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Summary

Autism is a highly heritable complex trait, heterogenous in genotype and phenotype. Rare
genetic variants, both inherited and de novo, typically have larger effect sizes and are more
penetrant than common variants in the population. Next-generation sequencing technologies

facilitate simultaneous investigation of variation across the allele frequency spectrum.

This thesis aims to investigate rare variation and its contribution to the genetic basis of autism.
This study applies genome sequencing to an autism cohort of affected individuals in a family-
based study design. (WES n=42, WGS n=35). Variants emerging from these analyses
contribute to the existing evidence supporting association of relevant genes with autism.
Additionally, this thesis investigates the clinical utility of genome sequencing in autism. Genetic
diagnosis in autism is limited by the ability to robustly determine the relevance of putatively
pathogenic genetic variation. Through application of an evidence-based gene curation
framework and through investigation of the diagnostic yield of commercial gene panels
available for use in autism, this thesis informs on current strategies to translate genomics

findings into the clinic.

Insights into the biological mechanisms underlying autism arising from this research, will lead
to a greater understanding of the condition and potentially benefit clinical intervention and

treatment plans in the future.
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Chapter 1. Introduction

The contents of this chapter have been adapted from the following article:

Ni Ghrélaigh, F., Gallagher, L. and Lopez, L. M. (2020) ‘Autism spectrum disorder genomics:
The progress and potential of genomic technologies’, Genomics, 112(6). doi:
10.1016/j.ygeno0.2020.09.022 (Appendix 1V-1).



1.1.1 An overview of the autism phenotype

Autism Spectrum Disorder (ASD), hereafter referred to as autism, is a prevalent
neurodevelopmental condition occurring in around 1% of individuals in a population (Baird et
al., 2006). Autism is characterised by social communication difficulties and restricted repetitive
behaviours (American Psychiatric Association, 2013). Gene discovery is complicated by the
complexity of phenotypic heterogeneity in autism (Figure 1-1). Autism ranges in severity and
manifestation both between affected individuals and in the same individuals across their
lifespan and across behavioural, cognitive and language domains (Anderson et al., 2007).
Improving genetic understanding of autism and autism-relevant phenotypes will help in
defining endophenotypes within autism and developing a more targeted approach to clinical

management (Jeste and Geschwind, 2014).

Clinical Face of Autism
. Core Cinical Features
Sleep

Associated ONS Symploms '

Intellectual
Disability
Attention

Tantrums
Irritability

Agpression

Figure 1-1 Phenotypic heterogeneity in autism.

Taken from (Kas et al., 2014): “A schematic representation of core clinical features of ASD, associated central
nervous system symptoms and somatic symptoms that are often observed in ASD patients”.



1.2 The genetic basis of autism

Autism is a highly heritable complex trait. The heritability of autism measures the genomic
variation contributing to the phenotype and in autism has been estimated at ~ 80-90% (Tick
et al., 2016; Sandin et al., 2017). The genetic risk of autism is contributed to by both rare and
common genetic variants, and as yet the majority of the genetic risk remains unexplained
(Gaugler et al., 2014; De La Torre-Ubieta et al., 2016). Rare variants refer to those occurring
at less than 5% of the population and very rare variants occur at a minor allele frequency
(MAF) of less than 1%. Common genetics variants typically refer to genetic variants with a
MAF of greater than 5%. Rare variants, particularly those occurring de novo, have the potential
to occur at higher effect sizes than common variants. The larger effect size of rare variants is
in line with the hypothesis that variants of a higher effect sizes have a more detrimental effect
on brain development resulting in the early-life manifestation of the autistic phenotype, when
compared to neuropsychiatric conditions most commonly arising later in life, such as

schizophrenia and psychosis.

This introduction aims to inform on state-of-the-art autism genomics research. The focus is on
the application of genome sequencing technologies to search for these genetic variants in
extensive sample collections that have transformed our understanding of autism genomics.
This introduction reviews cutting-edge research that uses genome sequencing methods,
bioinformatic processing and clinical implementation for improved diagnosis and medical
decision-making in autism and other neurodevelopmental conditions. It explains the value of
genome sequencing technologies and highlights what they can achieve for

neurodevelopmental and neuropsychiatric conditions.

1.3 The heritability of autism

There is clear evidence that autism has a genetic basis. The heritability (denoted as h?) of
autism measures the genomic variation contributing to the phenotype. Heritability measures
the proportion of genetic variance in a phenotype in the population. Measures range from O to
1, with a measure towards 0 indicating high environmental contribution and a measure towards
1 indicating a strong genetic contribution to a phenotype. Recent meta-analysis investigating
heritability estimate h? at 80-90% (Tick et al., 2016; Sandin et al., 2017; Bai et al., 2019).

Traditionally measures of heritability arise from twin studies, on the basis that monozygotic
twins will possess nearly identical DNA sequences while dizygotic twins should by chance
share approximately 50% of their genetic sequence. Higher concordance, i.e., affectation in

both twins, in monozygotic pairs (MZ) when compared to dizygotic pairs (DZ) indicates a
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strong genetic component to condition manifestation. With relatively constant environment
between twins, the heritability estimate of 0.8 in autism indicates that 80% of the variability of
the condition in the population is due to genetic differences between individuals. While twin
studies highlight the expected contribution of genetic variation to autism risk, it is important to
note that heritability estimates based on clinical genetics studies are limited, but the evidence
is still strongly in favour of a heritable component (Wray & Visscher, 2008). Although the
accuracy of these heritability estimates for autism are not exact, there is evidence for a major
genetic component to the occurrence of the condition.

Recurrence risk represents a further key measure of genetic effects on autism. It refers to the
probability of parents of a child with autism giving birth to another affected child. Recurrence
risk measures the level of aggregation of the condition in a family, in turn giving insight into
the contribution of shared genetics to the phenotype. The recurrence risk of autism is
estimated to fall between 3% and 10% (Chakrabarti and Fombonne, 2001; Lauritsen,
Pedersen and Mortensen, 2005). This estimate is true for the first affected sibling in a family
and increases with additional affected siblings, moderated by sex of the affected proband
(Werling and Geschwind, 2015). A major limitation is that the sibling recurrence risk may be
underestimated because of genetic stoppage. A study controlling for this factor reported a
higher recurrence estimate of 18.7% of infants with at least one affected sibling developing
autism (Ozonoff et al., 2011), indicating genetic stoppage occurring in families affected by
autism. Taken together these lines of evidence from twin and family studies in autism clearly

show a substantial genetic contribution to susceptibility of the condition.

International collaborative efforts accelerated by advances in sequencing technologies aim to
discover genetic variation associated with autism (Table 1-2). Genetic variation can come in
the form of highly penetrant rare genetic variation, or variants that are common in the
population and typically having a lower effect on genetic risk. Rare genetic variant discovery
is particularly successful when using a family-based study design, while common genetic
variants are identified through population-based studies (Yuen et al., 2015; Feliciano et al.,
2019; Grove et al., 2019).

Many genes associated with autism affect synapses or gene regulation and some more
broadly affect gene regulation (Satterstrom et al., 2020). Yuen et al., along with other large
studies, compiled a series of functionally annotated gene lists against which rare variants may
be searched, such as axon guidance pathways, synapse pathway or neuron projection (Yuen

et al.,, 2015). Further to these autism-associated processes, genes associated with
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schizophrenia and ID may be informative to consider in analyses (lossifov et al., 2014). This
is due to the shared global gene expression pathways identified among some psychiatric
conditions (Gandal et al., 2018).

1.4  Sequencing technologies have advanced the identification of rare

variants

Genome sequencing, specifically whole exome sequencing (WES) and whole genome
sequencing (WGS), has transformed variant discovery. These technologies give the
opportunity for more widespread and in-depth genomic analysis than older techniques, such
as microarray studies and candidate gene studies, have allowed. Table 1-1 lists the next-
generation sequencing (NGS) technologies that can identify single nucleotide variants (SNVSs)
and insertion-deletion variants (indels), as well as larger genomic hits, including structural
variants (SVs) or copy number variants (CNVs), across the allele frequency spectrum. In the
past decade, sequencing technologies have stretched from covering select points across to
genome to cover up to 100%, when sequenced at high coverage with de novo assembly
(Table 1-1) (Miga et al., 2020). Higher coverage WGS results in more precise variant calls
across the coding and non-coding regions of the genome.

These advances in genomic technologies and decreasing costs have enabled large
sequencing cohorts (Table 1-2), allowing key strides to be made in the field of autism
genomics. Large-scale analyses of these cohorts have identified hundreds of autism-
associated genetic variants across the genome. For example, discovery of rare variants,
particularly rare CNVs, affecting SHANK3 and NRXN1 among other genes, implicated
synaptic transmission and plasticity in autism neurobiology (De Rubeis et al., 2014). Extending
beyond variant discovery, combining rare variant analysis with single-cell investigation in the
developing human cortex showed enriched expression of particular autism-associated genes
in maturing and mature excitatory and inhibitory neurons from mid-fetal development, and
helped to validate the role of these genes in neuronal communication and regulation of gene
expression (Satterstrom et al., 2020). Impactful findings such as these, suggest great potential
for advancing our understanding of autism neurobiology through rare variant discovery. Key
findings arising from these data and the impact of the variation detected is detailed in section
1.7.



Exome Sequencing

Whole Genome Sequencing

Mitochondrial

Mitochondrial
Repeat expansions
(including tandem

repeats (Mousavi et

Clinical Exome Whole Exome Sequencing Short-Read Long-Read
Sequencing
% Genome ~0.5% ~1% ~90% Potential for up to 100%
covered
Types of variant | SNVs SNVs SNVs SNVs
detected Indels Indels Indels Indels
CNVs CNVs (limited) CNVs CNVs
(limited) SVs (limited) SVs SVs

Mitochondrial
Repeat expansions
Complex SVs

Haplotype phased variants

al., 2019; Mitra et Methylation

al., 2021)
Diagnostic yield | Limited application 31% (Srivastava et al., 2019) 42.4% (Yuen et al.,, | Not yet available
in autism 2015)
Cost estimate €37.192 €79.33° €1,239.50¢ €918¢

Table 1-1 Genomic technologies compared.

Outlined are four key sequencing technologies with potential for use to identify rare autism genetic variants. Note that these costs are estimates and do not include library
preparation costs, barcodes, access fees, labour, VAT, service provider, data processing and data storage and other associated sequencing costs. a) SOPHIA GENETICS
Clinical Exome Solution (12Mb covering ~4500 genes (2.5Gb/sample/800 samples/flowcell)) b) Illumina Nextera Rapid Capture Exome (37Mb (8Ghb/sample/375
samples/flowcell)) ¢c) WGS (120Gb/sample/24 sample/flowcell). Estimates a), b) and c), are based on sequencing with lllumina NovaSeq S4 flowcell (2x150) up to
3000Gb/flowcell. d) Oxford Nanopore Technologies (60X; 1 sample/flow cell/180GB) Sequencing metrics: https://nanoporetech.com/accuracy Acronyms; SNV single nucleotide

variant, Indel insertion deletion, CNV copy number variant, SV structural variant.
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1.5 Common genetic variants have been challenging to associate with
autism

The search for common genetic variants has been less successful than that in more typically
adult-onset neuropsychiatric conditions, in particular schizophrenia (~7% of variance on the
liability scale) (Schizophrenia Working Group of the Psychiatric Genomics Consortium et al.,
2014) and bipolar disorder (~2.5% of variance on the liability scale) (Psychiatric GWAS
Consortium Bipolar Disorder Working Group et al., 2011; Creese et al., 2019; Stahl et al.,
2019). The largest study to date investigating common genetic variants in autism, using
genome-wide genotyping, provides evidence for statistically significant association of the first
common risk variants with autism. A Genome Wide Association Study (GWAS) was carried
out on 18,381 autism cases and 27,969 controls. While this sample size is large in terms of
autism, it is smaller than that of other traits such as schizophrenia with 36,989 cases or bipolar
disorder with 20,352 cases (Schizophrenia Working Group of the Psychiatric Genomics
Consortium et al., 2014; Stahl et al., 2019). Five loci showed significant association with autism
alone and seven further loci were identified upon analysis of schizophrenia, depression and
educational attainment together (Grove et al., 2019). Polygenic burden, measured by a
polygenic score (PGS), is the combined impact of common variants on the probability of a
phenotype. In autism this explains just 2.5% of the observed variance in risk (Grove et al.,
2019). The lower yield of common variant loci in autism may be because of a greater relative
contribution of rare genetic variants than common variants in the genetic architecture of autism
(Vorstman et al., 2013). However, the current smaller sample sizes in GWAS of autism fail to

validate this hypothesis.



Cohort Size of Cohort Study Design Dataset Reference
Australian National Autism Consortium 48 cases and 80 Simplex & WES (An et al., 2014)
parent controls Multiplex
Autism Genetic Resource Exchange (AGRE) > 1,700 families Simplex & Genome-Wide Genotyping https://www.autismspeaks.org/ag
Multiplex re

(Leppa et al., 2016)

Autism Sequencing Consortium (ASC)

12,772 individuals

Case Control,

Simplex

WES

(Buxbaum et al., 2012;
Satterstrom et al., 2020)

Deciphering Developmental Disorders (DDD)

12,000 individuals and

their parents

Simplex

Genotyping & WES

https://www.ddduk.org/
(Wright et al., 2015; Gardner et
al., 2019)

iHART

2,308 individuals (from
493 AGRE families)

Quad & Multiplex

WGS

(D. Kashef-Haghighi et al., 2016;
Ruzzo et al., 2019)

iPsych Danish Cohort

16,146 cases
(Genotyping) and

Case Control

Genome-Wide Genotyping
(PsychChip array from

(Pedersen et al., 2018;
Satterstrom et al., 2018, 2020)

4,811 cases (WES) lllumina) & WES
MSSNG 11,312 individuals Simplex & WGS https://research.mss.ng/
(4,258 families) Multiplex (Yuen et al., 2015, 2016, 2017,
Woodbury-Smith et al., 2017;
Brandler et al., 2018)
Simons Foundation Powering Autism Research for | 27,615 individuals Simplex & Genome-Wide Genotyping https://sparkforautism.org/
Knowledge (Genotyping & WES) Multiplex (llumina InfiniumCoreExome- | (Feliciano et al., 2019)

and 400 quad families
(WGS)

24), WES & WGS



https://www.autismspeaks.org/agre
https://www.autismspeaks.org/agre
https://www.ddduk.org/
https://research.mss.ng/
https://sparkforautism.org/

Simons Simplex Collection (SSC)

8,975 individuals
(WGS) 2,517 families
(WES) and 10,220

Quartet (Phase
1-3) &

Trio/Incomplete

Genome-Wide Genotyping,
WES & WGS

https://www.sfari.org/resource/si

mons-simplex-collection

(Levy et al., 2011; Sanders et al.,

(1,719 families)

(llumina 1M SNP) & WES

individuals family data 2011; An et al., 2018; Brandler et
(Genotyping) (Phase 4) al., 2018; Werling et al., 2018;
Zhou et al., 2019; Satterstrom et
al., 2020)
The Autism Genome Project *a consortium 7,917 individuals Simplex & Genome-Wide Genotyping (The Autism Genome Project
including TASC and AGRE samples (1,492 families) Multiplex (10K SNP array and 400 Consortium et al., 2007; Pinto et
microsatellite marker panel) al., 2010)
The Autism Simplex Collection (TASC) 5,444 individuals Simplex Genome-Wide Genotyping (Buxbaum et al., 2014; Sanders

et al., 2015)

The Psychiatric Genetics Consortium

18,381 cases

Case Control

Genome-Wide Genotyping

(Grove et al., 2019)

Table 1-2 Key autism genomics cohorts.

Featured in the table are large-scale autism cohorts used in genomic studies to date. Note that there is significant overlap of samples between these cohorts, for example, the
MSSNG cohort includes samples from both AGRE and TASC. These details are subject to frequent update. Reference refers to the original research article/website linked to the
cohort and research studies cited in this review that analyse these cohorts.
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1.6 Heterogeneity in the genetic architecture of autism

Autism displays a high level of heterogeneity across a phenotypic spectrum, both
between individuals and within the same individual throughout the lifespan. It is
estimated that around 10% of individuals affected with autism have a syndromal form of
the condition, for which each single autism risk gene accounts for at most 1% of overall
cases on average (Abrahams and Geschwind, 2008). Rare disorders often manifest with
an underlying autistic phenotype (MENDELIAN.CO, 2019). These syndromes are
frequently caused by highly penetrant variants in single genes, such as Fragile X
syndrome, MIM:30024 (FMR1), and Tuberous Sclerosis Complex, MIM: 613254 (TSC2)
(reviewed in Betancur, 2011). These syndromic forms of autism are frequently
associated with intellectual disability (ID) and developmental delay, suggesting that
autism may only form part of the overall behavioural phenotype of the syndrome.

Autism cases that do not fall into clinically defined syndromes appear to have more
complex genetic architecture and various models of risk have been suggested to
encompass this. The polygenic model, strongly supported in schizophrenia (Tansey et
al., 2016), proposes that multiple loci, each contributing a small effect, accumulate to
surpass a threshold of disease liability. In contrast, Boyle et al. proposed the omnigenic
model (Boyle, Li and Pritchard, 2017; Liu, Li and Pritchard, 2019). This model suggests
that all genes expressed in disease-relevant cells can influence pathogenesis, through
their interference with the expression of “core genes.” In that, it may be hypothesised
that most of the heritability of autism could be explained by the effect of variation on

genes outside of the core autism pathways.

Understanding gene regulation is critical to parsing out the relative contribution of
common and rare variants to autism heritability. Whichever model is most appropriate in
describing its architecture, rare genetic variants are crucial to understanding autism.
Further to heterogeneity in the genetic architecture among autism cases, there is
heterogeneity, both genetically and clinically, between males and females. Males are
more frequently affected with autism than females (Fombonne, 2003). Although factors
such as hormonal sex differences, sex-specific epigenetic factors and genetic factors
related to sex chromosomes have been hypothesised to play a role in this bias, the
biological basis remains unclear. A large-scale family study interrogating de
novo variants in autism reinforces the importance of evaluation of the X chromosome,

identifying 5 of 7 genes replicated in the study are located on the X chromosome (Turner
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et al., 2019). Together with the evidence of sex biases of autosomal genes, this study
highlights the potential for genomic studies to elucidate this phenomenon.

1.7 Rare variants disrupt gene function, dosage, and regulation in

autism
Current WGS and WES technologies enable investigation of most genomic variant
classes (Table 1-1). The consequences of such variants in the genome occur to varying

effects with different degrees of penetrance, as outlined below.

1.7.1 Gene disruption

Gene disruption refers to the disturbance of gene expression and the impact of variation
on overall gene function. The consequence of a genetic variant can be detrimental to
gene function or can have little effect depending on the variant in question and the overall
genome environment. Genes disrupted in autism often include those related to brain
development, post-synaptic density, nerve impulse and neuron projection (Abrahams et
al., 2013). Much focus lies on the importance of LoF variants and damaging missense
variants in the evaluation of genetic variation on autism. In particular, variants impacting

evolutionarily conserved genes to the detriment of crucial cellular processes.

Another mechanism of gene disruption is gene rearrangement, encompassing
translocations, inversions and large-scale insertions and deletions. Although varying
between studies, the estimated rate of large variants in autism is approximately 5-10%
(Veenstra-VanderWeele, Christian and Cook, Jr., 2004). A recent study implicates rare
retro-transposition derived disruption in neurodevelopmental conditions through trio-
based exome sequencing analysis from the Deciphering Developmental Disorders
(DDD) cohort. This mechanism of disruption is an avenue for pathogenesis which has

been largely unexplored in neurodevelopmental conditions to date (Gardner et al., 2019).

1.7.2 Gene dosage

Gene dosage refers to the number of copies of a given gene that are present in the
genome of an individual. Dosage has been found to play a substantial role in autism
pathogenesis, as demonstrated through CNV analysis, i.e. analysis of duplication or
deletion variants of >1Kb (Sanders et al., 2015). In 2004, two groups independently

identified that large scale CNVs were often overlapping with genic regions (lafrate et al.,
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2004; Sebat et al., 2004). The influence of these CNVs means either an increase or
depletion in activity of the contained genes with potential for damaging functional
consequences. A comprehensive analysis identified clinically relevant CNVs in 10.5% of
neurodevelopmental condition cases investigated, with 11.4% in autism cases.
Importantly many of the CNVs identified were found to occur across multiple
neurodevelopmental conditions (Zarrei et al., 2019).

1.7.3 Gene regulation

As a complex trait, non-coding variants, particularly variants affecting gene regulation
are likely to influence autism (Botstein and Risch, 2003). Advances in WGS and
bioinformatic tools are enabling studies of non-coding regions of the genome. Yuen et
al. estimated that non-coding and genic non-coding de novo variants account for 15.6%
and 22.5% respectively, of predicted damaging de novo variants in autism cases. Non-
coding elements, e.g. untranslated regions, regulatory sequences involved in exon
skipping and DNAse hypersensitivity regions were most enriched for de novo variants
(Yuen et al., 2016). The first study significantly associating genome-wide non-coding
variants with autism shows convergence in the pathways and processes disrupted by
both coding and non-coding variants in autism, specifically in synaptic transmission and
neuronal development (Zhou et al., 2019). Ruzzo et al. also provided evidence that non-
coding variants impact neurobiology in autism, reporting a recurrent 2.5KB deletion
within the promoter of DLG2, a gene associated with cognition and learning in mice and
human (Ruzzo et al., 2019).

Preferential transmission of structural non-coding variants has been reported in autism,
specifically the transmission of cis-regulatory elements from father to affected rather than
to unaffected offspring (Brandler et al., 2018). These findings are suggestive that not
only are rare inherited non-coding variants increasing risk to autism, but also indicate a
parent-of-origin effect from this non-coding variant class, highlighting a key benefit to the

use of a family-based study design in studies of autism.

1.8 Family-based studies are key to rare variant analysis in autism

Family-based studies, previously the foundation of disease gene discovery, are re-
emerging as an effective tool to identify potentially pathogenic variants in
neuropsychiatric conditions, including autism (Glahn et al., 2019). Family-based designs
facilitate the analysis of parent to offspring variant transmission. These study designs

take the form of i) simplex families (trios); parents and their affected child, ii) multiplex
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families; parents with more than one affected child, and iii) more complex extended
pedigrees with multiple affected individuals. By design, trio studies such as those
investigating the MSSNG cohort (Table 1-2), have been particularly key to uncovering
the enrichment of de novo variants in cases by comparing rates of de novo variants in

affected offspring with their unaffected respective siblings (Yuen et al., 2016).

Family-based study designs also enable analyses of parent-of-origin effects that are not
possible in case-control design. Furthermore, the presence of matched unaffected
siblings in these studies, gives a background level of genetic variation that can be used
to distinguish between disease relevant variants and those that are unrelated, such as
population-specific background variation or biases introduced in sequencing. A number
of large-scale genomic investigations of autism apply a family-based approach, including
the Simons Simplex Collection (Simplex), Autism Genetic Research Exchange (Simplex

and Multiplex) and The Autism Genome Project (Simplex and Multiplex) (Table 1-2).

1.9 Multiplex and simplex cases of autism show different genetic

architectures

Family structure plays a major role in the types of putative variants expected to be
causative of a given autism proband. Earlier CNV studies in autism provided some
evidence of differences in genetic architecture between simplex and multiplex families
(Sebat et al., 2007). These differences are centred on the contribution of de novo and

inherited variants to autism susceptibility.

1.9.1 De novo variants

A lower rate of de novo variation is seen in multiplex families compared to simplex
families, as expected by study design. Sebat et al. reported de novo CNVs in 10% of
simplex cases and 3% of cases from multiplex families in their cohort (Sebat et al., 2007).
Similarly Ruzzo et al. give evidence for depletion of rare de novo autism risk variants in
multiplex families (Ruzzo et al., 2019). While, this is observed across multiple studies,
the difference between multiplex and simplex family structures is not consistently
evident. In their CNV analyses, Pinto et al. did not report such differences (Pinto et al.,
2010). A limitation to these analyses, such as analyses involving the Autism Genome
Project cohort (Table 1-2), arises from challenges in reporting of simplex/multiplex status,
i.e., identifying a family as a true simplex, or as a family for which just one offspring was

investigated.
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1.9.2 Inherited variants

Consistent with the enrichment of de novo variants in simplex cases of autism, there is
a depletion of inherited variants associated with autism in these spontaneous cases
(Sebat et al., 2007; Ronemus et al., 2014). Klei et al. estimate narrow sense heritability
to exceed 60% for autism cases in multiplex families but estimate just 40% of narrow
sense heritability for simplex families (Klei et al.,, 2012). This means that 60% of
phenotypic variance may be attributed to additive genetic variance in individuals of
multiplex families. As in comparison of de novo variant enrichment of simplex and

multiplex families, this effect is not reported consistently across analyses.

Interestingly, the same putative variant may not be found in all affected individuals within
a multiplex family as highlighted recently (Feliciano et al., 2019). This study reports a
maternally inherited 15g11.2 deletion in an affected male child and no paternally
inherited putative variants from an affected father. Other studies have identified non-
sharing of CNVs (Leppa et al., 2016) and SNVs in members of multiply affected families.
In the latter study the two affected siblings did not harbour the same rare risk variant in
more than half of the multiplex families studied (Yuen et al., 2015). Similarly,
pathogenically significant CNVs have been identified that are transmitted to an autism
proband from an unaffected parent, and shared with a unaffected sibling (Woodbury-
Smith et al., 2017), adding to evidence for asymptomatic carriers of neurodevelopmental
condition CNVs.

Family studies in epidemiological cohorts from isolated populations have also confirmed
that both rare and common genetic variants contribute to the susceptibility to autism. A
study on the Faro Island genetic isolate, affirms the importance of both common and rare
variants in autism susceptibility (Leblond et al., 2019). This study identifies in a subset of
individuals in the cohort carrying rare deleterious variants in genes known already
associated with autism and in this same cohort, common genetic variants were also
associated. Given these two mechanisms of genetic variation, de novo and inherited in
autism, genome sequencing studies in families with multiple affected individuals offers
greater opportunity to understand the relative contribution of inherited and de novo

variation in the genetic architecture of autism.

1.10 Establishing putative autism variants faces many challenges
Heterogeneity in autism diagnoses is a major challenge facing genome sequencing

studies in autism. In particular, diagnosis of autism in the presence of intellectual
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disability. Diagnostic procedures are found to differ between that used in a clinical and
research setting. For a comprehensive discussion on these challenges refer to Schaaf
et al. 2020 (Schaaf et al., 2020). The greatest challenge in analysis of large-scale
genomic data is in the establishment of pipelines for data interpretation. Interpretation of
putative variants is complicated by a wide variety of technical factors, such as sequence
coverage, variant validation, consistency in sequencing platforms and variant calling and
filtering techniques. Robust clinical diagnoses and rich phenotyping increase confidence
in variant association (Callaghan et al., 2019). A variant that has been associated with
autism and has substantial evidence supporting its validity will be interrogated for its

biological role.

Variants associated with autism disrupt a wide variety of pathways and biological
processes (De Rubeis et al., 2014). Identifying pathways and processes showing an
increased mutational burden enables the isolation of cellular processes and pathways
disrupted in autism. Gene-lists are often compiled listing genes involved in a given
process (Yuen et al., 2015). These lists are useful in establishing the process which a
putative variant may be disrupting, and such gene lists are often consulted for

membership when investigating the impact of a variant (Feliciano et al., 2019).

The establishment and maintenance of collective databases, such as SFARI Gene
(Abrahams et al., 2013), DDD gene2phenotype (Wright et al.,, 2015) and ClinVar
(Landrum et al., 2014), that are openly shared among researchers give hope for the
development of variant specific disease models which will expectedly lead to a greater
understanding of autism pathology. Consistent re-analysis of pathogenicity is key to
gaining maximum insight from available genomic data, as proven fruitful in the re-
annotation of developmental and epileptic encephalopathies genes (Steward et al.,
2019) (Figure 7-1). A key stride in the development of an autism gene list comes from
Schaaf et al. in their proposal to adapt the Clinical Genome Resource (ClinGen) curation
framework to autism (Schaaf et al., 2020). Development of a high-confidence gene list
for autism would have great use in genomic investigation, specifically in the development
of targeted gene panels and a ‘clinical exome’. Without a consensus gene list in autism,
attempts to develop such genome analysis strategies have limited application (Table
1-1).

Advances in long-read sequencing technologies hold the potential for sequencing of

“dark gene regions,” genomic regions inaccessible through NGS. With high coverage
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and de novo assembly, Nanopore technologies have potential to sequence up to 100%
of the genome (Table 1-1), with the greatest level of ‘recovered’ genes when compared
with other genomic technologies, including the recovery of genes associated with autism
(Ebbert et al., 2019). This technology, to our knowledge, has yet to be applied to autism
cohorts, aside from use in variant validation (Brandler et al., 2018). Long-read
sequencing will enable discovery of genetic variants which have thus far been largely
under-explored in autism, such as repeat expansions, haplotype phased variants and
methylation changes. Repeat expansion variants have already been associated with
autism, most notably the FMRL1 repeat expansion associated with Fragile X syndrome
(MIM: 30024). As shown in an early haplotype mapping study, identification of haplotypes
can succeed in identifying loci involved in autism susceptibility (Casey et al., 2012). Even
more relevant perhaps, long-read sequencing enables the detection of CNVs and
rearrangement events without the need for bioinformatic re-assembly and alignment of

short reads.

1.11 Putting autism in the context of other neuropsychiatric conditions
WGS has potential to investigate some of the major questions remaining unanswered in
autism genomics, including investigation of the overlap of autism with other
neurodevelopmental and neuropsychiatric conditions, both clinically and genetically. As
highlighted in a review from Lord et al., elucidation of the genetic overlap of autism with
other neuropsychiatric conditions is needed (Lord et al.,, 2020). Clinically, autism
frequently co-occurs with other neuropsychiatric conditions, in particular attention-deficit
hyperactivity disorder (ADHD) (28%), anxiety disorders (13%) and mood disorders (11%)
(Lai et al., 2019).

At the systems-level there is substantial evidence of genetic overlap between autism and
neurodevelopmental and neuropsychiatric conditions (An and Claudianos, 2016). There
is overlap in the genes associated with autism and those associated with other
neuropsychiatric conditions, such as schizophrenia and bipolar disorder (Carroll and
Owen, 2009) (Geschwind and Flint, 2015; Lee et al., 2019). This has been demonstrated
strongly in a large-scale meta-analysis of eight European psychiatric cohorts identifying
109 pleiotropic loci (Lee et al., 2013). The genetic overlap of autism with other conditions
is also evident at the variant-level with de novo variation in autism shared with intellectual

disabilities (Satterstrom et al., 2020) and shared with epilepsy (Heyne et al., 2018).
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1.12 Next-generation sequencing technologies improve diagnostic yield

There is a demand for clinical genetic testing in autism (Barton et al., 2018). Clinical CNV
detection has already been translated widely, advancing the clinical genetics
understanding of the condition. This translation crystallised some of the issues that will
emerge with widespread translation of genomic technologies, namely clinical
interpretation, relative contribution of inherited variants and particularly variant specificity
to autism. Currently no gene, which when disrupted by a pathogenic variant, has been
found to confer risk to autism without conferring risk to ID or other neurodevelopmental
conditions. In the absence of appropriate study design and explicit, robust diagnoses,
there is insufficient evidence to assign meaningful specificity of gene involvement in

autism (Myers, Challman, Bernier, et al., 2020).

Genomic technologies, given the greater proportion of the genome covered, have the
potential to transform the clinical genetic understanding of the condition. This is
illustrated by the increase in diagnostic yield with genomic technologies. Diagnostic yield
refers to the number of cases where a putative genetic variant associated with the
condition is identified in a cohort. This can be interpreted as a measure of the utility of
the technique and analysis strategy for the condition.

A recent meta-analysis scoping review states that exome sequencing is a first-tier clinical
diagnostic test for individuals with neurodevelopmental conditions, defined in this study
as developmental delay, ID and/or autism (Srivastava et al., 2019). The diagnostic yield
for WES overall from these meta-analyses is 36%, surpassing the estimated 15-20%

diagnostic yield of candidate gene arrays.

Using WES technologies, Feliciano et al. in the SPARK pilot, report a returnable genetic
result in 10.4% of their cohorts affected offspring (Feliciano et al., 2019). Importantly, in
individuals with more complex phenotypes, such as autism with seizures or co-occurring
ID, they report a higher diagnostic yield than overall (27% and 20% respectively). This
finding is consistent with other studies (Tammimies et al., 2015; Srivastava et al., 2019).
The SPARK study also reports a higher diagnostic yield in cases from multiplex families
(15.2%) than simplex families (10.1%) (Feliciano et al., 2019).

Yuen et al. find a diagnostic yield of autism-relevant variants using WGS to be 42.4% in
their cohort of 85 multiplex families of autism. This mirrors the diagnostic yield estimated

in 1D using the same sequencing platform (Gilissen et al., 2014; Yuen et al., 2015). The
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increased diagnostic yield using WGS highlights the great potential for use of the
technology in families with autism. This estimate can be expected to increase further with
developments in variant interpretation strategies and increases in sample sizes, giving
more power to investigations of common variants and variants in the non-coding regions

of the genome.

The clinical utility of WGS holds great promise; however, this sequencing approach also
faces major challenges. These include the need for large-cohort analyses and the failure
to replicate genomic findings. One example is the report of the enrichment of de novo
and private disruptive mutations within fetal CNS DNase | hypersensitive sites within
50kb of genes that have been previously associated with autism risk (Turner et al., 2016)
that later did not replicate despite a larger sample size (Turner et al., 2017). Furthermore,
we face limitations to the current capacity to interpret variants in the non-coding genome,
as discussed by Lee & Gleeson (2020) (Lee and Gleeson, 2020). Notwithstanding these
challenges, the decrease in sequencing costs (Table 1-1) and the increase in sample
sizes under investigation, together with the greater understanding of family inheritance
will continue to give a more precise estimate of the diagnostic yield in autism. The return
of genetic results, alongside current behavioural diagnoses, may be used to improve
therapeutic avenues in the future. Genetic diagnoses may also be used to inform family
planning on a family-by-family basis as illustrated by a recent family study showing the
CNV findings, which would have been pre-symptomatically predictive of autism or
atypical development in 7% (11 of 157) of families analysed (D’Abate et al., 2019).

1.13 Conclusion

WGS is the most effective technology to improve our biological understanding of
neurodevelopmental conditions. With near full coverage of the human genome, coupled
with the increase in sample sizes, detailed phenotyping, and the development of cutting-
edge analytical methods, we now have the potential to identify more variants across the
genome, in particular more rare pathogenic genetic variants. The detection of rare
variants by genomic technologies will improve our understanding of the genetic
architecture of autism and other neurodevelopmental and neuropsychiatric conditions.
With advances in biological interpretation enabling delivery of genetic discovery into
clinical translation, genomic technologies will become an achievable step towards
personalised family medicine, ultimately aiding autism diagnosis and informing medical

decision-making.
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1.14 Aims

This thesis aims to investigate rare variation and its contribution to the genetic basis of
autism. The work outlined in this thesis aims to apply an analysis strategy for isolation of
rare exonic pathogenic SNVs from NGS data, specifically genome sequencing of an
autism cohort of affected individuals in a family-based study design (WES n=42, WGS
n=35). The aim of this work is to identify rare putatively pathogenic SNVs in genes with
evidence supporting their role in autism, using a family-based study design to evaluate
variant transmission. Variants emerging from these analyses contribute to the existing

evidence supporting association of relevant genes with autism.

Additionally, this thesis investigates the clinical utility of genome sequencing in autism.
Genetic diagnosis in autism is limited by the ability to robustly determine the relevance
of putatively pathogenic genetic variation. Through application of an evidence-based
gene curation framework to dissect gene-phenotype relationships and through
investigation of the diagnostic yield of commercial gene panels available for use in
autism, this thesis aims to inform on current strategies to translate genomics findings into

the clinic.
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Chapter 2. Materials and Methods
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2.1 Dataset description
2.1.1 Dataset description of Cohort 1

2.1.1.1 Ethics and ascertainment

Cohort 1 was selected from the existing Autism and Neurodevelopmental Disorders
Research Group TCD DNA biobank (n=808) under ethics approval “lIrish Molecular
Genetics Study in Autism REC: 2020-01 List 1 (17)” (Appendix I-I).

Candidate sample selection for inclusion was carried out as presented in Figure 2-1. This
sample collection has previously been included in TASC and UK10K sequencing studies
and samples that were sequenced through these projects were excluded as candidates
for this sequencing study to avoid duplicate sequencing (Buxbaum et al., 2014; The
UK10K Consortium, 2015). Inclusion and exclusion criteria for TASC is outlined in
Buxbaum et al., 2014 and inclusion and exclusion criteria for UK10K are outlined in The
UK10K Consortium, 2015. Where DNA samples did not reach criteria for sequencing,
samples were excluded as candidates for this cohort (>30ng/ul and 260/280>1.8).
Complete phenotypic records were needed for all candidates for this cohort to determine

ASD diagnosis status. ASD diagnoses were confirmed from clinical expertise.

21



Blood Sample Bank

Starting Sample
n=22

-

Remove 5 samples

v

Phenotypic criteria satisfied
n=17

DNA Sample Bank

Starting Sample
n=808

Remove 435 samples

-

Sample not previously sequenced in TASC

n=373

Remove 239 samples

7

Sample not previously sequenced in UK10K

n=134

Remove 74 samples

-

DNA sample available for sequencing
n=60

Remove 14 samples

;

Complete Phenotypic record available
n=54

,

Remove 28 samples

High quality DNA sample
(»30ng/ul and 260/280>1.8)
n=26

Cohort 1 sample for sequencing

Figure 2-1 Cohort 1 selection criteria.

Presented in the figure is the flow of candidate samples for inclusion within Cohort 1. TASC; is The Autism

Simplex Collection.

2.1.1.2 Cohort structure and phenotype

This cohort includes 23 individuals affected with autism (19 male and 4 female). All
probands (n=23) have a diagnosis of autism or ASD according to Diagnostic and
Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) criteria, with n=10 having

a co-occurring neurodevelopmental condition diagnosis (Table 2-1).
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Cohort Overview N =42

Number of families 2 quad families

6 trio families

2 parent-child pairs

1 set of DZ twins

11 affected singletons
Male probands N=19

Female probands N=4

Table 2-1 Overview of Cohort 1.

Outlined are the family structures included in the cohort and proband counts by sex.

2.1.2 Dataset description of Cohort 2

2.1.2.1 Ethics and ascertainment

A subset of Cohort 1 was selected for further analysis using WGS based on phenotype
severity, under ethics approval “Irish Molecular Genetics Study in Autism REC: 2020-01
List 1 (17)” (Appendix I-1). Samples were prioritised for WGS from Cohort 1 on the basis
of their hypothesised rare variant burden. For this reason, two female probands were
selected and one male proband with a complex syndromal phenotype, with hypothesised
rare penetrant SNVs being causative.

2.1.2.2 Cohort structure and phenotypes

All probands (n=3) have a diagnosis of autism according to DSM-V criteria (Table 2-2
and Table 2-3).

Cohort Overview

N=6

Number of families

1 quad family

2 affected singletons

Male probands

N=1

Female probands

N=2

Table 2-2 Overview of Cohort 2.

Outlined are the family structures included in the cohort and proband counts by sex.
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FID 11D Sex Phenotype
AS315 AS315C F Autism
AS322 AS322C1 F ASD, ADHD
M Autism, moderate ID, self-injurious
AS420 AS420C1 behaviour, catatonia, dysmorphology
AS420 AS420C2 M Unknown
AS420 AS420F M Unknown
AS420 AS420M F Unknown

Table 2-3 Cohort 2 phenotype and sex.

Outlined are reported sex and clinically validated phenotype for individuals analysed within Cohort 2.
Unknown is given as the phenotype where no neurodevelopmental or neuropsychiatric phenotype has been
reported, however parent phenotyping was not performed.

2.1.3 Dataset description of Cohort 3

2.1.3.1 Ethics and ascertainment

Cohort 3 was ascertained under ethics approval “Genomics of Neurodevelopmental
Disorders (Reference number BSRESC-2021-2402328)" (Appendix I-1I). Inclusion
criteria in the recruitment of this cohort is families with two or more family members
affected with autism and a third family member affected with another
neurodevelopmental or neuropsychiatric condition, including autism, neuropsychiatric
conditions (e.g., schizophrenia or depression), ADHD, learning disability, developmental

delay, Tourette’s Syndrome, or epilepsy.

2.1.3.2 Cohort structure and phenotypes

Clinical diagnoses are made according to DSM-V criteria. Diagnoses have been
confirmed through clinical reports with review and verification by Professor Louise
Gallagher, Chair of Child and Adolescent Psychiatry at TCD.

Cohort Overview N =29

Number of families 4 multiplex families
Males N=14

Females N= 15

Table 2-4 Overview of Cohort 3.

Outlined are the family structures included in the cohort and proband counts by sex.
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Cohort 3 is comprised of 4 multiplex pedigrees, as presented in Figure 2-2. Each family
has multiple affected individuals, affected by autism and other neurodevelopmental and
neuropsychiatric conditions. AS326 and AS328 are multigenerational families, with

maternal grandmother samples available.

AS324 ) ) AS325 &,

446044 S

Homazygous recessive¥ _— .
vET Inherited variztion®

AS32E
A5326
L] Butism
F
Other neuradevelopmental

u conditian
‘J ‘? ) .‘?’ $ 4 [ . Other neuropsychiakric
Tnherited variation® Tnherited variation¥ candition

Figure 2-2 Cohort 3 in summary.

Proposed mode of transmission for variant interpretation.} Presented are the pedigrees of the 4 families
sequenced in this rare cohort. The key associated with affection and sequencing status is presented
alongside. * Denotes the mode of variant transmission hypothesised to be relevant within each family.

2.2 Sequencing

Next-generation sequencing technologies were applied to the cohorts under
investigation. These technologies give the opportunity for more widespread and in-depth
genomic analysis than older techniques, such as microarray studies and candidate gene
studies, have allowed. Table 1-1 lists the next-generation sequencing (NGS)
technologies that can identify single nucleotide variants (SNVs) and insertion-deletion
variants (indels), as well as larger genomic hits, including structural variants (SVs) or
copy number variants (CNVs), across the allele frequency spectrum. Here, whole exome
and whole genome sequencing have been applied as described as follows, with an aim

to detect exonic SNVs.
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2.2.1 Sequencing of Cohort 1

WES was carried out on a total of 42 samples. DNA samples (n=17) were extracted from
whole blood using Perkin Elmer Prepito DNA cyto kit (CMG-2034). Biobanked DNA
samples (n=25) were extracted as previously published (Buxbaum et al., 2014).
Biobanked DNA samples were confirmed to have a concentration of >30ng/ul as
measured by Qubit and an optical density 260/280>1.8 as measured by Nanodrop prior
to library preparation. Samples were whole exome sequenced using the Nextera Rapid
Capture Exome (v1.2) on lllumina NovaSeq6000. FASTQ, BAM and VCF files were

returned for bioinformatic analyses.

2.2.2 Sequencing of Cohort 2

WGS was carried out on a total of 6 samples. DNA samples (n=6) were extracted from
whole blood using Perkin Elmer Prepito DNA cyto kit (CMG-2034). Samples were whole
genome sequenced on lllumina NovaSeq6000. FASTQ, BAM and VCF files were

returned for bioinformatic analyses.

2.2.3 Sequencing of Cohort 3

Sequencing of this cohort was performed on DNA samples extracted from blood (n=22)
and saliva (n=7). As reported by service provider:

“Whole genome library preparation was performed using the Illlumina TruSeq PCR Free
Library Prep protocol (20015963) with an input amount of 1ug. Library preparation was
automated and processed using a Hamilton NGS Star. Library quality was assessed
using the Roche KAPA Library Quantification Kit (7960298001). Libraries were pooled
and sequenced on an lllumina NovaSeq 6000 instrument using NovaSeq 6000 S4
Reagent Kit (20012866) targeting a mean coverage of 30X.

Genotyping was performed using the Illumina Global Screening Array version 3
(20030772)”. FASTQ, BAM and VCF files were returned for bioinformatic analyses.

2.3 Read alignment
Short sequence reads are generated by NGS and are reported in FASTQ format by the

genomic sequencing described in 2.2. These short reads require alignment to a human

reference genome and the resulting aligned reads are output in BAM format.
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2.3.1 Read alignment of Cohort 1

FASTQ files were generated through Illumina BaseSpace using the function FASTQ
Generation (Version: 1.0.0). Sequence data was aligned to the reference genome “Homo
sapiens (UCSC hg19)” using bwa-mem through lllumina BaseSpace BWA Enrichment
(Version: 2.1.0.0) targeting the regions covered by Nextera Rapid Capture Exome (v1.2)
(Li, 2013).

2.3.2 Read alignment of Cohort 2

FASTQ files were generated through Illlumina BaseSpace using the function FASTQ
Generation (Version: 1.0.0). Sequence data was aligned to the reference genome “Homo
sapiens (UCSC hgl19)” using bwa-mem through Illumina BaseSpace function BWA
Aligner - DEPRECATED (Version: 1.1.1) (Li, 2013).

2.3.3 Read alignment of Cohort 3

As reported by service provider:

“Genuity Science Pipeline Service (GSPS) is a feature which allows importation of raw
data from the NovaSeq 6000 (BCL files) or raw sequencing data (in FASTQ format) for
analysis with AWS S3 delivery capabilities. The standard workflow for GSPS is to use
in-house generated raw data from the NovaSeq 6000 (BCL files), which is demultiplexed
in the pipeline to individual samples FASTQ pairs, which then get analysed for variants
and have their sequence quality assessed. FastQ generation was performed using
BCL2FastQ, adapter trimming using Skewer and assessment of QC using FASTQC.”

2.4 Base read pre-processing

2.4.1 Base read pre-processing of Cohort 1

Software and corresponding versions used during quality control (QC are listed in (Table
2-5). Input files for analysis were sourced from the Genome Analysis Tool Kit (GATK)
Resource Bundle for reference genome hg19, available at:

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-6).

27


ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/

Software Version

Picard (Broad Institute, 2019) 2.20.2-SNAPSHOT

Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836

(Van der Auwera et al., 2013)

Java openjdk version "1.8.0_212"

R 3.6.0 “Planting of a Tree”
Table 2-5 Software used at QC.

Input Version

Reference Genome UCSC hg19

Verified Indel sites 1000G Phase 1 & Mills Gold Standard Indels

Verified SNP sites dbsnp 138 (hg19)

Exome Target Intervals NexteraRapidCapture_Exome_TargetedRegions_v1.2

Table 2-6 Input public datasets used at QC.

2.4.1.1 ReorderSam (Picard)

BAM file reads were reordered to match contig ordering in the input reference genome.

2.4.1.2 SortSam (Picard)

BAM file reads were sorted by reference sequence coordinate.

2.4.1.3 MarkDuplicates (Picard)

Duplicate reads arising from technical errors and biases were located and tagged.

2.4.1.4 BuildBamIndex (Picard)

An index file complementary to BAM file was generated to allow fast look-up of data.

2.4.1.5 IndelRealigner (GATK)

Local realignment of insertion and deletions was carried out to minimise the number of

mismatching base pairs.
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### Local Realignment Around Indels ###

java <java_arguments> -jar <GATK_ jar_file>\

-T RealignerTargetCreator \

-R <reference_genome_fasta>\

-I <BAM_to_manipulate> \

-0 <output_file_to_report_intervals>\

--known <1000G_phasel.indels.hg19.sites.vcf \

--known <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf>

java <java_arguments> -jar <GATK_ jar_file>\

-T IndelRealigner \

-R <reference_genome_fasta>\

-| <BAM_to_manipulate> \

-0 <BAM_following_manipulation>\

-known <1000G_phasel.indels.hgl9.sites.vcf \

-known <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \
-targetintervals <output_file_to_report_intervals> \
--consensusDeterminationModel USE_READS

2.4.1.6 Base Quality Score Recalibration

Systematic technical errors in quality score estimates of each base call were detected
and scores were adjusted using BaseRecalibrator (GATK). The recalibration was

visualised with AnalyseCovariates (GATK).
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### Base Quality Score Recalibration ###

java <java_arguments> -jar <GATK_ jar_file>\

-T BaseRecalibrator \

-R <reference_genome_fasta>\

-I <BAM_to_manipulate> \

-0 <output_BQSR_before>\

-knownSites <dbsnp_138.hg19.vcf> \

-knownSites <1000G_phasel.indels.hgl19.sites.vcf> \

-knownSites <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \
--sort_by_all_columns

java <java_arguments> -jar <GATK_jar_file>\

-T BaseRecalibrator \

-R <reference_genome_fasta>\

-I <BAM_to_manipulate> \

-BQSR <output_BQSR_before> \

-0 <output_BQSR_before_after> \

-knownSites <dbsnp_138.hg19.vcf> \

-knownSites <1000G_phasel.indels.hgl9.sites.vcf> \

-knownSites <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \
--sort_by_all_columns

java <java_arguments> -jar <GATK_ jar_file>\
-T PrintReads \

-R <reference_genome_fasta>\

-| <BAM_to_manipulate>\

-BQSR <output_BQSR_before>\

-0 <new_BAM _post-bgsr>

java <java_arguments> -jar <GATK_jar_file>\
-T AnalyzeCovariates \

-R <reference_genome_fasta>\

-before <output_BQSR_before> \

-after <output_BQSR_before_after>\

-plots <plots_file_generated> \

-csv <csv_file_generated>

2.4.1.7 ValidateSamFile (Picard)

To ensure compliance of BAM file format specifications, ValidateSamFile was applied.
### Validate Bam File ###

#In Summary Mode

java <java_arguments> -jar <picard_jar_file> ValidateSamFile \
I= <BAM_to_investigate> \

O= <document_to_output_errors_to>\

MODE=SUMMARY \

MAX_OUTPUT=null

#In Verbose Mode

java <java_arguments> -jar <picard_jar_file> ValidateSamFile \
I= <BAM_to_investigate> \

O= <document_to_output_errors_to>\
IGNORE_WARNINGS=true \

MODE=VERBOSE
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2.4.2 Base read pre-processing of Cohort 2

Software and corresponding versions used during QC are listed in (Table 2-7). Input files

for analysis were sourced from the GATK Resource Bundle for reference genome hg19,

available at:

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-8).

Software Version

Picard 2.20.2-SNAPSHOT
Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836

Java openjdk version "1.8.0_212"
R 3.6.0 “Planting of a Tree”

Table 2-7 Software used at QC.

Input

Version

Reference Genome

UCSC hg19

Verified Indel sites

1000G Phase 1 & Mills Gold Standard Indels

Verified SNP sites

dbsnp 138 (hg19)

Table 2-8 Input public datasets used at QC.

2.4.2.1 AddOrReplaceReadGroups (Picard)

Read group information missing from the BAM file generated was added to BAM files.

Generic read group information was added in the cases of mandatory fields, except for

RGSM which corresponds to sample ID.

### Edit Read Group Information ###

java <java_arguments> -jar <picard_jar_file> AddOrReplaceReadGroups \
INPUT= <BAM_to_reformat>\

OUTPUT= <new_BAM_reformatted> \

RGID= <default_value_eg.1>\

RGLB= <default_value_eg.library1>\

RGPL= <default_value_eg.illumina>\

RGPU= <default_value_eg.1>\

RGSM= <unique_sample_ID>\

SORT_ORDER=coordinate \

CREATE_INDEX=true

Parameters SORT_ORDER=coordinate and CREATE_INDEX=true were applied to

simultaneously sort and index the reformatted BAM file.
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2.4.2.2 IndelRealigner (GATK)

Local realignment of insertion and deletions was carried out to minimise the number of

mismatching base pairs.

### Local Realignment Around Indels ###

java <java_arguments> -jar <GATK_jar_file>\

-T RealignerTargetCreator \

-R <reference_genome_fasta>\

-l <BAM_to_manipulate> \

-0 <output_file_to_report_intervals>\

--known <1000G_phasel.indels.hg19.sites.vcf \

--known <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf>

java <java_arguments> -jar <GATK jar_file>\

-T IndelRealigner \

-R <reference_genome_fasta>\

-l <BAM_to_manipulate> \

-0 <BAM_following_manipulation>\

-known <1000G_phasel.indels.hg19.sites.vcf \

-known <Miills_and_1000G_gold_standard.indels.hg19.sites.vcf> \
-targetintervals <output_file_to_report_intervals>\
--consensusDeterminationModel USE_READS

2.4.2.3 Base Quality Score Recalibration

Systematic technical errors in quality score estimates of each base call were detected
and scores were adjusted using BaseRecalibrator (GATK). The recalibration was

visualised with AnalyseCovariates (GATK).
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### Base Quality Score Recalibration ###

java <java_arguments> -jar <GATK_ jar_file>\

-T BaseRecalibrator \

-R <reference_genome_fasta>\

-I <BAM_to_manipulate> \

-0 <output_BQSR_before>\

-knownSites <dbsnp_138.hg19.vcf> \

-knownSites <1000G_phasel.indels.hgl9.sites.vcf> \

-knownSites <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \
--sort_by_all_columns

java <java_arguments> -jar <GATK_jar_file>\

-T BaseRecalibrator \

-R <reference_genome_fasta>\

-l <BAM_to_manipulate> \

-BQSR <output_BQSR_before> \

-0 <output_BQSR_before_after> \

-knownSites <dbsnp_138.hg19.vcf> \

-knownSites <1000G_phasel.indels.hg19.sites.vcf> \

-knownSites <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \
--sort_by_all_columns

java <java_arguments> -jar <GATK_ jar_file>\
-T PrintReads \

-R <reference_genome_fasta>\

-| <BAM_to_manipulate>\

-BQSR <output_BQSR_before> \

-0 <new_BAM _post-bgsr>

java <java_arguments> -jar <GATK_jar_file>\
-T AnalyzeCovariates \

-R <reference_genome_fasta>\

-before <output_BQSR_before> \

-after <output_BQSR_before_after>\

-plots <plots_file_generated> \

-csv <csv_file_generated>

2.4.2.4 ValidateSamFile (Picard)

To ensure compliance of BAM file format specifications, ValidateSamFile was applied in

both summary and verbose modes.
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### Validate Bam File ###
#In Summary Mode

java <java_arguments> -jar <picard_jar_file> ValidateSamFile \
I= <BAM_to_investigate> \

O= <document_to_output_errors_to>\

MODE=SUMMARY \

MAX_OUTPUT=null

#In Verbose Mode

java <java_arguments> -jar <picard_jar_file> ValidateSamFile \
I= <BAM_to_investigate>\

O= <document_to_output_errors_to>\
IGNORE_WARNINGS=true \

MODE=VERBOSE

2.4.3 Base read pre-processing of Cohort 3

As reported by service provider:

“FASTQ data is processed by a Sentieon based pipeline and resulting files are uploaded
to the user specified S3 buckets. The main components of the pipeline act to align raw
sequence reads to a reference, carry out QC and call variants in the genome. The
pipeline is based on an AWS infrastructure that is automated.”

2.5 Variant calling and genotyping

Variants were called from aligned reads (BAM) format and were output to a readily
interpretable called variant file (VCF files). VCF files can then be manipulated and
interrogated for biological relevance. The GATK Best Practices provide guidelines for
effective use of the tool set, enabling manipulation of parameters to suit the data set
under investigation, for example specification of target intervals or specification of
reference genome (Li, 2013; Broad Institute, 2019). Here GATK Best Practices were
applied to call SNVs reaching the standard minimum threshold for calling using
HaplotypeCaller. Genotypes were assigned by joint genotyping. Joint genotyping
requires the use of HaplotypeCaller to generate input genotype assignments. The gvVCF
file format details all variant sites in the genome whether reference (ref) or alternative
(alt), as opposed to the traditional VCF file listing alternative variant sites only. Joint
genotyping is a more time and computationally intensive approach to genotyping,
however, it improves the detection of rare variants in the genome making it beneficial for
use in a family-based study design where accurate and sensitive rare variant discovery
is required.
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2.5.1 Variant calling and genotyping of Cohort 1

Software and corresponding versions used throughout gVCF to cohort VCF analysis are
listed in Table 2-9. Input files for analysis were sourced from the GATK Resource Bundle
for reference genome hg19, available at:

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-10).

Software Version
Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836
Java openjdk version "1.8.0_212"

Table 2-9 Software used at variant calling and genotyping.

Input Version

Reference Genome UCSC hg19

Verified SNP sites dbsnp 138 (hg19)

Exome Target Intervals NexteraRapidCapture_Exome_TargetedRegions_v1.2

Table 2-10 Input datasets used at variant calling and genotyping.

2.5.1.1 HaplotypeCaller in gVCF Mode (GATK)

SNVs and indels were called and output to gVCF format, recording all site information

whether reference or alternative.

### Variant Calling ###

java <java_arguments> -jar <GATK_jar_file>\
-T HaplotypeCaller \

-R <reference_genome_fasta>\

-| <post_processing_bam>\

-0 <newly_called_gvcf>\

-ERC GVCF \

--dbsnp <dbsnp_138.hg19.vcf> \
--annotation MappingQualityZero \
--annotation VariantType \

--annotation AlleleBalance \

--annotation AlleleBalanceBySample \
--excludeAnnotation ChromosomeCounts \
--excludeAnnotation FisherStrand \
--excludeAnnotation StrandOddsRatio \
--excludeAnnotation QualByDepth \
--GVCFGQBands 10\

--GVCFGQBands 20 \

--GVCFGQBands 30 \

--GVCFGQBands 40 \

--GVCFGQBands 60 \

--GVCFGQBands 80 \
--standard_min_confidence_threshold_for_calling
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2.5.1.2 Cohort Joint Genotyping

Joint genotyping was carried out using GenotypeGVCFs (GATK) to enable detection of
variants to a higher degree of sensitivity and genotype accuracy by leveraging

information cohort-wide.

### Joint Genotyping #H##

java <java_arguments> -jar <GATK_jar_file>\
-T GenotypeGVCFs \

-R <reference_genome_fasta>\

-V <newly_called_gvcfl>\

-V <newly_called_gvcf2>\

-V <newly_called_gvcf3>\

-V <newly_called_gvcf4>\

-V <newly_called gvcf5>\

-V <newly_called gvcf6>\

--annotation InbreedingCoeff \

--annotation FisherStrand \

--annotation QualByDepth \

--annotation ChromosomeCounts \
--annotation StrandOddsRatio \

--dbsnp <dbsnp_138.hg19.vcf>\

-o <newly_genotyped_cohort_vcf>\
--standard_min_confidence_threshold for_ calling 10.0 \
--downsample_to_coverage 1000 \
--downsampling_type BY_SAMPLE

2.5.2 Variant calling and genotyping of Cohort 2

Software and corresponding versions used throughout gVCF to cohort VCF analysis are
listed in Table 2-11. Input files for analysis were sourced from the GATK Resource
Bundle for reference genome hgl9, available at:

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-12).

Software Version
Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836
Java openjdk version "1.8.0_ 212"

Table 2-11 Software used at variant calling and genotyping.

Input Version
Reference Genome UCSC hgl9
Verified SNP sites dbsnp 138 (hg19)

Table 2-12 Input datasets used at variant calling and genotyping.
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2.5.2.1 HaplotypeCaller in gVCF Mode (GATK)

SNVs and indels were called and output to gVCF format, recording all site information

whether reference or alternative.

### Variant Calling #tt

java <java_arguments> -jar <GATK_jar_file>\
-T HaplotypeCaller \

-R <reference_genome_fasta>\

-I <post_processing_bam> \

-o <newly_called_gvcf>\

-ERC GVCF \

--dbsnp <dbsnp_138.hg19.vcf>\
--annotation MappingQualityZero \
--annotation VariantType \

--annotation AlleleBalance \

--annotation AlleleBalanceBySample \
--excludeAnnotation ChromosomeCounts \
--excludeAnnotation FisherStrand \
--excludeAnnotation StrandOddsRatio \
--excludeAnnotation QualByDepth \
--GVCFGQBands 10\

--GVCFGQBands 20 \

--GVCFGQBands 30\

--GVCFGQBands 40 \

--GVCFGQBands 60 \

--GVCFGQBands 80 \
--standard_min_confidence_threshold_for_calling

2.5.2.2 Cohort Joint Genotyping

Joint genotyping was carried out using GenotypeGVCFs (GATK) to enable detection of
variants to a higher degree of sensitivity and genotype accuracy by leveraging

information cohort-wide.
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### Joint Genotyping ###

java <java_arguments> -jar <GATK_ jar_file>\
-T GenotypeGVCFs \

-R <reference_genome_fasta>\

-V <newly_called_gvcfl>\

-V <newly_called_gvcf2>\

-V <newly_called_gvcf3>\

-V <newly_called_gvcf4>\

-V <newly_called_gvcf5>\

-V <newly_called_gvcf6>\

--annotation InbreedingCoeff \

--annotation FisherStrand \

--annotation QualByDepth \

--annotation ChromosomeCounts \
--annotation StrandOddsRatio \

--dbsnp <dbsnp_138.hg19.vcf>\

-o <newly_genotyped_cohort_vcf>\
--standard_min_confidence_threshold_for_calling 10.0 \
--downsample_to_coverage 1000 \
--downsampling_type BY_SAMPLE

2.5.3 Variant calling and genotyping of Cohort 3

As reported by service provider:

“The secondary pipeline begins with a Sention backbone which included bwa mem,
markduplication, WgsMetricsAlgo, Realigner and QualCal. The resulting VCF files were
GORized with Genuity Science proprietary tools and loaded into CSA platform for

downstream analysis.”

2.6  Variant filtration

2.6.1 Variant filtration of Cohort 1

Software and corresponding versions used throughout variant filtration are listed in Table
2-13. Input files for analysis were sourced from the GATK Resource Bundle for reference
genome hg19, available at

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-14).

Software Version
Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836
VCFtools (Danecek et al., 2011) 0.1.14-gcc-8.2.0-srywzy

Table 2-13 Software used at variant filtration.
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Input Version

Reference Genome UCSC hg19

VQSR Model Training Set dbsnp 138 (hg19)

hapmap 3.3 (hg19)

omni 2.5 (hgl19)

1000G Phase 1 High-Confidence SNPs
(hgl9)

Mills Gold Standard Indels

Table 2-14 Input datasets used at variant filtration.

2.6.1.1 Split Cohort VCF by variant type

The cohort VCF file was split by variant type using SelectVariants (GATK) and output
into distinct cohort SNV, indel and mixed VCEF files.

## Split Variants by Variant Type ###

java <java_arguments> -jar <GATK_jar_file>\
-T SelectVariants \

-R <reference_genome_fasta>\

--variant <newly_genotyped cohort_vcf>\
-Lchrl -L chr2 -L chr3 -L chr4 -L chr5 \

-L chr6 -L chr7 -L chr8 -L chr9 -L chr10\

-L chr11 -L chr12 -L chr13 -L chr14 -L chr15\
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 '\
-L chr21 -L chr22 -L chrX -L chrY \

-0 <cohort_snp_vcf>\

-selectType SNP

java <java_arguments> -jar <GATK_jar_file>\
-T SelectVariants \

-R <reference_genome_fasta>\

--variant <newly_genotyped_cohort_vcf>\
-L chrl -L chr2 -L chr3 -L chr4 -L chr5 \

-L chr6 -L chr7 -L chr8 -L chr9 -L chr10\
-Lchr1l -L chr12 -L chr13 -L chr14 -L chr15 \
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 '\
-L chr21 -L chr22 -L chrX -L chrY \

-0 <cohort_indel_vcf>\

-selectType INDEL

java <java_arguments> -jar <GATK_jar_file>\
-T SelectVariants \

-R <reference_genome_fasta>\

--variant <newly_genotyped_cohort_vcf>\
-L chrl -L chr2 -L chr3 -L chr4 -L chr5 \

-L chr6 -L chr7 -L chr8 -L chr9 -L chr10 \

-L chr1l1 -L chr12 -L chr13 -L chr14 -L chr15 '\
-Lchr16 -L chrl7 -L chr18 -L chr19 -L chr20 \
-Lchr21 -L chr22 -L chrX -L chrY \

-0 <cohort_other_vcf>\

-xISelectType SNP \

-xISelectType INDEL
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2.6.1.2 Evaluating Variant Confidence Pre-Filtering

The Transition/Transversion (Ts/Tv) ratio presented in Table 2-15 as 2.594. is low when
compared with the guide Ts/Tv of 3.0 in human exome sequencing (Bainbridge et al.,
2011). This highlights the need for low confidence variant call removal from the call-set

to achieve a high confidence variant set for downstream analysis.

Model Count
AC 8,231
AG 42,065
AT 4,546
CG 11,607
CT 41,748
GT 7,921
Ts 83,813
Tv 32,305
Ts/Tv Ratio 2.594

Table 2-15 Ts/Tv ratio of SNV call-set.

Presented in the table are genotype variant transitions (Ts) and Transversions (Tv) across variant sites
within the cohort. Transitions are defined as a change of purine bases or pyrimidine bases, i.e. A with G or
C with T. Transversion are defined as changes between purine and pyrimidine bases, i.e. A with C/T, C with
G or G with T.

2.6.1.3 Variant Quality Score Recalibration (VQSR) and Hard Filtering

VariantRecalibration (GATK) and ApplyRecalibration (GATK) were run independently on
SNV and indel raw variants. Mixed variants not falling into these variant types were hard
filtered using GATK Best Practices for indel filtration, as too few variants (fewer
equivalent variant sites than one genome or 30 exomes) fell into this category to train
the Gaussian mixture model of VQSR (Table 2-16).

Filter Description Threshold

QD Variant quality / depth <20

FS Phred-score Fisher’s test p-value for strand | > 200.0
bias

ReadPosRankSum | Distance of alternative allele from the end of | < -20.0

the reads

Table 2-16 GATK recommended variant quality filters for mixed variant sites.
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#it# VQSR ###

java <java_arguments> -jar <GATK_ jar_file>\

-T VariantRecalibrator \

-R <reference_genome_fasta>\

-input <cohort_snp_vcf>\
-resource:hapmap,known=false,training=true,truth=true,prior=15.0
<hapmap_3.3.hg19.sites.vcf> \
-resource:omni,known=false,training=true,truth=true,prior=12.0
<1000G_omni2.5.hg19.sites.vcf> \
-resource:1000G,known=false,training=true, truth=false,prior=10.0
<1000G_phasel.snps.high_confidence.hg19.sites.vcf> \
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0
<dbsnp_138.hg19.vcf> \

-an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum \
-mode SNP \

-tranche 100.0 -tranche 99.99 -tranche 99.98 -tranche 99.97 -tranche 99.96 \
-tranche 99.95 -tranche 99.94 -tranche 99.93 -tranche 99.92 -tranche 99.91 \
-tranche 99.90 -tranche 99.80 -tranche 99.70 -tranche 99.60 -tranche 99.50 \
-tranche 99.00 -tranche 98.00 -tranche 97.00 -tranche 96.00 -tranche 95.00 \
-tranche 94.00 -tranche 93.00 -tranche 92.00 -tranche 91.00 -tranche 90.00 \
-recalFile <snp.recalfile> \

-tranchesFile <snp.tranchesfile> \

-rscriptFile <snp.plotsfile> \

--maxGaussians 4

java <java_arguments> -jar <GATK_jar_file>\
-T ApplyRecalibration \

-R <reference_genome_fasta>\

-input <cohort_snp_vcf>\

-mode SNP \

-recalFile <snp.recalfile> \

-tranchesFile <snp.tranchesfile> \
--ts_filter_level 99.5 \

-0 <postVQSR_snp.vcf>

java <java_arguments> -jar <GATK_jar_file>\

-T VariantRecalibrator \

-R <reference_genome_fasta>\

-input <cohort_indel_vcf> \
-resource:mills,known=false,training=true,truth=true,prior=12.0
<Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0
<dbsnp_138.hg19.vcf> \

-an DP -an QD -an FS -an SOR -an MQRankSum -an ReadPosRankSum \
-mode INDEL \

-tranche 100.0 -tranche 99.99 -tranche 99.98 -tranche 99.97 -tranche 99.96 \
-tranche 99.95 -tranche 99.94 -tranche 99.93 -tranche 99.92 -tranche 99.91 \
-tranche 99.90 -tranche 99.80 -tranche 99.70 -tranche 99.60 -tranche 99.50 \
-tranche 99.00 -tranche 98.00 -tranche 97.00 -tranche 96.00 -tranche 95.00 \
-tranche 94.00 -tranche 93.00 -tranche 92.00 -tranche 91.00 -tranche 90.00 \
-recalFile <indel.recalfile> \

-tranchesFile <indel.tranchesfile> \

-rscriptFile <indel.plotsfile> \

--maxGaussians 4

java <java_arguments> -jar <GATK_jar_file>\
-T ApplyRecalibration \

-R <reference_genome_fasta>\

-input <cohort_indel_vcf>\

-mode INDEL \

-recalFile <indel.recalfile> \

-tranchesFile <indel.tranchesfile> \
--ts_filter_level 99.0 \

-0 <postVQSR_indel.vcf>



### Variant Hard-Filtration ###

java <java_arguments> -jar <GATK_jar_file>\
-T VariantFiltration \

-R <reference_genome_fasta>\

-V <cohort_other_vcf>\

--filterExpression "QD < 2.0" \

--filterName "OtherHardQD" \
--filterExpression "FS > 200.0" \

-filterName "OtherHardFS" \
--filterExpression "ReadPosRankSum < -20.0" \
--filterName "OtherHardReadPosRankSum" \
-0 <cohort_other_filtered_vcf>

2.6.1.4 CombineVariants (GATK)

SNV, indel and mixed variant VCFs were merged following VQSR and hard filtering,
respectively.

### Merge VCF Files ###

java <java_arguments> -jar <GATK_ jar_file>\
-T CombineVariants \

-R <reference_genome_fasta>\

-V:snp <postVQSR_snp.vcf>\

-V:indel <postVQSR_indel.vcf>\

-V:other <cohort_other_filtered_vcf>\

-o <cohort_flagged_vcf>\
-assumeldenticalSamples \
-genotypeMergeOptions PRIORITIZE \
-priority snp,indel,other

2.6.1.5 ValidateVariants (GATK)

Information and format within the merged VCF file were validated.
### Validate VCF File ###

java <java_arguments> -jar <GATK_jar_file>\
-T ValidateVariants \

-R <reference_genome_fasta>\

--dbsnp <dbsnp_138.hg19.vcf> \
--reference_window_stop 300 \

-V <cohort_flagged_vcf>

2.6.1.6 Hardy-Weinburg Equilibrium and Missingness Hard Filtering

Variant sites with a p-value falling under the threshold of 10 when testing for Hardy

Weinburg Equilibrium exact test (Wigginton, Cutler and Abecasis, 2005), were flagged
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for removal using VCFtools - - hwe. Variant sites missing greater than 10% of data were
flagged for exclusion using VCFtools - - maxmissing.

Flagged variants were removed from further analysis using VCFtools parameters --
remove-filtered-all --recode --recode-INFO-all.

### Removal of VQSR Flagged Variants ###

vcftools \

--vcf <cohort_flagged vcf>\
--out <cohort_filtered_vcf> \
--remove-filtered-all \
--recode \

--recode-INFO-all

2.6.2 Variant filtration of Cohort 2

Software and corresponding versions used throughout variant filtration are listed in Table
2-17. Input files for analysis were sourced from the GATK Resource Bundle for reference
genome hg19, available at:

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-18).

Software Version

Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836
VCFtools 0.1.14-gcc-8.2.0-srywzy
Picard 2.20.2-SNAPSHOT

Table 2-17 Software used at variant filtration.

Input Version
Reference Genome UCSC hgl9
VQSR Model Training Set dbsnp 138 (hg19)

hapmap 3.3 (hg19)

omni 2.5 (hg19)

1000G Phase 1 High-Confidence SNPs
(hg19)

Mills Gold Standard Indels

Table 2-18 Input datasets used at variant filtration.
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2.6.2.1 Split Cohort VCF by variant type

The cohort VCF file was split by variant type using SelectVariants (GATK) and output
into distinct cohort SNV, indel and mixed VCF files.

#### Split Variants by Variant Type ###

java <java_arguments> -jar <GATK_ jar_file>\
-T SelectVariants \

-R <reference_genome_fasta>\

--variant <newly_genotyped_cohort_vcf>\
-L chrl -L chr2 -L chr3 -L chr4 -L chr5 \

-L chr6 -L chr7 -L chr8 -L chr9 -L chr10 \

-L chr1l1 -L chr12 -L chr13 -L chr14 -L chr15 '\
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 \
-L chr21 -L chr22 -L chrX -L chrY \

-0 <cohort_snp_vcf>\

-selectType SNP

java <java_arguments> -jar <GATK_ jar_file>\
-T SelectVariants \

-R <reference_genome_fasta>\

--variant <newly_genotyped_cohort_vcf>\
-L chrl -L chr2 -L chr3 -L chr4 -L chr5 \

-L chr6 -L chr7 -L chr8 -L chr9 -L chr10 \

-L chr11 -L chr12 -L chr13 -L chr14 -L chr15\
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 \
-Lchr21 -L chr22 -L chrX -L chrY \

-0 <cohort_indel_vcf>\

-selectType INDEL

java <java_arguments> -jar <GATK_jar_file>\
-T SelectVariants \

-R <reference_genome_fasta>\

--variant <newly_genotyped_cohort_vcf>\
-Lchrl -L chr2 -L chr3 -L chr4 -L chr5 \

-L chr6 -L chr7 -L chr8 -L chr9 -L chr10\

-L chr11 -L chr12 -L chr13 -L chr14 -L chr15 '\
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 '\
-L chr21 -L chr22 -L chrX -L chrY \

-0 <cohort_other_vcf>\

-xISelectType SNP \

-xISelectType INDEL

2.6.2.2 VQSR and Hard Filtering

VariantRecalibration (GATK) and ApplyRecalibration (GATK) were run independently on
SNV and indel raw variants.

Mixed variants not falling into these variant types were hard filtered using GATK Best
Practices for indel filtration, as too few variants fell into this category to train the Gaussian
mixture model of VQSR (Table 2-16).
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#it# VQSR ###

java <java_arguments> -jar <GATK_ jar_file>\

-T VariantRecalibrator \

-R <reference_genome_fasta>\

-input <cohort_snp_vcf>\
-resource:hapmap,known=false,training=true,truth=true,prior=15.0
<hapmap_3.3.hg19.sites.vcf> \
-resource:omni,known=false,training=true,truth=true,prior=12.0
<1000G_omni2.5.hg19.sites.vcf> \
-resource:1000G,known=false,training=true, truth=false,prior=10.0
<1000G_phasel.snps.high_confidence.hg19.sites.vcf>\
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0
<dbsnp_138.hg19.vcf> \

-an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum \
-mode SNP \

-tranche 100.0 -tranche 99.99 -tranche 99.98 -tranche 99.97 -tranche 99.96 \
-tranche 99.95 -tranche 99.94 -tranche 99.93 -tranche 99.92 -tranche 99.91 \
-tranche 99.90 -tranche 99.80 -tranche 99.70 -tranche 99.60 -tranche 99.50 \
-tranche 99.00 -tranche 98.00 -tranche 97.00 -tranche 96.00 -tranche 95.00 \
-tranche 94.00 -tranche 93.00 -tranche 92.00 -tranche 91.00 -tranche 90.00 \
-recalFile <snp.recalfile> \

-tranchesFile <snp.tranchesfile> \

-rscriptFile <snp.plotsfile> \

--maxGaussians 4

java <java_arguments> -jar <GATK_jar_file>\
-T ApplyRecalibration \

-R <reference_genome_fasta>\

-input <cohort_snp_vcf>\

-mode SNP \

-recalFile <snp.recalfile> \

-tranchesFile <snp.tranchesfile> \
--ts_filter_level 99.5 \

-0 <postVQSR_snp.vcf>

java <java_arguments> -jar <GATK_jar_file>\

-T VariantRecalibrator \

-R <reference_genome_fasta>\

-input <cohort_indel_vcf> \
-resource:mills,known=false,training=true,truth=true,prior=12.0
<Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0
<dbsnp_138.hg19.vcf> \

-an DP -an QD -an FS -an SOR -an MQRankSum -an ReadPosRankSum \
-mode INDEL \

-tranche 100.0 -tranche 99.99 -tranche 99.98 -tranche 99.97 -tranche 99.96 \
-tranche 99.95 -tranche 99.94 -tranche 99.93 -tranche 99.92 -tranche 99.91 \
-tranche 99.90 -tranche 99.80 -tranche 99.70 -tranche 99.60 -tranche 99.50 \
-tranche 99.00 -tranche 98.00 -tranche 97.00 -tranche 96.00 -tranche 95.00 \
-tranche 94.00 -tranche 93.00 -tranche 92.00 -tranche 91.00 -tranche 90.00 \
-recalFile <indel.recalfile> \

-tranchesFile <indel.tranchesfile> \

-rscriptFile <indel.plotsfile> \

--maxGaussians 4

java <java_arguments> -jar <GATK_jar_file>\
-T ApplyRecalibration \

-R <reference_genome_fasta>\

-input <cohort_indel_vcf>\

-mode INDEL \

-recalFile <indel.recalfile> \

-tranchesFile <indel.tranchesfile> \
--ts_filter_level 99.0 \

-0 <postVQSR_indel.vcf>



### Variant Hard-Filtration ###

java <java_arguments> -jar <GATK_jar_file>\
-T VariantFiltration \

-R <reference_genome_fasta>\

-V <cohort_other_vcf>\

--filterExpression "QD < 2.0" \

--filterName "OtherHardQD" \
--filterExpression "FS > 200.0" \

-filterName "OtherHardFS" \
--filterExpression "ReadPosRankSum < -20.0" \
--filterName "OtherHardReadPosRankSum" \
-0 <cohort_other_filtered_vcf>

2.6.2.3 CombineVariants (GATK)

SNV, indel and mixed variant VCFs were merged following VQSR and hard filtering,
respectively.

### Merge VCF Files ###

java <java_arguments> -jar <GATK_ jar_file>\
-T CombineVariants \

-R <reference_genome_fasta>\

-V:snp <postVQSR_snp.vcf>\

-V:indel <postVQSR_indel.vcf>\

-V:other <cohort_other_filtered_vcf>\

-o <cohort_flagged_vcf>\
-assumeldenticalSamples \
-genotypeMergeOptions PRIORITIZE \
-priority snp,indel,other

2.6.2.4 ValidateVariants (GATK)

Information and format within the merged VCF file were validated.

##t# Validate VCF File ###

java <java_arguments> -jar <GATK_jar_file>\
-T ValidateVariants \

-R <reference_genome_fasta>\

--dbsnp <dbsnp_138.hg19.vcf> \
--reference_window_stop 300 \

-V <cohort_flagged_vcf>
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2.6.2.5VQSR Flagged Variant Filter

Variants sites flagged for removal during VQSR were removed from downstream
analyses using VCFtools --remove-filtered-all, with --recode and --recode-INFO-all

parameters.

### Removal of VQSR Flagged Variants ###

vcftools \

--vcf <cohort_flagged_vcf> \
--out <cohort_filtered_vcf>\
--remove-filtered-all \
--recode \

--recode-INFO-all

2.6.2.6 Hardy-Weinburg Equilibrium and Missingness Hard Filtering

Variant sites with a p-value falling under the threshold of 10 when testing for Hardy
Weinburg Equilibrium exact test (Wigginton, Cutler and Abecasis, 2005), were flagged
for removal using VCFtools -- hwe. Variant sites missing greater than 2% of data were
flagged for exclusion using VCFtools -- maxmissing.

Flagged variants were removed from further analysis using VCFtools parameters

--remove-filtered-all --recode --recode-INFO-all.

2.6.2.7 Variant Evaluation

VariantEval (GATK) was run with parameters --evalModule CountVariants and --
stratificationModule Sample, to simultaneously evaluate variant counts and generate an
index for the newly created VCF.

CollectVariantCallingMetrics (Picard) was run to generate a more detailed evaluation

report.

### Variant Evaluation ###

java <java_arguments> -jar <GATK_jar_file>\
-T VariantEval \

-R <reference_genome_fasta>\

-eval <cohort_filtered_vcf>\

--evalModule CountVariants \
--stratificationModule Sample \

-noEV \

-0 <cohort_filtered.varianteval>

java <java_arguments> -jar <picard_jar_file> CollectVariantCallingMetrics \
INPUT= <cohort_filtered_vcf>\

OUTPUT= <cohort_filtered.varianteval.picardmetrics> \

DBSNP= <dbsnp_138.hg19.vcf>
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2.6.3 Variant filtration of Cohort 3
Software and corresponding versions used throughout variant filtration are listed in Table
2-19.

Software Version
BCFtools (Danecek et al., 2021) 1.15
VCFtools 0.1.17

Table 2-19 Software used in variant filtration.

2.6.3.1 Indel Removal

Indel variants sites flagged for removal from downstream analyses using VCFtools --
remove-indels --remove-filtered-all, with --recode and --recode-INFO-all parameters.

2.6.3.2 Hardy-Weinburg Equilibrium and Missingness Hard Filtering

Variant sites with a p-value falling under the threshold of 10 when testing for Hardy
Weinburg Equilibrium exact test (Wigginton, Cutler and Abecasis, 2005), were flagged
for removal using VCFtools -- hwe. Variant sites missing greater than 2% of data were
flagged for exclusion using VCFtools -- maxmissing.

Flagged variants were removed from further analysis using VCFtools parameters --

remove-filtered-all --recode --recode-INFO-all.

2.6.3.3 Quality Flagged Variant Filter

In the absence of VQSR variants sites were flagged for removal using BCFtools with
filtering thresholds set as defined in Table 2-20. These hard-filtering thresholds are set
as outlined in the table using default thresholds recommended by GATK Best Practices.
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Filter Description Threshold

QD Variant quality / depth <20

MQ Mapping Quality <40.0

FS Phred-score Fisher’s test p-value for strand | > 60.0
bias

HaplotypeScore Consistency of the site with haplotype >13.0

MQRankSum Mapping quality of reference reads vs |<-12.5

alternative reads

ReadPosRankSum | Distance of alternative allele from the end of | < -8.0
the reads

Table 2-20 GATK recommended variant quality filters for SNVs.

2.6.3.4 Variant Evaluation

VCFtools --TsTv-summary was run to evaluate variant counts and measure transition-
transversion ratios per individual. VCFtools --depth was run to evaluate mean depth of

sequencing per individual.

2.7 Cohort-level QC

2.7.1 Cohort-level QC of Cohort 1
Software and corresponding versions used throughout cohort QC are listed in Table
2-21.

Software Version

Plink (Purcell et al., 2007) plink-1.9-beta6.10-gcc-8.2.0-3uh4ocr
R studio 3.4.3 (plotting)/ 4.0.2(manipulation)
ggplot2 3.2.0

Peddy 0.4.3

(Pedersen and Quinlan, 2017)

Htslib htslib-1.9-gcc-8.2.0-7jwlitg

VCFtools 0.1.14

Python python-3.7.0-gcc-8.2.0-g4ikncu
Tidyverse (Wickham et al., 2019) 1.3.0

Table 2-21 Software used at cohort-level QC.
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The filtered cohort-level VCF was converted to plink format using plink - - make-bed.
Default sex, family IDs and parental information were updated using plink - - update-sex,
- - update-ids and - - update-parents, respectively.

Pruning of variants for downstream analysis was carried out using the following plink

parameters:

- -indep-pairwise 50 5 0.2
- -maf 0.01

The cohort-level QC-filtered VCF was prepared for input to peddy by zipping (bgzip) and
indexing (tabix) (Li et al., 2009). A standard input ped file was prepared from clinical data.
peddy was run as standard (- -p 4 - -plot) with output files outlined in Table 2-25
generated for manual inspection, along with an interactive html report file (Pedersen and
Quinlan, 2017).

2.7.1.1 Sex Check

Plink - - sex-check compared sex assignments against sex imputed from X-chromosome

inbreeding coefficients.

To confirm sample identity, sex-check was performed on pruned variants, by evaluating
X chromosome inbreeding coefficients as measured by an F-statistic (Table 2-22). The
default F value threshold is <0.2 indicating a female call and values >0.8 indicating male
assignment. In the case of this small cohort, the F threshold was reduced to values
greater than 0.7 being sufficient for male gender assignment. A problem status occurs

when there is discordance between the imputed sex and that input from phenotypic data.

Sex check designated 28 individuals as male and 14 individuals as female. This result
excluded three individuals from analysis by identifying discordance between reported
and imputed sex (Anderson et al., 2010). Individuals are excluded from further analyses

to eliminate downstream inaccuracies.
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FID IID Reported Imputed Status F-statistic
Sex Sex

AS023 | AS023C1 |1 1 OK 0.843
AS023 | AS023F 1 1 OK 0.746
AS023 | AS023M 2 2 OK -0.167
AS070 | AS0O70C 1 1 OK 0.880
ASO070 | ASO70M 2 2 OK -0.082
ASQ075 | AS075C 1 1 OK 0.835
ASO075 | ASO75F 1 1 OK 0.874
AS108 | AS108C1 |2 1 PROBLEM 0.852
AS108 | AS108C2 |1 2 PROBLEM -0.111
AS108 | AS108F 1 2 PROBLEM -0.115
AS108 | AS108M 2 2 OK -0.040
AS126 | AS126C 1 1 OK 0.862
AS142 | AS142C1 |1 1 OK 0.871
AS157 | AS157C1 |1 1 OK 0.789
AS157 | AS157F 1 1 OK 0.871
AS157 | AS157M 2 2 OK -0.120
AS190 | AS190C 2 2 OK 0.021
AS198 | AS198F 1 1 OK 0.850
AS198 | AS198M 2 2 OK 0.027
AS217 | AS217C1 1 1 OK 0.859
AS217 | AS217F 1 1 OK 0.871
AS217 | AS217M 2 2 OK -0.153
AS218 | AS218C1 |1 1 OK 0.838
AS218 | AS218F 1 1 OK 0.849
AS218 | AS218M 2 2 OK -0.113
AS306 | AS306 1 1 OK 0.862
AS306 | AS306F 1 1 OK 0.861
AS306 | AS306M 2 2 OK -0.163
AS310 | AS310C1 |1 1 OK 0.890
AS311 | AS311C1A |1 1 OK 0.812
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AS311 | AS311C1B | 1 1 OK 0.858
AS312 | AS312 1 1 OK 0.867
AS314 | AS314 1 1 OK 0.871
AS315 | AS315 2 2 OK -0.117
AS316 | AS316C1 |1 1 OK 0.893
AS319 | AS319 1 1 OK 0.824
AS321 | AS321 1 1 OK 0.881
AS322 | AS322C1 | 2 2 OK -0.124
AS420 | AS420C1 |1 1 OK 0.841
AS420 | AS420C2 |1 1 OK 0.853
AS420 | AS420F 1 1 OK 0.880
AS420 | AS420M 2 2 OK -0.181

Table 2-22 F-statistics in imputation of sex from genomic data.

FID indicates the family ID with PID indicating the unique individual ID. F refers to father, M to mother and
C1 and C2 to children 1 and 2, respectively. The F-statistic is derived from the inbreeding coefficient. F-
statistic greater than 0.8 indicate male sex, with values less than 0.2 indicating female. PROBLEM in that
status field for each sample shows discrepancy between the reported and imputed sex for that sample. OK
indicated that no discrepancy in sex was detected.

Contradictions between clinically reported sex and sex inferred from genotypes were
also highlighted by peddy (Figure 2-3) (Pedersen and Quinlan, 2017). Sex is estimated
through genotype evaluation of the pseudo-autosomal regions of the X chromosome.
With one X chromosomes, males would be expected to have no heterozygous genotype
calls on the X chromosome. peddy measures sex as the ratio of heterozygous to

homozygous genotypes in this region.
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Figure 2-3 Cohort-level sex-check.

Genotype inferred sex is estimated from the proportion of heterozygous/homozygous-alternative genotypes
on the X chromosome. The higher the proportion of such calls, the increased likelihood of female sex.
Colours, red (female) and blue (male), illustrate the sex reported from clinical data.

2.7.1.2 Relatedness Confirmation

Plink - - genome was used to compute genome-wide identity by descent (IBD) estimates
and report the proportion of IBD, i.e., PIl_HAT= P(IBD=2) + 0.5*P(IBD=1).

Imputation of relatedness was carried out as further confirmation of sample identity and
as verification of familial relationships, as well as identifying any potential duplicate
samples. Plink estimates relatedness by calculating genome-wide estimates of identity
by decent for each pair of individuals in the cohort. Identity by decent is an estimate of
the number of alleles in the pair of individuals that are derived from the same ancestral
chromosome. Unrelated individuals are expected to have a negligible PI_HAT estimate,
while parent-child and sibling pairs are expected to have a PI_HAT estimate of 0.5.
Figure 2-4 shows the distribution of PI_HAT across the cohort. As expected, most
relationships show negligible PI_HAT values indicating lack of relatedness. A clustering

at approximately 0.5 is also expected as this represent those individuals that are truly

53



related in the cohort. The relationship scoring 1.0 indicates a duplicated sample in the

cohort, one of which was removed from further analyses.

Relatedness estimates were calculated to confirm true familial relationship. IBD
calculations are also used to identify duplicates and distant relatives in the cohort. Five
individuals in the cohort show discordance between reported relatedness and calculated
relatedness. Three of these individuals had already been excluded from downstream
analysis based on failing sex-check. Related individuals are excluded from PCA to

eliminate overrepresentation of alleles in the population.

Cohort Relatedness

180
|

100
|

Pairwise Relationship Frequency

1

T T |
0.0 02 04 06 08

Identity By Descent PIHAT

Figure 2-4 Cohort relatedness as measure by PI_HAT.

This plot illustrates the degree of relatedness within the cohort. Pairwise relationships are systematically
investigated for PIHAT estimates of identity by decent. The dashed red line indicates cut-off for unrelated
individuals in the cohort. Any relationships exceeding this cut-off are true related or duplicate samples. This
cut-off is used to exclude related individuals from downstream PCA analyses.

Further investigation into the validity of the familial relationship was carried out in the
comparison of expected IBD and IBD estimated (Figure 2-5). A linear relationship is
expected to indicate correct familial relationship data. Deviation from this expectation
indicates discordance between input family information and imputed IBD. This is evident

in the outliers present in Figure 2-5.
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Figure 2-5 Expected IBD vs estimated IBD.

Expected pairwise IBD is derived from phenotypic data, while estimated pairwise IBD is calculated from

genotypes. Deviations from expectation can be identified as points straying from linear.

Relatedness within the cohort was also imputed by peddy as Identity-by-State (Pedersen

and Quinlan, 2017) (Figure 2-6). IBSO reports the number of shared variant alleles, the

number of variant sites at which individuals share 0. Errors are noted in Figure 2-6 where

the colour of each relationship point, as specified in the legend, is not positioned where

expected from the relationship specified as the coefficient of relatedness.
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Figure 2-6 Relatedness inference.

IBSO statistics vs IBS2 statistics plots the number of variant sites at which individuals share 0 alleles (x-axis)
vs the coefficient of relatedness (y-axis). Colours represent the clinically reported relationships within the
cohort as outlined in the key.

2.7.1.3 ldentification of population substructures

Principal component analysis (PCA) was used to identify potential sample clustering and
outliers. Principal components representing the greatest variance may reflect population
substructures. Pruning of variants was carried out prior to PCA to ensure the variants on
which the principal components are derived are common (MAF >0.01) are approximately
independent.

Plink - - pca var wts was run to compute principal components within the cohort on
unrelated individuals. Independence is determined for SNP window sizes of 50kb with
the number of SNPs to shift window at each step of 5. Independent SNPs are filtered by
removing one of a pair of SNPs within the window if the pairwise linkage disequilibrium
is greater than an r? threshold 0.2. This ensures that the principal components are not
computed to represent areas of local linkage disequilibrium. Duplicate and closely related
individuals were removed prior to computation of principal components to reduce bias
from over-representation of alleles (n=17 individuals removed with n=25 individuals
remaining).
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R Studio (plot) was used to plot the top two principal components and top five principal
components. All samples in the cohort are reported to be of European ancestry. PCA of
a total of 37,263 variants passing QC filters shows clustering of principal components
with deviation likely reflecting sub-European population structures (Figure 2-7,Figure
2-8).
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Figure 2-7 Principal component 1 and principal component 2.
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Figure 2-8 Top five principal components.

All samples within the cohort are of European ancestry as estimated by peddy (Pedersen
and Quinlan, 2017). This randomised PCA is trained on 2,504 samples from the 1000
Genomes Project (Halko, Martinsson and Tropp, 2009; The 1000 Genomes Project
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Consortium, 2015). Figure 2-9 presents four principal components of the cohort projected
onto 1000G, and ancestry is predicted as European in all samples.

15 ‘

1.0

0.5 | #

™~
£ 00
_0.5 5
-1.0
-15 !
~1.0 ~0.5 0.0 05 1.0 15
PC1

study samples colored by inferred ancestry

population from 1kg
AFR

AMR

EAS

EUR

SAS
UNKNOWMN

g o ; e . 4

-1.0 -0.5 0.0 0.5 1.0 15
PC1

Figure 2-9 Ancestry evaluation through principal components 1,2 and 3.

The first three principal components are calculated during PCA of 1000 genomes dataset and the cohort
under analysis and are plotted against each other. Each point on the graph represents an individual, with
bold points representing the samples under investigation and faint points representing samples from the
1000G dataset. Samples cluster into ‘super-populations,” with corresponding ancestry denoted by colour,
outlined in the legend. The cohort under investigation are visible as bold purple points, clustering within the
European population. Abbreviations: PC principal component, PCA principal component analysis, AFR
African, AMR Ad Mixed American, EAS East Asian, EUR European, SAS South Asian.
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2.7.1.4 Cohort QC in summary

Cohort-level QC of the WES dataset flagged seven individuals for errors in sample
identity as outlined. Discordance in reported and imputed sex flagged 3 samples for
removal from the cohort (Table 2-23). Following inspection of relationships, 1 sample
was removed because of sample duplication and 4 samples were removed due to

sample mix-up, as reinforced by their incorrect sex assignment (in n=3).

VCFtools --remove-indv was used to remove flagged individuals from the cohort VCF file
with parameters --recode and --recode-INFO-all.

This removes the sample from the ID column of the VCF file. However, variants occurring
in these individuals are not removed from the cohort VCF file. These variants remain
present in the cohort file but are unassigned to an individual as the respective ID column
has been removed. These now unassigned variants are removed using the filter function
in tidyverse with specification grepl('0/1|1/0|1/1’ to select out variants in a specific

individual.

All individuals within families AS023 and AS108 (n=7) were removed from downstream
analyses based on the above deviations from expectation. Confirmation of these sample
mix-ups was obtained through an independently sequenced genotyping array. This
indicates that sample misidentification did not occur during preparation of the sequencing
run, but rather are the result of an error in labelling of the DNA stocks. These DNA stocks

were subsequently destroyed to prevent future errors.

Flagged Sample Sex Relatedness

AS023C1 TRUE Unrelated to AS023F and
AS023M

AS023F TRUE Unrelated to AS023C1

AS023M TRUE Unrelated to AS023C1

AS108C1 FALSE Unrelated to AS108M

AS108C2 FALSE Duplicate sample of
AS108F

AS108F FALSE Duplicate sample of
AS108C2

AS108M TRUE Related to AS108F

Table 2-23 Samples flagged for removal by cohort-level QC checks.

The samples included in this table were removed based on discrepancies in clinically reported characteristics
and genetically imputed characteristics.
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Individual AS310 was excluded from downstream analyses based on consent (updates
from clinical collaborator Professor Louise Gallagher, May 2021). Data was removed
from the cohort dataset. No individuals were flagged for removal based on population
stratification in these analyses.

2.7.2 Cohort-level QC of Cohort 2

The cohort-level QC-filtered VCF was prepared for input to peddy by zipping (bgzip) and
indexing (tabix) (Li et al., 2009)(Table 2-24). A standard input ped file was prepared from
clinical data. peddy was run as standard with output files outlined in Table 2-25
generated for manual inspection, along with an interactive html report file (Pedersen and
Quinlan, 2017).

Software Version

Peddy 0.4.3

Samtools/htslib htslib-1.9-gcc-8.2.0-7jwlitg
Python python-3.7.0-gcc-8.2.0-g4ikncu

Table 2-24 Software used at cohort-level QC.

Suffix Context Format
.ped_check Discrepancies in ped-reported and | csv, png
.ped_check.rel-difference genotype-inferred relationship

.sex_check Discrepancies in ped-reported and | csv, png

genotype-inferred sex

.het_check Samples with higher levels of HET | csv, png

calls
.pca_check Ancestry prediction based on | csv, png, json
.background_pca projection onto 1000G principal

components

Table 2-25 Report files generated by peddy cohort analysis tool.

2.7.2.1 Sex check

To confirm sample identity, contradictions between clinically reported sex and sex
inferred from genotypes were highlighted by peddy (Pedersen and Quinlan, 2017). Sex
is estimated through genotype evaluation of the pseudo-autosomal regions of the X

chromosome. With one X chromosome, males would be expected to have no
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heterozygote genotype calls on the X chromosome. peddy measures sex as the ratio of
heterozygous to homozygous genotypes in this region (Pedersen and Quinlan, 2017).
There are no discrepancies between clinically reported sex and sex inferred from
genotypes across the cohort (Figure 2-10).
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Figure 2-10 Cohort-level sex-check.

Genotype inferred sex is estimated from the proportion of heterozygous/homozygous-alternative genotypes
on the X chromosome. The higher the proportion of such calls, the increased likelihood of female sex.
Colours, red (female) and blue (male), illustrate the sex reported from clinical data.

2.7.2.2 Relatedness confirmation

There are no contradictions between self-reported relationships and relationships
inferred from genotypes across the cohort (Figure 2-11). peddy runs a modification of
the KING algorithm across a total of 23,556 variant sites (Manichaikul et al., 2010;
Pedersen and Quinlan, 2017). This relatedness inference generates and plots statistics
IBSO and IBS2. IBSO represents the number of variant sites at which a pair of individuals
shares 0 alleles, for example a site at which one individual is A/A and the other is G/G.
IBSO enables the differentiation between sibling-pair and parent-offspring relationships,
not possible through traditional relatedness estimates as both relationships are
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estimated at 0.5. IBSO would be expected near O for parent-offspring pairs as sites not
shared between parent and offspring would be Mendelian violations. In contrast, an IBSO
statistic greater than O indicates that not all variant sites are shared, as would be
expected in sibling-pair relationships. IBS2 estimates the number of variant sites at which
both samples share the same genotype (both alleles). In plotting IBSO and IBS2
separation can be made between related and unrelated individuals, while also
differentiating between sibling-pair and parent-offspring relationships.
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Figure 2-11 Relatedness inference.

IBSO statistics vs IBS2 statistics plots the number of variant sites at which individuals share 0 alleles (x-axis)
vs the number of variant sites with the same genotype (y-axis). Colours represent the clinically reported
relationships within the cohort as outlined in the key.

2.7.2.3 ldentification of population substructures

All samples within the cohort are of European ancestry as estimated by peddy
(Pedersen and Quinlan, 2017). This randomised PCA is trained on 2,504 samples from
the 1000 Genomes Project (Halko, Martinsson and Tropp, 2009; The 1000 Genomes
Project Consortium, 2015). Four principal components of the cohort are projected onto
1000G, and ancestry is predicted (Figure 2-12).

62



PCA projection onto 1000 genomes

1.5

0.5

PC2

—=0.5

’ H AR
< H AMR
4 4
B MW EAS
-1.5 ? B EUR
B sAs
UNKNOWN
-1 -0.5 0 0.5 1 1.5 2

PC1

Figure 2-12 Ancestry evaluation through principal components 1 and 2.

The first two principal components are calculated during PCA of 1000 genomes dataset and the cohort under
analysis and are plotted against each other. Each point on the graph represents an individual, with bold
square points representing the samples under investigation and faint points representing samples from the
1000G dataset. Samples cluster into ‘super-populations,” with corresponding ancestry denoted by colour,
outlined in the legend. The cohort under investigation are visible as bold purple squares, clustering within
the European population. Abbreviations: PC principal component, PCA principal component analysis, AFR
African, AMR Ad Mixed American, EAS East Asian, EUR European, SAS South Asian.

63



2.7.3 Cohort-level QC of Cohort 3
Software and corresponding versions used throughout cohort QC of Cohort 3 are listed
in Table 2-26.

Software Version
Plink 1.07
R studio 4.0.3
ggplot2 3.3.3
Tidyverse 1.3.0

Table 2-26 Software used at cohort-level QC.

The genome-wide genotyping dataset of Cohort 3 was interrogated during cohort QC in
plink format (bfile). Default sex, family IDs and parental information were updated using

plink - - update-sex, - - update-ids and - - update-parents, respectively.

Pruning of variants for analysis was carried out using the following plink parameters:

--geno 0.2
--hwe 0.000001

2.7.3.1 Sex Check

Plink - - sex-check compared sex assignments against sex imputed from X-chromosome

inbreeding coefficients.

Sex check was performed on the genome-wide genotype data of Cohort 3. To confirm
sample identity, sex-check was performed by evaluating X chromosome inbreeding
coefficients as measured by an F-statistic. The default F value threshold to determine
imputed set is <0.2 indicating a female call and values >0.8 indicating male assignment.
A problem status occurs when there is discordance between the imputed sex and that

input from phenotypic data, otherwise the sample is passed by the sex-check.
Sex check designated 14 individuals as male and 15 individuals as female. No

discordance between reported and imputed sex was identified and no individuals were

excluded from further analyses.
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2.7.3.2 Relatedness Confirmation

Plink - - genome was used to compute genome-wide identity by descent (IBD) estimates
and report the proportion of IBD, i.e., PI_HAT= P(IBD=2) + 0.5*P(IBD=1).

Imputation of relatedness was carried out as further confirmation of sample identity and
as verification of familial relationships, as well as identifying any potential duplicate
samples. Plink estimates relatedness by calculating genome-wide estimates of identity
by decent (IBD) for each pair of individuals in the cohort. IBD is an estimate of the number

of alleles in the pair of individuals that are derived from the same ancestral chromosome.

Relatedness was imputed from genome-wide genotypes across the cohort. These
variant sites were pruned to variant sites with an 80% genotyping rate and passing a
Hardy-Weinburg exact test at a threshold of p<=1e (removing n=3,823 variant sites).
Investigation into the validity of the familial relationship was carried out in the comparison
of expected IBD and IBD estimated (Figure 2-13). A linear relationship is expected to
indicate correct familial relationship data. Deviation from this expectation indicates

discordance between input family information and imputed IBD.
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Figure 2-13 Expected IBD vs estimated IBD.

Expected pairwise IBD is derived from phenotypic data, while estimated pairwise IBD is calculated from
genotypes. Deviations from expectation would be identified as points straying from a linear relationship.
Pairwise relationships are present for this cohort of 29 individuals estimated from genome-wide genotyping.

2.7.4 Variant quality

The 23,556 variant sites interrogated by peddy were assessed for depth of coverage and
rate of heterozygosity. Presented here are the variant filtration metrics for Cohort 2
indicating that sequenced samples fall within the expected range (Figure 2-14, Table
2-27). Deviations from this range would be indicative of potential sample contamination

or consanguinity within the dataset.
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Figure 2-14 Rate of heterozygosity across samples.

Each individual in the cohort is represented as a blue point. All samples are reported as ‘OK’ as per peddy
expected range for proportion of heterozygous calls across 23,556 variant sites (X-axis) and depth of
coverage (y-axis).

Family | Sample | Mean Heterozygous | Het Inter-decile range of b-
ID ID Depth | Call Rate Ratio | allele frequency
AS315 | AS315 34.89 0.99 0.34 |0.21

AS322 | AS322C1 | 35.91 0.99 0.34 |0.20

AS420 | AS420F | 42.83 1 0.35 |0.19

AS420 | AS420C2 | 42.03 1 0.35 |0.19

AS420 | AS420C1 | 33.26 1 0.35 |0.22

AS420 | AS420M | 30.48 0.99 0.35 |0.24

Table 2-27 Heterozygosity check.

Reported are QC measures pertaining to rates of heterozygosity at the annotated variant call sites. Mean
Depth presents the mean depth of coverage for the annotated variant sites. The proportion of sites that were
heterozygous is presented as Het Ratio. Inter-decile range of b-allele frequency is computed as the number
of alternative allele sites as a proportion of reference and alterative variant sites and reported the difference
between the 90th and the 10th percentile of the b-allele frequency. Large values of this measure are likely
to indicate sample contamination.
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2.8 Variant annotation

Variant annotation was aligned for annotation of the variant set of Cohort 1, Cohort 2 and
Cohort 3 as follows (Table 2-28).

Software Version

dbNSFP (Liu et al., 2020) 4.0a (Cohort 1 and 2), 4.3a (Cohort 3)

Java openjdk version "1.8.0_242"

Rstudio version 4.0.2 (Cohort 1 and 2), version
4.0.3 (Cohort 3)

tidyverse 1.3.0

Table 2-28 Variant annotation software and versions.

2.8.1 dbNSFP annotation

Variants were annotated using dbNSFP (database of non-synonymous functional
variants) through the java search_dbNSFP40a tool. dbNSFP compiles annotations from
29 prediction algorithms, nine conservation scores, allele frequencies from major
population databases, including 1000 Genomes and gnomAD, as well as gene-based
annotations of expression and interactions (Liu et al., 2016). These annotations are
applied to an input call-set in VCF format using the dbNSFP java database search tool.

Optional parameters -p (output existing VCF columns), -v hgl19/hg38 (specifying
reference genome), and -g (include full gene annotation set) were applied. Cohort 1 and
Cohort 2 have been aligned to hg19, while Cohort 3 has been aligned to GrCh38.

For a full outline of the variables included in the annotation refer to:

https://sites.qgoogle.com/site/[popgen/dbNSFP.
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### dbNSFP annotation

#Set java memory requirements and set temporary directory to hold temporary files

generated

java /1

-Xmx6G -Xmx6G ///
-Djava.io.tmpdir= <tmp> ///

# Run dbNSFP java search tool to run annotation
search_dbNSFP43a /1]

# Define input and output files
-i <input_vcf> ///
-0 <output_csv> ///

# output existing VCF columns in annotated csv output file

-p /1

# include the full gene annotation set

-8 [l

# specify the reference genome
-v hg38

2.8.2 Formatting and cleaning the dataset

Reading dbNSFP annotation file directly to R in the absence of a data manipulation tool
results in widespread errors, because of incorrect parsing. Due to the large number of
variables under analysis in the input file (n=483), default parsing is the most effective
strategy to input the data into a workable R environment (version 4.0.2 (Cohort 1 and 2),
version 4.0.3 (Cohort 3)). The tidyverse toolkit was used in this manipulation. Specifically,

readr (read_tsv) function was used to parse the dataset.

read_tsv(“", na=c("."),
col_types = cols(

hgl19 _chr = col_character(),
hg18_chr = col_character(),
'#chr' = col_character(),

MutPred_score = col_skip(),
MIM_id = col_skip(),
.default = col_guess()

)

)

Parsing is designated by the first 1000 rows in the data frame. This results in
chromosome variables being designated as doubles. However, this causes errors when
chromosomes X and Y are evaluated. For this reason, default parsing is overridden to
consider all chromosome names as characters.
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As outlined above parsing overwriting default parsing option was specified for variables.
With the reason for each outlined.

problems() was used to evaluate any parsing issues.
as_tibble() was used to convert from data frame to tibble for optimal manipulation.

2.9 Rare variant selection by allele frequency

Rare variants isolated based on minor allele frequencies collated in the Genome
Aggregation Database (gnomAD), using the non-Finnish European cohort (n=7,718
individuals). Parameters used in rare variant filter are specified per cohort under
investigation in Table 2-29. The annotated variant were filtered according to the workflow

presented in Figure 2-15, and as detailed in 2.9 and 2.10.
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Filtration strategy following transmission-based subset

Non-synonymous SNVs

Rare Allele frequency <0.05 in gnomAD (Non-Finnish
European)

> " _— Polyphen2 (HDIV)
Predicted £ARD phred e SIFT4G "Damaging "Damaging"

pathogenic
| I | | N

l

Satisfying 22 prediction conditions

Consensus predicted
pathogenic

Evidence of gene SFARI genes (n=960) DDD genes (n=2,664)
association with

ASD/NDD

Rare pathogenic ASD
relevant variants

Figure 2-15 Flow of variant filtering.
Arrows show the direction of flow from each level of filtering (specified on the left). SFARI refers to Simons

Foundation Autism Research Initiative Gene Module (Abrahams et al., 2013). DDD refers to the
gene2phenotype database arising from the DDD study (Wright et al., 2015).
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samples v3.1)

Cohort | Parameter Description Cut-Off Reference
1 gnomAD_exomes_NFE_AF | Alternative Rare (Karczewski
allele frequency | variants et al., 2020)
in the non- isolated
Finnish as those
European appearing
gnomAD at an
exome samples | allele
(56,885 frequency
samples) of less
than 5%
2 gnomAD_genomes_NFE_AF | Alternative Rare (Karczewski
<=0.05 allele frequency | variants et al., 2020)
in the non- isolated
Finnish as those
European appearing
gnomAD at an
genome allele
samples (7,718 | frequency
samples) of less
than 5%
3 gnomAD_genomes_NFE_AF | Alternative Rare (Karczewski
<=0.05 allele frequency | variants et al., 2020)
in the non- isolated
Finnish as those
European appearing
gnomAD at an
genome allele
samples frequency
(gnomAD of less
genome than 5%

Table 2-29 Rare variant isolation parameters.
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2.10 Pathogenic variant selection

Putatively pathogenic variants were classed as such when satisfying two or more of the
conditions outlined in Table 2-30. CADD is an algorithm-based estimate of variant
pathogenicity. The CADD phred-like score is phred-like rank score based on whole
genome raw CADD scores. The larger the CADD-phred score the more likely the SNV
annotated has damaging effect. The CADD-phred filter was set at variants with a score
of >= 20. SIFT and Polyphen-2 were taken as candidate pathogenicity measures due to
their widespread use in human genomics. Criteria for pathogenic as determined by SIFT
was taken as “D,” indicating damaging, measured by SIFT4G_pred (SIFT 4G < 0.05).

In addition to these classifications, REVEL was considered for use in pathogenicity
determination. REVEL variant scoring ranges from zero to one representing the
proportion of trees in the random forest classifying the variant under investigation as

pathogenic (loannidis et al., 2016).

Parameter

Description

Cut-Off

Reference

CADD_phred >= 20

This is phred-like
rank score based
on whole genome
CADD raw
scores. The
larger the score

the more likely

CADD phred-like
score of greater
than or equal to
20.

(Kircher et al.,
2014)

the SNP has
damaging effect.
grepl('D’, If SIFT4G is < D(amaging) or (Ng and Henikoff,
SIFT4G_pred) 0.05 the SIFT 4G <0.05. | 2003)
corresponding SIFT 4G scores
nsSNV is range from O to 1.

predicted as
"D(amaging)";
otherwise, it is
predicted as
"T(olerated)".

The smaller the
score the

more likely the
variant has

damaging effect.
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grepl('D’, Polyphen2 score | "D" ("probably (Adzhubei,

Polyphen2_HDIV_pred) | based on damaging”, HDIV | Jordan and
HumDiv, i.e., score in [0.957,1] | Sunyaev, 2013)
hdiv_prob.

The score ranges
from O to 1.

Table 2-30 Pathogenicity parameters.

## Pathogenic Variant Isolation Following dbNSFP Annotation

# Define output variant set
<PathogenicVariantSet> <- ///

# Specify starting variant set
filter(<FullVariantSet>, ///

# Specify conditions to be satisfied using OR arguments
CADD_phred >= 20 & grepl('D’, SIFT4G_pred) | /]
CADD_phred >= 20 & grepl('D', Polyphen2_HDIV_pred) | ///
grepl('D', SIFTAG_pred) & grepl('D', Polyphen2_HDIV_pred))

2.11 Autism and neurodevelopmental-associated variant selection

Variants were further subset to those with relevant to neurodevelopmental conditions by
subsetting to variants impacting the gene lists specified in Table 2-31. The largest
curated gene list to date in collating a gene-list for autism is most the SFARI Gene
database (Abrahams et al., 2013). This regularly maintained resource presents evidence
supporting the role of >1,000 genes in autism (currently n=1,045 genes as of February
2022 update), with use of a gene-phenotype association scoring system to represent the
confidence of a given gene in autism. This gene scoring approach collates all available
evidence supporting the relevance of the gene to autism risk and categorises each gene
depending on the strength of evidence as gene scores of 1 (high confidence), 2 (strong

confidence), 3 (suggestive evidence) and/or S (syndromic).

A similarly scored gene list of neurodevelopmental condition-relevant genes is DDD
gene2phenotype gene list generated from the DDD study. This gene list is collated from
variants identified in a cohort of children with severe and complex neurodevelopmental
phenotypes (Wright et al., 2015). DDD assigns genes with a level of certainty of

association, given as “Definitive,” “Strong,” or “Limited.”

74



Variants were further subset based on confidence scoring within these databases.
SFARI Genes with high confidence in autism-associated were designated as those with
a gene score of 2 and/or syndromic. This subset results in a combined gene set of SFARI
high confidence (n=393) and syndromic genes (n=126) of 510 genes, of 960 overall
SFARI Genes. The DDD Gene Set was subset to those determined by the consortium
with confirmed evidence of pathogenicity. This subsets to 1,648 genes of 2,664 genes

overall.

Parameter Description Cut-Off Reference

SFARI Gene A maintained Ensembl GenelD | (Abrahams et al.,
database of genes | present in SFARI- | 2013)
implicated in autism | Gene_genes_08-
susceptibility 07-2020release

DDD A curated list of OMIM GenelD (Wright et al.,
genes associated present in 2015)
with developmental | DDG2P_8 9 2020
conditions

Table 2-31 Autism and neurodevelopmental condition gene list filtration.

2.12 Filtering by genotype

Software Version
RStudio 4.0.2 (Cohort 1 and 2), 4.0.3 (Cohort 3)
tidyverse 1.3.0

Table 2-32 Software and versions used in variant filtering by genotype.

Where joint genotyping was performed at cohort-level (Cohort 1 and Cohort 2),
homozygosity in for alternative alleles was detected by filtering for variant sites with a
1/1 genotype (Table 2-32). Heterozygosity in these cohorts was detected by filtering for
variant sites with either a 0/1 or 1/0 genotype. Homozygosity in Cohort 3 was detected
by filtering for variant sites with a per individual allele count of two for the alternative
allele. Heterozygosity was detected by filtering variant sites with an allele count of 1 for

the alternative allele.

Across sample variant filtering by genotype was performed by tidyverse filter function

using operator %in% and inverse operator '%in% on variant rsiD.
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2.13 Application of an evidence-based curation framework to aid gene

discovery

2.13.1 Dataset under investigation

This study interrogates Cohort 2. To summarise, this dataset is comprised of non-
synonymous SNVs arising from WGS of 6 individuals (3 probands and 3 unaffected
relatives. Rare putative pathogenic variants with relevance to autism have been isolated

as outlined in 2.2.

This filtering strategy isolates 91 genes (Supplemental Table 1) in which autism-relevant
variants are occurring. Each of these genes are a candidate for curation in this study.

2.13.2 Evaluation of ClinGen curated genes

With the aim of applying the proposed gene curation strategy to otherwise uncurated
genes, genes were excluded when curation records exist in the ClinGen Gene-Disease
Validity database (Table 2-33).

export | of genes | e

Database Source Date of | Number Referenc

Clinical Genome | https://www.clinicalgenome.org/curat | 2020- 1,848 (Strande
Resource: Gene- | ion-activities/gene-disease-validity/ 09-28 et al.,
Disease Clinical 2017)

Validity Browser

Table 2-33 ClinGen gene-disease clinical validity dataset.
This table details the export of genes which have been curated through the ClinGen Gene-Disease Validity
process, hereafter referred to as ‘ClinGen gene list.” Detailed are the number of genes curated at the date

of export specified. Note: the number of genes curated is subject to frequent increase as users submit new
entries.

tidyverse functions read_csv and filter were used to cross-check the dataset under

investigation with the ClinGen gene list (Table 2-34).

Software Version
RStudio 4.0.2
tidyverse 1.3.0

Table 2-34 Software used in ClinGen gene exclusion.

76



2.13.3 Evaluation of number of reports relevant to autism

A targeted search was carried out to determine the presence/absence of literature
related to each gene under investigation and its relevance to autism. Two approaches
were taken to carry out this search as follows.

2.13.3.1 GeneCards search for autism-relevant reports

GeneCards®: The Human Gene Database is a searchable, integrative database
providing information on human genes (Stelzer et al., 2016). The publications tool within
GeneCards provides titles of and links to research articles in PubMed, as associated via
Novoseek, HGNC, Entrez Gene, UniProtKB, GAD, HMDB, and/or DrugBank. Genes
were searched against this database using the search terms “autism.” Number of reports
correct as of 2020-09-30.

2.13.3.2 SFARI Human Gene Module search for autism-relevant reports

The SFARI Gene Human Gene module is a thoroughly annotated and well-maintained

list of genes that have been studied in the context of autism (Abrahams et al., 2013).

This database compiled autism-relevant reports as follows:
“Reports — This section includes citations for the studies connecting the gene to
ASD. The reports table includes the following columns of information about each
report: the type of report (Primary, Positive Association, Negative Association,
and Support), its title, the author and year of the publication, whether the report
was ASD-specific, and any associated disorders mentioned in the report. These
articles are not necessarily limited to the field of autism research. We also include

links to the PubMed abstracts of the reference articles.”

Genes were sequentially searched against this database for autism-relevant reports

and autism-specific reports. Number of reports correct as of Q2 2020 release.
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2.13.4 Gene selection for curation by Schaaf et al. (2020) modified ClinGen
curation framework

Following evaluation of ClinGen curated genes and evaluation of number of reports
relevant to autism, as detailed above and summarised in Figure 2-16, candidate genes
were selected for gene curation though the proposed curation framework (Schaaf et al.,
2020).

Cohort-level counts (n=6 genomes)

Rare pathogenic ASD relevant variants 107 variants
Gene-level 91 genes
ClinGen curated genes ClinGen Gene-Disease Clinical Validity Curation

(n=1,848 curated genes)

|

49 ClinGen curated 42 potential genes for
curation

_______________________________________________________________________________________________________________ [

Evidence supporting ASD association 15 genes

Figure 2-16 Gene selection for curation.
Genes arising from Cohort 2 outlined in Figure 4-2 were excluded from this analysis when already curated

by ClinGen. Genes were selected for analysis when evidence of autism association is reported in the
literature.
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As demonstrated in Table 2-35, SFARI Gene was the effective method of report
selection, referencing reports which were not identified by GeneCards. SFARI Gene
reporting was further stratified based on reporting in an autism specific study versus a
study non-specific to autism. Fifteen genes with evidence supporting autism association,
and not previously curated through the ClinGen Gene-Disease validity process remain
as candidates for interrogation in this study. Three genes had greater than five autism
reports as evaluated by SFARI Human Gene Module and were prioritised for curation on
the basis that a greater number of reports may yield a greater number of variants within
each gene as candidates for curation. NAV2, NINL and CACNA2D3 were selected for

curation in this study.
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Gene name GeneCards search for autism-relevant SFARI Human Gene Module search for autism-relevant reports
(“genename” as reports
assigned through | Publications based on Number of Presence in SFARI | Total number of Number of
dbNSFP 4.0a search on “autism” in autism-relevant | Human Gene relevant non-autism- autism-specific
annotation) GeneCards publication | publications Module 2.0 specific reports reports
search (GeneCards) (Release Q2 2020) mentioning gene implicating the
gene
GRHL3 No No
AMPD1 Yes 2 Yes 3
NTRK1 Yes 2 Yes 8 1
ERCC6 No No
PAPSS2 No No
NAV2 No Yes 9 6
SLC6A5 No No
LRP4 No No
C12o0rf57 No Yes 11 1
CCDC65 No No
TRPV4 No No
EP400 No Yes 6 5
FREM2 No No
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TOGARAM1 No No
PYGL No No
KIAA0586 No No
TRIP11 No No
MAP1A Yes Yes
CGNL1 No Yes 4
DNAH9 No No
SCN4A No Yes 4 3
COMP No No
ZC3H4 No Yes 3 3
MED25 No No
STAMBP No No
UNC80 No Yes 5 2
COL4A4 No No
COL6A3 No No
SNX5 No Yes 3 2
NINL No Yes 6 6
PLXNB1 No Yes 3 3
CACNA2D3 No Yes 7 6
TBCK No Yes 1 0
FAT4 No No
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PLK4 No No
SKIV2L No No
PKHD1 No No
FBXL4 No No
ADGRG6 No No
PLXNA4 Yes 1 Yes 4 3
HR No No
CRB2 No No

Table 2-35 Evaluation of number of reports relevant to autism.

Genes included in this table are those arising from analysis on 6 individuals by WGS as detailed in Figure 4-2. This table outlines the number of reports obtained through two
avenues of evaluation: GeneCard search and SFARI Human Gene Module search. Yes/No indicate the presence or absence of reports for each gene by the corresponding
search method. Grey filled observations indicate N/A values where no reports are retrieved. Highlighted in bold are three genes for which the highest number of SFARI reports
are available for interrogation.
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2.13.4.1 Evaluation of gene constraint scores

The three genes selected for gene curation were evaluated for putative pathogenicity of
variants occurring within these genes through gnomAD analysis estimating constraint
(Karczewski et al., 2020). Constraint is estimated by variant type, i.e., LOF and missense.
Observed/expected (o/e) is a continuous measure of how tolerant a gene is to a certain
class of variation. Low o/e values indicate the gene is under stronger selection for that
class of variation than a gene with a higher value. 90% confidence interval (Cl) is given
for each o/e value. Z score given is the deviation of observed counts from the expected
number. Positive Z scores indicate increased constraint. The closer pLl is to one, the

more intolerant of protein-truncating variants the transcript is predicted to be.

2.14 Evaluating the inclusion of ACMG59 in autism and

neurodevelopmental gene lists

This analysis was carried out using the software presented in Table 2-36.

Software Version
RStudio 4.0.3
Tidyverse 1.3.0
ggvenn 0.1.8

Table 2-36 Software and versions used in evaluation of ACMG59 overlap.

ACMG59, from American College of Medical Genetics and Genomics (ACMG) (Version
2.0 06-04-2021 export), SFARI Gene (13-01-2021 release), DDD gene2phenotype (09-
04-2021 export) and the autism gene panel list compiled in ldentifying autism gene
panels were queried for overlap. Nomenclature was aligned using HGNC Multi-Symbol
Tool (Version: 2021-01-06 update) as already outlined. Overlap filtering was run by
tidyverse filter function using operator %in% and inverse operator !%in% on HUGO

aligned gene name.

This overlap of genes in the clinical gene-sets presented in is further quantified by
jaccard similarity coefficient measured as:
|A N B |AN B

J(A,B) = =
A |AUB|  |A|+|B|-|AN B
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# Define the jaccard similarity coefficient
jaccard <- function(a, b) {
intersection = length(intersect(a, b))
union = length(a) + length(b) - intersection
return (intersection/union)

}

# Compute the jaccard similarity coefficient

jaccard(a,b)
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Chapter 3. An analysis strategy to isolate exonic rare
pathogenic single nucleotide variants using next-generation

sequence data.

Presentations arising from the contents of this chapter:

“Rare genetic variation in autism; an exome sequencing study.” Fiana Ni Ghralaigh,
Cathal Ormond, Elaine Kenny, Louise Gallagher & Lorna M. Lopez

Poster presented at the Irish Society for Human Genetics, September 2020 (Appendix
[1-V).

“Analysis Pipeline of Whole Genome Sequencing Data in Neurodevelopmental
Disorders.” Fiana Ni Ghrélaigh, Niamh M. Ryan, Louise Gallagher, Lorna M. Lopez
Poster presented at the British Neuroscience Association Festival of Neuroscience, April
2019 (Appendix 111-VI).
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3.1 Abstract

Key hypothesis and key outcomes. The key aim of this chapter was to establish an
analysis pipeline to isolate rare, putatively pathogenic SNVs with autism-relevance. This
chapter details analysis of a WES cohort of 42 individuals, varied in family structure. This
work has enabled the development of a variant interpretation strategy from align
sequence reads to a filtered and relevant variant call-set. The key outcome of this
chapter is an analysis pipeline, which was applied to the datasets analysed within this
thesis. A further outcome of this chapter is a high-quality and robustly annotated set of
rare putatively pathogenic variants with evidence for autism relevance. Further value will
be gained from this variant set in the future upon combined analyses of these data with

larger autism sequencing cohorts.

3.2 Introduction

3.2.1 Next-generation sequencing

NGS enables variant detection across many classes and sizes of variation, across the
allele frequency spectrum. Management of NGS output requires application of tools and
algorithms to manipulate the large-scale datasets generated. These tools and algorithms
are used in combination in bioinformatic pipelines to translate raw data into interpretable

variant callsets for downstream biological interpretation.

3.2.2 An introduction to GATK and the gVCF file format

NGS technologies output large raw read files (FASTQ files). These files require
substantial computational power to process from raw sequencer generated reads
(FASTQ files), through aligned reads that have been mapped to a reference genome
(BAM files), to a readily interpretable called variant file (VCF files). VCF files can then be
manipulated and interrogated for biological relevance. There is currently no gold
standard in genome analysis pipeline, however GATK is a widely applied collection of
bioinformatic tools and is robustly maintained and supported by the Broad Institute
(Figure 3-1). The GATK Best Practices provide guidelines for effective use of the tool
set, enabling manipulation of parameters to suit the data set under investigation, for
example specification of target intervals or specification of reference genome. The GATK
Best Practices Workflow also incorporates use of widely applied tools Picard and BWA
(Li, 2013; Broad Institute, 2019). This multi-step analysis strategy guides bioinformatic

analysis from raw sequence read to a variant call set for biological interpretation.
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Figure 3-1 GATK best practices.
Workflow recommended from GATK. Taken from

https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-
Indels-

Jointly genotyping is an approach to genotyping that determines genotypes at each locus
with consideration of the other genotypes in the call-set. This approach is taken in GATK
Best Practices. Joint genotyping requires the use of HaplotypeCaller to generate input
genotype assignments. The gVCF file format details all variant sites in the genome
whether reference (ref) or alternative (alt), as opposed to the traditional VCF file listing
alternative variant sites only. Joint genotyping is a more time and computationally
intensive approach to genotyping, however, it improves the detection of rare variants in
the genome making it beneficial for use in a family-based study design where accurate

and sensitive rare variant discovery is required.

3.2.3 The reference genome

Following the initial publication of the mapped human genome by the Human Genome
Project in 2003, iterations of the reference human genome continue to emerge with
improving quality enabled by advances in sequencing technologies. GrCh38, curated by
the Genome Reference Consortium in 2013, is the most recent reference genome
release with gaps and errors in the original Human Genome Project reference genome
corrected by shotgun sequencing (Schneider et al., 2017). hgl9, also referred to as
GrCh37, was released in 2009 by the Genome Reference Consortium and while it has
been updated to GrCh38 it remains widely applied in genome sequencing studies.
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GrCh38 and hg19 reference genomes are currently the most common genome builds to
which human sequence data are aligned. Depending on the availability of existing
datasets and analysis requirements of a study there may be reasons to use a previous
genome build. These reasons include enabling use of legacy analysis pipelines
developed on a previous genome build. Another reason is the need for consistency
throughout dataset analysis. To achieve a cohesive dataset which can be cross analysed
it is necessary to use the same reference genome build to avoid genomic coordinate
discrepancies. Finally, annotation databases have lagged in their reannotation to
GRCh38 coordinates, often making hgl9 a more efficient reference genome for

alignment.

3.2.4 Cohort-level QC measures

Sample identity is a major concern in the reproducibility and reliability of genomic
datasets. Even with strict protocols for QC and the maintenance of a high standard of
data control and data processing, errors are observed across datasets and cohorts.
Specifically sample identity is key to robust linkage of genetic and corresponding
phenotypic data. Large-scale cohort analyses frequently observe misidentification of
samples. This can result from many possible errors such as pipetting errors at sample
collection, DNA extraction and preparation or errors in library preparation, such as
mislabelling of sequencer indices. Mismatches in genetic and phenotypic information

may also be the result of errors at the time of phenotypic data collection.

There are several features of genomic datasets that may be used as QC measures to
identify such errors. Most commonly, genotype imputed sex can be cross-referenced
with sex reported at phenotyping. In family-studies, relatedness may be used as a means
of QC by determining the degree of genomic sharing with that expected on the basis of
reported familial relationship. In the case of relatedness assignment, it is important to
consider possible true errors in relatedness that are not related to sample mix-up such
as adoptive families or families for which parental relationships are not as expected.
Deviations from expectation in these factors can be used to flag samples as discordant
for reported phenotype, resulting in a need for further investigation and potential removal

from the study.
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3.2.5 Allele frequency annotation

The rate at which a particular variant occurs in the population is a key annotation to be
made. Depending on the genetic architecture of the disease/disorder and the study
approach used, variants will be isolated based on their absence or low frequency in a
sample from the general population. Typically, common variants are defined as genetic
variants with a minor allele frequency of greater than 0.05, meaning occurrence in over
5% of the population. Rare variants are defined as genetic variants of low frequency with
a minor allele frequency of less than 0.05, meaning occurrence in less than 5% of the
population. Very rare variants are classed as those occurring in less than 1% of the
population. Rare variants are of key importance in many complex conditions, including
autism, however by nature they are challenging to identify, and even more challenging
to confidently associate with a phenotype. For example, a study of rare
neurodevelopmental-associated variants, in this case CNVs, required a minimum of five
cases of a rare variant within the cohort to enable robust stratification of their trait of
interest, cognition (Kendall et al., 2019). At a population frequency of less than 5%, rare
variant identification requires large sample sizes to achieve variant identification.
However, a family-based study design enriches for within family rare variants often giving
power to association analysis (Glahn et al., 2019).

Rarity is determined by the frequency of the less common allele, or minor allele (MAF)
in the population. Population-based cohorts are used to estimate the MAF of a given
variant within an unaffected population. These include 1000 Genomes (2,504 low
coverage and exome sequence data) (The 1000 Genomes Project Consortium, 2015),
Exome Aggregation Consortium (EXAC) (60,706 exomes) (Lek et al., 2016), and most
recently emerging as leader in the field, gnomAD (v3: 71,702 whole genomes mapped
to GRCh38 reference genome) (Karczewski et al., 2020). The estimation of ancestry of
the individual from genotype is critical to determine the expected rarity of a particular
variant. Population stratification is key to establishing the MAF of a given variant in the

relevant population substructure.

3.2.6 Algorithm based approaches to measure predicted pathogenicity

Accurate pathogenicity prediction is essential to variant interpretation and putting
variants in the context of their biological impact, however interpretation remains an
enormous challenge. Bioinformatic tools and scoring algorithms have been developed
with an aim to provide these variant annotations and prioritise variants that are impacting

on human phenotypes.
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The degree to which a variant may impact the carrier can be estimated by the change in
genomic sequence that it causes. At a broad level, a variant may have a synonymous or
non-synonymous change to the protein sequence. Synonymous refers to a change in
genetic code that does not result in a change to the amino acid encoded. Non-
synonymous refers to variant sites at which a variant is encoding a different amino acid
to wild-type, potentially impacting protein function. Within the non-synonymous effect of
variation, variant changes can be further categorised by the way in which protein
sequence is disrupted. Missense variants cause a change in sequence that results in
production of a different amino acid to wild type. Loss-of-function (LoF) variants are
predicted to cause a complete disruption to the protein-coding gene in which it is found
(Figure 3-2).
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Figure 3-2 Classes of LoF variation affecting protein-coding regions.
Taken from MacArthur & Tyler-Smith (2010): “A model three-exon gene is shown both intact (top) and
following the introduction of various types of LOF variant (red triangles). Effects on the transcript produced

by the gene are shown at the right. LOF variants typically result in a loss of protein-coding functionality
downstream of the variant (red boxes).”

Missense variants are far more abundant in the genome than LoF variants, with the
majority having no harmful effect on gene function (Ronemus et al., 2014). For this
reason, it is common to eliminate missense variants, which are not predicted to be
pathogenic by scoring algorithms, based on functionality and conservation, from analysis

of putative autism variants.

A variety of bioinformatic statistical tools are available to determine the expected

pathogenicity of a given variant (Ng and Henikoff, 2003; Adzhubei, Jordan and Sunyaev,
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2013; Kircher et al., 2014; Jagadeesh et al., 2016). Each score is based on an individual
algorithm, many considering a combination of variant genomic coordinates, amino acid
consequence, base-pair change and conservation of the gene in which the variant is

occurring.

Individual pathogenicity scoring approaches are typically used in a combined consensus
approach, for example pathogenic by SIFT and PolyPhen-2 scoring. SIFT (Ng and
Henikoff, 2003) and PolyPhen-2 (Adzhubei, Jordan and Sunyaev, 2013) both predict the
effect of amino acid substitution on protein function. However, use of these algorithms
comes with certain limitations. Firstly, SIFT and PolyPhen-2 are highly dependent on the
protein sequence database that is used to retrieve homologous sequences. Secondly,
there is incomplete coverage of the genome by these scores. By excluding variants
reaching standards for pathogenic by these algorithms, there is potential to exclude true
pathogenic variants solely on the basis that they are missing the appropriate scoring by

individual algorithms.

With the high volume of potential variant annotation tools available, algorithms-based
approaches have been created to incorporate multiple scoring measures and output a
singular determination of pathogenicity. Most popular in the field, is CADD, Combined
Annotation-Dependent Depletion (Rentzsch et al., 2019).

In practice, CADD outputs variant specific raw scores and PHRED-scales scores, which
are normalised to all potential SNVs in the genome (~9 billion). A PHRED-scaled CADD
score of >10 indicates a raw CADD score occurring in the top 10% of reference SNVs,
and a score of >20 indicates a raw CADD score in the top 1%. A variant cannot be
deemed as pathogenic based on a blanket CADD score cut-off, similarly a variant cannot
be deemed benign by having a CADD score below a cut-off value. Rather consideration
is needed of phenotype severity, mode of inheritance and also resources for genomic
interpretation of the output variant list (Rentzsch et al., 2019). Instead, the top-ranked
variants in a dataset should be further investigated in a way that is particular to the study

design.

3.2.7 Database annotation — retrieval of known information from databases

Database search tools are available to retrieve existing variant information from a set of

input coordinates or variant IDs. The advantages of using such annotation databases

comes from the ability to carry out multiple levels of annotation in a fast and effective
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way. However, the utility of these databases hinges of the maintenance of the tool and
the frequency at which it is updated, specifically in line with release of new versions of
individual annotation sources, e.g., CADD (Rentzsch et al., 2019), Clinvar (Landrum et
al., 2018).

Some commonly used annotation databases include dbNSFP, Variant Effect Predictor
(VEP) and Annovar. doNSFP compiles annotations from 29 prediction algorithms, nine
conservation scores, allele frequencies from major population databases, including 1000
Genomes and gnomAD, as well as gene-based annotations of expression and
interactions (Liu et al., 2016). These annotations are applied to an input call-set in VCF

format using the dbNSFP java database search tool, as has been applied in this chapter.

3.2.8 EXxonic variation in focus

Genetic variants associated with autism disrupt a wide variety of biological pathways and
processes (De Rubeis et al., 2014). Huge efforts have been made to understand these
pathways and how they are disrupted in autism. Identifying pathways and processes
showing an increased mutational burden in autism advances our understanding of
autism aetiology. The role of non-coding variation in autism has been established, as
has been introduced in 1.7.3 (Turner et al., 2016; Brandler et al., 2018). The
interpretation of non-coding variation is challenging but despite this robust gene-
phenotype associations have been made in neurodevelopmental conditions (Wright et
al., 2021). As cohort sample sizes increase and power to detect rare non-coding variation
increases these variant classes are likely to uncover much of the rare genetic

contribution to autism.

WES enables detection of rare variation within the protein-coding genome. Satterstrom
et al. demonstrate the ability of whole-exome sequencing to identify rare autism-relevant
variants when sample sizes are large in their association of 102 genes with autism
(Satterstrom et al., 2020). Compilation of gene-lists containing genes involved in a given
process, are invaluable in establishing the process which a putative variant may be
disrupting, and such gene lists are often consulted for membership when investigating

the impact of a variant (Feliciano et al., 2019).
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Sequencing studies of autism cohorts can compile variants in affected individuals into
gene lists against which rare variants may be searched, such as pathway based gene
lists (Yuen et al., 2015). Further to these autism-associated processes, genes associated
with schizophrenia and ID may be informative to consider in analyses (lossifov et al.,
2014). This due to the shared global gene expression pathways identified among some
psychiatric conditions (Gandal et al., 2018).

While these pathways and processes are frequently implicated in autism, these lists of
gene do not constitute a clinically relevant gene-list. Consequently, these gene lists
should not be considered a finite and exclusive list of genes to be used in genetic testing
in autism. The establishment and maintenance of databases in which gene-level
information is openly shared are crucial to progress the field. The largest curated gene
list to date in collating a gene-list for autism is most the SFARI Gene database
(Abrahams et al.,, 2013). This regularly maintained resource presents evidence
supporting the role of >1,000 genes in autism (currently n=1,045 genes as of February
2022 update), with use of a gene-phenotype association scoring system to represent the
confidence of a given gene in autism. This gene scoring approach collates all available
evidence supporting the relevance of the gene to autism risk and categorises each gene
depending on the strength of evidence as gene scores of 1 (high confidence), 2 (strong
confidence), 3 (suggestive evidence) and/or S (syndromic).

While this is an invaluable tool for use in research, the lack of a systematic evidenced
based framework means this has limited applicability in clinical settings, such as
diagnostic testing. A similarly scored gene list of neurodevelopmental condition-relevant
genes is DDD gene2phenotype gene list generated from the DDD study. This gene list
is collated from variants identified in a cohort of children with severe and complex
neurodevelopmental phenotypes (Wright et al., 2015). DDD assigns genes with a level

of certainty of association, given as “Definitive,” “Strong,” or “Limited.”
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3.2.9 Hypothesis and aims

No gold-standard pipeline currently exists for the isolation of rare exonic SNVs from NGS
datasets. The research outlined within this chapter has yielded a strategy for the isolation
of such variants in autism cohorts as is applied in Chapters 4 and 5. This pipeline has
been informed by literature in the field and makes use of available databases to leverage
existing information, including SFARI gene and DDD (Abrahams et al., 2013; Wright et
al., 2015). Rare SNVs in autism-relevant genes are detectable by WES. This dataset is
limited in its power to provide statistically significant rare variant autism associations.
However, the data can be leveraged to build an analysis strategy for use in the
identification of rare SNVs in autism. Putatively pathogenic autism-relevant SNVs may
be identified through these analyses building evidence toward existing gene-phenotype

association.

The aims of this chapter are:

1) to establish an analysis strategy for isolation of rare exonic pathogenic SNVs from
NGS data.

2) to discover rare putatively pathogenic autism-relevant SNVs in a cohort of autistic
individuals and their unaffected family members.
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3.3 Results

3.3.1 Cohort in summary

This chapter describes analysis of WES of Cohort 1. Cohort 1 is a dataset of a total of
42 individuals. Ascertainment of this cohort is described in 2.1.1. The cohort is comprised
of 23 putatively simplex cases of autism and their unaffected family members whose
genotypes have been used, where available, to restrict to putatively pathogenic variation,

as will be described in 3.3.5.

3.3.2 Low-confidence variant filtering

The initial variant call-set of a total of 127,842 variant sites comprised of SNVs, Indels
and other variants as detailed in Table 3-1. Table 3-1 shows successful variant calling
as demonstrated by the breakdown of variants by variant type. As expected, the largest
proportion of variants called are SNVs. Mixed variants in these analyses account for
single variant positions at which both SNVs and indels are occurring in the cohort. GATK

Haplotype Caller is unable to call SVs or CNVs.

Variant Type Cohort Count
SNV 117,101

Indel 10,310

Mixed 431

Table 3-1 Variant count by variant type.

Exact variant counts per variant type. SNV refers to single nucleotide variants; Indel refers to insertion
deletion variants; Mixed refers to variant loci at which both SNVs and indels have been identified.

Towards filtering to high-confidence variants, the VQSR machine learning filtering
approach was applied through GATK, as specified in 2.6.1.3. VQSR flagged a total of
17,283 SNV and indel variant sites likely to be sequencing artefacts. VQSR is not
compatible with non-SNV and indel variant sites. These variants were instead hard-
filtered using a more crude approach of hard-filter removal of variant sites on the basis
of quality score normalised by read depth (Quality by Depth < 2.0; generic filtering
recommendation), probability of strand bias at the site (Fisher Strand > 200.0; little to no
strand bias at the site will be indicated by values close to 0) and position of reference
versus allele positions within reads (Read Position Rank Sum Test < -20.0; a negative

score indicates the alternative allele is found at the ends of reads more often than the
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reference and a score close to zero indicates little difference between positions in the
reads). A total of 110,559 variants were retained in the call-set.

Following VQSR of SNVs and Indels and hard-filtering based on sequencing metrics,
variants were hard-filtered to isolate and remove those variants deviating from Hardy-
Weinburg equilibrium (exact test <10) and variant sites missing greater than 10% of
data. A total of 106,590 (of n=110,559) high-confidence variants were retained in the
call-set for downstream annotation. Variants remaining following these QC filters were
counted and plotted by variant type. The variant calling and joint genotyping pipeline is
effective across the exome, as shown by the variant counts by chromosome (Figure 3-3).
The inconsistency in number of variants per chromosome is expected given the
difference in chromosomal length and the variation in the number of probes targeting

each chromosome.

Cohort-level Variant Count by Chromosome
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Figure 3-3 Cohort-level variant count by chromosome.

The bar chart shows counts of the overall variants (SNV, indels and mixed variant) called from the cohort
and presents them across the genome per chromosome. Note that mitochondrial chromosomes variants
were not included in these analyses. The inconsistency in number of variants per chromosome is expected
given the difference in chromosomal length and the variation in the number of probes targeting each
chromosome in the whole exome sequencing panel.
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3.3.3 Variant annotation

Annotation by dbNSFP at the cohort-level for a total of 34 whole exomes passing QC.
dbNSFP annotates all non-synonymous variation according to the specified parameters.
In this case dbNSFP has annotated with optional parameters -p (output existing VCF
columns), -v hgl9 (specifying reference genome), and -g (include full gene annotation

set).

A total of 36,872 SNVs were found in annotation as non-synonymous variants. A total of
69,718 SNVs were not found and are excluded, and further analysis of this variant class
falls outside the aim of this project. Further analysis of these excluded variant classes
will be necessary to characterise the full variant set per individual. dbNSFP annotated

each of the 37,148 counts of the non-synonymous SNVs identified with 511 variables.
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Cohort-level variant counts (n=34 exomes)

Non-synonymous SNVs 34,600 variants
Rare Allele frequency < 0.05 in gnomAD (Non-Finish European)
15,357 variants
Predicted CADD phred 220 SIFT4G "Damaging” Polyphen2 (HDIV) "Damaging”
pathogenic 8,299 variants 5,348 variants 4,022 variants

I | | ||

Consensus predlcted Satisfying 22 prediction conditions

pathogenic 5,342 variants

Evidence of gene SFARI genes (n=960) DDD genes (n=2,664)
association with 75 variants 183 variants
ASD/NDD

Robust evidence of SFARI gene-score <2 (n=393) DDD “confirmed”.genes(n=1,648)
gene association with 25 variants 92 variants
ASD/NDD

Rare pathogenic ASD relevant variants 113 variants

Figure 3-4 Flow of variant filtering with cohort-level variant counts.

Arrows show the direction of flow from each level of filtering (specified on the left). Rare variants are
determined on the basis of their allele frequency reported in gnomAD, with an allele frequency of less than
or equal to 0.05 indicating rarity. Predicted pathogenicity is determined by consensus scoring as pathogenic
by CADD (Phred greater than or equal to 20), SIFT4G (“Damaging”) and Polyphen-2 (HDIV “Damaging”).
Gene-level autism associations are determined by gene membership in SFARI or DDD databases. SFARI
refers to Simons Foundation Autism Research Initiative Gene Module (Abrahams et al., 2013). DDD refers
to the gene2phenotype database arising from the DDD study (Wright et al., 2015).

98



3.3.4 Variant filtration

The workflow developed and applied in these analyses is presented in Figure 3-4. The
full set of non-synonymous variants which has been annotated as described in 3.3.3 are
subject to further subsetting on the bases of allele frequency, predicted pathogenicity

and gene-level associations as follows.

3.3.4.1 Allele frequency filtration

The estimation of ancestry of the individual from genotype is critical to determine the
expected rarity of a particular variant. Population stratification is key to establishing the
MAF of a given variant in the relevant population substructure. PCA of the cohort advised
of a European ancestry in all individuals within the cohort. To align with the parameter
gnomAD_exomes_NFE_AF, was selected as the relevant allele frequency for filtration
of this cohort. This quantifies the frequency which the alternative allele was observed in
the non-Finnish European gnomAD exome cohort of 56,885 individuals. Variants were
restricted to those observed in less than 5% of this population (<= 0.05). A total of 17,667
non-synonymous rare variants remains for further analysis. Common genetic variation,
while putatively pathogenic in this complex condition, is beyond the scope of this analysis

strategy.

3.3.4.2 Pathogenicity filtration

Due to the inconsistencies and differences in approach of pathogenicity prediction
algorithms described earlier, a consensus scoring approach was taken to determine
variant pathogenicity. Variants determined to be predicted pathogenic were required to
be predicted pathogenic by greater than or equal to 2 of the specified condition as

detailed below.

As previously described, CADD is an algorithm-based estimate of variant pathogenicity.
The CADD phred-like score is phred-like rank score based on whole genome raw CADD
scores. The larger the CADD-phred score the more likely the SNV annotated has
damaging effect. The CADD-phred filter was set at variants with a score of >= 20. A total

of 9,624 variants satisfy this criterion.

SIFT and Polyphen-2 were taken as candidate pathogenicity measures due to their

widespread use in human genomics. Criteria for pathogenic as determined by SIFT was

taken as “D,” indicating damaging, measured by SIFT4G_pred (SIFT 4G < 0.05). A total
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of 6,182 variant were scored pathogenic. Polyphen2_HDIV_pred with a score of “D”,
indicating damaging (HDIV score in [0.957,1]), isolated 4,638 pathogenic variants.

REVEL score filtering was applied to the annotated variant set at two levels

>=0.75 and >= 0.5. This strategy identified just 382 and 1,388 variants respectively, that
satisfy this criterion. REVEL was excluded as a candidate pathogenicity filter score as it
so greatly contradicted the other pathogenicity scores investigated. A total of 6,167
variants were designated as consensus predicted pathogenic (Figure 3-4).

3.3.4.3 Gene-set filtration

Rare predicted pathogenic variants were further filtered for those that occur in genes that
have been associated with autism and neurodevelopmental conditions. The gene-sets
used towards this goal were the SFARI Gene database (SFARI-Gene_genes_08-07-
2020release_09-07-2020export) and the DDD gene2phenotype database
(DDG2P_8_9 2020).

The annotated and filtered variant set were filtered for those associated with autism
through SFARI by ENSEMBL gene IDs to avoid complications of filtering on gene names
in the case that there are multiple gene names used. A total of 87 variants remaining
when restricting variants to the 960 genes included in the database. Variants were further
subset to higher confidence SFARI Gene variants, those with a gene-disease evidence
score of one of two. This resulted in isolation of 29 variants. In parallel to this filtration
the annotated and filtered variant set were restricted to those occurring only in DDD
gene2phenotype genes, as identified by Online Mendelian Inheritance in Man (OMIM)
ID for consistency across annotations. A total of 212 variants were isolated. This was
further restricted to 111 variants when only those genes with a confirmed association
with developmental conditions were included. Both variant sets arising from gene-level
filtration were taken for downstream analysis, as outlined in Figure 3-4. Just 5 variants
overlapped in these parallel gene lists filters, i.e., five variants isolated have evidence for
phenotype association as determined by both SFARI and DDD. The variants isolated

through this filtration strategy are shown graphically in Figure 3-5.
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Figure 3-5 Spread of variation across genomic regions.

Chromosomes are shown around the outer track of the figure (1:22, X). The gene names are given on the
inner track. These are the genes in which the rare pathogenic autism-relevant variants outlined in Figure 3-4
are located. Links are made in purple (affected n=103 variants) and blue (unaffected n=86 variants) between
each gene and the respective affection status of the individual harbouring the variant. Affected denotes
individuals with an autism diagnosis.
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Figure 3-6 Per individual counts of variants under investigation.

Box plots are representative of affection status as detailed in the figure legend. Points on boxplot indicate each individual represented,
against the number of rare putatively pathogenic variants occurring in the autism-relevant gene set investigated. Wilcoxon statistic was
computed between groups with no significant difference in number of variants identified between groups.

The rare putatively pathogenic variants were subset to those occurring in affected
individual and those occurring in unaffected family members. The number of variants is
presented per individual in Figure 3-6. There is no statistically significant difference in

the number of variants per individual dependant on affection status (Wilcoxon, p=0.69).
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3.3.5 Trios in focus

This cohort comprises of singletons and trios. Here probands were selected for further
investigation where both parent samples were also included in the cohort. Five probands
and their unaffected family members, 16 individuals total, were subset from the cohort.
Family structure within this cohort was used to subset the identified putatively pathogenic
variants to those with added confidence in pathogenicity on the basis of their absence
from unaffected family members. Variants in probands that are absent in unaffected
family members were isolated from the variant subset of rare putatively pathogenic

variants in autism-relevant genes where present and results are presented in Table 3-2.

Proband | Homozygous de Heterozygous de Gene Decipher
ID novo variant novo variant Name Reported
subset subset Phenotype

AS157C1 | O 0 N/A N/A

AS217C1 |1 0 MATN3 | Multiple
Epiphyseal
Dysplasia Type 5

AS218C1 | 0 0 N/A N/A

AS306 0 0 N/A N/A

AS420C1 | 0 0 N/A N/A

Table 3-2 Trios in focus.

Presented are the number of de novo variants isolated from 5 probands within the cohort, where both parent
samples were available. Where applicable further detail is given on variants of interest identified. Phenotype
is given as that specified in Decipher GrCh38.

3.3.6 Biological interpretation of variation impacting MATN3

Analysis of trio data within Cohort 1 yielded a single de novo variant of interest occurring
in proband AS217C1. This variant, rs77245812 is a single base G>A change impacting
position chr2:20202930, within the protein coding gene MATN3. The protein encoded by
this gene forms a major component of the extracellular matrix of cartilage and has been
reported to be involved in the formation of filamentous networks in the extracellular
matrices of a variety of human tissues (Chapman et al., 2001). Variation within MATN3
has been associated with Multiple Epiphyseal Dysplasia 5, Osteoarthritis Susceptibility
2, and Spondyloepimetaphyseal Dysplasia, Borochowitz-Cormier-Daire Type, as
reported by OMIM:602109 (Amberger et al., 2015). Null mouse models for MATN3 have
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been generated by Ko et al. (2004) reporting no obvious skeletal malformations in
homozygous mutant mice and the authors suggest redundancy in the matrilin family of
proteins (Ko et al., 2004). The single base change identified in within Cohort 1 results in
an amino acid change of p.Thr303Met as estimated by HGVSp_SNPeff through
dbNSFP. Following evaluation of the biological implication of variation within this gene,
the reported autism phenotype of this proband cannot be accounted for by rs77245812.
This gene is not included in SFARI gene, lacking autism-specific associations (Abrahams
et al., 2013).

104



3.4 Discussion

This chapter describes preliminary analyses of this cohort of WES data of 42 individuals.
Three outputs are generated from the research outlined here. Firstly, a variant set of rare
predicted pathogenic variants (n=135) occurring in genes with evidence of relevance to
autism and neurodevelopmental conditions (Figure 3-5). Secondly, an analysis strategy
has been developed for further application in discovery of rare coding autism-relevant
variation. Finally, this analysis has resulted in the generation of robustly and uniformly
processed and quality-controlled variant-call sets which will be combined with large
whole-exome sequencing studies of autism, both in-house and internationally, bringing

research value to these studies.

3.4.1 Variant-level QC
Genomic data processing was carried out as recommended by the Genome Analysis
Tool-Kit (Van der Auwera et al., 2013) (Figure 3-1) with parameters adapted from GitHub

commit: cathaloruaidh/WGSVariantFiltering.

Reads failing the duplicate read filter were removed from analysis and Base Quality
Score Recalibration (BQSR) was applied. Base quality scores are per-base estimates of
error arising from sequencing machines. The scores represent the confidence that an
individual base has been correctly called. Accurate variant calling is dependent on
accuracy of base guality scoring. However, initial base quality scores are subject to
technical errors and biases arising from sequencing. BQSR overcomes these errors by
applying a machine-learning algorithm to model the inaccuracies and adjust the base

quality scores to represent true base quality scores more accurately.

Following BAM processing variant calling was carried out using the GATK Haplotype
Caller, calling SNVs and indels. Genotyping was carried out at cohort-level by jointly
genotyping samples. The advantages to jointly genotyping, as opposed to genotyping at
the sample-by-sample level are:

a) Improved sensitivity in the detection of rare variants

b) Improved distinction of homozygous reference variant site and missing variant sites

c) Greater ability to filter out false positives.

Rather than applying independent hard filters to the variant call-set, VQSR is applied
with subsequent filtration on VQSLOD, i.e., the log of the odds ratio of the variant being

true versus false under the model. This filtration method is advantageous as it considers
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each variant annotation in combination to minimise the number of confident variants lost.
Variants failing the Hardy-Weinburg Equilibrium filter were excluded from analysis on the
basis that departure from Hardy-Weinburg equilibrium may indicate inaccurate
genotyping. Variant sites with a high proportion of missing data are removed from
analysis also. The analyses described in this chapter interpret the SNVs detected
through this variant detection strategy only. Future analysis incorporating the mixed
variant sites and indels summarised in Table 3-1, with the SNVs described will improve

these analyses considering a more complete view of the exonic variants detected.

3.4.2 Cohort-level QC

Sample identity is critical in building and maintaining datasets, particularly clinical
datasets due to the potential for results to be returned to individuals and inform medical
and lifestyle decision making. QC measures such as those outlined in these analyses
aim to highlight sample mix-up and discrepancies in biologically imputed characteristics

against those reported.

Early identification of errors is key to avoidance of significant time and resource losses
associated with processing of invalid data and the necessary re-analysis of datasets
following eventual removal of invalid data points. In this chapter, two methods of cohort-
level QC checks have been carried out. Both, plink and peddy approaches were
successful in flagging samples for removal (Purcell et al., 2007; Pedersen and Quinlan,
2017). peddy computes relatedness as IBS, identity by state, rather than more traditional
IBD, identity by descent measures. In a family-based study, this statistic has the added
benefit of differentiating between sibling-sibling and parent-child relationship, both
having a coefficient of relatedness of 0.5 (Figure 2-4, Figure 2-5).

An important consideration when evaluating discordance in phenotypic and genomic
data is the possibility of errors in reported affection status or other phenotyping
measures. Schaaf et al. outline the importance of robust clinical phenotyping in studies
of human disease (Schaaf et al., 2020). Incorrect assignment of affection can have a
detrimental impact on the integrity of the dataset. Inclusion of a neurodevelopmental-
affected individual, who have been incorrectly assigned as unaffected or a control, may
harbour a pathogenic neurodevelopmental-relevant variant which may then be
considered as non-pathogenic due to the designation of the individual as unaffected.
This may have further impacts on the cohort in the situation where the variant under
consideration is shared with another affected individual within the cohort, however
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presence of the variant in an unaffected individual weakens the evidence supporting the
role of the variant in the neurodevelopmental phenotype. For this reason, clinical
diagnosis of affected individuals has been validated by Prof. Louise Gallagher (Child &
Adolescent Psychiatrist) prior to inclusion in the study and assignment of affection status
(2.1.12).

3.4.3 Selection of rare variant parameters

These analyses focus of the discovery of variants that are rare in the population. Rarity
is determined by the frequency of the alternative allele in the population. Large scale
projects have been carried out to determine allele frequencies in the general human
population. Key to the analysis of MAF is the ancestral background of each sample under
investigation, to determine which alleles are rare given the presence of variant alleles in
a similar genetic background. Importantly, large sample sizes are required to identify
extremely rare variants. The largest collection is gnomAD, composed of a total of

125,748 human exomes and 15,708 human genomes, from (Karczewski et al., 2020)

In determining variants that are rare in the population, MAF cut-off thresholds vary
depending on study, typically using MAF <0.01 or MAF <0.05. In these analyses the
allele frequency cut-off is set at 0.05 to ensure variants are rare but include as many rare
variants as possible to avoid discarding potential variants of interest. In keeping these
variants that are rare by population standards, while including those that are not
necessarily “very rare 0.01” or “ultra-rare 0.001”. Given the small sample size of this
cohort and that these sequences are already restricted to exonic variants, this less
stringent allele frequency threshold still yields a manageable variant set for downstream

interpretation.

Allele frequencies are determined in this cohort for the gnomAD non-Finnish European
cohort, as annotated within doNSFP version 4.0a (Liu et al., 2020). Two factors were
considered in the selection of datasets from which allele frequency would be determined.
Firstly, the larger sample size in the gnomAD WES dataset when compared to the
gnomAD WGS dataset. This larger sample size hosts data on a larger number of
individuals, potentially making for more accurate estimations of the true population allele
frequency of any given variant. For this reason, it is possible that the use of this dataset
may be preferable to the smaller WGS dataset. However, it is important to note that the

1000 genomes dataset, which prior to the release of gnomAD was the favoured database
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of allele frequencies, consistent of just 2,500 individuals, of which a subset is of
European descent (Auton et al., 2015).

The second consideration is the appropriate use of the genome dataset when analysing
a WES dataset. Specifically, use of this dataset enables determination of non-coding
variant allele frequencies. This is critical to determine allele frequencies of what is the
largest proportion of variants that are called. Rare variants were isolated as those
satisfying the parameter in the gnomAD WES dataset, due to the sample size of the
gnomAD exome population enabling accurate allele frequency determination, in
combination with the lack of requirement for allele frequency estimates outside of the

exome.

3.4.4 Selection of pathogenicity predicting parameters

The number of variants identified through NGS is constantly growing and there is a huge
need for analyses to assess variation tolerance and prioritise those which are candidates
for causing disease/disorder. The approaches and tools used in this study, CADD, SIFT,
Polyphen-2, while informative and widely applied, come with limitations. Functional
prediction across bioinformatic tools is inconsistent (Niroula and Vihinen, 2019). At the
molecular level, the disruption caused by a genetic variant can range from no disturbance
to detrimental effects on genomic sites that are key to protein function. These effects are
particularly difficult to categorise in the case of missense variants. Missense variants are
far more abundant in the genome than LoF variants, with the majority having no harmful
effect on gene function (Ronemus et al., 2014). Specifically, half of the variants predicted
to be deleterious correspond to nearly neutral variants, which have minimal clinical

relevance, but they will be subject to purifying selection (Miosge et al., 2015).

The consensus scoring approach, here where a variant is required to satisfy
pathogenicity thresholds in two of three scoring to be deemed pathogenic, is an effort to
overcome inconsistencies in pathogenicity prediction. However, pathogenicity filter
algorithms REVEL and ClinPred when applied alone have been demonstrated to be well
tuned and could be as useful when applied independently than a consensus scoring
approach (loannidis et al., 2016; Alirezaie et al., 2018; Gunning et al., 2021). The
purpose of variant scoring is key to selection of pathogenicity prediction parameters.
Predictors may perform well for evaluation of variants in a research setting, but when not
as well in when applied in clinical variant assessment (Gunning et al., 2021). A further
consideration when scoring variant pathogenicity is the performance, as measured by
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the specificity of the tool in the population under investigation (Niroula and Vihinen, 2019)
(Figure 3-7). Taken together these limitations highlight the need to benchmark variant

pathogenicity criteria against variants that are representative of the study.
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Figure 3-7 Performance of variant tolerance predictors for variants in ethnic groups.

Taken from Niroula et al. (2019): “Performance of variant tolerance predictors for variants in ethnic groups.
Specificities of prediction tools for common variants (AF 21% and <25%) in different populations. AFR,
African; AMR, American; EAS, East Asian; FIN, Finnish; NFE, non-Finnish European; OTH, Other; SAS,
South Asian; MA, MutationAssessor; MT2, MutationTaster2; PPH2, PolyPhen-2.
https://doi.org/10.1371/journal.pcbi.1006481.9002.”

3.4.5 Relevance of variation identified

The analysis presented here applies a stringent variant filtration strategy to identify
putatively pathogenic rare variation in genes with existing reports of association to autism
and neurodevelopment. This pipeline is limited to the isolation of rare exonic SNVs,
however NGS technologies enable additional classes of variation to be detected, with
evidence supporting their involvement in the genetic basis of autism, such as CNVs, SVs
and tandem repeat expansions as will be discussed later. There are future opportunities
to explore these classes of variation in Cohort 1 and enable expansion of the
understanding of the genetic basis of autism within this cohort. While variant discovery
did not yield pathogenic SNVs with association to autism, expansion beyond this gene-
set based variant filtration strategy will enable detection of more genetic variants which

could be contributing to the phenotype.

Expanding beyond this filtration strategy may detect causative variation in the cohort,
when unrestricted by the requirement to restrict analyses to genes with an existing gene-
disease association reported. This gene-set based filtration step within the variant

isolation strategy is a weakness, leaving many rare putatively pathogenic variants
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uninterrogated. However, there is opportunity to overcome this in the future with an
increase in sample size, achievable by analysis of this dataset in combination with other
WES autism datasets, such as those described in Table 1-2. Large sample sizes give
statistical power to enable gene-phenotype associations, while the small sample size of
Cohort 1 enables only variant detection within known autism-associated genes.
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3.4.6 Conclusion

This chapter describes analysis of a WES cohort of 42 individuals, varied in family
structure. This work has enabled the development of a variant interpretation strategy
from align sequence reads to a filtered and relevant variant call-set. No gold-standard
pipeline currently exists for the isolation of rare exonic SNVs from NGS datasets. The
research outlined within this chapter has yielded a strategy for the isolation of such

variants in autism cohorts as is applied in Chapters 4 and 5.

Sample size and variability in family structure within this dataset limit the use of this
cohort. This study is statistically underpowered to perform rare variant association testing
and subsequently cannot be used to draw overall conclusions on the genomic basis of
autism. However, analysis of this dataset has led to a high-quality and robustly annotated
set of rare putatively pathogenic variants with evidence for autism relevance. Importantly,
these findings have not be confirmed by Sanger sequencing and have not been validated
to clinical genetic standards. Further value will be gained from this work in the future
upon combined analyses of these data with larger autism sequencing cohorts.
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Chapter 4. Evaluating gene-phenotype relationships through

gene curation.

Presentations arising from the contents of this chapter:

“Application of an evidence-based curation framework to aid gene discovery: a pilot
investigation in an autism family cohort.” Fiana Ni Ghrélaigh, Louise Gallagher & Lorna
M. Lopez

Poster presented at the World Congress of Psychiatric Genetics, October 2020
(Appendix IlI-1V).

“Analysis Pipeline of Whole Genome Sequencing Data in Neurodevelopmental
Disorders.” Fiana Ni Ghralaigh, Niamh M. Ryan, Louise Gallagher, Lorna M. Lopez
Poster presented at the British Neuroscience Association Festival of Neuroscience, April
2019 (Appendix I11-VI).
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4.1 Abstract

Here, a gene-phenotype curation framework is in applied to three genes, NAV2, NINL
and CACNA2D3. The dataset from which variant data is derived for curation is a set of
rare putatively pathogenic exonic variants impacting autism-relevant genes are identified
through WGS in a cohort of six individuals. All three genes achieved a classification of
“Limited” by the Schaaf et al. (2020) gene curation framework, despite confidence in

autism association supported by SFARI Gene.

4.2 Introduction

4.2.1 A family-based approach to identifying autism-associated variation
Penetrance refers to the number of cases harbouring a particular variant for which the
phenotype is observed. Highly penetrant pathogenic variation by nature is not common
in a healthy population as it would result in a high prevalence of a phenotype associated
with reduced fecundity. Rather they can be expected to be and have been found to be
rare in allele frequency. As specified in 3.4.3, rarity can be defined as a MAF of less than
5% in the population. Where cases aggregate within a family there is an expectation that
the family harbours an enrichment of inherited, penetrant pathogenic variation.

Population-based studies require a variant to reach genome-wide significance in a large
proportion of the unrelated affected individuals to be associated. In keeping with this, a
variant will need to be sufficiently common to be identified as statistically associated. To
identify rare variation in an unrelated cohort very large sample sizes are required to reach
statistical association. Currently population-based studies are applied with an aim to
identify common genetic variation. However, the effects of common variation are small
and cannot explain observed patterns of heritability such as those seen in autism and
other neurodevelopmental conditions. While autism is known to have a common
component to its genetic basis, common variants are not expected to be the causative

variation in multiplex families.

4.2.2 Dissecting gene-phenotype relationships

Disentangling gene-phenotype relationships in a complex condition faces many
challenges. Until these challenges are overcome there is ambiguity in the degree of
causation a variant is contributing to the condition. In the area of rare disease, including

rare neurodevelopmental conditions, variant specific phenotypic data is crucial to
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collating individual level information to reach sample sizes sufficient to gain insights into
gene-disease relationships. One example of these resources is DECIPHER used by
clinicians to share phenotype and genotype data of over 43,000 patients (Firth et al.,
2009). Phenotyping collated per variant locus has improved diagnosis of severe
developmental conditions and has potential to inform on disrupted processes causing
these phenotypes (Fitzpatrick and Firth, 2020).

Strategies and guidelines to streamline curation of gene-disease relationships are key to
determination of pathogenicity of a variation relevant to a condition. At the early stages
of variant discovery OMIM was and still is in certain diseases and disorders, a gold-
standard resource to be use in variant interpretation (Amberger, Bocchini and Hamosh,
2011; Amberger et al., 2019).

Further examples of successful resource development include the ClinGen framework.
This framework outlines a standardised procedure, with specific criteria for assessment
clinical validity and a quantitative approach, to collect evidence to support gene-disease
association (Strande et al., 2017). Expert gene curation panels can then systematically
validate the gene-disease relationship. Another widely applied toolkit in genomic analysis
comes from the ACMG, who maintain a set of standards and guidelines to adhere to in
variant interpretation (Green et al., 2013). A potential solution for disentangling gene-
phenotype relationships comes from a proposed adaptation of the ClinGen gene curation
framework for use in autism, accounting for the degree of certainty in autism diagnoses
in studies reporting association and accounting for co-occurring diagnoses and well as
incorporating genetic evidence, providing consistency throughout gene discovery
(Schaaf et al., 2020).

4.2.3 Hypothesis and aims

Gene curation in the context of autism can be used to quantify the evidence supporting
gene-phenotype associations arising from sequencing studies. An evidence-based
curation framework accounting for phenotypic heterogeneity has been proposed for use
in autism. This chapter focuses on application of a gene curation framework in autism.
The dataset from which variant data is derived for curation is a set of rare putatively
pathogenic exonic variants impacting autism-relevant genes are identified through WGS
in a cohort of six individuals. A subset of these impacted genes is selected for evaluation

by gene curation through the framework.
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The aims of this chapter are:

1) to apply an analysis strategy for isolation of rare exonic pathogenic SNVs from NGS
data.

2) to isolate de novo variation in an autism-affected proband using a family-based
approach to variant discovery.

3) to dissect gene-phenotype relationships through application of a gene curation

framework.
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4.3 Results

4.3.1 Cohort-level QC

This chapter describes analysis of WGS of Cohort 2. Cohort 2 is a dataset of six
individuals and includes three autistic probands, as summarised in Table 4-1 and Table
4-2. Ascertainment of this cohort is described in 2.1.2. All samples are also included in

Cohort 1. The pedigree in focus in this chapter is presented in Figure 4-1.

Cohort Overview N=6

Number of families 1 quad family

2 affected singletons

Male probands N=1

Female probands N=2

Table 4-1 Overview of Cohort 2.

Outlined are the family structures included in the cohort and proband counts by sex.

FID IID Sex | Phenotype Parental ID
AS315 | AS315C F Autism N/A
AS322 | AS322C1 F ASD, ADHD N/A
M Autism, moderate ID, Father; AS420F
self-injurious behaviour, | Mother; AS420M
catatonia,
AS420 | AS420C1 dysmorphology
M Unknown Father; AS420F
AS420 | AS420C2 Mother; AS420M
AS420 | AS420F M Unknown N/A
AS420 | AS420M F Unknown N/A

Table 4-2 Cohort 2 phenotype, sex, and parental ID.

Outlined are reported relationships, sex and clinically validated phenotype for individuals analysed within
Cohort 2.
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Figure 4-1 Pedigree AS420.

Red marking indicates affection in the proband. Affection here refers to the complex phenotype of autism
regression in infancy, and co-occurring moderate intellectual disability, severe self-injurious behaviours, and
catatonia over the course of development.

4.3.2 Variant filtration

The workflow developed and applied in these analyses is presented in Figure 4-2. The
full set of non-synonymous variants which has been annotated as described in Materials
and Methods 2.8, are subject to further subsetting on the bases of allele frequency,

predicted pathogenicity and gene-level associations as follows.

Rare putatively pathogenic autism-relevant variants were isolated as detailed in Chapter
3, yielding 107 variants of relevance in six individuals (Figure 4-2). These variants were
further subset to those occurring in affected individuals, (three unrelated probands) and
unaffected individuals (family members of one proband) (Figure 4-3). A subset of the
variants isolated through the framework outlined in Figure 4-2 have been curated through

an evidence-based gene curation as follows within this chapter.
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Cohort-level variant counts (n=6 genomes)

Non-synonymous SNVs 18,748 variants
Rare Allele frequency £0.05 in gnomAD (Non-Finish European)
3,173 variants

______________________________________________________________________________________ —

. CADDphred220  SIFT4G "Damaging” Frlii ey
Predicted . "Damaging”
: 1,604 variants 1,044 variants Eing
pathogenic | | 760 variants
il
Consensus predicted p—— 1 = =
pathogentc Satisfying 22 prediction conditions
1,009 variants
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Evidencs of gens SFARI genes (n=960) DDD genes (n=2,664)
association with 72 variants 138 variants
ASD/NDD

v

Robust evidence of
gene association with
ASD/NDD

SFARIgene-score<2 (n=393)  DDD “confirmed” genes
or ‘syndromic’ (n=126) (n=1,648)
30 variants 85 variants

Rare pathogenic ASD relevant variants 107 variants

Figure 4-2 Flow of variant filtering with cohort-level variant counts.
Arrows show the direction of flow from each level of filtering (specified on the left). SFARI refers to Simons

Foundation Autism Research Initiative Gene Module. DDD refers to the gene2phenotype database arising
from the DDD study.
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Figure 4-3 Spread of variation across genomic regions.

Chromosomes are shown around the outer track of the figure (1:22, X). The gene names are given on the
inner track. These are the genes in which the rare pathogenic autism-relevant variants outlined in Fig.1 are
located. Links are made in purple (affected; n=3 individuals, n=91 variants) and blue (unaffected; n=3
individuals, n=69 variants) between each gene and the respective affection status of the individual
harbouring the variant. Affected denotes individuals with an autism diagnosis.

4.3.2.1 Isolation of de novo variation

This cohort of six individuals include a quad family with one proband, an unaffected
sibling and unaffected family members (Figure 4-1). This structure enables the further
subset of variants to those that are unique to the proband and may be of relevance in
this sporadic case of autism. Due to the severity in the phenotype of this proband, as
detailed in 2.1.2, it is hypothesised that rare highly penetrant variation is causative of the
phenotype.
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In addition to this, there is complexity in the phenotype of this individual with the proband
experiencing regression in infancy, and co-occurring moderate ID, severe self-injurious
behaviours, and catatonia over the course of development. Following this hypothesis, de
novo rare predicted pathogenic variants were isolated for further interpretation, not
restricted to those in autism and neurodevelopmental-relevant genes. Table 4-3 presents
variant counts in this family context. No homozygous variants were isolated as unique to

proband in this variant call-set.

Variant Call Set Variant Count

Rare pathogenic variants 280 variants

Paternal inherited (of 271 paternal | 152 variants

variants)

Maternal inherited (of 267 maternal | 144 variants

variants)

Shared unaffected sibling variants (of 280 | 153 variants
sibling variants)

de novo variation unique to proband 0 variants

Table 4-3 Variant transmission in a quad family of autism.
Variation is here determined a variant locus at which an individual has a 0/1, 1/0 or 1/1 genotype, indicating
heterozygous or homozygous alterative allele presence. Variant counts refer to number of variants in the

proband variant call-set. Here the rare (gnomAD <5%,) predicted pathogenic (through CADD, SIFT4G and
Polyphen-2) variant call set of family members are queried against that of the proband.

Homozygous variant sites in the proband where there is heterozygosity in both parents
are isolated in Table 4-4 and Table 4-5. Candidate variants are excluded based on
homozygosity in unaffected family members (i.e., paternal, maternal of sibling

homozygosity).
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Variant Call Set Variant Count

Homozygous rare pathogenic variants 10 variants
Paternal homozygosity detected 1 variant
Maternal homozygosity detected 1 variant
Sibling homozygosity detected 4 variants

de novo variation unique to proband 4 variants

Table 4-4 Recessive inherited homozygosity in an affected proband.

Homozygous variation is here determined a variant locus at which an individual has a 1/1 genotype. Variant
counts refer to number of variants in the proband variant call-set. Here the rare (gnomAD <5%,) predicted
pathogenic (through CADD, SIFT4G and Polyphen-2) variant call set of family members are queried against
that of the proband.

Chromosome | ID ref | alt | Gene Ensembl Gene ID Clinvar
ID

chr2 rs116298748 G A COL5A2 ENSG00000204262 | 136944

chr7 rs146095374 C A TYW1B ENSGO00000277149 | N/A

chr20 rs34396614 C G MYLK2 ENSG00000101306 | 36652

chrX rs45557031 G A C1GALT1C1 | ENSGO00000171155 | 460285

Table 4-5 Homozygous proband variants in focus.

4.3.2.2 Biological interpretation of variants identified

Of the four homozygous variants identified in the proband under investigation, none
impact genes that are included in SFARI Gene, indicating that none of these variants
have existing evidence supporting association with autism. The genes identified have
been implicated in a number of phenotypes that are unobserved in the proband including
Ehlers-Danlos Syndrome (COL5A2), Cardiomyopathy (MYLK2) and Tn syndrome, a rare
autoimmune disease (C1GALT1C1) (Richards et al., 1998; Ju and Cummings, 2005).

TYW1B is a protein-coding gene encoding a component of the wybutosine biosynthesis
pathway. Wybutosine is a hypermodified guanosine found in phenylalanine tRNA. A
recent case report links a large-scale chromosomal rearrangement impacting a number
of genes including TYW1B, with an MRD44-like phenotype which includes intellectual
disability, microcephaly, finger anomalies, and facial dysmorphia (Cérdova-Fletes et al.,
2022). This phenotype is not consistent with the complex phenotype observed in the
proband investigated here, however the intellectual disability resulting from large-scale

genomic changes in this region may be suggestive of a role of the single base change
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identified here, rs146095374 impacting TYW1B, accounting for aspects of the
neurodevelopmental phenotype reported.

4.3.3 Evaluating gene-phenotype relationships through gene curation

4.3.3.1 Gene selection for curation

Candidate genes curation through an evidence-based framework were selected from the
dataset analysed within this chapter as outlined in Figure 4-4. Candidate genes are those
in which putatively pathogenic variants in autism-associated genes were identified.
Genes were excluded where ClinGen curation is completed (Figure 4-4). ClinGen
curation refers to curation following the ClinGen guidelines rather than the modified

ClinGen guidelines proposed by Schaaf et al. (2020).
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Cohort-level counts (n=6 genomes)

Rare pathogenic ASD relevant variants 107 variants
Gene Level 91 genes
clinGen Curated Gene-Disease Clinical Validity Curation
Genes (n=1,848 curated genes)

49 ClinGen curated 42 potential genes for

ClinGen curation

Ewder.\ce. Supporting ASD 15 genes
Association

Figure 4-4 Gene selection for curation.

Classification of three genes with highest number of autism reports. Genes were excluded from this analysis
when already curated by ClinGen. Genes were selected for analysis when evidence of autism association
is reported in the literature.

Candidate genes were prioritised for gene curation based on the number of reported
autism cases for which a variant in the gene had been associated. Selection of those
with the highest number of reports lead to gene selection with the most evidence to feed
into the gene curation framework. Two metrics of reports were used for this purpose:

GeneCards publication search and SFARI Human Gene Module.
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Three genes were selected for curation using by the Schaaf et al. (2020) framework.
These genes were selected based on the highest number of autism specific reports of
all candidate genes. NAV2 (11p15.1, neuron navigator 2), NINL (20p11.21, ninein Like)
and CACNA2D3 (3p21.1-pl14.3, calcium channel voltage-dependent alpha 2/delta
subunit 3) are detailed in Table 4-6 along with gnomAD constraint scores measuring

predicted tolerance of each gene to LoF and missense variation.

Gene Gene Name Cytogenetic | ClinGen | gnomAD Constraint
Symbol Location Curation | Scores
Loss-of- | Missense
Function
CACNA2D3 | Calcium 3p21.1-p14.3 | Not pLI=0.58 | Z=1.86
channel, curated o/le =0.22 | ole
voltage- Cl=0.14- | =0.78
dependent, 0.34 Cl=0.72 -
alpha 2/delta 0.84
subunit 3
NAV2 Neuron 11p15.1 Not pLI=1 Z=1.39
navigator 2 curated o/e=0.16 | o/e = 0.9
Cl=0.11- | CI=0.86 -
0.25 0.94
NINL Ninein Like 20pl11.21 Not pLI=0 Z=-0.98
curated o/e=0.89 |ole=11
Cl=0.72- | CI=1.04 -
1.09 1.16

Table 4-6 Constraint metrics are estimated based on expected vs observed SNVs identified within the gene.

These estimates are further broken down by variant type with LoF and missense variant constraint scored
indicated in this table. Observed/expected (o/e) is a continuous measure of how tolerant a gene is to a
certain class of variation. Low o/e values indicate the gene is under stronger selection for that class of
variation than a gene with a higher value. 90% confidence interval (Cl) is given for each o/e value. Z score
given is the deviation of observed counts from the expected number. Positive Z scores indicate increased
constraint. The closer pLI is to one, the more intolerant of protein-truncating variants the transcript is
predicted to be.
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4.3.3.2 Gene scoring

Gene scoring was carried out per Schaaf et al. modified ClinGen Gene-Disease Validity
scoring guidelines. Detailed accounts of scoring are presented for the three genes
selected NAV2 (Table 7-1, Table 7-2), NINL (Table 7-3) and CACNA2D3 (Table 7-4).
Scoring was carried out for each reported autism case harbouring a variant in the
specified gene. Variant characteristics were recorded from supplemental tables
associated with the publication, denoted by author and year of publication in Table 4-7.
A gene matrix was constructed following that proposed by Schaaf et al. where each

variant score was summed to generate a gene-level classification.

Phenotype methods for each study and the quality score that they have been assigned
here, through the modified ClinGen gene-disease curation framework are presented in
Table 4-7. This table presents also details on consideration of cognitive ability of the
study participants and highlights studies where robustness of autism diagnosis may be
compromised by insufficient consideration of intellectual ability. This lack of
consideration in phenotyping leads to ambiguity in assignment of an autism diagnosis
and for this reason results in a downgrading in gene-disease association scoring as

shown in Table 7-1.
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Authors Phenotyping Method/ Notes: Quality of Cognitive Ability
(Year): Autism Cautionary Comment
Title Phenotype Assigned
Report
De Rubeis | Autism: As part of the ASC, all subjects were diagnosed with “Autistic Disorder” as the High No cautionary comment
S, etal primary phenotype (DSM-5). confidence. required.
(2014) Cognition: No information provided.
Guo H, et Autism: Autism diagnosed primarily according to DSM-1V/5 criteria, documenting High Uncertainty regarding validity
al. (2018) additional co-occurring conditions where possible. confidence. of Autism diagnosis
Cognition: "[T]he majority of patients with severe DNMs (de novo mutations) and a considering insufficient
cognitive assessment showed evidence of some form of intellectual impairment. Only information regarding
TNRC6B, NCKAP1, and one of the two ZNF292 LGD DNMs occur in Autism patients with intellectual ability.
an IQ in the normal range."
lossifov et | Autism: Simons Simplex Collection (SSC) - extensive autism phenotyping, including ADI- High No cautionary comment
al. (2014) R, ADOS, cognitive testing, Vineland, SRS, SCQ (see https://www.sfari.org/resources/ssc- | confidence. required.
instruments/ for full phenotyping information).
Cognition: No information provided; however, as part of the SSC, thorough cognitive
testing was performed.
Leblond Autism: Extensive autism phenotyping, including ASSQ, DISCO-10, DISCO-11. High ID included in study evaluate
CS, etal. Cognition: WISC or WEIS, 1Q (DISCO) confidence. case by case.
(2019)
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Lim ET, et | Autism: As part of the ASC, all subjects were diagnosed with “Autistic Disorder” as the High No cautionary comment
al. (2017) primary phenotype (DSM-5). confidence. required.

Cognition: No information provided.
O'Roak BJ, | Autism: Simons Simplex Collection (SSC) - extensive autism phenotyping, including ADI- | High No cautionary comment
et al. R, ADOS, cognitive testing, Vineland, SRS, SCQ (see https://www.sfari.org/resources/ssc- | confidence. required.
(2012) instruments/

for full phenotyping information).

Cognition: Little information provided; however, as part of the SSC, thorough cognitive

testing was performed.
Ruzzo EK, | Autism: No specific information about phenotyping assessments provided - notes that High confidence | No cautionary comment
et al. "[s]tudy subjects were carefully selected from the Autism Genetic Resource Exchange required
(2019) (AGRE) and chosen from families including two or more individuals with autism (those with

a "derived affected status" of "autism," "broad-spectrum," "nga," "asd," or "spectrum.")"

Cognition: No information provided
Sanders Autism: Simons Simplex Collection (SSC) - extensive autism phenotyping, including ADI- High No cautionary comment
SJ, et al. R, ADOS, cognitive testing, Vineland, SRS, SCQ (see https://www.sfari.org/resources/ssc- | confidence. required.
(2012) instruments/

for full phenotyping information.
Cognition: Little information provided; however, as part of the SSC, thorough cognitive

testing was performed.
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Wang T, et | Autism: Autism diagnosed according to DSM-IV criteria. High Uncertainty regarding validity
al. (2016) Cognition: No information available. confidence. of ASD diagnosis
considering insufficient
information regarding

intellectual ability.

Wu H, et Autism: Autism Clinical and Genetic Resources in China (ACGC) cohort. Diagnosed High ID included in study evaluate
al. (2019) according to DSM-IV or DSM-V by experienced clinicians. In addition, co-occurring confidence. case by case.

conditions including medical problems, such as epilepsy, gastrointestinal issues, and sleep
disorders; developmental diagnoses, such as ID and language delay; and mental-health
conditions, such as ADHD, obsessive-compulsive disorder, and depression, were collected
for presenting patients.

Cognition: No information provided for this individual.

Yuen RK et | Autism: Autism diagnosis of all participants must have met criteria on one or both High No cautionary comment
al. (2017) diagnostic measures: ADI-R and ADOS or considered a clinical diagnosis when given by confidence. required.

an expert clinician according to the DSM IV or V edition).

Cognition: "Many participants were assessed with standardized measures of intelligence
(1Q), language, and general adaptive function. 19.6% had scores within the range for ID
(FSIQ < 70)."

Table 4-7 Evaluating phenotyping in sequencing studies of autism.

This tables presents autism studies in which variants were identified in one or more of the three genes under investigation: NINL, NAV2 or CACNA2D3. Phenotype methods are
recorded for both autism and cognition as reported in respective study methods. Confidence scores and cautionary notes are assigned according to Schaaf et al. (2020)
recommendations. Where a variant has been scored from these studies by Schaaf et al. confidence scores have been taken directly from those assigned in the guidelines study.
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Variants reported in genes NAV2, NINL and CACNA2D3 were individually scored
according to the gene scoring matrix outlined by Schaaf et al. (2020) (Table 7-1-Table
7-4). Variant reports were identified as specified in 2.13.3. Individual variant data was
extracted from the publication source specified per variant and collated per gene as
shown in the respective matrices. Where available experimental evidence was evaluated
using the experimental scoring matrix proposed by Schaaf et al. (2020) (Table 7-2).
Variants scored were restricted to variants where the proband carried the pathogenic
variant under investigation. For example the non-synonymous coding variant identified
in CACNA2D3 (Chr3(hg19):g. 54925398G>A, V629M (De Rubeis et al., 2014)), is a
variant which would otherwise be awarded default scoring of 2, autosomal dominant
variant. However, while identified through a trio study of autism with the aim of isolating
de novo variation, the proband carried the reference allele while the variant detected is
a paternal variant. For this reason, several variant reports counted in Table 2-35 were

excluded from scoring.

Key to the scoring matrix are variant specific details including gnomAD allele frequency
and to determine rarity of the alternative allele in an unaffected population and protein
coding consequence as an estimate of pathogenicity (gnomAD v2.1.1 October 2020).
Mode of inheritance is recorded where parent genotype information is available.
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Individual report scores were totalled and the sum of scores were used to designate
classifications of each gene (Table 7-1-Table 7-4). All genes, despite enriching for those
genes with the highest number of autism-specific reports, were designated as having
limited evidence supporting their role in autism, as presented in Table 4-8. This limited
classification is derived from the ClinGen protocol, justified as follows: “There is limited
evidence to support a causal role for this gene in this disease, such as: Fewer than three
observations of variants with sufficient supporting evidence for disease causality OR
Variants have been observed in probands, but none have sufficient evidence for disease
causality. Limited experimental data supporting the gene-disease association” (Gene-
Disease Validity Standard Operating Procedures, Version 7 - ClinGen | Clinical Genome
Resource, 2019).

Gene SFARI Gene Score Sum of scores Classification
NAV2 Strong Candidate 0.5 Limited
(SFARI Gene Score 2)

NINL Strong Candidate 4.5 Limited
(SFARI Gene Score 2)

CACNA2D3 | High Confidence 5.0 Limited
(SFARI Gene Score 1)

Table 4-8 Classification of three genes with highest number of autism reports.

The three genes with the highest number of autism reports (6 publications each) were selected for curation.
Sum of scores represents the raw sum of genetic and experimental evidence towards autism based on
Schaaf et al. framework with gene classification. SFARI Gene score is included here as a comparative score
to that determined by the gene curation framework. SFARI Gene score of 1 or 2, as are assigned to all three
genes, indicate support for autism association as determined by SFARI Gene curation.

The “limited” classification of these genes is a result of downgrading of variants identified.
The most frequently applied downgrading justifications are outlined in Table 4-9. These
downgrading classifications may be used to inform variant discovery pipelines, such as
allele frequency thresholds in gnomAD or criteria for predicted gene disruption of
missense variants. In addition, phenotypic data collected during cohort ascertainment
should consider the impact of cognition scoring measures on downstream variant

associations with autism.
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Frequently applied variant downgrading

Rationale

de novo missense variant with suggested

functional evidence

Limited evidence of disruption of

gene function

Observed in gnomAD

Allele identified in an unaffected

control cohort

Synonymous variant with no functional data

provided

Unknown impact on gene function

WES/WGS not performed

Lack of confidence in sequence

quality

Lack of confidence in ID/ cognition score

Autism phenotype in the presence
of ID

Intronic variant

Unknown impact on gene function

Proband carries reference allele

Variant not clearly associated with

autism

Inherited missense variant without functional

evidence

No evidence of disruption of gene

function

Table 4-9 Modified ClinGen downgrading frequently applied in variant scoring matrices.
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4.4 Discussion

This chapter reports on gene-phenotype curation of a subset of genes identified through
WGS of an autism cohort of six individuals. When restricted to affected individuals three
genes in which rare putatively pathogenic autism-relevant SNVs were detected were
selected for curation. These genes were prioritised for curation on the number of autism-
reported variants impacting the genes. Curation was carried perform on NAV2, NINL and
CACNA2D3. Each of these gene was classified as “Limited,” scoring the gene-phenotype
association (Table 4-8) (Gene-Disease Validity Standard Operating Procedures, Version
7 - ClinGen | Clinical Genome Resource, 2019). This implies that while these genes are
implicated in the genetics of autism, their association is not restricted to an autism only
phenotype. In the case of the cohort investigated two of three of the probands
investigated are affected by both autism and a co-occurring neurodevelopmental
phenotype.

Phenotypic heterogeneity has an impact on the power of genetic associations (Manchia
et al., 2013). This effect has been demonstrated in psychiatric genetics through GWAS
studies. Specifically, a landmark GWAS study by Ripke et al. achieved 18% phenotypic
variance explained by PGS (Ripke et al., 2014). However, Stahl et al. reported a GWAS
study with comparable sample size, achieved 8% of phenotypic variance explained by
PGS (Stahl et al., 2019). In addition to the underlying difference in genetic architecture
of the phenotype, the difference in variance explained by these studies is contributed to

by heterogeneity of the sample studied.

While lists of genes relevant to autism have been developed, for example two SFARI
Gene and DDD gene2phenotype applied in these analyses, these lists are limited in their
ability to dissect neurodevelopmental phenotypes presenting with autism (Abrahams et
al., 2013; Wright et al., 2015; Myers, Challman, Bernier, et al., 2020). Application of a
formal evidence-based gene curation framework, such as that proposed by Schaaf et
al., accounts for these co-occurring diagnoses and provides consistency throughout
gene discovery (Schaaf et al., 2020). This framework was developed with psychiatrists
with expertise in these phenotypes and unlike SFARI Gene or the standard ClinGen
Gene-Disease curation, downgrades evidence of association with autism when the

individuals for whom the gene has been associated has any ID.

As demonstrated in the classification of NAV2, NINL and CACNA2D3, this is a stringent

approach resulting in three genes with multiple reports of association and SFARI scoring
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of strong or high confidence (Scores 1 or 2), summing to a limited association with the
autism phenotype (Table 4-8). Importantly, this interpretation comes from classification
of just three genes and a wider classification of the full set of genetic variation associated
with autism would be needed to determine the potential for this framework of
classification. Furthermore, this framework is a labour-intensive process requiring
comprehensive review of all literature reporting variation in the gene undergoing
classification, as well as input from an expert panel and while the importance of gene
curation is well-understood in the genomics community, this workload may not be
feasible when considering the ~1,000 genes with some degree of evidence of

association.

In addition, the results presented associate variation in four genes with the complex
neurodevelopmental phenotype observed in a proband within the cohort studied. This de
novo variation was isolated in an autism-affected proband using a family-based approach
to variant discovery, identifying four variants impacting genes COL5A2, TYW1B, MYLK2
and C1GALTI1C1. Existing evidence does not link these single-base changes to the
phenotype observed in this individual and these variants require functional analysis to
robustly determine their contribution. Expanding beyond this filtration strategy may detect
causative variation in the cohort. The pipeline applied here is limited to the isolation of
rare exonic SNVs, however NGS technologies enable additional classes of variation to
be detected, with evidence supporting their involvement in the genetic basis of autism,
such as CNVs, SVs and tandem repeat expansions, as will be discussed later. There are
future opportunities to explore these classes of variation in Cohort 2 and enable
expansion of the understanding of the genetic basis of autism within this cohort. In
addition, this analysis has focused on identification and interpretation of exonic variants
only. Cohort 2 has undergone WGS enabling detection of non-coding variation which will

be informative to the genomic basis of the individuals studied.

4.4.1 Conclusion

An autism gene curation framework was applied to three genes NAV2, NINL and
CACNA2D3 to dissect gene-phenotype associations with autism, each being scored as
“Limited” association to autism despite literature suggesting confidence in the autism
association. In addition, the analysis outlined in this chapter applies an analysis strategy
for isolation of rare exonic pathogenic SNVs from WGS data and reports 107 variants in
91 genes with existing evidence of autism-association. De novo variation was isolated in
an autism-affected proband using a family-based approach to variant discovery,
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identifying four variants impacting genes COL5A2, TYW1B, MYLK2 and C1GALT1C.
These require functional analysis to robustly determine their contribution to autism.
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Chapter 5. A pedigree driven approach to identify pathogenic
variation in multiplex families of neurodevelopmental

conditions.

Presentations arising from the contents of this chapter:

“‘Genomic syndromes in autism: Using whole genome sequencing to investigate
multiplex families with autism and associated neurodevelopmental conditions.” Fiana Ni
Ghralaigh, Aoife Coghlan, Louise Gallagher & Lorna M. Lopez

Poster presented at Genomics of Rare Diseases (Wellcome Connecting Science), April
2022 (Appendix l1-1).
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5.1 Abstract

Here rare putatively pathogenic SNVs in genes with evidence supporting their role in
autism are detected, using a family-based study design to evaluate variant transmission.
The analyses outlined in this chapter follow the framework for calling and annotation of
rare, exonic SNVs occurring in genes with existing evidence supporting autism
association, outlined in Chapter 3. Variant detection and interpretation have been carried
out on four multiplex pedigrees and putatively pathogenic variation detected is detailed
within this chapter. These findings add to evidence supporting the involvement of genes
TTN, PSPH, RECQL4 NECTIN4 TSC2 TSHzZ3 SLC26A2 and FKTN pending

confirmation by Sanger sequencing.

5.2 Introduction

5.2.1 Enriching for penetrant inherited variation in multiplex pedigrees

A multiplex family has several affected members with the causative genetic variation
likely to lie in variant sites that are shared between affected individuals. A family-based
genomic study involves analysis of sequencing data in unaffected and affected family

members.

Within the family-based study design comes innovative approaches to collecting and
analysing family data, as has been summarised by Morris et al. (2015). These range
from large population-based family-studies, for example a Utah registry which collates
pedigree information on all state residents for decades, through to smaller family-based
studies such as Wang et al. (2013) who analyse only independent probands from within
families to inform on IQ differences in autistic individuals (Nelson et al., 2013; Wang et
al., 2013; Morris et al., 2015). Leveraging affection status informs on variant penetrance
and narrows the search for causative variation within families. Studying large pedigrees
of multiplex or extended families leads to a more homogenous causative variant set, due
to the high degree of genetic sharing between related individuals. In contrast to a case-
control or population-based study design, this causative variant set can be isolated in

the absence of control genomes.

136



5.2.2 Using family structure to inform on mode of variant transmission

Families boost the ability to perform association and linkage studies effectively by
enriching for a causative variant, as compared to population-based studies. This is
particularly valuable in autism where a combination of genetic variants is likely to be
causative of the complex phenotype observed (Antaki et al., 2022). In a family-based
design it is likely that within families a smaller number of genes contributing to the
condition will be identified, than by a population-based design where a genome-wide
association is performed. In practice by analysing individual genomes within families,
focus can be put on a smaller number of contributing genes, as opposed to case-control
studies where all genes are interrogated leaving limited power for gene discovery. Larger
multiplex and extended families with multiple affected individuals further reduce the
sample size required for rare variant identification by increasing the number of copies of
a variant detected (Glahn et al., 2019).

Ascertainment of pedigrees for genomic research, particularly extended pedigrees, is
challenging, with added expense and time commitment required for identification,
recruitment, and sample collection of whole pedigrees than those involved in the study
of unrelated individuals in a case-control approach. Unaffected family member
genotyping and phenotyping is as important as consideration of affected individuals for
robust evaluation of variant transmission in families. For this reason, depending on
phenotype and the underlying genetic architecture, it may be more efficient to take a
case-control study design. However, when considering autism there is benefit to family-
based ascertainment for genomic analysis as outlined in Chapter 1 and the informative,
yet limited, number of loci identified through large-scale genome-wide association
studies to date (Grove et al., 2019). While ascertainment is costly, pedigree sequencing
can be cost effective. Given that genetic relationships between family members are
known, WGS where appropriate can be imputed for family members that have not be

sequenced, decreasing the effective cost per sample (Glahn et al., 2019).

5.2.3 Hypothesis and aims

Family structure enables mode of transmission of relevant genetic variation to be
interrogated. Specifically, the contribution of de novo variation is smaller in multiplex
families than the contribution in simplex families (Yoon et al., 2021). Rare larger multiplex
or extended pedigrees in contrast, are expected to have a burden of rare highly penetrant
genetic variants that are causative of autism and co-occurring phenotypes. This chapter

leverages the additional information available from studying extended pedigrees. In
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particular the cohort study within this chapter is hypothesised to enrich for rare fully
penetrant SNVs, aiding in the identification of autism-associated variants.

The analyses outlined in this chapter follow the framework for calling and annotation of
rare, exonic SNVs occurring in genes with existing evidence supporting autism
association. While this cohort is underpowered to include linkage analyses which are
enabled by extended pedigrees, analysis is performed within this chapter on affected vs

unaffected family members.
The aim of this chapter is to identify rare putatively pathogenic SNVs in genes with

evidence supporting their role in autism, using a family-based study design to evaluate

variant transmission.
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5.3 Results

5.3.1 Cohort in summary

Cohort 3 is a family-based dataset of 29 individuals from 4 multiplex families, as
presented in Figure 5-1. Ascertainment of this cohort is described in 2.1.3. This chapter
describes analysis of WGS data analysis of this cohort. One sample, AS325C1, failed at
WGS. One family was excluded based on unmet inclusion criteria following QC. A total
of 28 samples remains in this cohort for analysis. In parallel genome-wide genotyping
was performed on this cohort to provide QC checks prior to sequencing. This data, for
29 individuals was used in the cohort QC check described in 2.7.3. Based on affection
within each family, the mode of transmission expected to be relevant was hypothesised
independently for each family. The hypothesised mode of transmission is presented in

Figure 5-1.

AS324 ) ) AS325 o,

$460048 5 %

BT 5 Fi g ¥ . .
Homozygous recessive Inherited varigtion®

AS3I2E
AS326
L] Kutism
F
Other neuradevelopmental
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Tnherited variation® Tnherited variation¥® candition

Figure 5-1 Cohort 3 in summary.
Proposed mode of transmission for variant interpretation.} Presented are the pedigrees of the 4 families

sequenced in this rare cohort. The key associated with affection and sequencing status is presented
alongside. * Denotes the mode of variant transmission hypothesised to be relevant within each family.
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5.3.2 Variant QC

Variant evaluation was performed on WGS raw variant calls isolated by a Sention based
pipeline within Genuity Science Pipeline Services (detailed in 2.5.3). Raw variant calls
were restricted to SNVs for downstream analysis. SNVs were hard-filtered to isolate and
remove those variants deviating from Hardy-Weinburg equilibrium (exact test <10) and

variant sites missing greater than 20% of data.

In the absence of GATK Best Practices to produce variant calls, VQSR variant filtering
could not be applied to isolate a high-confidence variant call-set, as was performed in
analysis of Cohort 1 and Cohort 2. In place of VQSR, variant hard filtering was performed
in line with GATK recommendation to remove mapping errors and sequencing errors
from the call set Table 5-1. High-confidence variants were retained in the call-set for

downstream annotation.

Filter Description Threshold

QD Variant quality / depth <20

MQ Mapping Quality <40.0

FS Phred-score Fisher’s test p-value for strand | > 60.0
bias

HaplotypeScore Consistency of the site with haplotype >13.0

MQRankSum Mapping quality of reference reads vs | <-12.5
alternative reads

ReadPosRankSum | Distance of alternative allele from the end | <-8.0
of the reads

Table 5-1 GATK recommended variant quality filters for SNVs.
Recommendations available at

https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants.
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https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants

The Ts/Tv ratio was evaluated before and after variant QC to access data quality and
the efficacy of variant quality filtering. Data quality is reported per sample to highlight any
discrepancies which may have arisen due to the method of sample collection, i.e., DNA
extracted from blood or saliva.

The expected Ts/Tv is 2.0-2.1 in human genome sequencing. The improvement in Ts/Tv
ratio across all sample from outside of this range to within the range shows the need for
low confidence variant call removal from the call-set to achieve a high confidence variant
set (Table 5-2).
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FID IID Raw variant call-set High-quality genotypes
Mean Depth Ts/Tv Mean Depth Ts/Tv
AS324 | AS324C1 37.234 1.955 37.919 2.021
AS324 | AS324C2 35.278 1.959 35.481 2.021
AS324 | AS324C3 33.869 1.962 34.315 2.023
AS324 | AS324C4 34.998 1.957 35.387 2.020
AS324 | AS324C5 43.166 1.952 43.679 2.021
AS324 | AS324F 32.253 1.960 32.513 2.019
AS324 | AS324M 33.548 1.962 33.855 2.024
AS325 | AS325C2 48.401 1.950 49.283 2.022
AS325 | AS325C3 66.177 1.938 66.781 2.021
AS325 | AS325C4 33.386 1.958 33.117 2.021
AS325 | AS325F 39.771 1.950 39.523 2.020
AS325 | AS325M 39.703 1.956 39.771 2.022
AS326 | AS326C11 | 38.169 1.951 38.036 2.019
AS326 | AS326C12 36.175 1.954 36.419 2.020
AS326 | AS326C13 40.898 1.948 40.611 2.019
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AS326 | AS326C21 45.324 1.945 45.246 2.018
AS326 | AS326C22 30.371 1.963 30.296 2.022
AS326 | AS326F1 35.013 1.954 34.745 2.020
AS326 | AS326F2 45.869 1.947 46.062 2.020
AS326 | AS326GM 39.594 1.950 39.659 2.022
AS326 | AS326M1 39.885 1.955 40.347 2.023
AS326 | AS326M2 35.426 1.959 35.721 2.023
AS328 | AS328C1 40.217 1.955 40.185 2.022
AS328 | AS328C2 41.411 1.951 41.530 2.022
AS328 | AS328C3 32.672 1.961 32.984 2.024
AS328 | AS328F 33.969 1.957 33.770 2.022
AS328 | AS328GM 42.008 1.952 42.278 2.023
AS328 | AS328M 45.289 1.950 45.638 2.024

Table 5-2 Ts/Tv ratio evaluation of variant filtration.

Presented in the table are genotype variant transitions (Ts) and Transversions (Tv) across variant sites per
individual within Cohort 3. Transitions are defined as a change of purine bases or pyrimidine bases, i.e. A
with G or C with T. Transversion are defined as changes between purine and pyrimidine bases, i.e. A with
C/T, C with G or G with T. The mean depth of coverage across variant sites is also reported per individual.
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5.3.3 Variant annotation and filtration

Annotation by dbNSFP for the post-QC variant call-set is detailed in Table 5-2. doNSFP
annotates all non-synonymous variation according to the specified parameters. In this
case dbNSFP has annotated with parameters “-p -g -v hg19” (Liu et al., 2020). Following
annotation, variants were filtered following the framework previously applied in Chapter
3 and Chapter 4. This has been summarised in Figure 5-2. This filtering strategy results
in the isolation of rare, putatively pathogenic SNVs with evidence of association in
autism. These variants are further subset on the basis of penetrance as determined by
family genotypes, enabled by extended pedigrees analysed within this cohort as follows

within this chapter.
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Filtration strategy following transmission-based subset

Non-synonymous SNVs

Rare Allele frequency <0.05 in gnomAD (Non-Finnish
European)

> " _— Polyphen2 (HDIV)
Predicted £ARD phred e SIFT4G "Damaging "Damaging"

pathogenic
| I | | N

l

Satisfying 22 prediction conditions

Consensus predicted
pathogenic

Evidence of gene SFARI genes (n=960) DDD genes (n=2,664)
association with

ASD/NDD

Rare pathogenic ASD
relevant variants

Figure 5-2 Flow of variant filtering.
Arrows show the direction of flow from each level of filtering (specified on the left). SFARI refers to Simons

Foundation Autism Research Initiative Gene Module (Abrahams et al., 2013). DDD refers to the
gene2phenotype database arising from the DDD study (Wright et al., 2015).
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5.3.4 Pedigree AS324 variant isolation
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Figure 5-3 Pedigree AS324.

FID IID Non- Rare Consensus Evidence of
synonymous | (<0.05) | Predicted gene
SNVs Pathogenic association with

Autism/NDD

AS324 | AS324C1 | 11,719 1,014 | 276 39

AS324 | AS324C2 | 11,668 969 251 36

AS324 | AS324C3 | 11,829 1,047 | 276 37

AS324 | AS324C4 | 11,808 1,043 | 262 39

AS324 | AS324C5 | 11,728 1,028 | 253 41

AS324 | AS324F 11,591 1,023 | 258 37

AS324 | AS324M 11,946 1,029 | 278 42

Table 5-3 Variant counts through variant prioritisation in pedigree AS324.

Variants were prioritised as outlined in Figure 5-2 and variant counts are presented here through prioritisation
stages as filtered from left to right within the table. Non-synonymous SNVs are the complete set of high-
confidence variants annotated by dbNSFP as non-synonymous. These variants were subset to rare variants
with a MAF of <5% of the population. Variants were determined to be consensus predicted pathogenic when
fulfilling two or more of SIFT, Polyphen-2 or CADD thresholds for classification. The resulting variants were
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interrogated at gene-level for their inclusion in SFARI Gene or DDD gene2phenotype as a measure of
relevance to autism and other neurodevelopmental conditions.

5.3.4.1 Hypothesised variant transmission

Homozygous recessive variant(s) in affected offspring, with heterozygosity in parents,
and heterozygosity or homozygous wildtype allele(s) in unaffected sibling are
hypothesised to contribute to neurodevelopmental conditions within this pedigree (Figure
5-3).

5.3.4.2 Variant report
Affected family members (AS324C1, AS324C2, AS324C3 and AS324C4) were

interrogated for homozygous variation. Of the rare predicted pathogenic variants in
genes with evidence supporting their role in autism, no variants were found to be
homozygous and shared between all affected individuals. No homozygous variation
within the variant set was carried by AS324C1 or AS324C2. One homozygous variant
within was shared between individuals AS324C3 and AS324C4, rs55742743 (TTN;
chr2). However, this variant is not shared between all affected family members within the
pedigree.

A total of 6 variants in the variant set were identified as shared between all affected
individuals in either a heterozygous or homozygous state. These variants are rs1800556
(ACADS; chrl2), rs146665183 (DLL4; chrl5), rs200546805 (ANKRD11; chrl6),
rs55742743 (TTN; chr2), rs1801208 (WFS1; chr4) and rs78008536 (RELN; chr7). None
of these six candidate heterozygous variants were absent in all unaffected family

members ruling out a heterozygous mode of pathogenicity of any single variant.
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5.3.5 Pedigree AS325 variant isolation

Figure 5-4 Pedigree AS325.
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FID IID Non- Rare Consensus Evidence of
synonymous | (<0.05) | Predicted gene
SNVs Pathogenic association with

Autism/NDD

AS325 | AS325C2 | 11,968 977 294 41

AS325 | AS325C3 | 11,977 1,020 | 297 35

AS325 | AS325C4 | 11,825 1,022 | 307 36

AS325 | AS325F 11,712 925 277 36

AS325 | AS325M 12,152 1,026 | 319 42

Table 5-4 Variant counts through variant prioritisation in pedigree AS325.

Variants were prioritised as outlined in Figure 5-2 and variant counts are presented here through prioritisation
stages as filtered from left to right within the table. Non-synonymous SNVs are the complete set of high-
confidence variants annotated by dbNSFP as non-synonymous. These variants were subset to rare variants
with a MAF of <5% of the population. Variants were determined to be consensus predicted pathogenic when
fulfilling two or more of SIFT, Polyphen-2 or CADD thresholds for classification. The resulting variants were
interrogated at gene-level for their inclusion in SFARI Gene or DDD gene2phenotype as a measure of
relevance to autism and other neurodevelopmental conditions.

5.3.5.1 Hypothesised variant transmission

Maternal inherited variant(s) present in all affected offspring and absent in the unaffected

father are hypothesised to contribute to neurodevelopmental conditions within this
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pedigree. Alternatively homozygous variant(s) present in all affected individuals with
paternal heterozygous may be pathogenic (Figure 5-4).

5.3.5.2 Variant report

Initial investigation of the homozygous rare, predicted pathogenic autism-relevant variant
set within this pedigree identified one candidate variant, rs1800328 (OTC; chrX). This
homozygous variant was present in the maternal sample only and was not found to be

shared with affected offspring within the pedigree.

Expanding beyond homozygous variation, this pedigree was interrogated for all variants
within the variant set (homozygous and heterozygous) maternally inherited by all affected
offspring and absent in the paternal genome. This search yielded 5 heterozygous
candidate variants, rs77444104 (NECTIN4; chrl), rs1800729 (TSC2; chrl6),
rs61747224 (TSHZ3; chrl9), rs78676079 (SLC26A2; chr5) and rs41277797 (FKTN;
chr9).
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5.3.6 Pedigree AS326 variant isolation
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Figure 5-5 Pedigree AS326.
FID IID Non- Rare Consensus Evidence of
synonymous | (<0.05) | Predicted gene
SNVs Pathogenic association with
Autism/NDD
AS326 | AS326C11 | 11,678 984 282 42
AS326 | AS326C12 | 11,861 957 282 52
AS326 | AS326C13 | 11,698 924 274 48
AS326 | AS326C21 | 11,610 947 258 36
AS326 | AS326C22 | 11,458 918 238 30
AS326 | AS326F1 | 11,682 941 288 47
AS326 | AS326F2 | 11,716 922 252 35

150




AS326 | AS326GM | 11,736 1,013 | 265 33

AS326 | AS326M1 | 11,893 975 259 42

AS326 | AS326M2 | 11,833 989 267 42

Table 5-5 Variant counts through variant prioritisation in pedigree AS326.

Variants were prioritised as outlined in Figure 5-2 and variant counts are presented here through prioritisation
stages as filtered from left to right within the table. Non-synonymous SNVs are the complete set of high-
confidence variants annotated by dbNSFP as non-synonymous. These variants were subset to rare variants
with a MAF of <5% of the population. Variants were determined to be consensus predicted pathogenic when
fulfilling two or more of SIFT, Polyphen-2 or CADD thresholds for classification. The resulting variants were
interrogated at gene-level for their inclusion in SFARI Gene or DDD gene2phenotype as a measure of
relevance to autism and other neurodevelopmental conditions.

5.3.6.1 Hypothesised variant transmission

Maternal inherited variant(s) with homozygosity in shared across affected individuals and
absent from unaffected individuals are hypothesised to contribute to
neurodevelopmental conditions within this extended pedigree (Figure 5-5).

5.3.6.2 Variant report

Initial investigation of the homozygous rare, predicted pathogenic autism-relevant variant
set within this pedigree identified one shared variant, rs113964173 (MYH11; chrl6), in
AS326C11 and AS326C12. As this variant is shared by an affected and unaffected
sibling it is not considered as being causative. Three homozygous variants were
identified in the unaffected fathers within the pedigree (rs34144324 (GRID2; chr4)
(AS326F1), rs753740777 (POLA1L; chrX) (AS326F2) and rs1800273 (DMD; chrX)
(AS326F2) and for this reason are not considered to be causative.

Evaluation of the complete variant set (homozygous and heterozygous) identified 5
heterozygous variants shared across all affected individuals (AS326C11, AS326C21 and
AS326C22). These variants are rs146798796 (TPP1; chrll), rs149558764 (LRP6;
chrl2), rs116105292 (TDOZ2; chr4), rs1059582 (HLA-DRB1; chr6) and rs779037714
(TRPVE; chr7). None of these 5 variants were absent across all unaffected individuals in

the pedigree.
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5.3.7 Pedigree AS328 variant isolation

Autism Other Other
Spectrum E neuropsychiatric I] neurodevelopmental
Disorder condition condition
4 4 &
Figure 5-6 Pedigree AS328.
FID IID Non- Rare Consensus Evidence of
synonymous | (<0.05) | Predicted gene
SNVs Pathogenic association with
Autism/NDD
AS328 | AS328C1 | 11,644 926 281 38
AS328 | AS328C2 | 11,507 896 257 31
AS328 | AS328C3 | 11,993 996 314 45
AS328 | AS328F 11,824 958 267 40
AS328 | AS328GM | 12,053 1,033 | 308 53
AS328 | AS328M 11,964 1,001 | 314 36

Table 5-6 Variant counts through variant prioritisation in pedigree AS328.

Variants were prioritised as outlined in Figure 5-2 and variant counts are presented here through prioritisation
stages as filtered from left to right within the table. Non-synonymous SNVs are the complete set of high-
confidence variants annotated by dbNSFP as non-synonymous. These variants were subset to rare variants
with a MAF of <5% of the population. Variants were determined to be consensus predicted pathogenic when
fulfilling two or more of SIFT, Polyphen-2 or CADD thresholds for classification. The resulting variants were
interrogated at gene-level for their inclusion in SFARI Gene or DDD gene2phenotype as a measure of

relevance to autism and other neurodevelopmental conditions.
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5.3.7.1 Hypothesised mode of transmission

Maternal inherited variant(s) shared by all affected offspring are hypothesised to
contribute to neurodevelopmental conditions within this pedigree. The causative
variant(s) is expected to be heterozygous dominant in all affected individuals with wild
type homozygosity in unaffected family members. Alternatively, the causative variant(s)
may be homozygous in all affected individuals with heterozygosity in unaffected family
members from whom a variant allele would be expected to have been transmitted (Figure
5-6).

5.3.7.2 Variant report

Initial investigation of the rare, predicted pathogenic autism-relevant variant set within
this pedigree was carried out on maternal inherited variation shared between affected
offspring. A total of 10 heterozygous variants within this call set were shared by all
affected family members within the pedigree (AS328M, AS328C1, AS328C2 and
AS328C3) (Table 5-7).

Of the 10 variants shared between affected family members presented in Table 5-7, 4

variants are not carried by unaffected members (AS328F and AS328GM). These

variants are presented in Table 5-8.

153



dbSNP rsID Chromosome Position Gene Ref Alt Minor Allele
Frequency
rs72648273 chr2 178,539,771 TTN G C 0.0043
rs199895260 chr2 178,589,803 TTN C T 0.0042
rs34144324 chrd 92,590,245 GRID2 C T 0.0462
rs116105292 chr4 15,591,1563 TDO2 A C 0.0430
rs1059582 chré 32,584,240 HLA-DRB1 G C 0.0094
rs2229792 chré 33,163,724 COL11A2 G A 0.0247
rs147304638 chr7 56,015,138 PSPH G A 0.0011
rs34293591 chr8 144,513,286 RECQL4 C T 0.0275
rs118113109 chrl2 52,568,196 KRT74 C T 0.0193
rs200555745 chrl6 88,716,580 PIEZO1 C T 0.0009

Table 5-7 Variants shared between affected individuals in pedigree AS328.

Variant IDs are given by dbSNP rs IDs. Variant position is reported as 1-based with coordinates per GrCh38. Ref refers to the reference allele and alt refer to the alternative allele.
Allele frequencies are reported from gnomAD v2.1.1 European (non-Finnish) combined exome and genome cohorts of high-quality genotypes, except for rs147304638 and

rs34293591 where allele frequency is reported from doSNP gnomAD European genomes report.

154




dbSNP rsID Chromosome Position Gene Ref Alt Minor Allele
Frequency
rs72648273 chr2 178,539,771 TTN G C 0.0043
rs199895260 chr2 178,589,803 TTN C T 0.0042
rs147304638 chr7 56,015,138 PSPH G A 0.0011
rs34293591 chr8 144,513,286 RECQL4 C T 0.0275

Table 5-8 Candidate causative variants in pedigree AS328.

Variant IDs are given by dbSNP rs IDs. Variant position is reported as 1-based with coordinates per GrCh38. Ref refers to the reference allele and alt refer to the alternative allele.
Allele frequencies are reported from gnomAD v2.1.1 combined exome and genome cohorts of high-quality genotypes, except for rs147304638 and rs34293591 where allele
frequency is reported from dbSNP gnomAD European genomes report.
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Of note within this set of 4 candidate variants are missense variants rs72648273 and
rs199895260 impacting the protein coding gene TTN on chromosome 2 as presented in Table
5-8. Both variants are maternally inherited by all affected offspring from affected AS328M.
TTN encodes a large protein of striated muscle which plays a key role in muscle assembly,
force transmission at the Z line of the sarcomere, and maintenance of resting tension in the |
band region (Itoh-Satoh et al., 2002). OMIM reports implication of variation in this gene in
Cardiomyopathy, Muscular Dystrophy, Myofibrillar Myopathy With Early Respiratory Failure
and Salih Myopathy (OMIM: 188840). In addition to these associations, SFARI gene collated
16 reports of autism with variation detected in TTN and designates this gene as a strong
candidate gene causative of syndromic autism (Abrahams et al., 2013). Single base missense
variants in TTN have been identified in four unrelated probands from the Simon’s Simplex
Collection, adding evidence that rs72648273 and rs199895260 which are also missense
variants within pedigree AS328 may be pathogenic (lossifov et al., 2012; O’ Roak et al., 2012).

Homozygous rare predicted pathogenic variants were also investigated in autism-relevant
genes identifying variation in the three affected offspring in this pedigree (AS328C1, AS328C2,
AS328C3). Variant rs116105292 (TDO2, chr4) was identified as homozygous in AS328C1.
Variant rs34144324 (GRID2, chr4) was identified as homozygous in AS324C3. These

homozygous variants were unique to these individuals.
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5.4 Discussion

5.4.1 Summary of results

This chapter describes the detection of rare, exonic SNVs in four pedigrees with multiple
affected individuals. Family structure has been leveraged to hypothesise the mode of
transmission of putatively pathogenic family, considering each pedigree family by family. This
approach was successful in the isolation of predicted pathogenic variation in two of four
families reported on here. This supports the use of a multiplex family approach in genomic
studies of autism, particularly when sample size is limited and underpowered to perform

linkage analyses.

However, the analysis pipeline applied here is limited to the isolation of rare exonic SNVs,
while NGS technologies enable additional classes of variation to be detected, with evidence
supporting their involvement in the genetic basis of autism, such as CNVs, SVs and tandem
repeat expansions as will be discussed later. There are future opportunities to explore these
classes of variation in Cohort 3 and there is potential to detect non-coding variation using the

complete variant set sequenced by WGS.

5.4.1.1 Pedigree AS324

Variants were isolated by restricting to rare predicted pathogenic variation within the SFARI
Gene (Abrahams et al., 2013) and DDD gene2phenotype (Wright et al., 2015) gene lists within
this pedigree. Restricting variant discovery to the hypothesised mode of transmission
identified variant rs55742743 in AS324C3 and AS324C4. This variant may be contributory to
the neurodevelopmental phenotype of these individuals. As this variant was not identified in a
homozygous state in the other affected individuals it can be determined that while the variant
may be contributory in AS324C3 and AS324C4, it is likely not a single gene cause of the
phenotype at family-level. Further investigation beyond this restrictive call set is necessary to
identify novel variation, without existing evidence of association, which may be contributing to

the burden of neurodevelopmental conditions within this pedigree.

5.4.1.2 Pedigree AS325

Restricting variant discovery to the hypothesised mode of transmission identified 5 candidate
potentially contributory heterozygous variants shared between all affected family members.

Further investigation through in vitro/in vivo functional evaluation is needed to determine
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whether heterozygosity of these variants is likely to be pathogenic in these individuals. In

addition, AS325C1 requires follow-up sequencing having failed.

5.4.1.3 Pedigree AS326

Restricting variant discovery to the hypothesised mode of transmission yielded no candidate
variants. Further investigation beyond this restrictive call set is necessary to identify novel
variation, without existing evidence of association, which may be contributing to the burden of
neurodevelopmental conditions within this pedigree. Furthermore, variant rs113964173
shared by affected (AS326C11) and unaffected (AS326C12) siblings should be further
investigated through in vitro/in vivo functional evaluation to determine relevance to the autism
phenotype of AS326C11. Sex differences in the sibling carrying this variant may explain a

variable manifestation of the condition resulting from a female protective effect in AS326C12.

5.4.1.4 Pedigree AS328

Restricting variant discovery to the hypothesised mode of transmission yielded 4
heterozygous candidate variants (Table 5-8). Of note within this set of 4 candidate variants
are missense variants rs72648273 and rs199895260 impacting TTN. Both variants are
maternally inherited by all affected offspring from affected AS328M. TTN has been classified
by SFARI Gene as a gene score of 2S indicating strong evidence for implication in idiopathic
autism as well as syndromic autism. Syndromic variant scoring by SFARI Gene classifies
variants “that are associated with a substantial degree of increased risk and consistently linked
to additional characteristics not required for an ASD diagnosis” (Abrahams et al., 2013).
Further investigation through in vitro/in vivo functional evaluation is needed to confirm

pathogenicity of these heterozygous variants.

5.4.2 Conclusion

The variant filtration approach applied subset variants to those impacting genes with evidence
for autism and neurodevelopmental condition association, as determined by presence in
SFARI Gene and DDD gene2 phenotype. These gene lists were unrestricted in this filtration,
i.e., genes were not subset to those with substantial evidence supporting the association as
indicated by Gene score of 1 or 2 in SFARI (Abrahams et al., 2013) or assigned “High
Confidence” by DDD (Wright et al.,, 2015). Functional analyses, for example the
CRISPR/Cas9-induced mutagenesis of DDX3X, a monogenic neurodevelopmental cause, are

required to robustly assign causation to the variants identified through these analyses
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(Radford et al., 2022). In efforts for discovery of gene-phenotype association, analysis should
extend beyond this gene-set enabling variant detection across all genes and non-coding
regions of the genome. The approach applied here is a first pass analysis which with increased
sample size should be evaluated at a more widespread level across the genome or in parallel

to large-scale WGS efforts.
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Chapter 6. Determining the clinical utility of gene panels in autism;

a study of diagnostic yield and relevance.

The contents of this chapter have been published in part as the following article:

Ni Ghralaigh, F. et al. (2022) ‘Brief Report: Evaluating the Diagnostic Yield of Commercial
Gene Panels in Autism’, Journal of Autism and Developmental Disorders 2022. Springer, pp.
1-5. doi: 10.1007/S10803-021-05417-7 (Appendix IV-II).

Presentations arising from the contents of this chapter:

“Determining the clinical utility of gene panels in autism; a study of diagnostic yield, relevance,
and penetrance.” Fiana Ni Ghralaigh, Thomas Dinneen, Ellen McCarthy, Daniel N. Murphy,
Louise Gallagher & Lorna M. Lopez

Poster presented at the World Congress of Psychiatric Genetics, October 2021 (Appendix IlI-
.

“Evaluating the diagnostic yield of commercial gene panels in autism.” Fiana Ni Ghralaigh,
Ellen McCarthy, Daniel N. Murphy, Louise Gallagher & Lorna M. Lopez
Poster presented at the Irish Society for Human Genetics, September 2021 (Appendix I-I1I).

“A Search for Rare Variants in a Family-Based Study of ASD.” Fiana Ni Ghralaigh, Jessica E.
Smith, Elaine Kenny Louise Gallagher & Lorna M. Lopez

Poster presented at the World Congress of Psychiatric Genetics, October 2018, and the Irish
Society for Human Genetics, September 2018 (Appendix I11-VII).
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6.1 Abstract

This chapter aims to overcome challenges in translation of genomic findings to clinical
application. The analysis performed in this chapter adds to this discussion of the
heterogeneity of clinical sequencing tests, “gene panels,” marketed for application in
autism by evaluating their clinical utility and considering gene selection. This analysis
demonstrates the low diagnostic yield of autism gene panels currently. In addition, this
chapter determines the clinical relevance of genes included within these panels. This
work concludes that commercial gene panels marketed for autism are currently of limited

clinical utility.

6.2 Introduction
Clinical genetic diagnosis is limited to the identification of rare causative variants for
evaluation of symptomatic individuals at present. Diagnostic genetic testing in

neurodevelopmental conditions and neuropsychiatric conditions is limited.

6.2.1 The benefits of genetic diagnosis in psychiatric conditions

The broad opportunity of precision medicine is to advance therapeutics. At the individual
level there are benefits to receiving a genetic diagnosis in psychiatry. Understanding
cause is of profound importance to individuals and families living with
neurodevelopmental and neuropsychiatric conditions. The International Society of
Psychiatric Genetics propose in their consensus statement on genetic testing that the
“identification of known pathogenic variants may help diagnose rare conditions that have
important medical and psychiatric implications for individual patients and may inform
family counselling” (Genetic Testing Statement | ISPG - International Society of
Psychiatric Genetics, no date). Specifically, genetic diagnosis establishes the primary
etiology of clinical diagnoses. This may enable healthcare providers to provide genetic
or reproductive counselling for affected individuals and their families. A genetic diagnosis
give opportunity for provision of personalised medicine, such as provision of anticipatory

medical guidance and treatment plans (Moeschler et al., 2014).

A further benefit to receiving a genetic diagnosis may be the opportunity to take part in
targeted research, such as variant specific clinical trials. While there are currently no
genotype-guided precision therapies available for use in autism, many examples of

treatments are available or in development for variant specific forms of epilepsy, another
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neurodevelopmental condition. One such example is treatment of SCN1A-related
epilepsy with an antisense oligonucleotide to block exon splicing. This treatment almost
entirely prevents seizures and resulting death in mouse models and is currently in Phase
| clinical trial (Carvill et al., 2018; Han et al., 2020). With the increasing number of genes
associated with autism comes an increase in potential targets for treatment. Genomic
discovery in autism will enable to discovery of molecular targets for autism, and potential
precision medicine gene targets for rare syndromic causes of autism. Beyond clinical
treatment strategies, a genetic diagnosis can be of great personal utility to an affected
individual by enabling access to etiology-specific advocacy organisations for example
22q1l1lreland (https://www.22q11lireland.org).

Pharmacogenomic testing is another stream of genetic testing in neuropsychiatric
conditions; with the aim of predicting drug response rather than aiding diagnosis. This
area of genomics research in neuropsychiatric conditions shows huge potential in
medical management of conditions, with genotype guided therapy leading to better
patient response (Bousman et al.,, 2019). An example of success in translation of
pharmacogenomics into the clinical setting is CYP2D6 testing to identify under and rapid
metabolisers of selective serotonin reuptake inhibitors in the context of treatment of
major depressive disorder (Hall-Flavin et al., 2013). Beyond this introduction to
pharmacogenomics, unless otherwise specified, in the context of this thesis, genomics
of psychiatric conditions refers only to genomics efforts to identify causative variation,

and further discussion is beyond the scope of this thesis.

6.3 Genetic heterogeneity of autism

Genetic diagnosis in autism is limited by the ability to robustly determine the clinical
relevance of putatively pathogenic genetic variation. Genomic research in autism is
progressing quickly, enabled by advancements in NGS technologies and the subsequent
establishment of large-scale sequencing cohorts and pedigree-based sequencing
cohorts (Glahn et al., 2019; Ni Ghralaigh, Gallagher and Lopez, 2020). To date, more
than 990 genes have been identified as having some link to autism (Abrahams et al.,
2013). Despite this progress, major challenges remain in the translation of findings from

research to clinic (7.2).

At cohort-level, studies discovering “autism genes” are compounded by an apparent lack

of specificity to autism. A candidate pathogenic variant may be evaluated, in most autism
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cases, as being contributory to the genetic risk rather than being wholly causative of an
individual’s condition. For example, in individuals affected by both autism and ID, genes
identified show relevance to both autism and other neurodevelopmental conditions
(Myers, Challman, Bernier, et al., 2020). For these reasons, the development of effective
gene panels to aid autism diagnosis is extremely complicated. To date there are a
number of curated gene lists for autism. These include genes involved biological

pathways critical to brain development and function.

Despite progress, autism genomics has yet to reach the target of establishing a
comprehensive gene list with clinical utility. This arises from the challenges with
interpretation of the genetic and phenotypic heterogeneity of autism (Myers, Challman,
Bernier, et al., 2020), and the resulting the lack of a consensus in establishing a gene
curation framework. As outlined in Chapter 4, approaches have been developed to
address these challenges in gene-phenotype curation.

6.4 Interpreting the clinical relevance of genetic findings

Multi-disciplinary experts propose WES as a first-tier diagnostic test to be applied to the
genomes of individuals affected by neurodevelopmental conditions (Srivastava et al.,
2019). The full potential for WGS in a clinical setting has yet to be determined; the
additional costs and the technical demands of data processing and data storage, and

data interpretation may not yet be justified for routine clinical use.

Targeted gene panels have been successfully developed for disease-specific use, such
as in hereditary cancer (LaDuca et al., 2019). The applicability of such gene panels in
autism would at this time be extremely limited. At present no genes can be exclusively
associated with autism, i.e. association in the absence of ID or other co-occurring

neurodevelopmental conditions (Myers, Challman, Bernier, et al., 2020).

Evaluation of the clinical implication of a given genetic variant is a further level of variant
annotation. A key distinction currently, is clinical investigation in research vs. clinical
settings, with the latter requiring use of accredited clinical molecular laboratories,
technologies, and analysis strategies. Existing variant information for those variants,
which are characterised to have clinical significance, are accessible through databases
such as OMIM, ClinVar and Human Gene Mutation Database (HGMD) (McKusick-
Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, no date;
Stenson et al.,, 2017; Landrum et al., 2018). Commercial genome analysis platforms
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present a useful option to perform variant interpretation with minimal need for
computational infrastructure and bioinformatic analysis expertise. Some examples
include Complete Genomics, Agilent Alissa Interpret and SOPHIA DDM (Appendix II-V).
These platforms benefit from the use of in-house algorithms to identify the variants most
relevant to disease. However, patenting controls mean that there is often a lack of

transparency in the methods of the variant ranking systems used by these platforms.
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6.4.1 Hypothesis and aims

Despite the challenges in translation of genomic findings to clinical application,
commercial gene panels are available and marketed for use in autism diagnosis. Hoang
et al. (2018) evaluated many of these gene panels, clearly demonstrating their
heterogeneity (Hoang, Buchanan and Scherer, 2018). Their survey shows large
variability in the number of genes being tested by panels, lack of consensus in the genes
selected for inclusion, as well as variability in the reporting of laboratory qualification and
reporting protocols. The analysis performed in this chapter adds to this discussion of the
heterogeneity of clinical sequencing tests, “gene panels,” marketed for application in

autism by evaluating their clinical utility and considering gene selection.

The aims of this thesis chapter are:
1) Evaluate the diagnostic yield of commercial gene panels marketed for use in
autism and determine the relevance gene selection for these panels.

2) Determine the overlap of ACMG59 genes and autism-related gene lists.
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https://link.springer.com/article/10.1007/s10803-021-05417-7#ref-CR6

6.5 Results

6.5.1 Evaluating the diagnostic yield of commercial gene panels in autism

Here we estimate the clinical utility of commercial gene panels marketed for use in
autism. Diagnostic yield, which is the proportion of cases interrogated for which a genetic
cause can be determined, is a strong measure of the clinical utility of a sequencing

technology.

6.5.1.1 Identifying autism gene panels

Commercial gene panels marketed for use in autism, collated through literature search
and systematic searching (October 2020-January 2021), are presented in Table 6-1.
Gene panels marketed for use in autism were identified and collated through the
following approaches: web browser search (search terms “autism gene panel”, “ASD
gene panel”, “sequencing tests for autism spectrum disorder”, “gene panels for autism
testing” and “autism genetic testing”), gene panels analysed by Hoang et al. (2018)
(Hoang, Buchanan and Scherer, 2018) and Genomics England PanelApp (search terms
“Autism”, “ASD”) (Martin et al., 2019). Panels identified for which gene lists were not
provided were excluded from analyses (CGC genetics “Autism” panel & Michigan

Medicine “Autism/ Intellectual Disability Panels”).
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Gene Panel Provider

Source

Ambry Genetics

https://www.ambrygen.com/providers/genetic-testing/62/neurology/autismnext

Asper Neurogenetics

https://www.asperbio.com/asper-neurogenetics/autism-spectrum-disorders-ngs-panel/

Blueprint Genetics

https://blueprintgenetics.com/tests/panels/neurology/autism-spectrum-disorders-panel/

Center for Human Genetics

https://www.ncbi.nlm.nih.gov/gtr/tests/529181/

Centogene

https://www.centogene.com/science/centopedia/syndromic-autism-gene-panel.html

Centogene

https://www.centogene.com/diagnostics/ngs-panels/neurology.html

EGL Genetics

https://www.eqgl-eurofins.com/tests/MM021

Fulgent Genetics

https://www.fulgentgenetics.com/Autism

GeneDx

https://www.genedx.com/test-catalog/available-tests/autismid-xpanded-panel/

GENETAQ

http://genetag.com/en/catalogue/test/autism

Genomics England PanelApp

https://panelapp.genomicsengland.co.uk/panels/657/

Greenwood Genetic Centre

https://www.ggc.org/test-finder-item/syndromic-autism-sequencing-panel

GX Sciences

https://www.gxsciences.com/genetic-testing-autism-s/202.htm

MNG Laboratories

https://mnglabs.com/tests/INGS325/comprehensive-intellectual-disability-autism-ngs-panel-and-copy-number-analysis-

mtdna

Munroe-Meyer Institute

https://www.unmc.edu/mmi/geneticslab/ documents/gene-lists/genelist-p-autism-v3-117.pdf

Prevention Genetics

https://www.preventiongenetics.com/testinfo?val=Autism+Spectrum+Disorders+%28ASD%29+Panel

Reference Laboratory Genomics

https://www.ncbi.nlm.nih.gov/gtr/tests/559901/overview/

Sema4

https://sema4.com/products/test-catalog/comprehensive-autism-spectrum-disorders-panel-228/

Table 6-1 Source of autism-relevant gene panels investigated.

Outlined are the company names for 18 targeted gene panels marketed for use in autism with the sources at which gene lists and descriptions were obtained (collated October

2020-January 2021).
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6.5.1.2 Refining gene lists

Gene lists corresponding to each of the targeted gene panels presented, were collated,
and refined. Each gene panel identified provided a list of genes targeted by the probes.
By nature, these gene lists arise from a variety of sources and were compiled at varying
times. For this reason, gene lists were run through HUGO Gene Nomenclature
Committee (HGNC) Multi-Symbol Tool (Version: 2021-01-06 update). Where the gene
symbol reported by the provider is an approved gene symbol in HGNC, it is used in
analyses. Where the gene symbol is no longer approved by HGNC, it was updated to
the approved gene symbol given by HGNC. A small number of deviations occurred that
could not be resolved, which resulted in the removal genes from the analyses. Gene

counts reported in these analyses reflect these updates.

6.5.1.3 Estimating the diagnostic yield of commercial gene panels in autism

Diagnostic yield, which is the proportion of cases interrogated for which a genetic cause
can be determined, is a strong measure of the clinical utility of a sequencing technology.
Feliciano et al. (2019) estimate the diagnostic yield of WES to be 10.4% in the initial 457
families enrolled in the SPARK cohort (Feliciano et al., 2019). A ‘likely pathogenic’
variant, a variant with greater than 90% certainty of being disease causing, was identified
in a further 3.4% of families studied. This estimate comes from the identification of a
variant that fulfils either the ‘likely pathogenic’ or ‘pathogenic’ criteria, according to ACMG
standards (Richards et al., 2015).

To determine the clinical utility of each autism gene panel, variants meeting ‘likely
pathogenic’ or ‘pathogenic’ criteria in the SPARK cohort can be limited to those within
the gene set of each panel, respectively. In doing so, we ask how many of the pathogenic
variants identified by Feliciano et al. would have been identified in the SPARK cohort

with application of an autism gene panel, instead of application of WES.

Clinically relevant variants, as identified and characterised by WES in the Simon’s
Powering Autism Research Knowledge (SPARK) cohort, were used to determine the
clinical utility of each panel. Variants included in these analyses are those reported in
Feliciano et al. (2019), comprising inherited and de novo SNVSs, indels and CNVs
(Feliciano et al., 2019). Reported chromosomal abnormalities were not included. Gene
lists were assembled to include those for which clinically relevant SNVs and indels could

be defined and those that fall within the boundaries of clinically relevant CNVs. While
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targeted gene panels lack the ability to define CNV boundaries, genes within these
variants will appear as deleted or duplicated, thus a variant site will be detected. For this
reason, this class of variation has been considered in these analyses where it would

otherwise be excluded.

6.5.1.4 Determining and reporting diagnostic yield

Diagnostic yield was calculated as the proportion of individuals with relevant variants that
would have been identified in the SPARK WES cohort if using the gene lists for each
gene panel. Diagnostic yield was determined by cross-referencing the gene list of each

gene panel with the lists of implicated genes in the SPARK cohort.

The number of individuals in the cohort was taken as 472 affected individuals (465
offspring and seven parents) as detailed by Feliciano et al. (2019). In keeping with this
study, 13 individuals, those in families self-reporting a genetic diagnosis were not
included in the estimates of diagnostic yield. With this justification, diagnostic yield was
calculated as the number of individuals with a relevant variant, as a percentage of the
total cohort of 459 affected individuals without a genetic diagnosis.

The number of individuals for which a clinically relevant finding would have been
identified by using each targeted gene panel is reported for both pathogenic and
probable pathogenic variants, as assigned by Feliciano et al. (2019). The diagnostic yield
of each gene panel, estimated with respect to Feliciano et al. (2019) analyses, is
presented in Table 6-4. The diagnostic yields range from 0.22% to 10.02%, with most

gene panels achieving a diagnostic yield below 3%.

6.5.1.5 Determining and reporting correlation

SFARI Gene is a database (all gene scores and genetic categories) of genes implicated
in autism susceptibility (Version: 2021-01-13 release) (Table 6-2,Table 6-3). Each panel
was assessed for overlap with SFARI Gene to determine the proportion of genes
included on commercial panels that have known relevance to autism. Where necessary,
the SFARI Gene list (n=1,003) was updated to HGNC approved gene symbols (n=5) and
genes with symbol mismatch (n=3) were removed. The number of genes targeted by
each panel that overlap with SFARI Gene are estimated as a percentage of the total

genes in the panel. SFARI Gene was subset to high-confidence autism-associated
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genes, assigned as such based on SFARI Gene scoring of 1 or 2. Percentage overlap

was calculated for the subset of high-confidence genes and presented.

Software Version
RStudio 4.0.3
Tidyverse 1.3.0

Table 6-2 Software versions used in analyses.

Input Data Version Source

SFARI Gene list 01-13-2021 release https://gene.sfari.org/database/human-
gene/

Gene panel gene Up to date as of As specified in 6.5.1.1.

list January 2021

Clinically relevant As published Feliciano et al. (2019)

variant set

Table 6-3 Data input files with sources and versions used in analyses.

The degree of overlap of gene lists of each gene panel, with SFARI Gene is presented
in Table 6-4 The overlap is expressed as the percentage of genes interrogated by each
panel that are also included in SFARI Gene. Most genes included in these gene panels
have some relevance to autism, illustrated by the inclusion of a large proportion the
panel-specific genes in the SFARI Gene database (Abrahams et al., 2013). SFARI Gene
is a collated list of genes for which there is evidence of association with autism and is
used here as an arbitrary measure of ‘relevance’ of genes included with autism. The
Genomics England PanelApp (Autism Version 0.2) was used as a positive control in the
analysis. Its gene list is derived from SFARI Gene, reflected in the 100% overlap with the
database. Conversely, Gx Sciences (Developmental Nutrigenomic Panel) has an
overlap of just 15.15% of genes with those in SFARI Gene, reflecting the more specific
intended application of this gene panel (nutrigenomics rather than diagnostics). SFARI
Gene was subset to high-confidence autism-associated genes, assigned as such based
on SFARI Gene scoring of 1 or 2 (Table 6-4).

Pearson’s product-moment correlation was computed with 16 degrees freedom for

diagnostic yield and number of genes targeted and for diagnostic yield against
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percentage overlap with SFARI Gene (all genes). Diagnostic yield of the gene panels
and size of the panel were found to be positively correlated, (r = 0.82, p = 3.033e-05),
indicating an increased number of genes per gene panel enables detection of a clinically
relevant variant in a greater number of individuals. No significant correlation between

percentage overlap with SFARI Gene and diagnostic yield was detected.
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Service provider Panel name Number of Percentage overlap with SFARI Gene Diagnostic yield
genes targeted in SPARK
SFARI Gene | SFARI High Confidence
All Genes Genes (Scores 1 and 2)
Ambry Genetics AutismNext Panel 72 87.5% 76.39% 2.61%
Asper Neurogenetics | Autism Spectrum Disorders NGS | 76 88.16% 71.05% 2.83% (0.22%)
Panel
Blueprint Genetics Autism Spectrum Disorders 75 45.33% 36% 1.53% (0.44%)
Panel
Center for Human Autism Spectrum Disorder 53- 53 84.91% 45.28% 1.96% (0.22%)
Genetics Gene Panel
Centogene Syndromic Autism Gene Panel 50 88% 76% 2.4% (0.22%)
Centogene Intellectual Disability Panel 599 43.41% 24.54% 5.23% (1.31%)
EGL Genetics Autism Spectrum Disorders Tier | 62 74.19% 66.13% 2.18%
2 Panel
Fulgent Genetics Autism NGS Panel 121 76.86% 55.37% 4.36% (0.44%)
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GeneDx Autism/ID Xpanded Panel 2641 20.64% 10.98% 10.02% (3.49%)
GENETAQ Autism 27 92.59% 66.67% 1.53%
Genomics England Autism (Version 0.20) 733 100% 42.7% 7.63% (1.96%)
PanelApp
Greenwood Genetic | Syndromic Autism Sequencing 83 80.72% 69.88% 3.05%
Centre Panel
GX Sciences Developmental Nutrigenomic 33 15.15% 0% 0.22%
Panel
MNG Laboratories Comprehensive Disability/Autism | 1345 19.85% 12.04% 6.1% (1.3%)
Panel
Munroe-Meyer Autism/Intellectual 117 55.56% 41.88% 2.4% (0.22%)
Institute Disability/Multiple Anomalies
Panel
Prevention Genetics | Autism Spectrum Disorders 170 95.29% 90.59% 6.32% (0.44%)
Panel
Reference Autism Spectrum Disorders 77 77.92% 64.94% 3.05% (0.44%)
Laboratory (Expanded Panel)
Genomics
Sema4 Comprehensive Autism 228 57.46% 43.42% 4.79% (0.87%)

Spectrum Disorders Panel (228)
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Table 6-4: Diagnostic yield of gene panels marketed for use in autism.

Presented are gene panels relevant to autism. Diagnostic yield of gene panels marketed for use in autism.
Presented are gene panels relevant to autism. The number of genes present in each gene panel are correct
as of January 2021. Gene lists were updated to HGNC approved gene symbols where necessary.
Percentage overlap with SFARI is estimated as the proportion of genes within each respective gene list
appearing in SFARI Gene (01-13-2021 release). This overlap is presented for both the complete SFARI
Gene gene lists and the High Confidence SFARI Genes only (Scores 1 and 2). Diagnostic yield is estimated
as the number of individuals for which a genetic cause of autism was identified as a proportion of those
investigated (459 affected individuals for which no genetic diagnosis was previously reported). Pathogenic
variation is considered as variants listed in Feliciano et al. (2019). Variants considered are de novo and
inherited SNVs, indel variants, and CNVs. Diagnostic yield of pathogenic variation is listed, with the
additional diagnostic yield achieved by inclusion of probable pathogenic variants listed in brackets alongside.
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6.5.2 Evaluating the inclusion of ACMG59 in autism and neurodevelopmental

condition gene lists

6.5.2.1 Determining the overlap of autism gene lists with ACMG59

The ACMG has published recommendations for reporting genetic variation from clinical
exome and genome sequencing (Miller et al., 2021). Within these genes, 59 at time of
analysis, variants that may be pathogenic have been characterised in ClinvVar (Landrum
et al., 2018). These variants are recommended for reporting as they are likely to be
informative to the individual carrying the variant, and potentially their family members.
Variants identified within these genes are likely to be secondary findings, i.e., unrelated
to the primary purpose of performing the test. However, these genes may be of
neurodevelopmental relevance and subsequently may be the target of genomic
interrogation in these individuals in a research setting.

Here three autism-relevant genes lists (SFARI Gene, DDD gene2phenotype and the
genes targeted by autism gene panels) were interrogated for overlap with the ACMG
gene list of clinically actionable genes (Table 6-6) (Figure 6-1). Six genes, included in
all autism gene lists investigated are found on the ACMG59 gene list (PTEN, TSC1,
TSC2, BRCA2, FBN1 and SMAD4). Furthermore, three of these six genes (PTEN, TSC1
and TSC2) are scored as “High Confidence” for autism-association and two of the six

genes (FBN1 and SMAD4) are scored as “Strong Candidate” for autism-association.
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DDG2P Gene Panels

ACMGS9

Figure 6-1 The overlap of autism gene lists with ACMG59.

Differentiated by colour are three autism-relevant gene lists (Blue-SFARI Gene; Yellow- DDD ND Gene to
Phenotype gene lists; Grey- Collated gene list arising from commercial gene panels marketed for use in
autism). The overlap is shown between these gene lists, and between each gene list and ACMG59, in red.

These gene lists are further detailed in Table 6-4. Counts represent the number of genes within each
category of overlap.

The autism gene list with the most substantial overlap with ACMG59 is DDD
gene2phenotype, notably also the gene panel targeting the largest number of genes
(n=2,426). Of particular interest are the three genes interrogated by gene panels and
featuring on the ACMG59 gene lists, which are not interrogated by SFARI Gene or
DD2GP. Given that these genes are not interrogated by either SFARI Gene or DDD
gene2phenotype, the evidence supporting the inclusion of these genes in the gene
panels is of concern and will be discussed later.

This overlap of genes in the clinical gene-sets presented in Figure 6-1 is further quantified by jaccard
similarity coefficient, presented in

Table 6-5, measured as:
|A M B| [A N Bl

J(A,B) = =
( ) |A U B] |A| + |B| — |[AN B|
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Gene Set Gene Set Jaccard Similarity Coefficient
SFARI ACMG59 0.006610009

SFARI Gene Panels 0.2496529

SFARI DDDG2P 0.1363184

DDDG2P ACMG59 0.008090615

DDDG2P Gene Panels 0.3663823

Gene Panels ACMG59 0.003941441

Table 6-5 Jaccard Similarity Coefficients of Clinical Gene set Overlaps. Presented are pair-wise jaccard
similarity coefficients for the clinical gene sets under investigation. The overlap is shown between these
gene lists, and between each gene list and ACMG59, in red. These gene lists are further detailed in Table
6-4.
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targeted by 18 autism

commercial gene panels.

(Ni Ghralaigh et al., 2022)

Gene List Description Number of | Source/Reference Release/Export
Genes
Query Gene Set
ACMG59 The ACMG has published 59 https://www.ncbi.nlm.nih.gov/clinvar/docs/acmag/ Version 2.0
recommendations for reporting (Kalia et al., 2017) 06-04-2021 export
incidental findings in the exons of
these genes
Autism Gene Set
SFARI SFARI Gene is a well-maintained | 1,000 https://gene.sfari.org/ 13-01-2021 release
database for the autism research (Abrahams et al., 2013)
community. This gene list Gene lists has been refined as detailed in 6.5.1.2.
collates genes implicated in
autism susceptibility.
DDD This gene lists are the 2,426 https://www.deciphergenomics.org/ddd/ddgenes 09-04-2021 export
gene2phenotype | neurodevelopmental condition (Wright et al., 2015)
“ND” gene list arising from the
DDD study.
Gene Panels This gene lists includes all genes | 3,500 This gene list is compiled and refined as detailed in this chapter. Current as of January

2021

Table 6-6 Description of gene lists used.

The column gene list lists the shortened name of each list as it is referred to within these analyses. Description gives context to the relevance of each gene list to these analyses.
Columns 3-5 give further detail on the gene lists. Note that all gene symbols within these gene lists are HGNC approved.
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Gene Gene Description Interrogated Disease Phenotype (Coriell Institute) GeneReviews® SFARI
Symbol (GeneCards) by Gene
(HGNC) Score
ACTAZ2 Actin Alpha 2, Smooth DDD Marfan syndrome, Loeys-Dietz syndromes, (Milewicz and Not
Muscle and familial thoracic aortic aneurysms and Regalado, 1993; Dietz, | scored
dissections 2017; Loeys, 2017)
ATP7B ATPase Copper Gene Panels Wilson disease (Weiss, 1993) Not
Transporting Beta scored
BRCA1 BRCAL DNA Repair DDD Hereditary breast and ovarian cancer (Petrucelli, Daly and Not
Associated Pal, 1993) scored
BRCA2 BRCA2 DNA Repair Gene Panels, Hereditary breast and ovarian cancer (Petrucelli, Daly and 3
Associated SFARI, DDD Pal, 1993)
DSP Desmoplakin DDD Arrhythmogenic right ventricular (McNally, MacLeod Not
cardiomyopathy and Dellefave-Castillo, | scored
1993)
FBN1 Fibrillin 1 Gene Panels, Marfan syndrome, Loeys-Dietz syndromes, (Milewicz and 2
SFARI, DDD and familial thoracic aortic aneurysms and Regalado, 1993; Dietz,
dissections 2017; Loeys, 2017)
KCNQ1 Potassium Voltage- DDD Romano-Ward long-QT syndrome types 1, 2, | (Yunis and Bhonsale, Not
Gated Channel and 3, Brugada syndrome 2020) scored

Subfamily Q Member 1
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LDLR Low Density Lipoprotein | SFARI Familial hypercholesterolemia (Youngblom, Pariani 3
Receptor and Knowles, 1993)
LMNA Lamin A/C Gene Panels, Hypertrophic cardiomyopathy, dilated (Cirino and Ho, 1993) | Not
DDD cardiomyopathy scored
MYH11 Myosin Heavy Chain 11 | DDD Marfan syndrome, Loeys-Dietz syndromes, (Milewicz and Not
and familial thoracic aortic aneurysms and Regalado, 1993; Dietz, | scored
dissections 2017; Loeys, 2017)
OoTC Ornithine Gene Panels, Ornithine transcarbamylase deficiency (Lichter-Konecki et al., | Not
Transcarbamylase DDD 2016) scored
PMS2 PMS1 Homolog 2, DDD Lynch syndrome (Idos and Valle, 2004) | Not
Mismatch Repair System scored
Component
PTEN Phosphatase And Tensin | Gene Panels, PTEN hamartoma tumour syndrome (Mester, 2016) 1
Homolog SFARI, DDD
RET Ret Proto-Oncogene Gene Panels, Multiple endocrine neoplasia type 2, Familial | (Eng, 1993) Not
DDD medullary thyroid cancer scored
RYR1 Ryanodine Receptor 1 DDD Malignant hyperthermia susceptibility (Allen, 1994) Not
scored
RYR2 Ryanodine Receptor 2 Gene Panels Catecholaminergic polymorphic ventricular (Maragna and Not
tachycardia Napolitano, 2018) scored
SDHD Succinate Gene Panels Hereditary (Else, Greenberg and | Not
Dehydrogenase paragangliomapheochromocytoma syndrome | Fishbein, 1993) scored

Complex Subunit D
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SMAD3 SMAD Family Member 3 | DDD Marfan syndrome, Loeys-Dietz syndromes, (Milewicz and Not
and familial thoracic aortic aneurysms and Regalado, 1993; Dietz, | scored
dissections 2017; Loeys, 2017)
SMAD4 SMAD Family Member 4 | Gene Panels, Juvenile polyposis (Hussain and Church, |2
SFARI, DDD 2020)
TGFBR1 Transforming Growth Gene Panels, Marfan syndrome, Loeys-Dietz syndromes, (Milewicz and Not
Factor Beta Receptor 1 DDD and familial thoracic aortic aneurysms and Regalado, 1993; Dietz, | scored
dissections 2017; Loeys, 2017)
TGFBR2 Transforming Growth Gene Panels, Marfan syndrome, Loeys-Dietz syndromes, (Milewicz and Not
Factor Beta Receptor 2 DDD and familial thoracic aortic aneurysms and Regalado, 1993; Dietz, | scored
dissections 2017; Loeys, 2017)
TSC1 TSC Complex Subunit 1 | Gene Panels, Tuberous sclerosis complex (Northrup et al., 1993) |1
SFARI, DDD
TSC2 TSC Complex Subunit 2 | Gene Panels, | Tuberous sclerosis complex (Northrup et al., 1993) |1
SFARI, DDD
WT1 WT1 Transcription DDD WT1-related Wilms tumour (Dome and Huff, 1993) | Not
Factor scored

Table 6-7 Clinical relevance of overlapping genes.

This table details and expands on genes included on the ACMG59 gene lists of clinically actionable genes, which are also interrogated by one or more autism-relevant gene lists.
All gene symbols included are HGNC approved, gene descriptions are sourced from GeneCards (https://www.genecards.org/). Disease phenotype associated with each gene is
specified as per Coriell Institute for Medical Research (https://www.coriell.org/). Literature documenting the gene-disease association and clinical handling of genetic variation
with each gene is referenced as Gene Reviews (a point-of-care resource for clinicians, providing clinically relevant and medically actionable information for inherited conditions).
Where scored, the SFARI Gene score (13-01-2021 release) is given as a measure of the level of evidence supporting a genes association with autism. Genes are scored on a
scale of 1-3 based on the number of autism reports of variation within the gene. SFARI Gene scores are interpreted as 1; High Confidence, 2; Strong Candidate; 3, Suggestive

Evidence. Where genes are “Not scored” by SFARI Gene, no reports of autism have been associated with variation within the gene, as per the SFARI Gene database.
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6.5.2.2 Determining the clinical relevance of overlapping gene

The clinical relevance of genes overlapping ACMG59 are detailed in Table 6-7. The genes
detailed in the table have evidence of neurodevelopmental association and may be targeted
in the future or are currently targeted by commercial genetic testing strategies in autism and
other neurodevelopmental conditions. The disease phenotype associated with the ACMG59
gene is given in Table 6-7 alongside the SFARI Gene Score. As shown, 17/24 overlapping
genes have not been scored by SFARI Gene. Of those that have, two genes have been
assigned SFARI Gene scores of three indicating a lack of robust evidence supporting the

association.
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6.6 Discussion

6.6.1 A lower number of targeted genes on commercial gene panels is associated
with reduced detection of clinically relevant variants.

Considering the low diagnostic yield of the gene panels that were investigated, we can infer
that, while the gene selection for inclusion in autism gene panels is evidence-based, these
gene lists are not extensive enough to justify use in genetic diagnosis in the context of autism,
a complex trait for which hundreds of genes have been associated (Table 6-4). The GeneDx
“Autism/ID Xpanded Panel” represents the autism gene panel with the highest number of
individuals for which a genetic diagnosis would have been obtained with its application
(10.02%). This diagnostic yield is comparable to that of WES, 10.4% (Feliciano et al., 2019)
and that of chromosomal microarray sequencing with a median diagnostic yield of 8.1%
(Savatt and Myers, 2021). However, important to note is that this gene panel targets many
more genes (n=2,641) than some of the smaller gene panels, for example GENETAQ “Autism”
panel (n=27), with a diagnostic yield of just 1.53%. The positive correlation of diagnostic yield
associated with inclusion of a larger number of genes, reflects well the complex genetic
architecture of autism and the number of loci expected to be associated. Critically, it must be
communicated to healthcare providers ordering these diagnostic tests, that if a targeted gene
panel test has a negative result for detection of pathogenic variation, one cannot conclude that
a causative variant is not present. Rather, it is more likely that genetic causes have been

missed due to the absence of the gene of interest from that panel.

This raises the question whether autism is an appropriate candidate for the development of
commercial gene panels, which are limited due to the size of the gene panel, the cost and
current knowledge of the genetic basis of autism. This suggests that sequencing technologies
with a broader coverage, such as WGS may be more effective. Balancing the reduction in
costs associated with restriction of the proportion of the genome covered, with the potential
benefit of sequencing the entire genome must be considered based on the genetic architecture
underlying the condition. Following developments in WGS, particularly with the advent of long-
read sequencing, this technology has the potential to cover up to 100% of the human genome.
When restricting variant discovery to coding regions only, just 1% of the human genome is
explored. Targeted sequencing, including the use of gene panels or clinical exome
sequencing, presents the opportunity to significantly reduce costs associated with genetic
sequencing, challenges associated with variant interpretation and limitations associated with
large data storage. However, these benefits come at the cost of restricting variant discovery
to a miniscule proportion of the genome, depending on the number of genes targeted (Table

1-1).
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Expanding beyond targeted autism genes, WGS presents the opportunity to explore more of
the human genome and, ultimately, to further increase the diagnostic yield in autism (Yuen et
al., 2015). Progress in non-coding variant annotation and interpretation, accompanied by a
decrease in sequencing costs, may further popularize the clinical use of WGS. Currently, WES
is proposed as the first-tier diagnostic test for neurodevelopmental conditions (Srivastava et
al., 2019). Recent advances in data analysis have led to a capability of CNV calling by WES,
eliminating the need for CMA entirely. This has enabled WES with CNV calling to achieve a
high diagnostic yield in neuropsychiatric conditions. The diagnostic yield in autism using
clinical exome sequencing has been estimated at 6.1% in autism (20% overall yield in
neurodevelopmental conditions) (Martinez-Granero et al., 2021). Genotyping chips have
limited clinical utility for rare genetic variation of SNVs and should not be used to guide health

decisions without validation (Mn et al., 2021).

6.6.2 Challenges in the handling of genetic findings

6.6.2.1 Reporting of secondary findings

Consideration is needed of the potential to uncover of incidental genetic findings when
analysing genomic research data. Incidental findings here refer to clinically relevant and
potentially clinically actionable findings, unrelated to the primary purpose of performing the
test. This discussion comes with several factors to consider, specifically ethical consideration.
This is particularly considered in the context of ‘actionable’ findings such as variants in
ACMG59 genes. Secondary findings found in a research setting require clinical validation of
the findings and clinical reporting, resulting in communication preferably from a genetic
counsellor, all considered only where the participant has consented for such findings to be

communicated back.

Investigation of the overlap of autism-relevant genes with the ACMG589 list of gene in which
variants in the exons of the genes may be clinically actionable for the individual, highlights that
consideration must be made to the uncovering of secondary findings within these genes which
may have impacts on an individual’s life, unrelated to autism (Figure 6-1). Six genes, included
in all autism gene lists investigated are found on the ACMG59 gene list (PTEN, TSC1, TSC2,
BRCAZ2, FBN1 and SMAD4). Furthermore, three of these six genes (PTEN, TSC1 and TSC2)
are scored as “High Confidence” for autism-association and two of the six genes (FBN1 and

SMADA4) are scored as “Strong Candidate” for autism-association.
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While these genes show strong evidence supporting the need to sequence and interrogate
them to determine the genetic basis of autism, there is risk of identification of secondary
actionable genetic variation in a research context. With this risk comes a need for sensitivity
in data handling and strict informed consent at study enrolment. A strategy for clinical
validation and return of result is required should a putatively pathogenic variant be identified.
Secondary findings found in a research setting require appropriate clinical validation of the
findings and clinical reporting, and access to follow up genetic counselling which may not be
universally available, as is the case in Ireland with major gaps in resourcing for provision of
genetic advice (Lynch and Borg, 2016). This requires the appropriate consent for return of
incidental findings. While these variants are “individually rare, they are collectively common.”
This means the likelihood of identifying a rare secondary genetic finding in both large-scale
and smaller research cohort is not uncommon, as shown in a 2.7% diagnostic yield of
ACMG59 pathogenic variation in a cohort of 101 epilepsy patients (Benson et al., 2020).

These genes discussed show evidence for autism association, a benefit to their inclusion when
determining the genetic basis of autism, which should be weighed against the risk, or reward
depending on the preferences of the individual, of identification of secondary genetic finding.
However, 17 of the 24 autism-relevant genes overlapping with ACMG59 show lack of evidence
of autism association, as determined by number of reports in the SFARI Gene database.
Notably most of these genes are overlapping by the gene list arising from the Deciphering
Developmental Disorder study, a gene list collated from severely affected neurodevelopmental
cohort with atypical presentations, but likely relevant also to autism. Of note are the three
genes (SDHD, ATP7B and RYR2) interrogated by commercial gene panels marketed for use
in autism. These genes are “Not scored” by SFARI Gene, potentially indicating insufficient

evidence for justification in targeted autism sequencing in any case.

PheWAS analysis has been performed to understand pleiotropic effects of rare variation in the
ACMG59 genes on psychiatric phenotypes. This approach did not identify any ACMG59 genes
that are significantly enriched with rare deleterious variants that confer risk for psychiatric
conditions, showing a lack of association between psychiatric conditions and incidental
findings in these medically actionable genes (Feng et al., 2022). These findings suggest there
may be little benefit of inclusion of these genes within autism gene panels, while a relevant
finding brings healthcare challenges, requiring feedback and onward referral for further
medical investigation where appropriate. Further follow-up may be required with a need for
routine surveillance, for example pathogenic variation in PTEN where breast or bowel

screening might be indicated.
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Important to this discussion is that four genes (BMPR1A, SMAD4, ATP7B, and OTC) were
added to the ACMG59 gene list in the update from version 1 to version 2 (Richards et al.,
2015; Kalia et al., 2017). Three of these four genes are autism-relevant genes (Table 6-7),
which may have been included in targeted autism gene panels developed prior to update of
ACMGS59. Importantly ACMG59 is not a definite collection of genes in which clinically
actionable pathogenic variation may occur. In the time since these analyses were carried out
a recent iteration of ACMG, ACMG73 has been released (Miller et al., 2021). As new genomic
findings emerge this list will continue to be expanded. Van der School et al. (2022) report
variation in many genes not included on the ACMG list but with evidence of association to a
disorder for which disease manifestation could be influenced, suggesting that such a list is
arbitrary at best (van der Schoot et al., 2022).

6.6.3 Ethical considerations

6.6.3.1 Re-analysis of variation

Alongside, the consideration of incidental findings comes the responsibility of re-analysis as
functional prediction tools improve and study sizes increase (Deignan et al., 2019). These
advancements may lead to different interpretation of a variant’s significance, or to availability
of new information supporting its relevance. There is currently no legal requirement to
recontact patients as new genetic findings emerge and there are major barriers to doing so,
including procedures for re-analysis and re-contact, consenting and clinical resources (Carrieri
et al., 2019; David et al., 2019). Progress is being made to facilitate clinical utilisation of
changing variant classification and gene-disease relationships as they emerge. One such
example is ClinGen GenomeConnect, a patient registry with capacity to trigger re-analysis as
variants are updated in ClinVar (Savatt et al., 2018). This service can supplement laboratory
and clinician efforts to keep patients informed about their genetic testing results and expands

patient-centred data sharing.

6.6.3.2 Risk communication in psychiatric genetics

Psychiatric genetic testing is available through direct-to-consumer (DTC) testing despite the
limitations, gaps in knowledge and ethical complications discussed already. If the technology
is made available to individuals, it is difficult to prevent its premature application, due to the
huge benefits to a genetic diagnosis already mentioned. Substantial individual stress arises in

the communication of genetic findings, whether identified in a clinical setting or population-
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based DTC testing. Among the risks of clinical interpretation of DTC genetic tests, particularly
SNP chip technologies, are false positives, in particular where rare variants are under
investigation (Mn et al.,, 2021). Another risk associated with DTC genetic testing is false
reassurance arising for tests being less thorough than a customer realises. This is true for
example in BRCA1 and BRCA2 variant testing for which some DTC tests only analyse a
subset of potential variants, thus missing most of the variants associated and providing false
reassurance to ~80% of individuals with a disease-causing variant (Rebbeck et al., 2018).
Unclear meaning of disease-causing variation is also a concern when DTC genetic tests are
used in a population cohort, i.e. outside the context of symptoms or family history of the related
disease (Wright et al., 2019).

Risk communication becomes complicated with variants of small to moderate impact on
outcomes (Eeltink et al., 2021). Adding to the discussion on genetic counselling, we must also
consider the outcome of a PGS in psychiatry, specifically just because an individual’s risk has
been identified does not mean the outcome can be changed. Elements of consent become
difficult when communicating around PGS and potential impact, or lack of impact, on an
individual’s life. Clinician guidance is crucial to overcome unrealistic expectations of the results
a genetic test may deliver, to ensure that consent remains valid (R. Horton and Lucassen,
2019). Key to these efforts are genetic counselling where possible, and clinician training in
genomic literacy (JI et al., 2018). Complex nomenclature, changing penetrance estimates,
changing variant annotations, complex data formats and modest effect sizes are among the
complexities associated with return of psychiatric genetic results. Tools have been developed
to bridge the gap between genomic expertise and the treating clinician, for example GenoPred,
a tool for converting PGS to an absolute scale risk (Pain et al., 2021). Primers with the aim of
translating the vast amounts of genomic literature into directly relevant key messages are also
convenient for bridging this gap. These strategies, among many others, in the translation of
genomic technologies into clinical settings are key to accompany technological advances in

genomic medicine (R. H. Horton and Lucassen, 2019).

6.6.4 Conclusion

Gene panels have potential for clinical utility provided the relevant expertise and infrastructure
for variant interpretation are available and cost effective. However, current evidence does not
support their applicability in autism (Buxbaum et al., 2020; Myers, Challman, Martin, et al.,
2020). Achieving the goal of a comprehensive autism gene panel will require uniform robust
phenotyping to account for the heterogeneity in autism presentation, as discussed in Chapter
4. Consideration must be made of the inclusion of genes in which pathogenic variation, when
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detected, is clinically actionable; the benefits of their inclusion weighed against the clinical
management of their identification. To conclude, evaluation of the diagnostic yield of
commercial gene panels marketed for autism determines that they are currently of limited

clinical utility.
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Chapter 7. General Discussion and Future Directions
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7.1  Overview of aims and findings

7.1.1 Strengths and weaknesses of this research

The variant discovery performed in Cohorts 1, 2 and 3 here applies a stringent variant filtration
strategy to identify putatively pathogenic rare variation in genes with existing reports of
association to autism and neurodevelopment. This pipeline is limited to the isolation of rare
exonic SNVs, however NGS technologies enable additional classes of variation to be
detected, with evidence supporting their involvement in the genetic basis of autism, such as
CNVs, SVs and tandem repeat expansions. There are future opportunities to explore these
classes of variation in Cohort 1, 2 and 3 and enable expansion of the understanding of the
genetic basis of autism within this cohort. While variant discovery did not yield pathogenic
SNVs with association to autism, expansion beyond this gene-set based variant filtration
strategy will enable detection of more genetic variants which could be contributing to the
phenotype.

Expanding beyond this filtration strategy may detect causative variation in the cohort, when
unrestricted by the requirement to restrict analyses to genes with an existing gene-disease
association reported. This gene-set based filtration step within the variant isolation strategy is
a weakness, leaving many rare putatively pathogenic variants uninterrogated. However, there
is opportunity to overcome this in the future with an increase in sample size, achievable by
analysis of this dataset in combination with other WES and WGS autism datasets, such as
those described in Table 1-2. Large sample sizes give statistical power to enable gene-
phenotype associations, while the small sample sizes studied in this thesis enable only variant

detection within known autism-associated genes.

The strength of this work comes from the relevance of this research in the translation of autism
genomic findings to clinically impactful knowledge, as detailed in the sections to follow. While
clinically relevant variation identification was limited in this thesis, the knowledge gained
through evaluation of clinical gene panels and gene curation strategies may be applied in both

research and clinical settings.

7.1.2 An analysis strategy to isolate exonic rare pathogenic SNVs using next-
generation sequence data.

This analysis aimed to establish a strategy for isolation of rare exonic pathogenic SNVs from
NGS data. In doing so, this work also aimed to discover rare putatively pathogenic autism-

relevant SNVs in a cohort of autism-affected individuals and their unaffected family members.
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The strategy described in this study outputs high-confidence SNV calls that are rare by MAF,
as estimated by gnomAD, and pathogenic, as predicted by consensus scoring of CADD, SIFT
and PolyPhen-2 (Ng and Henikoff, 2003; Adzhubei, Jordan and Sunyaev, 2013; Karczewski
et al., 2019; Rentzsch et al., 2019). Power for statistical associations of rare variant burden is
limited by the small sample sizes of Cohort 1, Cohort 2, and Cohort 3. In the absence of power,
variant discovery is restricted to genes with existing evidence for autism associations,
specifically SFARI Gene and DDD gene2phenotype (Abrahams et al., 2013; Wright et al.,
2015). This approach is restrictive, limiting variant discovery to a small subset of variation. In
future, this cohort will contribute to larger sequencing efforts in autism and enabled by greater

sample sizes will contribute to building understanding of the genetic basis of autism.

7.1.3 Evaluating gene-phenotype relationships through gene curation; a WGS study
in autism.

This analysis aimed to dissect gene-phenotype relationships through application of an autism
gene curation framework. To achieve this, rare exonic pathogenic SNVs from WGS data were
identified by applying the analysis strategy outlined in Chapter 3.

In consideration of genes for curation, genes were enriched for those with a high level of
evidence supporting autism association. Despite this all genes evaluated were classified as
having a limited gene-phenotype association. Just one of the three evaluated genes had
experimental evidence supporting an autism association highlighting the need for in vitro and
in vivo functional studies alongside predictive genomic analysis to build robust evidence for
gene-phenotype associations. Gene curation through the proposed framework accounts for
the degree of certainty in autism diagnoses in studies reporting association and accounts for
co-occurring diagnoses. This strategy, if applied widely, will provide consistency throughout

gene discovery, and ultimately aid in the translation of genomic findings to the clinic.

7.1.4 A pedigree driven approach to identify pathogenic variation in multiplex
families of neurodevelopmental conditions.

The aim of this analysis was to identify rare putatively pathogenic SNVs in genes with evidence
supporting their role in autism, using a family-based study design to evaluate variant
transmission. This analysis analysed WGS data from a rare cohort of multiplex and extended
pedigrees. Mode of pathogenic variant transmission was hypothesised based on reported

affection status through family structure. Of the four families investigated putatively pathogenic
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heterozygous variation predicted to be causative, was detected in three families. One of these
families harboured two predicted pathogenic variants impacting TTN in all affected individuals
and absent from unaffected family members. Accompanied by the existing level of evidence
supporting variation in this gene as a single gene cause of autism, this is the likely rare variant
cause of affection within this family.

The approach applied is a first pass analysis which with increased sample size should be
evaluated at a more widespread level across the genome and in parallel to large-scale WGS

efforts.

7.1.5 Determining the clinical utility of gene panels in autism; a study of diagnostic
yield and relevance.

This analysis aimed to evaluate the diagnostic yield of commercial gene panels marketed for
use in autism and determine the relevance gene selection for these panels. This work also

aimed to determine the overlap of ACMG59 genes and autism-relevant gene lists.

Current evidence does not support the applicability of targeted gene panels in autism
(Buxbaum et al., 2020; Myers, Challman, Bernier, et al., 2020). Evaluation of the diagnostic
yield of the autism gene panels, through secondary analysis of the SPARK WES cohort,
determined that they are currently of limited clinical utility. Gene selection for inclusion in
autism gene panels was found to be evidence-based, as indicated by the proportion of known
autism genes included in these targeted sequencing panels. However, no panel was extensive
enough to justify use in genetic diagnosis in the context of autism, a complex trait for which
hundreds of genes have been associated. Analysis was performed on the overlap between
ACMG59, a gene list of medically actionable genes, with genes association with autism and
neurodevelopmental conditions. ACMG59 was also investigated for overlap with the genes
included in the autism gene panels evaluated for diagnostic yield. This found a substantial
number of genes which are associated with autism, which are also recommended to be
reported on should a pathogenic variant be detected. These findings should impact the
decision to apply these targeted autism gene panels, in their current form, in a clinical or

research setting.

Importantly the limited scope for detection of putatively pathogenic variation to aid autism

diagnosis should be considered by clinicians when discussing and consenting for this genetic

testing. As highlighted by the overlap of these genes with ACMG59, pleotropic effects of the

genes targeted for sequencing should be considered when ordering these genetic tests, as
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well as preparation for appropriate follow-up should a variant in a clinically actionable gene be
detected. Achieving the goal of a clinically valuable autism gene panel requires a
comprehensive gene list of genes robustly associated with autism, specifically autism in the
absence of other neurodevelopmental conditions. Application of a formal evidence-based
gene curation framework, such as that evaluated in Chapter 4 works towards this goal.

7.2  Future Directions: Translating variant discovery from research to clinic
Variant discovery is key to building understanding of the biology underlying
neurodevelopmental conditions and their etiology. There is huge potential for this translation
to be integrated across healthcare systems. At this scale, success has been demonstrated in
variant discovery and diagnosis in rare disease in routine healthcare system, through WGS
within the UKBiobank population cohort (Turro et al., 2020). Genetic diagnosis can
subsequently facilitate variant-specific medical decision making. This has been demonstrated
in the context of rare disease by Bhatia et al., reporting changes in treatment in 27% of patients
following a genetic diagnosis from whole exome or WGS (Bhatia et al., 2021).

However, barriers must be addressed to enable the translation of genomic findings to clinically
informative biomarkers in autism and neurodevelopmental conditions. Heterogeneity is the
cause for these barriers, as has been described throughout this thesis at the genotype and
phenotype level. Heterogeneity must be accounted for when considering the role and
relevance of a putatively pathogenic variant. Informed prediction, while reliable in some
conditions, is impacted by the heterogeneity of neuropsychiatric and neurodevelopmental
conditions (Nunes, Trappenberg and Alda, 2020). At case-level a family-based study design
can control for some levels of heterogeneity from the shared genetic and environmental effect
between family members, enabling variant discovery. However, at condition-level future work
on variant discovery must evaluate and limit biases influencing variant discovery to achieve

the full potential of genomic data and to ensure broad translatability of findings to the clinic.

7.2.1 Phenotypic biases

Autism cohorts are biased by their mode of ascertainment. Clinically ascertained cohorts
select for more severely affected individual than a population-based study design. DDD from
which the DDD gene2phenotype gene list was derived recruits only the most severe
neurodevelopmental-affected individuals, presenting with more complex phenotypes (Wright
et al., 2015). In contrast, SPARK is biased towards less severe autism phenotypes by the

sample collection strategy used (Feliciano et al., 2019). The individuals participating have
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given saliva samples for sequencing, a method of collection which can be difficult for those
with neurodevelopmental challenges potentially excluding these individuals from the study.
These biases are reflected in the genetic architecture of these cohorts and the genetic findings
emerging from their study. Specifically, it would be expected to discover an enrichment of rare
highly penetrant variants in the DDD study when compared to SPARK. Conversely, it may be
expected to discover higher polygenic burden in the SPARK cohort, indicating a higher burden
of common genetic variants of lower effect sizes resulting in the autism phenotype. While both
approaches yield impactful variant discovery in autism and neurodevelopmental conditions,
consideration must be given to the penetrance of these variants when translating into the

clinic.

7.2.2 Ancestral population biases

Research with broad applicability is currently challenging to apply to non-European
populations. Most genomes sampled in research studies come from European ancestral
populations. 23andMe is currently the most ancestral diverse genomic cohort. While not
exempt from the biases affecting all population-based cohorts (73% European), this cohort
holds genetic information on some of the largest cohorts of Africa in the world (Dr Sarah
Laskey 23andMe, WCPG 2021). Discoveries made in underrepresented non-European
populations have potential to impact healthcare broadly, beyond the ancestral population in
which they are identified. For example, genetic sequencing applied to a cohort of ~15,000
African American individuals resulted in detection of variation in EXOC3L1, associating the
protein product of the gene as a key facilitator of lipid receptor trafficking, giving insight to the
biology underpinning cholesterol levels generally (Lanktree et al., 2015). Working towards
genomic research with broad applicability requires ancestry-based reference genomes
enabling robust assessment of allele frequency and adaptation of widely applied analysis

strategies to analyse non-European samples most accurately.

7.2.3 Sex biases

Autism is diagnosed 3-4 times more in males than females (Loomes, Hull and Mandy, 2017).
Phenotypically autism varies in presentation in male and female individuals with males more
likely to receive a diagnosis of autism than females (Kreiser and White, 2013). However, this
difference does not account completely for the higher ratio observed. A Female Protective
Effect has been proposed for autism whereby females can accumulate more risk than males
before being affected by autism. Evidence for FPE in autism comes from both common and
rare variation (Antaki et al., 2022). Namely an increased burden of rare de novo variation in

autistic females cases has been observed widely (Sanders et al., 2015). A similar trend is
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seen for the increased burden of common variant polygenic risk in affected females when
compared to affected males (Antaki et al., 2022). In the family context, Wigdor et al. provide
evidence supporting a FPE against autism in the context of common, inherited variation
(Wigdor et al., 2022). Under FPE, more siblings of female autism cases are affected compared
to siblings of male cases. Wigdor et al. show evidence of FPE in both affected and unaffected
members of autism-impacted families with mothers of autistic children carrying on average

more common, inherited genetic risk for autism than fathers (Wigdor et al., 2022).

7.3 Future Directions: Maximising potential through data integration

A major challenge facing autism genomics is the integration of all aspects of its genomic basis,
including both common and rare variation. regulatory effects, and epigenetic modifications
(Figure 7-1). In order to maximise the data already existing in the field, best practices must be
set out in the optimum analysis of all of these factors to best illustrate the genomic architecture
of autism. As the research outlined in this thesis progressed, recent developments in genomics
have impacted and will continue to benefit the field of autism genomics. Progress has been
made in the annotation of non-coding variants as summarised in 7.3.1. The complete human
genome has been sequenced, enabled by long-read sequencing technologies, as
summarised in 7.3.2. While not investigated within this thesis, progress has been made on the
characterisation of the contribution of common variation in autism which has resulted from

increased sample sizes and improvement in methods of association (7.3.3).

7.3.1 Integrating the coding and non-coding genome

WGS enables sequencing of non-coding variation, undetected by targeted sequencing and
WES. Investigations to date into the contribution of this variation in these genomic regions
have associated genetic variants with autism and neurodevelopmental conditions (Turner et
al., 2016; Brandler et al., 2018; Wright et al., 2021). Work is underway to overcome challenges
in discovery and interpretation of non-coding variation, where variant consequence is not as
readily predicted as protein-coding variation. Collaborative efforts towards this goal, such as
the generation of recommendations for clinical interpretation of non-coding variant by
Ellingford et al., will be key to maximising the potential of WGS datasets in the future (Ellingford
et al., 2021).
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Figure 7-1 Pathway from sequencing to clinical implementation.

Outlined are the main stages of autism gene discovery; from variant discovery (blue), through genomic data
analysis (yellow), to accurate translation for meaningful diagnosis (green). Re-annotation refers to regular re-
analysis of genetic diagnosis, as additional variants reach significant association with autism. The variant
highlighted in red, here a SNV, represents any variant type detectable through application of genomic technologies
(Table 1-1). Epigenetic modifications include methylation changes, histone modification or microRNA
dysregulations (reviewed (Eshraghi et al., 2018). Research is ongoing to integrate genomic variants with other
variation within an individual’s genome, as described by (McGuire et al., 2020).

7.3.2 Integrating classes of variation

The complete set of genomic variation is known to contribute to the genetic basis of autism.
Enabled by WGS, repeat expansions, CNVs, SVs have been implicated in autism (Pinto et al.,
2010; Brandler et al., 2018; Mitra et al., 2021). Long-read sequencing enables sequencing of
genomic regions inaccessible through NGS (Ebbert et al., 2019). As well expanding coverage
of genome sequencing, long-read sequencing will enable detection of variant classes
otherwise challenging to robustly quantify, such as repeat expansions, large SVs, and
chromosomal rearrangements. In 2022, the Telomere-to-Telomere consortium completed
sequencing of the complete human genome, sequencing 8% more of the human genome than
the previous iteration (Nurk et al., 2022). With expanded coverage of the genome and added
power of variant class detection, long-read sequencing application in autism is already in
progress and will continue to contribute to understanding of the genetic basis of autism
(Begum et al., 2021; Noyes et al., 2022).
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7.3.3 Integrating rare and common variation

The role of rare variation has been highlighted throughout this thesis in the context of autism.
Autism-associated rare variants were identified using exonic WGS data in 15% of autistic
individuals from the latest MSSNG cohort and 17% of probands in the Simon’s Simplex
Collection (Trost et al., 2022). Rare variation has been implicated across complex traits and
there is potential for rare variant discovery at large-scale from well powered GWAS by WGS
in the future (Wainschtein et al., 2022). Common genetic variation, while not investigated in
the research outlined in this thesis, is likely to account for a proportion of the unexplained
heritability of autism. Enabled by increased sample size, common variant discovery will

progress building on the association made to date (Grove et al., 2019).

Common variant discovery will lead to improved polygenic scoring. PGS has huge potential
benefit to psychiatric genetics as a clinical predictor, of which there are currently very few
available. As discussed earlier, in the context of genetic diagnoses of rare variation, PGS has
potential to have benefit in both prediction of disease status and prediction of treatment
response, and this potential has been demonstrated in psychiatric conditions (Lewis and
Vassos, 2020). This potential has already been demonstrated by the success of translating a
high PGS for schizophrenia as a predictor of poor lithium response in the treatment of bipolar
disorder (Amare et al., 2018).

However, PGS has major limitations acting as a barrier to their translation to clinical settings.
PGS is currently not useful to guide diagnosis at the individual level (So, Sham and Valencia,
2017). Clinical application of PGS is currently limited to interpretation of the extremes of the
normal distribution of risk (Khera et al., 2018). A combined approach to evaluation of rare and
common variation will provide a more wholistic view of the genetic basis of autism. A “Genomic
Risk Score” derived from a “Rare Variant Risk Score” and “Common Variant Risk Score”
through multivariable regression showed a 40% improvement in predictive accuracy for autism
than common or rare variant scoring alone (Antaki et al., 2022). Integration of variation across
the allele frequency spectrum will enable comprehensive understanding of the genetic basis

of autism.
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7.4  Conclusion

Genomic technologies have accelerated research progress in autism genomics
and promises to further transform our understanding of the genetic basis of this
neurodevelopmental condition. This thesis introduces the current evidence for the genetic
basis of autism, presents the progress of large-scale studies to date and highlights the
potential of genomic technologies. This thesis outlines building an analysis pipeline to
evaluate rare genetic variation in the context of autism, applying a gene curation strategy to
dissect gene-phenotype associations, discovery of rare variants in a rare cohort of multiplex
extended family affected by neurodevelopmental conditions and finally examines the clinical
utility of targeted gene panel sequencing in autism.

Together this work describes rare variant discovery and evaluation of its clinical utility in autism
with an aim to contribute to the greater goal of understanding the genetic basis of autism. This
thesis  supports the importance of identifying rare  genetic variants in  family-based
studies. Genomics is central to personalised medicine and is a key feature of the future
healthcare. Autism genomics has potential to improve our biological understanding of
neurodevelopmental conditions, to aid diagnosis and to inform medical decision-making in the

future.
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Appendix II: Supplemental Tables

Gene symbols as annotated by dbNSFP v4.0a

ADGRG6 HGSNAT RECQL4
AHDC1 HR RELN
ALMS1 HSPG2 RNF135
AMPD1 IFT140 SCARF2
ANK2 KCNB1 SCN4A
ATP10A KIAA0586 SEPSECS
C12o0rf57 KIF7 SIK1
CACNA2D3 KMT2A SKIV2L
CCDC39 LAMA2 SLC6A5
CCDC65 LMOD3 SNX5
CDH23 LRP4 SPEG
CGNL1 LYST STAMBP
COL11A1 MAP1A TBCK
COL4A4 MED25 TCOF1
COLG6A3 NAV2 TOGARAM1
COMP NEB TRIP11
CRB2 NHS TRPV4
DNAH9 NINL TSC2
DYM NPHP4 TTN
EDA NTRK1 UNCS80
ENPP1 oTC WDR62
EP400 OTOGL XRCC4
ERCC6 P3H1 ZC3H4
FANCC PAPSS2

FAT4 PCCB

FBXL4 PEX10

FLNB PEX6

FREM2 PHF3

GALT PKHD1

GATAZ2 PLK4

GLI2 PLXNA4

GLIS3 PLXNB1

GPSM2 PYGL

GRHL3 RAI1

Supplemental Table 1 Candidate autism-relevant genes for curation arising from variant discovery in Cohort 4.
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Authors Reported Case Reported Variant Information Evidence Type Suggested Final Score Notes
(Year): Details (Variants checked in gnomAD Points Per Case | (incorporating (justification for score)
Title (v2.1.1) in Oct. 2020) Default/(Range) genetic evidence,
phenotype quality,
expert input)
Wang T, ID: Genotyping Method: MIP-based Autosomal Dominant - | 0.5/ (0-1.5) 0 Downgraded WES/WGS not
etal. SKLMG_MO08710 | resequencing, validated with PCR | > Other variant type performed
(2016) Sex: and Sanger sequencing not predicted/proven
Phenotype: Variant reported: null
Autism [Chr11(GRCh37):
0.20099182G>A,
NM_001111018.1]
Impact: splice-donor
gnomAD: Not present
Inheritance: Unknown
Wang T, ID: Genotyping Method: MIP-based Autosomal Dominant - | 0.5/ (0-1.5) 0 Default score downgraded for
etal. SKLMG_M26848 | resequencing, validated with PCR | > Other variant type genetic evidence: inherited
(2016) Sex: and Sanger sequencing not predicted/proven missense variant without
Phenotype: Variant reported: null functional evidence, observed
Autism [Chr11(GRCh37): in gnomAD (score reduced to
9.20067213G>A, 0)
NM_001111018.1]
Impact: missense
gnomAD: 1.03e-4
Inheritance: maternal inherited
Wang T, ID: Genotyping Method: MIP-based Autosomal Dominant - | 0.5/ (0-1.5) 0 Default score downgraded for
etal. SKLMG_M21717 | resequencing, validated with PCR | > Other variant type genetic evidence: inherited
(2016) Sex: and Sanger sequencing missense variant without




Phenotype:

Variant reported:

not predicted/proven

functional evidence, observed

Autism [Chr11(GRCh37): null in gnomAD (score reduced to
g.19970605G>A, 0)
NM_001111018.1]
Impact: missense
gnomAD: 1.37e-4
Inheritance: maternal inherited
Wang T, ID: Genotyping Method: MIP-based Autosomal Dominant - | 0.5/ (0-1.5) Default score downgraded for
etal. SKLMG_M26778 | resequencing, validated with PCR | > Other variant type genetic evidence: inherited
(2016) Sex: and Sanger sequencing not predicted/proven missense variant without
Phenotype: Variant reported: null functional evidence, observed
Autism [Chr11(GRCh37): in gnomAD (score reduced to
g.19970605G>A, 0)
NM_001111018.1]
Impact: missense
gnomAD: 1.37e-4
Inheritance: maternal inherited
Wang T, ID: Genotyping Method: MIP-based Autosomal Dominant - | 0.5/ (0-1.5) Default score downgraded for
et al. SKLMG_M19652 | resequencing, validated with PCR | > Other variant type genetic evidence: inherited
(2016) Sex: and Sanger sequencing not predicted/proven missense variant without

Phenotype:

Autism

Variant reported:
[Chr11(GRCh37):
g.20077419C>T,
NM_001111018.1]
Impact: missense
gnomAD: 3.18e-5

Inheritance: maternal inherited

null

functional evidence, observed
in gnomAD (score reduced to
0)




Wang T, ID: Genotyping Method: MIP-based Autosomal Dominant - | 0.5/ (0-1.5) Default score downgraded for
etal. SKLMG_MO01623 | resequencing, validated with PCR | > Other variant type genetic evidence: inherited
(2016) Sex: and Sanger sequencing not predicted/proven missense variant without
Phenotype: Variant reported: null functional evidence, observed
Autism [Chr11(GRCh37): in gnomAD (score reduced to
g.20067213G>A, 0)
NM_001111018.1]
Impact: missense
gnomAD: 1.03e-4
Inheritance: paternal inherited
Wang T, ID: Genotyping Method: MIP-based Autosomal Dominant - | 0.5/ (0-1.5) Default score downgraded for
etal. SKLMG_M17623 | resequencing, validated with PCR | > Other variant type genetic evidence: inherited
(2016) Sex: and Sanger sequencing not predicted/proven missense variant without
Phenotype: Variant reported: null functional evidence, observed
Autism [Chr11(GRCh37): in gnomAD (score reduced to
9.20065735G>A, 0)
NM_001111018.1]
Impact: missense
gnomAD: 1.63e-4
Inheritance: paternal inherited
Wang T, ID: Genotyping Method: MIP-based Autosomal Dominant - | 0.5/ (0-1.5) Default score downgraded for
et al. SKLMG_M26826 | resequencing, validated with PCR | > Other variant type genetic evidence: inherited
(2016) Sex: and Sanger sequencing not predicted/proven missense variant without

Phenotype:

Autism

Variant reported:
[Chr11(GRCh37):
g.20125237C>T,
NM_001111018.1]

Impact: missense

null

functional evidence, observed
in gnomAD (score reduced to
0)




gnomAD: 7.95e-6

Inheritance: paternal inherited

Wang T, ID: Genotyping Method: MIP-based Autosomal Dominant - | 0.5/ (0-1.5) 0 Default score downgraded for
etal. SKLMG_M23133 | resequencing, validated with PCR | > Other variant type genetic evidence: inherited
(2016) Sex: and Sanger sequencing not predicted/proven missense variant without
Phenotype: Variant reported: null functional evidence, observed
Autism [Chr11(GRCh37): in gnomAD (score reduced to
0.20136247G>A, 0)
NM_001111018.1]
Impact: missense
gnomAD: 3.58e-5
Inheritance: paternal inherited
Sanders ID: 12241.p1 Genotyping Method: WES Autosomal Dominant - | 2/ (0-3) 0.5 Default score downgraded for
SJ, etal. Sex: Female Variant reported: [Chr11(hg19): g. | > Variant is de novo genetic evidence: de novo
(2012) Phenotype: 20139742G>A, NM_145117, missense variant with
Autism D2410N] suggested functional
Impact: Missense (DAMAGING evidence, observed in
*Warning! Low confidence.) gnomAD (score reduced to
gnomAD: 1.19e-5 0.5)
Inheritance: de novo
O'Roak ID: 11459.p1 Genotyping Method: WES Autosomal Dominant - | 2/ (0-3) N/A Not scored: unknown impact
BJ, et al. Sex: Male Variant reported: [Chr11(hg19): g. | > Variant is de novo of synonymous variants; no
(2012) Phenotype: 20119143C>Y] functional data provided.
Autism Impact: coding-synonymous

gnomAD: Not present
Inheritance: de novo (also lists

father as parent of origin)




Lim ET, et | ID: 37434 Genotyping Method: WES; Autosomal Dominant - | 2/ (0-3) N/A Not scored: unknown impact
al. (2017) | Sex: Male resequencing of post-zygotic > Variant is de novo of synonymous variants; no
Phenotype: mutations (PZMs) functional data provided.
Autism Variant reported:
[Chr11(hg19), g. 20117286C>T,
L1983]
Impact:
SYNONYMOUS_CODING
gnomAD: 7.95e-5
Inheritance: de novo
Lim ET, et | ID: NP053 Genotyping Method: WES; Autosomal Dominant - | 2/ (0-3) 0 Default score downgraded for
al. (2017) | Sex: Female resequencing of post-zygotic > Variant is de novo genetic evidence: de novo
Phenotype: mutations (PZMs) missense variant without
Autism Variant reported: functional evidence, observed
[Chr11(hg19), g. 19854079G>A, in gnomAD (score reduced to
R35H] 0)
Impact: missense
gnomAD: 4.24e-5
Inheritance: de novo
lossifov et | ID: 11397 Genotyping Method: WES Autosomal Dominant - | 2/ (0-3) N/A Not scored: unknown impact
al. (2014) | Sex: Male Variant reported: > Variant is de novo of synonymous variants; no
Phenotype: [Chr11(hgl9): g. 11:20057523:C: functional data provided.
Autism A]
Impact: synonymous
gnomAD: Not present
Inheritance: de novo
lossifov et | ID: 12389 Genotyping Method: WES Autosomal Dominant - | 2/ (0-3) 0 Default score downgraded for
al. (2014) | Sex: Male Variant reported: > Variant is de novo genetic evidence: de novo




Phenotype: [Chr11(hg19): g. 11:19914032:C: missense variant without
Autism T] functional evidence, observed
Impact: Missense in gnomAD (score reduced to
gnomAD: 6.02e-5 0)
Inheritance: de novo
lossifov et | ID: 14179 Genotyping Method: WES Autosomal Dominant - | 2/ (0-3) No points awarded - intronic
al. (2014) | Sex: Male Variant reported: > Variant is de novo variant. No evidence to
Phenotype: [Chr11(hg19): g. 11:20104534: suggest variant is pathogenic
Autism G:C]
Impact: intron
gnomAD: Not present
Inheritance: de novo
lossifov et | ID: 14604 Genotyping Method: WES Autosomal Dominant - | 2/ (0-3) Not scored: unknown impact
al. (2014) | Sex: Male Variant reported: > Variant is de novo of synonymous variants; no
Phenotype: [Chr11(hgl9): g. 11:20117286:C: functional data provided.
Autism T]
Impact: synonymous
gnomAD: 7.95e-5
Inheritance: de novo (father
parent of origin)
lossifov et | ID: 11459 Genotyping Method: WES Autosomal Dominant - | 2/ (0-3) Not scored: unknown impact
al. (2014) | Sex: Male Variant reported: > Variant is de novo of synonymous variants; no
Phenotype: [Chr11(hgl9): g. 11:20119143:C: functional data provided.
Autism T]

Impact: synonymous
gnomAD: Not present

Inheritance: de novo
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lossifov et | ID: 12241 Genotyping Method: WES Autosomal Dominant - | 2/ (0-3) 0 Default score downgraded for
al. (2014) | Sex: Female Variant reported: > Variant is de novo genetic evidence: de novo
Phenotype: [Chrll(hgl9): g. 11:20139742: G: missense variant without
Autism A] functional evidence, observed
Impact: missense in gnomAD (score reduced to
gnomAD: 1.19e-5 0)
Inheritance: de novo
Guo H, et | ID: M08710 Variant scored in PMID: N/A Variant already scored
al. (2018) | Sex: Male 27824329
Phenotype:
Autism

Table 7-1 Genetic evidence matrix for curation of NAV2 gene-phenotype relationship.

This scoring matrix follows the template proposed by Schaaf et al. (2020). Variant-level information was compiled from the publications specified for each report of a proband
carrying a variant in the NAV2. Sequencing method, variant coordinates, genomic impact, gnomAD allele frequency and mode of inheritance are reported for each incidence
of the variant.
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hypoplasia of the optic nerve.

Authors Findings presented Genotype information of | Quality of the Evidence Suggested Points
(Year): Title model organism data presented | Type Per Report
Default/(Range)
Peeters PJ, | General impaired acuity of several sensory systems (olfactory, Wild-type, heterozygote, Low confidence | Non-human 2(0-4)
et al. (2004) | auditory, visual and pain sensation) which in case of the visual and homozygote unc53H2 model
system was corroborated by the morphological observation of mutant mice organism

Table 7-2 Experimental evidence matrix for curation of NAV2 gene-phenotype relationship.

Presented is the gene scoring matrix for experimental evidence supporting the roles of NAV2 in autism. Scoring and justification are given following Schaaf et al.(2020) modified
ClinGen curation framework. The evidence reported in this table is taken together with the variant-level evidence outlined in Table 7-1, to give an overall gene-disease curation

classification.
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Authors Reported Reported Variant Evidence Type Suggested Points Final Score Notes
(Year): Case Details | Information Per Case (incorporating genetic | (justification for score)
Title (variants checked in Default/(Range) evidence, phenotype
gnomAD (v2.1.1) in Oct. quality, expert input)
2020)
De Rubeis | ID: AC02- Genotyping Method: Autosomal Dominant -> 2/ (0-3) 0 No points awarded - intronic
S, etal. 1141-01 WES Variant is de novo variant that does not occur in a
(2014) Sex: Male Variant reported: canonical splice site. No
Phenotype: [Chr20(hg19), evidence to suggest variant is
Autism g.25477488A>C, pathogenic
NM_025176]
Impact: Intronic
gnomAD: Not present
Inheritance: de novo
lossifov | et | ID: 12036.p1 | Genotyping Method: Autosomal Dominant -> 2/ (0-3) 2 Default score applied: WES
al. (2014) Sex: Male WES Variant is de novo identifies a de novo nonsense
Phenotype: Variant reported: variant does not present in
Autism [Chr20(hg19): gnomAD; high quality autism
25459809T>A, p. K651X] phenotyping
Impact: LoF_nonsense
gnomAD: Not present
Inheritance: de novo
Leblond ID: Genotyping Method: Paternally inherited N/A - Deletion 0 Downgraded for lack of
CS, etal. PN400119 lllumina SNP array deletion involving more than confidence in ID. Deletion also
(2019) Sex: Female | (>4.3million SNPs) and one gene spans other genes
Phenotype: WES
Autism Variant reported: 248KB Borderline to mild ID (Full-scale

[Chr20(hg19), g.

IQ [FSIQ] 50-85)




25388358_ 25604606del]
Impact: deletion
gnomAD: NA

Inheritance: de novo

NM_025176]
Impact: exonic stopgain
gnomAD:

Inheritance: paternal

Ruzzo EK, | ID: Genotyping Method: Autosomal Dominant -> 1.5/ (0-2) 15 Default awarded- splice site
etal. iIHART2459 WGS Predicted/Proven null variant in protein truncating
(2019) Sex: Male Variant reported: variant
Phenotype: [Chr20(hg19),
Autism g.25443018>A, ]
Impact: splice site donor-
PTV
gnomAD: not present
Inheritance: maternal
Wu H, et ID: Genotyping Method: Autosomal Dominant -> 1.5/ (0-2) 1 Downgraded because of
al. (2019) GX0389.p1 WES Other variant type not cognition score. Cognition score
Sex: Male Variant reported: predicted/proven null not presented for this individual
Phenotype: [Chr20(hg19), g.
Autism 25479032G>A, p.Q698X,

Table 7-3 Genetic evidence matrix for curation of NINL gene-phenotype relationship.

Note that no experimental evidence supports this gene-disease association and not experimental evidence contributes to the overall ClinGen association score reported.




Authors Reported Case Details Reported Variant Information Evidence Type Suggested Final Score Notes
(Year): Title (variants checked in gnomAD Points Per (incorporating (justification for score)
(v2.1.1) in Oct. 2020) Case genetic
Default/(Range | evidence,
) phenotype
quality, expert
input)
C Yuen RK et | ID: AU045514 Genotyping Method: WGS (Complete Autosomal Dominant | 0.5/ (0-1.5) 0.5 Default awarded
al. (2017) Sex: Unknown Genomics), validated with Sanger -> Other variant type
Phenotype: Autism sequencing not predicted/proven
Variant reported: [Chr3(GRCh37): g. null
54420739_ 54420740A>T]
Impact: Splice site variant
gnomAD: Not present.
Inheritance: Inherited
De Rubeis S, | ID: Genotyping Method: WES Autosomal Dominant | 2/ (0-3) 2 Default awarded
et al. (2014) UK10K_SKUSE5080203 | Variant reported: [Chr3(hg19): -> Variant is de novo
Sex: Male g.54872646G>T, E508X]
Phenotype: Autism Impact: LoF_nonsense
gnomAD: Not present.
Inheritance: de novo
De Rubeis S, | ID: 09C96031 Genotyping Method: WES Autosomal Dominant | 2/ (0-3) 0 No points awarded - intronic
et al. (2014) Sex: Male Variant reported: [Chr3(hg19): g. -> Variant is de novo variant present in gnomAD No

Phenotype: Autism

55038892A>C, NM_018398]
Impact: Intron
gnomAD: 2.85e-5

Inheritance: de novo

evidence to suggest variant is

pathogenic
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De Rubeis S,
et al. (2014)

ID: 10C114435
Sex: Male

Phenotype: Father

Genotyping Method: WES

Variant reported: [Chr3(hg19): g.
54925398G>A, V629M]

Impact:
NON_SYNONYMOUS_CODING
gnomAD:

Inheritance: Paternal variant (not in

proband)

Not scored

Proband carries reference allele

De Rubeis S,
et al. (2014)

ID: 10C114435
Sex: Male
Phenotype: Father

Genotyping Method: WES

Variant reported: [Chr3(hg19): g.
54930795G>A, D662N]

Impact:
NON_SYNONYMOUS_CODING
gnomAD:

Inheritance: Paternal variant (not in

proband)

Not scored

Proband carries reference allele

De Rubeis S,
et al. (2014)

ID: 09C91623
Sex: Female
Phenotype: Mother

Genotyping Method: WES

Variant reported: [Chr3(hg19): g.
54596896G>A, R110H]

Impact:
NON_SYNONYMOUS_CODING
gnomAD:

Inheritance: Maternal variant (not in

proband)

Not scored

Proband carries reference allele

De Rubeis S,
et al. (2014)

ID: DEASD _0336_001
Sex: Male

Phenotype: Autism

Genotyping Method: WES
Variant reported: [Chr3(hg19): g.
54913067G>A, R477Q]

Impact:

Autosomal Dominant
-> Other variant type
not predicted/proven

null

0.5/ (0-1.5)

Default score downgraded for
genetic evidence: inherited

missense variant without
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NON_SYNONYMOUS_CODING
gnomAD: 2.93e-5
Inheritance: Paternal inheritance

functional evidence, observed in

gnomAD (score reduced to 0)

De Rubeis S, | ID: 08C79339 Genotyping Method: WES Autosomal Dominant | 0.5/ (0-1.5) 0 Default score downgraded for
et al. (2014) Sex: Male Variant reported: [Chr3(hg19): g. -> Other variant type genetic evidence: inherited
Phenotype: Autism 54922021G>A, A604T] not predicted/proven missense variant without
Impact: null functional evidence, observed in
NON_SYNONYMOUS_CODING gnomAD (score reduced to 0)
gnomAD: 5.7e-5
Inheritance: Maternal inheritance
De Rubeis S, | ID: Genotyping Method: WES Autosomal Dominant | 0.5/ (0-1.5) 0 Default score downgraded for
et al. (2014) NDAR_INVWJ720YXQ_ | Variant reported: [Chr3(hgl19): g. -> Other variant type genetic evidence: inherited
wesl 54930795G>A, D662N] not predicted/proven missense variant without
Sex: Male Impact: null functional evidence, observed in
Phenotype: Autism NON_SYNONYMOUS_CODING gnomAD (score reduced to 0)
gnomAD: 1.6e-5
Inheritance: Paternal inheritance
De Rubeis S, | ID: 10C107584 Genotyping Method: WES Not scored Proband carries reference allele
et al. (2014) Sex: Male Variant reported: [Chr3(hg19): g.
Phenotype: Father 54913048A>G, R471G]
Impact:
NON_SYNONYMOUS_CODING
gnomAD:
Inheritance:
De Rubeis S, | ID: 10C108003 Genotyping Method: WES Autosomal Dominant | 0.5/ (0-1.5) 0.5
et al. (2014) Sex: Male Variant reported: [Chr3(hg19): g. -> Other variant type

Phenotype: Autism

54925422C>G, R637G]
Impact:

not predicted/proven

null
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NON_SYNONYMOUS_CODING
gnomAD: Not present
Inheritance: Maternally inherited

De Rubeis S, | ID: DEautism_0077_600 | Genotyping Method: WES Not scored Proband carries reference allele
et al. (2014) Sex: Female Variant reported: [Chr3(hg19): g.
Phenotype: Mother 54922020C>G, D603E]
Impact:
NON_SYNONYMOUS_CODING
gnomAD:
Inheritance:
lossifov | et ID: 13526.p1 Genotyping Method: WES Autosomal Dominant | 2/ (0-3)
al. (2014) Sex: Male Variant reported: -> Variant is de novo
Phenotype: Autism [Chr3(hg19): 54921984A>G]
Impact: LoF_3splice
gnomAD: Not present
Inheritance: de novo
Guo et al. ID: SD0023.p1 Genotyping Method: Targeted Autosomal Dominant | 0.5/ (0-1.5) Default score downgraded for
(2018 Sex: Female sequencing of 211 autism candidate -> Other variant type genetic evidence: WES/WGS

Phenotype: Autism

genes (Phase 11-2); single-molecule
molecular inversion probes

Variant Reported:

[Chr3(GRCh37): g. 54850898G>A,
NM_018398: exonl14, p. Arg3568Trp]
Impact: splice-donor

gnomAD: Not present

Inheritance: Maternally inherited

not predicted/proven

null

not used (-0.5)
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Guo et al. ID: M23096 Genotyping Method: Targeted Autosomal Dominant | 0.5/ (0-1.5) Default score downgraded for
(2018) Sex: Male sequencing of 211 autism candidate -> Other variant type genetic evidence: WES/WGS
Phenotype: Autism genes (Phase ); single-molecule not predicted/proven not used (-0.5)
molecular inversion probes null
Variant Reported:
[Chr3(GRCh37): g. 54930847C>T,
NM_018398: exon26, p.A773V]
Impact: Missense
gnomAD: Not present
Inheritance: Maternally inherited
Guo et al. ID: M08461 Genotyping Method: Targeted Autosomal Dominant | NOT SCORED Variant already scored
(2018) Sex: Female sequencing of 211 autism candidate -> Other variant type
Phenotype: Autism genes (Phase I); single-molecule not predicted/proven
molecular inversion probes null
Variant Reported:
[Chr3(GRCh37): g. 54930847C>T,
NM_018398: exon26, p.A773V]
Impact: Missense
gnomAD: Not present
Inheritance: Maternally inherited
Wang T, et al. | ID: SKLMG_M23096 Genotyping Method: MIP-based Autosomal Dominant | NOT SCORED Variant already scored
(2016) Sex: resequencing, validated with PCR and | -> Other variant type

Phenotype: Autism

Sanger sequencing

Variant reported:

[Chr3(GRCh37): 9.54930847C>T, p.
Ala773Val]

Impact: Missense

not predicted/proven

null




gnomAD:
Inheritance: Maternally inherited

Phenotype: Autism

Sanger sequencing

Variant reported:

[Chr3(GRCh37): 9.54604066G>A, p.
Ala275Thr]

Impact: Missense

gnomAD: Not present

Inheritance: Paternal inherited

not predicted/proven

null

Wang T, etal. | ID: SKLMG_M08461 Genotyping Method: MIP-based Autosomal Dominant | NOT SCORED Variant already scored
(2016) Sex: resequencing, validated with PCR and | -> Other variant type
Phenotype: Autism Sanger sequencing not predicted/proven
Variant reported: null
[Chr3(GRCh37): 9.54930847C>T, p.
Ala773Val]
Impact: Missense
gnomAD:
Inheritance: Maternally inherited
Wang T, etal. | ID: SKLMG_M23110 Genotyping Method: MIP-based Autosomal Dominant | 0.5/ (0-1.5) Default score downgraded for
(2016) Sex: resequencing, validated with PCR and | -> Other variant type genetic evidence: WES/WGS

not used (-0.5)

Table 7-4 Genetic evidence matrix for curation of CACNA2D3 gene-disease relationship.

Duplicate samples were identified in Guo et al. (2018) and Wang T, et al. (2016). Only one score has been taken per participant. Note that no experimental evidence supports
this gene-disease association and not experimental evidence contributes to the overall ClinGen association score reported.
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Appendix Ill: Presentations

Appendix IlI-1: Genomic syndromes in autism: Using whole genome sequencing to investigate
multiplex families with autism and associated neurodevelopmental conditions. Poster

presented at Genomics of Rare Diseases (Wellcome Connecting Science), April 2022.
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Appendix IlI-11: Determining the clinical utility of gene panels in autism; a study of diagnostic
yield, relevance, and penetrance. Poster presented at World Congress of Psychiatric
Genetics, October 2021.
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Appendix llI-1ll: Evaluating the diagnostic yield of commercial gene panels in autism. Poster
presented at the Irish Society for Human Genetics, September 2021.
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« Genetic diagnosi

in autism is limited by the ability to robustly determine the relevance of putative pathogenic genetic variation [1, 2]

s a result, the development of effective gene panels to aid autism dingnosis is challenging.

« Despite this, commercial gene pancls are available and marketed for use in autism [3].

\ The aim of this study is to estimate the clinical utility of 18 commercial gene panels in autism through analysis of diagnostic yield and clinical relevance. )

Methods

. The diagnostic yield of each panel was determined through secondary analyses of elinically relevant variation ident
The dataset analysed here arises from whole exome sequencing of 459 affected individuals for whom no genetic d

ed and characterised by Simon’s Powering Autism Research Knowledge.
osis was previously reparted [4].

neiation [5].

The relevance of the genes included in each panel was quantified as the proportion of targeted genes with evidence supporting autism s

\ 3. Three autism-relevant gene sets were interrogated for the presence of ACMGS59 clinically actionable genes [6]. y,
Estimating Diagnostic Yield
« Diagnostic yield is estimated as the number of individuals for which a genetic canse of antizm was identified as a proportion
of those investigated.
«+ Pathogenic variation is considered as variants listed in Feliciano et ol (2019). Variants considered are de nove and
inherited single nucleotide variants ( ertion-deletion (indels) variants and copy number variants (CNVs). Reported
chromosomal abnormalities were not. included.
« Gene lists were assembled to include those for which clinically relevant SNVs and indels could be defined and those that
fall within the boundaries of clinically relevant CNVs.
« Diagnostic yield of pathogenic variation is outlined in Table 1, with the diagnostic yield of probable pathogenic variants
listed in brackets alongside
Genes Overlap Diagnostic yield
Service provider Panel name
targeted SFARI Gene | in SPARK
Ambry Genetics AutismNext Panel 72 87.5% 2.61% . .
Figure 1 Relevance of gene panels genes to autism.
Differentiated by colour are three autism-relevant gene lists
Asper Neurogenetics Autism Spectrum Disorders NGS Panel 76 88.16% 2.83% (0.22%) N t
P e P 0-22%) (Blue-SFARI Gene [5]; Yellow- Deciphering Developmental
Blueprint Genetics Autism Spectrum Disorders Panel 75 45.33% 1.53% (0.44%) Disorders ND geneZphenotype [7]; Gr_c_v— genes targeted by
gene panels marketed for use in autism). The overlap
Center for Human Genetics ‘Autism Spectrum Disorder 53-Gene Panel 53 8491% 1.96% (0.22%) shown between these gene lists, and between each gene list
and ACMG59 [6], in red. Counts represent the number of
Centogene Syndromic Autism Gene Panel 50 88% 2.4%(0.22%) genes within each category of overlap.
Centogene Intellectual Disability Panel 599 43.41% 5.23% (1.31%) « Six genes, included in all of the autism-relevant gene
lists are found included in the ACMGS59 list of genes in
EGL Genetics Autism Spectrum Disorders Tier 2 Panel 62 74.19% 2.18% which variants in the exons may be clinically actionable
(PTEN, TSC1, TSC2, BRCA2, FBNI and SMAD{).
Fulgent Genetics Autism NGS Panel 121 76.86% 4.36% (0.44%) .
+ Three of these six genes (PTEN, TSCI and TSC2)
GeneDx Autism/ID Xpanded Panel 2641 20.64% 10.02% (3.49%) are scored as “High Confidence” for antism-association
and two of the six genes (FBENI and SMAD{)
GENETAQ Autism 27 92.59% 1.53% scored as “Strong Candidate” for autism-association,
determined by number of reports in the SFARI G
Genomics England PanelApp Autism (Version 0.20) 733 100% 7.63% (1.96%) database
Greenwood Genetic Centre Syndromic Autism Sequencing Panel 83 80.72% 3.05% . H'““"”j of ‘,h" 24 autism "'L"““_’l genes
overlapping with ACMG59 lack robust evidence of
GX Sciences Developmental Nutrigenomic Panel 33 15.15% 0.22% \_ outism association. Y,
MNG Laboratories Comprehensive Disability/Autism Panel 1345 19.85% 6.1% (1.3%)
Munroe-Meyer Institute Autism/intellectual Disability/Multiple Anomalies Panel | 117 55.56% 2.4%(0.22%) « Here we estimate low diagnostic yields of the gene panels
investigated (ranging from 0 to 10.
Prevention Genetics Autism Spectrum Disorders Panel 170 95.29% 6.32% (0.44%) .
« We recognise gene selection for inclusion in autism
Reference Laboratary Genomics | Autism Spectrum Disorders (Expanded Panel) 77 77.92% 3.05% (0.44%) panels is relevant (43.41% to 100% overlap with SFART
Cer
Semad Comprehensive Autism Spectrum Disorders Panel 228 57.46% 4.79% (0.87%) .
o Together this suggests gene panels developed are
currently of limited clinieal utility and not extensive
Table 1. Diagnostic yield of gene panels marketed for use in autism. Presented are diagnostic yield « tes of gene enough to justify use in autism diagnosis.
panels relevant to autism as estimated by secondary analysiz of Feliciano et al. 2019, The number of genes present in each gene Overl £ autis I ‘ © witl e §
panel are correct as of January 2021, Percentage overlap with SFARI Gene is estimated as the proportion of genes within each * I_“['J_‘”I'" ";' e '_I”‘ penes ‘l‘"‘H‘ . T‘ e,
respective gene list ng in SFARI Gene (01-13-2021 release) [5]. ighlights that _consideration should be made to
- _J potential identification of secondary findings when
applying these panels and, due to the limited evidence
supporting their autism-association, the value added by
\ their inclusion in these gene panels, y,
1 Myers et al. 2020, American Journal of Human Genetics y
2 Schaaf et al. 2020, Nature Reviews Genetics https://github.com/FianaNG fautism_ gene_ panels. .
3 Hoang et al. 2018, npj Genomic Medicine Acknowledgements
:» Feliciano et al. ernn,‘ npj Genomic Medicine This study is currently under peer review. o This publication has emanoted from
] A!Jmlmmb et ulz} ZUrlJ. .I\-Iuh.:uu]f.ll :’\uu.:l.u wf research supported in part by a Grant
o R!r,hnrd‘ et ﬂl') 'T 5, Genetics in Medicine Fountaien I from Science Foundation Ireland under
LT Wright et al. 2015, Lancet )\ e et Grant No. 15/SIRG /3324 )




Appendix 11I-IV: Application of an evidence-based curation framework to aid gene discovery:
a pilot investigation in an autism family cohort. Poster presented at the World Congress of
Psychiatric Genetics, October 2020.
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Application of an evidence-based curation framework to aid
gene discovery: a pilot investigation in an autism family cohort
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Background Aim: Investigate rare genetic variants and their association with autism in a

= Rare genetic variants, both inherited and de novo, typically have higher effect family-based genome-sequencing cohort, through application of the proposed
sizes and are more penetrant than common variants in the population. evidence-based framework.

= Thereis need for consensus in the evaluation of evidence supporting
association of a gene with autism. Methods

* Arecently published roadmap by Schaaf et al,, (2020) proposes the use of a * WGS (n=6} was carried out on Illumina NovaSeq6000 and pracessed following
modified ClinGen framework for curation of a gene-list associated with autism, Genome Analysis Tool-Kit (GATK) Best Practices [2].
with potential for use in a clinical setting [1]. « Predicted pathogenic ASD-relevant rare variants are selected through dbNSFP

annotation [3], as detailed in Fig.1.

Results
Variant Discovery
a
Cohort-level variant counts (n=6 genomes)
Non-synonymous SNVs 18,748 variants
Rare Allele frequency S D.05 i AD (Non-Finish
3,173 variants
| | |
| | I
Predicted pathogenic DD phred 220 SIFTAG yphen2 (HDIV)
1,604 variants 1,044 variants 760 variants
)L |

Consensus predicted pathogenic

|

satisfying 2 prediction conditions

1,036 variants
Evidence of gene association SFARI genes (n=960) DDD genes (n=2,664)
with ASD/NDD 72 variants 138 variants
Robust evidence :;g;:ﬁm SFARI gene-score <2 [n=393] or DDD “confirmed” genes
association wi ‘eyndromic’ (n-126] (n=1,648)
30 variants 85 variants
Rare pathogenic ASD relevant variants 107 variants

Fig.1 Flow of variant filtering with cohort-level variant counts. Arrows show the direction of flow from  Fig-2 Spread of variation acrass genomic regions. Chromosomes are shown around the outer track of the

each level of filtering (specified on the left). SFARI refers to Simans Foundation Autism Research Initiative  fIBure (1:22, X). The gene names are given on the inner track. These are the genes in which the rare pathogenic

Gene Module [4]. DDD refers to the gene2phenotype database arising from the Deciphering Developmental  ASD relevant variants outlined in Fig.1 are located, Links are made in purple {affected n=01 variants} and blue

Disarders study [S]. {unaffected n=69 variants) between each gene and the respective affection status of the individual harbouring
the variant. Affected denotes individuals with an autism diagnosis.

Gene Curation
Cohort-level counts (n=6 genomes) Discussion
a = Many genes arising from this analysis have been curated by ClinGen Gene-
Rare pathogenic ASD relevant variants 107 variants Disease Validity framewark.
! = SFARI Gene medule hosts much of the information needed to curate the
l genetic evidence for gene association within this framework.
e T1genes = Phenotype curation of the already compiled and maintained SFARI gene
module would add confidence to gene classification within the database.
*  Less stringent filtering cut-offs are needed to identify the complete set of
ClinGen curated genes ClinGen Gene-Disease Clinical Validity Curation

putatively pathogenic variants within this cohort.
* Note: Putative variants will be validated and replicated to confirm their
relevance in autism. Curated genes have not be subject to expert panel review

(n=1,848 curated genes)

49 ClinGen curated 42 potential genes for or submitted to ClinGen.
curation
|

1 References Affiliations
15 genes. [1] Schaaf et al., (2020) Nature Reviews Genetics B
[2] Van der Auwera et al., {2013) Curr Protoc 2020@mumail.ie

(Gene  Sumofscores  Calculated classification Bioinformatics orna.lopez@mu.ie

Evidence supporting ASD assaciation

b NAV2 0.5 Limited [3] Liu et al., (2016) Human Mutation 1: Department of Psychiatry, Trinity
NINL 45 Limited [4] Simon's Foundation (2018) SFARI Human College Dublin
CACNAZD3 50 Limited Gene Module 2: Department of Biology, National
[5] Wright et ol. (2015) The Lancet University of Ireland Maynooth

Fig.3 a Gene selection for curation. Genes (Fig.2} were excluded from this analysis when already curated by
ClinGen. Genes were selected for analysis when evidence of ASD association is reported in the literatura.

b Classification af three genes with highest number of autism reparts. The three ganes with the highest | | Acknowledgements Maynooth —L

number of ASD reports (6 publications each) were selected for curation. Sum of scores represents the raw = University Science

sum of genetic and experimental evidence towards autism based on Schaaf et al. framework with gene o ELDALiotech Netional Urnorsity Foundation

classification, A 1 e e Ireland For what's next




Appendix 1ll-V: Rare genetic variation in autism; an exome sequencing study. Poster
presented at the Irish Society for Human Genetics, September 2020.
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Background

.

Rare genetic variants, both inherited and de nove, typically have higher
effect sizes and are more penetrant than common variants in the
population,

Whole exome sequencing (WES) facilitates simultaneous investigation of
many classes of variation in the coding genome, across the allele
frequency spectrum,

Causal variants aggregating in families with multiple affected individuals
typically have a larger affect than variants in sporadic cases of autism [1].

.

.

« Aim: apply WES to a cohort of 34 individuals in families affected with autism
and other neurodevelopmental disorders, aiming to identify rare pathogenic
variants.

Methods

* WES was carried out using the Nextera Rapid Capture Exome (v1.2) on
Illumina NovaSeqs000 and

+ Data has been analysed following Genome Analysis Tool-Kit (GATK) Best
Practices.

* Predicted pathogenic rare variants are selected through dbNSFP
annotation.

* Putatively pathogenic variants are filtered through known autism-
associated gene sets, including SFARI [2] and DDD (3] gene lists.

Results
Cohort-level variant counts (n=34 exomes)
Non-synonymous SNVs 34,600 variants.
Fig.2 Spread of variation across genomic regions. Chromosomes are shown around
Rare Allele frequency < 0.05 in gnemAD (Non-Finish European) the outer track of the figure (1:22, X). The gene names are given on the inner track.
5357 variams These are the genes in which the rare pathogenic ASD relevant variants outlined in
| | | Fig.1 are located. Links are made in purple (affected n=103) and blue (unaffected n=g6)
between each gene and the respective affection status of the individual harbouring the
l l variant. Affected denotes individuals with an autism diagnosis.
Predicted CADD phred 220 SIFT4G "Damaging” Polyphen2 (HDIV) “Damaging”
pathogenic 8,299 variants 5-"“"“["“' A2 vertads | Discussion
| |
= Rare pathogenic ASD relevant variants isclated from the cohort occur across the
Consensus predicted sfing 22 prediction condit genome.
pathogenic e = Rare pathogenic ASD relevant variants are harboured in unaffected family members
also.
| * Lessstringent analyses are needed to identify the complete set of putatively
pathogenic variants within this cohort.
Evidenca of gane ] e * Putative variants will be validated and replicated to confirm.
association with T5 variants 153 varients
ASD/NDD
References
[1] Ott, J. et al. (2011) Nature Reviews Genetics
Robust evidence of SFARI gene-score 52 (n=383) DDD “confirmed"” genes (n=1,648) [2] Simon’s Foundation (2018) SFARI Human Gene Madule
gene association with 25 variants S2verlents [3] Wright et ai. (2015} The Lancet
ASD/NDD
Affiliations Acknowledgements
o
ot
Rare pathogenic ASD relevant variants “Contact: ELDAbioecn Nkri':xt:
e pathogenic ASD relevant varian 13 variants fiana.nighralaigh.2020@mumail.ie ) »-.r-_-r-iute-q_-.-__«m
. . ’ - . 2. D! @mu.ie
Fig.1 Flow of variant filtering with cohort-level variant counts. Arrows show l(fmd lopez@mu.je . . O\./
the direction of flow from each level of filtering (specified on the left). SFARI refers L Departmel?t of Psychiatry, Trinity
to Simons Foundation Autism Research Initiative Gene Module [2]. DDD refers to College Dublin ) ) Science S I
the gene2phenctype database arising from the Deciphering Developmental 2: Department of Biclogy, National Foundation "
. . . Ireland For what'’s next
Disorders study [3]. University of Ireland Maynooth



Appendix 111-VI: Analysis Pipeline of Whole Genome Sequencing Data in Neurodevelopmental
Disorders. Poster presented at British Neuroscience Association Festival of Neuroscience,
April 2019.
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Analysis Pipeline of Whole Genome Sequencing
Data in Neurodevelopmental Disorders
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Background b) Variant Filtration

Neurodevelopmental disorders (NDDs) such as autism, ADHD and epilepsy are highly
heritable complex traits. Common variants associated with NDDs tend to have low
effect sizes. Rare variants, both inherited and arising spontaneously, often have a
higher effect size and are more penetrant than common variants. Taking a family study
approach allows for the analysis of variant transmission from parent to offspring and
allows interrogation of de novo variation [1]. Whole genome sequencing
simultaneously investigates all classes of coding and non-coding variants across the
allele frequency spectrum.

High confidence unfiltered
variants
Frequency of < or > 5% in 1000
genomes, dbSNP and ESP6500

Non-coding
variants

Data available for analysis: SIFT, Polyphen, CADD, MCA® 3'UTR, 5'UTR, intergenic regions,
1. Whole genome sequencing data of 100 individuals from multiplex families affected predictions Introns, regulatory elements
with autism and other neurodevelopmental disorders

Predicted pathogenic R

(Expected- 30X caverage on lllumina NovaSeq)
2. Pedigree structure data (Sample outlined in Fig.1)
3. Phenotype data in particular ADOS, ADI, medical history and 1Q measures

AL B [
Figure 1 Sample Pedigree for Analysis. | neurodevelopmental pisorder Gene Lists |
Pedigree of family with multiple affected offspring l

to unaffected parents. Legend outlines affection

status of each individual.
» @ ] Figure 3 Variant Filtration Flow Chart. Data from affected individuals will be carried forward from the quality

. . . P N . . control pipeline (Fig. 2] to this variant filtration pipeline. Variants will be restricted as per flow diagram with each
Aim: The aim of this study is to identify rare genetic variants by applying whole arrow representing a filtration step. Putative variants from this pipeline will be restricted to genes with previous

genome sequencing technology in families with Itiple affected individual. evidence supporting their implication in neuradevelopmental disorder risk.
with autism and other neurodevel I di

coding varlants

non-coding variants

The Neurodevelopmental Disorder Gene List specified in Fig. 3 mirrors that applied by the

Methods SPARK Consortium [2]. This gene set includes genes that fall in the following categories:
a) Quality Control SFARI gene score < 2 [3] Genes highly expressed in the brain [8]
Deciphering Developmental Disorders genes [4] Transcript regulator GO:0006355

1. Study Cohort Quality Control

/ I \ Post-synaptic density genes [5] Chromatin modifier GO:0016569

Embryonic highly expressed genes [6] Nervous system development GO:0007339
Relatedness inference and removal ‘ Gender confirmation vel ighly exp & 161 ¥ P
of 3
or outliers M2,M3,M16,M13 gene co-expression modules [7] Nerve Impulse G0:0019227, GO:0019226 and
G0:0050890
. I
2.Sequence Qualtty Control Brain specific expressed gene [8] Neuron projection GO:0043005

Removal of variants Removal of variants with Removal of variant Removal of variants
flagged by VaSR low (DP<8) or excessively sites with low missing >10% of . .
high (DP>249) depth of genotype quality | | genotypes across family Discussion
coverage (60<20)

This analysis pipeline is expected to yield a set of high confidence putative coding and non-

= coding variants contributing to the genetic risk of neurodevelopmental disorders.
3. Pre-filtration Checks

/ l \ The putative pathogenic variants will be further analysed using:
- Functional interpretation

Determine average number of Compare pre-QC and post- | | Evaluate variant rates in affected - Intra-family transmission analysis
wvariants by variants type Qc TifTv ratios vs unaffected individuals - Gene network analysis
Figure 2 Quality control of genomic data. Outlined here are the steps to be taken to establish a high quality oE on of recurrence within cohort
working data set. These steps will be carried out in three broad stages: study cohort quality control;
sequencing data quality control; and pre-filtration checks. Impact: Variants identified through this analysis pipeline will provide supporting
VOSR: Variant Quality Score Recalibration  TifTy ratio: ratia of transition (Ti) to transversion [Tu) variants evid for gene iation with develop I disorders. This study will
explore the clinical utility of whole g q ing in neurodevel tal

Variant filtration will be carried out as per Fig. 3. This filtration mechanism will restrict
variants to those that are predicted to be pathogenic and are occurring in, or affecting
expression of, genes that have previously been associated with neurodevelopmental

disorders. Diagnostic yields up to 42.4% in autism have been achieved in whole
genome sequencing studies to date, highlighting the potential of this study design to
identify rare genetic risk factors in neurodevelopmental disorders [8].

disorders.
References Affiliations Acknowledgements
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[3] Simen’s Foundation {2018) [7] Parikshak et al. {2013)
[4] Wright et al. (2015) [8] Yuen et al. (2015) 1 Trinity College Dublin, Schaol of Medicine, Department of Psychiatry Selence S l
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Appendix IlI-VIl: A Search for Rare Variants in a Family-Based Study of ASD. Poster

presented at the World Congress of Psychiatric Genetics, October 2018, and the Irish Society

for Human Genetics, September 2018.
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Background

= Genomic studies have identified thousands of genetic variants associated with
Autism Spectrum Disorders (ASD) [1]

= Causal variants aggregating in families with multiple affected individuals
typically have a larger affect than variants in sporadic cases of complex traits [2]

= Next Generation Sequencing (NGS) technologies generate data that allow near
complete evaluation of the genetic variation of an individual, and therefore are
a tool for analysis of variant transmission through families

= Aim: To identify rare de novo variants contributing to the clustering of ASD within
a family with 4 ASD-affected individuals (Fig.1)

Fe Mo [gue F]w

Figure 1: Pedigree of family with multiple affected offspring to unaffected parents. Legend
outlines affection status of each individual. ASD and Autism diagnoses are according to DSM-V
(as measured by ASOS-2 and ADI-R)

Methods

Libraries were prepared from saliva DNA samples of parents and all affected
offspring, and captured using Whole Exome Solution xGen® Lockdown®
Probes by SOPHIA GENETICS

Libraries were run on Illumina HiSeq 4000 (2x250) achieving an average
coverage of 83X with 99.36% of reads successfully mapped (Fig.2)

Mapping aualy disriution

it o . e et

L

Figure 2: A) Distribution of raw read lengths. This curve illustrates long, uniform read lengths
that were obtained from sequencing across all samples. B) Mapping quality distribution. A
single defined peak can be seen at a Phred Score of 60, indicating high quality mapping
across all samples

+ Analysis was carried out on SOPHIA DDM®, an artificial intelligence software
for visualisation and interpretation of sequencing data (Fig.3)

Figure 3: Workflow of SOPHIA DDM® filtration specifications. Retained variants specify those
variants meeting SOPHiA criteria for confident variant calls. Variant fraction was set at 25%,
that is a minimum of 25% of reads supporting the variant count, taking base Phred scores
into account. Common variants were filtered out by eliminating variants appearing in over
1% of the population as measured in EXAC and gnomAD cohorts. SIFT, Polyphen and
MutationTaster values were set at 0.02 (inverse represented in figure), 0.95 and 0.9
respectively to isolate variants with predicted pathogenicity. De novo variants were specified
by selecting variants appearing in less than 2 individuals in the sample.

Results

The rare de novo likely pathogenic variants resulting from the variant filter specified
(Fig.3) were prioritised according to SOPHiA DDM® pathogenicity scores and ACMG
criteria [3]. Featured below are high priority variants identified in this analysis with
potential implications in ASD (Table 1). The dock3 variant is shown in detail in Fig.4

Variant Affected n 3
Gene Type dbSNP Individual Protein Function
med12 SNV rs746104301 Cc1 Transcriptional co-activation of CD8K8
tyro3  INDEL NA c1 RNA binding interaction with FMR1
dock3  INDEL NA c2 Induces axonal outgrowth in CNS
chstl5  INDEL NA Cc3 RNA binding interaction with FMRL
Component of presynaptic
pelo INDEL 5758399155 Cc3 cytoskeletal matrix

Table 1: Rare de novo pathogenic variants. The table illustrates the highest ranked variants
resulting from the analysis. The gene containing each variant is specified in column 1 and the
accession number (dbSNP) in column 3 where available. Variant type is given as either INDEL
insertion/deletion, or SNV single nucleotide variant. Affected individual refers to Figure 1 with C1-
C5 representing children 1 to 5 (left to right).

POLYPHEN2

0.5%2 -~

MutationTaster
~ N

Figure 4: dock3 INDEL in detail. Shown in
the spider diagram are values indicating
expected pathogenicity of the variant
and the frequency of the variant in

O A unaffected populations. SIFT score is
represented here as the inverse of the
standard SIFT score

G1000 g .

Discussion

Here we show:

« The utility of SOPHIA DDM® as a platform for variant interpretation and a method
of prioritising variants for investigation by functional studies

*  Asubset of rare de novo variants predicted to be implicated in ASD

Note: this data is preliminary and requires validation
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Appendix IV: Research Articles

Appendix IV-I: Ni Ghralaigh, F., Gallagher, L. and Lopez, L. M. (2020) ‘Autism spectrum disorder

genomics: The progress and potential of genomic technologies’, Genomics, 112(6). doi:
10.1016/j.ygeno.2020.09.022.
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Review

Autism spectrum disorder genomics: The progress and potential of genomic | g |

technologies iy

Fiana Ni Ghrilaigh™", Louise Gallagher”, Lorna M. Lopez™""
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Depoment of Fiolsgy, Mzmooth Universty, frelod

ARTICLEINFO ABETRACT

Feywonds Genomic technologies bave accelerated rescarch progress in autism spectrum disorder (ASD) penomics and
Autlsm promises to further transform our understanding of the genetic basis of this nearodevelopmental disorder. Here
Genomics we review the curnent evidence for the genetic basis of ASD, pressnt the progress of large-scals studies to date
Hare and highlight the potential of genomic technologiss. In particular, we discuss evidence for the importance of
Varlalion identifying rare genetic variants in family-based studies. Genomics is a key feature of Fufine healthore and our
wﬂ;ﬁ:m m?ﬂr :'l]usl:'m.u ir's ?m.enl:.ial.ln improve zuu.'r binl..o_gica] mtizman.dmg ufn:umdz\l.d.vupu'runn] disorders, anfi. i}
ASD ultimately aid ASD diagnosis, inform medical decision making and establish genomics as central to personalisad

medicine.

1. The genetic basis of ASD

Autism Spectrum DMsorder (ASDY) I= a prevalent nevrodevelopmental
disorder ocourring In arownd 1% of individeals n &8 population [1]. The
conditton manifests as restrictive repetitive behaviours and soclal
communication deficlis across 8 phenotyple spectrum [2]. ASD 1s a
highly heritable complex trait. The heritability of ASD measures the
genomle varlation contributing to the phenotype and in ASI) has been
estimated at —30-90% [3,4]. The genetic risk of ASD Is contributed to
by both rare and common genetic varlants, and as yet the majority of
the genetic risk remalns unexplained [5]. Rare veriants refer to those
occurring at less than 5% of the population and very rare varlants occur
at a minor allele frequency of less than 1%. Common genetics varlants
typlcally refer to genetlc varants with @ minor allele frequency of
greater than 5%. Rare varlants, particularly those ocourring de novo,
have the potentlal to occur at higher effect sizes than common variants.
The larger effect slze of rare varlants is In line with the hypothesls that
varlants of a higher effect slzes have a more detrimental effect on braln
development resulting In the early-lfe manifestation of the autistic
phenotype, when compared to neuropsychlatrlc disorders most com-
maonly arising later In life, such as schizophrenta and psychosis.

In this review, we alm to Inform the reader on state-of-the-art ASD
genomlcs research. Our focus 15 on the application of genomic se-
quencing technologles to search for these genetic variants In extensive
sample collections that have transformed our understanding of ASD

wenomics. We review cutting-edge research that use genomic sequen-
cing methods, bioinformatic processing and clinical iImplementation for
Improved diagnosts and medical decision-making In ASD and other
neurcdevelopmental disorders. We explain the value of genomic se-
quencing technologles and highlight what they can achleve for neuro-
developmental and neuropsychlatric disorders.

2. Sag ol
rare variants

gies have advanced the identification of

ing tec

Genomic sequencing, specifically whole exome sequencing and
whale genome sequencing, has transformed varlant discovery. These
technologles glve the opportunity for more widespread and In-depth
genomic analysis than older technliques, such as microarray studies and
candidate gene studles, have allowed. Table 1 lists the next-genaration
sequencing technologles that can identify single nuclecstide varlants and
Insertion-deletion varlants, as well as larger genomic hits, Including
structural or copy number varlants, across the allele frequency spec-
trum. In the past decade, sequencing technologles have stretched from
covering select polnts across to genome to cover up to 100%., when
sequenced at high coverage with de nove assemidy (Table 1) [6]. Higher
coverage whole genome sequencing results In more precise variant calls
across the coding and non-coding reglons of the genome.

These advances In genomic technologles and decreasing costs have
enabled large sequencing cohorts (Table 2, allowing key strides to be
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Table 1
Genomic technologies compared.
Exome seqjuencing Whole genome ssquendng
Clinical exome sequendny Whole mome sequencing Short -read. Long-resd
% Genmme covered ~ .5 ~1% ~ TP J‘nlznua]:l‘n'ruptu 100%
Types of variant detected SNVs BNWE BNV ENVs
Indels Indels Indels Indels
CNVs [Hmited) Vs (Hmiied ) NV L]
5¥s (Hmited) 1] 5V
Miinchondrial Mitochondrial Mlbochondrizl
Repeat expansions (Incloding ndem repeats [53,70])  Repeat expansons
Complex SV
Haplotype phassd variants
Methylation
Déagnostsc yleld in ASD Limited application 1% [E2] 4249 [42] Mot yel awallable
Cost esimade |71 et £1230.50° £918°

Chutlined are fiour ey sequencng technologies with potential for nse to identify are ASD genetic varants. Note that thess costs are estimates and do not includs
libmary preparation costs, barcodes, acoess fees, labour, YAT, service provider, data processing and data storage and other asodabed sequendng costs.
Estimates &, b and c, are based on squencng with [lumina NovaSeq 54 flowcell (2 = 150) up to 3000065 Toweell.
Acronyms; SN single nucleotide wariant, Indel insertion deletion, CNY copy number varant, 5V structural variant.
* SOPHIA GENETICS (linical Exome Solution (12Mb covering —4500 genes (2.5Gb/sample/800 samples/Aowcesll)).
* Numina Mextera Rapid Capture Exome (37 Mb (80b/sample/375 smimples/flowcell])).

* WGS (1200h/samples 24 sample/Mloweell).

* Ouford Nanopare Technaologies (60« ; 1 sample/flow cell/1806E) Sequencing metrics: htips//nanoporetech.comacoumcy.

made In the field of ASD genomlcs. Large-scale analyses of these cohorts
have Identiflied hundreds of ASD-assoclated genetic varlants across the
genome. For example, discovery of rare varlants, particularly rare
CNVs, affecting SHANK3and NRXN] among other genes, implicated
synaptlc transmisslon and plasticity In ASD neuroblology [7). Ex-
tending beyond vartant discovery, combining rare variant analysis with
single-cell Investigation In the developing human cortex showed en-
riched expression of particular ASD-assoclated genes In maturing and
mature excltatory and Inhibltory neurons from mid-fetal development,
and helped to validate the role of these genes In neuronal commu-
nication and regulation of gene expression [E]. Impactful findings such
as these, suggest great potentlal for advancing our understanding of
ASD neuroblology through rare varlant discovery.

3. Common genetic variants have been challenging to associate
with autism

The search for common genetic varlants has been less successful
than that in more typically adult-onset neuropsychlatric disorders, in
particular schizophrenla {(—7% of varlance on the llability scale) [0]
and bipolar disorder (—2.5% of variance on the lability scaled [10-12].
The largest study to date Investigating commaon genetic varlants in ASD,
using genome-wide genotyping, provides evidence for statistically sig-
nificant assoclation of the first common risk varlants with ASD. A
Genome Wide Assoclation Study (GWAS) was carrled out on 18,381
ASD cases and 27,969 controls. While this sample slze Is large In terms
of ASD, It 1s smaller than that of other tralts such as schizophrenla with
36.989 cases or bipolar disorder with 20,352 cases [9,10). Five locl
showed significant assoclation with ASD alone and seven further locl
were ldentified upon analysis of schizophrenia, depression and educa-
tional attalnment together [13]. Polygenic risk, measured by a poly-
genic risk score (PRS), Is the combined Impact of common varlants on
the probabllity of a phenotype. In ASD this explains just 2.5% of the
observed varlance In risk [13]. The lower yleld of common variant locl
In ASD may be becawse of a greater relative contribution of rare genetic
variants than common varlants in the genetic architecture of ASD [14].
Howewer, the current smaller sample sizes In GWAS of ASD fall to va-
lidate this hypothesis.
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4. Heterogeneity in the genetic architecture of ASD

ASD displays a high level of heterogenelty across a phenotyplc
specirum, both between Individueals and within the same Individual
throughout the lifespan. It Is estimated that around 10% of Individuals
affected with ASD have a syndromal form of the condition, for which
each single ASD risk gene accounts for at most 1% of overall cases on
average [15). Rare disorders often manifest with an underlying autistic
phenotype [16]. These syndromes are frequently cansed by highly pe-
netrant varlants In single genes, such as Fraglle X syndrome,
MIM:30024 (FMRI), and Tuberous Sclerosts Complex, MIM: 613254
(TSC2) (revlewed in Betancur, [17]). These syndromal forms of ASD are
frequently assoclated with Intellectual disbility and developmental
delay, suggesting that ASD may only form part of the overall beha-
vioural phenotype of the syndrome.

ASD cases that do not fall Into clinically defined syndromes appear
to hawve more complex genetic architecture and varlous models of risk
have been suggested to encompass this. The polygenic model, strongly
supported In schizophrenia [15], proposes that multiple locl, each
contributing a small effect, accumulate to surpass a threshold of disease
lzbility. In contrast, Boyle et al. proposed the omnigenic model
[10,20]. This model suggests that all genes expressed In disease-re-
lewvant cells have the ability to Influence pathogenesis, through thelr
Interference with the expresston of “core genes”. In that, It may be
hypothesised that most of the heritabllity of ASD could be explained by
the effect of varlation on genes outside of the core ASD pathways.

Understanding gene regulation 1s critical to parsing out the relative
contribution of common and rare varlanis to ASD  heritability.
Whichever model Is most appropriate In describing Its architecture, It Is
clear that rare genetlc varlants are cruclal to understanding ASD.

Further to heterogenelty In the genetic architecture among ASD
cases, there Is heterogenelty, both genetically and clinlcally, between
males and females. Males are more frequently affected with ASD than
females [21]). Although factors such as hormonal sex differences, sex-
specific eplgenetic factors and genetlc factors related to sex chromo-
somes have been hypothesised to play a role In this blas, the blologlcal
basis remains unclear. A large-scale family study Interrogating de nowo
varlants In AST relnforces the iImportance of evaluation of the X chro-
mosome, Identifying 5 of 7 genes replicated In the study are located on
the X chromosome [22]. Together with the evidence of sex hases of
autosomal genes, this study highlights the potential for genomic studles
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to elucidate this phenomenon.

5. Rare variants disrupt gene function, dosage and regulation in
ASD

Current whole genome and exome sequencing technologles enable
Investigation of most genomic varlant classes {Table 1). The con-
sequences of such varlants In the genome ocour to varylng effects with
different degrees of penetrance, as outlined below.
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5.1, Gene disngpeion
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Gene disruption refers to the disturbance of gene expression and the
Impact of varlation on overall gene function. The consequence of a
genetlc warlant can be detrimental to gene function or can have little
effect depending on the variant In question and the overall genome
environment (Fig. 1). Genes disrupted In ASD often Include those re-
lated to braln development, post-synaptic density, nerve Impulse and
neuron projection [23]. Much focus lles on the Importance of loss of
function variants and damaging missense varlants In the evaluation of
genetic varlaton on ASIN In particular, varlants Impacting evolutio-
narily conserved genes to the detriment of cruclal cellular processes.

Another mechanism of gene disruption Is gene rearrangement, en-
compassing translocatlons, Inversions and large-scale Insertions and
deletions. Although varying between studies, the estimated rate of large
varlants In ASD Is approximately 5-10% [24]. A recent study Implicates
rare retro-ransposition derived disruption In neurodevelopmental dis-
orders through trio-based exome sequencing analysis from the Decl-
phering Developmental Msorders (DDD) cohort. This mechanism of
disruption 1s an avenue for pathogenesis which has been largely un-
explored In neurodevelopmental disorders to date [25].

5.2 Gene dosoge

Gene dosage refers to the number of coples of a ghven gene that are
present In the genome of an Individual. Dosage has been found to play a
substantial role In ASD pathogenesls, as demonstrated through CNV
analysis, Le. analysls of duplication or deletion variants of = 1Kb [26]).
Im 2004, two groups Independently identified that large scale CMVs
were often overlapping with genlc reglons [27,28). The Influence of
these CNVs means elther an Increase or depletion In activity of the
contalned genes with potential for damaging functionzl consequences.
A comprehensive analysls Identified clinically relevant CNVs In 10.5%
of neursdevelopmental disorder cases Investigated, with 11.4% in ASD
cases. Importantly many of the CNVs ldentified were found to ocour
acrass multiple neurodevelopmental disorders [29).
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As 8 complex tralt, non-coding warlants, particularly varlants af-
fecting gene regulation are likely to Influence ASD [30]. Advances In
whole genome sequencing and bloinformatic tools are enabling studles
of non-coding reglons of the genome. Yuen et al. estmated that non-
coding and genlc non-coding de novo varlants account for 15.6% and
22.5% respectively, of predicted damaging de movo varants in ASD
cases. Non-coding elements, e.g. uniranslated reglons, regulatory se-
quences Involved In exon skipping and DN Ase hypersensitivity reglons
were most enriched for de novo varants [31]. The first study sig-
nificantly assoclating genome-wide non-coding varlants with ASD
shows convergence In the pathways and processes disrupted by both
coding and non-coding varlants In ASD, specifically In synaptic trans-
misslon and neuronal development [32]. Ruzzo et al. also provided
evidence that non-coding varlants Impact neuroblology In ASD, re-
porting & recurrent 2.5 KB deletion within the promoter of DLG2, & gene
assoclated with cognition and learning In mice and human [33].

Preferentlal transmission of structural non-coding varlants has been
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Fig. 1. Pathway from sequencing to clinical implementation. Cutlined are the main stages of ASD gene discovery; from varant discovery (bleel, throagh genomic
data analysis (yellow], to accurate transkation for meaningful dizgnosis (gpreen). Re-annotation refers to regular re-analysis of genetic diagnoss, as additional variants
reach significant association with ASD. The variant highlighted in red, here a single nucleotide variant, represents any variant type detectable through application of
genomic technologies (Table 1)L Epigenetic modifications include methylation changes, histone modification or microRMA dysregulations (reviewed Eshraghi et al.
2018) [ET]. Research is ongoing bo integrate genomic variants with other varation within an individual's genome, as described by McGuire et al. (20200 [84]. (For
interpretation of the references to colour in this figure legend, the reader is referred to the web verson of this article)

reported tn ASD, specifically the tranemission of cls-regulatory elements
from father to affected rather than to unaffected offspring [34]. These
findings are suggestive that not only are rare Inherited non-coding
varlants Increasing risk to ASD, but also Indicate a parent-of-origln ef-
fect from this non-coding warlant class, highlighting a key benefit to the
use of a family-based study design In studles of ASD.

6. Family-based studies are key to rare varant analysis in ASD

Eamily-based studies, previoudy the foundation of disease gene
discovery, are re-emerging as an effective too to Identlfy potentially
pathogenic varlants In neuropsychiatric disorders, Including ASD [35]).
Famlly-based designs facilitate the analysls of parent to offspring war-
lant transmission. These study designs take the form of 1) simplex fa-
milies (trios); parents and thelr affected child, 11} multiplex families;
parents with more than one affected child, and 111) more complex ex-
tended pedigrees with multiple affected Individuals. By design, trio
studles such & those Investigating the MSSNG cohort (Table Z), have
been particularly key to uncovering the enrichment of de nowo varlants
In cases by comparing rates of de movo varlants In affected offspring
with thelr unaffected respective siblings [31].

Family-based study deslgns also enable analyses of parent-of-origin
effects that are not possibde In case-control design. Furthermore, the
presence of matched unaffected siblings In these studles, gives a back-
ground level of genetic warlation that can be used to distinguish be-
tween disease relevant variants and those that are unrelated, such as
population-spectfic background varlation or blases Introduced In se-
quencing. A number of large-scale genomic Investigations of ASD apply
8 femily-based approach, Including the Simons Simplex Collection
(Stmplex), Autism Genetlc Research Exchange (Simplex and Multiplex)
and The Autism Genome Project (Simplex and Multiplex) (Table Z).
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7. Multiplex and simplax casaes of ASD show different genetic
architectures

Famlly structure plays 8 major role In the types of putative variants
expected to be causative of a ghven ASD proband. Eardler CNV studles in
ASD provided some evidence of differences In genetic architecture be-
tween simplex and multiplex familles [36]. These differences are
centred on the contribution of de nove and Inherted varlants to ASD
susceptibility.

7.1. De nove varimnes

A lower rate of de nowo varlation 15 seen In multiplex familles
compared to simplex families, as expected by study design. Sebat et al.
reported de novo copy number varlants In 107 of simplex cases and 3%
of cases from multiplex familles In thelr cohort [36]. Similarly Rurzo
et al. glve evidence for depletion of rare de novo ASD risk varlants In
multiplex families [33). While, this 15 observed across multiple studles,
thie difference between multiplex and simplex family structures 5 not
conslstently evident. In thelr TNV analyses, Pinto et al. did not report
such differences [37]. A limitation to these analyses, such &= analyses
Invodving the Autism Genome Project cohort (Table 2), arises from
challenges In reporting of simplex/multiplex status, Le. dentifying a
family as a true slmplex, or as a8 family for which just one offspring was
Investigated.

7.2 Inherited vorians

Conststent with the enrichment of de nove varlants In simplex cases
of ASD, there 1s & depletion of Inherited variants assoclated with ASD In
these spontanecus cases [36,38). Klel et al. estimate namrow sense
heritability to exceed 60% for ASD cases In multiplex families but es-
tmate Just 40% of narrow sense heritability for simplex familles [39].
This means that 60% of phenotyplc varlance may be attributed to
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additive genetic varlance In Individuals of multiplex families. As In
comparison of de movo varlant enrichment of simplex and multiplex
familles, this effect Is not reported conslstently across analyses.

Interestingly, the same putative varlant may not be found In all
affected Individuals within 8 multiplex family as highlighted recently
[40]. This study reports a maternally Inherited 15q11.2 deletion In an
affected male child and no paternally Inherited putative varlants from
an affected father. Other studles have ldentified non-sharing of CNVs
[41] and single nucleotide variants (SNVs) In members of multiply af-
fected familles. In the latter study the two affected siblings did not
harbour the same rare risk varlant In more than half of the multiplex
familles studied [42]. Similary, pathogenically significant CNVs hawve
been Identified that are transmitted to an ASD proband from an un-
affected parent, and shared with a unaffected sibling [43], adding to
evidence for asymptomatic carrders of neurodevelopmental disorder
CNVs.

Familly studles in epldemiologlical cohorts from 1solated populations
have also confirmed that both rare and common genetlc varlants con-
tribute to the susceptibility to ASD. A study on the Faro Island genetic
Isolate, affirms the Importance of both common and rare variants in
ASD susceptibility [44]). This study Identifies In a subset of Individuals
In the cohort camrylng rare deleterious varlants In genes known already
assoclated with ASD and In this same cohort, common genetic varlants
were also assoclated.

Giwen these two mechanisms of genetic varlation, de nove and In-
herited In ASD, genomlc sequencing studles In families with multiple
affected Individuals offers greater opportunity to understand the re-
lative contribution of Inherited and de mowe variation In the genetic
architecture of ASI.

8. Establishing putative ASD variants faces many challenges

Haterogenelty In ASD diagnoses i a major challenge facing genomic
sequencing studles In ASDL In particular, diagnosls of ASD In the pre-
sence of Intellectual disability. Diagnostic procedures are found to differ
between that used In & clinlcal and research setting. For a compre-
henstve discussion on these challenges refer to Schaaf et al. [45].

The greatest challenge In analysis of large-scale genomic data Is In
thie establishment of plpelines for dats Interpretation. Interpretation of
putative varlants s complicated by a wide varety of technical factors,
such as sequence coverage, varlant valldation, conslstency In sequen-
cing platforms and verlant calling and filtering technigues. Robust
clinical dlagnoses and rich phenotyping Increase confidence In varlant
asspclation [46]). A varlant that has been asoclated with ASD and has
substantial evidence supporting Its valldity will be Interrogated for Its
bologieal rode (Flg. 10.

Varlants assoclated with ASD disrupt a wide varlety of pathways
and blological processes [7). Identifying pathways and processes
showing an Increased mutational burden enables the Isolation of cel-
lular processes and pathways disrupted in ASD. Gene-lists are often
compilled listing genes Involved In a glven process [42]. These lists are
useful In establishing the process which a putative varlant may be
disrupting, and such gene lists are often consulted for membership
when Investigating the Impact of a varlant [40].

The establishment and maintenance of collective databases, such as
SFAR] gene [23), Developmental Disorders Genotype-to-Phenotype
database (DDE2ZP) [47] and ClinWVar [48], that are openly shared among
researchers glve hope for the development of varlant specific disease
madels which will expectedly lead to a greater understanding of ASD
pathology. Conslstent re-analysls of pathogenicity 15 key to galning
maximum Insight from avallable genomic data, & proven frultful In the
re-annatation of developmental and eplleptic encephalopathles genes
[40] (Fig. 13. A key stride In the development of an ASD gene list comes
from Schaaf et al. in thelr proposal to adapt the ClinGzen curation fra-
mework to ASD [45]. Development of a high-confidence gene List for
ASD would have great use In genomic Investigation, specifically In the
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development of targeted gene panels and & ‘clinical exome’. Without a
consensus gene list In ASD, attempis to dewelop such genome analysls
strategles have limited application (Table 1).

Advances In long-read sequencing technologles hold the potential
for sequencing of “dark gene reglons”, genomic reglons Inaccessible
through next-generation sequencing. With high coverage and de novo
mssembly, Nanopore technologles have potential to sequence up o
100%; of the genome (Table 1), with the greatest level of ‘Tecovered
wenes when compared with other genomic technologles, Including the
recovery of genes assoclated with ASD [50]. This technology, to our
knowledge, has yet to be applled to ASD cohorts, aside from use In
warlant valldation [34]. Long-read sequencing will enable discovery of
genetic varlants which have thus far been largely under-explored In
ASD, such as repeat expanslons, haplotype phased varlants and me-
thylation changes. Repeat expanslion varlants have already been asso-
clated with ASD, most notably the FMR] repeat expansion assoclated
with Fraglle X syndrome (MIM: 30024). As shown In an early haplotype
mapping study, ldentification of haplotypes can succeed In Identifylng
ool involved In ASD susceptibility [51]. Even more relevant perhaps,
long-read sequencing enables the detection of CNV's and rearrangement
events without the need for Molnformatic re-assembly and allgnment of
short reads.

9. Putting ASD in the context of other neurspsychiatric disorders

Whaole genome sequencing has potentlal to Investigate some of the
major questions remalning unanswered In ASD genomics, Including
Investigation of the overlap of ASD with other neurodevelopmental and
neuropsychiatric disorders, both clinkcally and genetically. As high-
lighted in & review from Lord et al., elucidation of the genetic overlap of
ASD with other neuropsychiatric disorders Is needed [52]. Clindeally,
ASD frequently occurs co-morbldly with other neuropsychiatric dis-
orders, In particular attentlon-deficit hyperactivity disorder (28%),
anxiety disorders (13%:) and mood disorders (11%:) [531.

At the systems-level there s substantial evidence of genetic overlap
between ASD and neurodevelopmental and neuropsychlatric disorders
[54]. There Is overlap In the genes asoclated with ASD and those as-
soclated with other nevropsychlatric disorders, such as schizophrenla
and bipolar disorder [55-57]. This has been demonstrated strongly In a
large-scale meta-analysis of elght European psychiatric cohorts ldentl-
fying 109 plelotropic bocl [5E]. The genetlc overlap of ASD with other
disorders 1s also evident at the varlant level with de nove varlation in
ASD shared with Intellectual disabilities [B] and shared with epllepsy
[=0).

10. Next-generation sequencing technologies improve diagnostic
vield

There Is a demand for clinical genetic testing In ASD [60]. Clinical
CNV detection has already been translated widely, advancing the
clinlcal genetics understanding of the condition. This translation crys-
tallised some of the lssues that will emerge with widespread translation
of genomic technologles; namely clinical Interpretation, relative con-
tribution of Inherited varlants and particularly varlant specificity to
ASD. Currently no gene, which when disrupted by a pathogenlc varlant,
has been found to confer risk to ASD without conferring risk to In-
tellectual disability or other neurodevelopmental disorders. In the ab-
sence of appropriate study design and explicit, robust diggnoses, there
Is Insufficlent evidence to assign meaningful specificity of gene In-
wolvement In ASD [61].

Genomic technologles, given the greater proportion of the genome
covered, have the potential to transform the clinical genetic under-
standing of the condition. This Is llustrated by the Increase In dlag-
nostic yleld with genomic technologles. DNagnostic yleld refers to the
number of cases where 8 putative genetlc varlant assoclated with the
condition Is ldentified In a cohort. This can be Interpreted as a measure
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of the utility of the technique and analysls strategy for the condition.

A recent meta-analysis scoping review states that exome sequencing
I5 a first-tler clinlcal diagnostic test for Individuals with neurodeve-
lopmental disorders, defined In this study as developmental delay, In-
tellectual disability and/or ASD [62Z]. The diagnostic yield for whole
exome sequencing overall from thess meta-analyses is 36%, surpassing
the estmated 15-20% diagnostic yield of candidate gene arrays.

Using whole exome sequencing technologles, Feliclano et al. In the
SPARK pllot, report & relurnakbie genetic result in 10.4% of thelr cohorts
affected offspring [40). Importantly, in individuals with more complex
phenotypes, such as ASD with selzures or co-morbid intellectual dis-
ability, they report a higher diagnostic yield than overall (27 and 20%:
respectively). This finding 1s consistent with other studles [62,63]. The
SPARK study also reports a higher diagnostic vield In cases from mul-
tiplex families {15.2%:) than simplex families (10.1%) [40].

Yuen et al. find & diagnostic yleld of ASD relevant warlants using
whaole genome sequencing to be 42.4% In their cohort of 85 multiplex
familles of ASD:. This mirrors the diagnostic yleld estimated In In-
tellectual dizability using the mame sequencing platform [42,64]. The
Increased diagnostic vield using whole genome sequencing highlights
the great potentlal for use of the technology In familles with ASD. This
estimate can be expected to Increase further with developments In
warlant Interpretation strategles and Increases In sample skzes, glving
mare power to Investigations of common varlants and varlants In the
non-coding reglons of the genome.

The clindcal wtility of whole genome sequencing holds great pro-
mise; howewer, this sequencing approach also faces major challenges.
These Include the need for large-cohort analyses and the fallure to re-
plicate genomic findings. One example Is the report of the enrichment
of de nove and private disruptive mutations within fetal CNS DNase 1
hypersensitive sites within 50kb of genes that have been previousy
assoclated with autism risk [65] that later did not replicate despilte a
larger sample size [66]). Furthermore, we face limitations to the current
capacity to Interpret variants In the non-coding genome, as discussed by
Lee & Gleeson [67]. Notwithstanding these challenges, the decreasa In
sequencing costs (Table 1) and the Increase in sample sizes under In-
wvestigation, together with the greater understanding of family In-
heritance will continue to give a more precise estimate of the diagnostic
yleld In ASD. The return of genetic results, alongside current beha-
wioural diagnoses, may be used to Improve therapeutic avenues In the
future. Genetlc diagnoses may also be used to Inform family planning
on a family-by-family basis as llustrated by a recent family study
showing the CNV findings, which would have been pre-symptomati-
cally predictive of ASD or atyplcal development in 7% (11 of 157) of
familles analysed [6E].

11. Conclusion

‘Whole genome sequencing s the most effective technology to lm-
prove our blologlcal understanding of neurodevelopmental disorders.
‘With near full coverage of the human genome, coupled with the In-
crease In sample slzes and the development of cutting-edge analytical
methods, we now have the potential to Identify more variants across the
genome, In particular more rare pathogenlc genetic varlants. The de-
tection of rare varants by genomic technodogles will Improve our un-
derstanding of the genetic architecture of ASD and other neurodeve-
lopmental and neuropsychiatric disorders. With advances in blodoglcal
Interpretation enabling dellvery of genetic discovery Into clinlcal
translation, genomic technologles will become an achlevable step to-
wards personalised famlly medicine, ultimately alding ASD dlagnosis
and Informing medical decision-making.
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Abstract

Autism is a prevalent neurodevelopmental condition, highly heterogenous in both genotype and phenoty pe. This communi-
cation adds to existing discussion of the heterogeneity of clinical sequencing tests, “gene panels™, marketed for application
in autism. We evaluate the clinical utility of available gene panels based on existing genetic evidence. We determine that
diagnostic yields of these gene panels range from 0.22% to 10.02% and gene selection for the panels is variable in relevance,
here measured as percentage overlap with SFARI Gene and ranging from 15.15% to 100%. We conclude that gene panels
marketed for use in autism are currently of limited clinical utility, and that sequencing with greater coverage may be more

appropriate.
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Introduction

The benafits of 4 penetic dizgnosis of autism ame exensive
(“Genetic Testing Statemant | ISPG—Intemnational Soci-
ety of Psychiatric Genetics™). The Inlzrnational Society of
Psychiatric Genetics propose in their consensus statzment
on genetic testing that the “identification of known patho-
genic varianis may help diggnose rare conditions that have
important medical and psychiatric implications for individ-
wal patients and may inform family counselling™. A penetic
diagnosis of autism may allow for the prospect of genetic
counselling for affectzd individuals and their families; it

. Fiana Ni Ghralaigh
fizna nighralaigh X0 20@ mumail iz

Ellen MoCarthy
ellen.mccarthy. 2018 @mumail_ie

Draniel M. Murphy
Drvamiel.N_Murphy @ muw.ie

Louise Gallagher
LGALLAGH @ted e

Loma M. Lopez
loma lopez @ mie

! Department of Biolopy, Maynooth University,
Maynooth, Co Kildare, Ireland

*  Department of Psychiatry, Trinity College Dublin, Dublin,
Ireland

Published anline: 07 January 2022

XV

may dlso provide an affected individual with opportunity to
take part in targeted research or receive anticipatory medi-
cal advice.

Genetic diagnosis in autism is limited by the ability to
robustly determine the mlevance of putatively pathogenic
genetic variation. Genomic research in autism is progress-
ing quickly, enabled by advancements in next-generation
sequencing technologies and the subsequent establish-
ment of large-scale sequencing cohorts and pedigres-based
sequencing cohorts (Glahn et al.. 2019; Ni Ghrélaigh et al.,

20). To date, many genes have been identified as having
some link to autism (Satterstrom et al., 2020). The Simons
Foundation Autism Research Initiative (SFARIT ) Gene data-
base (Abrahams et al., 2013), collates more than 990 genes
for which there is evidence of associztion with autism, how-
ever the clinical wtility of this database is limited by the
absence of systematic curation of gene-condition relation-
ships (Schaaf et al., 2020). Despite this progress in autism
penomic research, major challenges remain in the develop-
ment of targeted gene panzls with substantial clinical utility
in autism.

Al case-level, pene discovery is complicaied by the nature
of autism as a complex condition with 2 large degmee of phe-
notypic heterogenesity. A candidate pathogenic variant may
be evaloated, in the majority of antism cases, as being con-
tributory to the genetic risk rather than being wholly cansa-
tive of an individual’s condition. At cohort-level, studies

&) Springer
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discovering “autism genes” are compounded by an apparent
lack of specificity to autism. For example, in individuals
affected by both autism and intellectual disability, genes
identified show relevance to both autism and other neurode-
velopmental disorders (Myers, Challman, Bernier, et al.,
2020). For these reasons, the development of effective gene
panzls o aid antism dizgnosis is extremely complicated.

Despite these limitations, commercial gene panels are
avzilable and marketed for use in autism dizgnosis. Hoang
et al. (2018) evaluated many of these gene panels, clearly
demonsirating their heterogeneity (Hoang et al., 2018). Their
survey shows large variability in the number of genes being
tested by panels, lack of consensus in the genes selected for
inclusion, a5 well as variability in the reporting of laboratory
qualification and reporting protocols.

Methods
Identifying Autism Gene Panels

Gene panels markeied for use in autism wemr identified and
collated through the following approaches: web browser
search (search terms “autism gene panel”, "ASD gene
panel”, "segquencing tests for autism spectrum disorder”,
“gene panels for autism testing” and “awtism genetic tesi-
ing™), pene panels analysed by Hoang et al. (2018) {(Hoang
et al, 201%) and Genomics England PanelApp (search terms
“Autizm”, "ASD™) (Martin et al., 2019). Panels identified for
which gene lists wem not provided were excluded from anal-
yies (0GC genetics “Autism™ panel & Michigan Medicine
“Autism/ Intellectual Disability Panels™). Gene list sources
are outlined in Supplemental Table 1 (collzted October
20X)-Jannary 2021).

Refining Gene Lists

Each gene panel identified provides a list of genes targeted
by the probes. By nature, these geng lists arise from a variety
of sources and were compiled at varying times. For this rea-
son, gene lists were run through HUGO Gene Nomenclatume
Committes (HGMNC) Multi-Symbol Tool (Version: 2021-01-
06 update). Where the gene symbol reporied by the provider
is an approved gene symbol in HGNC, it is used in analyses.
Where the gene symbaol is no longer approved by HGNC, it
was updated to the approved gene symbol given by HGNC.
A small number of deviations occurred that could not be
resolved, which resulted in the removal of genes from the
analyses. The resulting refined gene lists are provided in
Supplemental Table 2. Gene counts reporied in Table | also
reflect these updates.

€1 springer
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Estimating Percentage Overlap with SFARI Gene

To determine the mlevance of geres targeied in autism, each
panel was assessad for the proportion of genes covened that
are included in the SFAR] Gene database (all gene scoms and
genetic categonies) of genas implicated in autism susceptibility
(Version: 2021-01-13 rlease). Where necessary, the SFARI
gene list (n=1003) was updated to HGNC approved gene
symbaols (n=3) and genes with symbol mismatch (n=3) werne
removed. The number of genes targeted by each panel that are
included in SFARI gene are presented in Table | as a percent-
age of the total genes in the panel. SFARI Gene was subsat
to high-confidence antism associaled genes, assigned as such
based on SFARI gene scoring of | or 2. Percentage overlap
was again calculated on this subset and presented in Table 1.

Selection of Clinically Relevant Variants

Clinically relevant variants, as identified and characterised
by whole exome sequencing in the Simon’s Powering Autism
Research Knowledge cohort, were used to determine the
clinical utility of each panel. Variants included in our analy-
ses are those reported in Feliciano et al. (2019) data set 10
{Feliciano et al., 2019), comprising inherited and de novo
single nucleotide variants (SNVs), insertion deletion vari-
ants (indzls) and copy number variants (CNVs). Reported
chromosomal abnormalities were not included. Gene lists
ware assembled to include those for which clinically rel-
evant SNVs and indels could be defined and those that fall
within the boundaries of clinically relevant CNVs. While
targeted gene panels lack the ability to dzfine copy number
variant boundaries, genes within these variants will appear
as deleted or duplicated, thus variation will be detected.

Determining and Reporting Diagnostic Yield

Diagnostic yield was determined by cross-mfemncing the
gene list of each gene panel with the lists of implicated
genes in the SPARK cohort. Diagnostic yield was calcu-
lated as the proportion of individoals sequenced, for which
a relevant genetic variant was identified, comesponding
with the genes contained on each gene panel. The num-
ber of individuals in the cohort was taken as 472 affected
individuals (465 offspring and 7 parents) as detailed by
Feliciano et al. (2019). In keeping with this study, 13 indi-
viduals, those in families self-reporting a genetic diagno-
si5 were not included in the estimates of diagnostic yield.
With this justification, diagnostic yield was calculated as
the number of individuals with a relevant variant, as a
percentage of the total cohort of 459 affected individuals
without a genetic diagnosis.
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The number of individuals for which a clinically rel-
evant finding would have been identified by using each
targeted gene panel is reported for both pathogenic and
probable pathogenic variants, as assigned by Feliciano

et al. (2019 (Table 1).

Determining and Reporting Correlation

Pearson's product moment cormelation was computed with
n= 16 degrees freedom for diagnostic yield and number of

Table 1 Diagnostic yield of pene panals marketed for use in autism

genes targeted and for diagnostic yield against percentage
overiap with SFARI gene (all genes).

Results

Here we estimate the clinical utility of commercial gene
panels marketed for use in autism. Diagnostic yield,
which is the proportion of cases interrogated for which a
genetic cause can be determined, is a strong measure of
the clinical utility of 2 sequencing technology. Feliciano

Service provider Panel name MNumher Percentape overlap with SFARI pene  Diagnostic yield in SPARK
EE SFARI SFARI high conndence
ene All Gepes {Scoms | and 2)
oeEmes
Ambry Genatics AutismMaxt Panal T B75% Te.30% 2al%
Asper Neurogenetics Autism Spectrum Disorders  Ta BR.16% TLO5% 2 83% (0.22%)
NG5 Panel
B lneprint Genatics Autism Spectrum Disorders 75 4533% 6% 1.53% (D.44%)
Pamezl
Center for Human Genetics Autism Spectrum Disorder 53 HER L 45.28% 1.96% M.22%)
53-Gene Panel
Centopens Syndromic Autism Gene 50 ERE Te% 2.4% D.22%)
Pamezl
Centogens Inielloctual Disshility Panel 599 4341% 24 54% 523% (1.31%)
BEGL Genetics Autism Spectrum Disorders 62 T4 195 66.13% 218%
Tier 2 Panel
Fulgent Genetics Autism NGS Panzl 121 T6 Ba% 55.37% 4365 (0.44%)
Gene D Autism/ID X panded Panal Tedl o LT 10.08% 10.02% {240%)
GEMNETALQ Autism 7 01.59% &6.67% 153%
Genomics England PanelApp  Autism (Yersion 0.20) 733 T 27% T63% (1.96%)
Greanwood Genetic Centra Syndromic Autism Sequenc- B3 BLTI% G0LERR 3.05%
ing Panel
GX Sciennes Developmental Motrigenomic 33 15.15% 0% 022%
Pane|
MMNG Labomtories Compmehensive Disshility/ 1345 19.85% 1204% 615 (1.3%)
Antism Panel
Mlunmoe-Mayer [nstituie Autism/Inie lectual Dis- 17 55565 41 B8% 2.4% 0.22%)
shility/Multiple Anomalies
Pane|
Prevention Genetics Autism Spectrum Disorders 170 05.29% Q.50% 6.32% 0.44%)
Pane|
Refernce Labaratory Autism Spectrum Disorders 77 TTm% 64 Q4% 3.05% (0.44%)
Genomics (Expanded Panel)
Semad Comprehensive Autism Spec- 228 57465 43 .42% 4.70% (0.8T%)

trum Disorders Panel (228

Presented are gene panels rebevant o sutism. The nomber of genes presant in each gene panel ane cormect as of January 2021, Gene lists provided
at the sources listed in Supplemental Table 1 were updated to HGNC approved gene symbaods where necessary. Percentage overlap with SFARI
isestimated as the proportion of genes within each respective gene list appearing in SFARI Gene (01-13-202 1 release). This overlap is presented
for both the completle SFARI Gene pene lists and the High Confidence SFARI genes only (Scomes 1 and 2). Diagnostic yield is estimaed as the
number of individuwals for which a gepetic cause of autism was identited as a proportion of those investigated (450 afiected individuals for which
no genetic diagnosis was previcusly reported). Pathogenic variation is considened as variants listed in Feliciano et al. (3015, Variants considenad
are de novo and inherited single nucbeotide variants, insertion-dzletion variants and copy number variants. Diagnostic yield of pathogenic varia-
tion is lised, with the additional diagnestic yield achieved by inclusion of probeble pathogenic variants listed in brackets alongside
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etal. (2019) estimate the diagnostic yield of whole exome
sequencing to be 10.4% in the initial 457 families enmolled
in the Simons Powering Autism Research (SPARK) cohort
(Feliciano et al., 2019). A ‘likely pathogenic® variant was
identified in a further 3.4% of families studied. This esi-
malte comes from the identification of a variznt that ful-
fils either the ‘likely pathogenic” or *pathogenic’ criteria,
according to American College of Medical Genetics and
Genomics (ACMG) standards (Richards et al., 2013).

Gene panels relevant o autism are presented in Table 1.
To determine the clinical utility of each autism gene panel,
variants meeting “likely pathogenic’ or “pathogenic” cri-
teria in the SPARK cohort can be limited to those within
the gene set of each panel. respectively. In doing s0. we
ask how many of the pathogenic variants identified by
Feliciano et al. would have been identified in the SPARK
cohort with application of an autism gene panel, instzad
of application of whole exome sequencing. The diagnostic
yield of each gene panel, estimated with respect to Feli-
ciano et al. analyses, is presented in Table 1. The dizgnos-
tic yields range from 0.22% to 10.02%, with most gene
panels achieving a diagnostic yield below 3%.

Gene discovery in autism is ongoing. Most genes
included in the commercial gene panels are autism rel-
evant. This is illustrated by the inclosion of a large propor-
tion of the panel-specific genes in the SFAR] Gene data-
base (Abrahams et al., 2013y Table 1) Gene selection for
inclusion in autism panels is variable in relevance, ranging
in overlap with SFARI Gene from 15.15% to 100%. Diag-
nostic yield of the gene panels and size of the panel wem
found to be positively correlated, (r=0.82, p=3.033-
05), indicating an increased number of genes per gens
panzl enables detection of a clinically relevant variant in
a gredter number of individuals. No significant correla-
tion betwean pereentage overlap with SFARI Gene and
dizgnostic yield was detectzd.

Discussion

Considering the low diagnostic yield of the gene panels
that were investigated, we can infer that, while the gene
sglection for inclusion in autism gene panels is evidence-
based, thes: gene lists are not extensive enough to jus-
tify use in autism diagnosis, a complex trait for which
hundreds of genes have been associated. Critically, if the
application of a targeted gene panel to an affected indi-
vidual's genome returns negative for pathogenic variation,
one cannot conclude that a caosative variant is not pre-
sent. Rather, it is more likely that genetic causes have been
missed due to the limited application of the gene panel.

€1 Springer
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The GeneDx “Autism/1D Xpanded Panel” represents the
autism gene panel with the highest number of individuals for
which a genetic diagnosis would have been obtzined with its
application {10.02%). This diagnostic yield is comparable
to that of whole exome sequencing. 10.4% (Feliciano et al.,
2019) and that of chromosomal microdrray sequencing with
a madizn diagnostic yield of 8.1% (Savatt & Myers, 2021).
However, important to note is that this gene panel targets
many more genes (n=2,641) than some of the smaller gena
panels, for example GENETAQ “Autism™ panel (n=27).
with a diagnostic yield of just 1.53%. The positive cormela-
tion of diagnostic yield associated with inclusion of a larger
number of genes, reflects well the complex genetic architec-
tume of autism and the number of loci expectad to be associ-
dted. This raises the question whether autism is &n appro-
priate candidate for the development of commercial gene
panels, that are reliant and limited due to the size of the gene
panel, the cost and current knowledge of the genetic basis of
autism, and questions whether developments should focus
on application of sequencing technologies with a broader
coverage, such as whole genome sequencing. Expanding
beyond targeted autism genes, whole genome sequencing
presents the opportunity to explore more of the human
genome and, ultimately, to further increase the diagnostic
yield in autism (Yuen et al.. 201 5). Progress in non-coding
variant annotation and interpretation, accompanied by a
decrease in sequencing costs, may further popularize the
climical use of whole penome sequencing. Currently, whole
£X0Mme sequencing is proposed as the first-tier diagnostic st
for neurcdevelopmental disorders (Srivastava et al., 2019).
The diagnostic yield in autism using clinical exome sequenc-
ing has been estimated at 6.1% in autism (20% overall yield
in neurodeve lopmental disorders) (Martinez-Graneto et al.,
2021). Genotyping chips have limited clinical utility for rare
genetic variation of SNVs and should not be used to guide
health decisions without validation (Mn et al., 2021 ). Autism
penetic testing &5 minimal as cylogenatic microdarray and
Fragile X sting alone may be all that is feasible in a clinical
setting, which is currently the situation in Ireland.

Provided the relevant expertise and infrastructure for
variant interpretation are available and cost effective, gene
panels have potential for clinical utility. However, current
evidence does not support their applicability in autism
(Buxhbaum et al., 2020; Myers, Challman, Martin, et al.
2020). Achieving the ultimate goal of a comprehensive
autism gene panel will require uniform robust phenoty p-
ing to account for the heterogengity in Autism presentation.
Application of & formal evidence- based pene curation frame-
work, such as that proposed by Schzaf et al. (Schaaf et al.,
20200, would account for the degree of certainty in autism
diagnoses in studies reporting association and account for
co-morbid diggnoses, providing consisiency throughout
gene discovery. To conclude, evaluation of the diagnostic
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yield of commercial gene panels marketed for autism deter-
mines that they are currently of very limited clinical utility.
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Appendix V-I: Determining the Clinical Utility of Autism Gene Panels
Available at https://github.com/FianaNG/autism gene panels.
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