

ously stated) can be derived from stochastic integration using the Feynman-Kac

formula.

2.1 Motivation

The Black-Scholes partial differential equation is derived from a number of rea-

sonable assumptions about market efficiency and the dynamics of the price of the

underlying asset [6]. Once these assumptions have been made, the Black-Scholes

equation can be derived in multiple ways. One approach assumes a so-called delta

hedging strategy that a rational actor would follow [25]. In this strategy, the actor

would hold simultaneously, in a portfolio, an option based on a given underlying

asset and a certain amount of the underlying asset. By configuring this portfo-
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lio appropriately, the actor can effectively eliminate any risk associated with the

portfolio, implying the value of the portfolio should accrue interest in the same

manner as a near risk-less financial instrument. The second method to derive the

solution to the Black-Scholes equation is the Feynman-Kac formula, which pro-

vides a link between stochastic processes and partial differential equations. The

assumption about the evolution of the price of the underlying assets, namely an

Ito drift process, will naturally lead to the solution of the Black-Scholes equation

through the Feynman-Kac formula.

We proceed with some preliminaries with measure-theoretic approach to prob-

ability so that we can motivate what a stochastic process is and its relevant

mathematical properties. We will provide a heuristic derivation of Ito’s lemma

for stochastic differential equations which will lead to the derivation of the Black-

Scholes equation. A final substitution of the stochastic process governing asset

price evolution into Feynman-Kac formula will yield the deterministic Black-

Scholes equation for European single-asset options.

2.2 Measure-theoretic probability

Probability has its basis in measure theory. Randomness in probability theory is

represented by a tuple of three objects (Ω,F ,P) which is called a probability space.

Ω refers to the ‘sample space’ which represents all possible outcomes of some given

process of interest. F refers to the ‘event space’ which broadly encapsulates all

possible combinations of outcomes that could be seen. More rigorously, F is the

Borel σ-algebra of Ω. The Borel σ-algebra of Ω is defined as the class of subsets

of Ω that contains Ω and is closed under complementation and countable union

of sets [2]:

A ∈ F =⇒ Ac ∈ F

Ai ∈ F ∀i ∈ N =⇒
∞⋃
i=1

Ai ∈ F

In the case that the sample space is discrete and finite, the event space reduces

to being the power set of the sample space (F = P(Ω)). Finally, P : F → [0, 1]

is a function or measure that assigns a probability to each of the possible events

18



in F . The only requirements on P are:

P(Ω) = 1

P(A ∪B) = P(A) + P(B) ∀A,B,∈ F , A ∩B = ∅

These requirements reflect the usual intuition that at least one outcome will be

observed from the process and that the probability of mutually exclusive events is

the sum of the probabilities of each event. Consider a probability space (Ω,F ,P)

and a separate measurable space (E, E) which consists of some space E and a

σ-algebra E constructed on E (The only difference from a probability space being

that we have not required the existence of a measure for E). A random variable

X : Ω → E on this probability space is a measurable function from the sample

space Ω to the space E. A measurable function is defined by:

X is measurable ⇐⇒ if A ∈ E =⇒ X−1(A) ∈ F

Or phrased differently, the preimage of any set within the σ-algebra of E (E)

under a measurable function is an element of the σ-algebra of Ω (F). A random

variable assigns to each sample ω in the sample space Ω, an element of E and

assigns to each event from the event space F , an element of E (E being the

corresponding σ algebra of E). The probability that X takes on a particular

value for a measurable set B from the σ-algebra E is given as:

P(X ∈ B) = P({ω ∈ Ω|X(ω) ∈ B})

X is called a measurable function as we have managed to construct a measure

on E by determining the preimage of the measurable sets in E in F and using

the respective measure P on F for these sets. The expected value of a random

variable E(X) is given by the formula:

E(X) =

∫
ω∈Ω

X(ω)dP(ω)

To give an example of a random variable, consider the probability space (Ω,F ,P)

corresponding to the roll of a fair die. Let Z be a random variable such that it
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returns 1 for an even result of the die and 0 otherwise:

Z : ({1, 2, 3, 4, 5, 6}︸ ︷︷ ︸
Ω

,P({1, 2, 3, 4, 5, 6})︸ ︷︷ ︸
F

) → ({0, 1}︸ ︷︷ ︸
E

, {{0}, {1}, {0, 1}, ∅}︸ ︷︷ ︸
E

)

ω 7−→

1 if ω ∈ {2, 4, 6}

0 otherwise

where ∅ denotes the empty set. The sample {1} is mapped to {0} and event

{2, 3} is mapped to {0, 1}. The probability of the event B = {1} is given by:

P(Z ∈ {1}) ⇐⇒ P(ω ∈ {2, 4, 6}) = 1

2

which matches the intuition that there is 50 % chance of rolling an even number

on a fair die. One question that may be asked is why the sophisticated machinery

of Borel-σ algebras and existence of measures are needed. In the discrete case,

these tools are somewhat redundant. However in the continuous case, for example

a real-valued random variable X, it is meaningless to consider every set within the

power set of R and to assign a probability to each ‘event’. The Borel σ-algebra

of R restricts us to consider only meaningful sets in this instance (i.e. intervals).

2.2.1 Stochastic Processes and Martingales

A stochastic process S is a collection of random variables defined on some proba-

bility space which are indexed by some parameter t from a set T ({Xt(ω) : t ∈ T}).

Often as stochastic processes refer to quantities that vary with time, T is chosen

such that T = [0,∞). Explicitly, a stochastic process is map given by [32]:

S : ([0,∞)× Ω,B([0,∞))⊗F) → (E, E)

(t, ω) 7→ Xt(ω) ∈ E

Similarly, events from B([0,∞))⊗F are mapped to events in E

A︸︷︷︸
∈B([0,∞))⊗F

7→ B︸︷︷︸
∈E
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Fixing some ω ∈ Ω, the map from t 7→ Xt(ω) is defined as realisation or an

instantiation of the stochastic process. A filtration {Ft}t≥0 is family of Borel-σ

algebras such that:

Ft1 ⊆ Ft2 ⊆ F ∀t1, t2 ∈ [0,∞); t1 < t2

The increasing nature of each of the Borel-σ algebras within the family represents

the increasing amount of information we have with regards to what has happened

thus far in the course of the ‘realisation’. A process is adapted to a filtration

{Ft}t∈T if each random variable {Xt} in the process is Ft-measurable.

if A ∈ E =⇒ X−1
t (A) ∈ Ft

The final object to be defined is a martingale, which is an adapted process X for

some filtration {Ft}t∈T for which the following two conditions hold.

E(Xt2|Ft1) = Xt1 , E(|Xt2|) <∞ ∀t1, t2 ∈ [0,∞); t1 < t2

Broadly speaking, the first condition states that the best estimate for the expected

value for the process at t2 given all the information up t1 is just what the process

was valued at t1, namely Xt1 . The second condition states that the absolute value

of any of the constituent random processes does not blow up to infinity.

Wiener process

One of the most ubiquitous stochastic processes that occur in nature is the Wiener

process (also known as Brownian motion). A Wiener process Wt is a continuous,

adapted process that has the following three distinct properties:

1 W0 = 0 almost surely

(almost surely (a.s.) implies P({Xt(ω) : t ∈ T ;X0(ω) ̸= 0}) = 0)

(Phrased differently, the probability measure of the event of all trajectories

that don’t start at zero is itself zero)

2 Wt+a −Wt for a ≥ 0

is independent of the previous evolution of the process {Wt′}; t′ < t.

3 Wt+a −Wt ∼ N (0, a)
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where N (µ, σ) refers to the normal distribution of mean µ and variance σ. A

Wiener process can also be thought of as a limiting process of a collection of

independent and identically distributed random variables (i.i.d) via Donsker’s

theorem [14]:

Wn(t) =
1√
n

∑
1≤k≤⌊nt⌋

ζi

ζi ∼ N (0, 1) ∀i

As a Wiener process is a martingale (namely the property that the expected value

of the process is just the current value of the process), and given the fact that

W0 = 0, we can deduce:

E(Wt) = 0

The variance of a Wiener process can be calculated through:

W0+t − W0︸︷︷︸
0 a.s.

∼ N (0, t)

Wt ∼ N (0, t) → Var(Wt) = t

The final step before we can derive Ito’s lemma are the multiplication rules or

Box calculus associated with the Wiener process:

dWdt = 0 dW 2 = dt dt2 = 0

The above rules can be derived from the expressions for the expectation and

variance of a Wiener process. A derivation of these rules can be found within

appendix (A). We proceed how the application of the above product rules can

lead to a heuristic derivation of Ito’s lemma for a single process and hence for a

single asset.

2.2.2 Ito’s lemma - Single Process

We now proceed with Ito’s lemma [27]. Ito’s lemma relates the differential of

some function df to the underlying stochastic process Xt that it is a function of

(i.e. f(Xt)). To proceed, we first introduce the concept of an Ito drift process.

An Ito drift process Xt is a stochastic process whose expected value experiences a

deterministic constant drift in time. It satisfies the following stochastic differential
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equation (SDE):

dXt = µdt+ σdWt

This process is also known as arithmetic Brownian motion. However, Ito’s lemma

holds for more general processes such as:

dXt = a(t,X)dt+ b(t,X)dWt

where the coefficients a(t,X), b(t,X) are deterministic functions of the current

time and value of the process. We shall derive Ito’s lemma for this more general

form of SDE. For the case of a single process Xt, consider a function f(t,X) that

is differentiable once with respect to t and twice differentiable with respect to X.

Ito’s lemma addresses how a SDE can be derived for f given the SDE for Xt. If

we consider a Taylor expansion of f(t,X):

df =
∂f

∂t
(dt) +

1

2

∂2f

∂t2
(dt)2 +

∂f

∂Xt

(dXt) +
1

2

∂2f

∂X2
t

(dXt)
2 +

1

2

∂2f

∂Xt∂t
(dXtdt) (2.1)

Returning to the SDE for the process, applying the box calculus rules yields:

dX2
t = (a(t,X)dt+ b(t,X)dWt)

2 (2.2)

→ a(t,X)2(dt)2 + 2a(t,X)b(t,X) (dWdt)︸ ︷︷ ︸
0

+b(t,X)2 (dWt)
2︸ ︷︷ ︸

dt

→ a(t,X)2dt2 + b(t,X)dt

Similarly for the term dXtdt, we can see that:

dXtdt = (a(t,X)dt+ b(t,X)dWt)dt (2.3)

→ a(t,X)(dt)2 + b(t,X) (dWtdt)︸ ︷︷ ︸
0

→ a(t,X)dt2

Substituting (2.2) and (2.3) into (2.1) yields:

df =
∂f

∂t
(dt) +

1

2

∂2f

∂t2
(dt)2 +

∂f

∂Xt

(a(t,X)dt+ b(t,X)dWt)

+
1

2

∂2f

∂X2
t

(a(t,X)2dt2 + b(t,X)2dt) +
1

2

∂2f

∂Xt∂t
(a(t,X)dt2)
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Recombining like terms yields:

df =

(
∂f

∂t
+ a(t,X)

∂f

∂Xt

+
b(t,X)2

2

∂2f

∂X2
t

)
dt+

(
b(t,X)

∂f

∂Xt

)
dWt

+

(
1

2

∂2f

∂t2
+
a(t,X)2

2

∂2f

∂X2
t

+
a(t,X)2

2

∂2f

∂Xt∂t

)
dt2

Considering only first order terms in dWt and dt yields Ito’s lemma:

df =

(
∂f

∂t
+ a(t,X)

∂f

∂Xt

+
b(t,X)2

2

∂2f

∂X2
t

)
dt+

(
b(t,X)

∂f

∂Xt

)
dWt

In order to discuss stochastic differential equations, we will need the ability to

integrate a certain stochastic process Xt over another stochastic process, (specif-

ically a square-integrable martingale Wt). The Ito integral will be represented

as: ∫
XdW

Following the notation of [17], if X can be represented as a simple process (which

implies the process only changes at discrete points, not continuously):

Xt(ω) = ξ010(ω) +
∞∑
i=0

ξi1(ti,ti+1](t)

and W is some square-integrable martingale, then the Ito integral can be defined

as: ∫ t

0

XdW = lim
maxi |ti+1−ti|→0

∞∑
i=0

ξi
(
Wmin(t,ti+1) −Wmin(t,ti)

)
(2.4)

The exact mathematical details of this integral and technical subtleties regarding

X and W are outside the scope of this thesis. However, the one result we will

use is that Ito integral of a simple process is a martingale [32].

E

[∫ t′

t

XdW

∣∣∣∣∣Fs

]
=

∫ s

t

XdW (2.5)

As the space of simple processes is dense in the space of all measurable, Fs-

adapted processes [32], equation (2.5) holds also for this class of processes.
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Probability distribution of the underlying asset prices

One of the first applications of Ito’s lemma is determining the probability distri-

bution of possible prices for each of the underlying assets Si at a time t. One can

express the current value of an option as a conditional expectation of the proba-

bility distribution for future movements in the asset price weighted by the value

of the option under said movement as indicated by [35]. As we will show later,

determining the value of the option via this method is far more amenable from

the perspective of a quantum algorithm and therefore we will have to be able to

produce a quantum state that is proportional to said probability distribution as

subroutine during the quantum algorithm. Focusing on the case of a single-asset

St, its evolution is given by the following SDE:

dSt = µSt︸︷︷︸
a(t,St)

dt+ σSt︸︷︷︸
b(t,St)

dW (2.6)

This type of stochastic process is known as geometric Brownian motion. In the

above SDE (2.6), W is the standard Wiener process as previously encountered.

There are a number of justifications [24] for why geometric Brownian motion

models the price of commodities, mainly that historical prices for stocks and

other assets tend to follow the type of trajectories one would expect with geo-

metric Brownian Motion. Additionally, geometric Brownian motion is necessarily

positive-valued which obviously reflects the prices of underlying assets in an op-

tion, whereas for an arbitrary process this is not necessarily true. Our aim now is

to determine St given its differential dSt in (2.6). The presence of St on the right

hand side of (2.6) prevents us from directly integrating both sides of the equa-

tion to find St; it is not an Ito drift process (which we could directly integrate).

However, by considering the process f(St) for a carefully chosen function f , the

corresponding differential df(St) will be equal to an Ito drift process which we

can directly integrate. Once integrated, we can transform to the previous process

through application of f−1. For geometric Brownian motion, the function that

achieves this transformation is the natural logarithm.
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We can determine what the differential of d ln(St) with Ito’s lemma(i.e. f =

ln(S)) to get:

d ln(St) =

(
∂ ln(St)

∂t
+ µSt

∂ ln(St)

∂St

+
(σSt)

2

2

∂2 ln(St)

∂S2
t

)
dt

+

(
σSt

∂ ln(St)

∂St

)
dWt (2.7)

d ln(St) =

(
µSt

(
1

St

)
+
σ2S2

t

2

(
− 1

S2
t

))
dt+

(
σSt

(
1

St

))
dWt

d ln(St) =

(
µ− σ2

2

)
dt+ σdWt

Integrating yields:

∫
d ln(St) =

(
µ− σ2

2

)∫
dt+ σ

∫
dWt (2.8)

ln(St) =

(
µ− σ2

2

)
t+ σWt (2.9)

Transforming back to the initial process through f−1(x) = exp(x)

⇒ St = S0 exp

((
µ− σ2

2

)
t+ σWt

)

Where S0 is the value of the process at t = 0 and is a constant of integration.

Returning to the Wiener process, the third property that defines said process

states that the increments are normally distributed. This coupled with the facts

that E(Wt) = 0 and Var(Wt) = t implies the probability density function for a

Wiener process at a time t is given by:

Wt ∼ N (0, t)

P(Wt ∈ (x, x+ dx)) =
1√
2πt

exp

(
−x

2

2t

)
dx

We now derive the probability distribution for geometric Brownian motion. If

we return to the equation (2.9), the moments of the distribution of ln(St) can be
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determined as:

E (ln(St)) = E
(
ln(S0) +

(
µ− σ2

2

)
t+ σWt

)
= E (ln(S0)) + E

((
µ− σ2

2

)
t

)
+ E (σWt)

= ln(S0) +

(
µ− σ2

2

)
t+ σ E(Wt)︸ ︷︷ ︸

=0

→ ln(S0) +

(
µ− σ2

2

)
t

Where the linearity of the expectation is used in (2.10). For the case of the

variance, it can be calculated as:

Var(ln(St)) = Var

(
ln(S0) +

(
µ− σ2

2

)
t+ σWt

)
= Var(σWt) = σ2Var(Wt)︸ ︷︷ ︸

=t

→ σ2t

Here we have used the translation invariance and scaling property of the variance.

It can be deduced now that:

ln(St) ∼ N
(
ln(S0) +

(
µ− σ2

2

)
t, σ2t

)
(2.10)

This is the defining property of a lognormal distribution for St. It can be shown

that the probability density function of this distribution is given by:

St ∼ Lognormal

(
ln(S0) +

(
µ− σ2

2

)
t, σ2t

)

P(St ∈ (S̃, S̃ + δS̃)) ≈ 1

S̃σ
√
2πt

exp

−

(
ln(S̃)− (µ− σ2

2
)t− ln(S0)

)2
2σ2t

 δS̃

P(St ∈ (S̃, S̃ + δS̃)) ≈ 1

S̃σ
√
2πt

exp

−

(
ln( S̃

S0
)− (µ− σ2

2
)t
)2

2σ2t

 δS̃

2.2.3 Ito’s lemma - Multiple Processes

As we have now motivated the analytic solution and probability density func-

tion for the case of single quantity undergoing geometric Brownian motion, we

now turn our efforts to the multi-asset case. Consider a collection of quantities

{S1(t), S2(t), ..., Sd(t)} each of them undergoing corresponding Brownian motions
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{W1(t),W2(t), ...,Wd(t)}.

dSi(t) = rSi(t)dt+ σiSi(t)dWi(t) ∀i ∈ I := {1, 2, ..., d} (2.11)

We can see from formula (2.10) that the probability distribution for each asset is

given by:

ln(Si) ∼ N
((

r − σ2
i

2

)
, σ2

i t

)
⇔ ln(Si) =

(
r − σ2

i

2

)
t+ σ2

i tWt

We are now interested the joint distribution for all of these assets together. In the

case of each the assets being pairwise independent, the joint probability distribu-

tion is simply the product of each of the respective probability density functions

for each asset. However, the quantities {Si}i∈I may exhibit correlations between

how they jointly evolve. These possible pairwise correlations can be captured by

a correlation matrix:

dWidWj = ρijdt

Corr(Wi,Wj) = ρij

However, due to non-independence of the Brownian motions {W1,W2, ...,Wd}, we

must effectively change to a new set of independent Brownian motions {Z1, Z2, ..., Z3}.

This will permit us to describe the joint probability distribution of the assets.

We provide in the appendix (A.1), a derivation of this joint probability dis-

tribution. Regardless, if we define the following vector of random variables

ln(S⃗) := (ln(S1), ln(S2), ..., ln(Sd)) it can be shown that:

ln(S⃗) ∼ N (µ⃗,Σ)

where the corresponding joint probability f(x⃗) distribution is given by:

f(x⃗) =
1√

(2π)d det(Σ)
exp

(
−1

2
(x⃗− µ⃗)TΣ−1(x⃗− µ⃗)

)
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where the quantities µ, Σ are given by:

µ⃗ =



(
r − σ2

1

2

)
t(

r − σ2
2

2

)
t

...(
r − σ2

d

2

)
t

 Σ =


tσ2

1 tρ12σ1σ2 . . . tρ1dσ1σd

tρ12σ1σ2 tσ2
2

...
...

. . .

tρ1dσ1σd . . . tσ2
d

 (2.12)

Or equivalently again:

P
(
ln(S⃗) ∈ Πd

i=1(xi, xi + δxi)
)
≈

exp
(
−1

2
(x⃗− µ⃗)TΣ−1(x⃗− µ⃗)

)√
(2π)d det(Σ)

(
Πd

i=1δxi
)

In a similar fashion to determining the probability of density function for the asset

St from equation (2.10), the joint distribution of the underlying assets, namely S⃗

will follow a multivariate lognormal distribution:

S⃗ ∼ Lognormal(µ⃗,Σ)

f(x⃗) =
1(

Πd
i=1xi

)√
(2π)d det(Σ)

exp

(
−1

2
(ln(x⃗)− µ⃗)TΣ−1(ln(x⃗)− µ⃗)

)
(2.13)

Or equivalently again:

P
(
S⃗ ∈ Πd

i=1(xi, xi + δxi)
)
≈

exp
(
−1

2
(ln(x⃗)− µ⃗)TΣ−1(ln(x⃗)− µ⃗)

)(
Πd

i=1xi
)√

(2π)d det(Σ)

(
Πd

i=1δxi
)

(2.14)

The above probability density function will be a crucial component in estimating

the present value of a multi-asset option. Broadly speaking, the quantum algo-

rithm for linear systems for equations (HHL) will output a quantum state whose

amplitudes are proportional to the value of option at every possible configuration

of prices for the underlying assets at present. From a pricing perspective, we only

care about the amplitude which corresponds to the actual prices of the underlying

assets at present. Trying to estimate the value of this single component from the

output of the quantum linear systems algorithm will take exponentially many

runs of the circuit. The insight of the authors from [35] was that the price of

the option at present is globally distributed if we consider possible prices for the

option at some future time and then re-express the current value of the option

as a conditional expectation over future prices. Here ‘globally distributed’ means
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that every amplitude of the quantum state collectively encodes some information

about the current value of the option. Hence, as we shall discuss later on in

Chapter 5, if a quantum state whose amplitudes are proportional to the distri-

bution above can be produced, the present value of the option can be estimated

far more expediently.

2.2.4 Black-Scholes Equation

Consider the following portfolio consisting of long position on one multi-asset

option V (t, S1, S2, ..., Sd) for which we want to price and a short position of vary-

ing amounts (∆i)of the underlying assets, upon which the value of the option is

dependent on:

Π = −V +
d∑

l=1

∆lSl (2.15)

Consider the change in the value of the portfolio over a small time period:

dΠ = −dV +
d∑

l=1

∆ldSl (2.16)

To evaluate the change dΠ, we first need to evaluate dV . We proceed in a similar

manner to how Ito’s lemma was derived for the univariate case. Consider a Taylor

expansion of V (t, S1, S2, ..., Sd) yields:

dV =
∂V

∂t
(dt) +

∑
i=1

(
∂V

∂Si

)
(dSi) +

1

2

d∑
j,k=1

(
∂2V

∂Sj∂Sk

)
(dSjdSk) + ... (2.17)

In order to proceed, the expressions dSi and dSjdSk need to be decomposed in

terms of the differentials dt and dWi in the same manner as the univariate case.

Hence, we now utilise the box calculus rules for the multi-asset case:

dWjdWk = ρjkdt ∀j, k; dWidt = 0 ∀i (2.18)

Where ρjk are the components of the covariance matrix ρ as alluded to in the

previous section. As well as the stochastic differential equation governing each

quantity Si:

dSi = rSidt+ σiSidWi
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Expanding dSjdSk yields:

dSjdSk = (rSjdt+ σjSjdWj) (rSjdt+ σjSjdWj)

=
(
r2SjSk (dt)

2︸︷︷︸
=0

+rσkSjSk (dWkdt)︸ ︷︷ ︸
=0

+ rσjSjSk (dWjdt)︸ ︷︷ ︸
=0

+σjσkSjSk (dWjdWk)︸ ︷︷ ︸
=ρjkdt

)
= ρjkσjσkSjSkdt

Returning to equation (2.17) and substituting the above expressions yields:

dV =
∂V

∂t
(dt) +

∑
i=1

(
∂V

∂Si

)
(rSidt+ σiSidWi)

+
1

2

d∑
j,k=1

(
∂2V

∂Sj∂Sk

)
(ρjkσjσkSjSkdt)

=

(
∂V

∂t
+

d∑
i=1

rSi

(
∂V

∂Si

)
+

1

2

d∑
j,k=1

ρjkσjσkSjSk

(
∂2V

∂Sj∂Sk

))
dt

+
d∑

i=1

σiSi

(
∂V

∂Si

)
dWi

Returning to equation (2.16), and substituting the above expression for dV yields:

dΠ = −

(
∂V

∂t
+

d∑
i=1

rSi

(
∂V

∂Si

)
+

1

2

d∑
j,k=1

ρjkσjσkSjSk

(
∂2V

∂Sj∂Sk

))
dt

−
d∑

i=1

σiSi

(
∂V

∂Si

)
dWi +

d∑
l=1

∆l(rSldt+ σlSldWl)

⇒ −

(
∂V

∂t
+

d∑
i=1

rSi

((
∂V

∂Si

)
−∆i

)
+

1

2

d∑
j,k=1

ρjkσjσkSjSk

(
∂2V

∂Sj∂Sk

))
dt

−
d∑

i=1

σiSi

(
∆i −

(
∂V

∂Si

))
dWi

(2.19)

The insight of Black and Scholes in their landmark work [6] was that by holding

a suitably sized short position in the underlying asset upon which the option

derives its value, risk can be effectively eliminated. Mathematically speaking,

with regards to the last two lines of equation (2.19), by setting ∆i =
∂V
∂Si

∀i (i.e

holding ∂V
∂Si

sized short position in each asset Si), the only stochastic term dWi
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will vanish. The implication is that the holder of this portfolio assumes no risk.

Therefore, the portfolio should accrue interest like any other risk-less financial

instrument such as U.S. treasury bonds:

dΠ = rΠdt

Hence if we set ∆i =
∂V
∂Si

and the left hand side of equation (2.19) equal to rΠdt

yields:

rΠdt = −

(
∂V

∂t
+

d∑
i=1

rSi

((
∂V

∂Si

)
−
(
∂V

∂Si

))

+
1

2

d∑
j,k=1

ρjkσjσkSjSk

(
∂2V

∂Sj∂Sk

))
dt

−
d∑

i=1

σiSi

((
∂V

∂Si

)
−
(
∂V

∂Si

))
dWi

⇒ rΠdt = −

(
∂V

∂t
+

1

2

d∑
j,k=1

ρjkσjσkSjSk

(
∂2V

∂Sj∂Sk

))
dt

Finally, recalling the defintion of Π = −V +
∑d

i=1

(
∂V
∂Si

)
Si, we can finally arrive

at the multi-asset Black-Scholes equation:

−rV +
d∑

i=1

rSi

(
∂V

∂Si

)
= −

(
∂V

∂t
+

1

2

d∑
j,k=1

ρjkσjσkSjSk

(
∂2V

∂Sj∂Sk

))

=⇒ ∂V

∂t
+

1

2

d∑
j,k=1

ρjkσjσkSjSk

(
∂2V

∂Sj∂Sk

)
+

d∑
i=1

rSi

(
∂V

∂Si

)
− rV = 0 (2.20)

2.2.5 Feynman-Kac - European Option

Consider the Black-Scholes equation in one dimension:

∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2
− rV = 0 (2.21)

subject to the payoff condition at maturity t = T :

V (T, S) = max(K − S, 0)

32



As the underlying value S is subject to the process dS = rSdt+ σSdWt, we can

apply the Feynmac-Kac formula [31]. The theorem can be stated [9] as:

Let F (t, x), µ(t, x), σ(t, x) : [0, T ] × R → R and h(x) : R → R. Consider the

following PDE with terminal condition:
∂F
∂t
(t, x) + µ(t, x)∂F

∂x
(t, x) + σ2(x,t)

2
∂2F
∂x2 (t, x) = 0 0 ≤ t ≤ T

F (T, x) = h(x)

(2.22)

If x is governed by stochastic differential equation dXt = µ(t,Xt)Xtdt+σ(t,Xt)Wt

then the solution for any 0 ≤ t ≤ T can be expressed as:

F (t, x) = E [h(Xt|Ft)] = E [h(XT )|Xt = x])

Taking F := e−rtV maps (2.21) to (2.22). We now show a heuristic derivation of

the Feynman-Kac formula as applied specifically to the Black-Scholes equation.

Consider the following process wherein we introduce an auxiliary time parameter

λ. By convention, we assume that present time t is zero:

Ṽ (λ) = e−rλV (λ, Sλ)

We now calculate the variation of the process dṼ (λ)

dṼ (λ) = d(e−rλ)V (λ, Sλ) + e−rλdV (λ, Sλ)

dṼ (λ) = (−re−rλdλ)V (λ, Sλ) + e−rλdV (λ, Sλ) (2.23)

Applying Ito’s lemma to the function V yields:

dV (λ, Sλ) =

(
∂V

∂t
+ rS

∂V

∂S
+

1

2
σ2S2∂

2V

∂S2

)
dλ+

(
σSλ

∂V

∂S

)
dWλ

As by assumption V satisfies (2.21), the first term and hence the overall variation

can be written as:

dV (λ, Sλ) = rV dλ+ σSλ
∂V

∂S
dWλ
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Substituting into (2.23) yields:

dṼ (λ) = −re−rλV dλ+ e−rλ

(
rV dλ+ σSλ

∂V

∂S
dWλ

)
= σe−rλSλ

∂V

∂S
dWλ (2.24)

Integrating (2.24):

Ṽ (t2, St2)− Ṽ (t1, St1) =

∫ t2

t1

σe−rλSλ
∂V

∂S
dWλ

Taking expectations conditioned on the assumption the initial price of the under-

lying asset is S̄:

E
[
Ṽ (t2, St2)

∣∣St1 = S̄
]
− E

[
Ṽ (t1, St1)

∣∣St1 = S̄
]

= E
[∫ t2

t1

σerλSλ
∂V

∂S
dWλ

∣∣∣St1 = S̄

]
(2.25)

If we define a secondary process H̃(λ):

H̃(λ) :=

∫ λ

t1

σe−rλSλ
∂V

∂S
dWλ

Equation (2.25) can be expressed as:

E
[
Ṽ (t2, St2)

∣∣St1 = S̄
]
− E

[
Ṽ (t1, St1)

∣∣St1 = S̄
]
= E

[
H̃(t2)

∣∣St1 = S̄
]

As H̃(λ) is a martingale (it is the Ito integral of the process σe−rλSλ
∂V
∂S
dWλ) and

recalling (2.5), we get:

E
[
H̃(t2)

∣∣St1 = S̄
]
= H̃(t1) = 0

Finally, we see that:

E
[
Ṽ (t1, St1)

∣∣∣St1 = S̄
]
= E

[
Ṽ (t2, St2)

∣∣∣St1 = S̄
]

e−rt2E
[
V (t2, St2)

∣∣∣St1 = S̄
]
= e−rt1E

[
V (t1, St1)

∣∣St1 = S̄
]

⇒ e−r(t2−t1)E
(
max(K − St2)

∣∣St1 = S̄
)
= V (t1, S̄)
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Hence we have shown that the value of the option at the current time t1 and

price S̄ is simply the discounted expectation value of the payoff function given

the initial price S̄. To simplify the calculation of this expectation value, we will

assume t1 = 0 and T = t2:

Price of option = V (0, S̄) = e−rTE(max(K − ST )|S0 = S̄)

To calculate the price of this option, we can re-express the conditional expectation

as:

E(max(K − ST )|S0 = S̄) =

∫ ∞

0

max(K − S)P(ST = S|S0 = S̄)dS

=

∫ K

0

(K − S)
1

Sσ
√
2πT

exp

−

(
ln(S)− (r − σ2

2
)T − ln(S0)

)2
2σ2T

 dS (2.26)

= K

∫ K

0

1

σ
√
2πT

exp

−

(
ln(S)− (r − σ2

2
)T − ln(S0)

)2
2σ2T

(dS
S

)

−
∫ K

0

1

σ
√
2πT

exp

−

(
ln(S)− (r − σ2

2
)T − ln(S0)

)2
2σ2T

 dS (2.27)

Using the variable change Y = ln(S), (dY = dS/S) transforms the integrals:

= K

∫ ln(K)

−∞

1

σ
√
2πT

exp

−

(
Y − (r − σ2

2
)T − ln(S0)

)2
2σ2T

 dY

−
∫ ln(K)

−∞

1

σ
√
2πT

exp

−

(
Y − (r − σ2

2
)T − ln(S0)

)2
2σ2T

 exp(Y )dY (2.28)
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= K

∫ ln(K)

−∞

1

σ
√
2πT

exp

−

(
Y − (r − σ2

2
)T − ln(S0)

)2
2σ2T

 dY

−
∫ ln(K)

−∞

1

σ
√
2πT

exp

Y −

(
Y −

(
r − σ2

2

)
T − ln(S0)

)2
2σ2T

 dY (2.29)

The second variable change is Ỹ = Y − (r − σ2

2
)T − ln(S0), yielding:

= K

∫ ln(K)−(r−σ2

2
)T−ln(S0)

−∞

1

σ
√
2πT

exp

(
− Ỹ 2

2σ2T

)
dỸ

−
∫ ln(K)−(r−σ2

2
)T−ln(S0)

−∞

1

σ
√
2πT

exp

(
Ỹ − Ỹ 2

2σ2T
+ (r − σ2

2
)T + ln(S0)

)
dỸ

(2.30)

= K

∫ ln(K/S0)−(r−σ2

2
)T

−∞

1

σ
√
2πT

exp

(
− Ỹ 2

2σ2T

)
dỸ

− S0

∫ ln(K/S0)−(r−σ2

2
)T

−∞

1

σ
√
2πT

exp

(
Ỹ − Ỹ 2

2σ2T
+

(
r − σ2

2

)
T

)
dỸ (2.31)

The third variable change is Ŷ = Ỹ
σ
√
T
yielding:

= K

∫ ln(K/S0)−(r−σ2

2 )T

σ
√

T

−∞

1√
2π

exp

(
− Ŷ

2

2

)
dŶ

− S0

∫ ln(K/S0)−
(
r−σ2

2

)
T

σ
√

T

−∞

1√
2π

exp

(
σ
√
T Ŷ − Ŷ 2

2
+

(
r − σ2

2

)
T

)
dŶ (2.32)

= K

∫ − ln(S0/K)+(r−σ2

2 )T

σ
√
T

−∞

1√
2π

exp

(
− Ŷ

2

2

)
dŶ

− S0

∫ −
ln(S0/K)+

(
r−σ2

2

)
T

σ
√
T

−∞

1√
2π

exp

(
σ
√
T Ŷ − Ŷ 2

2
+

(
r − σ2

2

)
T

)
dŶ (2.33)
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Additionally, to avoid clutter, we will define the upper limit in each integral in

the conventional manner as the variable:

d− =
ln
(
S0

K

)
+ (r − σ2

2
)T

σ
√
T

To proceed in evaluating the above integrals, we need to be able to transform the

variables one last time such that both integrals are equal to the error functions

of two parameters. As the first integral is already centered at zero, we can focus

on completing the square in the exponential of the second integral as:

σ
√
T Ŷ − Ŷ 2

2
+

(
r − σ2

2

)
T = −1

2

(
Ŷ 2 − 2σ

√
T Ŷ + (σ2 − 2r)T

)
= −1

2

((
Ŷ − σ

√
T
)2

+ (σ2 − 2r)T − σ2T

)
= −1

2

(
Ŷ − σ

√
T
)2

+ rT

Reinserting to equation (2.33) yields:

= K

∫ −d−

−∞

1√
2π

exp

(
− Ŷ

2

2

)
dŶ − S0e

rT

∫ −d−

−∞

1√
2π

exp

−

(
Ŷ − σ

√
T
)2

2

 dŶ

= K

∫ −d−

−∞

1√
2π

exp

(
− Ŷ

2

2

)
dŶ − S0e

rT

∫ −d−−σ
√
T

−∞

1√
2π

exp

(
− Ŷ

2

2

)
dŶ

(2.34)

Recalling the definition of the error function:

Φ(x) :=
1√
2π

∫ x

−∞
e−

t2

2 dt

We can rewrite equation (2.34) now as:

E
[
max(K − ST )|S0 = S̄

]
= KΦ(−d−)− S0e

rTΦ(−(d− + σ
√
T ))

⇒ E
[
max(K − ST )|S0 = S̄

]
= KΦ(−d−)− S0e

rTΦ(−d+)

Recalling that the value of the option is the time discounted price of this expec-

tation, we arrive at the final analytic formula for the price of European-put style
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option:

VPut = e−rTKΦ(−d−)− S0Φ(−d+)

d− =
ln
(
S0

K

)
+ (r − σ2

2
)T

σ
√
T

d+ = d− + σ
√
T

Changing the sign in the payoff function and redoing the above calculation or

alternatively using put call parity (VCall − VPut = S0 − e−rTK), one can also

determine the price of a European call option as:

VCall = S0Φ(d+)− e−rTKΦ(d−)

2.3 Discussion

In this chapter, we provided a brief introduction to measure-theoretic probabil-

ity and its application to option pricing. Although somewhat mathematically

intensive, we were able to heuristically derive the probability distribution for a

collection of assets and the associated partial differential equation that governs

their evolution. We also provided our own alternative formulation of the value

of an European call and put option with the Feynman-Kac formula. These two

results will prove to be vital when implementing the final quantum algorithm

that will evaluate the price of an option. We did not excessively focus on some

technical subtleties required for a mathematically rigorous treatment of stochas-

tic integration. We focused on deriving results that will be necessary to the next

chapter which relates to the numerical techniques used to solve partial differential

equations.
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Chapter 3

Numerical Methods for Partial

Differential Equations

In this chapter, we will examine numerical methods for solutions of partial dif-

ferential equations (PDEs). As the price of an European style multi asset option

is governed by the multi-dimensional Black-Scholes PDE along with some ap-

propriate initial and boundary conditions, a robust understanding of numerical

approaches to solving PDEs will be critical to evaluating options prices as well as

assisting when it comes to deployment of a quantum algorithm for finite difference

methods. We first illustrate a first principles approach with a review of finite dif-

ferences for the case of univariate and multivariate functions. We then make our

first initial connection to quantum computing by providing an explicit decompo-

sition of the difference matrices that arise in the finite difference method in terms

of a basis of Pauli operators and their superpositions, called here a pseudo-Pauli

basis. This is a critical mathematical framework for engineering useful quantum

circuits or unitaries within the field of quantum computation. We then proceed

with a derivation of how the Black-Scholes equation can be first transformed into

a linear differential equation and then further transformed into a matrix differ-

ential equation ( ˙⃗x = Ax⃗ + b⃗) upon suitable spatial discretization through the

method of lines technique. Finally, we provide an alternative derivation from

[5] of the analytic solution to the previously derived matrix differential equation

with an additional relaxation about the assumption of time independence of the

vector b⃗, building on the initial work by [5]. To conclude the chapter, we show

how this analytic solution can be encoded as a matrix inversion problem with the
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newly relaxed assumption about the time independence of b⃗.

3.1 Overview

Numerical techniques surrounding the finite difference method for solutions of

partial differential equations form a vast field of active research [48]. Techniques

vary from the finite difference method, finite element method and volume meth-

ods, spectral methods, multi-grid methods to name but a few. For comprehensive

discussion of these techniques can be found in [40] Specific terminology that re-

lates to partial differential equations such as explicit schemes, implicit schemes,

Euler’s method, Runge- Kutta will be further expanded upon if encountered in

the following discussion. In the Black-Scholes equation, partial derivatives up to

second order are taken with respect to the ‘spatial’ variables, namely the price of

each of the underlying assets. Therefore for solving the discretized version of the

equation we need to be able to approximate these derivatives on the grid. Lets

restrict ourselves initially to one dimension for easier elucidation. Consider some

interval I ⊂ R. This interval can be discretized into N equidistant steps with the

leftmost and rightmost interval labelled by x0 and xN respectively and h = xN−x0

N
.

Henceforth, we will refer to the subset of gridpoints from I as ΩI . The interior

of ΩI , (i.e ΩI/{x0, xN}) will be denoted as Ω̃I . One immediate issue from the

discretization is that derivatives cannot be evaluated on the boundaries. Hence,

approximations of derivatives can only be evaluated with respect to the interior

points of the grid, namely Ω̃I For some function V : I → R we can approximate

the derivative of V as the central first order difference on Ω̃I as:

∂V

∂x
(xi) ≈

V (xi+1)− V (xi−1)

2h

Similarly, we can compute the central second order difference by evaluating the

derivative at two neighbouring points and quantifying the rate of change:

∂2V

∂x2
(xi) ≈

V (xi+1)−V (xi)
h

− V (xi)−V (xi−1)
h

h
=
V (xi+1)− 2V (xi) + V (xi−1)

h2

These formulae above can be re-expressed as such in matrix representation. For

the first order derivative this has representation as:
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

V ′(x1)

V ′(x2)
...

V ′(xN−1)


=

1

2h



0 1 0 . . . 0

−1 0 1
...

0 −1 0
. . .

...
. . . . . . 1

0 . . . −1 0





V (x1)

V (x2)
...

V (xN−1)


Similarly, for the second order derivative, the representation is given as:



V ′′(x1)

V ′′(x2)
...

V ′′(xN−1)


=

1

h2



−2 1 0 . . . 0

1 −2 1
...

0 1 −2
. . .

...
. . . . . . 1

0 . . . 1 −2





V (x1)

V (x2)
...

V (xN−1)


The indexing from x1 to xN−1 reflects the fact that these difference matrices can

only be used to approximate the derivatives within the interior of the boundary.

3.1.1 Multi-dimensional derivative operators

We now consider a subset I1 × I2 ⊂ R2. Examining the Black-Scholes equation,

the spatial derivatives that need to be taken are of first and second order. Let’s

say for purpose of explanation, we want to examine the discretization matrix

associated with taking the following derivative:

∂2V

∂x1∂x2
=

∂

∂x1

(
∂V

∂x2

)

We examine how the composition of differential operators be realised in matrix

notation. To proceed, we need to enumerate the gridpoints that arise from the

discretization of this I1 × I2 where:

ΩI1 = [x0, x1, ..., xN ]

ΩI2 = [y0, y1, ..., yN ]
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More generally, for the d-dimensional case, we label axes by variables x1, x2, ...xd

so that the gridpoints along each axis are enumerated as:

ΩI1 = [(x1)0, (x1)1, ..., (x1)N ]

ΩI2 = [(x2)0, (x2)1, ..., (x2)N ]

...

ΩId = [(xd)0, (xd)1, ..., (xd)N ]

We assume in this example that the number of gridpoints in each direction is

equal to N to simplify the analysis however this is not required. We exclude the

boundary points from each interval in this enumeration (i.e. the set Ω̃I1 × Ω̃I1).

The enumeration l from each point can be expressed from the following formula

(for the 2D case)

((x2)j, (x1)k) → l = (N − 1)(j − 1) + k

(i.e. ((x2)4, (x1)3) will correspond to the third grid point along the x1 axis and

fourth grid point along the x2 axis which in this notation would be enumerated

as : 3(N − 1) + 3) For the d-dimensional case, the formula will generalise to :

((xd)jd , (xd−1)jd−1
, ..., (x1)j1) → l = N (jd, jd−1, ..., j1)

N (jd, jd−1, ..., j1) :=
d∑

m=1

(N − 1)m−1(jm − 1) + 1

The above indexing naturally leads taking the tensor product of both grids in

some sense, yielding a vector of length (N − 1)d . For the two dimensional case,

with N + 1 = 4 gridpoints in each direction we see that the indexing will be:

((x2)1, (x1)1) → 1

((x2)1, (x1)2) → 2

((x2)2, (x2)1) → 3

((x2)2, (x2)2) → 4

42



We can think of this new vector as corresponding to the tensor product:

(x2)1

(x2)2

⊗(x1)1

(x1)2

 =


((x2)1, (x1)1)

((x2)1, (x1)2)

((x2)2, (x1)1)

((x2)2, (x1)2)


The significance of this is that we can think of taking partial derivatives as tensor

products of difference matrices composed together. Lets say again we have a

two dimensional subset with N gridpoints in each direction and some bivariate

function V defined on it. We want to approximate the partial derivative with

respect to x1 at the (p2, p1) location in the grid.

∂V

∂x1

∣∣∣∣
((x2)p2 ,(x1)p1 )

≈ V ((x2)p2 , (x1)p1+1)− V ((x2)p2 , (x1)p1−1)

h

Now if we apply the operator I ⊗D1 we get the following:

(I ⊗D1)



V ((x2)1, (x1)1)

...

V ((x2)1, (x1)N−1)

V ((x2)2, (x1)1)

...

V ((x2)2, (x1)N−1)

...


=



D1


V ((x2)1, (x1)1)

...

V ((x2)1, (x1)N−1)



D1


V ((x2)2, (x1)1)

...

V ((x2)2, (x1)N−1)


...


=




∂x1V ((x2)1, (x1)1)

...

∂x1V ((x2)1, (x1)N−1)


∂x1V ((x2)2, (x1)1)

...

∂x1V ((x2)2, (x1)N−1)


...


The second equality arises as:

D1



...

V ((x2)1, (x1)p−1)

V ((x2)1, (x1)p)

V ((x2)1, (x1)p+1)

...


=



...

V ((x2)1,(x1)p)−V ((x2)1,(x1)p−2)

2h

V ((x2)1,(x1)p+1)−V ((x2)1,(x1)p−1)

2h

V ((x2)1,(x1)p+2)−V ((x2)1,(x1)p)

2h

...


=



...

∂x1V ((x2)1, (x1)p−1)

∂x1V ((x2)1, (x1)p)

∂x1V ((x2)1, (x1)p+1)

...


Similarly, applying the operator D1 ⊗ I will evaluate the partial derivative along

the x2 axis. For the N -dimensional case, applying the operator:

I⊗d−l ⊗D1 ⊗ I⊗l−1
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amounts to taking the partial derivative along the xl axis. Replacing D1 with

D2 corresponds to evaluating the second derivative along that same axis. Taking

mixed partial derivatives just amounts to composition of these matrices. Taking

the mixed partial derivative ∂2

∂xj∂xk
, assuming without loss of generality that k > j

yields: (
I⊗d−j ⊗D1 ⊗ I⊗j−1I

)︸ ︷︷ ︸
∂xj

(
I⊗d−k ⊗D1 ⊗ I⊗k−1I

)︸ ︷︷ ︸
∂xk

⇒ I⊗d−jD1 ⊗ I⊗k−j−1 ⊗D1 ⊗ I⊗k−1

3.1.2 Connection to Pauli matrices

As a quantum algorithm will ultimately be used to invert and solve the yet to

be derived matrix formulation of the above problem, it is prudent to see if the

matrices above can be expressed in terms of the commonly used matrices in

quantum computing [36], namely the Pauli matrices:

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1


We will now show that it is possible to express the matrices D1 and D2 as linear

combinations of tensor products of Pauli operators. The general form for the

above difference matrices are tridiagonal matrices, which can be expressed as:

A =



b a 0 . . . 0

c b a
...

0 c b
. . .

...
. . . . . . a

0 . . . c b


In order to show how inductively we can construct these tridiagonal matrices, we

first define two new matrices σ+, σ−:

σ+ :=
1

2
(σ1 + iσ2) =

0 1

0 0


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σ− :=
1

2
(σ1 − iσ2) =

0 0

1 0


To proceed with the inductive argument, we define the N = 21 dimensional

tridiagonal matrix:

T1 = bI + aσ+ + cσ− =

b a

c b


Using this as our base case, we can use this to create our ‘next’ matrix:

T2 = I2 ⊗ T1 + c(σ− ⊗ σ+) + a(σ+ ⊗ σ−)

→


b a 0 0

c b 0 0

0 0 b a

0 0 c b

+


0 0 0 0

0 0 a 0

0 c 0 0

0 0 0 0

 =


b a 0 0

c b a 0

0 c b a

0 0 c b


The recursive relationship can be defined between the matrices Tn where a cor-

rection term can be added each time:

Tn+1 = I ⊗ Tn + c(σ− ⊗ σ⊗n
+ ) + a(σ+ ⊗ σ⊗n

− )︸ ︷︷ ︸
Correction

This recursive relationship gives arise to the analytic form for the 2n x 2n tridi-

agonal matrix Tn:

Tn =



b a 0 . . . 0

c b a
...

0 c b
. . .

...
. . . . . . a

0 . . . c b


︸ ︷︷ ︸

2n

Tn = bI⊗n +
n−1∑
l=0

I⊗n−1−l ⊗
(
c(σ− ⊗ σ⊗l

+ ) + a(σ+ ⊗ σ⊗l
−
)
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To prove this formula, assume inductively that it is true for n = k:

Tk = bI⊗k +
k−1∑
l=0

I⊗k−1−l ⊗
(
c(σ− ⊗ σ⊗l

+ ) + a(σ+ ⊗ σ⊗l
−
)

We will now show that the sum satisfies the recursive relationship:

Tk+1 = I ⊗ Tk + c(σ− ⊗ σ⊗k
+ ) + a(σ+ ⊗ σ⊗k

− )

Applying the recursive definition yields:

⇒ I ⊗

(
bI⊗k +

k−1∑
l=0

I⊗k−1−l ⊗
(
c(σ− ⊗ σ⊗l

+ ) + a(σ+ ⊗ σ⊗l
−
))

+ c(σ− ⊗ σ⊗n
+ ) + a(σ+ ⊗ σ⊗n

− ) (3.1)

⇒ bI⊗k+1 +
k−1∑
l=0

I⊗(k+1)−1−l ⊗
(
c(σ− ⊗ σ⊗l−1

+ ) + a(σ+ ⊗ σ⊗l−1
− )

)
+ c(σ− ⊗ σ⊗k

+ ) + a(σ+ ⊗ σ⊗k
− ) (3.2)

⇒ bI⊗k+1 +
k−1∑
l=0

I⊗(k+1)−1−l ⊗
(
c(σ− ⊗ σ⊗l−1

+ ) + a(σ+ ⊗ σ⊗l−1
− )

)
I⊗(k+1)−1−k

(
c(σ− ⊗ σ⊗k

+ ) + a(σ+ ⊗ σ⊗k
− )
)︸ ︷︷ ︸

(k+1)thterm

(3.3)

↓

bI⊗k+1 +

(k+1)−1∑
l=0

I⊗(k+1)−1−l ⊗
(
c(σ− ⊗ σ⊗l

+ ) + a(σ+ ⊗ σ⊗l
−
)

:= Tk+1 (3.4)

We will return to the importance of this decomposition later when examining the

Hamiltonian simulation subroutine as part of the HHL algorithm.
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3.1.3 Dirichlet Boundary conditions in the one dimen-

sional case

Consider again the difference matrix associated with evaluating the second deriva-

tive. 

V ′′(x1)

V ′′(x2)
...

V ′′(xN−1)


=

1

h2



−2 1 0 . . . 0

1 −2 1
...

0 1 −2
. . .

...
. . . . . . 1

0 . . . 1 −2





V (x1)

V (x2)
...

V (xN−1)


There is one subtlety that has not been addressed yet in this formulation. There

is an issue here as we have not discussed how the derivative is evaluated on the

interior gridpoints adjacent to the boundaries. Explicit computation of V ′′(x1)

and V ′′(xN−1) gives:

V ′′(x1) =
−2V (x1) + V (x2)

h2

V ′′(xN−1) =
V (xN−2)− 2V (xN−1)

h2

We are missing information here namely V (x0) and V (xN) to evaluate the deriva-

tives. However, if V (x0) = 0 and V (xN) = 0 the previous equations can be

reinterpreted as:

V ′′(x1) =
0− 2V (x1) + V (x2)

h2
=
V (x0)− 2V (x1) + V (x2)

h2

V ′′(xN−1) =
V (xN−2)− 2V (xN−1) + 0

h2
=
V (xN−2)− 2V (xN−1) + V (xN)

h2

Hence, the difference matrix above can be reinterpreted as approximating the

derivative of a function V (x) where the function is held at zero at the endpoints.

(This is analogous to Poisson’s equation with the boundary values set to zero).

The boundary values can be adjusted to some other value or function easily.
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If V (t, x0) = L(t), V (t, xN) = U(t), then substituting yields:

V ′′(t, x1) =
L(t)− 2V (t, x1) + V (t, x2)

h2

V ′′(t, xN−1) =
V (t, xN−2)− 2V (t, xN−1) + U(t)

h2

The previous matrix equation can be modified to reflect this change in boundary

conditions as:



V ′′(t, x1)

V ′′(t, x2)
...

V ′′(t, xN−1)


=

1

h2



−2 1 0 . . . 0

1 −2 1
...

0 1 −2
. . .

...
. . . . . . 1

0 . . . 1 −2





V (t, x1)

V (t, x2)
...

V (t, xN−1)


+

1

h2



L(t)

0
...

0

U(t)


However for the case of the difference matrix that corresponds to approximating

the first derivative, there is a sign change that must be accounted for. If V (t, x0) =

L(t), V (t, xN) = U(t), this can be accounted for as:



V ′(t, x1)

V ′(t, x2)
...

V ′(t, xN−1)


=

1

2h



0 1 0 . . . 0

−1 0 1
...

0 −1 0
. . .

...
. . . . . . 1

0 . . . −1 0





V (t, x1)

V (t, x2)
...

V (t, xN−1)


+

1

2h



−L(t)

0
...

0

U(t)



V ′(t, x1) =
−L(t) + V (t, x2)

2h
⇔ −V (t, x0) + V (t, x2)

2h

V ′(t, xN−1) =
−V (t, xN−2) + U(t)

2h
⇔ −V (t, xN−2) + V (t, xN)

2h
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3.1.4 Dirichlet boundary conditions in the multi-dimensional

case

If we consider a d-dimensional mesh ΩId×...×I1 where each interval Ij has N + 1

gridpoints (Ij = [(xj)0, (xj)2, .., (xj)N ]), the lower boundary conditions are:

V (t, (xd)jd , .., (x2)j2 , (x1)0) = Lx1(t, (xd)jd , .., (x2)j2 , (̂x1)j1)

V (t, (xd)jd , .., (x2)0, (x1)j1) = Lx2(t, (xd)jd , .., (̂x2)j2 , (x1)j1)

...

V (t, (xd)0, .., (x2)j2 , (x1)j1) = Lxd
(t, (̂xd)jd , .., (x2)j2 , (x1)j1)

The upper boundary conditions are:

V (t, (xd)jd , .., (x2)j2 , (x1)N−1) = Ux1(t, (xd)jd , .., (x2)j2 , (̂x1)j1)

V (t, (xd)jd , .., (x2)N−1, (x1)j1) = Ux2(t, (xd)jd , .., (̂x2)j2 , (x1)j1)

...

V (t, (xd)N−1, .., (x2)j2 , (x1)j1) = Uxd
(t, (̂xd)jd , .., (x2)j2 , (x1)j1)

The caret symbol here, ̂ denotes that this argument is omitted from the function

domain. To declutter the following equations, we will condense the notation in a

similar fashion as [35] such that points within the mesh will be represented as:

((xd)jd , (xd−1)jd−1
, ..., (x1)j1) ↔ (jd, jd−1, ..., j1)

Let us now consider how the boundary conditions can be imposed. For the d

dimensional case, if the first derivative is being taken with respect to the axis

(xa), we must correct the value of V (t, jd, jd−1, ..., j1) by:

−Lxa(t, jd, jd−1, .., ĵa, .., j1) at the point (jd, jd−1, .., 1︸︷︷︸
athposition

, .., j1)

Uxa(t, jd, jd−1, .., ĵa, .., j1) at the point (jd, jd−1, .., N − 1︸ ︷︷ ︸
athposition

, .., j1)
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For the case of taking the second derivative along the axis (xa), the expression

is:

Lxa(t, jd, jd−1, .., ĵa, .., j1) at the point (jd, jd−1, .., 1︸︷︷︸
athposition

, .., j1)

Uxa(t, jd, jd−1, .., ĵa, .., j1) at the point (jd, jd−1, .., N − 1︸ ︷︷ ︸
athposition

, .., j1)

Finally for the case of mixed partial derivatives, if we are evaluating the second

derivative along the (xa), (xb) axes, the boundary conditions are:

−Lxa,xb
(t, jd, .., jb, .., ĵa, .., j1) at the point (jd, .., jb, .., 1︸︷︷︸

athposition

, .., j1)

Uxa,xb
(t, jd, .., jb, .., ĵa, .., j1) at the point (jd, .., jb, .., N − 1︸ ︷︷ ︸

athposition

, .., j1)

−Lxa,xb
(t, jd, .., ĵb, .., ja, .., j1) at the point (jd, .., 1︸︷︷︸

bthposition

, .., ja, .., j1)

Uxa,xb
(t, jd, .., ĵb, .., ja, .., j1) at the point (jd, .., N − 1︸ ︷︷ ︸

bthposition

, .., ja, .., j1)

The goal now is to define the vector for each differential operator that will im-

pose the corresponding boundary conditions. The index function N (jd, ..., j1) =∑d
m=1(N − 1)m−1(jm − 1) + 1 can be used to translate from the overall index in

the (N −1)d dimensional vector to the location along each of the individual axes.

To impose the boundary condition for the first derivative along some axis (xc),

the vector B⃗∂xc(t) will be added whose lth component is:

(B⃗(∂xc)(t))l =
1

2h

∑
j1,j2,..,jd
ji ̸=jc

[
−δl,N (jd,.,1,.,j1)

↑
cth

Lxc(t, jd, ., ĵt, ., j1)

+ δl,N (jd,.,N−1,.,j1)
↑
cth

Uxc(t, jd, ., ĵt., j1)
]

where the values 1 and N − 1 are at the cth argument in the indexing function.

Similarly for the case of the second derivative along the same axis (xc), the vector
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B⃗(∂2xc)(t) will be added whose lth component is:

(B⃗(∂2xc)(t))l =
1

h2

∑
j1,j2,..,jd
ji ̸=jc

[
δl,N (jd,.,1,.,j1)

↑
cth

Lxc(t, jd, ., ĵt, ., j1)

+ δl,N (jd,.,N−1,.,j1)
↑
cth

Uxc(t, jd, ., ĵt., j1)
]

Finally, for the case of the mixed partial derivatives along the axes (xa), (xb), the

vector B⃗(∂xa,∂xb) may be expressed as:

(B⃗(∂xa,∂xb)(t))l =
1

4h2

∑
j1,j2,..,jd
ji ̸=ja
ji ̸=jb

[
−δl,N (jd,.,1,.,j1)

↑
ath

Lxa(t, jd, .., ĵa, .., j1)

− δl,N (jd,.,1,.,j1)
↑
bth

Lxb
(t, jd, .., ĵb, .., jd)

+ δl,N (jd,.,N−1,.,j1)
↑
ath

Uxa(t, jd, .., ĵa, .., j1)

+ δl,N (jd,.,N−1,.,j1)
↑
bth

Uxb
(t, jd, .., ĵb, .., j1)

]

We will now consider an elementary example of a PDE in two dimensions. Con-

sider the following mesh:

ΩI1×I2 = I1 × I2

I1 = [(x1)0, (x1)1, ..., (x1)N ]

I2 = [(x2)0, (x2)1, ..., (x2)N ]

and the following PDE with respective boundary conditions:

∂2V

∂x22
+
∂V

∂x1
=
∂V

∂t

V (t, (x2)j2 , (x1)0) = Lx1(t, (x2)j2) V (t, (x1)N , (x2)j2) = Ux1(t, (x2)j2)

V (t, (x2)0, (x1)j1) = Lx2(t, (x1)j1) V (t, (x1)j1 , (x2)N) = Ux2(t, (x1)j1)
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The boundary conditions can be re-expressed in the condensed notation as:

V (t, j2, 0) = Lx1(t, j2) V (t, j2, N) = Ux1(t, j2)

V (t, 0, j1) = Lx2(t, j1) V (t, N, j1) = Ux2(t, j1)

The differential operator will be represented as the following sum of tensor prod-

ucts:

D2 ⊗ I + I ⊗D1

and the governing equation on the interior Ω̃I1×I2 is given by:

(D2 ⊗ I + I ⊗D1)


V (t, (x2)1, (x1)1)

V (t, (x2)1, (x1)2)

V (t, (x2)1, (x1)3)

...

 =
∂

∂t


V (t, (x2)1, (x1)1)

V (t, (x2)1, (x1)2)

V (t, (x2)1, (x1)3)

...



(D2 ⊗ I + I ⊗D1)


V (t, (1, 1))

V (t, (1, 2))

V (t, (1, 3))

...

 =
∂

∂t


V (t, (1, 1))

V (t, (1, 2))

V (t, (1, 3))

...


Considering just the right hand side of the previous expression and expanding it

yields:

(D2 ⊗ I)


V (t, (1, 1))

V (t, (1, 2))

V (t, (1, 3))

...

+ (I ⊗D1)


V (t, (1, 1))

V (t, (1, 2))

V (t, (1, 3))

...



→



∂2x2
V (t, (1, 1))

...

∂2x2
V (t, (1, N − 1))

∂2x2
V (t, (2, 1))

...


+



∂x1V (t, (1, 1))

...

∂x1V (t, (1, N − 1))

∂x1V (t, (2, 1))

...


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Adding the boundary conditions to the original matrix equation yields:



∂2x2
V (t,

(x2,x1)︷ ︸︸ ︷
(1, 1))

...

∂2x2
V (t, (1, N − 1))

∂2x2
V (t, (2, 1))

...


+



Lx2(t, 1)

...

Lx2(t, N − 1)

0

0 ↓


︸ ︷︷ ︸

⃗B(∂x2)

+



∂x1V (t,

(x2,x1)︷ ︸︸ ︷
(1, 1))

...

∂x1V (t, (1, N − 1))

∂x1V (t, (2, 1))

...


+



−Lx1(t, 1)

0 ↕

Ux1(t, 1)

−Lx1(t, 2)

0 ↓


︸ ︷︷ ︸

⃗B(∂x1)

Combining the terms B⃗(∂x1)(t), B⃗(∂x1)(t) into some vector B⃗(t) yields the final

form of the linear system of ODEs to be solved:

B⃗(t) = B⃗(∂x1) + B⃗(∂x2) (3.5)

∂V

∂t
= (D2 ⊗ I + I ⊗D1)V + B⃗(t) (3.6)

3.2 Numerical methods for partial differential

equations

We will now examine how a partial differential equation can be expressed in the

form of (3.5) and (3.6).

3.2.1 Multi-dimensional Black-Scholes Equation

The single asset Black-Scholes equation, which governs the dynamics of option V

which derives its values from an asset S is given by:

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

with final payoff condition at maturity T at a strike price K given by:

V (T, S) = max(p(K − S), 0); p =

 +1 call

−1 put
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Assuming an European call option, the initial and boundary conditions are:

V (T, S) = max(S −K, 0) ∀S

V (t, 0) = 0 ∀t

V (t, S) ≈ S −Ke−r(T−t) as S → ∞

Similarly, for an European put option, the initial boundary conditions are:

V (T, S) = max(K − S, 0) ∀S

V (t, 0) = Ke−r(T−t) ∀t

V (t, S) ≈ 0 as S → ∞

The d-dimensional Black-Scholes equation which governs the value of multi asset

option V contingent on assets S1, S2, ..., Sd can be expressed as:

∂V

∂t
+

1

2

d∑
i,j=1

ρijσiσjSiSj
∂2V

∂Si∂Sj

+
d∑

i=1

rSi
∂V

∂Si

− rV = 0

with a payoff condition at maturity T :

V (T, (S1, S2, ..., Sd)) = f(S1, S2, ..., Sd)

The nature of f depends on the option type. For ‘worst of’ option types for

example, the payoff function for a call option is given by:

f(S1, S2, ..., Sd) = max(K −min(S1, S2, ..., Sd), 0)

In either the single or multi-asset case, the evaluation of the option price amounts

to finding the present value of the option:

V (0, Snow)︸ ︷︷ ︸
price of single-asset option

V (0, (S1)now, (S2)now, ..., (Sd)now)︸ ︷︷ ︸
price of multi-asset option

3.2.2 Reduction to linear partial differential equation

The ordinary/partial differential equation in its current form is nonlinear. As the

quantum algorithm is explicitly for solving linear systems of ordinary differential
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equations (ODEs), we have to linearize the equation by making the following

variable changes [53]:

xi := lnSi; τ := T − t

(Si = exi : t = T − τ)

Hence the derivatives with respect to x and S can be rewritten as:

∂

∂Si

=
dxi
dSi

∂

∂xi

∂

∂t
=
dτ

dt

∂

∂τ

∂

∂Si

=
1

Si

∂

∂xi

∂

∂t
= − ∂

∂τ

Substituting these definitions into the Black-Scholes equation yields:

−∂V
∂τ

+
1

2

d∑
i,j=1

ρijσiσjSiSj

(
1

Si

∂

∂xi

(
1

Sj

∂V

∂xj

))
+

d∑
i=1

rSi

(
1

Si

∂V

∂xi

)
− rV = 0

−∂V
∂τ

+
1

2

d∑
i,j=1

ρijσiσjSj
∂

∂xi

(
1

Sj

∂V

∂xj

)
+

d∑
i=1

r

(
∂V

∂xi

)
− rV = 0

−∂V
∂τ

+
1

2

d∑
i,j=1

ρijσiσjSj

(
1

Sj

∂2V

∂xi∂xj
+

∂

∂xi

(
1

Sj

)
∂V

∂xj

)
+

d∑
i=1

r
∂V

∂xi
−rV = 0 (3.7)

As 1
Si

= e−xi

∂

∂xi

(
1

Sj

)
= −δij

1

Si

(3.8)

Substituting (3.8) into (3.7) yields:

⇒ −∂V
∂τ

+
1

2

d∑
i,j=1

ρijσiσjSj

(
1

Sj

∂2V

∂xi∂xj
− δij

1

Si

∂V

∂xj

)
+

d∑
i=1

r
∂V

∂xi
− rV = 0

−∂V
∂τ

+
1

2

d∑
i,j=1

ρijσiσj
∂2V

∂xi∂xj
− 1

2

d∑
i=1

ρiiσ
2
i

∂V

∂xi
+

d∑
i=1

r
∂V

∂xi
− rV = 0

−∂V
∂τ

+
1

2

d∑
i,j=1

ρijσiσj
∂2V

∂xi∂xj
+

d∑
i=1

(
r − 1

2
σ2
i

)
∂V

∂xi
− rV = 0

∂V

∂τ
=

1

2

d∑
i,j=1

ρijσiσj
∂2V

∂xi∂xj
+

d∑
i=1

(
r − 1

2
σ2
i

)
∂V

∂xi
− rV
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The final substitution is given by creating a new variable W such that:

W := erτV (V = e−rτW )

As the term e−rτ features no dependence on spatial variable xi, W can be sub-

stituted in V for any of the spatial derivatives as:

∂W

∂x
= erτ

∂V

∂x

However for the temporal derivative, the derivative becomes:

∂V

∂τ
=

∂

∂τ

(
e−rτW

)
= e−rτ ∂W

∂τ
− re−rτW = e−rτ ∂W

∂τ
− rV

Replacing into the above equation yields the final form of the Black-Scholes equa-

tion that we will use throughout the thesis:

e−rτ ∂W

∂τ
− rV =

1

2

d∑
i,j=1

ρijσiσj
∂2(e−rτW )

∂xi∂xj
+

d∑
i=1

(
r − 1

2
σ2
i

)
∂(e−rτW )

∂xi
− rV

e−rτ ∂W

∂τ
= e−rτ 1

2

d∑
i,j=1

ρijσiσj
∂2W

∂xi∂xj
+ e−rτ

d∑
i=1

(
r − 1

2
σ2
i

)
∂W

∂xi

Hence, we arrive at the final linear partial differential equation:

∂W

∂τ
=

1

2

d∑
i,j=1

ρijσiσj
∂2W

∂xi∂xj
+

d∑
i=1

(
r − 1

2
σ2
i

)
∂W

∂x
(3.9)

3.2.3 Method of lines

The reason for the change of variables in the above fashion is that the resulting

differential equation is linear. This means that if we discretize and express the

partial differential equation on a grid, the partial differential equation can be

converted into a system of ordinary differential equations of the form:

dW⃗

dτ
= AW⃗

W⃗ = (W (x1),W (x2), ...,W (xN))
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where A is some matrix and the indexing l refers to all gridpoints that arise

from the discretization, that has been previously defined. If we consider the PDE

(3.9) in its above form, using the method of lines, it may be re-expressed as a

linear algebraic problem. First of all, we need to split up the partial derivatives

of second order in to mixed (cross derivatives) and unmixed:

∂W

∂τ
=

1

2

d∑
i,j=1

ρijσiσj
∂2W

∂xi∂xj
+

d∑
i=1

(
r − 1

2
σ2
i

)
∂W

∂x

↓

∂W

∂τ
=

1

2

d∑
i=1

σ2
i

∂2W

∂x2i
+

1

2

d∑
i,j=1
i ̸=j

ρijσiσj
∂2W

∂xi∂xj
+

d∑
i=1

(
r − 1

2
σ2
i

)
∂W

∂xi

Due to the symmetry of the partial derivatives,
(

∂2

∂xi∂xj
= ∂2

∂xj∂xi

)
, the second

summation can be reindexed to avoid double counting, picking up a factor of

two:

∂W

∂τ
=

1

2

d∑
i=1

σ2
i

∂2W

∂x2i
+

d∑
i=1

d∑
j>i

ρijσiσj
∂2W

∂xi∂xj
+

d∑
i=1

(
r − 1

2
σ2
i

)
∂W

∂xi

Using the finite difference scheme alluded to previously, this can be expressed in

the tensor product notation as:

dW⃗

dτ
=

1

2

d∑
i=1

σ2
i (I

⊗d−l ⊗D2 ⊗ I⊗l−1)W⃗

+
d∑

i,j=1
j>i

ρijσiσj(I
⊗d−iD1 ⊗ I⊗j−i−1 ⊗D1 ⊗ I⊗j−1)W⃗

+
d∑

i=1

(
r − σ2

i

2

)
(I⊗d−i ⊗D1 ⊗ I⊗i−1)W⃗
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Using the following notation, the above equation can be condensed further. Col-

lecting all the boundary condition terms in to the vector ⃗B(t) yields:

A(∂xi) = I⊗d−i ⊗D1 ⊗ I⊗i−1 A(∂2xi) = I⊗d−l ⊗D2 ⊗ I⊗l−1

A(∂xi,∂xj) = I⊗d−iD1 ⊗ I⊗j−i−1 ⊗D1 ⊗ I⊗j−1

dW⃗

dτ
=

1

2

d∑
i=1

σ2
iA(∂2xi)W⃗ +

d∑
i,j=1
j>i

ρijσiσjA(∂xi,∂xj)W⃗

+
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)W⃗ + B⃗(τ)

⇒

1

2

d∑
i=1

σ2
iA(∂2xi) +

d∑
i,j=1
j>i

ρijσiσjA(∂xi,∂xj) +
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)

 W⃗ + B⃗(τ)

At last, we have the matrix differential equation:

dW⃗

dτ
= AW⃗ + B⃗(τ) (3.10)

3.3 Matrix formulation of problem

We now proceed with showing how (3.10) may be expressed and therefore solved

in a matrix formulation.

3.3.1 Analytic solution to matrix differential equation

The analytic solution for the case of constant B⃗(τ) = B⃗0 in the above problem:

dX⃗

dτ
= AX⃗ + B⃗0 X⃗(0) = X⃗0

may be expressed as:

X⃗(T ) = eAT X⃗0 +
(
eAT − I

)
A−1B⃗0
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Currently, there exists a quantum algorithm that re-expresses the above solution

as the inverse of an auxilliary matrix [5]. However, the requirement for constant

B⃗0 reflects the assumption that the boundary conditions only vary with asset

price. This may be realistic for barrier types within options however it would

be preferrable to have some possibility of time dependence within the boundary

conditions. Namely, we seek a quantum algorithm that can solve the problem:

dX⃗

dτ
= AX⃗ + B⃗(τ) X⃗(0) = X⃗0

Although there has been recent work examining solutions to this problem with

time-varying matrix A using Dyson series methods [4], we expand the original

authors approach in [5] for the case of constant matrix A and time-varying vector

B⃗(τ):

X⃗(T ) = eAT X⃗0 + eAT

(∫ T

0

e−AsB⃗(s)ds

)
To simplify the analysis, consider a Taylor expansion of B⃗(τ):

B⃗(τ) ≈ B⃗0 + τB⃗1 +
τ 2

2!
B⃗2 +O(τ 3)

B⃗(τ) =
∞∑
l=0

τ l

l!
B⃗l (3.11)

Substituting (3.11) into the above equation for the solution above yields:

X⃗(T ) = eAT X⃗0 + eAT

(∫ T

0

e−At

(
∞∑
l=0

tl

l!
B⃗l

)
dt

)
(3.12)

X⃗(T ) = eAT X⃗0 +
∞∑
l=0

eAT

l!

(∫ T

0

tle−Atdt

)
B⃗l

In(T ) :=

∫ T

0

tne−Atdt = tn(−A−1e−At)

∣∣∣∣T
0

− n

∫ T

0

tn−1(−A−1e−At)

=
(
−T nA−1e−AT + 0

)
+ nA−1

∫ T

0

tn−1e−Atdt︸ ︷︷ ︸
In−1

In(T ) = A−1
(
nIn−1 − T ne−AT

)
I0(T ) = A−1

(
I − e−AT

)
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The recursive relationship has the following exact form:

In = n!A−(n+1)

(
I − e−AT

n∑
k=0

(AT )k

k!

)
(3.13)

This can be seen as:

In = A−1
(
nIn−1 − T ne−AT

)
= A−1

[
n

(
(n− 1)!A−(n)

(
I − e−AT

n−1∑
k=0

(AT )k

k!

))]
− A−1T ne−AT

= nA−1

(
(n− 1)!A−ne−AT

(
eAT −

n−1∑
l=1

(AT )l

l!

))
− A−1T ne−AT

= n!A−(n+1)

(
I − e−AT

n−1∑
k=0

(AT )k

k!

)
− A−1T ne−AT

= n!A−(n+1)

(
I − e−AT

n−1∑
k=0

(AT )k

k!

)
− n!A−(n+1)

(
AnT ne−AT

n!

)

= n!A−(n+1)

(
I − e−AT

n−1∑
k=0

(AT )k

k!
− e−AT (AT )n

n!

)

= n!A−(n+1)

(
I − e−AT

n∑
k=0

(AT )k

k!

)
:= In

Returning to the solution to the matrix differential equation and substituting

(3.13) for the integral Il(T ) yields:

X⃗(T ) = eAT X⃗0 +
∞∑
l=0

eAT

l!

(
l!A−(l+1)

(
I − e−AT

l∑
k=0

(AT )k

k!

))
B⃗l

X⃗(T ) = eAT X⃗0 +
∞∑
l=0

A−(l+1)

(
eAT −

l∑
k=0

(AT )k

k!

)
B⃗l (3.14)

X⃗(T ) = eAT X⃗0 +
∞∑
l=0

A−(l+1)

(
∞∑

k=l+1

(AT )k

k!

)
B⃗l

X⃗(T ) = eAT X⃗0 +
∞∑
l=1

A−l

(
∞∑
k=l

(AT )k

k!

)
B⃗l−1

X⃗(T ) = eAT X⃗0 +
∞∑
l=1

T l

(
∞∑
k=l

(AT )k−l

k!

)
B⃗l−1

60



⇒ X⃗(T ) = eAT X⃗0 +
∞∑
l=1

T l

(
∞∑
k=0

(AT )k

(k + l)!

)
B⃗l−1

Incorporating the initial state X⃗0 into the summation, the exponential term can

be expressed as:

⇒ X⃗(T ) = T 0

(
∞∑
k=0

(AT )k

(k + 0)!

)
X⃗0 +

∞∑
l=1

T l

(
∞∑
k=0

(AT )k

(k + l)!

)
B⃗l−1

If we define a vector Vl:

V⃗l =

X⃗0 l = 0

B⃗l−1 l > 0

The solution can be written as:

X⃗(T ) =
∞∑
l=0

T l

(
∞∑
k=0

(AT )k

(k + l)!

)
V⃗l

Considering only the dependence of T , the above solution can also be represented

as:

X⃗(T ) =
∞∑
l=0

T l

(
∞∑
k=0

(AT )k

(k + l)!

)
V⃗l

=
∞∑
l=0

∞∑
k=0

T l+k

(k + l)!
AkV⃗l

=
∞∑
λ=0

T λ

λ!

∑
k,l

k+l=λ

AkV⃗l

 =
∞∑
λ=0

T λ

λ!

(
λ∑

k=0

Aλ−kV⃗k

)
(3.15)

3.3.2 Representation of solution as matrix inversion

For the following section, assume that each of the components of the vector B⃗(τ),

are a polynomial of degree at most d. This is equivalent to the statement that V⃗l =

0⃗, ∀l > d + 1 (This can also be thought of as truncating the Taylor expansion

of B⃗(τ)) if B⃗(τ) does not consist strictly of poly(t) components). Returning to

the solution (3.15) yields:

X⃗(∆t) =
∞∑
λ=0

(∆t)λ

λ!

(
λ∑

k=0

Aλ−kV⃗k

)
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If we define x⃗l+1 =
(∆t)l

l!

(∑l
k=0A

l−kV⃗k

)
, a recursive relationship can be defined:

x⃗l+1 =
(∆t)l

l!

(
l−1∑
k=0

Al−kV⃗k

)
+
hl

l!
V⃗l−1

=
Ah

l

(
(∆t)l−1

(l − 1)!

l−1∑
k=0

Al−kV⃗k

)
+

(∆t)l

l!
V⃗l−1

:=
A(∆t)

l
x⃗l +

(∆t)l

l!
V⃗l−1

To see how this recursive relation can be expressed in matrix form, we express

the first few terms of the sequence for a small period of evolution, T = ∆t:

X⃗(∆t) =
(
V⃗0

)
︸ ︷︷ ︸

x⃗1

+∆t
(
V⃗1 + AV⃗0

)
︸ ︷︷ ︸

x⃗2

+
(∆t)2

2

(
V⃗2 + AV⃗1 + A2V⃗0

)
︸ ︷︷ ︸

x⃗3

+O((∆t)3)

x⃗1 = V⃗0

x⃗2 = A∆tV⃗0 +∆tV⃗1 = A∆tx⃗1 +∆tV⃗1

x⃗3 =
A∆t

2

(
A∆tV⃗0 +∆tV⃗1

)
+

∆t2

2
V⃗2 =

A∆t

2
x⃗2 +

∆t2

2
V⃗2

...

x⃗d =
A∆t

(d− 1)
x⃗d−1 +

∆td−1

(d− 1)!
V⃗d−1

x⃗d+1 =
A∆t

d
x⃗d

...

x⃗n =
A∆t

n− 1
x⃗n−1

The recursive relationship previously defined emerges. Solving for each of these

vectors {x⃗i} can be achieved by encoding the recursive relationship above into
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the following linear system:



I 0 0 . . . 0 . . . 0

−A(∆t) I 0
...

...

0 −A(∆t)
2

I
. . .

...
. . . . . . 0

0 . . . −A(∆t)
d−1

I 0
... −A(∆t)

d
I

. . .
...

. . . . . . 0

0 . . . . . . −A(∆t)
n−1

I





x⃗1

x⃗2

x⃗3
...

x⃗d

x⃗d+1

...

x⃗n



=



V⃗0

(∆t)V⃗1
(∆t)2

2
V⃗2

...

(∆t)d−1

(d−1)!
V⃗d−1

0⃗
...

0⃗


In the above and following matrices, we denote block matrices with boldface. The

terms in each of the series solution for X⃗(∆t) are encoded in each of the {x⃗i}. In

order to find an approximation of the solution, we have to sum each of the terms

in the Taylor expansion, x⃗n+1 =
∑n

i=1 x⃗i. This can be accomplished by adding

one extra row and column to the original matrix:



I 0 0 . . . 0 . . . 0

−A(∆t) I 0
...

...

0 −A(∆t)
2

I
. . .

...
. . . . . . 0

0 . . . −A(∆t)
d−1

I 0
... −A(∆t)

d
I

. . .

. . . . . . 0

−A(∆t)
n−1

I 0

−I . . . . . . −I I





x⃗1

x⃗2

x⃗3
...

x⃗d

x⃗d+1

...

x⃗n

x⃗n+1



=



V⃗0

(∆t)V⃗1
(∆t)2

2
V⃗2

...

(∆t)d−1

(d−1)!
V⃗d−1

0⃗
...

0⃗

0⃗


At this final step, the vector x⃗n will be approximately equal to:

X⃗(∆t) =
n−1∑
λ=0

(∆t)λ

λ!

(
λ∑

k=0

Aλ−kV⃗k

)
≈

∞∑
λ=0

(∆t)λ

λ!

(
λ∑

k=0

Aλ−kV⃗k

)

for sufficiently small ∆t (error ∼ O((∆t)3)). However, we have only approximated

the evolution over one timestep, ∆t. In order to approximate the evolution over

a larger time period, the matrix encoding procedure has to be redone and solved

again, with V⃗0 = X⃗(∆t) rather than the original V0. To illustrate this further,

63



consider the example of T = 2∆t:



I 0 0 . . . 0 . . . 0

−A∆t I 0
...

...

0 −A∆t
2

I
. . .

...
. . . . . . 0

0 . . . −A∆t
d−1

I 0
... −A∆t

d
I
. . . . . . 0

−A∆t
n−1

I 0

−I . . . . . . −I I





x⃗1

x⃗2

x⃗3
...

x⃗d

x⃗d+1

...

x⃗n

x⃗n+1



=



X⃗((∆t))

(∆t)V⃗1
(∆t)2

2
V⃗2

...

(∆t)d−1

(d−1)!
V⃗d−1

0⃗
...

0⃗

0⃗


Solving this linear system with modified V⃗0 can be reimagined as solving a larger

auxilliary system where the previous matrix is effectively ‘concatenated’ with

itself again:



I

−A∆t
. . .

. . .

−A∆t
n−1

I

−I . . . −I I

−A∆t
. . .

. . .

−A∆t
n−1

I

−I . . . −I I





x⃗1

x⃗2
...

x⃗n

x⃗n+1

x⃗n+2

...

x⃗2n−1

x⃗2n



=



V⃗0

(∆t)V⃗1
...

0⃗

0⃗

(∆t)V⃗1
...

0⃗

0⃗


(3.16)

After solving the linear system, x⃗2n will be equal to:

n−1∑
λ=0

(2∆t)λ

λ!

(
λ∑

k=0

Aλ−kV⃗k

)

which again is approximately the analytic solution, X⃗(2∆t), for sufficiently small

time step ∆t:

n−1∑
λ=0

(2∆t)λ

λ!

(
λ∑

k=0

Aλ−kV⃗k

)
≈

∞∑
λ=0

(2∆t)λ

λ!

(
λ∑

k=0

Aλ−kV⃗k

)
= X⃗(2∆t)
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This process can be repeated until the desired time evolution has been achieved.

The result can be extracted from the final component of the vector, namely x⃗(l)n

where l refers to how many timesteps ∆t that we have evolved by. For classical

algorithms, we solve (5.20) and extract the relevant component. Quantum algo-

rithms, however are fundamentally probabilistic in nature and this fact must be

taken into account. The success probability of extracting the relevant component

can be increased by repeating the component in the overall solution vector. If we

consider the following matrix equation:

−I I

−I I

−I
. . .

. . . I

−I





v⃗

w⃗1

w⃗2

...

w⃗p


=



0⃗

0⃗

0⃗
...

0⃗


(3.17)

The solution to (3.17) encodes v⃗ as :

−v⃗ + w⃗1 = 0 ⇒ w⃗1 = v⃗

−w⃗1 + w⃗2 = 0 ⇒ w⃗2 = w⃗1 = v⃗

...

−w⃗p−1 + w⃗p = 0 ⇒ w⃗p = w⃗p−1 = v⃗
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Appending this above matrix structure into (5.20) yields:



I

−A∆t
. . .

. . .

−A∆t
n−1

I

−I . . . −I I

−A∆t
. . .

. . .

−A∆t
n−1

I

−I . . . −I I

−I I
. . . . . .

−I I





x⃗1

x⃗2
...

x⃗n

x⃗n+1

x⃗n+2

...

x⃗2n−1

x⃗2n

w⃗
...

w⃗



=



V⃗0

(∆t)V⃗1
...

0⃗

0⃗

(∆t)V⃗1
...

0⃗

0⃗

0⃗
...

0⃗


(3.18)

Where we denote the block matrix of (3.18) as the Λ matrix.

3.4 Discussion

We presented the algorithm, originally described in [5], and developed it for the

case of time dependent B⃗(τ). The authors in [5] were able to bound the error

between the first two components of their analytic solution:

X⃗(T ) = eAT X⃗0︸ ︷︷ ︸
first term

+A−1
(
eAT − I

)
B⃗0︸ ︷︷ ︸

second term

with their respective truncated series representation (for some integers m0 and

m1):

X⃗(T ) =

(
m0∑
k=0

(AT )k

k!

)
X⃗0︸ ︷︷ ︸

first term

+

(
m1∑
k=0

AkT k+1

(k + 1)!

)
B⃗0︸ ︷︷ ︸

second term

One could expand upon their complexity analysis by bounding the error between

subsequent analytic terms and their truncated series representation. Specifically,

it is possible to bound the error between the (l+1)th term in the analytic expres-

sion (3.14) which was derived from (3.12):

A−l

(
eAT −

l−1∑
k=0

(AT )k

k!

)
V⃗l
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with its corresponding series representation, truncated at order ml:(
ml∑
k=0

AkT k+l

(k + l)!

)
V⃗l

We believe that the argument presented in [5] can be extended, however the cor-

responding analysis would amount to another thesis on its own right. We hope

to continue this work to bound the error between higher order analytic expres-

sions that appear in (3.14) and their respective truncated series representation in

future.
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Chapter 4

The Quantum Algorithm for

Linear Systems of Equations

From the previous chapter, we have reformulated the problem of multi-asset op-

tion pricing as matrix inversion. Arising from this it is noted, that the dimension

of the final matrix may be extremely large, at least growing exponentially in the

number of the assets comprising the option and at least polynomially in the spa-

tial discretization for each asset. We also note that a certain periodicity and large

degree of sparseness is present in the block matrix Λ. Needless to state, an efficient

method for solving large scale linear systems of equations is a crucial requirement

for the realisation of the currently outlined method for multi-asset option pricing.

The quantum algorithm for solutions to linear systems of equations as proposed

by Harrow, Hassidim and Lloyd [22] may aid in this computationally intensive

task of matrix inversion. We first outline this algorithm in the following pages

as well as addressing the issues of data loading and its classical pre-processing

required before deployment of the quantum algorithm. As systems of linear equa-

tions are ubiquitous in many disciplines, a quantum algorithm that can expedite

this computational task would be transformative. The promise of this algorithm

is its ability to return the solution to a linear system, encoded in the amplitudes

of a quantum state, in a time that scales at most logarithmically in the dimension

of the problem under certain assumptions. As the best classical algorithms scale

linearly with dimension, exponential outperformance of classical algorithms may

be possible with HHL.
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However, quantum computers face obstacles that classical computers do not and

the previous statement needs further qualification as noted in [1]. For example,

loading a quantum representation of an arbitrary normalised vector |b⟩ for which

you want to solve the system x⃗ = A−1⃗b will take at least as many operations as

the dimension of the problem. On the first step we have eliminated any hope

of exponential speedup, even polynomial speedup. Another issue arises once a

quantum state representation of the solution |x⟩ has been returned. Estimating

each of the amplitudes will take at least as many steps in the size of the problem

or worse, extracting the value of one of the amplitudes reliably will take expo-

nentially many measurements. In this case, deployment of the HHL algorithm

for the task of matrix inversion would be much slower compared to solving with

a classical algorithm.

The consequence of these two points is that quantum algorithms, especially HHL

are not solving the exact classical problem. However, often in many computa-

tional tasks, matrix inversion is only a subroutine from which we only need to

sample global information about the solution. These related but not directly de-

pendent matrix inversion problems are where the HHL algorithm is believed to

achieve quantum advantage. In order to understand the existence and or nature

of quantum speedup, exact end-to-end complexity analysis from the nature of the

inputs to what information needs to be extracted has to be considered. For these

specific cases where optimality of quantum algorithms has been shown, quantum

computers will provide immense speedup.

Although the time complexity of HHL depends logarithmically on dimension,

linear dependence on other parameters such as sparsity and condition number,

characteristic of the linear system to be solved, feature in the overall complexity.

This implies that these parameters may have at most polylogarithmic scaling with

the dimensions of the problem if an overall exponential speed up is desired. The

difference matrices that arise from the Black Scholes and linear PDEs may offer

this desirable scaling between these characteristic parameters and dimension.
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4.1 Overview of algorithm

The HHL algorithm has four subroutines, quantum phase estimation (QPE), an-

cilla rotation (AR), postselection (PS) and inverse quantum phase estimation

(QPE†). The quantum phase estimation subroutine is an established algorithm,

whose most well known use is in Shor’s factoring algorithm [45]. We now proceed

with the description of the algorithm.

4.2 Description of algorithm

Consider the following linear systems of equations with A ∈ CN×N , x⃗, b⃗ ∈ CN

and A = A†:

Ax⃗ = b⃗

Consider the eigendecomposition of A in some eigenbasis {u⃗j}j=0,...,N−1 along

with the representations of x⃗ and b⃗:

A =
N−1∑
j=0

λju⃗j
†u⃗j; x⃗ =

N−1∑
j=0

xju⃗j; b⃗ =
N−1∑
j=0

bju⃗j

The solution x⃗ = A−1⃗b may be expressed succinctly in this notation as:

x⃗ = A−1⃗b =
N−1∑
j=0

bj
λj
u⃗j

The quantum algorithm for systems of linear equations broadly emulates the

above process by expressing the solution in terms of the eigenbasis of A. There

are some caveats in this approach that need to be addressed. One of the many

constraints that arises when using quantum systems to solve problems is the

requirement of state normalisation, namely that all physical quantum states must

have unit norm. Therefore, in general, we can only initialize, manipulate and

extract quantum states that are proportional to classical data. In the case of

b⃗, its corresponding quantum state representation will be:

|b⟩ = 1√∑N−1
j=0 |bj|2

N−1∑
j=0

bj |uj⟩
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In some sense, the initial normalisation of b⃗ has been ‘forgotten’ by the quantum

algorithm. Often this normalisation is critical for extracting useful information

from the output at the end, we will address this issue in due course. A second

constraint that has to be considered with quantum algorithms is the physical

insignificance of global phase. Practically speaking, this implies for example that

classical data such as the vectors v⃗ and (eiθ)v⃗ will have the same exact quantum

state representation |v⟩. For the case of real-valued data, this reduces to the

existence of a fundamental indeterminacy to whether the quantum state |v⟩ cor-

responds to −v⃗ or v⃗. Unless there is a priori knowledge about what the solution

should look like (i.e the solution corresponds to some physical process which is

necessarily positively valued, etc), we must remain aware of this uncertainty. For

a Hermitian matrix A ∈ CN×N , and a suitably normalised vector b⃗ ∈ CN , the

quantum algorithm returns another suitably normalised vector x⃗ ∈ CN such that:

x⃗ = A−1⃗b

We can express the quantum state representation of |b⟩ in the eigenbasis of A

{|uj⟩}j=0,1,2,.,N−1 with the corresponding eigenvalues{λj}j=0,1,2,.,N−1 as:

|b⟩ =
N−1∑
j=0

bj|uj⟩ ; A |uj⟩ = λj|uj⟩ (4.1)

Upon successful execution of the algorithm, the quantum representation of the

solution x⃗ will be stored in the final register:

|x⟩ =
N−1∑
j=0

bj
λj

|uj⟩ (4.2)

This is the solution to the systems of the linear equations as:

A|x⟩ = A

(
N−1∑
j=0

bj
λj

|uj⟩

)
⇒

N−1∑
j=0

bj
λj

A|uj⟩ ⇒
N−1∑
j=0

bj
λj
λj|uj⟩ ⇒

N−1∑
j=0

bj|uj⟩ = |b⟩(4.3)

4.2.1 Quantum Phase Estimation

The original quantum phase estimation algorithm (QPE)[36] is a key subroutine

in many quantum algorithms and features predominantly in the HHL algorithm.
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...

...

ancilla |0⟩

computational

|0⟩

m qubits

|0⟩

vector

|0⟩

|b⟩ n qubits

|0⟩

|Ψ0⟩ |Ψ1⟩

Figure 4.1: Quantum circuit diagram of initial state loading

The HHL quantum algorithm requires three registers, one to store the quantum

representation of |b⟩, another register to store the binary approximation of the

eigenvalues {λj}j=0,1,2,.,N−1 that have been extracted during quantum phase es-

timation, and a final ancilla register upon which the ancilla rotation subroutine

will act. The first step is loading the state |b⟩ into the first register.

|Ψ1⟩ = |b⟩v|0⟩⊗m
c |0⟩a ; |b⟩ = 1

∥⃗b∥

N−1∑
j=0

bj |uj⟩

The quantum circuit diagrams such as figure (4.1) are drawn with the Quan-

tikz2 package [33]. Here we denote the subscripts v, c and a as corresponding

to the vector register, the computational register and the ancilla register respec-

tively (which we will sometimes refer to as the v-register, c-register and a-register

respectively). We will work throughout in the standard computational basis.

Conditional unitary evolution

The algorithm proceeds with the first state of QPE which is placing the compu-

tational register in an equal superposition of basis states:

|Ψ2⟩ =
1√
M

M−1∑
k=0

|b⟩|k⟩|0⟩ = 1
√
M ∥⃗b∥

N−1∑
j=0

M−1∑
k=0

bj|uj⟩|k⟩|0⟩ (4.4)

Throughout the description of this algorithm, we will use binary notation to

describe the computational basis for multi-qubit systems. In the case of the
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two-qubit system this would correspond to:

|0⟩ |0⟩ ↔ |21(0) + 20(0)⟩ = |0⟩

|0⟩ |1⟩ ↔ |21(0) + 20(1)⟩ = |1⟩

|1⟩ |0⟩ ↔ |21(1) + 20(0)⟩ = |2⟩

|1⟩ |1⟩ ↔ |21(1) + 20(1)⟩ = |3⟩

In general, the basis state |k1⟩ |k2⟩ .. |km−1⟩ |km⟩ where each ki ∈ {0, 1} will cor-

respond to the state |k⟩ where k is defined as:

k =
m∑
i=1

ki2
m−i (4.5)

To see how state (4.4) is produced, we can directly compute the action of the

quantum circuit:

|Ψ2⟩ = H⊗m
(
|b⟩ |0⟩⊗m |0⟩

)
= |b⟩ (H |0⟩)⊗m |0⟩

= |b⟩
(

1√
2
(|0⟩+ |1⟩)

)⊗m

|0⟩

=
1√
2m

|b⟩
m⊗
j=1

 1∑
kj=0

|kj⟩

 |0⟩

=
1√
M

|b⟩

(
1∑

km=0

...
1∑

k1=0

m⊗
j=1

|kj⟩

)
|0⟩

Recalling the definition of (4.5) yields:

|Ψ2⟩ =
1√
M

|b⟩

(
2m−1∑
k=0

|k⟩

)
|0⟩

=
1√
M

M−1∑
k=0

|b⟩ |k⟩ |0⟩

74



. . .

. . .

. . .

...
... . . .

. . .

. . .

. . .

. . .

|0⟩

k1 |0⟩ H

k2 |0⟩ H

km−1 |0⟩ H

km |0⟩ H

|0⟩
|Ψ1⟩ U1 U2 U2m−2

U2m−1

|0⟩

|Ψ1⟩ |Ψ2⟩ |Ψ3⟩

Figure 4.2: Quantum circuit diagram of conditional unitary evolution

Finally, inserting the eigendecomposition of |b⟩ (4.1), we arrive at the final form

of (4.4):

|Ψ2⟩ =
1

√
M ∥⃗b∥

M−1∑
k=0

(
N−1∑
j=0

bj |uj⟩

)
|k⟩ |0⟩

|Ψ2⟩ =
1

√
M ∥⃗b∥

N−1∑
j=0

M−1∑
k=0

bj|uj⟩|k⟩|0⟩

The third step of the algorithm is evolution of the eigenvectors |uj⟩ conditioned on

the state in the c-register |k⟩. The unitary operator that will drive this evolution

is given by:

U = exp

(
iAt

M

)
However, quantum phase estimation returns a binary approximation θ of the

eigenvalues |λ⟩ that correspond to the eigenvalue equation:

U |λ⟩ = exp(2πiθ)|λ⟩ = exp

(
2πiθ̃

M

)
|λ⟩

where 0 ≤ θ < 1, θ̃ ∈ {0, 1, ..., 2m − 1} and is the actual quantity that we would

potentially measure in the c-register immediately after QPE ( θ̃
M

is the best m-bit

approximation of θ). So in order for QPE to be used for matrix inversion, we

need to be able to translate from phase to eigenvalues unambiguously. Returning
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to the algorithm, after conditional evolution with the unitary U = eiAt/M with t

chosen to satisfy the above criterion, the quantum state will be:

|Ψ3⟩ =
1

√
M ∥⃗b∥

N−1∑
j=0

M−1∑
k=0

bj exp

(
ikλjt

M

)
|uj⟩|k⟩|0⟩ (4.6)

To see this from the circuit model, we sequentially apply the controlled gates

C − U2( )
to |Ψ2⟩ and so forth. We apply the first controlled unitary C − U20 :

(
C − U20

)
|Ψ2⟩ =

(
C − U20

)( 1
√
M ∥⃗b∥

M−1∑
k=0

N−1∑
j=0

bj |uj⟩ |k⟩ |0⟩

)

=
1

√
M ∥⃗b∥

M−1∑
k=0

N−1∑
j=0

bj

((
C − U20

)
|uj⟩ |k⟩

)
|0⟩ (4.7)

The nature of a controlled gate is that the associated unitary is applied to one

qubit if and only if the other qubit is in the |1⟩ state, otherwise both states are

left unaffected. For the case at hand the unitary U20 is applied if the control

qubit |km⟩, which is one of the qubits that comprise the actual quantum state

|k⟩ = |k1⟩ |k2⟩ .. |km⟩, is in the |1⟩ state. This operation can be represented in a

condensed expression as:

(
C − U20

)
|uj⟩ |km⟩ =

(
Ukm20 |uj⟩

)
|km⟩

Returning into (4.7) and inserting the result yields:

(
C − U20

)
|Ψ2⟩ =

1
√
M ∥⃗b∥

M−1∑
k=0

N−1∑
j=0

bj

((
Ukm20 |uj⟩

)
|k⟩
)
|0⟩

|Ψ′
2⟩ =

1
√
M ∥⃗b∥

M−1∑
k=0

N−1∑
j=0

bjU
km20 |uj⟩ |k⟩ |0⟩

where we denote this intermediate state after applying C−U20 as |Ψ′
2⟩. Repeating

this process above with the next controlled unitary in the circuit C−U21 to |Ψ′
2⟩
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yields:

(
C − U21

)
|Ψ′

2⟩ =
1

√
M ∥⃗b∥

M−1∑
k=0

N−1∑
j=0

bj

(
C − U21

)((
Ukm20 |uj⟩

)
|k⟩
)
|0⟩

=
1

√
M ∥⃗b∥

M−1∑
k=0

N−1∑
j=0

bj

((
Ukm−121Ukm20 |uj⟩

)
|k⟩
)
|0⟩

|Ψ′′
2⟩ =

1
√
M ∥⃗b∥

M−1∑
k=0

N−1∑
j=0

bjU
km−121Ukm20 |uj⟩ |k⟩ |0⟩

Repeating this for all remaining controlled unitaries for this stage of the circuit

yields:

|Ψ3⟩ =
1

√
M ∥⃗b∥

M−1∑
k=0

N−1∑
j=0

bj

m∏
q=1

Ukq2m−q |uj⟩ |k⟩ |0⟩

=
1

√
M ∥⃗b∥

M−1∑
k=0

N−1∑
j=0

bjU
(
∑m

q=1 kq2
m−q) |uj⟩ |k⟩ |0⟩

=
1

√
M ∥⃗b∥

M−1∑
k=0

N−1∑
j=0

bjU
k |uj⟩ |k⟩ |0⟩ (4.8)

As U = exp
(
iAt
M

)
, Uk = exp

(
ikAt
M

)
. Furthermore, as |uj⟩ is an eigenvector of

A with eigenvalue λj, |uj⟩ will also be an eigenvector of Uk with eigenvalue

exp
(

ikλjt

M

)
.

Uk |uj⟩ = exp

(
ikλjt

M

)
|uj⟩ (4.9)

Inserting into (4.8), equation (4.6) is recovered:

|Ψ3⟩ =
1

√
M ∥⃗b∥

N−1∑
j=0

M−1∑
k=0

bj exp

(
ikλjt

M

)
|uj⟩|k⟩|0⟩

Inverse Quantum Fourier Transform

The next step in the algorithm is applying the Inverse Quantum Fourier transform

[10] on the c-register. The Inverse Quantum Fourier Transform is defined [36] as:

|k⟩ IQFT−−−→ 1√
M

M−1∑
l=0

exp

(
−2πikl

M

)
|l⟩ (4.10)

To see how the circuit model enacts this transformation, we outline the derivation

from [36]. The gate Rp, known as a phase-shift gate, transforms the basis states
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|0⟩ , |1⟩ as:

Rp |0⟩ = |0⟩ Rp |1⟩ = exp

(
−2πi

2p

)
|1⟩

The controlled version of the phase shift gate where the second qubit is the control

qubit can be represented succinctly as:

(C −Rp) |0⟩ |kj⟩ = |0⟩ |kj⟩

(C −Rp) |1⟩ |kj⟩ = exp

(
−2πikj

2p

)
|1⟩ |kj⟩

Similarly the action of the Hadamard gate can also be represented succinctly as:

H |kj⟩ =
1√
2

(
|0⟩+ (−1)kj |1⟩

)
=

1√
2

(
|0⟩+ exp

(
−2πikj

2

)
|1⟩
)

|Ψ′
3⟩ = (H |k1⟩) |k1⟩ |k2⟩ ... |km⟩ =

1√
2

(
|0⟩+ exp

(
−2πik1

2

)
|1⟩
)
|k2⟩ ... |km⟩

Applying the C −R2 gate to |Ψ′
3⟩ yields:

|Ψ′′
3⟩ = (C −R2) |Ψ′

3⟩ =
1√
2
((C −R2) |0⟩ |k2⟩) |k3⟩ .. |km⟩

+
1√
2
exp

(
−2πik1

2

)
((C −R2) |1⟩ |k2⟩) |k3⟩ ... |km⟩

|Ψ′′
3⟩ =

1√
2
|0⟩ |k2⟩ |k3⟩ ... |km⟩

+
1√
2
exp

(
−2πik1

2

)
exp

(
−2πik2

22

)
|1⟩ |k2⟩ |k3⟩ ... |km⟩

|Ψ′′
3⟩ =

1√
2

(
|0⟩+ exp

(
−2πi

22
(
21k1 + 20k2

)))
|k2⟩ ... |km⟩

Repeating this process up to C −Rm transforms the first qubit into the state:

|Ψ̄3⟩ =
1√
2

(
|0⟩+ exp

(
−2πi

2m

(
m∑
q=1

kq2
m−q

)))
|k2⟩ ... |km⟩

|Ψ̄3⟩ =
1√
2

(
|0⟩+ exp

(
−2πik

2m

))
|k2⟩ ... |km⟩

Repeating this process for the remaining qubits yields the state:

|Ψ4⟩ =
1√
M

m−1⊗
z=0

(
|0⟩+ exp

(
− 2πik

2m−z

)
|1⟩
)
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|0⟩

k1 H R2 R3 Rm−1 Rm

ki ↔ km−i

k2 H R2 Rm−1

k3

km−1 H R2

km H

|Ψ3⟩ |Ψ′
3⟩ |Ψ′′

3⟩ ¯|Ψ3⟩ |Ψ4⟩

Figure 4.3: Quantum circuit diagram of the Inverse Quantum Fourier Transform
(IQFT)

Finally, as a matter of convention, we perform a series of pairwise swaps (swapping

the (ki) qubit with the (km−i) qubit) of all the qubits to bring the state into the

standard form that will correspond to the IQFT:

|Ψ4⟩ =
1√
M

m⊗
z=1

(
|0⟩+ exp

(
−2πik

2z

)
|1⟩
)

(4.11)

To conclude this section, we now show how (4.10) is equivalent to (4.11):

|k⟩ IQFT−−−→ =
1√
M

M−1∑
l=0

exp

(
−2πikl

2m

)
|l⟩

=
1√
M

1∑
l1=0

...

1∑
lm=0

exp

(
−2πik

2m

(
m∑
z=1

lz2
m−z

))
|l1⟩ ... |lm⟩

=
1√
M

1∑
l1=0

...
1∑

lm=0

exp

(
−2πik

(
m∑
z=1

lz2
−z

))
|l1⟩ ... |lm⟩

=
1√
M

1∑
l1=0

...
1∑

lm=0

(
m∏
z=1

exp

(
−2πiklz

2z

)) m⊗
z=1

|lz⟩

=
1√
M

1∑
l1=0

...
1∑

lm=0

m⊗
z=1

(
exp

(
−2πiklz

2z

)
|lz⟩
)

=
1√
M

m⊗
z=1

(
1∑

lz=0

exp

(
−2πiklz

2z

)
|lz⟩

)

=
1√
M

m⊗
z=1

(
|0⟩+ exp

(
−2πik

2z

)
|1⟩
)

= |Ψ4⟩

Returning to the overall algorithm, applying IQFT to the c-register yields:
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|Ψ4⟩ =
1

√
M ∥⃗b∥

N−1∑
j=0

M−1∑
k=0

bj exp

(
ikλjt

M

)
|uj⟩ (IQFT |k⟩) |0⟩

|Ψ4⟩ =
1

√
M ∥⃗b∥

N−1∑
j=0

M−1∑
k=0

bj exp

(
ikλjt

M

)
|uj⟩

⊗

(
1√
M

M−1∑
l=0

exp

(
−2πikl

M

)
|l⟩

)
|0⟩

|Ψ4⟩ =
1

M ∥⃗b∥

N−1∑
j=0

M−1∑
k=0

M−1∑
l=0

bj exp

(
ikλjt

M

)
exp

(
−2πikl

M

)
|uj⟩|l⟩|0⟩

|Ψ4⟩ =
1

∥⃗b∥

N−1∑
j=0

M−1∑
l=0

bj

(
1

M

M−1∑
k=0

exp

(
ikt

M

(
λj −

2πl

t

)))
︸ ︷︷ ︸

γj(l)

|uj⟩|l⟩|0⟩ (4.12)

If we examine (4.12), we see that possible eigenvalues we could potentially extract

from QPE are given by 2πl
t

and the actual eigenvalues we are trying to approx-

imate is λj. To see this more clearly, we proceed to analyse the term γj(l) and

specifically |γj(l)|2:

∣∣∣∣∣ 1

M ∥⃗b∥

M−1∑
k=0

exp

(
ikt

M

(
λj −

2πl

t

))∣∣∣∣∣
2

=

∣∣∣∣∣ 1− exp
(
ikt(λj − 2πl

t
)
)

1− exp
(
ikt
M

(
λj − 2πl

t

))∣∣∣∣∣
2

For the case of the exact representation of the phases associated with the eigen-

value λj, we get:

λj =
2πl̃j
t
, l̃j ∈ {0, 1, ...,M − 1}

In the case of exact representation of the phases, the function γj(l) behaves like a

Kronecker delta function δ(x, y). To see this, if l = l̃j ⇔ (λj − 2πl̃j
t

= 0) we have:

⇒ |γj(l)|2 = |γj(l̃j)|2 =

∣∣∣∣∣ 1M
M−1∑
k=0

exp

(
ikt

M

(
λj −

2πl̃j
t

))∣∣∣∣∣
2

=

∣∣∣∣∣ 1M
M−1∑
k=0

exp

(
ikt

M
(0)

)∣∣∣∣∣
2

=

∣∣∣∣∣ 1M
M−1∑
k=0

1

∣∣∣∣∣
2

= 1
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However, if l ̸= l̃j

→ l = l̃j + a; a ∈ Z

→ λj −
2πl

t
= λj −

2π(l̃j + a)

t
=

(
λj −

2πl̃j
t

)
︸ ︷︷ ︸

=0

−2πa

t

→ = ikt

(
λj −

2πl

t

)
= ikt

(
−2πa

t

)
= −2πika

Returning to the definition of |γj(l)|2, we see that:

⇒ |γj(l)|2 =

∣∣∣∣∣ 1− exp
(
ikt(λj − 2πl

t
)
)

1− exp
(
ikt
M

(
λj − 2πl

t

))∣∣∣∣∣
2

=

∣∣∣∣∣ 1− exp(−2πika)

1− exp
(
ikt
M

(
λj − 2πl

t

))∣∣∣∣∣
2

=

∣∣∣∣∣ 1− 1

1− exp
(
ikt
M

(
λj − 2πl

t

))∣∣∣∣∣
2

= 0

Summing over l extracts l̃j and stores the result in the c-register and concludes

the final step of QPE:

|Ψ4⟩ =
1

∥⃗b∥

N−1∑
j=0

M−1∑
l=0

bjδ(l̃j, l)|uj⟩|l⟩|0⟩ →
1

∥⃗b∥

N−1∑
j=0

bj|uj⟩|l̃j⟩|0⟩

So we can see that from this analysis that l̃j is an approximation of the quantity

tλj

2π
.

gϕ→λ (l) :=
2πl

t

Naively embedding the phase from the eigenvalues, such as θj = eiλj (correspond-

ing to the unitary U = eiA in QPE), will imply eigenvalues outside the range

[0, 2π) cannot be reliably distinguished (only up to modulo(2π)). To circumvent

this issue, the unitary U = eiAt/M is implemented instead, with a predetermined

value t to compress’ the spectrum so that we can faithfully extract the eigenval-

ues. We now have two free parameters t and M to assign values to. Firstly, there

are two cases for the spectrum of a Hermitian matrix A. For the case that all

the eigenvalues share the same sign, we can spread out the phases we assign to

eigenvalues amongst the entire complex unit circle. For the second case whereby

the eigenvalues do not all share the same sign, we have to effectively half the

complex unit circle dedicating the upper half of the unit circle (eiϕ, ϕ ∈ [0, π])
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to the positive eigenvalues and the bottom half (eiϕ, ϕ ∈ [π, 2π]) to the negative

eigenvalues. The latter description will work for either case so we outline that

procedure below. The first step in addressing the values of t and M is deter-

mining the spectrum of A, σ(A). For convenience, we define the following two

quantities:

λmax = max
i

{|λi| : λi ∈ σ(A)}

λmin = min
i
{|λi| : λi ∈ σ(A)}

This allows to bound σ(A) as:

σ(A) ⊆ [−λmax,−λmin] ∪ [λmin, λmax]

If we consider re-scaling the whole linear system to be solved as the original

authors in [22] assume, (i.e. solve 1
λmax

Ax⃗ = 1
λmax

b⃗ rather than Ax⃗ = b⃗ ), this will

effectively compress the spectrum into the new interval given by:

σ(A) ⊆
[
−1,− λmin

λmax

]⋃[ λmin

λmax
, 1
]

=
[
−1,− 1

κ

]⋃ [
1
κ
, 1
]

The parameter κ refers to the condition number of the matrixA and characterizes

the numerical stability of the linear system to be solved [49]. It is defined formally

as:

κ := max
si,sj∈s(A)

si
sj

where s(A) refers to the singular values of the matrix A. For the case of a

Hermitian matrix, the above definition reduces to:

κ =
λmax

λmin

Going forward we assume this scaling has been done as a pre-processing step.

Depending on the matrix, there may exist lower bounds or analytic expressions

for the spectral norm of the matrix ∥A∥ which is equal to λmax in the case

that A is Hermitian. In the following steps, we slightly modify the approach of

[39]. In order to ensure an injective mapping from the phases to the eigenvalues,

we split the spectrum up into its positive and negative components. We take

82



|0⟩|M
2
⟩

|1⟩ ↔ λ ≈ 1
κ

|M − 1⟩ ↔ λ ≈ − 1
κλ ≈ −1 ↔ |M

2
+ 1⟩

λ ≈ 1 ↔ |M
2
− 1⟩

σ(A) > 0

σ(A) < 0

Figure 4.4: Mapping of phases to eigenvalues with the blue shaded section corre-
sponding to eigenvalues ∈ [ 1

κ
, 1] and red for phases corresponding to eigenvalues

∈ [−1,− 1
κ
]. The basis states |0⟩ and |M

2
⟩ are excluded in QPE.

the case of positive eigenvalues first. If λj ∈ [ 1
κ
, 1], we require the associated

phase to lie somewhere within the upper part of the complex unit circle, more

specifically that it lies somewhere between the phases corresponding to |1⟩ and

|M
2
− 1⟩ of the Fourier basis states of the computational register. This implies

the eigenvalues associated to |1⟩ and |M
2
− 1⟩ should approximately be equal to

1
κ
and 1 respectively:

g+ϕ→λ (1) =
2π

t
(1) ≈ 1

κ
g+ϕ→λ

(
M

2
− 1

)
=

2π

t

(
M

2
− 1

)
≈ 1

In order to ensure that all eigenvalues are contained within the image of g+ϕ→λ(l),

we demand that the smallest positive eigenvalue that can be estimated is less

than the actual smallest positive eigenvalue, namely 1
κ
:

2π

t
≤ 1

κ
(4.13)

We also require that the largest eigenvalue that can be estimated be is greater

than the largest actual eigenvalue which is one 1. However, we do not want to

verge into the lower half of the complex unit circle so we demand instead that the

largest possible eigenvalue is greater than a value slightly less than one, namely:

2π

t

(
M

2
− 1

)
≥ 2

M

(
M

2
− 1

)
(4.14)
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Manipulating (4.13) and (4.14) yields:

t ≥ 2πκ t ≤ πM (4.15)

Making these inequalities (4.15) to be strict equalities, we get the following values

for t and M :

t = 2πκ M = 2κ

For the case of negative eigenvalues, the mapping from phases to eigenvalues is

given by:

g−ϕ→λ(l) :=
2π

t
(l −M)

To see this we notice that if λ < 0, the associated phase λt
M

will be negative.

We can circumvent this issue by adding 2π to the phase and then extracting the

eigenvalue as:

exp

(
i

(
λt

M

))
= exp

(
i

(
λt

M

)
+ 2πi

)
= exp

(
2πl

M

)
λt

M
+

2πM

M
=

2πl

M
λt

M
=

2π

M
(l −M)

λ =
2π

t
(l −M)

The mapping from the phases to eigenvalues g(l) is given by:

g(l) =

g
+
ϕ→λ(l) 0 < l < M

2

g−ϕ→λ(l)
M
2
< l < M

=


2πl
t

0 < l < M
2

2π
t
(l −M) M

2
< l < M

To understand how this works, say that the spectrum of an operator σ(A) =

{−1,−1
2
,−1

4
, 1
3
, 3
4
, 1} (where we already have implicitly scaled the linear system so

that λmax(A) = 1). As κ(A) = 4, we get that t = 2π(4) = 8π and M = 2(4) = 8.

In case that M is not a power of 2, we can just take the next power of 2 above it:

M = 2⌈log2(2κ)⌉
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where ⌈(.)⌉ denotes the ceiling function. So in this example g(l) with M = 8,

t = 8π takes the form:

g(l) =


2πl
8π

0 < l < 8
2

2π
8π
(l − 8) 8

2
< l < 16

→ g(l) =


l
4

0 < l < 4

l−8
4

4 < l < 8

For final illustration of this point, we will examine how a positive and negative

eigenvalue can be extracted. Take the eigenvalue λ = 1
4
with the corresponding

unitary eiAt/M = e
8πi
8

A. This will correspond to a phase of eπi(
1
4
) =⇒ e2πi(

1
8
).

Upon successful QPE, the basis state |1⟩ will be measured with high probability,

indicating l = 1 and that the eigenvalue is g(1) = 1
4
. Thus, the correct eigenvalue

has been recovered. For the case of negative eigenvalues, take the eigenvalue

λ = −1
2
. This will correspond to a phase of eiπ(−

1
2
) = e2πi(

−2
8
) =⇒ e2πi(

6
8
) (The

Fourier basis states are strictly positive, so the phase that will be measured must

also be positive too). Upon successful QPE, the basis state |6⟩ will be measured

with high probability, indicating l = 6 and the eigenvalue is g(6) = 6−8
4

= −1
2
.

So again, the correct eigenvalue has been recovered. However, the eigenvalue 1
3

does not have an exact representation above so there would be unavoidable error

in determining the eigenvalue in that instance.

4.2.2 Ancilla rotation

The second central subroutine of the HHL algorithm is ancilla rotation which

performs the following map:

1

∥⃗b∥

N−1∑
j=0

bj|uj⟩|l̃j⟩|0⟩
Ancilla rotation−−−−−−−−−→ 1

∥⃗b∥

N−1∑
j=0

bj|uj⟩|l̃j⟩
(√

1− f(l̃j)2|0⟩+ f(l̃j)|1⟩
)

For the HHL algorithm, the function f(x) is chosen such that:

f(x) =
C

g(x)

f(l̃j) =
C

g(l̃j)
=
C

λj

The normalisation constant C is chosen such that C
min |σ(A)| ≤ 1. If the overall

matrix is scaled such that max |σ(A)| = 1, C can be chosen such that C ≤ 1
κ
.
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After this transformation, the quantum state is given by:

|Ψ5⟩ =
1

∥⃗b∥

N−1∑
j=0

bj|uj⟩|l̃j⟩

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)
(4.16)

After postselection for the state |1⟩ on the ancilla register, we can see the essence

of HHL emerge (referring back to (4.2)):

|Ψ5⟩ =
1

∥⃗b∥

N−1∑
j=0

bj|uj⟩|l̃j⟩

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)
postselection−−−−−−−→ 1

N

N−1∑
j=0

Cbj
λj

|uj⟩|l̃j⟩|1⟩

where the ‘new’ normalisation constant N arising from the measurement of the

ancilla qubit:

N =

√√√√N−1∑
j=0

C2|bj|2
|λj|2

. . .

. . .

. . .

. . .

...
...

...
...

...
. . .

...

. . .

. . .

...
...

RY (θ1) RY (θ2) RY (θ3) RY (θ4) RY (θ5) RY (θ2m)

l1

l2

l3

lm

|Ψ4⟩ |Ψ5⟩ |Ψ6⟩

Figure 4.5: Quantum circuit representation of Ancilla rotation subroutine

At last, we see the probability amplitudes are now proportional to the solution

A−1b. The final step is uncomputation of QPE, however the critical step of matrix

inversion’ has been completed before this step. Although the quantum circuit

corresponding to QPE is quite familiar, the steps required to realise a quantum

circuit for ancilla rotation (AR) are less understood. We proceed with deriving

the circuit. The first step is choosing the function f(x). In the original HHL

paper [22], the authors use two ‘filter functions’ f1(x) and f2(x) and interchange
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the ancilla qubit for an ancilla qutrit (three dimensional Hilbert space):

1

||⃗b||

N−1∑
j=0

bj|uj⟩|l̃j⟩
(
f1(l̃j)|0⟩+ f2(l̃j)|1⟩+

√
1− f1(l̃j)2 − f2(l̃j)2|2⟩

)

The idea of these filter functions is to ameliorate the errors associated with in-

verting an eigenvalue with small magnitude. The errors associated with rotating

by the reciprocal of an eigenvalue much smaller comparably in magnitude versus

the rest would completely dominate over the other errors. The filter functions

split the subspace into a well-conditioned and ill-conditioned subspace, the ill-

conditioned subspace is the eigenspace corresponding to the eigenvalues whose

absolute value is less than a predetermined threshold. Upon postselection after

AR, measurement of |0⟩ implies that matrix inversion has taken place and that

the original vector |b⟩ resided in the well-conditioned subspace, measurement of

|1⟩ implies a pseudo-matrix inversion has occurred as a result of |b⟩ residing in

the ill-conditioned subspace and finally a result of |2⟩ implies no matrix inversion

has occurred and the previous steps have to be repeated. The authors in [22] also

utilise amplitude amplification [8] to increase the postselection probability for the

‘correct state’. However for the purposes of explication, we will only consider the

binary case of successful or non-successful matrix inversion at postselection. We

will also not consider the amplitude amplification subroutine as it does not alter

the key fact that the complexity scales polynomially with the condition number

κ. If we consider the general mapping again:

1

||⃗b||

N−1∑
j=0

bj|uj⟩|l̃j⟩|0⟩ →
1

||⃗b||

N−1∑
j=0

bj|uj⟩|l̃j⟩
(√

1− f(l̃j)2|0⟩+ f(l̃j)|1⟩
)

The unitary evolution of the ancilla qubit can be thought of as a controlled Pauli

Y rotation (RY) by an appropriately chosen angle θj for each eigenvalue λj:

RY (θj) = exp

(
−
(
iθj
2

)
σY

)
=

cos
(
θ
2

)
− sin

(
θ
2

)
sin
(
θ
2

)
cos
(
θ
2

)

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This rotation is controlled by the state of the c-register:

1

||⃗b||d

N−1∑
j=0

bj|uj⟩(C −Ry)(|l̃j⟩|0⟩)

Ancilla rotation−−−−−−−−−→ 1

||⃗b||

N−1∑
j=0

bj|uj⟩|l̃j⟩
(
cos

(
θj
2

)
|0⟩+ sin

(
θj
2

)
|1⟩
)

(4.17)

To match the desired eigenvalue inversion, we must equate:

C

λj
= sin

(
θj
2

)

⇒ θj = 2arcsin

(
C

λj

)
= 2arcsin

(
C

g(l̃j)

)
The explicit function is given as:

θ(l) =

2 arcsin
(
Ct
2πl

)
0 < l < M

2

2 arcsin
(

Ct
2π(l−M)

)
M
2
< l < M

Therefore if we rotate by θ̃j = θ(l̃j), we get:

|l̃j⟩|0⟩ ⇒ |l̃j⟩
(
e−

iθ̃jσY
2 |0⟩

)
⇒ |l̃j⟩

(√
1− C2

λj
|0⟩+ C

λj
|1⟩

)
(4.18)

The definition above of θ(l) is rather abstract in its current definition, we would

rather consider the actual circuit implementation in terms of gates. Consider the

representation of a particular Fourier basis state |l̃j⟩ in the computational basis

again:

|l̃j⟩ = |(l̃j)m−1⟩|(l̃j)m−2⟩ . . . |(l̃j)0⟩ ; l̃j =
m−1∑
q=0

(l̃j)q2
q

(l̃j)k ∈ {0, 1}, ∀k ∈ 0, 1, ...,m− 1

Adjoining the ancilla qubit, the desired evolution can be seen as:

|(l̃j)m−1⟩|(l̃j)m−2⟩ . . . |(l̃j)0⟩|0⟩

Ancilla rotation−−−−−−−−−→ |(l̃j)m−1⟩|(l̃j)m−2⟩ . . . |(l̃j)0⟩

(
exp

(
−iσy

2
θ

(
m−1∑
q=0

(l̃j)q2
q

))
|0⟩

)
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This evolution can be achieved by defining a multi-qubit controlled rotation gate

C − U , conditioned on qubit 0 in the c-register being in the state (l̃j)0, qubit 1

being in state the state(l̃j)1 and so forth such that if all qubits are in the ‘correct

state’, a Pauli Y rotation through an angle:

θ̃j = θ

(
m−1∑
q=0

(l̃j)q2
q

)

is performed on the ancilla qubit. These rotation coefficients are computed clas-

sically ahead of time for the algorithm, a different rotation coefficient for each

possible Fourier basis state in the c-register (i.e 2m). For the general case, this

requires an exponential amount of pre-processing before deployment of the algo-

rithms. However, the initial computational cost can be reduced if Taylor approx-

imations to the analytic form of θ(l) are considered. Various schemes exist for

‘quantum arithmetic’ circuits [51] which could be composed together to imple-

ment (4.18) without an exponentially increasing circuit depth with the number

of qubits in the c-register.

Figure 4.6: Plot of rotation angles versus Fourier basis states with parameters
M = 64 , t = 0.5 and C = 0.2. The three dotted lines from right to left denote
the basis states l = 0, 32, 64 for which the rotation angle is not defined.
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4.2.3 Uncomputation of the QPE subroutine

After successful postselection of the ancilla qubit, the current state will be :

|Ψ6⟩ =
1

N

N−1∑
j=0

bj
λj

|uj⟩|l̃j⟩|1⟩

The final step in the HHL algorithm is inverse quantum phase estimation (QPE†)

which simply returns the c-register to its initial state, namely |0⟩:

|Ψ7⟩ =
1

N

N−1∑
j=0

bj
λj

|uj⟩ |0⟩⊗m |1⟩

|Ψ7⟩ =

(
1

N

N−1∑
j=0

bj
λj

|uj⟩

)
︸ ︷︷ ︸

∝A−1b⃗

|0⟩⊗m |1⟩

With the final step of the HHL algorithm, a quantum state in v-register whose

amplitudes are proportional to the solution of the original linear system has been

reproduced.

4.2.4 Measurement of solution |x⟩

At the end of the algorithm, the solution of the linear system of equations x⃗ =

A−1⃗b should be approximately encoded into the amplitudes of a quantum state

|x⟩. Furthermore as |x⟩ is a quantum state, the solution encoded in |x⟩ will

be necessarily normalized whereas the ‘actual’ solution x⃗ does not have to be

necessarily normalised. In addition, only relative phases between quantum states

are physically meaningful, implying that the state |x⟩ could correspond to the

family of ‘possible’ states:

|x⟩ ∈
{
eiθ

x⃗

∥x⃗∥
| θ ∈ [0, 2π)

}

In the case of real-valued A and b⃗, this reduces to |x⟩ corresponding to either

− x⃗
||x⃗|| or x⃗

|x⃗∥ . Often for useful information to be extracted from the solution x⃗

the norm ∥x⃗∥ will have to recovered. We will detail how this can be done in the

next section. We could estimate the magnitude of each of the components of the

solution by running the HHL circuit multiple times and measuring each qubit
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which has support for the solution |x⟩. However, with this approach we would

not recover the sign of each of the components of the solution and furthermore

it would take exponentially increasing number of measurements of the solution

(and thus executions of the circuit) to faithfully recover the magnitude of each

of these components. Another option is to measure the inner product of the

solution vector x⃗ with another chosen vector w⃗. We now outline the relatively

simple quantum circuit that can be utilised to estimate inner products or overlaps

between two quantum states.

4.2.5 SWAP test

If we denote x⃗ = ||x⃗||⃗̃x and w⃗ = ||w⃗|| ⃗̃w, we can express the inner product of

the two vectors as an inner product of their normalized versions scaled by their

respective norms:

⟨w⃗, x⃗⟩ = ||w⃗||||x⃗||⟨ ⃗̃w, ⃗̃x⟩

As ⃗̃w, ⃗̃x are normalized vectors, they can potentially correspond to quantum states

and thus we can construct a circuit to calculate their overlap.

n

n
|ψ⟩
|ϕ⟩

|0⟩ H H

Figure 4.7: Quantum circuit representation of SWAP test for two n qubit states

To examine the effect of the circuit, we evaluate the action of the first Hadamard:

|ψ⟩ |ϕ⟩ (H |0⟩) = 1√
2
|ψ⟩ |ϕ⟩ |0⟩+ 1√

2
|ψ⟩ |ϕ⟩ |1⟩

Applying the controlled SWAP yields:

=
1√
2
(C-SWAP) (|ψ⟩ |ϕ⟩ |0⟩) + 1√

2
(C-SWAP) (|ψ⟩ |ϕ⟩ |1⟩)

=
1√
2
|ψ⟩ |ϕ⟩ |0⟩+ 1√

2
|ϕ⟩ |ψ⟩ |1⟩

91



Applying the final Hadamard gate yields:

=
1√
2
|ψ⟩ |ϕ⟩ (H |0⟩) + 1√

2
|ϕ⟩ |ψ⟩ (H |1⟩)

=
1

2
|ψ⟩ |ϕ⟩ |0⟩+ 1

2
|ψ⟩ |ϕ⟩ |1⟩+ 1

2
|ϕ⟩ |ψ⟩ |0⟩ − 1

2
|ϕ⟩ |ψ⟩ |1⟩

=

(
1

2
(|ψ⟩ |ϕ⟩+ |ϕ⟩ |ψ⟩)

)
|0⟩+

(
1

2
(|ψ⟩ |ϕ⟩ − |ϕ⟩ |ψ⟩)

)
|1⟩ (4.19)

For an arbitrary quantum state |Ψ⟩ = |ψ0⟩ |0⟩+ |ψ1⟩ |1⟩, the probability of mea-

suring the state |1⟩ can be calculated from the expectation value of the projector

Π|1⟩ := I ⊗ |1⟩ ⟨1|:

Prob (|1⟩) = ⟨Ψ|Π|1⟩ |Ψ⟩

= (⟨ψ0| ⟨0|+ ⟨ψ1| ⟨1|) (I ⊗ |1⟩ ⟨1|) (|ψ0⟩ |0⟩+ |ψ1⟩ |1⟩)

= (⟨ψ0| ⟨0|+ ⟨ψ1| ⟨1|) (|ψ1⟩ |1⟩)

= ⟨ψ1|ψ1⟩ (4.20)

Therefore for the SWAP test, the probability of measuring |1⟩ is given by:

Prob (|1⟩) =
(
1

2
(⟨ψ| ⟨ϕ| − ⟨ϕ| ⟨ψ|)

)(
1

2
(|ψ⟩ |ϕ⟩ − |ϕ⟩ |ψ⟩)

)
=

1

4
(⟨ψ|ψ⟩ ⟨ϕ|ϕ⟩ − ⟨ψ|ϕ⟩ ⟨ϕ|ψ⟩ − ⟨ϕ|ψ⟩ ⟨ψ|ϕ⟩+ ⟨ϕ|ϕ⟩ ⟨ψ|ψ⟩)

=
1

4

(
2− 2| ⟨ψ|ϕ⟩ |2

)
=

1

2

(
1− | ⟨ψ|ϕ⟩ |2

)
Rearranging this relationship, we can calculate the absolute value of the overlap

of two states in terms of the probability as:

| ⟨ψ|ϕ⟩ | =
√
1− 2Prob(|1⟩)

Recovery of solution norm ∥x⃗∥

We now return to (4.16):

|Ψ5⟩ =
1

∥⃗b∥

N−1∑
j=0

bj |uj⟩ |l̃j⟩

(√
1− C2

λ2j
|0⟩+ C

λj
|1⟩

)

As previously emphasised, we will need some method to recover the norm of the

solution x⃗. One method is to examine the postselection success probability of the
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ancilla qubit. Expressing the above state in the same format as (4.19) yields:

|Ψ5⟩ =

(
N−1∑
j=0

bj

∥⃗b∥

√
1− C2

λ2j
|uj⟩ |l̃j⟩

)
|0⟩+

(
N−1∑
j=0

bjC

∥⃗b∥λj
|uj⟩ |l̃j⟩

)
|1⟩

We can apply (4.20) again to determine the probability of successful postselection

as:

Prob(|1⟩) =
N−1∑
j=0

∣∣∣∣∣ bjC∥⃗b∥λj

∣∣∣∣∣
2

=
C2

∥⃗b∥2

N−1∑
j=0

∣∣∣∣ bjλj
∣∣∣∣2

Recalling the definition of the classical solution x⃗ in the eigenbasis of A:

∥x⃗∥ =

∥∥∥∥∥
N∑
j=0

bj
λj
u⃗j

∥∥∥∥∥ =

√√√√N−1∑
j=0

∣∣∣∣ bjλj
∣∣∣∣2

Substituting back into (4.20) we see that:

Prob (|1⟩) = C2∥x⃗∥2

∥⃗b∥2

∥x⃗∥ =
∥⃗b∥
√

Prob(|1⟩)
C

(4.21)

In order to use the above equality (4.21) to determine the norm of the solution, we

assume either a priori knowledge of of ∥⃗b∥ or some oracle to calculate this value. If

b⃗ is mostly sparse or has some other specific structure, the normalisation may be

determined efficiently, i.e. that the determination of this normalisation constant

would not be bottleneck in the overall runtime of the algorithm.

4.3 Performance against classical matrix inver-

sion techniques

The field of classical linear solvers is vast as detailed in [49], [13]. Direct methods

include but are not limited to the LU decomposition and QR decomposition,

Cholesky decomposition and Gaussian elimination. Iterative techniques include

the Jacobi method, Gauss-Seidel method etc. The conjugate gradient method

[44] for solving linear systems is often thought to be one of the fastest methods

for solving linear systems. The performance of this algorithm for solving a system
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Ax⃗ = b⃗ scales as:

O
(
Nsκ log

(
1

ϵ

))
where s is the sparsity (maximum number of non-zero elements in any one row

or column), N is the dimension of the problem (N = dim(A)) and ϵ is the error

tolerance. The complexity of the HHL algorithm [22] is given by:

O
(
log(N)s2κ2

ϵ

)

Therefore although we have achieved exponential better dependence on the di-

mension of the problem with respect to the complexity (logarithmic scaling in the

quantum algorithm vs linear scaling in the classical algorithm), we have traded

this for an exponentially worse dependence on the error tolerance parameter

(linear scaling in the quantum algorithm vs logarithmic scaling in the classi-

cal algorithm). The exponentially worse dependence on the error tolerance has

been reduced with the development of new matrix inversion algorithms, among

many achieving O(κ(log(κ)/ϵ)3) with an adiabatic randomization method in [47]

and achieving a complexity of O(κpolylog(κ/ϵ)) with a zero eigenstate filtering

method in [34]. Finally, an algorithm attaining the theoretical optimal scaling

for each of these parameters was described with O(κ log(1/ϵ)) in [11]. A table

detailing all of these complexity results can also be found in [11]. The theoretical

optimal scaling of O (κ log (1/ϵ)) for the algorithm arises from the widely believed

conjecture that BQP ⊂ PSPACE. The equivalence between these two statements

was shown in the original HHL paper [22].
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Chapter 5

Analysis of Λ matrix

Here we analyse the Λ matrix described in equation (3.18). From the previous

chapter outlining the quantum algorithm of linear systems for equations, the spar-

sity and condition number of the matrix describing the system are critical factors

in determining the runtime of the algorithm. In this context, The sparsity is

defined as the maximum number of non-zero rows in any one row or column and

condition number refers to the ratio of the largest singular value to the smallest

singular value. For example, if the resources required to engineer the unitary

associated with the matrix scales linearly with the problem size or if the condi-

tion number of the matrix constrains the probability of successful post-selection

in the quantum algorithm, no speed up will be achieved. In this chapter, we

address both of these questions for the proper Black-Scholes differential operator

as well as an ‘improper’ Black-Scholes differential operator which we define. A

previous work [5] showed that the runtime of the algorithm in this instance for

the application of the HHL for matrix differential equations depends not on the

condition number of the matrix A but rather the matrix V that diagonalises it

A = V DV −1. More specifically, consider a N × N matrix A = V DV −1 where

D = diag (λ0, ..., λN−1) such that Re(λj) ≤ 0 for all j ∈ {0, 1, ..., N − 1} and has

at most s non-zero elements in any one row or column. The authors of [5] showed

that the query complexity for producing a state ϵ−close to x⃗(T )/ ∥x⃗(T )∥ in the

ℓ2 norm where x⃗(T ) corresponds to the evolution of the state x⃗(0) = x⃗in under

dx⃗
dt

= Ax⃗+ b⃗ for a time period T is given by:

O (κV sgT ∥A∥ × polylog (κV sgβT ∥A∥ /ϵ))
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where g := maxt∈[0,T ] ∥x⃗(t)∥ / ∥x⃗(T )∥, β :=
(
||x⃗in||+ T ||⃗b||

)
/ ∥x⃗(T )∥ and κV :=

∥V ∥ ∥V −1∥. They also prove that the gate complexity is larger than the query

complexity by a factor of polylog (κV sgβT ∥A∥ /ϵ). A second paper [35] applied

this algorithm to derive an end-to-end description of multi-asset option pric-

ing algorithm. The authors in [35] address comprehensively the many technical

subtleties and complexity assumptions associated with this algorithm. Our mo-

tivation for this thesis was a description of the problem of option pricing along

with the simplest implementation of the algorithm with a corresponding analysis

of the scaling of these numerical characteristics that determine the runtime of the

algorithm. Taking our main inspiration from this paper [35], we tried to imple-

ment the most basic form of this algorithm which includes the HHL algorithm

and our goal is to derive upper bounds for the parameters κV , ||Ã|| and s for this

newly defined improper differential operator Ã. Alongside providing some upper

bounds for the sparsity s and spectral norm of Ã, ||Ã||, we show that Ã is unitar-

ily diagonalisable implying an optimal condition number of 1. We also show that

the real part of the spectrum of Ã is less than or equal to zero as required by the

above algorithm. For the case of the standard Black-Scholes differential operator,

we provide numerical evidence of unfavourable scaling in this parameter in the

dimension of the Black-Scholes differential operator.

5.1 Condition number of V and spectral norm

of A = V DV −1

We now return to the problem of identifying the condition number of the relevant

matrix. In order to determine the condition number of V , we have to either find

the matrix norm of V and its respective inverse:

κ(V ) = ∥V ∥2∥V −1∥2 (5.1)

where ∥.∥2 refers to spectral norm. Alternatively, the condition number can be

defined as ratio of the largest to smallest singular values:

κ(V ) = max
si,sj∈s(V )

|si|
|sj|

s(V ) :=
√
σ(V †V ) (5.2)
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We first proceed with examining if we can find an eigenbasis for A. For the case

of the matrices of interest in this thesis, tridiagonal matrices ∈ RN×N , there is

an analytic expression for the spectrum [37]. The lth eigenvalue and eigenvector

is given by:

λl = b+ 2
√
ac cos

(
πl

N + 1

)
, l ∈ {1, 2, ..., N} (5.3)

Where a is the value along the subdiagonal, b along the diagonal and c along the

superdiagonal. Assuming that ac ̸= 0, the associated right lth eigenvector is given

by the expression:

v⃗l =


( c
a
)
1
2 sin( lπ

N+1
)

( c
a
)
2
2 sin( 2lπ

N+1
)

...

( c
a
)
N
2 sin( Nlπ

N+1
)

 (5.4)

For the case of the D1 matrix, c
a
= −1 =⇒ c

a
= eπi .We show that for the D1

matrix, the eigenvectors listed above form an eigenbasis, by showing the stronger

condition that each of the eigenvectors are orthogonal with respect to the usual

norm on CN . Taking two vectors v⃗l, v⃗k, we see their inner product is:

v⃗l
†v⃗k =

(
e

−πi
2 sin( lπ

N+1
) e−πi sin( 2lπ

N+1
) . . . e

−Nπi
2 sin( Nlπ

N+1
)
)

e

πi
2 sin( kπ

N+1
)

eπi sin( 2kπ
N+1

)
...

e
Nπi
2 sin(Nkπ

N+1
)



⇒ v⃗l
†v⃗k =

N∑
γ=1

sin

(
γl

N + 1

)
sin

(
γk

N + 1

)
=

(
N + 1

2

)
δl,k

Where in the last line, we have invoked the orthogonality of discrete sine functions

on a closed interval to insert the Kronecker delta function. As for the D2 matrix,

its Hermiticity guarantees that its eigenvectors will necessarily form an eigenbasis.

Returning to the discretized representation of A:

A =

1

2

d∑
i=1

σ2
iA(∂2xi) +

d∑
i,j=1
j>i

ρijσiσjA(∂xi,∂xj) +
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)

 (5.5)
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where the submatrices A(∂xi), A(∂xi,∂xj) and A(∂2xi) are defined as:

A(∂xi) = I⊗d−i ⊗D1 ⊗ I⊗i−1 A(∂2xi) = I⊗d−i ⊗D2 ⊗ I⊗i−1

A(∂xi,∂xj) = I⊗d−j ⊗D1 ⊗ I⊗j−i−1 ⊗D1 ⊗ I⊗i−1

We can now immediately deduce that for the matrices A(∂xi), A(∂xj ,∂xk), they have

the following eigenbasis:

v⃗l1,l2,...,ld := v⃗l1 ⊗ v⃗l2 ⊗ ...⊗ v⃗ld ∀l1, l2, ..lN ∈ {1, 2, ..., N} (5.6)

v⃗li =


e

πi
2 sin( lπ

N+1
)

eπi sin( 2lπ
N+1

)
...

e
Nπi
2 sin( Nlπ

N+1
)


For matrices of the type A(∂2xi), their corresponding eigenbasis will be:

v⃗l1,l2,...,ld := v⃗l1 ⊗ v⃗l2 ⊗ ...⊗ v⃗ld ∀l1, l2, ..lN ∈ {1, 2, ..., N} (5.7)

v⃗li =


sin( lπ

N+1
)

sin( 2lπ
N+1

)
...

sin( Nlπ
N+1

)


It can be seen from (5.6) and (5.7) that the eigenvectors from the matrices A(∂xi)

and A(∂2xi) are distinct. This implies that these matrices do not commute and

hence the straightforward analysis to determine the simultaneous eigenbasis will

not be applicable here. Alternatively if A is Hermitian, we can immediately

deduce that A is diagonalised by a unitary matrix V (A = V DV −1). The

singular values of V and thus the condition number of V in this instance is trivial

as:

s(V ) =
√
σ(V †V ) =

√
σ(I) = 1

κ(V ) = max
si,sj∈s(V )

si
sj

= 1
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However A is not Hermitian. This can be seen as the matrix D1 is anti-Hermitian.

D†
1 =

1

2h


0 −1

1
. . . . . .

. . . −1

1 0

 = − 1

2h


0 1

−1
. . . . . .

. . . 1

−1 0

 = −D1

Corollary of this is that the matrices of the form of A(∂xi) are anti-Hermitian and

the matrices A(∂xi,∂xj) := A(∂xi)A(∂xj) are Hermitian.

A†
(∂xi)

= I ⊗ · · · ⊗D†
1 ⊗ · · · ⊗ I → I ⊗ · · · ⊗ (−D1)⊗ · · · ⊗ I

→ −I ⊗ . . . D1 · · · ⊗ I = −A(∂xi) (5.8)

A†
(∂xi,∂xj)

=
(
A(∂xi)A(∂xj)

)† → A†
(∂xj)

A†
(∂xi)

→
(
−A(xj)

) (
−A(xi)

)
= A(∂xi)A(∂xj) = A(∂xi,∂xj) (5.9)

Where in for the last equality in (5.9), we have used the fact that [A(∂xi), A(∂xi)] =

0 ∀i, j to commute the matrices through. As the matrices of the type A(∂xi) form

part of the sum that defines A in (5.5) and the remaining terms are Hermitian, A

itself cannot be Hermitian. The second option is to consider the weaker condition

of A being normal, which would imply that A can be unitarily diagonalized. This

is equivalent to the statement:

[A,A†] = 0

It can be shown that A does not satisfy the normality condition. However if we

consider the A(∂2xi) matrix as the composition of the A(∂xi) matrix with itself, we

can achieve normality in the overall matrix A.

A(∂2xi) ⇔
(
A(∂xi)

)2
This now approximately corresponds to the operator A(∂2xi) with stepsize equal

to 2h rather than h. Having two different step-sizes for different differential op-

erators will unavoidably lead to additional error in the approximation as well
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as an additional minor perturbation in the top left and bottom right elements

of the matrix respectively leading to a reconsideration of how boundary condi-

tions are imposed. However, this would have the benefit of every differential

operator (i.e.A(∂xi),A(∂2xi),etc ) in the larger Black-Scholes differential operator

Ã commuting pairwise with one another, allowing a straightforward determina-

tion of normality of the ‘improper’ differential operator Ã. We proceed with this

approximation now and examine in due course the practicality of this approxi-

mation with numerical simulations. Reinserting ρii = 1 in each of the terms of

the first summand and re-expressing A(∂xi,∂xj) as A(∂xi)A(∂xi) yields:

Ã =

1

2

d∑
i=1

ρiiσ
2
iA

2
(∂xi)

+
d∑

i,j=1
j>i

ρijσiσjA(∂xi)A(∂xj) +
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)


(5.10)

We now can recombine the first two summands as follows. The first thing to

notice is that switching the dummy variables i, j in the second summand, does

not change the sum due to the symmetry of the correlation term ρij and the fact

that the matrices A(∂xi), A(∂xj) commute. Therefore the second summand can be

represented as:

1

2

 d∑
i,j=1
j>i

ρijσiσjA(∂xi)A(∂xj) +
d∑

j,i=1
i>j

ρjiσjσiA(∂xj)A(∂xi)

⇔

=
1

2

d∑
i,j=1
i ̸=j

ρijσiσjA(∂xi)A(∂xj) (5.11)

Inserting (5.11) yields:

Ã =

1

2

d∑
i=1

ρiiσ
2
iA

2
(∂xi)

+
1

2

d∑
i,j=1
i ̸=j

ρijσiσjA(∂xi)A(∂xj) +
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)



Ã =

(
1

2

d∑
i,j=1

ρijσiσjA(∂xi)A(∂xj) +
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)

)
(5.12)
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To determine [Ã, Ã†], we decompose Ã into its Hermitian and anti-Hermitian

components.

Ã =MHerm +Manti−Herm

Where MHerm and Manti−Herm are defined as:

MHerm =
1

2

d∑
i,j=1

ρijσiσjA(∂xi)A(∂xj) Manti−Herm =
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)

These components can be seen as Hermitian and anti-Hermitian from equations

(5.8) and (5.9). Each of these respective components also commute as:

[MHerm,Manti−Herm] =

[
1

2

d∑
i,j=1

ρijσiσjA(∂xi)A(∂xj),

d∑
k=1

(
r − σ2

k

2

)
A(∂xk)

]

→ 1

2

d∑
i,j=1

d∑
k=1

ρijσiσj

(
r − σ2

k

2

)[
A(∂xi)A(∂xj), A(∂xk)

]
Using the identity [AB,C] = A[B,C] + [A,C]B, we can see that the last com-

mutator vanishes as:

[
A(∂xi)A(∂xj), A(∂xk)

]
= A(∂xi)

[
A(∂xj), A(∂xj)

]︸ ︷︷ ︸
=0

+
[
A(∂xi), A(∂xk)

]︸ ︷︷ ︸
=0

A(∂xj)

Therefore [MHerm,Manti−Herm] = 0. We can show now that [Ã, Ã†] is zero:

[Ã, Ã†] = [MHerm +Manti−Herm,MHerm −Manti−Herm]

= [MHerm,MHerm]− [MHerm,Manti−Herm]

+ [Manti−Herm,MHerm]− [Manti−Herm,Manti−Herm]

⇒ −2[MHerm,Manti−Herm] = 0

Therefore V is unitary and thus we arrive at the result:

κ(V ) = 1

Two other numerical characteristics of the matrix A that determines the over-

all runtime complexity is the spectral norm of A and the real part of all the
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eigenvalues of A being negative.

||A||Spec :=
√
λmax (A†A)

Using a similar argument from commutation relations, Ã†Ã has a simple repre-

sentation in terms of the MHerm and Manti−Herm:

Ã†Ã = (MHerm −Manti−Herm) (MHerm +Manti−Herm)

=M2
Herm + [MHerm,Manti−Herm]︸ ︷︷ ︸

=0

−M2
anti−Herm

=M2
Herm −M2

anti−Herm

Returning to equation (5.6), we now determine the spectrum of the symmetric

and anti-symmetric components. We first proceed with demonstrating the nega-

tivity of the real part of σ(Ã). Taking the eigenvector v⃗l1,l2,...,ld , we see that the

eigenvalues of the Hermitian component are:

(
1

2

d∑
i,j=1

ρijσiσjA(∂xi)A(∂xj)

)
︸ ︷︷ ︸

MHerm

v⃗l1,l2,...,ld =
1

2

d∑
i,j=1

ρijσiσj
(
A(∂xi)A(∂xj)v⃗l1,l2,...,ld

)

⇔ 1

2

d∑
i,j=1

ρijρiρj

(
− 4

4h2
cos

(
πli

N + 1

)
cos

(
πlj

N + 1

))
v⃗l1,l2,...,ld

⇔

(
− 1

2h2

d∑
i,j=1

ρijσiσj cos

(
πli
n+ 1

)
cos

(
πlj

N + 1

))
︸ ︷︷ ︸

λl1,l2,...,ld

v⃗l1,l2,...,ld (5.13)

Similarly for the anti-Hermitian component, the eigenvalues are:

(
d∑

k=1

(
r − σ2

k

2

)
A(∂xk)

)
︸ ︷︷ ︸

Manti−Herm

v⃗l1,l2,...,ld =
d∑

k=1

(
r − σ2

k

2

)(
A(∂xk)v⃗l1,l2,...,ld

)

⇔
d∑

k=1

(
r − σ2

k

2

)(
2i

2h
cos

(
πlk

N + 1

))
v⃗l1,l2,...,ld
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⇔

(
i

h

d∑
k=1

(
r − σ2

k

2

)
cos

(
πlk

N + 1

))
︸ ︷︷ ︸

λl1,l2,...,ld

v⃗l1.l2,...,ld (5.14)

Hence the eigenvalues of Ã are:

(Ã)v⃗l1,l2,...,ld = (MHerm) v⃗l1,l2,...,ld + (Manti−Herm) v⃗l1,l2,...,ld

=

(
− 1

2h2

d∑
i,j=1

ρijσiσj cos

(
πli

N + 1

)
cos

(
πlj

N + 1

))
v⃗l1,l2,...,ld

+

(
i

h

d∑
k=1

(
r − σ2

k

2

)
cos

(
πlk

N + 1

))
v⃗l1,l2,...,ld (5.15)

The expression can be re-expressed as a pseudo-quadratic programming problem.

If we revisit the notation for the covariance matrix (σ̂)ij = ρijσiσj as well as

introduce the following notation:

(w⃗)k := cos

(
πlk

N + 1

)
(u⃗)k := r − σ2

k

2

The eigenvalue equation of (5.15) can be rewritten as:

(Ã)v⃗l1,l2,...,ld =

(
− 1

2h2
(w⃗†σ̂w⃗) +

i

h
(u⃗†w⃗)

)
v⃗l1,l2,...,ld (5.16)

We can deduce from (5.16) that the real part of the spectrum of Ã will be negative

due to the semi-positive definiteness of the covariance matrix σ̂:

Re(σ(Ã)) = − 1

2h2
(w⃗†σ̂w⃗)︸ ︷︷ ︸

>0

< 0

We now address the issue of determining ||A||Spec. Applying the eigenvalues

equations of (5.13) and (5.14) to Ã†Ã yields:

(
Ã†Ã

)
v⃗l1,l2,...,ld =M2

Hermv⃗l1,l2,...,ld −M2
anti−Hermv⃗l1,l2,...,ld

Utilising the condensed notation of equation yields:

(
Ã†Ã

)
v⃗l1,l2,...,ld =

(
− 1

2h2
w⃗†σ̂w⃗

)2

v⃗l1,l2,...,ld −
(
i

h
u⃗†w⃗

)2

v⃗l1,l2,...,ld
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(
Ã†Ã

)
v⃗l1,l2,...,ld =

1

4h4

[(
w⃗†σ̂w⃗

)2
+ 4h2

(
u⃗†w⃗

)2]
v⃗l1,l2,...,ld (5.17)

To determine the largest value of (5.17), we first focus on the quadratic term. Re-

expressing the term w⃗†σ̂w⃗ in terms of the Rayleigh quotient, w⃗†σ̂w⃗ = B(σ̂, w⃗),

and the fact that B(σ̂, w⃗) ≤ λmax(σ̂) yields:

(w⃗†σ̂w⃗)2 ≤ (λmax(σ̂)||w⃗||)2 = λmax(σ̂)
2||w⃗||2 (5.18)

Examining the form of w⃗, we have the simple bound on ||w⃗|| as:

||w⃗|| ≤

√√√√ d∑
k=1

cos

(
πlk

N + 1

)2

≤

√√√√ d∑
k=1

1 =
√
d

This bounds (5.18) as:

(
w⃗†σ̂w⃗

)2
< λmax(σ̂)

2
(√

d
)2

= dλmax(σ̂)
2

Turning to the linear programming aspect of (5.17), we can bound the quantity

using the Cauchy-Schwarz inequality.

|u⃗†w⃗| ≤ ||u⃗|| · ||w⃗|| (5.19)

We bound ||u⃗|| as:

||u⃗|| =

√√√√ d∑
k=1

(u⃗k)2 =

√√√√ d∑
k=1

(
r − σ2

k

2

)2

≤

√√√√ d∑
k=1

(
|r|+ |λmax(σ̂)|

2

)2

=

(
|r|+ λmax(σ̂)

2

)√
d

This leads to a bound for (5.19) as:

(u⃗†w⃗)2 ≤
((

|r|+ λmax(σ̂)

2

)√
d

)2 (√
d
)2

≤ d2
(
|r|+ λmax(σ̂)

2

)2

We can now provide an upper bound for ||A||Spec. The final parameter to be

bounded is the stepsize h. As h ∼ O
(

1
N

)
, we will assume the upper bound

h ≤ c
N
, where c is some constant independent of N or d. Combining it all
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together gives:

1

4h4
(
(w⃗†σ̂w⃗)2 + 4h2(u⃗†w⃗)2

)
≤ N4

4c4

(
dλmax(σ̂)

2 +
4c2

N2
d2
(
|r|+ λmax(σ̂)

2

)2
)

⇒ λmax(σ̂)
2

4c4
N4d+

1

c2

(
|r|+ λmax(σ̂)

2

)2

N2d2 ∼ O
(
λmax(σ̂)

2max
(
N4d,N2d2

))

5.2 Numerical plots of condition number and

spectral norm for both differential operators

Figure 5.1: Plot of condition number of κ (V ) against number of underlying assets
and number of gridpoints where A = V DV −1 for the case of (a) the proper
Black-Scholes differential operator A and (b) improper Black-Scholes differential
operator Ã for r = 0.1, σi = 0.2, ∆x = 0.2 and no correlation between the assets.

105



Figure 5.2: Plot of spectral norm of matrix ||(.)||Spec against number of underlying
assets and number of gridpoints for the case of (a) the proper Black-Scholes
differential operator A and (b) improper Black-Scholes differential operator Ã
for r = 0.1, σi = 0.2, ∆x = 0.2 and no correlation between the assets.

5.2.1 Discussion of condition number and spectral norm

In this section, we have provided an analysis of some of the numerical characteris-

tics associated with the proper and improper Black-Scholes differential operators

associated with the Black-Scholes equation. By considering the improper Black-

Scholes differential operator Ã, we were able to find an explicit eigenbasis for

the matrix which enabled us to derive analytic bounds on the condition number

of the matrix that diagonalises A (namely V ) as well as determine the spectral

norm of Ã and the sign of real components of its spectrum Re
(
σ(Ã)

)
. As to the

best of our knowledge the eigenbasis and associated spectrum of A cannot be ex-

pressed in analytic manner as with the case of Ã and therefore the above method

to bound these parameters cannot be utilised. We also tried other methods such

as examining inequalities regarding quantities such as the sub-multiplicativity

of the condition number (κ(AB) ≤ κ(A)κ(B)), however, we were not able to

derive any analytic expressions for bounds on these variables. Summarized, the

non-normality of the proper Black-Scholes differential operator A proves quite

difficult for stating anything conclusive for the scaling of these parameters with

problem size. Finally, we provided some numerical evidence for the scaling of the

condition numbers associated with both the proper and improper Black-Scholes

differential operators, indicating a far more rapid scaling of the condition num-
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ber associated with the proper operator versus the improper operator. We also

show favourable scaling of the spectral norm for the improper operator versus the

proper operator. Although we showed analytically that the condition number is

1 for the case of the improper operator, the plot indicates some change in this

value for increasing N and d. We believe this is due to a numerical error of the

program rather then a genuine phenomenon.

5.3 Decomposition and sparsity determination

of matrix

An indispensable procedure required for many algorithms, critical within the field

of quantum chemistry and quantum dynamics [16] is Hamiltonian simulation.

Broadly speaking, this procedure addresses for a given Hamiltonian H ∈ C2n×2n ,

how can the unitary evolution generated by H, U = e−iHt, be encoded into a

quantum circuit with a standard universal gate set. One of the first techniques

developed is Trotter Suzuki decomposition [23]. The Trotter Suzuki decomposi-

tion is derived from the Lie product formula [21].

eA+B = lim
n→∞

(
eA/neB/n

)n
To see how this works in practice take a Hamiltonian Ĥ and its decomposition

into a sum of simpler Hamiltonians Ĥi that are easier to simulate in terms of a

universal gate set (i.e. Clifford group + T-Gate)[36].

Ĥ =
n∑

i=1

Ĥi such that Uk(t) := e−iĤkt︸ ︷︷ ︸
Circuit representation easy / known

Simpler in this context implies that either the circuit representation of Ĥi is

known before hand or each Hamiltonian is k-local, implying it acts on at most

k qubits. Suppose we want to simulate unitary evolution generated by Ĥ for a

time duration t. Fix n sufficiently large and define the timestep h := t
n
.

U = e−iĤt = e(
∑n

k=1 −iĤkt) ≈

(
n∏

k=1

e−
iĤkt

n

)n

=

(
n∏

k=1

Uk

(
t

n

))n
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The first step in using this algorithm is choosing a certain set of Hamiltonians

{Hi}i∈I . We will decompose the matrix of interest into a ‘pseudo’-Pauli basis in

the next section. In [5] and [35], the sparsity of the matrix plays a fundamental

role in the overall complexity of the algorithm. Sparsity is defined in this context

as the maximum number of non zero elements in any one row or column:

Spar(A) := max

(
max

j

(∑
k

1[ajk ̸=0]

)
,max

j

(∑
k

1[akj ̸=0]

))

where 1[(.)] refers to the Iverson bracket:

1[x] =

1 if x is True

0 if x is False

From this definition of sparsity, we use the following inequalities which will be

useful in bounding the sparsity of the overall matrix to be inverted with the HHL

algorithm:

Spar(A⊗B) ≤ Spar(A)Spar(B)

Spar(A+B) ≤ Spar(A) + Spar(B)

We provide a proof of these two inequalities in appendix (B). We will now proceed

with the Pauli decomposition decomposing the matrix Λ̃. This will enable us to

use the two sparsity inequalities above to ascertain an upper bound for Spar(Λ̃).
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5.3.1 Pauli decomposition of Λ̃

If we return to the matrix to be inverted:



I

−A∆t . . .

. . .

− A∆t
2m−1

I

−I . . . −I I

−A∆t . . .

. . .

− A∆t
2m−1

I

−I . . . −I I

−I I
. . . . . .

−I I





x⃗1

x⃗2
...

x⃗n

x⃗n+1

x⃗n+2

...

x⃗2n−1

x⃗2n

w⃗
...

w⃗



=



V⃗0

(∆t)V⃗1
...

0⃗

0⃗

(∆t)V⃗1
...

0⃗

0⃗

0⃗
...

0⃗


(5.20)

For the matrix above, Λ[2r;2p,2m,2n] where dim(A) = 2n, 2m refers to the order

which the analytic expression is approximated in each block, 2p−2r refers to how

many timesteps ∆t the solution is evolved forward and 2r refers to how many of

those blocks are dedicated to repeating the final solution. If the solution is not

repeated, then we take 2r = 0. The dimension of the matrix Λ[2r;2p,2m,2n] is 2
p+m+n.

Furthermore, the matrix Λ[2r;2p,2m,2n], in its current form is not Hermitian and

hence can not be realised as a valid unitary operator. However, if we represent

the linear system above to the equation
(
Λ[2r;2p,2m,2n]

)
x⃗ = b⃗, we can solve a

‘Hermitian’ form of the matrix above: 0 Λ[2r;2p,2m,2n]

Λ†
[2r;2p,2m,2n] 0


︸ ︷︷ ︸

Λ̃[2r ;2p,2m,2n]

0⃗

x⃗

 =

b⃗
0⃗



Λ̃[2r;2p,2m,2n] =
1

2

(
(σ1 + iσ2)⊗ Λ[2r;2p,2m,2n] + (σ1 − iσ2)⊗ Λ†

[2r;2p,2m,2n]

)
Λ̃[2r;2p,2m,2n] = σ+ ⊗ Λ[2r;2p,2m,2n] + σ− ⊗ Λ†

[2r;2p,2m,2n]

We now seek to identify the decomposition of this matrix in terms of the Pauli

basis. However, as finding a decomposition for the matrix A will automatically

lead to a decomposition for Ã, we proceed with finding a decomposition for the
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original matrix Λ[2r;2p,2m,2n]. For all M ∈Mn(C), there exists a decomposition of

the form:

M =
1

2n

∑
K⃗∈{I,X,Y,Z}⊗n

Tr(σK⃗M)σK⃗ (5.21)

However, computationally this requires a super-exponential number of trace cal-

culations (O(n4n)).This can be seen as we need to 4n trace for the matrix, we

have to define a smaller classes of matrix and ‘build’ them up to the matrix

Λ[2r;2p,2m,2n]. To proceed we define same basic 2× 2 matrices:

Π̂0 =
1

2
(σ0 + σ3) =

1 0

0 0

 Π̂1 =
1

2
(σ0 − σ3) =

0 0

0 1



σ̂+ =
1

2
(σ1 + iσ2) =

0 1

0 0

 σ̂− =
1

2
(σ1 − iσ2) =

0 0

1 0



C1 matrix

The first matrix that we need to be able to construct is given by:

(C1)[2n](a0, a1, ..., a2n−2) :=



0

a0 0

0 a1
. . .

. . .

a2n−2 0


︸ ︷︷ ︸

2n

This matrix has the following analytic form:

(C1)[2n](a0, a1, ..., a2n−2) =

+
1∑

k1=0

...

1∑
kn−1=0

a(
∑n−1

t=1 kt2t)

(
n−1⊗
t=1

Π̂kn−t

)
⊗ σ−

+
n−1∑
l=2

 1∑
kl=0

...

1∑
kn−1=0

a(2l−1−1+
∑n−1

t=l kt2t)

(
n−l⊗
t=1

Π̂kn−t

)
⊗ σ

⊗(l−1)
− ⊗ σ+


+ a2n−1−1(σ

⊗(n−1)
− ⊗ σ+)
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The recursive relationship between these matrices is given by:

(C1)[2n+1](a0, a1, ..., a2n+1−2) = (5.22)

+
1∑

kn=0

Π̂kn ⊗
(
(C1)[2n](a0+kn2n , a1+kn2n , ..., a2n−2+kn2n)

)
(5.23)

+ a2n−1(σ
⊗n
− ⊗ σ+) (5.24)

In matrix form, this recursive relationship has the form:

(C1)[2n+1](a0, a1, ..., a2n+1−2) :=



0

a0 0

0 a1
. . .

. . .

a2n+1−2 0


︸ ︷︷ ︸

dim=2n+1

=

1 0

0 0

⊗



0

a0 0

0 a1
. . .

. . .

a2n−2 0


︸ ︷︷ ︸

(C1)[2n](a0,a1,...,a2n−2)

+

0 0

0 1

⊗



0

a2n 0

0 a2n+1
. . .

. . .

a2n+1−2 0


︸ ︷︷ ︸

(C1)[2n](a2n ,a2n+1,...,a2n+1−2)

+ a2n−1

0 0

1 0

⊗n

⊗

0 1

0 0

 (5.25)

Using the above recursion relation, we can verify the correctness of the closed form

formula of (5.22) (where we highlight in blue the (2n)th closed form expression
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inserted into the recursive relationship):

(C1)[2n+1](a0, a1, ..., a2n+1−2) =

=
1∑

kn=0

Π̂kn ⊗

(
1∑

k1=0

...
1∑

kn−1=0

a(
∑n−1

t=1 kt2t+kn2n)

(
n−1⊗
t=1

Π̂kn−t

)
⊗ σ−

+
n−1∑
l=2

( 1∑
kl=0

...
1∑

kn−1=0

a(2l−1−1+
∑n−1

t=l kt2t+kn2n)

(
n−l⊗
t=1

Π̂kn−t

)
⊗ σ

⊗(l−1)
− ⊗ σ+

)
+a(2n−1−1+kn2n)(σ

⊗(n−1)
− σ+)

)
+ a2n−1(σ

⊗n
− ⊗ σ+) (5.26)

Using the identities:

Π̂kn ⊗

((
n−1⊗
t=1

Π̂kn−t

)
⊗ (...)

)
=

(n+1)−1⊗
t=1

Π̂k(n+1)−t

⊗ (...)

Π̂kn ⊗

((
n−l⊗
t=1

Π̂kn−t

)
⊗ (...)

)
=

(n+1)−l⊗
t=1

Π̂k(n+1)−t

⊗ (...)

n−1∑
t=1

kt2
t + kn2

n =

(n+1)−1∑
t=1

kt2
t

Applying these identities to (5.26) yields:

=
1∑

kn=0

1∑
k1=0

...
1∑

kn−1=0

a(∑(n+1)−1
t=1 kt2t

)
(n+1)−1⊗

t=1

Π̂k(n+1)−t

⊗ σ−

+
1∑

kn=0

n−1∑
l=2

 1∑
kl=0

...

1∑
kn−1=0

a(
2l−1−1+

∑(n+1)−1
t=l kt2t

)
(n+1)−l⊗

t=1

Π̂k(n+1)−t

⊗ σ
⊗(l−1)
− ⊗ σ+

+
1∑

kn=0

a(2n−1−1+kn2n)

(
Π̂kn ⊗ σ⊗n−1

− ⊗ σ+

)
+ a2n−1(σ

⊗n
− ⊗ σ+)
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Moving the summation
∑1

kn=0( ) inside the first parentheses yields :

=
1∑

k1=0

...
1∑

kn=0

a(∑(n+1)−1
t=1 kt2t

)
(n+1)−1⊗

t=1

Π̂k(n+1)−t

⊗ σ− (5.27)

+
n−1∑
l=2

 1∑
kl=0

...
1∑

kn−1=0

1∑
kn=0

a(∑(n+1)−1
t=l kt2t+2l−1−1

)
(n+1)−l⊗

t=1

Π̂k(n+1)−t

⊗ σ
⊗(l−1)
− ⊗ σ+

+
1∑

kn=0

a(2n−1−1+kn2n)

(
Π̂kn ⊗ σ⊗n−1

− ⊗ σ+

)
+ a2n−1(σ

⊗n
− ⊗ σ+)

To complete the proof, we need to show how the term:

1∑
kn=0

a(2n−1−1+kn2n)

(
Π̂kn ⊗ σ⊗n−1

− ⊗ σ+

)

can be interpreted as the nth term in the second summation (5.28):

n−1∑
l=2

 1∑
kl=0

...
1∑

kn−1=0

1∑
kn=0

a(∑(n+1)−1
t=l kt2t+2l−1−1

)
(n+1)−l⊗

t=1

Π̂k(n+1)−t

⊗ σ
⊗(l−1)
− ⊗ σ+

If we take l = n, we can see equality for the index value ( ) in a( )

(n+1)−1∑
t=n

kt2
t + 2l−1 − 1 = 2n−1 − 1 + kn2

n

⇒ a(∑(n+1)−1
t=n kt2t+2l−1−1

) = a(2n−1−1+kn2n)

Focusing on the tensor product term, we can also see equality:

⇒

(n+1)−n⊗
t=1

Π̂k(n+1)−t

⊗ σ
⊗(l−1)
− ⊗ σ+ = Π̂kn ⊗ σ⊗n−

− ⊗ σ+

Therefore, we can conclude that it is in fact the nth term in the summation:

1∑
kn=0

a(2n−1−1+kn2n)

(
Π̂kn ⊗ σ⊗n−

− ⊗ σ+

)
︸ ︷︷ ︸

nth term
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Hence, the penultimate term can be included in the second summation to yield:

=
1∑

k1=0

...
1∑

k(n+1)−1=0

a(∑(n+1)−1
t=1 kt2t

)
(n+1)−1⊗

t=1

Π̂k(n+1)−t

⊗ σ−

+

(n+1)−1∑
l=2

 1∑
kl=0

...

1∑
kn=0

a(∑(n+1)−1
t=l kt2t+2l−1−1

)
(n+1)−l⊗

t=1

Π̂k(n+1)−t

⊗ σ
⊗(l−1)
− ⊗ σ+

+ a2n−1(σ
⊗n
− ⊗ σ+)

C2 matrix

The last matrix that we will have to construct is the G matrix which we define

as:

(C2)[2n] :=


1 1 . . . 1

0 0 . . . 0
...

...

0 0 . . . 0


︸ ︷︷ ︸

dim=2n

=

1 1

0 0

⊗n

=
(
Π̂0 + σ+

)⊗n

Construction of C3, C4 &C5 matrices

Assume that for the initial matrix A, dim(A) = 2n. This will be a necessary con-

straint as we are assuming that we are dealing with a quantum circuit comprising

solely of qubits (2-dimensional Hilbert space). Consider the matrix:

(C3)[2m,2n] := −(C1)[2m]

(
∆t,

∆t

2
, ...,

∆t

2m − 1

)
⊗A2n (5.28)



0

−A2n∆t 0

−A2n∆t
2

. . .

. . .

−A2n∆t
2m−1

0


︸ ︷︷ ︸

dim=2m+n

No of blocks=2m

:= −



0

∆t 0

0 ∆t
2

. . .

. . .

∆t
2m−1

0


︸ ︷︷ ︸

dim=2m

⊗ A2n︸︷︷︸
dim=2n
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(C1)[2m](∆t,
∆t
2
, ..., ∆t

2m−1
) =

→
1∑

k1=0

...
1∑

km−1=0

∆t(∑m−1
t=1 kt2t + 1

) (m−1⊗
t=1

Π̂km−t

)
⊗ σ−

+
m−1∑
l=2

 1∑
kl=0

...
1∑

km−1=0

h(∑m−1
t=l kt2t + 2l−1

) (m−l⊗
t=1

Π̂km−t

)
⊗ σ

⊗(l−1)
− ⊗ σ+


+

∆t

2m−1
(σ

⊗(m−1)
− ⊗ σ+)

Hence (C3)[2m,2n] =

−
1∑

k1=0

...
1∑

km−1=0

∆t(∑m−1
t=1 kt2t + 1

) (m−1⊗
t=1

Π̂km−t

)
⊗ σ− ⊗An

−
m−1∑
l=2

 1∑
kl=0

...

1∑
km−1=0

∆t(∑m−1
t=l kt2t + 2l−1

) (m−l⊗
t=1

Π̂km−t

)⊗ σ
⊗(l−1)
− ⊗ σ+ ⊗An

− ∆t

2m−1
(σ

⊗(m−1)
− ⊗ σ+)⊗An

Here we omit the Pauli decomposition of the matrix An, however as shown earlier

in the thesis A is composed of a sum of tensor products of tridiagonal Toeplitz

matrices, each of which has an analytic formula for their decomposition in the

Pauli basis as provided earlier. Hence, an analytic form for the complete descrip-

tion exists. For the sake of brevity, we omit the description here. Returning

to the original assumption that the matrix A has dimension 2n. Consider the

matrix:

(C4)[2m,2n] = (C2)[2m] ⊗ I2n (5.29)

(C4)[2m,2n] =
(
Π̂0 + σ+

)⊗m

⊗ σ⊗n
0


I2n I2n . . . I2n

0 0 . . . 0
...

...

0 0 . . . 0


︸ ︷︷ ︸

dim=2m+n

No of blocks=2m

:=


1 1 . . . 1

0 0 . . . 0
...

...

0 0 . . . 0

⊗ I2n
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Finally, we can start to reproduce the actual matrix. Let the (C5)[2m,2n] matrix

be defined as:

(C5)[2m,2n] = (C3)[2m,2n] + I2m ⊗ I2n︸ ︷︷ ︸
σ
⊗(m+n)
0

(5.30)

(C5)[2m,2n] :=



I2n

−A2n∆t I2n

−A2n∆t
2

. . . . . .

−A2n∆t
2m−1

I2n


︸ ︷︷ ︸

dim=2m+n

No of blocks=2m

⇒



0

−A2n∆t 0

−A2n∆t
2

. . .

. . .

−A2n∆t
2m−1

0


︸ ︷︷ ︸

dim=2m+n

No of blocks=2m

+



I2n

I2n

I2n

. . .

I2n


︸ ︷︷ ︸

dim=2m+n

No of blocks=2m

(C5)[2m,2n] =

→
1∑

k1=0

...

1∑
km−1=0

∆t(∑m−1
t=1 kt2t + 1

) (m−1⊗
t=1

Π̂km−t

)
⊗ σ− ⊗A2n

+
m−1∑
l=2

 1∑
kl=0

...
1∑

km−1=0

∆t(∑m−1
t=l kt2t + 2l−1

) (m−l⊗
t=1

Π̂km−t

)
⊗ σ

⊗(l−1)
− ⊗ σ+ ⊗A2n


+

∆t

2m−1
(σ

⊗(m−1)
− ⊗ σ+)⊗A2n + σ

⊗(m+n)
0
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Construction of the Λ matrix without repetition of solution

Consider the block matrix (C6)[22,2m,2n] for the case of 2
2 ‘blocks’ along the diag-

onal, each of dimension 2m+n:

(C6)[22,2m,2n]

(
(C5)[2m,2n], (C4)[2m,2n]

)
:=


(C5)[2m,2n] 0 0 0

(C4)[2m,2n] (C5)[2m,2n] 0 0

0 (C4)[2m,2n] (C5)[2m,2n] 0

0 0 (C4)[2m,2n] (C5)[2m,2n]


This block structure is encountered often in our construction. Its shorthand

notation appears as follows:

(C6)[2p,2m,2n] (G2m+n ,H2m+n) := I2p ⊗G2m+n + (C2)[2p] ⊗H2m+n (5.31)

=


1

1
. . .

1


︸ ︷︷ ︸

dim=2p

⊗G2m+n −


0

1 0
. . . . . .

1 0


︸ ︷︷ ︸

dim=2p

⊗H2m+n

=


G2m+n

G2m+n

. . .

G2m+n

−


0

H2m+n 0
. . . . . .

H2m+n 0



=


G2m+n

−H2m+n G2m+n

. . . . . .

−H2m+n G2m+n


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where G2m+n , H2m+n are dummy matrices. Replacing these matrices with the

matrices (C5)[2m,2n], (C4)[2m,2n] respectively yields the block matrix of current in-

terest:

(C7)[2p,2m,2n] := (C6)[2p,2m,2n]

(
(C5)[2m,2n], (C4)[2m,2n]

)
which explicitly in matrix notation appears as:

=


1

1
. . .

1


︸ ︷︷ ︸

dim=2p

⊗


I2n

−A2n∆t I2n

. . . . . .

−A2n∆t
2m−1

I2n


︸ ︷︷ ︸

dim=2m+n

No of blocks=2m

−


0

1 0
. . . . . .

1 0


︸ ︷︷ ︸

dim=2p

⊗


I2n I2n . . . I2n

0 0 . . . 0
...

...

0 0 . . . 0


︸ ︷︷ ︸

dim=2m+n

No of blocks=2m

Explicitly, in equation form, is given as: (C7)[2p,2m,2n] =

→
1∑

k1=0

...
1∑

km−1=0

∆t(∑m−1
t=1 kt2t + 1

)σ⊗p
0 ⊗

(
m−1⊗
t=1

Π̂km−t

)
⊗ σ− ⊗A2n

+
m−1∑
l=2

σ⊗p
0

 1∑
kl=0

...
1∑

km−1=0

∆t(∑m−1
t=l kt2t + 2l−1

) (m−l⊗
t=1

Π̂km−t

)⊗ σ
⊗(l−1)
− ⊗ σ+ ⊗A2n

+
∆t

2m−1
(σ⊗p

0 ⊗ σ
⊗(m−1)
− ⊗ σ+)⊗A2n + σ

⊗(m+n+p)
0

+
n−1∑
l=0

σ
⊗(n−1−l)
0 ⊗ σ− ⊗ σ⊗l

+ ⊗
(
Π̂0 + σ+

)⊗m

⊗ σn
0

To aid in understanding the structure of the matrix, we colour it as:

(C7)[2p,2m,2n] = (C6)[2p,2m,2n]

(
(C5)[2m,2n], (C4)[2m,2n]

)

→
1∑

k1=0

...

1∑
km−1=0

∆t(∑m−1
t=1 kt2t + 1

)σ⊗p
0 ⊗

(
m−1⊗
t=1

Π̂km−t

)
⊗ σ− ⊗A2n

+
m−1∑
l=2

σ⊗p
0 ⊗

 1∑
kl=0

...

1∑
km−1=0

∆t(∑m−1
t=l kt2t + 2l−1

) (m−l⊗
t=1

Π̂km−t

)⊗ σ
⊗(l−1)
− ⊗ σ+ ⊗A2n

+
∆t

2m−1
(σ⊗p

0 ⊗ σ
⊗(m−1)
− ⊗ σ+)⊗A2n + σ⊗p

0 ⊗ σ
(m+n)
0

+
n−1∑
l=0

σ
⊗(n−1−l)
0 ⊗ σ− ⊗ σ⊗l

+ ⊗
(
Π̂0 + σ+

)⊗m

⊗ σn
0
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The last step is to augment the the lower right corner of the matrix so that the

solution is ‘repeated’. In matrix notation, this can represented as:

(C8)[2r;2p,2m,2n] =



(C5)[2m,2n]

(C4)[2m,2n] (C5)[2m,2n]

. . . . . .

(C4)[2m,2n] (C5)[2m,2n]

(C4)[2m,2n] I2m+n

−I2m+n I2m+n

. . . . . .

−I2m+n I2m+n



=



(C5)

(C4) (C5)
. . . . . .

(C4) (C5)

(C4) (C5)

(C4) (C5)
. . . . . .

(C4) (C5)


︸ ︷︷ ︸

(C7)[2p,2m,2n]
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−



0

0 0
. . . . . .

0 0

0 (C5)− I

(C4) + I (C5)− I
. . . . . .

(C4) + I (C5)− I


To position an arbitrary matrix A with dimension 2r × 2r at the bottom right

corner of a matrix with zero entries everywhere of dimension 2p × 2p to produce

a matrix Ã, we can express it as:

Ã =
(
Π̂1

)⊗p−r

⊗A

Or in matrix notation as:

Ã =

0 0

0 1

⊗p−r

⊗A =



0

(2p − 2r × 2p − 2r)

0

(2p − 2r × 2r)

0

(2r × 2p − 2r)

A

(2r × 2r)


As the matrix A for the current case is:

A =



(C5)[2m,2n] − I2m+n

(C4)[2m,2n] + I2m+n (C5)[2m,2n] − I2m+n

. . . . . .

(C4)[2m,2n] + I2m+n (C5)[2m,2n] − I2m+n



This can be expressed in an equation form adopting the previous notation of

(5.31):

A = (C6)[2r,2m,2n]

(
(C5)[2m,2n] − I2m+n , (C4)[2m,2n] + I2m+n

)
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Wrapping it all together yields:

Λ[2r;2p,2m,2n] := (C8)[2r;2p,2m,2n] = (C7)[2p,2m,2n] − (Π̂1)
⊗p−r

⊗ (C6)[2p,2m,2n]

(
(C5)[2m,2n] − I2m+n , (C4)[2m,2n] + I2m+n

)

Sparsity from pseudo-Pauli decomposition

We begin effectively backwards decomposing the matrix from the (C8) matrix:

Spar
(
(C8)[2r;2p,2m,2n]

)
≤ Spar

(
(C7)[2p,2m,2n]

)
+ Spar

(
Π̂1

)p−r

Spar
(
(C6)[2p,2m,2n]

(
(C5)[2m,2n] − I2m+n , (C4)[2m,2n] + I2m+n

))
Substituting that Spar

(
Π̂1

)
= 1 and recalling the definition of the (C7)[2p,2m,2n]

yields:

Spar
(
(C8)[2r;2p,2m,2n]

)
≤ Spar

(
(C6)[2p,2m,2n]

(
(C5)[2m,2n], (C4)[2m,2n]

))
+ Spar

(
(C6)[2p,2m,2n]

(
(C5)[2m,2n] − I2m+n , (C4)[2m,2n] + I2m+n

))
(5.32)

Recalling the definition of the (C6)[2p,2m,2n] matrix in (5.31), we can bound its

sparsity as:

Spar
(
(C6)[2p,2m,2n](G2m+n ,H2m+n)

)
≤

Spar (I2p) Spar (G2m+n) + Spar
(
(C[2p])

)
Spar (H2m+n)

= Spar (G2m+n) + Spar (H2m+n)

Applying to (5.32) yields:

(C8) ≤ Spar
(
(C5)[2m,2n]

)
+ Spar

(
(C5)[2m,2n]

)
+ Spar

(
(C5)[2m,2n] − I2m+n

)
+ Spar

(
(C4)[2m,2n] + I2m+n

)
= 2Spar

(
(C5)[2m,2n]

)
+ 2Spar

(
(C4)[2m,2n]

)
+ 2
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Recalling the definitions of (C5) matrix in (5.30) and (C4) in (5.29) bounds the

sparsity as:

Spar
(
(C5)[2m,2n]

)
≤ Spar

(
(C3)[2m,2n]

)
+ 1

Spar
(
(C4)[2m,2n]

)
≤ Spar

(
(C2)[2m]

)
Therefore:

(C8)[2r;2p,2m,2n] ≤ 2Spar
(
(C3)[2m,2n]

)
+ 2Spar

(
(C2)[2m]

)
+ 4

As the matrix (C2)[2m] consists of 2
m 1′s all along its top row as well as recalling

the definition of (C3)[2m,2n] in (5.28) yields:

(C8)[2r;2p,2m,2n] ≤ 2Spar(A) + 2m+1 + 4 (5.33)

If we consider the case of the proper Black-Scholes differential operator:

A =

1

2

d∑
i=1

σ2
iA(∂2xi) +

d∑
i,j=1
j>i

ρijσiσjA(∂xi,∂xj) +
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)



Spar(A) = d
(
Spar(A(∂2xi))

)
+
d(d− 1)

2

(
Spar(A(∂xi,∂xj))

)
+ d

(
Spar(A(∂xi))

)
Recalling the definition of the matrices A(∂xi),A(∂2xi) and A(∂xi,∂xj):

A(∂xi) = I⊗d−i ⊗D1 ⊗ I⊗i−1 A(∂2xi) = I⊗d−i ⊗D2 ⊗ I⊗i−1

A(∂xi,∂xj) = I⊗d−j ⊗D1 ⊗ I⊗j−i−1 ⊗D1 ⊗ I⊗i−1
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Therefore, we can bound the sparsities as:

Spar
(
A(∂xi)

)
≤ Spar (D1) = Spar


1

2h


0 −1

1 0
. . .

. . . . . . −1

1 0



 = 2

Spar
(
A(∂2xi)

)
≤ Spar (D2) = Spar


1

h2


−2 1

1 −2
. . .

. . . . . . 1

1 −2



 = 3

Spar
(
A(∂xi,∂xj)

)
≤ (Spar (D1))

2 ≤ 4

Therefore, we bound the sparsity of the proper Black-Scholes differential operator

as:

Spar(A) ≤ d(3) +
d(d− 1)

2
(4) + d(2) = 2d2 + 3d

Considering now the case of the improper Black-Scholes differential operator:

Ã =
1

2

d∑
i=1

σ2
iA

2
(∂xi)

+
d∑

i,j=1
j>i

ρijA(∂xi,∂xj) +
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)

Proceeding in the same manner as before yields:

Spar
(
Ã
)
≤ d

(
Spar

(
A2

(∂xi)

))
+
d(d− 1)

2
(4) + d(2)

= d
(
Spar

(
A2

(∂xi)

))
+ 2d2

For arbitrary matrices, the sparsity measure Spar( ) is not sub-multiplicative (i.e.

the product of two sparse matrices need not be sparse itself). Therefore we cannot

bound Spar
(
A2

(∂xi)

)
in terms of Spar

(
A(∂xi)

)
. The first bound we can place on

Spar
(
A2

(∂xi)

)
is :

Spar
(
A2

(∂xi)

)
= Spar

(
I⊗d−i ⊗D2

1 ⊗ I⊗i−1
)
≤ Spar

(
D2

1

)
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However as D1 is sparse and has a periodic structure, we can directly compute

its square to see the general structure of the matrix:

(D1)
2 =


1

2h


0 −1

1 0
. . .

. . . . . . −1

0 1 0





2

=
1

4h2



−1 0 1

0 −2 0
. . .

1 0 −2
. . . 1

. . . . . . . . . 0

1 0 −1


Spar

(
D2

1

)
= 3

Therefore we can bound the sparsity of the improper Black-Scholes differential

operator as:

Spar
(
Ã
)
≤ 2d2 + 3d

Therefore for either case of the improper or proper Black-Scholes differential

operator, the sparsity of the C8 matrix in (5.33) can be finally bounded as:

Λ[2r;2p,2m,2n] = (C8) ≤ 4d2 + 6d+ 2m−1 + 4

As the final matrix to be inverted Λ̃[2r;2p,2m,2n] is just:

Λ̃[2r;2p,2m,2n] =

 0 Λ[2r;2p,2m,2n]

Λ†
[2r;2p,2m,2n] 0


We have that Spar

(
Λ̃[2r;2p,2m,2n]

)
= Spar

(
Λ[2r;2p,2m,2n]

)
and thus:

Spar
(
Λ̃[2r;2p,2m,2n]

)
≤ 4d2 + 6d+ 2m−1 + 4
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Figure 5.3: Sparsity structure of two dimensional Black-Scholes differential oper-
ator with 100 gridpoints at different levels of resolution (a), (b) and(c)

Figure 5.4: Sparsity structure of Λ matrix with parameters 2p−2r = 21 timesteps,
2m = 21 order of Taylor expansion and 2r = 0 repeats of the solution at different
levels of resolution (a), (b), (c) and (d)
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Figure 5.5: Sparsity structure of Λ matrix with parameters 2p−2r = 21 timesteps,
2m = 21 order of Taylor expansion, and 2r = 21 repeats of the solution at different
levels of resolution (a), (b), (c) and (d)

5.3.2 Discussion of Sparsity and Decomposition

In this section, we attempted to determine both the sparsity and Pauli decompo-

sition of the matrix Λ̃ corresponding to both the proper and improper differential

operator associated to the matrices A and Ã respectively. Although due to the

nature of the matrix Λ̃[2r;2p,2m,2n], we were only able to derive a pseudo-Pauli

decomposition which involves tensors products of sums of Pauli matrices rather

than an explicit sum where each term is a simple tensor product of Pauli matrices.

With the decomposition we derived, the next step would be to potentially use a

computer program to to expand products such as σ⊗l
+ and

(
Π̂0 + σ+

)⊗m

in terms

of the actual Pauli basis and recombine like terms. We think that although this

explicit decomposition may be too cumbersome and or complicated to express in
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a concise format, we believe that it may assist in the decomposition required for

Hamiltonian simulation of this matrix in the sense that a brute force evaluation of

the terms of (5.21) may not be required. We leave this task for future work. The

decomposition still did prove useful for determining the sparsity of Λ[2r;2p,2m,2n]

which was the same for the case of A or Ã. We found that the sparsity in either

case had polynomial dependence on the number of assets d (d2) and exponential

dependence on the parameter m (2m−1). However, as the order at which the

analytic solution is truncated in each block of the matrix (5.20) is itself 2m−1, it

is more representative to say that the sparsity has a linear dependence on the

order of truncation in each of these blocks. We do not see any dependence on

the number of gridpoints N in the final complexity however it may be case that

there is a hidden dependence on N in terms of d and m if desired error between

the approximated solution and actual solution is to be less than some fixed ϵ. In-

corporating this possible hidden dependence into the sparsity we leave for future

work.
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Chapter 6

Numerical Simulations

We will now present the results of our numerical simulations which follow two

objectives. The first is to examine the performance of the improper Black-Scholes

differential operator in evaluating the price of the option compared to the canon-

ical proper Black-Scholes differential operator. We restrict our examination to

single-asset and multi-asset options which permit closed-form expressions for their

value, allowing us to benchmark the two numerical methods in terms of their

accuracy. For the second half of this chapter, we present the complete proof-

of-principle implementation of a quantum algorithm for the case of single-asset

option pricing.

In the first part, we present two cases where we confirm that the improper

differential operator faithfully approximates the solutions given by the proper dif-

ferential operator. We first examine the single-asset case and then the multi-asset

case and within each of these cases we examine whether the error introduced with

improper differential operator can be ameliorated by imposing carefully ‘modi-

fied’ boundary conditions. For the case of the single-asset option, we simulate a

vanilla European put option and for the case of the multi-asset option, we simu-

late a European exchange option. We chose the European exchange option for the

multi-asset option as it is one of the few multi-asset options which has a closed

form expression from which we can benchmark the numerical solutions. With

regards to determining the price of the option, there exists two methods to do so.

The first technique is to examine the relevant component from the solution vector

directly, say after a given simulation time T0. The other technique available is

to simulate the option up to a time T0 and then take a conditional expectation

129



with respect to probability distribution of price movements at a time T1 later,

producing the value of the option at a time T0 + T1. We compare the results

from both of these approaches in determining the value of each option. For the

latter half of the thesis, we focus on an end-to-end implementation for the pricing

of a single-asset. We first provide a detailed overview of the algorithm, which

consists of the HHL algorithm and SWAP test. We conclude the description with

an expression for the value of the option in terms of probabilities of measuring

a subset of qubits of the associated circuit. We simulate two single-asset options

with the circuit and provide calculations of option value for each in terms of the

count statistics. We conclude by discussing potential sources of errors and any

open questions to be addressed in future work.

6.1 1D Black-Scholes

We first consider the case of single-asset option pricing. Consider the Black-

Scholes equation:
∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0 (6.1)

with the following boundary and initial conditions for the European put option:

V (T, S) = max(K − S, 0)

V (t, 0) = Ke−r(T−t) ∀ t

V (t, S) ∼ 0 as S → ∞ (6.2)

where the variables T corresponds to maturity, K for the strike price, r for risk-

free interest rate, S for spot or current price of the underlying asset and V for

the value of the option. We now proceed with how this option can be priced via

the finite difference method. Using the spatial and temporal variable changes:

S → x := ln(S) t→ τ := T − t

the differential equation (6.1) along with the boundary and initial conditions (6.2)

becomes:
∂V

∂τ
=

1

2
σ2∂

2V

∂x2
+

(
r − σ2

2

)
∂V

∂x
− rV (6.3)
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V (τ = 0, x) = max(K − ex, 0)

V (T − τ, x = −∞) = Ke−rτ ∀ τ

V (T − τ, x = ∞) ∼ 0 as x→ ∞

Finally, the second variable change before the finite difference method can be

applied is given by:

V → W := erτV

∂W

∂τ
=

1

2
σ2∂

2W

∂W 2
+

(
r − σ2

2

)
∂W

∂x
(6.4)

W (τ = 0, x) = max(K − ex, 0)

W (T − τ, x = −∞) = K ∀ τ

W (T − τ, x = ∞) ∼ 0 as x→ ∞

6.1.1 Imposition of Boundary conditions

We now discuss the imposition of two different sets of boundary conditions. We

refer to the ‘standard’ boundary conditions as the canonical boundary conditions

associated with the usual finite difference method. The second set of boundary

conditions we impose, which we denote as ‘modified’ boundary conditions, can

be thought of as a correction to the canonical boundary conditions to account

for the perturbation we introduced with the use of the improper Black-Scholes

differential operator. As previously outlined, we examine the improper Black-

Scholes differential operator for the sake of better scaling associated with the

numerical characteristics of the matrix compared to the proper Black-Scholes

differential operator. We define the proper Black-Scholes differential operator as:

A =

1

2

d∑
i=1

σ2
iA(∂2xi) +

d∑
i,j=1
j>i

ρijσiσjA(∂xi,∂xj) +
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)

 (6.5)

and the improper differential Black-Scholes operator as:

Ã =

(
1

2

d∑
i,j=1

ρijσiσjA(∂xi)A(∂xj) +
d∑

i=1

(
r − σ2

i

2

)
A(∂xi)

)
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where the submatrices A(∂xi), A(∂xi,∂xj) and A(∂2xi) are defined as:

A(∂xi) = I⊗d−i ⊗D1 ⊗ I⊗i−1 A(∂2xi) = I⊗d−i ⊗D2 ⊗ I⊗i−1

A(∂xi,∂xj) = I⊗d−j ⊗D1 ⊗ I⊗j−i−1 ⊗D1 ⊗ I⊗i−1

and the explicit forms of the matrices D1 and D2 are given by:

D1 =
1

2h


0 1

−1
. . . . . .

. . . . . . 1

−1 0

 D2 =
1

h2


−2 1

1
. . . . . .

. . . . . . 1

1 −2

 (6.6)

In summary, we impose standard Dirichlet boundary conditions for the proper

Black-Scholes differential operator and impose modified Dirichlet boundary con-

ditions for the improper Black-Scholes differential operator. We will also examine

the case if the standard Dirichlet boundary conditions are imposed for the im-

proper Black-Scholes differential operator to see the effect on the solution.

Standard Dirichlet boundary conditions

As we are dealing with a finite discretized system, we have to place upper and

lower limits on the simulation region. The standard boundary conditions for the

1D case will be given by:

V⃗1 =
σ2

2


L(t)
...

U(t)

+

(
r − σ2

2

)
−L(t)

...

U(t)

 =


(σ2 − r)L(t)

...

rU(t)

⇒


(σ2 − r)K

...

0


(6.7)

where we have used the fact that at xlower, L(t) = K and at xupper, U(t) = 0

Modified Dirichlet boundary conditions

We now discuss the issues of boundary conditions for the case of approximating

the second-order central difference matrix as the composition of the first-order
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central difference matrix with itself.

D2 ≈ (D1)
2 (6.8)

As we stated earlier, this approximation needs to be further examined. We first

begin by squaring the D1 matrix and then seeing how the boundary conditions

can be modified to get the appropriate behaviour. A simple calculation yields

that the matrix structure for (D1)
2 is given as:

D2
1 =

1

(2h)2



−1 0 1

0 −2
. . . . . .

1
. . . . . . . . . 1
. . . . . . −2 0

1 0 −1


(6.9)

The first thing to notice is that in the bulk region of the simulation area, the

matrix (6.9) does in fact compute the second-order central difference albeit with

a stepsize 2h rather than h:

1
(2h)2



. . . . . . . . . . . . . . .

. . . 1 0 −2 0 1 . . .
. . . . . . . . . . . . . . .





·

V (xl−2)

V (xl−1)

V (xl)

V (xl+1)

V (xl+2)

·


=



·

·

·
V (xl−2)−2V (xl)+V (xl+2)

(2h)2

·

·

·


≈



·

·

·

V ′′(xl)

·

·

·


Pictorially, this can be represented in the following diagram as:
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V (xl−2)

V (xl−1)
V (xl)

V (xl+1)

V (xl+2)

2h

xl−2 xl−1 xl xl+1 xl+2

(a) Second-order central difference with 2h

V (xl−2)

V (xl−1)
V (xl)

V (xl+1)

V (xl+2)

h

xl−2 xl−1 xl xl+1 xl+2

(b) Second-order central difference with h.

Figure 6.1: Difference between stepsize spacing due to approximation of D2 ma-
trix as D1 squared.

So therefore the matrix (6.9) is effectively calculating the second-order central

difference (within the bulk) with twice the step. However, this implies that if we

need to evaluate the second-order central difference at the point x1 or xN−1,

we are missing the necessary points at ‘x−1’ and ‘xN+1’ (which don’t exist) at

the leftmost and rightmost ends of the grid respectively. To counteract this,

we effectively have to decrease the number of grid points again by two in each

direction.
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x0 x1 x2 xN−2 xN−1 xN

Simulation region

(a) Standard Dirichlet boundary conditions

x0 x1 x2 xN−2 xN−1 xN

Simulation region

(b) Modified Dirichlet boundary conditions

Figure 6.2: Difference between boundary regions for Standard and Modified
Dirichlet boundary conditions

In term of matrix arithmetic, we now proceed with the direct computation of

the effect of the (D1)
2 matrix on an arbitrary vector so that we can impose the

correct boundary conditions:

1
(2h)2



−1 0 1

0 −2
. . . . . .

1
. . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . 1
. . . . . . −2 0

1 0 −1





V (x2)

V (x3)

V (x4)
...

V (xN−4)

V (xN−3)

V (xN−2)


= 1

(2h)2



−V (x2) + V (x4)

−2V (x3) + V (x5)

V (x2)− 2V (x4) + V (x6)
...

V (xN−6)− 2V (xN−4) + V (xN−2)

V (xN−5)− 2V (xN−3)

V (xN−4)− V (xN−2)


(6.10)

We need to add in the following vector ⃗̃B so that right hand side of (6.10) actually

approximates the second-order central difference:
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1
(2h)2



−V (x2) + V (x4)

−2V (x3) + V (x5)

V (x2)− 2V (x4) + V (x6)
...

V (xN−6)− 2V (xN−4) + V (xN−2)

V (xN−5)− 2V (xN−3)

V (xN−4)− V (xN−2)


+

1

(2h)2



V (x0)− V (x2)

V (x1)

0
...

0

V (xN−1)

−V (xN−2) + V (xN)


︸ ︷︷ ︸

⃗̃B

=



V ′′(x2)

V ′′(x3)

V ′′(x4)
...

V ′′(xN−4)

V ′′(xN−3)

V ′′(xN−2)



The issue now is that we have the presence of the terms V (x2) and V (xN−2) in

⃗̃B in the first and last components, as these are the points that we are actually

trying to solve in the first place. One method to approximate these terms is

by considering a first-order approximation to the function V near the boundary

points using the definition of the central first-order difference:

V (x0)− V (x2) = − (V (x1 + h)− V (x1 − h)) ≈ −2hV ′(x1)

−V (xN−2) + V (xN) = V (xN−1 + h)− V (xN−1 − h) ≈ 2hV ′(xN−1)

There exists two options now with reference to assigning values to V ′(x1) and

V ′(xn−1). The first option is to calculate analytically the derivative of V at

the boundary points or alternatively we can take the first-order backwards and

forwards finite difference approximation of the derivatives at the points x1, xN−1

respectively.

V ′(x1) ≈
V (x1)− V (x0)

h
V ′(xN−1) ≈

V (xN)− V (xN−1)

h

In this case, we will default to the analytic evaluation of the derivative at each
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point. In this case, we can rewrite (6.10) as:

1
(2h)2



−1 0 1

0 −2
. . . . . .

1
. . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . 1
. . . . . . −2 0

1 0 −1





V (x2)

V (x3)

V (x4)
...

V (xN−4)

V (xN−3)

V (xN−2)


+ 1

(2h)2



−2hV ′(x1)

V (x1)

0
...

0

V (xN−1)

2hV ′(xN−1)


≈



V ′′(x2)

V ′′(x3)

V ′′(x4)
...

V ′′(xN−4)

V ′′(xN−3)

V ′′(xN−2)


(6.11)

For completeness, we also present theD1 matrix along with its appropriate bound-

ary conditions:

1
2h



0 1

−1
. . . . . .

. . . . . . . . .

. . . . . . 1

−1 0





V (x2)

V (x3)
...

V (xN−3)

V (xN−2)


+ 1

2h



−V (x1)

0
...

0

V (xN−1)


≈



V ′(x2)

V ′(x3)
...

V ′(xN−3)

V ′(xN−2)


(6.12)

We notice now that the grid points x0 or xN do not appear anywhere in equations

(6.11), (6.12). Hence, we can think of the current equations as modified Dirich-

let boundary conditions, completely analogous to standard Dirichlet boundary

conditions. Therefore we can apply all the same numerical analysis as before in

solving the equations. We proceed with some further re-indexing, increasing the

number of grid points by two N → N ′ = N + 2 and shifting all the indices of

the grid points down one (x′)l = (x)l+1. This transforms the matrices in to the

same indexing convention as before. In addition, we re-introduce the implicit

time dependence within the function V as well as notation that L(t) = V (x0, t)

and U(t) = V (xN , t). Finally, we use the following notation for the derivatives at

these boundaries:

∂xL(t) := V ′(x0, t) ∂xU(t) := V ′(xN , t)
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1
(2h)2



−1 0 1

0 −2
. . . . . .

1
. . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . 1
. . . . . . −2 0

1 0 −1





V (t, x1)

V (t, x2)

V (t, x3)
...

V (t, xN−3)

V (t, xN−2)

V (t, xN−1)


+ 1

(2h)2



−2h∂xL(t)

L(t)

0
...

0

U(t)

2h∂xU(t)


≈



∂2xV (t, x1)

∂2xV (t, x2)

∂2xV (t, x3)
...

∂2xV (t, xN−3)

∂2xV (t, xN−2)

∂2xV (t, xN−1)


(6.13)

1
2h



0 1

−1
. . . . . .

. . . . . . . . .

. . . . . . 1

−1 0





V (t, x1)

V (t, x2)
...

V (t, xN−2)

V (t, xN−1)


+ 1

2h



−L(t)

0
...

0

U(t)


≈



∂xV (t, x1)

∂xV (t, x2)
...

∂xV (t, xN−2)

∂xV (t, xN−1)


(6.14)

We will refer interchangeably between the terms such as proper scheme and

proper Black-Scholes differential operator as well as vice versa for the im-

proper case. Scheme will only refer to the type of differential operator used and

not which type of boundary conditions are imposed. For determining the value

of the option as a condition expectation, we use the following equation:

Value of option = e−rT

∫ ∞

0

V (T, S)P(S|S0)dS (6.15)

where the underlying conditional probability distribution P(S|S0) is given by:

P(St ∈ (S̃, S̃ + δS̃)) ≈ 1

S̃σ
√
2πt

exp

−

(
ln(S̃)− (r − σ2

2
)t− ln(S0)

)2
2σ2t

 δS̃

Transforming to the integration variable x = ln(S) transforms (6.15) to:

Value of option = e−rT

∫ ∞

−∞
V (T, ex)P(ex|S0)dx (6.16)

As the jth component of the solution will approximately be value of the option for

a given asset price of S = exp(xj) (namely the quantity V (T, exp(xj))) and as-
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suming the integrand is only appreciably different from zero within the simulation

region we can approximate (6.16) as:

Value of option ≈ e−rT

∫ xupper

xlower

V (T, ex)P(ex|S0)dx

≈ e−rT

N−1∑
j=1

V (T, exp(xj))︸ ︷︷ ︸
jthcomponent of solution

P̃(xj|x0)∆x (6.17)

where the new conditional probability distribution P̃(x|x0 := ln(S0)) is given by:

P̃(x|x0) =
1

σ
√
2πT1

exp

−

(
x− (r − σ2

2
)T1 − x0

)2
2σ2T1

 (6.18)

We estimate the price of the option with the conditional expectation using (6.17).

6.1.2 Simulation parameters

We summarize the free parameters in the Black-Scholes equation and discretiza-

tion used in the simulations. We now assign some values for each of the variables

that characterize the option. A volatility of σ = 0.1 and and risk-interest rate

r = 0.05 are typical values for these parameters looking at S&P 500 and U.S.

Treasury securities. The spot price S0 and strike price K were chosen randomly

along with the two time periods T0 and T1. We chose a symmetric interval for the

simulation region with an upper possible value of e7 ≈ 1100 which is sufficiently

’far away’ from the initial value S0 and strike price K to avoid unwanted effects

associated with being too close to the boundary conditions. We chose a grid

number of Ngridnumber = 300 as we found that it was optimal in terms of having a

sufficiently dense grid without running into floating point errors associated with

evaluating derivatives over small distances. We also found that having too many

timesteps Ntimesteps lead to floating point errors in the final solution.
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Parameter Value

S0 80

K 100

σ 0.1

r 0.05

T0 1

T1 1

T 2

Table 6.1: Parameters relating to the
option.

Parameter Value

xlower -7

xupper 7

Ngridpoints 300

∆x 0.047

∆t 0.2

Ntimesteps 5

Order of Taylor approximation of
analytic sol. for each step. 5

Table 6.2: Parameters relating to the
discretization

6.1.3 Results

We now plot the numerical solutions arising from calculating the ‘time-compounded’

value of the option W = erτV versus the natural logarithm of the underlying as-

set price x = ln(S) for the case of both the proper and improper Black-Scholes

(B-S) differential operators. In figure (6.3), we provide a graphical comparison be-

tween the two simulations for the case of standard boundary conditions imposed

for both the proper and improper differential operator. We remark a more pro-

nounced numerical instability at the lower boundary condition for the simulation

of the improper B-S differential operator compared to the proper B-S differen-

tial operator. In figure (6.4), we also provide a graphical comparison between

the solutions, however with modified boundary conditions rather than standard

boundary conditions imposed for the improper B-S differential operator. We re-

mark that there seems to be no discernible difference between the two plots of the

improper differential B-S operator for the different sets of boundary conditions.
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Figure 6.3: Plot of ‘time-compounded’ value of the option W = erτV where
τ = T0 versus the natural logarithm of the underlying asset price x = ln(S) for
the (a) proper and the (b) improper schemes with standard Dirichlet boundary
conditions imposed for both simulations for a single asset. The natural logarithm
of the spot price x0 ≈ 4.4 is also indicated in the diagram.

Figure 6.4: Plot of ‘time-compounded’ value of the option W = erτV where
τ = T0 versus the natural logarithm of the underlying asset price x = ln(S)
for the (a) proper scheme with standard Dirichlet boundary conditions and the
(b) improper scheme with modified Dirichlet boundary conditions imposed. The

natural logarithm of the spot price x0 ≈ 4.4 is also indicated in the diagram. As
previously stated, there is no discernible difference between imposing standard or
modified Dirichlet boundary conditions for the improper scheme. We include the
plot of the proper scheme with standard Dirichlet boundary conditions again for
purposes of direct comparison.

We also plot the probability density function associated with potential move-

ments in the natural logarithm of the of the underlying asset price x = ln(S) at a
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time T1 later. As outlined in Chapter 2, this corresponds to a normal probability

distribution. We plotted the probability distribution for Ngrid = 300 (which is

the grid used in this simulation) and for the case of Ngrid = 1000 (which we take

to be the continuum for this and other plots). As to be expected, the graphs

seem indiscernible given the large number of grid points, however in some cases

for coarse grids, there will be noticeable difference.

Figure 6.5: Plot of probability distribution of natural logarithm of the price of the
underlying asset as defined on (a) the grid vs (b) continuum. As we are dealing
with Ngrid = 300, the graphs are essentially identical.

We now outline the results from solving the Black-Scholes equation up to

the time T0 and extracting the value of the option by examining the relevant

component of the solution vector that corresponds (or closest) to the spot price

S0. As this component actually corresponds to the quantity erT0Voption price, we

multiply the value of this component by the ‘time-discount’ factor of e−rT0 to

get the price of the option Voption price. We detail the values of the option as

calculated by the proper scheme with standard boundary conditions along with

the improper scheme for the two types of boundary conditions:
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Description Value

Proper scheme with standard Dirichlet boundary conditions 15.618

Improper scheme with standard Dirichlet boundary conditions 15.661

Improper scheme with modified Dirichlet boundary conditions 15.661

Analytic value at T0 15.271

Table 6.3: Value of the option at a time T0 as calculated by examining the relevant
component from the solution vector for the proper scheme with standard bound-
ary conditions and the improper scheme with standard and modified Dirichlet
boundary conditions imposed. We also include the analytical value for the option
from the Black-Scholes formula

Description Value

Conditional expectation of proper scheme with std Dirichlet B.C.s 11.770

Conditional expectation of improper scheme with std Dirichlet B.C.s 11.773

Conditional expectation of improper scheme with mod Dirichlet B.C.s 11.773

Analytic value at T0 + T1 11.757

Table 6.4: Value of the option at a time T0 +T1 later as calculated from the con-
ditional expectation using the proper scheme with standard boundary conditions
and the improper scheme with standard and modified Dirichlet boundary condi-
tions imposed. We also include the analytical value for the option as calculated
from the Black-Scholes formula.

For the case of a single asset, numerical simulations agree nearly perfectly with

the analytic value, both with direct extraction at a time T0 and extraction via

conditional expectation at a time T0 + T1. We also note that the performance of

both the improper and proper schemes for evaluating the option price via both

direct extraction and extraction via conditional expectation agree to at least three

decimal places. For evaluating the option via direct extraction at a time T0, the

relative error between the analytic value and the proper scheme is approximately

2.272% whereas the difference between analytic value and improper scheme (for

both standard and modified boundary conditions) is approximately 2.554%. We

suspect that the agreement between values for the option under (a) improper

scheme with standard boundary conditions and (b) improper scheme with mod-

ified boundary conditions is as a result of the larger number of grid points used

in the simulation. For the case of extraction via conditional expectation, we also

see very close agreement between the analytic value and proper scheme (relative
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error of 0.111%) and the improper scheme (relative error of 0.136%).

6.2 2D Black-Scholes

Consider the Black-Scholes equation in two dimensions:

∂V

∂t
+

1

2
σ2S2

1

∂2V

∂S2
1

+
1

2
σ2S2∂

2V

∂S2
2

+ ρσ1σ2
∂V

∂S1∂S2

+ rS1
∂V

∂S1

+ rS2
∂V

∂S2

− rV = 0

with the associated boundary and initial conditions for the European exchange

option:

V (T, S1, S2) = max(S1(T )− S2(T ), 0) (6.19)

Near side boundary conditions:

V (t, 0, S2) = 0 ∀t

V (t, S1, 0) = max(S1, 0) ∀t

Far side boundary conditions:

V (t, (S1)upper, S2) = max((S1)upper − S2, 0) ∀t

V (t, S1, (S2)upper) = max(S1 − (S2)upper, 0) ∀t

where the variables T corresponds to maturity, r for interest rate, σ1, σ2 for

volatilities of the two assets, S1, S2 for the prices of the two underlying assets,

(S1)upper, (S2)upper for the far side boundary values for assets S1, S2, and V for the

value of the option. The analytic value for the European Exchange option with

terminal payoff condition (6.19) is given by Margrabe’s formula:

VExchange = S1(0)Φ(d1)− S2(0)Φ(d2) (6.20)

where d1, d2 are defined as:

d1 =
ln
(

S1(0)
S2(0)

)
+ σ̃2T

2

σ̃
√
T

d2 = d1 − σ
√
T
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where S1(0), S2(0) refer to the current (spot) price of the first and second under-

lying asset. We will use the above closed form expression (6.20) to benchmark

the values of the option as calculated from the simulations. For the European

exchange option, the risk-free interest rate r is set to zero as the option comprises

of two options that are both subject to the same compounding interest. However,

we present the following derivations of the Black-Scholes differential equation and

associated initial and boundary conditions for the more general case of r ̸= 0.

Taking the following variables changes:

S1 → x1 := ln(S1) S2 → x2 := ln(S2) t→ τ := T − t

the Black-Scholes differential equation transforms as :

∂V

∂τ
=

1

2
σ2
1

∂2V

∂x21
+
1

2
σ2
2

∂2V

∂x22
+ρσ1σ2

∂2V

∂x1∂x2
+

(
r − σ2

1

2

)
∂V

∂x1
+

(
r − σ2

2

2

)
∂V

∂x2
−rV

The boundary and initial conditions for the Black-Scholes equation can be trans-

formed using the new variables as follows:

Initial conditions

V (τ = 0, x1, x2) = max(ex1 − ex2 , 0)

Boundary conditions - Near side

V (T − τ, (x1)lower, x2) = 0 ∀τ

V (T − τ, x1, (x2)lower) = max(ex1 , 0) = ex1 ∀τ

Boundary conditions - Far side

V (T − τ, (x1)upper, x2) = max(e(x1)upper − ex2 , 0) ∀τ

V (T − τ, x1, (x2)upper) = max(ex1 − e(x2)upper , 0) ∀τ

For the last substitution W = erτV , we get the final form of the Black-Scholes

equation along with the corresponding boundary and initial conditions:

V → W := erτV
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∂W

∂τ
=

1

2
σ2
1

∂2W

∂x21
+

1

2
σ2
2

∂2W

∂x22
+ ρσ1σ2

∂2V

∂x1∂x2

+

(
r − σ2

1

2

)
∂W

∂x1
+

(
r − σ2

2

2

)
∂W

∂x2

Initial conditions

W (τ = 0, x1, x2) = max(ex1 − ex2 , 0)

Boundary conditions - Near side

W (τ, (x1)lower, x2) = 0 ∀τ

W (τ, x1, (x2)lower) = erτ+x1 ∀τ

Boundary conditions - Far side

W (τ, (x1)upper, x2) = erτ max(e(x1)upper − ex2 , 0) ∀τ

W (τ, x1, (x2)upper) = erτ max(ex1 − e(x2)upper , 0) ∀τ

6.2.1 Imposition of boundary conditions

Standard Dirichlet boundary conditions

Consider the transformed Black-Scholes equation again:

∂W

∂τ
=

1

2
σ2
1

∂2W

∂x21
+

1

2
σ2
2

∂2W

∂x22
+ ρσ1σ2

∂2V

∂x1∂x2

+

(
r − σ2

1

2

)
∂W

∂x1
+

(
r − σ2

2

2

)
∂W

∂x2

The boundary conditions are given by:

B⃗(τ) =
σ2
1

2
B⃗∂2x1

(τ) +
σ2
2

2
B⃗∂2x2

(τ) + ρσ1σ2B⃗(∂x1∂x2)(τ)

+

(
r − σ2

1

2

)
B⃗(∂x1)(τ) +

(
r − σ2

2

2

)
B⃗(∂x2)(τ)

where each subcomponent is defined as:

(
B⃗(∂x1)(τ)

)
l
=

1

2h

∑
j2

[
−δl,N (j2,1)Lx1(τ, j2) + δl,N (j2,N−1)Ux1(τ, j2)

]
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(
B⃗(∂x2)(τ)

)
l
=

1

2h

∑
j1

[
−δl,N (1,j1)Lx2(τ, j1) + δl,N (N−1,j1)Ux2(τ, j1)

]
(
B⃗(∂2x1)(τ)

)
l
=

1

h2

∑
j2

[
δl,N (j2,1)Lx1(τ, j2) + δl,N (j2,N−1)Ux1(τ, j2)

]
(
B⃗(∂2x2)(τ)

)
l
=

1

h2

∑
j1

[
δl,N (1,j1)Lx2(τ, j1) + δl,N (N−1,j1)Ux2(τ, j1)

]

(
B⃗(∂x1,∂x2)(τ)

)
l
=

1

4h2

∑
j2,j1

[
−δl,N (j2,1)Lx1(τ, j2)− δl,N (1,j1)Lx2(τ, j1)

+ δl,N (j2,N−1)Ux1(τ, j2) + δl,N (N−1,j1)Ux2(τ, j1)
]

For the current case, the explicit boundary conditions are given by:

Lx1(τ, j2) = 0 ∀τ, j2

Ux1(τ, j2) = erτ max(e(x1)upper − ex2(j2), 0) ∀τ, j2

Lx2(τ, j1) = erτ+x1(j1) ∀τ, j1

Ux2(τ, j1) = erτ max(ex1(j1) − e(x2)upper , 0) ∀τ, j1

where we define the following functions that goes from the indices j1, j2 to the

corresponding values of x1, x2:

x1(j1) =

(
(x1)upper − (x1)upper

N + 1

)
(j1 + 1) + (x1)lower

x2(j2) =

(
(x2)upper − (x2)upper

N + 1

)
(j2 + 1) + (x2)lower

Modified Dirichlet boundary conditions

Consider the Black-Scholes equation again in two dimensions:

∂W

∂τ
=

1

2
σ2
1

∂2W

∂x21
+

1

2
σ2
2

∂2W

∂x22
+ ρσ1σ2

∂2V

∂x1∂x2

+

(
r − σ2

1

2

)
∂W

∂x1
+

(
r − σ2

2

2

)
∂W

∂x2

However, this time we shall impose the modified Dirichlet boundary conditions

along each axis x1 and x2 for the case of the improper Black-Scholes differential

operator corresponding to the second partial spatial derivatives along each of
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these axes. As we saw in the one dimensional case this implies the following new

boundary conditions along each axis:

1
(2h)2



−1 0 1

0 −2
. . . . . .

1
. . . . . . . . . . . .

. . . . . . . . . . . . . . .

. . . . . . . . . . . . 1
. . . . . . −2 0

1 0 −1





V (t, x1)

V (t, x2)

V (t, x3)
...

V (t, xN−3)

V (t, xN−2)

V (t, xN−1)


+ 1

(2h)2



−2h∂xL(t)

L(t)

0
...

0

U(t)

2h∂xU(t)


≈



∂2xV (t, x1)

∂2xV (t, x2)

∂2xV (t, x3)
...

∂2xV (t, xN−3)

∂2xV (t, xN−2)

∂2xV (t, xN−1)


(6.21)

Where the new ‘subcomponents’ for ∂2x1
, ∂2x2

operators are defined respectively as:

(
⃗̃B(∂2x1)(τ)

)
l
=

1

(2h)2

∑
j2

[
−δl,N (j2,1)2h∂x1Lx1(τ, j2) + δl,N (j2,2)Lx1(τ, j2)

+ δl,N (j2,N−2)Ux1(τ, j2) + δl,N (j2,N−1)2h∂x1Ux1(τ, j2)
]

(
⃗̃B(∂2x2)(τ)

)
l
=

1

(2h)2

∑
j1

[
−δl,N (1,j1)2h∂x2Lx2(τ, j1) + δl,N (2,j1)Lx2(τ, j1)

+ δl,N (N−2,j1)Ux2(τ, j1) + δl,N (N−1,j1)2h∂x2Ux2(τ, j1)
]

The boundary conditions are now given by:

B⃗(τ) =
σ2
1

2
⃗̃B∂2x1

(τ) +
σ2
2

2
⃗̃B∂2x2

(τ) + ρσ1σ2B⃗(∂x1∂x2)(τ)

+

(
r − σ2

1

2

)
B⃗(∂x1)(τ) +

(
r − σ2

2

2

)
B⃗(∂x2)(τ)

where each of the remaining subcomponents is the same as the standard Dirichlet

boundary conditions:

(
B⃗(∂x1)(τ)

)
l
=

1

2h

∑
j2

[
−δl,N (j2,1)Lx1(τ, j2) + δl,N (j2,N−1)Ux1(τ, j2)

]
(
B⃗(∂x2)(τ)

)
l
=

1

2h

∑
j1

[
−δl,N (1,j1)Lx2(τ, j1) + δl,N (N−1,j1)Ux2(τ, j1)

]
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(
B⃗(∂x1,∂x2)(τ)

)
l
=

1

4h2

∑
j2,j1

[
−δl,N (j2,1)Lx1(τ, j2)− δl,N (1,j1)Lx2(τ, j2)

+ δl,N (j2,N−1)Ux1(τ, j2) + δl,N (N−1,j1)Ux2(τ, j1)
]

For the case at hand, the explicit boundary conditions are given by:

Lx1(τ, j2) = 0 ∀τ, j2

Ux1(τ, j2) = erτ max(e(x1)upper − ex2(j2), 0) ∀τ, j2 (6.22)

Lx2(τ, j1) = erτ+x1(j1) ∀τ, j1

Ux2(τ, j1) = erτ max(ex1(j1) − e(x2)upper , 0) ∀τ, j1 (6.23)

In addition, we need to evaluate the partial derivatives at each of these boundary

conditions. Using the fact:

∂

∂xi
max(f(x1, ..., xn), 0) =

∂xi
f(x1, ..., xn)

f(x1, ..., xn)
max(f(x1, ..., xn), 0) (6.24)

if f(x1, .., xn) ̸= 0

As (x1)lower < x1(j1) < (x1)upper ∀j1 and vice versa for x2(j2), the difference of

two exponential functions within the max(.) function for (6.22) and (6.23) will

never be zero. Therefore we can apply (6.24) to yield the following results:

∂x1Lx1(τ, j2) = 0 ∀τ, j2

∂x1Ux1(τ, j2) =

(
e(x1)upper+rτ

e(x1)upper − ex2(j2)

)
max(e(x1)upper − ex2(j2), 0) ∀τ, j2

∂x2Lx2(τ, j1) = 0 ∀τ, j1

∂x2Ux2(τ, j1) =

(
e(x2)upper+rτ

e(x2)upper − ex1(j1)

)
max(ex1(j1) − e(x2)upper , 0) ∀τ, j1

where we use the following ‘indexing’ functions that maps from the indices j1, j2

to the corresponding values of x1, x2:

x1(j1) =

(
(x1)upper − (x1)lower

N + 1

)
(j1 + 1) + (x1)lower

x2(j2) =

(
(x2)upper − (x2)lower

N + 1

)
(j2 + 1) + (x2)lower
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For determination of the price of the option with the conditional expectation, we

use the following integral expression (in a similar manner to 6.17):

Value of option = e−rT

∫ ∞

−∞

∫ ∞

−∞

V (T, (ex2 , ex1)) P̃ [(x2, x1)|((x2)now, (x1)now)] dx1dx2 (6.25)

where the parameters (x1)now := ln(S1), (x2)now := ln(S2) are the natural log-

arithms of the initial prices of the two assets S1, S2 respectively. The integral

expression (6.25) can be approximated in the same manner as before to yield:

e−rT

N−1∑
k,l=1

V
(
T,
(
e(x2)k , e(x1)l

))
P̃ [((x2)k, (x1)l) | ((x2)now, (x1)now)]∆x1∆x2 (6.26)

where the term V
(
T,
(
e(x2)k , e(x1)l

))
corresponds to the [(N − 1)(k − 1) + l]th

component of the solution and P̃ ((x2, x1)|((x2)now, (x1)now)) corresponds to the

bivariate equivalent of the univariate distribution in (6.18). We will use (6.26) to

calculate the value of the option from the conditional expectation.

6.2.2 Simulation parameters

We now choose some parameters relating to the option and discretization.

Parameter Value

S1 170

S2 90

r 0

ρ 0.1

σ1 0.3

σ2 0.4

T0 1

T1 1

T 2

Table 6.5: Parameters relating to option

150



Parameter Value

(x1)lower -8

(x1)upper 8

(x2)lower -8

(x2)upper 8

Nx1 30

Nx2 30

Parameter Value

Nx1×x2 900

∆x1 0.533

∆x2 0.533

Ntimesteps 2

∆t 0.5

Order of Taylor approximation of
analytic sol. for each step. 3

Table 6.6: Parameters relating to discretization

As this is a European Exchange option, the risk-free interest rate r is set to

zero. As multi-asset options typically involve riskier underlying assets, we chose

higher volatilities of σ = 0.3, 0.4. The two time periods T1, T2 were chosen to

be the same as previously. The initial underlying asset prices S0, S1 were again

chosen at random. As this option comprised of riskier underlying assets with

one of the assets S1 nearly twice as large as the previous single-asset option, we

chose a lager symmetric simulation region of [−8, 8] compared to [−7, 7] for the

previous option. For selection of the number grid points along each direction

Nx1 , Nx2 , we were limited by the computational resources required to invert the

final matrix. The above issue also constrained us with selection of the number of

time steps Ntimesteps and the order of the Taylor approximation of the analytical

solution for each time step, as larger values for these parameters increased the

size of the matrix to be inverted. Therefore, we varied those parameters until

we saw close agreement between the analytic value and the proper scheme with

standard boundary conditions. Once we had these parameters selected, we then

benchmarked the improper scheme with the two sets of boundary conditions

against the analytic solution and the proper scheme with standard boundary

conditions.

6.2.3 Results

We now plot the numerical solutions arising from calculating the ‘time-

compounded’ value of the option W = erτV versus the natural logarithm of

the two underlying asset price x1 = ln(S1), x2 = ln(S2) for the case of both the

proper and improper schemes. As the risk-free interest rate r is zero for the Eu-
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ropean Exchange option, the ‘time-compounded’ valueW and value of the option

V will coincide. In figure (6.6), we plot the analytic value of the option V versus

the natural logarithm of the two underlying assets x1 = ln(S1), x2 = ln(S2) as cal-

culated from Margrabe’s pricing formula. In figure (6.7), we provide a graphical

comparison between the two simulations of the option V versus the parameters

x1, x2 for the case of the proper and improper scheme with standard Dirichlet

boundary conditions imposed for both simulations. We note a divergence between

the two solutions at the upper boundary condition for the variable x1 for the sim-

ulation of the improper B-S differential operator compared to the proper B-S

differential operator. However, as the initial point ((x2)now, (x1)now) ≈ (5.1, 4.5),

we would not anticipate much of a effect on the calculated price of the solution

if the aforementioned divergence is simply a localised boundary effect. In figure

(6.8), we also provide a graphical comparison between the absolute error between

the two solutions and the analytic value for the price of the option. We remark

that as we approach the upper boundary condition associated with the variable

x1, we see quite pronounced deviations from the numerical value of the option

for as calculated by proper and improper scheme (with standard boundary condi-

tions) and the analytic value for the price of the option. Although the deviations

occur around the same value of x1 ≈ 6 ∼ 7, the error seems more pronounced

surprisingly in the case of the proper scheme with standard Dirichlet boundary

conditions.
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Figure 6.6: (a) Plot of analytic value of the European exchange option option V
versus the natural logarithms of the underlying asset prices x2 = ln(S2), x1 =
ln(S1) using Margrabe’s formula up to time T0.

Figure 6.7: Plot of ‘time-compounded’ value of the option W = erτV where τ =
T0 versus the natural logarithms of the underlying asset prices x2 = ln(S2), x1 =
ln(S1) for the (b) proper and the (c) improper schemes with standard Dirichlet
boundary conditions imposed for both simulations for two assets. The natural
logarithms of the two spot prices of the underlying asset prices ((x2)now, (x1)now) ≈
(5.1, 4.5) is also indicated in the diagram with a star. We remark that as r = 0
for a European Exchange option, the time-compounded value of the option and
the value of the option coincide (i.e. W = V ).
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Figure 6.8: Plot of absolute error between the analytic value of the option V
versus the natural logarithms of the underlying asset prices x2 = ln(S2), x1 =
ln(S1) for the (d) proper and the (e) improper schemes with standard Dirichlet
boundary conditions imposed for both simulations for two assets. The natural
logarithms of the two spot prices of the underlying asset prices ((x2)now, (x1)now) ≈
(5.1, 4.5) is also indicated in the diagram with a star.We remark that as r = 0
for a European Exchange option, the time-compounded value of the option and
the value of the option coincide (i.e W = V ).

Description Value

Proper scheme with standard Dirichlet boundary conditions 83.103

Improper scheme with standard Dirichlet boundary conditions 89.375

Improper scheme with modified Dirichlet boundary conditions 89.375

Analytic value 82.421

Table 6.7: Value of the option at a time T0 as calculated by examining the relevant
component from the solution vector for the proper scheme with standard bound-
ary conditions and the improper scheme with standard and modified Dirichlet
boundary conditions imposed. We also include the analytical value for the option
as calculated from Margrabe’s formula.
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Figure 6.9: Plot of the bivariate normal distribution P̃ ((x1, x2) | ((x1)now, (x2)now))
for the natural logarithm of the price of the underlying assets x1 = ln(S1), x2 =
ln(S2) at a time T1 later defined (a) on the grid Nx1×x2 and (b) on the continuum
(i.e. N1000×1000).

Description Value

Conditional expectation of proper scheme with std Dirichlet B.C.s 86.863

Conditional expectation of improper scheme with std Dirichlet B.C.s 88.319

Conditional expectation of improper scheme with mod Dirichlet B.C.s 88.319

Analytic value at T0 + T1 87.406

Table 6.8: Value of the option at a time T0 +T1 later as calculated from the con-
ditional expectation using the proper scheme with standard boundary conditions
and the improper scheme with standard and modified Dirichlet boundary condi-
tions imposed. We also include the analytical value for the option as calculated
from Margrabe’s formula.

For the case of multi-asset pricing, we begin to notice a deviation between the

price of the option at a time T0 as calculated between the proper and improper

scheme when determining the value of the option via examining the relevant com-

ponent from the solution vector. For the case of the proper scheme with standard

boundary conditions, we calculate an option value of 83.103 leading to a relative

error of 0.827% whereas we calculate an option value of 89.375 for the improper

scheme under both sets of boundary conditions, leading to a corresponding rel-

ative error of 8.437%. We believe that this tenfold discrepancy in relative error

between the two schemes is due to insufficient number of gridpoints (as previously

highlighted for the case of the improper scheme, the second central difference is
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approximated with effectively twice the stepsize compared to the proper scheme).

As we will see in due course, the improper scheme seems to converge to the proper

scheme with sufficiently dense set of gridpoints. However, considering the calcu-

lation of the price via the conditional expectation, the relative errors between

two approaches compared to the analytic value at time T0 + T1 seem roughly

the same with a relative error between the proper scheme and analytic value at

time T0 +T1 of 0.621% compared to a relative error of 0.936% with the improper

scheme. We note also agreement to three decimal places between the value of

the option as calculated by the improper scheme (via examining the relevant

component of the solution vector and calculation via the conditional probability

distribution) irrespective of whether we impose standard or modified boundary

conditions. The agreement between these two approaches may relate to the fact

that the correction terms for the modified boundary conditions is proportional to

the stepsize h ≈ O(1/Ngridnumber). Therefore, for sufficiently large gridnumber,

these additional terms may be negligible and we are effectively implementing the

same boundary conditions. We leave further analysis of this artefact for future

work.

6.2.4 Numerical stability of solutions

We now proceed with examining and comparing the stability of numerical simu-

lations of the proper scheme with standard boundary conditions versus the im-

proper scheme with modified Dirichlet boundary conditions. We first examine

the consequence of increasing the number of grid points along each axis from 15

to 45 in increments of 15. We stopped at 45 grid points to due excessive com-

putational resources required to solve the matrix associated to, for example, a

60× 60 grid. As we have already plotted for the case of 30 grid points along each

axis, we shall omit that case below and examine the case of 15 and 45 grid points

along each axis. Apart from number of grid points, every parameter related to

the simulation has the exact same value as previously stated in table (6.5).

Grid number and stability

We note that calculating the value of the option from examining the relevant

component of the solution vector leads to considerably worse accuracy in the
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value of the option then taking the conditional expectation of the numerical

solution with the bivariate normal distribution P̃ (((x2, x1)) | ((x2)now, (x1)now)).

However, we do notice that the accuracy improves slightly as we increase the

grid number but there is still substantial relative error in both the proper and

improper schemes. One reason for this is an insufficient grid number Ngridnumber.

As we are uniformly dividing the grid in the logarithmic value of the underlying

assets xi = ln(Si), that implies the spacing in the actual value of the underlying

assets will increase exponentially as we move towards the far-side boundary of

the grid:

(x1)i+1 − (x1)i = ∆x

e(x1)i+1 − e(x1)i = e(x1)i︸︷︷︸
Exponentially increasing

(
e∆x − 1

)︸ ︷︷ ︸
Constant arising

from discretization

As we can only examine the value of the option at the grid point that is closest

to the logarithmic value of the underlying asset prices, this may lead to large

error. However, by taking the conditional expectation value with the bivariate

distribution , we are, in some sense, ‘interpolating’ between the grid points, hence

leading to a considerably higher accuracy. Interestingly, we do not see as a

pronounced numerical instability in the improper scheme with modified boundary

conditions.
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Figure 6.10: Plot of ‘time-compounded’ value of the option W = erτV where τ =
T0 versus the natural logarithms of the underlying asset prices x2 = ln(S2), x1 =
ln(S1) for the (a) proper scheme with standard Dirichlet boundary conditions
and (b) the improper scheme with modified Dirichlet boundary conditions for two
assets with 15 gridpoints along each axis Nx1 = Nx2 = 15. The natural logarithms
of the two spot prices of the underlying asset prices ((x2)now, (x1)now) ≈ (5.1, 4.5)
is also indicated in the diagram with a star.

Description Value

Proper scheme with standard Dirichlet boundary conditions 7.987

Improper scheme with modified Dirichlet boundary conditions 6.271

Analytic value at T0 82.421

Conditional expectation of proper scheme with std Dirichlet B.C.s 46.562

Conditional expectation of improper scheme with mod Dirichlet B.C.s 76.848

Analytic value at T0 + T1 87.406

Table 6.9: The first set of three values corresponds to the values of the option at
a time T0 as calculated by examining the relevant component from the solution
vector for the proper scheme with standard boundary conditions, the improper
scheme with modified Dirichlet boundary conditions and the analytic value for
the option from Margrabe’s formula. The second set of values refer to the values
of the option at a time T0+T1 later as calculated from the conditional expectation
using the proper scheme with standard boundary conditions, the improper scheme
with modified Dirichlet boundary conditions and the analytic value for the option
from Margrabe’s formula. Both sets of values refers to a simulation with a set of
15 gridpoints along each axis (Nx1 = Nx2 = 15).
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Figure 6.11: Plot of ‘time-compounded’ value of the option W = erτV where τ =
T0 versus the natural logarithms of the underlying asset prices x2 = ln(S2), x1 =
ln(S1) for the (a) proper scheme with standard Dirichlet boundary conditions
and (b) the improper scheme with modified Dirichlet boundary conditions for two
assets with 45 gridpoints along each axis Nx1 = Nx2 = 45. The natural logarithms
of the two spot prices of the underlying asset prices ((x2)now, (x1)now) ≈ (5.1, 4.5)
is also indicated in the diagram with a star.

Description Value

Proper scheme with standard Dirichlet boundary conditions 85.142

Improper scheme with modified Dirichlet boundary conditions 85.417

Analytic value at T0 82.421

Conditional expectation of proper scheme with std Dirichlet B.C.s 86.805

Conditional expectation of improper scheme with mod Dirichlet B.C.s 87.370

Analytic value at T0 + T1 88.406

Table 6.10: The first set of three values corresponds to the values of the option at
a time T0 as calculated by examining the relevant component from the solution
vector for the proper scheme with standard boundary conditions, the improper
scheme with modified Dirichlet boundary conditions and the analytic value for
the option from Margrabe’s formula. The second set of values refer to the values
of the option at a time T0+T1 later as calculated from the conditional expectation
using the proper scheme with standard boundary conditions, the improper scheme
with modified Dirichlet boundary conditions and the analytic value for the option
from Margrabe’s formula. Both sets of values refers to a simulation with a set of
15 gridpoints along each axis (Nx1 = Nx2 = 45).
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Covariance matrix and stability

We now examine how the numerical stability is affected by varying statistical pa-

rameters associated with the covariance matrix describing the distribution of the

underlying assets comprising the option. We will return to having 30 gridpoints

along each axis (Nx1 = Nx2 = 30). Apart from the covariance matrix, every pa-

rameter related to the simulation has the exact same value as previously stated

in table (6.5). We first begin by changing the variance between the correlation ρ

between the two assets from being moderately correlated with ρ = 0.5 to strongly

correlated with ρ = 0.9. We then set the correlation back to its previous value of

ρ = 0.1 and then vary the volatility σ1 associated with the first underlying asset

S1. We chose to vary the volatility of the first asset rather than the second asset as

we remarked previously, that there seems is a more pronounced deviation between

the simulations for the two schemes at the upper boundary condition associated

with (x1)upper. We want to examine what, if any effect, does increased volatil-

ity have on the deviation between the two simulations and associated calculated

prices for the option.

Figure 6.12: Plot of ‘time-compounded’ value of the option W = erτV where τ =
T0 versus the natural logarithms of the underlying asset prices x2 = ln(S2), x1 =
ln(S1) for the (a) proper scheme with standard Dirichlet boundary conditions
and (b) the improper scheme with modified Dirichlet boundary conditions for
two assets with a correlation of ρ = 0.5. The natural logarithms of the two spot
prices of the underlying asset prices ((x2)now, (x1)now) ≈ (5.1, 4.5) is also indicated
in the diagram with a star.
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Description Value

Proper scheme with standard Dirichlet boundary conditions 80.040

Improper scheme with modified Dirichlet boundary conditions 86.675

Analytic value at T0 80.688

Conditional expectation of proper scheme with std Dirichlet B.C.s 82.318

Conditional expectation of improper scheme with mod Dirichlet B.C.s 84.942

Analytic value at T0 + T1 83.138

Table 6.11: The first set of three values corresponds to the values of the option at
a time T0 as calculated by examining the relevant component from the solution
vector for the proper scheme with standard boundary conditions, the improper
scheme with modified Dirichlet boundary conditions and the analytic value for the
option from Margrabe’s formula with ρ = 0.5 . The second set of values refer to
the values of the option at a time T0+T1 later as calculated from the conditional
expectation using the proper scheme with standard boundary conditions, the
improper scheme with modified Dirichlet boundary conditions and the analytic
value for the option from Margrabe’s formula, also with ρ = 0.5.

The first thing to notice is that the correlation between the underlying assets

seems to have little to no effect on the stability of the numerical solutions. We

see some numerical instability for the case of the improper scheme with

modified boundary conditions at the intersection (corner) of both far-side

boundary conditions. When determining the price of the option via examination

of the relevant component of the solution vector, we see a large relative error of

7.42% for the improper scheme versus 0.803% for the proper scheme. However,

in a similar way to the previous simulations, we record more comparable

relative errors between the two schemes when determining the price of the

option via the conditional probability distribution. We note a relative error of

2.17% for the improper scheme and 0.986% for the proper scheme when using

the conditional probability distribution to determine the price of the option.
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Figure 6.13: Plot of ‘time-compounded’ value of the option W = erτV where τ =
T0 versus the natural logarithms of the underlying asset prices x2 = ln(S2), x1 =
ln(S1) for the (a) proper scheme with standard Dirichlet boundary conditions
and (b) the improper scheme with modified Dirichlet boundary conditions for
two assets with a correlation of ρ = 0.9. The natural logarithms of the two spot
prices of the underlying asset prices ((x2)now, (x1)now) ≈ (5.1, 4.5) is also indicated
in the diagram with a star.

Description Value

Proper scheme with standard Dirichlet boundary conditions 76.815

Improper scheme with modified Dirichlet boundary conditions 83.853

Analytic value at T0 80.002

Conditional expectation of proper scheme with std Dirichlet B.C.s 74.638

Conditional expectation of improper scheme with mod Dirichlet B.C.s 80.800

Analytic value at T0 + T1 80.077

Table 6.12: The first set of three values corresponds to the values of the option at
a time T0 as calculated by examining the relevant component from the solution
vector for the proper scheme with standard boundary conditions, the improper
scheme with modified Dirichlet boundary conditions and the analytic value for the
option from Margrabe’s formula with ρ = 0.9 . The second set of values refer to
the values of the option at a time T0+T1 later as calculated from the conditional
expectation using the proper scheme with standard boundary conditions, the
improper scheme with modified Dirichlet boundary conditions and the analytic
value for the option from Margrabe’s formula, also with ρ = 0.9.

As we increase the strength of the correlation between the two assets to ρ = 0.9,

we see the aforementioned instability at the corner of the two far-side bound-

aries become more pronounced. When determining the price of the option via

examination of the relevant component of the solution vector, we see a relative
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error of 4.812% for the improper scheme and 3.984% for the proper scheme. In

determining the value of the option via the conditional probability distribution,

we record a relative error of 0.903% for the improper scheme and 6.792% for the

proper scheme.

Figure 6.14: Plot of ‘time-compounded’ value of the option W = erτV where τ =
T0 versus the natural logarithms of the underlying asset prices x2 = ln(S2), x1 =
ln(S1) for the (a) proper scheme with standard Dirichlet boundary conditions
and (b) the improper scheme with modified Dirichlet boundary conditions for
two assets with a volatility of the first asset σ1 = 0.7. The natural logarithms of
the two spot prices of the underlying asset prices ((x2)now, (x1)now) ≈ (5.1, 4.5) is
also indicated in the diagram with a star.

Description Value

Proper scheme with standard Dirichlet boundary conditions 81.885

Improper scheme with modified Dirichlet boundary conditions 104.387

Analytic value at T0 90.487

Conditional expectation of proper scheme with std Dirichlet B.C.s 96.100

Conditional expectation of improper scheme with mod Dirichlet B.C.s 95.636

Analytic value at T0 + T1 101.592

Table 6.13: The first set of three values corresponds to the values of the option at
a time T0 as calculated by examining the relevant component from the solution
vector for the proper scheme with standard boundary conditions, the improper
scheme with modified Dirichlet boundary conditions and the analytic value for the
option from Margrabe’s formula with σ1 = 0.7. The second set of values refer to
the values of the option at a time T0+T1 later as calculated from the conditional
expectation using the proper scheme with standard boundary conditions, the
improper scheme with modified Dirichlet boundary conditions and the analytic
value for the option from Margrabe’s formula, also with σ1 = 0.7.
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Figure 6.15: Plot of ‘time-compounded’ value of the option W = erτV where τ =
T0 versus the natural logarithms of the underlying asset prices x2 = ln(S2), x1 =
ln(S1) for the (a) proper scheme with standard Dirichlet boundary conditions
and (b) the improper scheme with modified Dirichlet boundary conditions for
two assets with a volatility of the first asset σ1 = 0.9. The natural logarithms of
the two spot prices of the underlying asset prices ((x2)now, (x1)now) ≈ (5.1, 4.5) is
also indicated in the diagram with a star.

Description Value

Proper scheme with standard Dirichlet boundary conditions 119.286

Improper scheme with modified Dirichlet boundary conditions 127.823

Analytic value at T0 96.521

Conditional expectation of proper scheme with std Dirichlet B.C.s 92.827

Conditional expectation of improper scheme with mod Dirichlet B.C.s 94.225

Analytic value at T0 + T1 110.525

Table 6.14: The first set of three values corresponds to the values of the option at
a time T0 as calculated by examining the relevant component from the solution
vector for the proper scheme with standard boundary conditions, the improper
scheme with modified Dirichlet boundary conditions and the analytic value for the
option from Margrabe’s formula with σ1 = 0.9. The second set of values refer to
the values of the option at a time T0+T1 later as calculated from the conditional
expectation using the proper scheme with standard boundary conditions, the
improper scheme with modified Dirichlet boundary conditions and the analytic
value for the option from Margrabe’s formula, also with σ1 = 0.9.

We first notice that increasing the volatility of the first underlying asset σ1 of

the first asset drastically reduces the numerical stability of the solutions. How-

ever, taking the conditional expectation and comparing to the analytic solution

T0 + T1 ameliorates this issue greatly. For the case of σ1 = 0.7, we note a rela-
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tive error of approximately ≈ 6% between the analytic value of the option and

either scheme when calculating the value of the option through the conditional

expectation technique. For the case of σ1 = 0.9, we see a larger relative error

of ≈ 15% between either scheme and the analytic value. For larger variances,

there is a higher probability that the underlying assets may ‘wander’ towards the

boundaries, leading to very large errors. Setting the boundary conditions further

away from the natural logarithm of the initial price of the assets may reduce this

error.

Figure 6.16: Plot of ‘time-compounded’ value of the option W = erτV where τ =
T0 versus the natural logarithms of the underlying asset prices x2 = ln(S2), x1 =
ln(S1) for the (a) proper scheme with standard Dirichlet boundary conditions
and (b) the improper scheme with modified Dirichlet boundary conditions for
two assets with a volatility of the first asset σ1 = 0.9 and simulation time of
T0 = 2. The natural logarithms of the two spot prices of the underlying asset
prices ((x2)now, (x1)now) ≈ (5.1, 4.5) is also indicated in the diagram with a star.
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Description Value

Proper scheme with standard Dirichlet boundary conditions 277.695

Improper scheme with modified Dirichlet boundary conditions 148.447

Analytic value at T0 101.592

Conditional expectation of proper scheme with std Dirichlet B.C.s 95.389

Conditional expectation of improper scheme with mod Dirichlet B.C.s 96.119

Analytic value at T0 + T1 110.340

Table 6.15: The first set of three values corresponds to the values of the option at
a time T0 as calculated by examining the relevant component from the solution
vector for the proper scheme with standard boundary conditions, the improper
scheme with modified Dirichlet boundary conditions and the analytic value for
the option from Margrabe’s formula with σ1 = 0.9 and T0 = 2. The second set
of values refer to the values of the option at a time T0 + T1 later as calculated
from the conditional expectation using the proper scheme with standard boundary
conditions, the improper scheme with modified Dirichlet boundary conditions and
the analytic value for the option from Margrabe’s formula, also with σ1 = 0.9 and
T0 = 2.

6.3 Black-Scholes option pricing with HHL

We now present a working proof of principle example of a pricing a one dimen-

sional European put option. As we are simulating this algorithm with a classical

simulator, we are constrained by the depth and number of qubits of the circuit.

With this fact in mind, we hope to demonstrate a single time step (with a second

order Taylor approximation of the analytic solution for said time step) for the

finite difference method and then estimate the price of the option by performing

a SWAP test between the two quantum states. The price of an option (with no

path-dependent requirements to consider) for a current asset price of S0 can be

expressed as:

Value of option = e−rT

∫ ∞

0

V (T, S)P(S|S0)dS (6.27)

The overall idea of the algorithm is to encode the amplitudes of V (T, S) in a

quantum state through execution of the HHL algorithm and then approximating

the integral of (6.27) through a SWAP test between the previous state and another

quantum state whose amplitudes encode the conditional probability distribution
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P (S|S0).

2

...
. . .

...
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. . .

|0⟩
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|0⟩

QPE QPE†

|ΨP ⟩

|0⟩

|0⟩

|ΨZ̃⟩

|0⟩

|0⟩ H H

Figure 6.17: Quantum circuit for option pricing incorporating both the HHL
algorithm and SWAP test.

Consider the following matrix equation:

MZ⃗ = V⃗


I 0 0 0

−A∆t I 0 0

0 −A∆t
2

I 0

−I −I −I I


︸ ︷︷ ︸

M


z⃗1

z⃗2

z⃗3

z⃗4


︸ ︷︷ ︸

Z⃗

=


V⃗0

∆tV⃗1

0⃗

0⃗


︸ ︷︷ ︸

V⃗

(6.28)

The matrices A and I will each have dimension 16. The matrix A will correspond

to the Black-Scholes operator differential operator with 16 points arising from a

spatial discretization [x0 := xlower, x1, x2, ..., x15 := xupper] of the variable x which

is the natural logarithm of the underlying asset price S (x := ln(S)). The price of

the option at time increment ∆t later will be approximately encoded in each of the

amplitudes of the z⃗4 vector only. Furthermore, the vector y⃗4 will be proportional

to a vector where the jth component will approximately be value of the option

for a given asset price of S = exp(xj) The matrix M is not Hermitian therefore
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we instead solve a ‘Hermitian’ variant of (6.28):

M̃ ⃗̃Z = ⃗̃V

 0 M

M† 0


︸ ︷︷ ︸

M̃

 0⃗

Z⃗


︸ ︷︷ ︸

⃗̃Z

=

V⃗
0⃗


︸ ︷︷ ︸

⃗̃V

(6.29)

Reinserting the definition of (6.28) for the matrix M in terms of A and I trans-

forms (6.29) as:



0 0 0 0 I 0 0 0

0 0 0 0 −A∆t I 0 0

0 0 0 0 0 −A∆t
2

I 0

0 0 0 0 −I −I −I I

I −A†∆t 0 −I 0 0 0 0

0 I −A†∆t
2

−I 0 0 0 0

0 0 I −I 0 0 0 0

0 0 0 I 0 0 0 0


︸ ︷︷ ︸

M̃



0⃗

0⃗

0⃗

0⃗

z⃗1

z⃗2

z⃗3

z⃗4


︸ ︷︷ ︸

⃗̃Z

=



V⃗0

∆tV⃗1

0⃗

0⃗

0⃗

0⃗

0⃗

0⃗


︸ ︷︷ ︸

⃗̃V

As discussed with the chapter discussing the HHL algorithm, we assume the

spectrum of the matrix that we are inverting has a maximum absolute value of

any of its eigenvalues to be one. Therefore, the actual matrix equation that will

be solved by the HHL algorithm will be:

1

|λ|max

M̃ ⃗̃Z =
1

|λ|max

⃗̃V |λ|max := {max
i

|λi| : λi ∈ σ(M̃)}

With this caveat in mind,we proceed with the post-selection step of the HHL algo-

rithm. Upon successful post-selection of the ancilla qubit in the HHL algorithm,

we should have on the vector register of the quantum algorithm approximately
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the quantum state:

|ΨZ̃⟩ =
1√∑4

i=1∥z⃗i∥2



0⃗

0⃗

0⃗

0⃗

z⃗1

z⃗2

z⃗3

z⃗4



(6.30)

Before we proceed, we will need to estimate the norm of the solution ⃗̃Z before

normalisation, (i.e. estimate the value of
√∑4

i=1∥z⃗i∥2). This will be required as

ultimately as we will see that the value of an option can be expressed as the time-

discounted inner product of two not necessarily normalised vectors P⃗ and z⃗4. The

vector P⃗ here refers to a vector whose jth component encodes the probability that

the underlying asset price S (whose present value we assume is S0) will undergo

a movement in its price attaining a final value S = exp(xj) at a time increment

∆t2 later. Recalling from the previous chapter (4.2.5), we can estimate the norm

of the solution x⃗ = A−1⃗b with the HHL algorithm as:

∥x⃗∥ =

∥∥∥⃗b∥∥∥√Prob (|1⟩Ancilla)

C
(6.31)

Applied to the current case yields:

∥∥∥ ⃗̃Z∥∥∥ =

√√√√ 4∑
i=1

∥z⃗i∥2 =

∥∥∥⃗̃V ∥∥∥√Prob (|1⟩Ancilla)

C
(6.32)

We assume a-priori that ∥⃗̃V ∥ is known. The parameter C is chosen beforehand

based on the spectrum of the matrix to be inverted. Considering we need to

estimate the inner product of z⃗4 with P⃗ , we need to estimate the quantity ∥z⃗4∥.

This can be achieved by doing three further measurements on the state |ΨZ̃⟩

which is the output of the HHL algorithm. To see this explicitly, consider the
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Dirac notation representation of (6.30):

|ΨZ̃⟩ =
1√∑4

i=1∥z⃗i∥2

[
|100⟩ ⊗ z⃗1 + |101⟩ ⊗ z⃗2 + |110⟩ ⊗ z⃗3 + |111⟩ ⊗ z⃗4

]

By post-selecting on the ‘last’ three qubits being simultaneously measured to be

|111⟩, we can reproduce a quantum state |z4⟩ that is proportional to the vector

z⃗4. The probability of measuring the state |111⟩ is given by:

Prob (|111⟩) =

∥∥∥∥∥∥ z⃗4√∑4
i=1∥z⃗i∥2

∥∥∥∥∥∥
2

Or equivalently:

∥z⃗4∥ =


√√√√ 4∑

i=1

∥z⃗i∥2

√Prob (|111⟩)

By inserting the definition of (6.32) for the value of
√∑4

i=1∥z⃗i∥2 yields:

∥z⃗4∥ =

∥∥∥⃗̃V ∥∥∥
C

√
Prob(|111⟩)

√
Prob (|1⟩Ancilla) (6.33)

=

∥∥∥⃗̃V ∥∥∥
C

√
Prob(|1111⟩) (6.34)

where we have dropped the explicit denoting of the ancilla qubit. Therefore,

we can estimate the norm of the component we care about from the solution,

namely z⃗4 from examining the post-selection probabilities and the norm of the

input vector
∥∥∥⃗̃V ∥∥∥ (which encodes the initial conditions and boundary conditions).

After partial measurement of the state |ΨZ̃⟩ in the vector register, we proceed with

loading the state encoding the probability distribution of underlying asset price

movement, namely |P ⟩. We assume some sort of oracle access for the preparation

of both this state and the state encoding the initial and boundary conditions

|ΨṼ ⟩. Once |ΨP ⟩ has been loaded, we proceed with the SWAP test between the

states |Ψz4⟩ and |ΨP ⟩. As previously stated we can estimate the absolute value

of the overlap as:

| ⟨ΨP |Ψz4⟩ | =
√

1− 2Prob (|1⟩SWAP)

where the notation SWAP denotes the SWAP qubit that will ultimately be mea-
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sured to determine the overlap between the two states. We can now calculate the

inner-product of the two non-normalized states P⃗ and z⃗4 as:

∣∣∣⟨P⃗ , z⃗4⟩∣∣∣ = ∥∥∥P⃗∥∥∥ ∥z⃗4∥ | ⟨ΨP |Ψz4⟩ | (6.35)

=
∥∥∥P⃗∥∥∥


∥∥∥⃗̃V ∥∥∥
C

√
Prob(|1111⟩)

√
1− 2Prob(|1⟩SWAP)

 (6.36)

As the value of the option is just the time discounted factor of (6.35), the value

of the option will be:

Value of option =

e−r(T0+T1)
∥∥∥P⃗∥∥∥∥∥∥⃗̃V ∥∥∥
C

√Prob(|1111⟩)
√

1− 2Prob (|1⟩SWAP)

3

|ΨZ̃⟩

|Ψz4⟩ ∝ z⃗4

|1⟩

|1⟩

|1⟩

Figure 6.18: Partial measurement of |ΨZ̃⟩ to determine the normalisation of |z4⟩
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5

q0 |0⟩

AR

q1 |0⟩

QPE QPE†

|ΨP ⟩
q2 |0⟩
q3 |0⟩

q4 |0⟩

q5 |0⟩

|ΨṼ ⟩

q6 |0⟩
q7 |0⟩
q8 |0⟩

q9 |0⟩

q10 |0⟩

q11 |0⟩

q12 |0⟩ H H

Figure 6.19: Full quantum circuit for current example. The block circuits denoted
by |ΨṼ ⟩ and |ΨP ⟩ represent the loading of the associated ‘normalised version’ of

the states ⃗̃V and P⃗ respectively.

6.3.1 Simulation parameters and option setup

We now select parameters relating to the option, discretization and quantum

algorithm.

Option 1

Parameter Value — Parameter Value

S0 15 — ngrid 16

K 40 — ntimesteps 1

r 0.1 — xlower 0

σ 0.5 — xupper 5

T0 0.25 — ∆x 0.3125

T1 0.25 — ∆t 0.25

Ttotal 0.5 — Order of Taylor approximation of
analytic sol. for each step. 2

Table 6.16: Parameters relating to option pricing for the first option. S0 denotes
the spot price, K for the strike price of the asset, r for the risk-free interest rate,
σ for the volatility, T0 for the simulation period of the option with the HHL
algorithm, T1 for the time parameter associated with the probability distribution
of possible underlying asset price movements.
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Option 2

Parameter Value — Parameter Value

S0 30 — ngrid 16

K 55 — ntimesteps 1

r 0.05 — xlower 0

σ 0.45 — xupper 6

T0 0.25 — ∆x 0.3125

T1 0.25 — ∆t 0.25

Ttotal 0.5 — Order of Taylor approximation of
analytic sol. for each step. 2

Table 6.17: Parameters relating to option pricing for the second option. S0

denotes the spot price, K for the strike price of the asset, r for the risk-free
interest rate, σ for the volatility, T0 for the simulation period of the option with
the HHL algorithm, T1 for the time parameter associated with the probability
distribution of possible underlying asset price movements.

We choose larger than typical volatilities of σ = 0.45, 0.5 to increase the theoret-

ical overlap | ⟨ΨP |Ψz4⟩ | we should measure (which we calculated beforehand by

directly solving the matrix). As we will see in due course, for an overlap ϵ, the

number of executions of the circuit required to faithfully determine | ⟨ΨP |Ψz4⟩ |

scales as O (1/ϵ2). As each execution of the circuit took a relatively long time of

approximately 5 seconds, we chose a larger volatility to reduce the total number

of executions we would need to faithfully determine the overlap and thus price

of the option. As we were effectively limited to a single timestep for simulation

due to limited computational resources, we chose the simulation time T0 itself

to be small (comparable to a single timestep itself). We were also restricted

to a coarse grid of just ngrid = 16 gridpoints due to limited computational

resources. Therefore, unlike before where we selected the simulation region to

be a symmetric interval of the form [−c, c], we needed to chose an interval that

was ‘concentrated’ around the initial price of the asset. We chose the interval

[xlower, xupper] to be of the form of [ln(S0)− c, ln(S0) + c]. If we had the luxury of

a larger number of gridpoints, we could have just set the simulation region to be

a symmetric interval as done previously. We determined c by classically solving

the system for different values of c and comparing the resulting accuracy of the

solution against the true price of the option.
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Similar to the previous section for the case of single-asset option pricing, we need

to create the vectors V⃗0 and V⃗1 which correspond to the initial and boundary

conditions respectively. We reintroduce a simple function that translates from

component index to grid points arising from the discretization of the variable x:

x(j) =

(
xupper − xlower
ngrid + 1

)
(j + 1) + xlower; j ∈ [0, N − 1]

We encode the initial condition which is just they payoff function evaluated at

each of the grid points. As we are pricing a European put option, the payoff

function P is P (S) = max(K−S, 0) and therefore the jth component of the vector

V0 will be (assuming the first component of the vector is indexed by j = 0):

(V⃗0)j = max(K − exp(x(j)), 0)

For the case of the boundary conditions, V⃗1 will be the same as in (6.7):

(V⃗1)0 =
(
σ2 − r

)
K

Finally, the last piece of classical information that will be loaded into the quantum

algorithm is P⃗ which encodes the probability distribution surrounding possible

price movements in the underlying asset S. More precisely, the jth component

of P⃗ roughly corresponds to the probability that the underlying asset price S

which has a price S0 at t = 0, will attain the price exp(x(j)) at time T later.

Or equivalently with change of variables, the jth component of P⃗ corresponds to

the probability that the natural logarithm of the asset price x, will attain the

value x(j) at a time t = T later given its initial value of x0 := ln(S0) at t = 0.

As seen in chapter 2, the natural logarithm of the price of an underlying asset

undergoing geometric Brownian motion is lognormally distributed with mean

ln (S0) +
(
r − σ2

2

)
T and variance σ2T . Therefore the jth component of P⃗ is

defined as:

(
P⃗
)
j
=

1

σ
√
2πT

exp

−1

2

x(j)− ln (S0)−
(
r − σ2

2

)
T

σ
√
T

2
∆x

where ∆x is the spacing of the grid.
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Option 1

Parameter Value — Parameter Value

dim(M̃) 128 — C 0.198

Ml 16 — Ancillaqubits [0]

M 16 — QPEqubits [1,2,3,4]

tl 31.7 — |ΨṼ⟩ [5,6,7,8,9,10,11]

tu 50.3 — |ΨP⟩ [1,2,3,4]

t 31.7 — SWAPqubits [12]∥∥∥⃗̃V ∥∥∥ 53.415 —
∥∥∥P⃗∥∥∥ 0.742

Table 6.18: Parameters relating to the circuit to calculate the price of the first
option. The parameter M denotes the No. of Fourier basis states, Ml denotes
the lower bound for this No. The parameters tl, tu and t refer to the lower,
upper bounds and actual selected time parameter t in exp(iAt/M) respectively.
Finally, the parameter C refers to the ancilla normalisation constant from the
HHL algorithm. Each set of integers in the table indicates on what qubits a
subroutine takes place or where a quantum state is initially loaded

Option 2

Parameter Value — Parameter Value

dim(M̃) 128 — C 0.191

Ml 16 — Ancillaqubits [0]

M 16 — QPEqubits [1,2,3,4]

tl 34.7 — |ΨṼ⟩ [5,6,7,8,9,10,11]

tu 50.3 — |ΨP⟩ [1,2,3,4]

t 34.7 — SWAPqubits [12]∥∥∥⃗̃V ∥∥∥ 59.448 —
∥∥∥P⃗∥∥∥ 0.655

Table 6.19: Parameters relating to the circuit to calculate the price of the second
option. The parameter M denotes the No. of Fourier basis states, Ml denotes
the lower bound for this No. The parameters tl, tu and t refer to the lower,
upper bounds and actual selected time parameter t in exp(iAt/M) respectively.
Finally, the parameter C refers to the ancilla normalisation constant from the
HHL algorithm. Each set of integers in the table indicates on what qubits a
subroutine takes place or where a quantum state is initially loaded
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6.3.2 Results

We use the Qiskit[28] AerSimulator() to classically simulate the circuit. Due

to the extremely large depth of the transpiled circuit of approximately 1.1× 106

and average gate fidelities for hardware, it was not possible to run the algorithm

on actual hardware. We use the default method=‘automatic’ of this simulator

as the simulation style for the circuit. We simulate 500 executions (shots=500)

of the circuit for option 1 and 750 executions (shots=750) for option 2. As we

have not specified a noise model for the simulator, the simulation is noiseless.

Before execution of the circuit, the AerSimulator() requires a transpilation of

the circuit. We choose an optimization level=1 to strike a balance between

light optimization of the circuit for faster execution times of the circuit while still

faithfully implementing the circuit accurately. We chose a larger number of counts

for the second option due to anticipated smaller overlap which would require

more samples to estimate reliably. It would have been useful during execution

of the circuit to halt simulation of the circuit if post-selection is unsuccessful

(no matrix inversion) to reduce the simulation time of each of the shots. We

examine this issue more thoroughly in the discussion section. For the case of

implementing the unitary exp
(
iAt
M

)
that appears in the QPE step we utilized the

UnitaryGate()method which constructs a circuit which approximates the matrix

representation of the unitary operator U we are trying to implement. We initially

had planned to implement a Suzuki-Trotter method given the explicit ‘pseudo’-

matrix decomposition we derived in chapter 5 however due to time concerns we

were not able to directly implement it, we leave this project for future work. For

the sake of clarity, we only present here the counts after successful post-selection

of the ancilla qubit in the HHL algorithm subroutine.
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Option 1

First post-selection — Second post-selection

No Basis state Counts — Basis state Counts

|q12q11q10q9⟩ |q0⟩ — |q12⟩ |q11q10q9q0⟩

0 |0000⟩ |1⟩ 3 — - -

1 |0001⟩ |1⟩ 0 — - -

2 |0010⟩ |1⟩ 2 — - -

3 |0011⟩ |1⟩ 0 — - -

4 |0100⟩ |1⟩ 72 — - -

5 |0101⟩ |1⟩ 0 — - -

6 |0110⟩ |1⟩ 1 — - -

7 |0111⟩ |1⟩ 53 — |0⟩ |1111⟩ 53

8 |1000⟩ |1⟩ 0 — - -

9 |1001⟩ |1⟩ 1 — - -

10 |1010⟩ |1⟩ 1 — - -

11 |1011⟩ |1⟩ 0 — - -

12 |1100⟩ |1⟩ 53 — - -

13 |1101⟩ |1⟩ 2 — - -

14 |1110⟩ |1⟩ 0 — - -

15 |1111⟩ |1⟩ 42 — |1⟩ |1111⟩ 42

Sum of counts 230 - Sum of counts 95

Total executions of circuit 500

Table 6.20: Counts for the circuit to calculate the value of the first option as
provided by the Qiskit AerSimulator(). Although five qubits are ultimately
measured, qubit q0 corresponds to either successful or unsuccessful matrix inver-
sion. Therefore, we only present counts where matrix inversion was successful
(q0 = +1). Furthermore, for the SWAP subroutine, we need to collapse the
quantum state |ΨZ̃⟩ to the quantum state |Ψz4⟩ by post-selecting for the state
|q11q10q9⟩ = |111⟩. We indicate the post-selected states in the second column.
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Option 1

No. of |(.)⟩ |1111⟩ Shots Prob(|1111⟩) ∥z⃗4∥

95 500 0.190 117.621

No. of |0⟩SWAP No. of |1⟩SWAP Prob (|1⟩SWAP) | ⟨ΨP |Ψz4⟩ |

53 42 0.442 0.340

e−r(T0+T1) PriceClass PriceQuantum Rel. error

0.951 27.805 28.228 1.521%

Table 6.21: Calculation of the value of the first option from count statistics.
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Option 2

First post-selection — Second post-selection

No Basis state Counts — Basis state Counts

|q12q11q10q9⟩ |q0⟩ — |q12⟩ |q11q10q9q0⟩

0 |0000⟩ |1⟩ 4 — - -

1 |0001⟩ |1⟩ 2 — - -

2 |0010⟩ |1⟩ 0 — - -

3 |0011⟩ |1⟩ 0 — - -

4 |0100⟩ |1⟩ 90 — - -

5 |0101⟩ |1⟩ 2 — - -

6 |0110⟩ |1⟩ 0 — - -

7 |0111⟩ |1⟩ 81 — |0⟩ |1111⟩ 81

8 |1000⟩ |1⟩ 3 — - -

9 |1001⟩ |1⟩ 0 — - -

10 |1010⟩ |1⟩ 0 — - -

11 |1011⟩ |1⟩ 0 — - -

12 |1100⟩ |1⟩ 61 — - -

13 |1101⟩ |1⟩ 0 — - -

14 |1110⟩ |1⟩ 1 — - -

15 |1111⟩ |1⟩ 69 — |1⟩ |1111⟩ 69

Sum of counts 313 - Sum of counts 150

Total executions of circuit 750

Table 6.22: Counts for the circuit to calculate the value of the second option
as provided by the Qiskit AerSimulator(). Although five qubits are ultimately
measured, qubit q0 corresponds to either successful or unsuccessful matrix inver-
sion. Therefore, we only present counts where matrix inversion was successful
(q0 = +1). Furthermore, for the SWAP subroutine, we need to collapse the
quantum state |ΨZ̃⟩ to the quantum state |Ψz4⟩ by post-selecting for the state
|q11q10q9⟩ = |111⟩. We indicate the post-selected states in the second column.
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Option 2

No. of |(.)⟩ |1111⟩ Shots Prob(|1111⟩) ∥z⃗4∥

150 750 0.2 139.193

No. of |0⟩SWAP No. of |1⟩SWAP Prob (|1⟩SWAP) | ⟨ΨP |Ψz4⟩ |

81 69 0.46 0.283

e−r(T0+T1) PriceClass PriceQuantum Rel. error

0.975 23.811 25.173 5.72%

Table 6.23: Calculation of the value of the second option from count statistics.

6.3.3 Intermediate shot counts

We now provide intermediate count statistics for both the first and second

option.

Option 1

Batch No. 1

Shots for run 100 Accumulated shots 100

Accumulated results

No. of |01111⟩ No. of |11111⟩ Prob (|.⟩ |1111⟩) Prob (|1⟩SWAP)

12 10 0.22 0.455

| ⟨ΨP |Ψz4⟩ | ∥z⃗4∥ PriceClass PriceQuantum

0.302 122.145 27.805 26.036

Rel. error 6.361 %

Table 6.24: Aggregated results for first circuit after 100 shots
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Option 1

Batch No. 2

Shots for run 100 Accumulated shots 200

Accumulated results

No. of |01111⟩ No. of |11111⟩ Prob (|.⟩ |1111⟩) Prob (|1⟩SWAP)

22 19 0.205 0.463

| ⟨ΨP |Ψz4⟩ | ∥z⃗4∥ PriceClass. PriceQuant.

0.271 122.145 27.805 23.363

Rel. error 15.976%

Table 6.25: Aggregated results for first circuit after 200 shots

Option 1

Batch No. 3

Shots for run 100 Accumulated shots 300

Accumulated results

No. of |01111⟩ No. of |11111⟩ Prob (|.⟩ |1111⟩) Prob (|1⟩SWAP)

32 26 0.193 0.448

| ⟨ΨP |Ψz4⟩ | ∥z⃗4∥ PriceClass. PriceQuant

0.322 118.52 27.805 26.935

Rel. error 3.129%

Table 6.26: Aggregated results for first circuit after 300 shots

Option 1

Batch No. 4

Shots for run 100 Accumulated shots 400

Accumulated results

No. of |01111⟩ No. of |11111⟩ Prob (|.⟩ |1111⟩) Prob (|1⟩SWAP)

42 35 0.193 0.455

| ⟨ΨP |Ψz4⟩ | ∥z⃗4∥ PriceClass. PriceQuant.

0.302 118.362 27.805 25.23

Rel. error 9.261%

Table 6.27: Aggregated results for first circuit after 400 shots

181



Option 1

Batch No. 5

Shots for run 100 Accumulated shots 500

Accumulated results

No. of |01111⟩ No. of |11111⟩ Prob (|.⟩ |1111⟩) Prob (|1⟩SWAP)

53 42 0.19 0.442

| ⟨ΨP |Ψz4⟩ | ∥z⃗4∥ PriceClass. PriceQuant.

0.34 117.591 27.805 28.219

Rel. error 1.521%

Table 6.28: Aggregated results for first circuit after 500 shots

Option 2

Batch No. 1

Shots for run 150 Accumulated shots 150

Accumulated results

No. of |01111⟩ No. of |11111⟩ Prob (|.⟩ |1111⟩) Prob (|1⟩SWAP)

15 18 0.22 0.545

| ⟨ΨP |Ψz4⟩ | ∥z⃗4∥ PriceClass PriceQuantum

NaN NaN 23.811 NaN

Rel. error NaN %

Table 6.29: Aggregated results for second circuit after 150 shots. We use the
term ‘NaN’ to indicate that a complex number was calculated for that quantity
and therefore omit it.
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Option 2

Batch No. 2

Shots for run 150 Accumulated shots 300

Accumulated results

No. of |01111⟩ No. of |11111⟩ Prob (|.⟩ |1111⟩) Prob (|1⟩SWAP)

31 32 0.21 0.508

| ⟨ΨP |Ψz4⟩ | ∥z⃗4∥ PriceClass. PriceQuant.

NaN NaN 23.811 NaN

Rel. error NaN%

Table 6.30: Aggregated results for second circuit after 300 shots. We use the
term ‘NaN’ to indicate that a complex number was calculated for that quantity
and therefore omit it.

Option 2

Batch No. 3

Shots for run 150 Accumulated shots 450

Accumulated results

No. of |01111⟩ No. of |11111⟩ Prob (|.⟩ |1111⟩) Prob (|1⟩SWAP)

52 43 0.211 0.453

| ⟨ΨP |Ψz4⟩ | ∥z⃗4∥ PriceClass. PriceQuant

0.308 143.008 23.811 28.129

Rel. error 18.135%

Table 6.31: Aggregated results for second circuit after 450 shots
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Option 2

Batch No. 4

Shots for run 150 Accumulated shots 600

Accumulated results

No. of |01111⟩ No. of |11111⟩ Prob (|.⟩ |1111⟩) Prob (|1⟩SWAP)

68 61 0.215 0.473

| ⟨ΨP |Ψz4⟩ | ∥z⃗4∥ PriceClass. PriceQuant.

0.233 144.319 23.811 21.470

Rel. error 9.832%

Table 6.32: Aggregated results for second circuit after 600 shots

Option 2

Batch No. 5

Shots for run 150 Accumulated shots 750

Accumulated results

No. of |01111⟩ No. of |11111⟩ Prob (|.⟩ |1111⟩) Prob (|1⟩SWAP)

81 69 0.2 0.46

| ⟨ΨP |Ψz4⟩ | ∥z⃗4∥ PriceClass. PriceQuant.

0.283 139.193 23.811 25.143

Rel. error 5.72%

Table 6.33: Aggregated results for second circuit after 750 shots

For the case of the first option, we see the relative error jump quite significantly

from a maximum relative error of ≈ 15% and a minimum relative error 1.5%. As

the AerSimulator() is noiseless, this result is unexpected. We should expect the

relative error to approximately decrease with increasing shot number. However,

for the case of the second option we note that after the 3rd batch of shots, the

relative error consistently falls from 18.135% to 9.382% to a final value of 5.72%

with subsequent batches.

6.3.4 Discussion

We now proceed with commenting on the results and identifying potential sources

of error within the algorithm that could effect the results.
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State preparation

One of the first issues to be addressed with this algorithm is the time complexity

of loading the quantum states |ΨṼ ⟩ and |ΨP ⟩ which correspond to the bound-

ary/initial conditions of the simulation and probability distribution of possible

underlying price movements respectively. As the amplitudes of |ΨP ⟩ are propor-

tional to a normal distribution, itself being a smooth differentiable function, there

exists quantum algorithms such as [19] and [26] which may permit efficient load-

ing of states corresponding to said distribution. The norm of this quantum state

can also be efficiently computed as follows. If f(x) corresponds to the standard

normal distribution:

f(x) =
1√
2πσ

e−
1
2(

x−µ
σ )

2

then:

∫ ∞

−∞
f(x)2dx =

∫ ∞

−∞

1

(2π)σ2
e−(

x−µ
σ )

2

dx

σ̃ :=
σ√
2

=

∫ ∞

−∞

1

(2σ̃2)2π
e−

(x−µ)2

2σ̃2 dx =
1√
8πσ̃

∫ ∞

−∞

1√
2π
e−

1
2(

x−µ
σ̃ )

2

dx︸ ︷︷ ︸
1

=
1√
8πσ̃

For sufficiently many qubits representing the state P⃗ , we can estimate its norm

as: ∥∥∥P⃗∥∥∥ =

√√√√2n−1∑
i=0

f(xi)2∆x ≈

√∫ ∞

−∞
f(x)2dx =

1√
σ̃
√
8π

(6.37)
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We now consider the more general case of the vector ⃗̃V being equal to the vector

V⃗ (which is the general form of the vector for encoding the initial and boundary

conditions). The vector V⃗ has the following form:

V⃗ =



V⃗0

(∆t)V⃗1
...

(∆t)2
m−1

(2m−1)!
V⃗2m−1

0⃗
...

0⃗

0⃗

(∆t)V⃗1
...

(∆t)2
m−1

(2m−1)!
V⃗2m−1

0⃗
...

0⃗
...

0⃗

(∆t)V⃗1
...

(∆t)2
m−1

(2m−1)!
V⃗2m−1

0⃗
...

0⃗

0⃗

0⃗
...

0⃗


For the structure of the vector V⃗ , we may able to efficiently estimate its norm

||V⃗ ||. If the boundary and initial conditions are repeated 2p−r times, where each

term has a Taylor order approximation of the analytic solution of order = 2m−1,
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then the norm of
∥∥∥V⃗ ∥∥∥ can be estimated as:

∥∥∥V⃗ ∥∥∥ =

√√√√∥∥∥V⃗0∥∥∥2 + 2p−r

(
2m−1∑
j=1

(∆t)2j

(j!)2

∥∥∥V⃗j∥∥∥2)

For the case of time independent boundary conditions, this expression simplifies

as: ∥∥∥V⃗ ∥∥∥ =

√∥∥∥V⃗0∥∥∥2 + 2p−r(∆t)2
∥∥∥V⃗1∥∥∥2

Without further information about the nature of each V⃗j for j ∈ [1, order] , it is

difficult to quantity the circuit depth and or complexity of loading these quantum

states. We leave this for future work.

Quantum Phase Estimation

The second caveat to be examined is the gate complexity of the unitary exp
(

iM̃t
m

)
in the QPE subroutine of the HHL algorithm. The process of UnitaryGate()

method decomposing the 128 × 128 matrix exp
(

iM̃t
m

)
into a circuit dominated

the computational resources required to simulate the circuit. This computational

cost is what limited us to a grid of no more than 16 points and a single time step

with a second order approximation of the analytical solution. Although as we

ultimately calculated option through a conditional expectation, we believe that

the underlying normal distribution enabled effectively an ‘interpolation’ between

the grid points. After execution of the HHL algorithm, the value of the option

for present underlying asset price of exp(xi) should be approximately encoded at

the ith grid point. For only 16 grid points, this is quite a coarse grid to directly

extract the price from. By calculating the price from considering the overlap

from the output of HHL and a normal distribution (whose center we can position

continuously), we are able to estimate the value of the option for underlying asset

prices which is not ‘close’ to any of the 16 grid points listed above. Our results

derived from this simple contrived example for pricing a single asset European

option provide proof of the working principle of this algorithm. One thing we

noticed in the execution of this algorithm was that the expected ancilla post-

selection probability and measured ancilla post-selection probability within the

HHL subroutine were slightly different. We can manipulate (6.31) to express the
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success probability in terms of C,
∥∥∥⃗̃V ∥∥∥ and

∥∥∥ ⃗̃Z∥∥∥:
Prob(|1⟩Ancilla) =

C2
∥∥∥ ⃗̃Z∥∥∥2∥∥∥⃗̃V ∥∥∥2

Classically solving for ⃗̃Z yields a success probability of 41.2% whereas we mea-

sured the ancilla qubit with a success probability of 46%, a relative error between

the two probabilities of 11.65%. We suspect this source of error arises from two

primary sources. The first source being that the QPE subroutine of the algo-

rithm is unavoidably probabilistic and may err in extracting the correct Fourier

basis state which corresponds to the phase that is nearest to exp
(

iλjt

M

)
. Here

λj denotes the eigenvalues that we are trying to ‘extract’. Notwithstanding the

probabilistic element of the algorithm, there is only a finite number of Fourier

basis states (M = 2m) that can be used to encode all possible phases. Therefore,

we can only represent the eigenvalues with finite precision (m bits namely) which

will also introduce an error.

Ancilla Rotation

The second source of error may arise from AR subroutine. For the current proof of

concept, we constructed the AR circuit such that for every possible Fourier basis

state |l⟩, we have appended a controlled Y -rotation conditioned on |l⟩ where the

rotation angle is analytically calculated from the formula θ(l) = 2 arcsin
(

C
g(l)

)
.

Although in the current case this would imply an exponentially increasing cir-

cuit depth with the number of qubits m, we proceeded in this manner as to

potentially eliminate this source of error in the final result. However for the gen-

eral case, one would consider a polynomial approximation to the function θ(l)

and so called ‘quantum arithmetic’ circuits [51] to implement the polynomial ap-

proximation, in the process avoiding an exponentially increasing circuit depth

with the number of qubits m in the computational register. Qiskit also includes

a class qiskit.PolyPauliRotations() which can implement a quantum arith-

metic circuit given a polynomial (in this instance the Taylor approximation of the

function θ(l) = 2 arcsin
(

C
g(l)

)
). Although we also construct the HHL circuit with

this quantum arithmetic circuit, we did not use this circuit for collection of results
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we document. Other additional sources of error may arise with improper state

preparation where we have used the native qiskit.initialize() function. As

previously stated, the simulator backend will default to noiseless evolution and

therefore this should not be another possible source of error. After successful

ancilla post-selection and QPE†, we should have returned the computational reg-

ister to the state |0⟩⊗m and the state |ΨZ̃⟩ on the vector register. The return of

the computational register to the canonical state |0⟩⊗m is crucial as the next step

of the algorithm is to initialize the state |ΨP ⟩ for the subsequent SWAP test. To

avoid possible sources of error due to imperfect ‘uncomputation’, we reset the

computational qubits to the state |0⟩⊗m before initialization of |ΨP ⟩. Before the

SWAP test, we have to perform a measurement on the vector register to ‘collapse’

the state |ΨZ̃⟩ supported on seven qubits to the state |Ψz4⟩ supported on the top

four qubits of the vector register. This collapse can be achieved by post-selecting

for the state |111⟩ on the bottom three qubits of the vector register. The success

probability for measuring the state |111⟩ also provides critical information about

the normalisation of z⃗4 (along with the success probability of the ancilla qubit in

the HHL algorithm, utltimately measuring the state |1111⟩). For the first option,

classically computing ∥z⃗4∥ yields a value of 121.222 whereas a value of 117.498

is estimated for ∥z⃗4∥ from the success probability of measuring the state |1111⟩,

leading to a relative error of 3.072%. For the second option, the classically com-

puted value of ∥z⃗4∥ is 139.243 compared to a value of 139.234 from the success

probability of measuring |1111⟩, with a relative error of 0.006%.

SWAP test

As the SWAP test can be represented exactly by controlled swap gates and

Hadamard gates, there should not be any error associated with the circuit it-

self. The final step of the algorithm is measuring the SWAP qubit to determine

the overlap of the two quantum states | ⟨ΨP |Ψz4⟩ | =
√
1− 2Prob (|1⟩SWAP). The

formula above roughly states that as the overlap between the two quantum states

approaches zero, we should roughly measure the basis states |0⟩ and |1⟩ equiprob-

ably and as the overlap reaches its maximum value of one, we should measure

the state |0⟩ with certainty. There is one subtlety to be addressed for the case

of near-zero overlap. We can see from the above formula that the probability
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of measuring |1⟩ should be less than or equal to 50% as the number of samples

(executions and subsequent measurements of circuit) tends to infinity. However

for a finite number of samples there is no guarantee that this criterion will be met

and therefore it is possible to record probabilities that imply nonsensical (purely

imaginary) values for the absolute value for the overlap between the two states

|Ψz4⟩ and |ΨP ⟩. For example if we say the overlap between the states is ϵ then:

| ⟨ΨP |Ψz4⟩ | = ϵ⇔ p̂ := Prob(|1⟩) = 1− ϵ2

2

Then by considering the Wald confidence interval for the population probability

p in terms of the sample probability p̂ from n samples [50], we should have it lay

completely inside the interval [0, 0.5] to ensure an interpretable (real) overlap:

p ∈

[
p̂− zα

√
p̂(1− p̂)

n
, p̂+ zα

√
p̂(1− p̂)

n

]
⊆ [0, 0.5]

where zα relates to the z-score or confidence of the interval. As the above interval

will first encounter the barrier of 1
2
to the right of p̂, it is sufficient to ensure the

right endpoint of the confidence interval is less than 1
2
:

p̂+ zα

√
p̂(1− p̂)

n
≤ 1

2

1− ϵ2

2
+ zα

√(
1−ϵ2

2

) (
1−

(
1−ϵ2

2

))
n

≤ 1

2

zα

√
(1− ϵ2)(1 + ϵ2)

4n
≤ ϵ2

2
zα
ϵ2

√
1− ϵ4 ≤ n

For small ϵ, we can approximate the square root as just one leaving:

zα
ϵ2

≤ n (6.38)

Therefore in order to approximate an overlap of ϵ reliably , we need at least O
(

1
ϵ2

)
samples. For example if we want to get an estimate of an overlap ϵ = 0.1 with

95% confidence that it will correspond to meaningful result for the probability

p̂, we will need at least 1.96/(0.1)2 ≈ 200 samples. Therefore, one criterion

we suspect for this algorithm to offer speedup is having a non-negligible (or
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bounded away from zero) value for the quantity | ⟨ΨP |Ψz4⟩ |. We have seen some

numerical evidence that for the overlap is generally larger for options that are

out of the money versus in the money. We also note a larger overlap for higher

volatilities, (which is characteristic of multi-asset options generally, they often

comprise volatile underlying assets). For the first option, the classically computed

value for | ⟨ΨP |Ψz4⟩ | is 0.326 with a quantum calculated value of 0.340, yielding

a relative error of 4.294%. For the second option, the classically computed value

for | ⟨ΨP |Ψz4⟩ | is 0.265 with a quantum calculated value of 0.283, yielding a

relative error of 6.792%. We also highlight for the first round and second round

of shots for the second option, we record a probability of greater than 50% for

measuring the SWAP qubit in the |1⟩ state, leading to a nonsensical (complex)

value for the overlap. From (6.38), we should estimate that for an overlap of

0.265, approximately 1.96
(0.265)2

≈ 28 samples would be sufficient. However, by the

end of the second round of shots we have accumulated 63 samples which should

be more than enough to provide a probability of less than 0.5 for measuring |1⟩

(that being said the overlap as calculated from the counts in round 2 is only

nonsensical due to the presence of a single shot being in the favour of |1⟩ rather

than |0⟩).
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Figure 6.20: Quantum circuit to price the second option. The corresponding
Qiskit code to generate these circuits is available from Github repository upon
request.
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Chapter 7

Conclusions

In this thesis, we examined the application of quantum algorithm for linear sys-

tems of equations (HHL) to option pricing within the area of quantitative finance.

We took a first principles approach in terms of explicating the mathematical

framework surrounding the problem of option pricing and the associated dynam-

ics through the language of stochastic calculus. Guided by the governing equa-

tions that determine the price of an option, we then proceeded with examining the

associated Black-Scholes partial differential equation and associated techniques

to numerically approximate the solution via encoding in large matrices. Once

equipped with the matrix formulation of the problem, we outlined the quantum

algorithm for linear systems of equations (HHL) which may offer enormous com-

putational advantage in solving linear systems of equations given certain caveats.

We believe our major contribution in this thesis is the characterization of pa-

rameters related to numerical linear algebra and simulation of a newly-defined

‘improper’ Black-Scholes differential operator Ã. We show that that this operator

can be unitarily diagonalized, implying an optimal condition number of 1 for the

matrix that diagonalizes it. We also place bounds on the spectral norm of the ma-

trix, the spectrum itself and sparsity of the matrix. All of the above parameters,

in particular the condition number parameter, are critical to determining the po-

tential speed-up compared to classical methods with the HHL algorithm. Having

shown the above results, we then proceeded with comparing the performance of

this algorithm in terms of numerically simulating option pricing for single-asset

and multi-asset options as well as outlining how the boundary conditions can be

corrected for the case of the improper Black-Scholes differential operator Ã. For
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the case of the single-asset option, we see virtually exact agreement between both

the ‘proper’ and ‘improper’ schemes (related to the proper and improper Black-

Scholes differential operator). However, for the case of the multi-asset option, we

see some discrepancy between the two schemes when calculating the option price

through direct extraction from the solution vector. In spite of this, we see an

improvement in this error when extracting the price via the conditional expec-

tation technique. The significance of this result is that the quantum algorithm

broadly replicates the latter process and therefore we could potentially price op-

tions faithfully on a quantum computer with much more desirable scaling then

previously thought. We also remark that, in some instances, the correction term

in the boundary conditions for the improper Black-Scholes differential operator

leads to no difference compared to when just the standard Dirichlet boundary

conditions are imposed. We found this behaviour to be unexpected and we in-

tend to examine this further in future work. We tested the performance of the

two approaches and their dependence on parameters related both to the option

and discretization setup. We leave for future work a more comprehensive anal-

ysis of dependence of the performance between the two approaches and various

possible option and discretization setups.

Finally, we provided a novel proof of principles simulation of single-asset option

pricing with the HHL algorithm and SWAP test. We simulated two single-asset

options. We note in either case that with increasing shot number, the value of

either option is calculated within 1.5% and 5.6% respectively. Due to limits on

available computational resources, we were only able to simulate a single-asset

option for a single timestep with a coarse grid of 16 gridpoints. We hope to ex-

tend simulations to multi-asset options with more realistic discretization setups

in the future with access to greater computational resources.

In conclusion, this thesis has explored the feasibility of modifying the Black-

Scholes differential operator yielding more favourable complexity scaling without

compromising numerical accuracy. Finally in this thesis, we presented a novel

end-to-end implementation of a quantum algorithm for option pricing. We be-

lieve this to be an important step for a potential realization of this algorithm in

an industry setting.
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Appendix A

Derivations relevant to stochastic

calculus

A.1 Box calculus rules for Wiener process

We now proceed with a derivation of the multiplication rules or Box calculus

associated with the Wiener process:

dWdt = 0 dW 2 = dt dt2 = 0

We proceed as follows:

dW = Wt+∆t −Wt dt = ∆t

E
(
(Wt+∆t −Wt)

2) = E(W 2
t+∆t)− 2E(Wt+∆tWt) + E(W 2

t )

As Var(X) = E(X2)− E(X)2

E(W 2
t+∆t) = Var(Wt+∆t)︸ ︷︷ ︸

t+∆t

+E(Wt+∆t)
2︸ ︷︷ ︸

0

= t+∆t

E(W 2
t ) = Var(Wt)︸ ︷︷ ︸

t

+E(Wt)
2︸ ︷︷ ︸

0

= t

For the case of the term E(Wt+∆tWt):

E(Wt+∆tWt) = E ([Wt+∆t −Wt +Wt]Wt)
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→ E((Wt+∆t −Wt)Wt) + E(W 2
t )︸ ︷︷ ︸

t

By the independence of the increments, the above expression can be rewritten as:

E(Wt+∆t −Wt)E(Wt)︸ ︷︷ ︸
0

+t⇒ t

Hence, this implies:

∆W 2 = E((Wt+∆t −Wt)
2) = t+∆t− 2t+ t = ∆t

dW 2 = dt

In the limit as ∆t → 0, the final multiplication rule is arrived at. For proof of

the second multiplication rule dWdt = 0, we can first see that:

dW = E(Wt+∆t −Wt) = E(Wt+∆t)︸ ︷︷ ︸
0

−E(t)︸︷︷︸
0

= 0

Reusing the independence of increments again yields:

dWdt = E((Wt+∆t −Wt)∆t) = E(Wt+∆t −Wt)︸ ︷︷ ︸
0

E(∆t) = 0

A.2 Joint probability distribution for multiple

correlated assets

dSi(t) = rSi(t)dt+ σiSi(t)dWi(t) ∀i ∈ I := {1, 2, ..., d} (A.1)

However, due to non-independence of the Brownian motions {W1,W2, ...,Wd},

we must effectively change to a new set of independent Brownian motions

{Z1, Z2, ..., Z3}. This will permit us to describe the joint probability distribu-

tion of the assets. We will express each correlated Brownian motion as a linear
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combination of the uncorrelated Brownian motions:

W1 = a11Z1 + a12Z2 + ...+ a1dZd

W2 = a21Z1 + a22Z2 + ...+ a2dZd

...

Wd = ad1Z1 + ad2Z2 + ...+ addZd

As each of {Wi} are Brownian motions in their own right, their variances must

each be equal to the time elapsed:

Var(Wi) = t ∀i ∈ I

Secondly, there are additional constraints due to the pairwise correlations between

{Wi}i∈I . These constraints can be imposed recursively. Namely, for the nth

Brownian motion Wn, we demand that it satisfies the correlation constraints for

all indices less than n:

Corr(Wn,Wi) = ρni 1 ≤ i ≤ n

These two conditions are sufficient to determine each of the coefficients aij. To

see how, consider the first Brownian motion W1. Using the properties of the

variance one can see:

Var(W1) =
d∑

i=1

a21iVar(Zi)︸ ︷︷ ︸
=t

+2
∑
i<j

Cov(Zi, Zj)︸ ︷︷ ︸
=0

= t

t =
d∑

i=1

a21it⇒
d∑

i=1

a21i = 1

The pairwise covariance of each the Brownian motions is zero by construction.

In terms of correlations, the only condition to be satisfied is Corr(W1,W1) =

ρ11 := 1. The previous statement is somewhat vacuous as we do not have another

distinct Brownian motion to impose a correlation constraint on (in fact, yields

the exact same constraint as the previous one). Hence, by convention we choose

199



the first coefficient a11 = 1 and the rest to be equal to zero:

W1 = Z1

Considering the second Brownian motion, we obtain the same constraint for the

sum of the squares of the coefficients due to the requirement Var(W2) = t:

d∑
i=1

a22i = 1 (A.2)

However, a non-trivial correlation constraint now exists:

Corr(W2,W1) = ρ21 Corr(X, Y ) :=
Cov(X, Y )√
Var(X)Var(Y )

Corr(W2,W1) =
Cov(W2,W1)√
Var(W2)W

ρ21 =
Cov(

∑d
i=1 a2iZi, Z1)√
t2

=

∑d
i=1 a2iCov(Zi, Z1)

t

ρ21 =

∑d
i=1 a2iδi1t

t
= a21

Returning to equation (A.2) we see that:

2
a21︸︷︷︸
ρ21

+
d∑

i=2

a22i = 1 ⇒
d∑

i=2

a2i = 1− ρ221

By convention, we set a22 =
√

1− ρ221 and the rest of the coefficients zero.

W1 = Z1

W2 = ρ21Z1 +
√

1− ρ221Z2

...

Wd = ad1Z1 + ad2Z2 + ...+ addZd

200



For the sake of clarity of how this procedure generalises, we explicitly show how

the term W3 can be calculated:

ρ31 = Corr(W3,W1)

ρ31t =
∑
i=1

a3iCov(Zi, Z1) = a31t

=⇒ a31 = ρ31

ρ32 = Corr(W3,W2)

ρ32t = Cov(ρ21Z1 +
√

1− ρ221Z2,
d∑

i=1

a3iZi)

ρ32t =
d∑

i=1

a3iρ21Cov(Z1, Zi) +
d∑

i=1

a3i

√
1− ρ221Cov(Z2, Zi)

ρ32 = a31ρ21 + a32

√
1− ρ221 = ρ31ρ21 + a32

√
1− ρ221

=⇒ a32 =
ρ32 − ρ31ρ21√

1− ρ221

Finally, considering the total variance constraint of each of the Brownian motions,

and continuing with the convention that the coefficients aki = 0,∀i > k we get:

d∑
i=1

a23i = ρ231 +

(
ρ32 − ρ31ρ21√

1− ρ221

)2

+
d∑

i=3

a23i

1 = ρ231 +

(
ρ32 − ρ31ρ21√

1− ρ221

)2

+ a233

a31 =

√√√√1− ρ231 −

(
ρ32 − ρ31ρ21√

1− ρ221

)2
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Finally, we can begin to see the relationship between the correlated Brownian

motions and uncorrelated Brownian motions:

W1 = Z1

W2 = ρ21Z1 +
√

1− ρ221Z2

W3 = ρ31Z1 +
ρ32 − ρ31ρ21√

1− ρ221
Z2 +

√√√√1− ρ231 −

(
ρ32 − ρ31ρ21√

1− ρ221

)2

Z3

...

Wd = ad1Z1 + ad2Z2 + ...+ addZd

If we define W⃗ := (W1,W2, ...,Wd) and Z⃗ := (Z1, Z2, ..., Zd). The above relation-

ships can be represented in matrix form as:
W1

W2

...

Wd

 =


1 0 . . . 0

ρ21
√

1− ρ221
...

...
. . .

ad1 . . . add




Z1

Z2

...

Zd

 (A.3)

W⃗ = Chol(ρ)Z⃗ (A.4)

The notation, Chol(ρ), in equation (A.4) refers to the Cholesky decomposition

of the correlation matrix ρ and is defined by:

Chol(ρ) (Chol(ρ))T = ρ


1 ρ12 . . . ρ1d

ρ12 1
...

. . .

ρ1d 1

 =


1 0 . . . 0

ρ12
√

1− ρ212
...

...
. . .

ρ1d . . .




1 ρ21 . . . ρ1d

0
√

1− ρ212
...

. . .

0 . . .


(A.5)

A heuristic proof to explain the presence of the Cholesky decomposition in the

description of correlated variables is detailed in [41]. The components of W⃗ con-

sist wholly of standard Brownian motions, namely Var(Wi) = t, ∀i. However,
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different assets may have a variety of volatilities as to how they evolve, reflected in

the various σi in the d SDEs in equation (A.1). To capture the differing volatilities

in the matrix equation (A.3), we define a volatility matrix σ:

σ =


σ1

σ2
. . .

σd

 (A.6)

Hence, the modified Brownian motion ‘vector’ that captures the individual volatil-

ities is simply σW⃗. As each quantity ln(Si) has a respective mean (r− σ2
i

2
)t, the

final matrix equation can be represented as:

ln(S⃗) = µ⃗+ σChol(ρ)Z⃗

Where µ⃗ =
(
(r − σ2

1

2
)t, (r − σ2

2

2
)t, ..., (r − σ2

d

2
)t
)
and ln(S⃗) refers to taking the log-

arithm component-wise (i.e (ln(S1), ln(S2), ..., ln(Sd))). Finally, we can convert

from this current formulation to the standard normal distribution using the fol-

lowing theorem on multivariate distributions from [20]. If X⃗ := (X1, X2, ..., Xd)

and Z⃗ := (Z1, Z2, ..., Zd), it can be shown that:

X ∼ N (µ,Σ) ⇔ ∃ µ ∈ Rd, A ∈ Rd×d

such that X = µ+AZ; with Σ := AAT ; Zi ∼ N (0, 1)

As each of the Zi in the current formulation are standard Brownian motions (im-

plying Var(Zi) = t), a multiplicative factor of 1√
t
is needed to ensure the standard

normal distribution requirements of unit variance for each of the variables Zi are

satisfied:

ln(S⃗) = µ⃗+
√
tσChol(ρ)

(
1√
t
Z⃗

)
︸ ︷︷ ︸
∼N (0,1)
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We can now deduce that Σ is given by:

Σ =
(√

tσChol(ρ)
)(√

tσChol(ρ)
)T

= t
(
σChol(ρ) Chol(ρ)TσT

)
= tσρσ

Or in matrix notation:

Σ =


tσ2

1 tρ12σ1σ2 . . . tρ1dσ1σd

tρ12σ1σ2 tσ2
2

...
...

. . .

tρ1dσ1σd . . . tσ2
d

 =



√
tσ1

√
tσ2

. . .
√
tσd




1 ρ12 . . . ρ1d

ρ12 1
...

...
. . .

ρ1d . . . 1





√
tσ1

√
tσ2

. . .
√
tσd


Hence, the joint probability distribution for ln(S⃗) is given by:

ln(S⃗) ∼ N (µ⃗,Σ)

f(x⃗) =
1√

(2π)d det(Σ)
exp

(
−1

2
(x⃗− µ⃗)TΣ−1(x⃗− µ⃗)

)

Or equivalently:

P
(
ln(S⃗) ∈ Πd

i=1(xi, xi + δxi)
)
≈

exp
(
−1

2
(x⃗− µ⃗)TΣ−1(x⃗− µ⃗)

)√
(2π)d det(Σ)

(
Πd

i=1δxi
)
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Appendix B

Derivation of sparsity inequalities

Consider the sparsity of a matrix which is defined as:

Spar(A) := max

(
max

j

(∑
k

1[ajk ̸=0]

)
,max

j

(∑
k

1[akj ̸=0]

))

where 1[(.)] refers to the Iverson bracket:

1[x] =

1 if x is True

0 if x is False

We now provide a proof of the two sparsity results stated previously:

Spar(A⊗B) ≤ Spar(A)Spar(B)

Spar(A+B) ≤ Spar(A) + Spar(B)

To see this, consider the two square matrices A, B where dim(A) = n, dim(B) =

m.

A =


a11 . . . a1n
...

...

an1 . . . ann

 B =


b11 . . . b1m
...

...

bm1 . . . bmm


Consider the tensor product of these matrices A⊗B and the (jm+ j′)th row.

Row(jm+j′)(A⊗B) =
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(
aj1(bj′1, bj′2, ..., bj′m) aj2(bj′1, bj′2, ..., bj′m) . . . ajn(bj′1, bj′2, ..., bj′m)

)
The number of nonzero elements in this row will simply be the number of non

zero elements in the (j′)th row of B times the number of non zero elements in the

jth row of A.

=

(
n∑

k=1

1[ajk ̸=0]

)(
m∑
k=1

1[bj′k ̸=0]

)

≤

(
n∑

k=1

1[ajk ̸=0]

)
Spar(B)

where the inequality arises from the fact that the sparsity of B is defined as the

maximum of the number of non zero elements in any one row or column however

we have just considered the rows of B in the above example. Taking the max

over all rows in A⊗B is:

max
j,j′

((
n∑

k=1

1[ajk ̸=0]

)
Spar(B)

)
=

(
max

j

(
n∑

k=1

1[ajk ̸=0]

))
Spar(B)

⇒ #
(
Non zero elements in
any one row of A⊗B

)
≤

(
max

j

(
n∑

k=1

1[ajk ̸=0]

))
Spar(B)

The exact same result can be derived analogously for the number of non zero

elements in any one column:

#
(
Non zero elements in
any one col of A⊗B

)
≤

(
max

j

(
n∑

k=1

1[akj ̸=0]

))
Spar(B)

Therefore we can finally conclude :

Spar(A⊗B) = max
(
#
(
Non zero elements in
any one row of A⊗B

)
,#
(
Non zero elements in
any one col of A⊗B

))

≤ max

[(
max

j

(
n∑

k=1

1[ajk ̸=0]

))
Spar(B)

,

(
max

j

(
n∑

k=1

1[akj ̸=0]

))
Spar(B)

]
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= max

[
max

j

(
n∑

k=1

1[ajk ̸=0]

)
,max

j

(
n∑

k=1

1[akj ̸=0]

)]
Spar(B)

:= Spar(A)Spar(B)

To see the case of the inequality for Spar(A+ B), consider again the case of the

jth row of A+B where dim(A) = dim(B) = n:

Row(j)(A+B) = (aj1 + bj1, aj2 + bj2, ..., ajn + bjn)

We now review two small lemmas required for the next statement. If we have

two statements p and q such that p→ q then:

1[p] ≤ 1[q]

The second lemma that we will use relates to an inequality regarding the dis-

junction of two statements p and q to the addition of their associated Iverson

brackets:

1[p∨q] ≤ 1[p] + 1[q]

where p ∨ q is equivalent to p OR q. Now consider the statement that if two

numbers are zero so is there sum and its associated contrapositive statement:

if ((ajk = 0) ∧ (bjk = 0)) → (ajk + bjk) = 0

⇔(ajk + bjk) ̸= 0 → ¬ ((ajk = 0) ∧ (bjk = 0))

⇔(ajk + bjk) ̸= 0 → (ajk ̸= 0) ∨ (bjk ̸= 0)

Therefore:

1[(ajk+bjk )̸=0] ≤ 1[(ajk ̸=0)∨(bjk ̸=0)]

≤ 1[ajk ̸=0] + 1[bjk ̸=0]
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We now return to bounding the sparsity of A + B. Consider the number of

non-zero elements in the kth row of (A+B):

n∑
k=1

1[(ajk+bjk )̸=0] ≤
n∑

k=1

1[ajk ̸=0] +
n∑

k=1

1[bjk ̸=0]

max
j

(
n∑

k=1

1[(ajk+bjk )̸=0]

)
≤ max

j

(
n∑

k=1

1[ajk ̸=0]

)
+max

j

(
n∑

k=1

1[bjk ̸=0]

)

Again the exact same result can be shown for the columns of the matrix by

considering the transpose of A+B (which does not alter sparsity).

max
j

(
n∑

k=1

1[(akj+bkj )̸=0]

)
≤ max

j

(
n∑

k=1

1[akj ̸=0]

)
+max

j

(
n∑

k=1

1[bkj ̸=0]

)

Therefore:

Spar(A+B) = max

[
max

j

(
n∑

k=1

1[(ajk+bjk )̸=0]

)
,max

j

(
n∑

k=1

1[(akj+bkj )̸=0]

)]

≤ max

[
max

j

(
n∑

k=1

1[ajk ̸=0]

)
+max

j

(
n∑

k=1

1[bjk ̸=0]

)

,max
j

(
n∑

k=1

1[akj ̸=0]

)
+max

j

(
n∑

k=1

1[bkj ̸=0]

)]

≤ max

[
Spar(A) + Spar(B), Spar(A) + Spar(B)

]
= Spar(A) + Spar(B)
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