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Summary 

Autism is a highly heritable complex trait, heterogenous in genotype and phenotype. Rare 

genetic variants, both inherited and de novo, typically have larger effect sizes and are more 

penetrant than common variants in the population. Next-generation sequencing technologies 

facilitate simultaneous investigation of variation across the allele frequency spectrum.  

 

This thesis aims to investigate rare variation and its contribution to the genetic basis of autism. 

This study applies genome sequencing to an autism cohort of affected individuals in a family-

based study design. (WES n=42, WGS n=35). Variants emerging from these analyses 

contribute to the existing evidence supporting association of relevant genes with autism. 

Additionally, this thesis investigates the clinical utility of genome sequencing in autism. Genetic 

diagnosis in autism is limited by the ability to robustly determine the relevance of putatively 

pathogenic genetic variation. Through application of an evidence-based gene curation 

framework and through investigation of the diagnostic yield of commercial gene panels 

available for use in autism, this thesis informs on current strategies to translate genomics 

findings into the clinic. 

 

Insights into the biological mechanisms underlying autism arising from this research, will lead 

to a greater understanding of the condition and potentially benefit clinical intervention and 

treatment plans in the future.  
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10.1016/j.ygeno.2020.09.022 (Appendix IV-I). 

 

 

 

  



   

 

2 

 

1.1.1 An overview of the autism phenotype 

Autism Spectrum Disorder (ASD), hereafter referred to as autism, is a prevalent 

neurodevelopmental condition occurring in around 1% of individuals in a population (Baird et 

al., 2006). Autism is characterised by social communication difficulties and restricted repetitive 

behaviours (American Psychiatric Association, 2013). Gene discovery is complicated by the 

complexity of phenotypic heterogeneity in autism (Figure 1-1). Autism ranges in severity and 

manifestation both between affected individuals and in the same individuals across their 

lifespan and across behavioural, cognitive and language domains (Anderson et al., 2007). 

Improving genetic understanding of autism and autism-relevant phenotypes will help in 

defining endophenotypes within autism and developing a more targeted approach to clinical 

management (Jeste and Geschwind, 2014). 

 

 

Figure 1-1 Phenotypic heterogeneity in autism. 

Taken from (Kas et al., 2014): “A schematic representation of core clinical features of ASD, associated central 
nervous system symptoms and somatic symptoms that are often observed in ASD patients”. 
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1.2 The genetic basis of autism  

Autism is a highly heritable complex trait. The heritability of autism measures the genomic 

variation contributing to the phenotype and in autism has been estimated at ~ 80-90% (Tick 

et al., 2016; Sandin et al., 2017).  The genetic risk of autism is contributed to by both rare and 

common genetic variants, and as yet the majority of the genetic risk remains unexplained 

(Gaugler et al., 2014; De La Torre-Ubieta et al., 2016). Rare variants refer to those occurring 

at less than 5% of the population and very rare variants occur at a minor allele frequency 

(MAF) of less than 1%. Common genetics variants typically refer to genetic variants with a 

MAF of greater than 5%. Rare variants, particularly those occurring de novo, have the potential 

to occur at higher effect sizes than common variants. The larger effect size of rare variants is 

in line with the hypothesis that variants of a higher effect sizes have a more detrimental effect 

on brain development resulting in the early-life manifestation of the autistic phenotype, when 

compared to neuropsychiatric conditions most commonly arising later in life, such as 

schizophrenia and psychosis. 

 

This introduction aims to inform on state-of-the-art autism genomics research. The focus is on 

the application of genome sequencing technologies to search for these genetic variants in 

extensive sample collections that have transformed our understanding of autism genomics. 

This introduction reviews cutting-edge research that uses genome sequencing methods, 

bioinformatic processing and clinical implementation for improved diagnosis and medical 

decision-making in autism and other neurodevelopmental conditions. It explains the value of 

genome sequencing technologies and highlights what they can achieve for 

neurodevelopmental and neuropsychiatric conditions.  

 

1.3 The heritability of autism 

There is clear evidence that autism has a genetic basis.  The heritability (denoted as h2) of 

autism measures the genomic variation contributing to the phenotype. Heritability measures 

the proportion of genetic variance in a phenotype in the population. Measures range from 0 to 

1, with a measure towards 0 indicating high environmental contribution and a measure towards 

1 indicating a strong genetic contribution to a phenotype. Recent meta-analysis investigating 

heritability estimate h2 at 80-90% (Tick et al., 2016; Sandin et al., 2017; Bai et al., 2019). 

 

Traditionally measures of heritability arise from twin studies, on the basis that monozygotic 

twins will possess nearly identical DNA sequences while dizygotic twins should by chance 

share approximately 50% of their genetic sequence. Higher concordance, i.e., affectation in 

both twins, in monozygotic pairs (MZ) when compared to dizygotic pairs (DZ) indicates a 
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strong genetic component to condition manifestation. With relatively constant environment 

between twins, the heritability estimate of 0.8 in autism indicates that 80% of the variability of 

the condition in the population is due to genetic differences between individuals. While twin 

studies highlight the expected contribution of genetic variation to autism risk, it is important to 

note that heritability estimates based on clinical genetics studies are limited, but the evidence 

is still strongly in favour of a heritable component (Wray & Visscher, 2008). Although the 

accuracy of these heritability estimates for autism are not exact, there is evidence for a major 

genetic component to the occurrence of the condition. 

 

Recurrence risk represents a further key measure of genetic effects on autism. It refers to the 

probability of parents of a child with autism giving birth to another affected child. Recurrence 

risk measures the level of aggregation of the condition in a family, in turn giving insight into 

the contribution of shared genetics to the phenotype. The recurrence risk of autism is 

estimated to fall between 3% and 10% (Chakrabarti and Fombonne, 2001; Lauritsen, 

Pedersen and Mortensen, 2005). This estimate is true for the first affected sibling in a family 

and increases with additional affected siblings, moderated by sex of the affected proband 

(Werling and Geschwind, 2015). A major limitation is that the sibling recurrence risk may be 

underestimated because of genetic stoppage. A study controlling for this factor reported a 

higher recurrence estimate of 18.7% of infants with at least one affected sibling developing 

autism (Ozonoff et al., 2011), indicating genetic stoppage occurring in families affected by 

autism. Taken together these lines of evidence from twin and family studies in autism clearly 

show a substantial genetic contribution to susceptibility of the condition. 

 

International collaborative efforts accelerated by advances in sequencing technologies aim to 

discover genetic variation associated with autism (Table 1-2). Genetic variation can come in 

the form of highly penetrant rare genetic variation, or variants that are common in the 

population and typically having a lower effect on genetic risk. Rare genetic variant discovery 

is particularly successful when using a family-based study design, while common genetic 

variants are identified through population-based studies (Yuen et al., 2015; Feliciano et al., 

2019; Grove et al., 2019).  

 

Many genes associated with autism affect synapses or gene regulation and some more 

broadly affect gene regulation (Satterstrom et al., 2020). Yuen et al., along with other large 

studies, compiled a series of functionally annotated gene lists against which rare variants may 

be searched, such as axon guidance pathways, synapse pathway or neuron projection (Yuen 

et al., 2015). Further to these autism-associated processes, genes associated with 
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schizophrenia and ID may be informative to consider in analyses (Iossifov et al., 2014). This 

is due to the shared global gene expression pathways identified among some psychiatric 

conditions (Gandal et al., 2018). 

 

1.4 Sequencing technologies have advanced the identification of rare 

variants  

Genome sequencing, specifically whole exome sequencing (WES) and whole genome 

sequencing (WGS), has transformed variant discovery. These technologies give the 

opportunity for more widespread and in-depth genomic analysis than older techniques, such 

as microarray studies and candidate gene studies, have allowed. Table 1-1 lists the next-

generation sequencing (NGS) technologies that can identify single nucleotide variants (SNVs) 

and insertion-deletion variants (indels), as well as larger genomic hits, including structural 

variants (SVs) or copy number variants (CNVs), across the allele frequency spectrum. In the 

past decade, sequencing technologies have stretched from covering select points across to 

genome to cover up to 100%, when sequenced at high coverage with de novo assembly 

(Table 1-1) (Miga et al., 2020). Higher coverage WGS results in more precise variant calls 

across the coding and non-coding regions of the genome. 

 

These advances in genomic technologies and decreasing costs have enabled large 

sequencing cohorts (Table 1-2), allowing key strides to be made in the field of autism 

genomics. Large-scale analyses of these cohorts have identified hundreds of autism-

associated genetic variants across the genome. For example, discovery of rare variants, 

particularly rare CNVs, affecting SHANK3 and NRXN1 among other genes, implicated 

synaptic transmission and plasticity in autism neurobiology (De Rubeis et al., 2014). Extending 

beyond variant discovery, combining rare variant analysis with single-cell investigation in the 

developing human cortex showed enriched expression of particular autism-associated genes 

in maturing and mature excitatory and inhibitory neurons from mid-fetal development, and 

helped to validate the role of these genes in neuronal communication and regulation of gene 

expression (Satterstrom et al., 2020). Impactful findings such as these, suggest great potential 

for advancing our understanding of autism neurobiology through rare variant discovery. Key 

findings arising from these data and the impact of the variation detected is detailed in section 

1.7. 
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 Exome Sequencing Whole Genome Sequencing 

 Clinical Exome 

Sequencing 

Whole Exome Sequencing Short-Read Long-Read  

% Genome 

covered 

~0.5%  ~1%  ~90% Potential for up to 100%  

Types of variant 

detected 

SNVs                              

Indels                           

CNVs  

(limited)        

SNVs                                      

Indels                                    

CNVs (limited)                                     

SVs (limited)     

Mitochondrial 

SNVs                       

Indels                                    

CNVs                                          

SVs                          

Mitochondrial 

Repeat expansions 

(including tandem 

repeats (Mousavi et 

al., 2019; Mitra et 

al., 2021)                                                 

SNVs                                       

Indels                                      

CNVs                                           

SVs                                           

Mitochondrial                                            

Repeat expansions    

Complex SVs 

Haplotype phased variants 

Methylation 

Diagnostic yield 

in autism 

Limited application  31% (Srivastava et al., 2019) 42.4% (Yuen et al., 

2015) 

Not yet available 

Cost estimate €37.19a  €79.33b  €1,239.50c  €918d 

Table 1-1 Genomic technologies compared.  

Outlined are four key sequencing technologies with potential for use to identify rare autism genetic variants. Note that these costs are estimates and do not include library 
preparation costs, barcodes, access fees, labour, VAT, service provider, data processing and data storage and other associated sequencing costs. a) SOPHiA GENETICS 
Clinical Exome Solution (12Mb covering ~4500 genes (2.5Gb/sample/800 samples/flowcell)) b) Illumina Nextera Rapid Capture Exome (37Mb (8Gb/sample/375 
samples/flowcell)) c) WGS (120Gb/sample/24 sample/flowcell). Estimates a), b) and c), are based on sequencing with Illumina NovaSeq S4 flowcell (2x150) up to 
3000Gb/flowcell. d) Oxford Nanopore Technologies (60X; 1 sample/flow cell/180GB) Sequencing metrics: https://nanoporetech.com/accuracy Acronyms; SNV single nucleotide 
variant, Indel insertion deletion, CNV copy number variant, SV structural variant. 

https://nanoporetech.com/accuracy
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1.5 Common genetic variants have been challenging to associate with 

autism 

The search for common genetic variants has been less successful than that in more typically 

adult-onset neuropsychiatric conditions, in particular schizophrenia (~7% of variance on the 

liability scale) (Schizophrenia Working Group of the Psychiatric Genomics Consortium et al., 

2014) and bipolar disorder (~2.5% of variance on the liability scale) (Psychiatric GWAS 

Consortium Bipolar Disorder Working Group et al., 2011; Creese et al., 2019; Stahl et al., 

2019). The largest study to date investigating common genetic variants in autism, using 

genome-wide genotyping, provides evidence for statistically significant association of the first 

common risk variants with autism. A Genome Wide Association Study (GWAS) was carried 

out on 18,381 autism cases and 27,969 controls. While this sample size is large in terms of 

autism, it is smaller than that of other traits such as schizophrenia with 36,989 cases or bipolar 

disorder with 20,352 cases (Schizophrenia Working Group of the Psychiatric Genomics 

Consortium et al., 2014; Stahl et al., 2019). Five loci showed significant association with autism 

alone and seven further loci were identified upon analysis of schizophrenia, depression and 

educational attainment together (Grove et al., 2019). Polygenic burden, measured by a 

polygenic score (PGS), is the combined impact of common variants on the probability of a 

phenotype. In autism this explains just 2.5% of the observed variance in risk (Grove et al., 

2019). The lower yield of common variant loci in autism may be because of a greater relative 

contribution of rare genetic variants than common variants in the genetic architecture of autism 

(Vorstman et al., 2013). However, the current smaller sample sizes in GWAS of autism fail to 

validate this hypothesis.  
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Cohort Size of Cohort Study Design Dataset Reference 

Australian National Autism Consortium 48 cases and 80 

parent controls 

Simplex & 

Multiplex 

WES (An et al., 2014) 

Autism Genetic Resource Exchange (AGRE) 

 

 

> 1,700 families Simplex & 

Multiplex 

Genome-Wide Genotyping https://www.autismspeaks.org/ag

re 

(Leppa et al., 2016) 

Autism Sequencing Consortium (ASC) 12,772 individuals Case Control, 

Simplex 

WES (Buxbaum et al., 2012; 

Satterstrom et al., 2020) 

Deciphering Developmental Disorders (DDD) 12,000 individuals and 

their parents 

Simplex Genotyping & WES https://www.ddduk.org/ 

(Wright et al., 2015; Gardner et 

al., 2019) 

iHART 2,308 individuals (from 

493 AGRE families) 

Quad & Multiplex WGS (D. Kashef-Haghighi et al., 2016; 

Ruzzo et al., 2019) 

iPsych Danish Cohort  16,146 cases 

(Genotyping) and 

4,811 cases (WES) 

Case Control  Genome-Wide Genotyping 

(PsychChip array from 

Illumina) & WES 

(Pedersen et al., 2018; 

Satterstrom et al., 2018, 2020) 

MSSNG 11,312 individuals 

(4,258 families)  

Simplex & 

Multiplex 

WGS https://research.mss.ng/ 

(Yuen et al., 2015, 2016, 2017; 

Woodbury-Smith et al., 2017; 

Brandler et al., 2018) 

Simons Foundation Powering Autism Research for 

Knowledge 

27,615 individuals 

(Genotyping & WES) 

and 400 quad families 

(WGS) 

Simplex & 

Multiplex 

Genome-Wide Genotyping 

(Illumina InfiniumCoreExome-

24), WES & WGS 

https://sparkforautism.org/ 

(Feliciano et al., 2019) 

 

https://www.autismspeaks.org/agre
https://www.autismspeaks.org/agre
https://www.ddduk.org/
https://research.mss.ng/
https://sparkforautism.org/
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Simons Simplex Collection (SSC) 8,975 individuals 

(WGS) 2,517 families 

(WES) and 10,220 

individuals 

(Genotyping) 

Quartet (Phase 

1-3) & 

Trio/Incomplete 

family data 

(Phase 4) 

Genome-Wide Genotyping, 

WES & WGS 

https://www.sfari.org/resource/si

mons-simplex-collection 

(Levy et al., 2011; Sanders et al., 

2011; An et al., 2018; Brandler et 

al., 2018; Werling et al., 2018; 

Zhou et al., 2019; Satterstrom et 

al., 2020) 

The Autism Genome Project *a consortium 

including TASC and AGRE samples 

7,917 individuals 

(1,492 families) 

Simplex & 

Multiplex 

Genome-Wide Genotyping 

(10K SNP array and 400 

microsatellite marker panel) 

(The Autism Genome Project 

Consortium et al., 2007; Pinto et 

al., 2010) 

The Autism Simplex Collection (TASC) 5,444 individuals 

(1,719 families) 

Simplex Genome-Wide Genotyping 

(Illumina 1M SNP) & WES 

(Buxbaum et al., 2014; Sanders 

et al., 2015) 

The Psychiatric Genetics Consortium 18,381 cases Case Control Genome-Wide Genotyping (Grove et al., 2019)  

Table 1-2 Key autism genomics cohorts.  

Featured in the table are large-scale autism cohorts used in genomic studies to date. Note that there is significant overlap of samples between these cohorts, for example, the 
MSSNG cohort includes samples from both AGRE and TASC. These details are subject to frequent update. Reference refers to the original research article/website linked to the 

cohort and research studies cited in this review that analyse these cohorts. 

https://www.sfari.org/resource/simons-simplex-collection
https://www.sfari.org/resource/simons-simplex-collection
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1.6 Heterogeneity in the genetic architecture of autism 

Autism displays a high level of heterogeneity across a phenotypic spectrum, both 

between individuals and within the same individual throughout the lifespan. It is 

estimated that around 10% of individuals affected with autism have a syndromal form of 

the condition, for which each single autism risk gene accounts for at most 1% of overall 

cases on average (Abrahams and Geschwind, 2008). Rare disorders often manifest with 

an underlying autistic phenotype (MENDELIAN.CO, 2019). These syndromes are 

frequently caused by highly penetrant variants in single genes, such as Fragile X 

syndrome, MIM:30024 (FMR1), and Tuberous Sclerosis Complex, MIM: 613254 (TSC2) 

(reviewed in Betancur, 2011). These syndromic forms of autism are frequently 

associated with intellectual disability (ID) and developmental delay, suggesting that 

autism may only form part of the overall behavioural phenotype of the syndrome.  

 

Autism cases that do not fall into clinically defined syndromes appear to have more 

complex genetic architecture and various models of risk have been suggested to 

encompass this. The polygenic model, strongly supported in schizophrenia (Tansey et 

al., 2016), proposes that multiple loci, each contributing a small effect, accumulate to 

surpass a threshold of disease liability. In contrast, Boyle et al. proposed the omnigenic 

model (Boyle, Li and Pritchard, 2017; Liu, Li and Pritchard, 2019). This model suggests 

that all genes expressed in disease-relevant cells can influence pathogenesis, through 

their interference with the expression of “core genes.” In that, it may be hypothesised 

that most of the heritability of autism could be explained by the effect of variation on 

genes outside of the core autism pathways. 

 

Understanding gene regulation is critical to parsing out the relative contribution of 

common and rare variants to autism heritability. Whichever model is most appropriate in 

describing its architecture, rare genetic variants are crucial to understanding autism. 

Further to heterogeneity in the genetic architecture among autism cases, there is 

heterogeneity, both genetically and clinically, between males and females. Males are 

more frequently affected with autism than females (Fombonne, 2003). Although factors 

such as hormonal sex differences, sex-specific epigenetic factors and genetic factors 

related to sex chromosomes have been hypothesised to play a role in this bias, the 

biological basis remains unclear. A large-scale family study interrogating de 

novo variants in autism reinforces the importance of evaluation of the X chromosome, 

identifying 5 of 7 genes replicated in the study are located on the X chromosome (Turner 



   

 

11 

 

et al., 2019). Together with the evidence of sex biases of autosomal genes, this study 

highlights the potential for genomic studies to elucidate this phenomenon.  

 

1.7 Rare variants disrupt gene function, dosage, and regulation in 

autism 

Current WGS and WES technologies enable investigation of most genomic variant 

classes (Table 1-1). The consequences of such variants in the genome occur to varying 

effects with different degrees of penetrance, as outlined below.  

 

1.7.1 Gene disruption 

Gene disruption refers to the disturbance of gene expression and the impact of variation 

on overall gene function. The consequence of a genetic variant can be detrimental to 

gene function or can have little effect depending on the variant in question and the overall 

genome environment. Genes disrupted in autism often include those related to brain 

development, post-synaptic density, nerve impulse and neuron projection (Abrahams et 

al., 2013). Much focus lies on the importance of LoF variants and damaging missense 

variants in the evaluation of genetic variation on autism. In particular, variants impacting 

evolutionarily conserved genes to the detriment of crucial cellular processes. 

 

Another mechanism of gene disruption is gene rearrangement, encompassing 

translocations, inversions and large-scale insertions and deletions. Although varying 

between studies, the estimated rate of large variants in autism is approximately 5-10% 

(Veenstra-VanderWeele, Christian and Cook, Jr., 2004). A recent study implicates rare 

retro-transposition derived disruption in neurodevelopmental conditions through trio-

based exome sequencing analysis from the Deciphering Developmental Disorders 

(DDD) cohort. This mechanism of disruption is an avenue for pathogenesis which has 

been largely unexplored in neurodevelopmental conditions to date (Gardner et al., 2019). 

 

1.7.2 Gene dosage  

Gene dosage refers to the number of copies of a given gene that are present in the 

genome of an individual. Dosage has been found to play a substantial role in autism 

pathogenesis, as demonstrated through CNV analysis, i.e. analysis of duplication or 

deletion variants of >1Kb (Sanders et al., 2015). In 2004, two groups independently 

identified that large scale CNVs were often overlapping with genic regions (Iafrate et al., 
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2004; Sebat et al., 2004). The influence of these CNVs means either an increase or 

depletion in activity of the contained genes with potential for damaging functional 

consequences. A comprehensive analysis identified clinically relevant CNVs in 10.5% of 

neurodevelopmental condition cases investigated, with 11.4% in autism cases. 

Importantly many of the CNVs identified were found to occur across multiple 

neurodevelopmental conditions (Zarrei et al., 2019). 

1.7.3 Gene regulation 

As a complex trait, non-coding variants,  particularly variants affecting gene regulation 

are likely to influence autism (Botstein and Risch, 2003). Advances in WGS and 

bioinformatic tools are enabling studies of non-coding regions of the genome. Yuen et 

al. estimated that non-coding and genic non-coding de novo variants account for 15.6% 

and 22.5% respectively, of predicted damaging de novo variants in autism cases. Non-

coding elements, e.g. untranslated regions, regulatory sequences involved in exon 

skipping and DNAse hypersensitivity regions were most enriched for de novo variants 

(Yuen et al., 2016). The first study significantly associating genome-wide non-coding 

variants with autism shows convergence in the pathways and processes disrupted by 

both coding and non-coding variants in autism, specifically in synaptic transmission and 

neuronal development (Zhou et al., 2019). Ruzzo et al. also provided evidence that non-

coding variants impact neurobiology in autism, reporting a recurrent 2.5KB deletion 

within the promoter of DLG2, a gene associated with cognition and learning in mice and 

human (Ruzzo et al., 2019). 

 

Preferential transmission of structural non-coding variants has been reported in autism, 

specifically the transmission of cis-regulatory elements from father to affected rather than 

to unaffected offspring (Brandler et al., 2018). These findings are suggestive that not 

only are rare inherited non-coding variants increasing risk to autism, but also indicate a 

parent-of-origin effect from this non-coding variant class, highlighting a key benefit to the 

use of a family-based study design in studies of autism. 

 

1.8 Family-based studies are key to rare variant analysis in autism 

Family-based studies, previously the foundation of disease gene discovery, are re-

emerging as an effective tool to identify potentially pathogenic variants in 

neuropsychiatric conditions, including autism (Glahn et al., 2019). Family-based designs 

facilitate the analysis of parent to offspring variant transmission. These study designs 

take the form of i) simplex families (trios); parents and their affected child, ii) multiplex 
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families; parents with more than one affected child, and iii) more complex extended 

pedigrees with multiple affected individuals. By design, trio studies such as those 

investigating the MSSNG cohort (Table 1-2), have been particularly key to  uncovering 

the enrichment of de novo variants in cases by comparing rates of de novo variants in 

affected offspring with their unaffected respective siblings (Yuen et al., 2016). 

 

Family-based study designs also enable analyses of parent-of-origin effects that are not 

possible in case-control design. Furthermore, the presence of matched unaffected 

siblings in these studies, gives a background level of genetic variation that can be used 

to distinguish between disease relevant variants and those that are unrelated, such as 

population-specific background variation or biases introduced in sequencing. A number 

of large-scale genomic investigations of autism apply a family-based approach, including 

the Simons Simplex Collection (Simplex), Autism Genetic Research Exchange (Simplex 

and Multiplex) and The Autism Genome Project (Simplex and Multiplex) (Table 1-2).  

 

1.9 Multiplex and simplex cases of autism show different genetic 

architectures 

 Family structure plays a major role in the types of putative variants expected to be 

causative of a given autism proband.  Earlier CNV studies in autism provided some 

evidence of differences in genetic architecture between simplex and multiplex families 

(Sebat et al., 2007). These differences are centred on the contribution of de novo and 

inherited variants to autism susceptibility. 

 

1.9.1 De novo variants 

A lower rate of de novo variation is seen in multiplex families compared to simplex 

families, as expected by study design. Sebat et al. reported de novo CNVs in 10% of 

simplex cases and 3% of cases from multiplex families in their cohort (Sebat et al., 2007). 

Similarly Ruzzo et al. give evidence for depletion of rare de novo autism risk variants in 

multiplex families (Ruzzo et al., 2019). While, this is observed across multiple studies, 

the difference between multiplex and simplex family structures is not consistently 

evident. In their CNV analyses, Pinto et al. did not report such differences (Pinto et al., 

2010). A limitation to these analyses, such as analyses involving the Autism Genome 

Project cohort (Table 1-2), arises from challenges in reporting of simplex/multiplex status, 

i.e., identifying a family as a true simplex, or as a family for which just one offspring was 

investigated. 
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1.9.2 Inherited variants 

Consistent with the enrichment of de novo variants in simplex cases of autism, there is 

a depletion of inherited variants associated with autism in these spontaneous cases 

(Sebat et al., 2007; Ronemus et al., 2014). Klei et al. estimate narrow sense heritability 

to exceed 60% for autism cases in multiplex families but estimate just 40% of narrow 

sense heritability for simplex families (Klei et al., 2012). This means that 60% of 

phenotypic variance may be attributed to additive genetic variance in individuals of 

multiplex families. As in comparison of de novo variant enrichment of simplex and 

multiplex families, this effect is not reported consistently across analyses. 

 

Interestingly, the same putative variant may not be found in all affected individuals within 

a multiplex family as highlighted recently (Feliciano et al., 2019). This study reports a 

maternally inherited 15q11.2 deletion in an affected male child and no paternally 

inherited putative variants from an affected father. Other studies have identified non-

sharing of CNVs (Leppa et al., 2016) and SNVs in members of multiply affected families. 

In the latter study the two affected siblings did not harbour the same rare risk variant in 

more than half of the multiplex families studied (Yuen et al., 2015). Similarly, 

pathogenically significant CNVs have been identified that are transmitted to an autism 

proband from an unaffected parent, and shared with a unaffected sibling (Woodbury-

Smith et al., 2017), adding to evidence for asymptomatic carriers of neurodevelopmental 

condition CNVs. 

 

Family studies in epidemiological cohorts from isolated populations have also confirmed 

that both rare and common genetic variants contribute to the susceptibility to autism. A 

study on the Faro Island genetic isolate, affirms the importance of both common and rare 

variants in autism susceptibility (Leblond et al., 2019). This study identifies in a subset of 

individuals in the cohort carrying rare deleterious variants in genes known already 

associated with autism and in this same cohort, common genetic variants were also 

associated. Given these two mechanisms of genetic variation, de novo and inherited in 

autism, genome sequencing studies in families with multiple affected individuals offers 

greater opportunity to understand the relative contribution of inherited and de novo 

variation in the genetic architecture of autism. 

 

1.10 Establishing putative autism variants faces many challenges 

Heterogeneity in autism diagnoses is a major challenge facing genome sequencing 

studies in autism. In particular, diagnosis of autism in the presence of intellectual 
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disability. Diagnostic procedures are found to differ between that used in a clinical and 

research setting. For a comprehensive discussion on these challenges refer to Schaaf 

et al. 2020 (Schaaf et al., 2020). The greatest challenge in analysis of large-scale 

genomic data is in the establishment of pipelines for data interpretation. Interpretation of 

putative variants is complicated by a wide variety of technical factors, such as sequence 

coverage, variant validation, consistency in sequencing platforms and variant calling and 

filtering techniques. Robust clinical diagnoses and rich phenotyping increase confidence 

in variant association (Callaghan et al., 2019). A variant that has been associated with 

autism and has substantial evidence supporting its validity will be interrogated for its 

biological role.  

 

Variants associated with autism disrupt a wide variety of pathways and biological 

processes (De Rubeis et al., 2014). Identifying pathways and processes showing an 

increased mutational burden enables the isolation of cellular processes and pathways 

disrupted in autism. Gene-lists are often compiled listing genes involved in a given 

process (Yuen et al., 2015). These lists are useful in establishing the process which a 

putative variant may be disrupting, and such gene lists are often consulted for 

membership when investigating the impact of a variant (Feliciano et al., 2019).  

 

The establishment and maintenance of collective databases, such as SFARI Gene 

(Abrahams et al., 2013), DDD gene2phenotype (Wright et al., 2015) and ClinVar 

(Landrum et al., 2014), that are openly shared among researchers give hope for the 

development of variant specific disease models which will expectedly lead to a greater 

understanding of autism pathology. Consistent re-analysis of pathogenicity is key to 

gaining maximum insight from available genomic data, as proven fruitful in the re-

annotation of developmental and epileptic encephalopathies genes (Steward et al., 

2019) (Figure 7-1). A key stride in the development of an autism gene list comes from 

Schaaf et al. in their proposal to adapt the Clinical Genome Resource (ClinGen) curation 

framework to autism (Schaaf et al., 2020). Development of a high-confidence gene list 

for autism would have great use in genomic investigation, specifically in the development 

of targeted gene panels and a ‘clinical exome’. Without a consensus gene list in autism, 

attempts to develop such genome analysis strategies have limited application (Table 

1-1). 

 

Advances in long-read sequencing technologies hold the potential for sequencing of 

“dark gene regions,” genomic regions inaccessible through NGS. With high coverage 
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and de novo assembly, Nanopore technologies have potential to sequence up to 100% 

of the genome (Table 1-1), with the greatest level of ‘recovered’ genes when compared 

with other genomic technologies, including the recovery of genes associated with autism 

(Ebbert et al., 2019). This technology, to our knowledge, has yet to be applied to autism 

cohorts, aside from use in variant validation (Brandler et al., 2018). Long-read 

sequencing will enable discovery of genetic variants which have thus far been largely 

under-explored in autism, such as repeat expansions, haplotype phased variants and 

methylation changes. Repeat expansion variants have already been associated with 

autism, most notably the FMR1 repeat expansion associated with Fragile X syndrome 

(MIM: 30024). As shown in an early haplotype mapping study, identification of haplotypes 

can succeed in identifying loci involved in autism susceptibility (Casey et al., 2012). Even 

more relevant perhaps, long-read sequencing enables the detection of CNVs and 

rearrangement events without the need for bioinformatic re-assembly and alignment of 

short reads.  

 

1.11 Putting autism in the context of other neuropsychiatric conditions 

WGS has potential to investigate some of the major questions remaining unanswered in 

autism genomics, including investigation of the overlap of autism with other 

neurodevelopmental and neuropsychiatric conditions, both clinically and genetically. As 

highlighted in a review from Lord et al., elucidation of the genetic overlap of autism with 

other neuropsychiatric conditions is needed (Lord et al., 2020). Clinically, autism 

frequently co-occurs with other neuropsychiatric conditions, in particular attention-deficit 

hyperactivity disorder (ADHD) (28%), anxiety disorders (13%) and mood disorders (11%) 

(Lai et al., 2019).  

 

At the systems-level there is substantial evidence of genetic overlap between autism and 

neurodevelopmental and neuropsychiatric conditions (An and Claudianos, 2016). There 

is overlap in the genes associated with autism and those associated with other 

neuropsychiatric conditions, such as schizophrenia and bipolar disorder (Carroll and 

Owen, 2009) (Geschwind and Flint, 2015; Lee et al., 2019). This has been demonstrated 

strongly in a large-scale meta-analysis of eight European psychiatric cohorts identifying 

109 pleiotropic loci (Lee et al., 2013). The genetic overlap of autism with other conditions 

is also evident at the variant-level with de novo variation in autism shared with intellectual 

disabilities (Satterstrom et al., 2020) and shared with epilepsy (Heyne et al., 2018). 
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1.12 Next-generation sequencing technologies improve diagnostic yield 

There is a demand for clinical genetic testing in autism (Barton et al., 2018). Clinical CNV 

detection has already been translated widely, advancing the clinical genetics 

understanding of the condition. This translation crystallised some of the issues that will 

emerge with widespread translation of genomic technologies, namely clinical 

interpretation, relative contribution of inherited variants and particularly variant specificity 

to autism. Currently no gene, which when disrupted by a pathogenic variant, has been 

found to confer risk to autism without conferring risk to ID or other neurodevelopmental 

conditions. In the absence of appropriate study design and explicit, robust diagnoses, 

there is insufficient evidence to assign meaningful specificity of gene involvement in 

autism (Myers, Challman, Bernier, et al., 2020). 

 

Genomic technologies, given the greater proportion of the genome covered, have the 

potential to transform the clinical genetic understanding of the condition. This is 

illustrated by the increase in diagnostic yield with genomic technologies. Diagnostic yield 

refers to the number of cases where a putative genetic variant associated with the 

condition is identified in a cohort. This can be interpreted as a measure of the utility of 

the technique and analysis strategy for the condition. 

 

A recent meta-analysis scoping review states that exome sequencing is a first-tier clinical 

diagnostic test for individuals with neurodevelopmental conditions, defined in this study 

as developmental delay, ID and/or autism (Srivastava et al., 2019). The diagnostic yield 

for WES overall from these meta-analyses is 36%, surpassing the estimated 15-20% 

diagnostic yield of candidate gene arrays. 

 

Using WES technologies, Feliciano et al. in the SPARK pilot, report a returnable genetic 

result in 10.4% of their cohorts affected offspring (Feliciano et al., 2019). Importantly, in 

individuals with more complex phenotypes, such as autism with seizures or co-occurring 

ID, they report a higher diagnostic yield than overall (27% and 20% respectively). This 

finding is consistent with other studies (Tammimies et al., 2015; Srivastava et al., 2019). 

The SPARK study also reports a higher diagnostic yield in cases from multiplex families 

(15.2%) than simplex families (10.1%) (Feliciano et al., 2019). 

 

Yuen et al. find a diagnostic yield of autism-relevant variants using WGS to be 42.4% in 

their cohort of 85 multiplex families of autism. This mirrors the diagnostic yield estimated 

in ID using the same sequencing platform (Gilissen et al., 2014; Yuen et al., 2015). The 



   

 

18 

 

increased diagnostic yield using WGS highlights the great potential for use of the 

technology in families with autism. This estimate can be expected to increase further with 

developments in variant interpretation strategies and increases in sample sizes, giving 

more power to investigations of common variants and variants in the non-coding regions 

of the genome. 

 

The clinical utility of WGS holds great promise; however, this sequencing approach also 

faces major challenges. These include the need for large-cohort analyses and the failure 

to replicate genomic findings. One example is the report of the enrichment of de novo 

and private disruptive mutations within fetal CNS DNase I hypersensitive sites within 

50kb of genes that have been previously associated with autism risk (Turner et al., 2016) 

that later did not replicate despite a larger sample size (Turner et al., 2017). Furthermore, 

we face limitations to the current capacity to interpret variants in the non-coding genome, 

as discussed by Lee & Gleeson (2020) (Lee and Gleeson, 2020). Notwithstanding these 

challenges, the decrease in sequencing costs (Table 1-1) and the increase in sample 

sizes under investigation, together with the greater understanding of family inheritance 

will continue to give a more precise estimate of the diagnostic yield in autism. The return 

of genetic results, alongside current behavioural diagnoses, may be used to improve 

therapeutic avenues in the future. Genetic diagnoses may also be used to inform family 

planning on a family-by-family basis as illustrated by a recent family study showing the 

CNV findings, which would have been pre-symptomatically predictive of autism or 

atypical development in 7% (11 of 157) of families analysed (D’Abate et al., 2019).  

 

1.13 Conclusion 

WGS is the most effective technology to improve our biological understanding of 

neurodevelopmental conditions. With near full coverage of the human genome, coupled 

with the increase in sample sizes, detailed phenotyping, and the development of cutting-

edge analytical methods, we now have the potential to identify more variants across the 

genome, in particular more rare pathogenic genetic variants. The detection of rare 

variants by genomic technologies will improve our understanding of the genetic 

architecture of autism and other neurodevelopmental and neuropsychiatric conditions. 

With advances in biological interpretation enabling delivery of genetic discovery into 

clinical translation, genomic technologies will become an achievable step towards 

personalised family medicine, ultimately aiding autism diagnosis and informing medical 

decision-making. 
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1.14 Aims 

This thesis aims to investigate rare variation and its contribution to the genetic basis of 

autism. The work outlined in this thesis aims to apply an analysis strategy for isolation of 

rare exonic pathogenic SNVs from NGS data, specifically genome sequencing of an 

autism cohort of affected individuals in a family-based study design (WES n=42, WGS 

n=35). The aim of this work is to identify rare putatively pathogenic SNVs in genes with 

evidence supporting their role in autism, using a family-based study design to evaluate 

variant transmission. Variants emerging from these analyses contribute to the existing 

evidence supporting association of relevant genes with autism.  

 

Additionally, this thesis investigates the clinical utility of genome sequencing in autism. 

Genetic diagnosis in autism is limited by the ability to robustly determine the relevance 

of putatively pathogenic genetic variation. Through application of an evidence-based 

gene curation framework to dissect gene-phenotype relationships and through 

investigation of the diagnostic yield of commercial gene panels available for use in 

autism, this thesis aims to inform on current strategies to translate genomics findings into 

the clinic. 
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Chapter 2. Materials and Methods 
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2.1 Dataset description 

2.1.1 Dataset description of Cohort 1 

2.1.1.1 Ethics and ascertainment  

Cohort 1 was selected from the existing Autism and Neurodevelopmental Disorders 

Research Group TCD DNA biobank (n=808) under ethics approval “Irish Molecular 

Genetics Study in Autism REC: 2020-01 List 1 (17)” (Appendix I-I).  

 

Candidate sample selection for inclusion was carried out as presented in Figure 2-1. This 

sample collection has previously been included in TASC and UK10K sequencing studies 

and samples that were sequenced through these projects were excluded as candidates 

for this sequencing study to avoid duplicate sequencing (Buxbaum et al., 2014; The 

UK10K Consortium, 2015). Inclusion and exclusion criteria for TASC is outlined in 

Buxbaum et al., 2014 and inclusion and exclusion criteria for UK10K are outlined in The 

UK10K Consortium, 2015. Where DNA samples did not reach criteria for sequencing, 

samples were excluded as candidates for this cohort (>30ng/ul and 260/280>1.8). 

Complete phenotypic records were needed for all candidates for this cohort to determine 

ASD diagnosis status. ASD diagnoses were confirmed from clinical expertise. 
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Figure 2-1 Cohort 1 selection criteria. 

Presented in the figure is the flow of candidate samples for inclusion within Cohort 1. TASC; is The Autism 
Simplex Collection.  

 

2.1.1.2 Cohort structure and phenotype 

This cohort includes 23 individuals affected with autism (19 male and 4 female). All 

probands (n=23) have a diagnosis of autism or ASD according to Diagnostic and 

Statistical Manual of Mental Disorders, Fifth Edition (DSM-V) criteria, with n=10 having 

a co-occurring neurodevelopmental condition diagnosis (Table 2-1).  
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Cohort Overview N = 42 

Number of families 2 quad families 

6 trio families 

2 parent-child pairs 

1 set of DZ twins 

11 affected singletons  

Male probands N=19 

Female probands N= 4 

Table 2-1 Overview of Cohort 1.  

Outlined are the family structures included in the cohort and proband counts by sex. 

 

2.1.2 Dataset description of Cohort 2 

2.1.2.1 Ethics and ascertainment 

A subset of Cohort 1 was selected for further analysis using WGS based on phenotype 

severity, under ethics approval “Irish Molecular Genetics Study in Autism REC: 2020-01 

List 1 (17)” (Appendix I-I). Samples were prioritised for WGS from Cohort 1 on the basis 

of their hypothesised rare variant burden. For this reason, two female probands were 

selected and one male proband with a complex syndromal phenotype, with hypothesised 

rare penetrant SNVs being causative. 

 

2.1.2.2 Cohort structure and phenotypes  

All probands (n=3) have a diagnosis of autism according to DSM-V criteria (Table 2-2 

and Table 2-3). 

 

Cohort Overview N = 6 

Number of families 1 quad family 

2 affected singletons  

Male probands N=1 

Female probands N= 2 

Table 2-2 Overview of Cohort 2.  

Outlined are the family structures included in the cohort and proband counts by sex. 
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FID IID Sex Phenotype 

AS315 AS315C F Autism 

AS322 AS322C1 F ASD, ADHD 

AS420 AS420C1 

M Autism, moderate ID, self-injurious 

behaviour, catatonia, dysmorphology 

AS420 AS420C2 M Unknown 

AS420 AS420F M Unknown 

AS420 AS420M F Unknown 

Table 2-3 Cohort 2 phenotype and sex. 

Outlined are reported sex and clinically validated phenotype for individuals analysed within Cohort 2. 
Unknown is given as the phenotype where no neurodevelopmental or neuropsychiatric phenotype has been 
reported, however parent phenotyping was not performed. 

 

2.1.3 Dataset description of Cohort 3 

2.1.3.1 Ethics and ascertainment 

Cohort 3 was ascertained under ethics approval “Genomics of Neurodevelopmental 

Disorders (Reference number BSRESC-2021-2402328)” (Appendix I-II). Inclusion 

criteria in the recruitment of this cohort is families with two or more family members 

affected with autism and a third family member affected with another 

neurodevelopmental or neuropsychiatric condition, including autism, neuropsychiatric 

conditions (e.g., schizophrenia or depression), ADHD, learning disability, developmental 

delay, Tourette’s Syndrome, or epilepsy. 

 

2.1.3.2 Cohort structure and phenotypes 

Clinical diagnoses are made according to DSM-V criteria. Diagnoses have been 

confirmed through clinical reports with review and verification by Professor Louise 

Gallagher, Chair of Child and Adolescent Psychiatry at TCD. 

 

Cohort Overview N = 29 

Number of families 4 multiplex families 

Males N=14 

Females N= 15 

Table 2-4 Overview of Cohort 3. 

 Outlined are the family structures included in the cohort and proband counts by sex. 
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Cohort 3 is comprised of 4 multiplex pedigrees, as presented in Figure 2-2. Each family 

has multiple affected individuals, affected by autism and other neurodevelopmental and 

neuropsychiatric conditions. AS326 and AS328 are multigenerational families, with 

maternal grandmother samples available.  

 

 

Figure 2-2 Cohort 3 in summary. 

Proposed mode of transmission for variant interpretation.} Presented are the pedigrees of the 4 families 
sequenced in this rare cohort. The key associated with affection and sequencing status is presented 

alongside. * Denotes the mode of variant transmission hypothesised to be relevant within each family.  

 

2.2 Sequencing 

Next-generation sequencing technologies were applied to the cohorts under 

investigation. These technologies give the opportunity for more widespread and in-depth 

genomic analysis than older techniques, such as microarray studies and candidate gene 

studies, have allowed. Table 1-1 lists the next-generation sequencing (NGS) 

technologies that can identify single nucleotide variants (SNVs) and insertion-deletion 

variants (indels), as well as larger genomic hits, including structural variants (SVs) or 

copy number variants (CNVs), across the allele frequency spectrum. Here, whole exome 

and whole genome sequencing have been applied as described as follows, with an aim 

to detect exonic SNVs. 
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2.2.1 Sequencing of Cohort 1 

WES was carried out on a total of 42 samples. DNA samples (n=17) were extracted from 

whole blood using Perkin Elmer Prepito DNA cyto kit (CMG-2034). Biobanked DNA 

samples (n=25) were extracted as previously published (Buxbaum et al., 2014). 

Biobanked DNA samples were confirmed to have a concentration of >30ng/ul as 

measured by Qubit and an optical density 260/280>1.8 as measured by Nanodrop prior 

to library preparation.  Samples were whole exome sequenced using the Nextera Rapid 

Capture Exome (v1.2) on Illumina NovaSeq6000. FASTQ, BAM and VCF files were 

returned for bioinformatic analyses. 

 

2.2.2 Sequencing of Cohort 2 

WGS was carried out on a total of 6 samples. DNA samples (n=6) were extracted from 

whole blood using Perkin Elmer Prepito DNA cyto kit (CMG-2034). Samples were whole 

genome sequenced on Illumina NovaSeq6000. FASTQ, BAM and VCF files were 

returned for bioinformatic analyses. 

 

2.2.3 Sequencing of Cohort 3 

Sequencing of this cohort was performed on DNA samples extracted from blood (n=22) 

and saliva (n=7). As reported by service provider: 

“Whole genome library preparation was performed using the Illumina TruSeq PCR Free 

Library Prep protocol (20015963) with an input amount of 1µg. Library preparation was 

automated and processed using a Hamilton NGS Star. Library quality was assessed 

using the Roche KAPA Library Quantification Kit (7960298001). Libraries were pooled 

and sequenced on an Illumina NovaSeq 6000 instrument using NovaSeq 6000 S4 

Reagent Kit (20012866) targeting a mean coverage of 30X.  

Genotyping was performed using the Illumina Global Screening Array version 3 

(20030772)”. FASTQ, BAM and VCF files were returned for bioinformatic analyses. 

 

2.3 Read alignment 

Short sequence reads are generated by NGS and are reported in FASTQ format by the 

genomic sequencing described in 2.2. These short reads require alignment to a human 

reference genome and the resulting aligned reads are output in BAM format. 
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2.3.1 Read alignment of Cohort 1  

FASTQ files were generated through Illumina BaseSpace using the function FASTQ 

Generation (Version: 1.0.0). Sequence data was aligned to the reference genome “Homo 

sapiens (UCSC hg19)” using bwa-mem through Illumina BaseSpace BWA Enrichment 

(Version: 2.1.0.0) targeting the regions covered by Nextera Rapid Capture Exome (v1.2) 

(Li, 2013). 

 

2.3.2 Read alignment of Cohort 2 

FASTQ files were generated through Illumina BaseSpace using the function FASTQ 

Generation (Version: 1.0.0). Sequence data was aligned to the reference genome “Homo 

sapiens (UCSC hg19)” using bwa-mem through Illumina BaseSpace function BWA 

Aligner - DEPRECATED (Version: 1.1.1) (Li, 2013). 

 

2.3.3 Read alignment of Cohort 3 

As reported by service provider: 

“Genuity Science Pipeline Service (GSPS) is a feature which allows importation of raw 

data from the NovaSeq 6000 (BCL files) or raw sequencing data (in FASTQ format) for 

analysis with AWS S3 delivery capabilities. The standard workflow for GSPS is to use 

in-house generated raw data from the NovaSeq 6000 (BCL files), which is demultiplexed 

in the pipeline to individual samples FASTQ pairs, which then get analysed for variants 

and have their sequence quality assessed. FastQ generation was performed using 

BCL2FastQ, adapter trimming using Skewer and assessment of QC using FASTQC.” 

 

2.4 Base read pre-processing 

2.4.1 Base read pre-processing of Cohort 1 

Software and corresponding versions used during quality control (QC are listed in (Table 

2-5). Input files for analysis were sourced from the Genome Analysis Tool Kit (GATK) 

Resource Bundle for reference genome hg19, available at: 

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-6). 

  

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/
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Software Version 

Picard (Broad Institute, 2019) 2.20.2-SNAPSHOT 

Genome Analysis ToolKit (GATK)  

(Van der Auwera et al., 2013) 

3.8-0-ge9d806836 

Java openjdk version "1.8.0_212" 

R 3.6.0 “Planting of a Tree” 

Table 2-5 Software used at QC. 

Input  Version 

Reference Genome UCSC hg19 

Verified Indel sites 1000G Phase 1 & Mills Gold Standard Indels 

Verified SNP sites dbsnp 138 (hg19) 

Exome Target Intervals NexteraRapidCapture_Exome_TargetedRegions_v1.2 

Table 2-6 Input public datasets used at QC. 

 

2.4.1.1 ReorderSam (Picard) 

BAM file reads were reordered to match contig ordering in the input reference genome. 

 

2.4.1.2 SortSam (Picard) 

BAM file reads were sorted by reference sequence coordinate. 

 

2.4.1.3 MarkDuplicates (Picard) 

Duplicate reads arising from technical errors and biases were located and tagged. 

 

2.4.1.4 BuildBamIndex (Picard) 

An index file complementary to BAM file was generated to allow fast look-up of data. 

2.4.1.5 IndelRealigner (GATK) 

Local realignment of insertion and deletions was carried out to minimise the number of 

mismatching base pairs. 
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2.4.1.6 Base Quality Score Recalibration 

Systematic technical errors in quality score estimates of each base call were detected 

and scores were adjusted using BaseRecalibrator (GATK). The recalibration was 

visualised with AnalyseCovariates (GATK). 

 

### Local Realignment Around Indels ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T RealignerTargetCreator \ 
-R <reference_genome_fasta> \ 
-I <BAM_to_manipulate> \ 
-o <output_file_to_report_intervals> \ 
--known <1000G_phase1.indels.hg19.sites.vcf \ 
--known <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T IndelRealigner \ 
-R <reference_genome_fasta> \ 
-I <BAM_to_manipulate> \ 
-o <BAM_following_manipulation> \ 
-known <1000G_phase1.indels.hg19.sites.vcf \ 
-known <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \ 
-targetIntervals <output_file_to_report_intervals> \ 
--consensusDeterminationModel USE_READS  
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2.4.1.7 ValidateSamFile (Picard) 

To ensure compliance of BAM file format specifications, ValidateSamFile was applied. 

 

### Base Quality Score Recalibration ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T BaseRecalibrator \ 
-R <reference_genome_fasta> \ 
-I <BAM_to_manipulate> \ 
-o <output_BQSR_before> \ 
-knownSites <dbsnp_138.hg19.vcf> \ 
-knownSites <1000G_phase1.indels.hg19.sites.vcf> \ 
-knownSites <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \ 
--sort_by_all_columns 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T BaseRecalibrator \ 
-R <reference_genome_fasta> \ 
-I <BAM_to_manipulate> \ 
-BQSR <output_BQSR_before> \ 
-o <output_BQSR_before_after> \ 
-knownSites <dbsnp_138.hg19.vcf> \ 
-knownSites <1000G_phase1.indels.hg19.sites.vcf> \ 
-knownSites <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \ 
--sort_by_all_columns 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T PrintReads \ 
-R <reference_genome_fasta> \ 
-I <BAM_to_manipulate> \ 
-BQSR <output_BQSR_before> \ 
-o <new_BAM_post-bqsr> 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T AnalyzeCovariates \ 
-R <reference_genome_fasta> \ 
-before <output_BQSR_before> \ 
-after <output_BQSR_before_after> \ 
-plots <plots_file_generated> \ 
-csv <csv_file_generated> 

### Validate Bam File ###  
 
#In Summary Mode 
 
java <java_arguments> -jar <picard_jar_file> ValidateSamFile \ 
I= <BAM_to_investigate> \ 
O= <document_to_output_errors_to> \ 
MODE=SUMMARY \ 
MAX_OUTPUT=null 

 
#In Verbose Mode 
 
java <java_arguments> -jar <picard_jar_file> ValidateSamFile \ 
I= <BAM_to_investigate> \ 
O= <document_to_output_errors_to> \ 
IGNORE_WARNINGS=true \ 
MODE=VERBOSE 
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2.4.2 Base read pre-processing of Cohort 2 

Software and corresponding versions used during QC are listed in (Table 2-7). Input files 

for analysis were sourced from the GATK Resource Bundle for reference genome hg19, 

available at: 

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-8). 

 

Software Version 

Picard 2.20.2-SNAPSHOT 

Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836 

Java openjdk version "1.8.0_212" 

R 3.6.0 “Planting of a Tree” 

Table 2-7 Software used at QC. 

 

Input  Version 

Reference Genome UCSC hg19 

Verified Indel sites 1000G Phase 1 & Mills Gold Standard Indels 

Verified SNP sites dbsnp 138 (hg19) 

Table 2-8 Input public datasets used at QC. 

 

2.4.2.1 AddOrReplaceReadGroups (Picard) 

Read group information missing from the BAM file generated was added to BAM files. 

Generic read group information was added in the cases of mandatory fields, except for 

RGSM which corresponds to sample ID. 

 

 

Parameters SORT_ORDER=coordinate and CREATE_INDEX=true were applied to 

simultaneously sort and index the reformatted BAM file. 

### Edit Read Group Information ### 
 
java <java_arguments> -jar <picard_jar_file> AddOrReplaceReadGroups \  
INPUT= <BAM_to_reformat> \  
OUTPUT= <new_BAM_reformatted> \  
RGID= <default_value_eg.1> \  
RGLB= <default_value_eg.library1> \  
RGPL= <default_value_eg.illumina> \  
RGPU= <default_value_eg.1> \  
RGSM= <unique_sample_ID> \  
SORT_ORDER=coordinate \  
CREATE_INDEX=true 

ftp://gsapubftp-anonymous@ftp.broadinstitute.org/bundle/hg19/
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2.4.2.2 IndelRealigner (GATK) 

Local realignment of insertion and deletions was carried out to minimise the number of 

mismatching base pairs. 

 

 

2.4.2.3 Base Quality Score Recalibration 

Systematic technical errors in quality score estimates of each base call were detected 

and scores were adjusted using BaseRecalibrator (GATK). The recalibration was 

visualised with AnalyseCovariates (GATK). 

### Local Realignment Around Indels ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T RealignerTargetCreator \ 
-R <reference_genome_fasta> \ 
-I <BAM_to_manipulate> \ 
-o <output_file_to_report_intervals> \ 
--known <1000G_phase1.indels.hg19.sites.vcf \ 
--known <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T IndelRealigner \ 
-R <reference_genome_fasta> \ 
-I <BAM_to_manipulate> \ 
-o <BAM_following_manipulation> \ 
-known <1000G_phase1.indels.hg19.sites.vcf \ 
-known <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \ 
-targetIntervals <output_file_to_report_intervals> \ 
--consensusDeterminationModel USE_READS  
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2.4.2.4 ValidateSamFile (Picard) 

To ensure compliance of BAM file format specifications, ValidateSamFile was applied in 

both summary and verbose modes. 

### Base Quality Score Recalibration ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T BaseRecalibrator \ 
-R <reference_genome_fasta> \ 
-I <BAM_to_manipulate> \ 
-o <output_BQSR_before> \ 
-knownSites <dbsnp_138.hg19.vcf> \ 
-knownSites <1000G_phase1.indels.hg19.sites.vcf> \ 
-knownSites <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \ 
--sort_by_all_columns 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T BaseRecalibrator \ 
-R <reference_genome_fasta> \ 
-I <BAM_to_manipulate> \ 
-BQSR <output_BQSR_before> \ 
-o <output_BQSR_before_after> \ 
-knownSites <dbsnp_138.hg19.vcf> \ 
-knownSites <1000G_phase1.indels.hg19.sites.vcf> \ 
-knownSites <Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \ 
--sort_by_all_columns 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T PrintReads \ 
-R <reference_genome_fasta> \ 
-I <BAM_to_manipulate> \ 
-BQSR <output_BQSR_before> \ 
-o <new_BAM_post-bqsr> 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T AnalyzeCovariates \ 
-R <reference_genome_fasta> \ 
-before <output_BQSR_before> \ 
-after <output_BQSR_before_after> \ 
-plots <plots_file_generated> \ 
-csv <csv_file_generated> 
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2.4.3 Base read pre-processing of Cohort 3  

As reported by service provider: 

“FASTQ data is processed by a Sentieon based pipeline and resulting files are uploaded 

to the user specified S3 buckets.  The main components of the pipeline act to align raw 

sequence reads to a reference, carry out QC and call variants in the genome. The 

pipeline is based on an AWS infrastructure that is automated.” 

 

2.5 Variant calling and genotyping 

Variants were called from aligned reads (BAM) format and were output to a readily 

interpretable called variant file (VCF files). VCF files can then be manipulated and 

interrogated for biological relevance. The GATK Best Practices provide guidelines for 

effective use of the tool set, enabling manipulation of parameters to suit the data set 

under investigation, for example specification of target intervals or specification of 

reference genome (Li, 2013; Broad Institute, 2019). Here GATK Best Practices were 

applied to call SNVs reaching the standard minimum threshold for calling using 

HaplotypeCaller. Genotypes were assigned by joint genotyping. Joint genotyping 

requires the use of HaplotypeCaller to generate input genotype assignments. The gVCF 

file format details all variant sites in the genome whether reference (ref) or alternative 

(alt), as opposed to the traditional VCF file listing alternative variant sites only. Joint 

genotyping is a more time and computationally intensive approach to genotyping, 

however, it improves the detection of rare variants in the genome making it beneficial for 

use in a family-based study design where accurate and sensitive rare variant discovery 

is required. 

 

### Validate Bam File ###  
 
#In Summary Mode 
 
java <java_arguments> -jar <picard_jar_file> ValidateSamFile \ 
I= <BAM_to_investigate> \ 
O= <document_to_output_errors_to> \ 
MODE=SUMMARY \ 
MAX_OUTPUT=null 

 
#In Verbose Mode 
 
java <java_arguments> -jar <picard_jar_file> ValidateSamFile \ 
I= <BAM_to_investigate> \ 
O= <document_to_output_errors_to> \ 
IGNORE_WARNINGS=true \ 
MODE=VERBOSE 
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2.5.1 Variant calling and genotyping of Cohort 1 

Software and corresponding versions used throughout gVCF to cohort VCF analysis are 

listed in Table 2-9. Input files for analysis were sourced from the GATK Resource Bundle 

for reference genome hg19, available at: 

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-10). 

 

Software Version 

Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836 

Java openjdk version "1.8.0_212" 

Table 2-9 Software used at variant calling and genotyping. 

 

Input  Version 

Reference Genome UCSC hg19 

Verified SNP sites dbsnp 138 (hg19) 

Exome Target Intervals NexteraRapidCapture_Exome_TargetedRegions_v1.2 

Table 2-10 Input datasets used at variant calling and genotyping. 

 

2.5.1.1 HaplotypeCaller in gVCF Mode (GATK) 

SNVs and indels were called and output to gVCF format, recording all site information 

whether reference or alternative. 

 

### Variant Calling ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T HaplotypeCaller \ 
-R <reference_genome_fasta> \ 
-I <post_processing_bam> \ 
-o <newly_called_gvcf> \ 
-ERC GVCF \ 
--dbsnp <dbsnp_138.hg19.vcf> \ 
--annotation MappingQualityZero \ 
--annotation VariantType \ 
--annotation AlleleBalance \ 
--annotation AlleleBalanceBySample \ 
--excludeAnnotation ChromosomeCounts \ 
--excludeAnnotation FisherStrand \ 
--excludeAnnotation StrandOddsRatio \ 
--excludeAnnotation QualByDepth \ 
--GVCFGQBands 10 \ 
--GVCFGQBands 20 \ 
--GVCFGQBands 30 \ 
--GVCFGQBands 40 \ 
--GVCFGQBands 60 \ 
--GVCFGQBands 80 \ 
--standard_min_confidence_threshold_for_calling 

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/


   

 

36 

 

2.5.1.2 Cohort Joint Genotyping 

Joint genotyping was carried out using GenotypeGVCFs (GATK) to enable detection of 

variants to a higher degree of sensitivity and genotype accuracy by leveraging 

information cohort-wide. 

 

 

2.5.2 Variant calling and genotyping of Cohort 2 

Software and corresponding versions used throughout gVCF to cohort VCF analysis are 

listed in Table 2-11. Input files for analysis were sourced from the GATK Resource 

Bundle for reference genome hg19, available at: 

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-12). 

 

Software Version 

Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836 

Java openjdk version "1.8.0_212" 

Table 2-11 Software used at variant calling and genotyping. 

 

Input  Version 

Reference Genome UCSC hg19 

Verified SNP sites dbsnp 138 (hg19) 

Table 2-12 Input datasets used at variant calling and genotyping. 

### Joint Genotyping ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T GenotypeGVCFs \ 
-R <reference_genome_fasta> \ 
-V <newly_called_gvcf1> \ 
-V <newly_called_gvcf2> \ 
-V <newly_called_gvcf3> \ 
-V <newly_called_gvcf4> \ 
-V <newly_called_gvcf5> \ 
-V <newly_called_gvcf6> \ 
--annotation InbreedingCoeff \ 
--annotation FisherStrand \ 
--annotation QualByDepth \ 
--annotation ChromosomeCounts \ 
--annotation StrandOddsRatio \ 
--dbsnp <dbsnp_138.hg19.vcf> \ 
-o <newly_genotyped_cohort_vcf> \ 
--standard_min_confidence_threshold_for_calling 10.0 \ 
--downsample_to_coverage 1000 \ 
--downsampling_type BY_SAMPLE  

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/
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2.5.2.1 HaplotypeCaller in gVCF Mode (GATK) 

SNVs and indels were called and output to gVCF format, recording all site information 

whether reference or alternative. 

 

 

2.5.2.2 Cohort Joint Genotyping 

Joint genotyping was carried out using GenotypeGVCFs (GATK) to enable detection of 

variants to a higher degree of sensitivity and genotype accuracy by leveraging 

information cohort-wide. 

 

### Variant Calling ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T HaplotypeCaller \ 
-R <reference_genome_fasta> \ 
-I <post_processing_bam> \ 
-o <newly_called_gvcf> \ 
-ERC GVCF \ 
--dbsnp <dbsnp_138.hg19.vcf> \ 
--annotation MappingQualityZero \ 
--annotation VariantType \ 
--annotation AlleleBalance \ 
--annotation AlleleBalanceBySample \ 
--excludeAnnotation ChromosomeCounts \ 
--excludeAnnotation FisherStrand \ 
--excludeAnnotation StrandOddsRatio \ 
--excludeAnnotation QualByDepth \ 
--GVCFGQBands 10 \ 
--GVCFGQBands 20 \ 
--GVCFGQBands 30 \ 
--GVCFGQBands 40 \ 
--GVCFGQBands 60 \ 
--GVCFGQBands 80 \ 
--standard_min_confidence_threshold_for_calling 
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2.5.3 Variant calling and genotyping of Cohort 3 

As reported by service provider: 

“The secondary pipeline begins with a Sention backbone which included bwa mem, 

markduplication, WgsMetricsAlgo, Realigner and QualCal. The resulting VCF files were 

GORized with Genuity Science proprietary tools and loaded into CSA platform for 

downstream analysis.” 

 

2.6 Variant filtration 

2.6.1 Variant filtration of Cohort 1 

Software and corresponding versions used throughout variant filtration are listed in Table 

2-13. Input files for analysis were sourced from the GATK Resource Bundle for reference 

genome hg19, available at  

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-14). 

 

Software Version 

Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836 

VCFtools (Danecek et al., 2011) 0.1.14-gcc-8.2.0-srywzy 

Table 2-13 Software used at variant filtration. 

 

 

### Joint Genotyping ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T GenotypeGVCFs \ 
-R <reference_genome_fasta> \ 
-V <newly_called_gvcf1> \ 
-V <newly_called_gvcf2> \ 
-V <newly_called_gvcf3> \ 
-V <newly_called_gvcf4> \ 
-V <newly_called_gvcf5> \ 
-V <newly_called_gvcf6> \ 
--annotation InbreedingCoeff \ 
--annotation FisherStrand \ 
--annotation QualByDepth \ 
--annotation ChromosomeCounts \ 
--annotation StrandOddsRatio \ 
--dbsnp <dbsnp_138.hg19.vcf> \ 
-o <newly_genotyped_cohort_vcf> \ 
--standard_min_confidence_threshold_for_calling 10.0 \ 
--downsample_to_coverage 1000 \ 
--downsampling_type BY_SAMPLE  

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/
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Input  Version 

Reference Genome UCSC hg19 

VQSR Model Training Set dbsnp 138 (hg19) 

hapmap 3.3 (hg19) 

omni 2.5 (hg19) 

1000G Phase 1 High-Confidence SNPs 

(hg19) 

Mills Gold Standard Indels 

Table 2-14 Input datasets used at variant filtration. 

2.6.1.1 Split Cohort VCF by variant type 

The cohort VCF file was split by variant type using SelectVariants (GATK) and output 

into distinct cohort SNV, indel and mixed VCF files. 

 

 

### Split Variants by Variant Type ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T SelectVariants \ 
-R <reference_genome_fasta> \ 
--variant <newly_genotyped_cohort_vcf> \ 
-L chr1 -L chr2 -L chr3 -L chr4 -L chr5 \ 
-L chr6 -L chr7 -L chr8 -L chr9 -L chr10 \ 
-L chr11 -L chr12 -L chr13 -L chr14 -L chr15 \ 
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 \ 
-L chr21 -L chr22 -L chrX -L chrY \ 
-o <cohort_snp_vcf> \ 
-selectType SNP 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T SelectVariants \ 
-R <reference_genome_fasta> \ 
--variant <newly_genotyped_cohort_vcf> \ 
-L chr1 -L chr2 -L chr3 -L chr4 -L chr5 \ 
-L chr6 -L chr7 -L chr8 -L chr9 -L chr10 \ 
-L chr11 -L chr12 -L chr13 -L chr14 -L chr15 \ 
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 \ 
-L chr21 -L chr22 -L chrX -L chrY \ 
-o <cohort_indel_vcf> \ 
-selectType INDEL 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T SelectVariants \ 
-R <reference_genome_fasta> \ 
--variant <newly_genotyped_cohort_vcf> \ 
-L chr1 -L chr2 -L chr3 -L chr4 -L chr5 \ 
-L chr6 -L chr7 -L chr8 -L chr9 -L chr10 \ 
-L chr11 -L chr12 -L chr13 -L chr14 -L chr15 \ 
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 \ 
-L chr21 -L chr22 -L chrX -L chrY \ 
-o <cohort_other_vcf> \ 
-xlSelectType SNP \ 
-xlSelectType INDEL 
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2.6.1.2 Evaluating Variant Confidence Pre-Filtering 

The Transition/Transversion (Ts/Tv) ratio presented in Table 2-15 as 2.594. is low when 

compared with the guide Ts/Tv of 3.0 in human exome sequencing (Bainbridge et al., 

2011). This highlights the need for low confidence variant call removal from the call-set 

to achieve a high confidence variant set for downstream analysis. 

 

Model   Count 

AC     8,231 

AG       42,065 

AT       4,546 

CG      11,607 

CT       41,748 

GT       7,921 

Ts       83,813 

Tv       32,305 

Ts/Tv Ratio 2.594 

Table 2-15 Ts/Tv ratio of SNV call-set.  

Presented in the table are genotype variant transitions (Ts) and Transversions (Tv) across variant sites 
within the cohort. Transitions are defined as a change of purine bases or pyrimidine bases, i.e. A with G or 
C with T. Transversion are defined as changes between purine and pyrimidine bases, i.e. A with C/T, C with 

G or G with T. 

 

2.6.1.3 Variant Quality Score Recalibration (VQSR) and Hard Filtering  

VariantRecalibration (GATK) and ApplyRecalibration (GATK) were run independently on 

SNV and indel raw variants. Mixed variants not falling into these variant types were hard 

filtered using GATK Best Practices for indel filtration, as too few variants (fewer 

equivalent variant sites than one genome or 30 exomes) fell into this category to train 

the Gaussian mixture model of VQSR (Table 2-16).  

 

Filter Description Threshold 

QD Variant quality / depth  < 2.0 

FS Phred-score Fisher’s test p-value for strand 

bias 

> 200.0 

ReadPosRankSum Distance of alternative allele from the end of 

the reads 

< -20.0 

Table 2-16 GATK recommended variant quality filters for mixed variant sites. 
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### VQSR ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T VariantRecalibrator \ 
-R <reference_genome_fasta> \ 
-input <cohort_snp_vcf> \ 
-resource:hapmap,known=false,training=true,truth=true,prior=15.0 
<hapmap_3.3.hg19.sites.vcf> \ 
-resource:omni,known=false,training=true,truth=true,prior=12.0 
<1000G_omni2.5.hg19.sites.vcf> \ 
-resource:1000G,known=false,training=true,truth=false,prior=10.0 
<1000G_phase1.snps.high_confidence.hg19.sites.vcf> \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
<dbsnp_138.hg19.vcf> \ 
-an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum \ 
-mode SNP \ 
-tranche 100.0 -tranche 99.99 -tranche 99.98 -tranche 99.97 -tranche 99.96 \ 
-tranche 99.95 -tranche 99.94 -tranche 99.93 -tranche 99.92 -tranche 99.91 \ 
-tranche 99.90 -tranche 99.80 -tranche 99.70 -tranche 99.60 -tranche 99.50 \ 
-tranche 99.00 -tranche 98.00 -tranche 97.00 -tranche 96.00 -tranche 95.00 \ 
-tranche 94.00 -tranche 93.00 -tranche 92.00 -tranche 91.00 -tranche 90.00 \ 
-recalFile <snp.recalfile> \ 
-tranchesFile <snp.tranchesfile> \ 
-rscriptFile <snp.plotsfile> \ 
--maxGaussians 4 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T ApplyRecalibration \ 
-R <reference_genome_fasta> \ 
-input <cohort_snp_vcf> \ 
-mode SNP \ 
-recalFile <snp.recalfile> \ 
-tranchesFile <snp.tranchesfile> \ 
--ts_filter_level 99.5 \ 
-o <postVQSR_snp.vcf> 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T VariantRecalibrator \ 
-R <reference_genome_fasta> \ 
-input <cohort_indel_vcf> \ 
-resource:mills,known=false,training=true,truth=true,prior=12.0 
<Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
<dbsnp_138.hg19.vcf> \ 
-an DP -an QD -an FS -an SOR -an MQRankSum -an ReadPosRankSum \ 
-mode INDEL \ 
-tranche 100.0 -tranche 99.99 -tranche 99.98 -tranche 99.97 -tranche 99.96 \ 
-tranche 99.95 -tranche 99.94 -tranche 99.93 -tranche 99.92 -tranche 99.91 \ 
-tranche 99.90 -tranche 99.80 -tranche 99.70 -tranche 99.60 -tranche 99.50 \ 
-tranche 99.00 -tranche 98.00 -tranche 97.00 -tranche 96.00 -tranche 95.00 \ 
-tranche 94.00 -tranche 93.00 -tranche 92.00 -tranche 91.00 -tranche 90.00 \ 
-recalFile <indel.recalfile> \ 
-tranchesFile <indel.tranchesfile> \ 
-rscriptFile <indel.plotsfile> \ 
--maxGaussians 4 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T ApplyRecalibration \ 
-R <reference_genome_fasta> \ 
-input <cohort_indel_vcf> \ 
-mode INDEL \ 
-recalFile <indel.recalfile> \ 
-tranchesFile <indel.tranchesfile> \ 
--ts_filter_level 99.0 \ 
-o <postVQSR_indel.vcf> 
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2.6.1.4 CombineVariants (GATK) 

SNV, indel and mixed variant VCFs were merged following VQSR and hard filtering, 

respectively. 

 

 

2.6.1.5 ValidateVariants (GATK) 

Information and format within the merged VCF file were validated. 

### Validate VCF File ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T ValidateVariants \ 
-R <reference_genome_fasta> \ 
--dbsnp <dbsnp_138.hg19.vcf> \ 
--reference_window_stop 300 \ 
-V <cohort_flagged_vcf> 

 

2.6.1.6 Hardy-Weinburg Equilibrium and Missingness Hard Filtering 

Variant sites with a p-value falling under the threshold of 10-6 when testing for Hardy 

Weinburg Equilibrium exact test (Wigginton, Cutler and Abecasis, 2005), were flagged 

### Variant Hard-Filtration ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T VariantFiltration \ 
-R <reference_genome_fasta> \ 
-V <cohort_other_vcf> \ 
--filterExpression "QD < 2.0" \ 
--filterName "OtherHardQD" \ 
--filterExpression "FS > 200.0" \ 
--filterName "OtherHardFS" \ 
--filterExpression "ReadPosRankSum < -20.0" \ 
--filterName "OtherHardReadPosRankSum" \ 
-o <cohort_other_filtered_vcf> 

### Merge VCF Files ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T CombineVariants \ 
-R <reference_genome_fasta> \ 
-V:snp <postVQSR_snp.vcf> \ 
-V:indel <postVQSR_indel.vcf> \ 
-V:other <cohort_other_filtered_vcf> \ 
-o <cohort_flagged_vcf> \ 
-assumeIdenticalSamples \ 
-genotypeMergeOptions PRIORITIZE \ 
-priority snp,indel,other 
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for removal using VCFtools - - hwe. Variant sites missing greater than 10% of data were 

flagged for exclusion using VCFtools - - maxmissing.  

Flagged variants were removed from further analysis using VCFtools parameters --

remove-filtered-all --recode --recode-INFO-all. 

 

 

2.6.2 Variant filtration of Cohort 2 

Software and corresponding versions used throughout variant filtration are listed in Table 

2-17. Input files for analysis were sourced from the GATK Resource Bundle for reference 

genome hg19, available at: 

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/ (Table 2-18). 

 

Software Version 

Genome Analysis ToolKit (GATK) 3.8-0-ge9d806836 

VCFtools 0.1.14-gcc-8.2.0-srywzy 

Picard 2.20.2-SNAPSHOT 

Table 2-17 Software used at variant filtration. 

 

Input  Version 

Reference Genome UCSC hg19 

VQSR Model Training Set dbsnp 138 (hg19) 

hapmap 3.3 (hg19) 

omni 2.5 (hg19) 

1000G Phase 1 High-Confidence SNPs 

(hg19) 

Mills Gold Standard Indels 

Table 2-18 Input datasets used at variant filtration. 

 

### Removal of VQSR Flagged Variants ### 
 
vcftools \ 
--vcf <cohort_flagged_vcf> \ 
--out <cohort_filtered_vcf> \ 
--remove-filtered-all \ 
--recode \ 
--recode-INFO-all 

ftp://gsapubftp- anonymous@ftp.broadinstitute.org/bundle/hg19/
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2.6.2.1 Split Cohort VCF by variant type 

The cohort VCF file was split by variant type using SelectVariants (GATK) and output 

into distinct cohort SNV, indel and mixed VCF files. 

 

 

2.6.2.2 VQSR and Hard Filtering  

VariantRecalibration (GATK) and ApplyRecalibration (GATK) were run independently on 

SNV and indel raw variants. 

Mixed variants not falling into these variant types were hard filtered using GATK Best 

Practices for indel filtration, as too few variants fell into this category to train the Gaussian 

mixture model of VQSR (Table 2-16). 

 

### Split Variants by Variant Type ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T SelectVariants \ 
-R <reference_genome_fasta> \ 
--variant <newly_genotyped_cohort_vcf> \ 
-L chr1 -L chr2 -L chr3 -L chr4 -L chr5 \ 
-L chr6 -L chr7 -L chr8 -L chr9 -L chr10 \ 
-L chr11 -L chr12 -L chr13 -L chr14 -L chr15 \ 
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 \ 
-L chr21 -L chr22 -L chrX -L chrY \ 
-o <cohort_snp_vcf> \ 
-selectType SNP 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T SelectVariants \ 
-R <reference_genome_fasta> \ 
--variant <newly_genotyped_cohort_vcf> \ 
-L chr1 -L chr2 -L chr3 -L chr4 -L chr5 \ 
-L chr6 -L chr7 -L chr8 -L chr9 -L chr10 \ 
-L chr11 -L chr12 -L chr13 -L chr14 -L chr15 \ 
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 \ 
-L chr21 -L chr22 -L chrX -L chrY \ 
-o <cohort_indel_vcf> \ 
-selectType INDEL 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T SelectVariants \ 
-R <reference_genome_fasta> \ 
--variant <newly_genotyped_cohort_vcf> \ 
-L chr1 -L chr2 -L chr3 -L chr4 -L chr5 \ 
-L chr6 -L chr7 -L chr8 -L chr9 -L chr10 \ 
-L chr11 -L chr12 -L chr13 -L chr14 -L chr15 \ 
-L chr16 -L chr17 -L chr18 -L chr19 -L chr20 \ 
-L chr21 -L chr22 -L chrX -L chrY \ 
-o <cohort_other_vcf> \ 
-xlSelectType SNP \ 
-xlSelectType INDEL 
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### VQSR ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T VariantRecalibrator \ 
-R <reference_genome_fasta> \ 
-input <cohort_snp_vcf> \ 
-resource:hapmap,known=false,training=true,truth=true,prior=15.0 
<hapmap_3.3.hg19.sites.vcf> \ 
-resource:omni,known=false,training=true,truth=true,prior=12.0 
<1000G_omni2.5.hg19.sites.vcf> \ 
-resource:1000G,known=false,training=true,truth=false,prior=10.0 
<1000G_phase1.snps.high_confidence.hg19.sites.vcf> \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
<dbsnp_138.hg19.vcf> \ 
-an DP -an QD -an FS -an SOR -an MQ -an MQRankSum -an ReadPosRankSum \ 
-mode SNP \ 
-tranche 100.0 -tranche 99.99 -tranche 99.98 -tranche 99.97 -tranche 99.96 \ 
-tranche 99.95 -tranche 99.94 -tranche 99.93 -tranche 99.92 -tranche 99.91 \ 
-tranche 99.90 -tranche 99.80 -tranche 99.70 -tranche 99.60 -tranche 99.50 \ 
-tranche 99.00 -tranche 98.00 -tranche 97.00 -tranche 96.00 -tranche 95.00 \ 
-tranche 94.00 -tranche 93.00 -tranche 92.00 -tranche 91.00 -tranche 90.00 \ 
-recalFile <snp.recalfile> \ 
-tranchesFile <snp.tranchesfile> \ 
-rscriptFile <snp.plotsfile> \ 
--maxGaussians 4 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T ApplyRecalibration \ 
-R <reference_genome_fasta> \ 
-input <cohort_snp_vcf> \ 
-mode SNP \ 
-recalFile <snp.recalfile> \ 
-tranchesFile <snp.tranchesfile> \ 
--ts_filter_level 99.5 \ 
-o <postVQSR_snp.vcf> 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T VariantRecalibrator \ 
-R <reference_genome_fasta> \ 
-input <cohort_indel_vcf> \ 
-resource:mills,known=false,training=true,truth=true,prior=12.0 
<Mills_and_1000G_gold_standard.indels.hg19.sites.vcf> \ 
-resource:dbsnp,known=true,training=false,truth=false,prior=2.0 
<dbsnp_138.hg19.vcf> \ 
-an DP -an QD -an FS -an SOR -an MQRankSum -an ReadPosRankSum \ 
-mode INDEL \ 
-tranche 100.0 -tranche 99.99 -tranche 99.98 -tranche 99.97 -tranche 99.96 \ 
-tranche 99.95 -tranche 99.94 -tranche 99.93 -tranche 99.92 -tranche 99.91 \ 
-tranche 99.90 -tranche 99.80 -tranche 99.70 -tranche 99.60 -tranche 99.50 \ 
-tranche 99.00 -tranche 98.00 -tranche 97.00 -tranche 96.00 -tranche 95.00 \ 
-tranche 94.00 -tranche 93.00 -tranche 92.00 -tranche 91.00 -tranche 90.00 \ 
-recalFile <indel.recalfile> \ 
-tranchesFile <indel.tranchesfile> \ 
-rscriptFile <indel.plotsfile> \ 
--maxGaussians 4 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T ApplyRecalibration \ 
-R <reference_genome_fasta> \ 
-input <cohort_indel_vcf> \ 
-mode INDEL \ 
-recalFile <indel.recalfile> \ 
-tranchesFile <indel.tranchesfile> \ 
--ts_filter_level 99.0 \ 
-o <postVQSR_indel.vcf> 
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2.6.2.3 CombineVariants (GATK) 

SNV, indel and mixed variant VCFs were merged following VQSR and hard filtering, 

respectively. 

 

2.6.2.4 ValidateVariants (GATK) 

Information and format within the merged VCF file were validated. 

 

### Validate VCF File ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T ValidateVariants \ 
-R <reference_genome_fasta> \ 
--dbsnp <dbsnp_138.hg19.vcf> \ 
--reference_window_stop 300 \ 
-V <cohort_flagged_vcf> 

 

### Variant Hard-Filtration ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T VariantFiltration \ 
-R <reference_genome_fasta> \ 
-V <cohort_other_vcf> \ 
--filterExpression "QD < 2.0" \ 
--filterName "OtherHardQD" \ 
--filterExpression "FS > 200.0" \ 
--filterName "OtherHardFS" \ 
--filterExpression "ReadPosRankSum < -20.0" \ 
--filterName "OtherHardReadPosRankSum" \ 
-o <cohort_other_filtered_vcf> 

### Merge VCF Files ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T CombineVariants \ 
-R <reference_genome_fasta> \ 
-V:snp <postVQSR_snp.vcf> \ 
-V:indel <postVQSR_indel.vcf> \ 
-V:other <cohort_other_filtered_vcf> \ 
-o <cohort_flagged_vcf> \ 
-assumeIdenticalSamples \ 
-genotypeMergeOptions PRIORITIZE \ 
-priority snp,indel,other 
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2.6.2.5 VQSR Flagged Variant Filter 

Variants sites flagged for removal during VQSR were removed from downstream 

analyses using VCFtools --remove-filtered-all, with --recode and --recode-INFO-all 

parameters. 

 

 

2.6.2.6 Hardy-Weinburg Equilibrium and Missingness Hard Filtering 

Variant sites with a p-value falling under the threshold of 10-6 when testing for Hardy 

Weinburg Equilibrium exact test (Wigginton, Cutler and Abecasis, 2005), were flagged 

for removal using VCFtools -- hwe. Variant sites missing greater than 2% of data were 

flagged for exclusion using VCFtools -- maxmissing.  

Flagged variants were removed from further analysis using VCFtools parameters  

 

2.6.2.7 Variant Evaluation 

VariantEval (GATK) was run with parameters --evalModule CountVariants and --

stratificationModule Sample, to simultaneously evaluate variant counts and generate an 

index for the newly created VCF. 

CollectVariantCallingMetrics (Picard) was run to generate a more detailed evaluation 

report. 

 

 

### Removal of VQSR Flagged Variants ### 
 
vcftools \ 
--vcf <cohort_flagged_vcf> \ 
--out <cohort_filtered_vcf> \ 
--remove-filtered-all \ 
--recode \ 
--recode-INFO-all 

--remove-filtered-all --recode --recode-INFO-all. 

### Variant Evaluation ### 
 
java <java_arguments> -jar <GATK_jar_file> \ 
-T VariantEval \ 
-R <reference_genome_fasta> \ 
-eval <cohort_filtered_vcf> \ 
--evalModule CountVariants \ 
--stratificationModule Sample \ 
-noEV \ 
-o <cohort_filtered.varianteval> 
 
java <java_arguments> -jar <picard_jar_file> CollectVariantCallingMetrics \ 
INPUT= <cohort_filtered_vcf> \ 
OUTPUT= <cohort_filtered.varianteval.picardmetrics> \ 
DBSNP= <dbsnp_138.hg19.vcf> 
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2.6.3 Variant filtration of Cohort 3 

Software and corresponding versions used throughout variant filtration are listed in Table 

2-19. 

 

Software Version 

BCFtools (Danecek et al., 2021) 1.15 

VCFtools 0.1.17 

Table 2-19 Software used in variant filtration. 

 

2.6.3.1 Indel Removal 

Indel variants sites flagged for removal from downstream analyses using VCFtools --

remove-indels --remove-filtered-all, with --recode and --recode-INFO-all parameters. 

2.6.3.2 Hardy-Weinburg Equilibrium and Missingness Hard Filtering 

Variant sites with a p-value falling under the threshold of 10-6 when testing for Hardy 

Weinburg Equilibrium exact test (Wigginton, Cutler and Abecasis, 2005), were flagged 

for removal using VCFtools -- hwe. Variant sites missing greater than 2% of data were 

flagged for exclusion using VCFtools -- maxmissing.  

Flagged variants were removed from further analysis using VCFtools parameters --

remove-filtered-all --recode --recode-INFO-all. 

 

2.6.3.3 Quality Flagged Variant Filter 

In the absence of VQSR variants sites were flagged for removal using BCFtools with 

filtering thresholds set as defined in Table 2-20. These hard-filtering thresholds are set 

as outlined in the table using default thresholds recommended by GATK Best Practices.  
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Filter Description Threshold 

QD Variant quality / depth  < 2.0 

MQ Mapping Quality < 40.0 

FS Phred-score Fisher’s test p-value for strand 

bias 

> 60.0 

HaplotypeScore Consistency of the site with haplotype > 13.0 

MQRankSum Mapping quality of reference reads vs 

alternative reads 

<-12.5 

ReadPosRankSum Distance of alternative allele from the end of 

the reads 

< -8.0 

Table 2-20 GATK recommended variant quality filters for SNVs. 

 

2.6.3.4 Variant Evaluation 

VCFtools --TsTv-summary was run to evaluate variant counts and measure transition-

transversion ratios per individual. VCFtools --depth was run to evaluate mean depth of 

sequencing per individual. 

 

2.7 Cohort-level QC 

2.7.1 Cohort-level QC of Cohort 1 

Software and corresponding versions used throughout cohort QC are listed in Table 

2-21. 

Software  Version 

Plink (Purcell et al., 2007) plink-1.9-beta6.10-gcc-8.2.0-3uh4ocr 

R studio 3.4.3 (plotting)/ 4.0.2(manipulation) 

ggplot2  3.2.0 

Peddy  

(Pedersen and Quinlan, 2017) 

0.4.3 

Htslib  htslib-1.9-gcc-8.2.0-7jwlitg 

VCFtools 0.1.14 

Python python-3.7.0-gcc-8.2.0-g4ikncu 

Tidyverse (Wickham et al., 2019) 1.3.0 

Table 2-21 Software used at cohort-level QC. 
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The filtered cohort-level VCF was converted to plink format using plink - - make-bed. 

Default sex, family IDs and parental information were updated using plink - - update-sex, 

- - update-ids and - - update-parents, respectively. 

 

Pruning of variants for downstream analysis was carried out using the following plink 

parameters: 

 
 

The cohort-level QC-filtered VCF was prepared for input to peddy by zipping (bgzip) and 

indexing (tabix) (Li et al., 2009). A standard input ped file was prepared from clinical data. 

peddy was run as standard (- -p 4 - -plot) with output files outlined in Table 2-25 

generated for manual inspection, along with an interactive html report file (Pedersen and 

Quinlan, 2017). 

2.7.1.1 Sex Check 

 

Plink - - sex-check compared sex assignments against sex imputed from X-chromosome 

inbreeding coefficients. 

 

To confirm sample identity, sex-check was performed on pruned variants, by evaluating 

X chromosome inbreeding coefficients as measured by an F-statistic (Table 2-22). The 

default F value threshold is <0.2 indicating a female call and values >0.8 indicating male 

assignment. In the case of this small cohort, the F threshold was reduced to values 

greater than 0.7 being sufficient for male gender assignment. A problem status occurs 

when there is discordance between the imputed sex and that input from phenotypic data.  

 

Sex check designated 28 individuals as male and 14 individuals as female. This result 

excluded three individuals from analysis by identifying discordance between reported 

and imputed sex (Anderson et al., 2010). Individuals are excluded from further analyses 

to eliminate downstream inaccuracies. 

  

 - -indep-pairwise 50 5 0.2 
- -maf 0.01 



   

 

51 

 

 

FID IID Reported 

Sex 

Imputed 

Sex 

Status F-statistic 

AS023 AS023C1 1 1 OK 0.843 

AS023 AS023F 1 1 OK 0.746 

AS023 AS023M 2 2 OK -0.167 

AS070 AS070C 1 1 OK 0.880 

AS070 AS070M 2 2 OK -0.082 

AS075 AS075C 1 1 OK 0.835 

AS075 AS075F 1 1 OK 0.874 

AS108 AS108C1 2 1 PROBLEM 0.852 

AS108 AS108C2 1 2 PROBLEM -0.111 

AS108 AS108F 1 2 PROBLEM -0.115 

AS108 AS108M 2 2 OK -0.040 

AS126 AS126C 1 1 OK 0.862 

AS142 AS142C1 1 1 OK 0.871 

AS157 AS157C1 1 1 OK 0.789 

AS157 AS157F 1 1 OK 0.871 

AS157 AS157M 2 2 OK -0.120 

AS190 AS190C 2 2 OK 0.021 

AS198 AS198F 1 1 OK 0.850 

AS198 AS198M 2 2 OK 0.027 

AS217 AS217C1 1 1 OK 0.859 

AS217 AS217F 1 1 OK 0.871 

AS217 AS217M 2 2 OK -0.153 

AS218 AS218C1 1 1 OK 0.838 

AS218 AS218F 1 1 OK 0.849 

AS218 AS218M 2 2 OK -0.113 

AS306 AS306 1 1 OK 0.862 

AS306 AS306F 1 1 OK 0.861 

AS306 AS306M 2 2 OK -0.163 

AS310 AS310C1 1 1 OK 0.890 

AS311 AS311C1A 1 1 OK 0.812 
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AS311 AS311C1B 1 1 OK 0.858 

AS312 AS312 1 1 OK 0.867 

AS314 AS314 1 1 OK 0.871 

AS315 AS315 2 2 OK -0.117 

AS316 AS316C1 1 1 OK 0.893 

AS319 AS319 1 1 OK 0.824 

AS321 AS321 1 1 OK 0.881 

AS322 AS322C1 2 2 OK -0.124 

AS420 AS420C1 1 1 OK 0.841 

AS420 AS420C2 1 1 OK 0.853 

AS420 AS420F 1 1 OK 0.880 

AS420 AS420M 2 2 OK -0.181 

 

Table 2-22 F-statistics in imputation of sex from genomic data. 

FID indicates the family ID with PID indicating the unique individual ID. F refers to father, M to mother and 
C1 and C2 to children 1 and 2, respectively. The F-statistic is derived from the inbreeding coefficient. F-
statistic greater than 0.8 indicate male sex, with values less than 0.2 indicating female. PROBLEM in that 
status field for each sample shows discrepancy between the reported and imputed sex for that sample. OK 
indicated that no discrepancy in sex was detected.  

 

Contradictions between clinically reported sex and sex inferred from genotypes were 

also highlighted by peddy (Figure 2-3) (Pedersen and Quinlan, 2017). Sex is estimated 

through genotype evaluation of the pseudo-autosomal regions of the X chromosome. 

With one X chromosomes, males would be expected to have no heterozygous genotype 

calls on the X chromosome. peddy measures sex as the ratio of heterozygous to 

homozygous genotypes in this region. 

 



   

 

53 

 

 

Figure 2-3 Cohort-level sex-check. 

Genotype inferred sex is estimated from the proportion of heterozygous/homozygous-alternative genotypes 
on the X chromosome. The higher the proportion of such calls, the increased likelihood of female sex. 
Colours, red (female) and blue (male), illustrate the sex reported from clinical data. 

 

2.7.1.2  Relatedness Confirmation 

Plink - - genome was used to compute genome-wide identity by descent (IBD) estimates 

and report the proportion of IBD, i.e., PI_HAT= P(IBD=2) + 0.5*P(IBD=1). 

 

Imputation of relatedness was carried out as further confirmation of sample identity and 

as verification of familial relationships, as well as identifying any potential duplicate 

samples. Plink estimates relatedness by calculating genome-wide estimates of identity 

by decent for each pair of individuals in the cohort. Identity by decent is an estimate of 

the number of alleles in the pair of individuals that are derived from the same ancestral 

chromosome. Unrelated individuals are expected to have a negligible PI_HAT estimate, 

while parent-child and sibling pairs are expected to have a PI_HAT estimate of 0.5. 

Figure 2-4 shows the distribution of PI_HAT across the cohort. As expected, most 

relationships show negligible PI_HAT values indicating lack of relatedness. A clustering 

at approximately 0.5 is also expected as this represent those individuals that are truly 
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related in the cohort. The relationship scoring 1.0 indicates a duplicated sample in the 

cohort, one of which was removed from further analyses. 

 

Relatedness estimates were calculated to confirm true familial relationship. IBD 

calculations are also used to identify duplicates and distant relatives in the cohort. Five 

individuals in the cohort show discordance between reported relatedness and calculated 

relatedness. Three of these individuals had already been excluded from downstream 

analysis based on failing sex-check. Related individuals are excluded from PCA to 

eliminate overrepresentation of alleles in the population.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2-4 Cohort relatedness as measure by PI_HAT.  

This plot illustrates the degree of relatedness within the cohort. Pairwise relationships are systematically 
investigated for PIHAT estimates of identity by decent. The dashed red line indicates cut-off for unrelated 
individuals in the cohort. Any relationships exceeding this cut-off are true related or duplicate samples. This 
cut-off is used to exclude related individuals from downstream PCA analyses. 

 

Further investigation into the validity of the familial relationship was carried out in the 

comparison of expected IBD and IBD estimated (Figure 2-5). A linear relationship is 

expected to indicate correct familial relationship data. Deviation from this expectation 

indicates discordance between input family information and imputed IBD. This is evident 

in the outliers present in Figure 2-5. 
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Figure 2-5 Expected IBD vs estimated IBD.  

Expected pairwise IBD is derived from phenotypic data, while estimated pairwise IBD is calculated from 
genotypes. Deviations from expectation can be identified as points straying from linear.  

 

Relatedness within the cohort was also imputed by peddy as Identity-by-State (Pedersen 

and Quinlan, 2017) (Figure 2-6). IBS0 reports the number of shared variant alleles, the 

number of variant sites at which individuals share 0. Errors are noted in Figure 2-6 where 

the colour of each relationship point, as specified in the legend, is not positioned where 

expected from the relationship specified as the coefficient of relatedness. 
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Figure 2-6 Relatedness inference. 

IBS0 statistics vs IBS2 statistics plots the number of variant sites at which individuals share 0 alleles (x-axis) 
vs the coefficient of relatedness (y-axis). Colours represent the clinically reported relationships within the 

cohort as outlined in the key. 

 

2.7.1.3  Identification of population substructures 

Principal component analysis (PCA) was used to identify potential sample clustering and 

outliers. Principal components representing the greatest variance may reflect population 

substructures. Pruning of variants was carried out prior to PCA to ensure the variants on 

which the principal components are derived are common (MAF >0.01) are approximately 

independent.  

 

Plink - - pca var wts was run to compute principal components within the cohort on 

unrelated individuals. Independence is determined for SNP window sizes of 50kb with 

the number of SNPs to shift window at each step of 5. Independent SNPs are filtered by 

removing one of a pair of SNPs within the window if the pairwise linkage disequilibrium 

is greater than an r2 threshold 0.2. This ensures that the principal components are not 

computed to represent areas of local linkage disequilibrium. Duplicate and closely related 

individuals were removed prior to computation of principal components to reduce bias 

from over-representation of alleles (n=17 individuals removed with n=25 individuals 

remaining).   
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R Studio (plot) was used to plot the top two principal components and top five principal 

components. All samples in the cohort are reported to be of European ancestry. PCA of 

a total of 37,263 variants passing QC filters shows clustering of principal components 

with deviation likely reflecting sub-European population structures (Figure 2-7,Figure 

2-8). 

 

 

 

 

 

 

 

 

 

 

Figure 2-7 Principal component 1 and principal component 2. 

 

 

 

 

 

 

 

 

 

 

Figure 2-8 Top five principal components. 

 

All samples within the cohort are of European ancestry as estimated by peddy (Pedersen 

and Quinlan, 2017). This randomised PCA is trained on 2,504 samples from the 1000 

Genomes Project (Halko, Martinsson and Tropp, 2009; The 1000 Genomes Project 
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Consortium, 2015). Figure 2-9 presents four principal components of the cohort projected 

onto 1000G, and ancestry is predicted as European in all samples.  

 

Figure 2-9 Ancestry evaluation through principal components 1,2 and 3. 

The first three principal components are calculated during PCA of 1000 genomes dataset and the cohort 
under analysis and are plotted against each other. Each point on the graph represents an individual, with 
bold points representing the samples under investigation and faint points representing samples from the 
1000G dataset. Samples cluster into ‘super-populations,’ with corresponding ancestry denoted by colour, 
outlined in the legend. The cohort under investigation are visible as bold purple points, clustering within the 
European population. Abbreviations: PC principal component, PCA principal component analysis, AFR 
African, AMR Ad Mixed American, EAS East Asian, EUR European, SAS South Asian. 
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2.7.1.4 Cohort QC in summary 

Cohort–level QC of the WES dataset flagged seven individuals for errors in sample 

identity as outlined. Discordance in reported and imputed sex flagged 3 samples for 

removal from the cohort (Table 2-23). Following inspection of relationships, 1 sample 

was removed because of sample duplication and 4 samples were removed due to 

sample mix-up, as reinforced by their incorrect sex assignment (in n=3).  

 

VCFtools --remove-indv was used to remove flagged individuals from the cohort VCF file 

with parameters --recode and --recode-INFO-all.  

This removes the sample from the ID column of the VCF file. However, variants occurring 

in these individuals are not removed from the cohort VCF file. These variants remain 

present in the cohort file but are unassigned to an individual as the respective ID column 

has been removed. These now unassigned variants are removed using the filter function 

in tidyverse with specification grepl('0/1|1/0|1/1’ to select out variants in a specific 

individual. 

 

All individuals within families AS023 and AS108 (n=7) were removed from downstream 

analyses based on the above deviations from expectation. Confirmation of these sample 

mix-ups was obtained through an independently sequenced genotyping array. This 

indicates that sample misidentification did not occur during preparation of the sequencing 

run, but rather are the result of an error in labelling of the DNA stocks. These DNA stocks 

were subsequently destroyed to prevent future errors. 

 

Flagged Sample Sex  Relatedness 

AS023C1 TRUE Unrelated to AS023F and 

AS023M 

AS023F TRUE Unrelated to AS023C1 

AS023M TRUE Unrelated to AS023C1 

AS108C1 FALSE Unrelated to AS108M 

AS108C2 FALSE Duplicate sample of 

AS108F 

AS108F FALSE Duplicate sample of 

AS108C2 

AS108M TRUE Related to AS108F 

Table 2-23 Samples flagged for removal by cohort-level QC checks.  

The samples included in this table were removed based on discrepancies in clinically reported characteristics 
and genetically imputed characteristics.  
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Individual AS310 was excluded from downstream analyses based on consent (updates 

from clinical collaborator Professor Louise Gallagher, May 2021). Data was removed 

from the cohort dataset. No individuals were flagged for removal based on population 

stratification in these analyses.  

 

2.7.2 Cohort-level QC of Cohort 2 

The cohort-level QC-filtered VCF was prepared for input to peddy by zipping (bgzip) and 

indexing (tabix) (Li et al., 2009)(Table 2-24). A standard input ped file was prepared from 

clinical data. peddy was run as standard with output files outlined in Table 2-25 

generated for manual inspection, along with an interactive html report file (Pedersen and 

Quinlan, 2017). 

 

Software Version 

Peddy 0.4.3 

Samtools/htslib htslib-1.9-gcc-8.2.0-7jwlitg 

Python python-3.7.0-gcc-8.2.0-g4ikncu 

Table 2-24 Software used at cohort-level QC. 

 

Suffix Context Format 

.ped_check 

.ped_check.rel-difference 

Discrepancies in ped-reported and 

genotype-inferred relationship 

csv, png  

.sex_check Discrepancies in ped-reported and 

genotype-inferred sex 

csv, png 

.het_check Samples with higher levels of HET 

calls 

csv, png 

.pca_check 

.background_pca 

Ancestry prediction based on 

projection onto 1000G principal 

components 

csv, png, json 

Table 2-25 Report files generated by peddy cohort analysis tool. 

 

2.7.2.1 Sex check 

To confirm sample identity, contradictions between clinically reported sex and sex 

inferred from genotypes were highlighted by peddy (Pedersen and Quinlan, 2017). Sex 

is estimated through genotype evaluation of the pseudo-autosomal regions of the X 

chromosome. With one X chromosome, males would be expected to have no 
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heterozygote genotype calls on the X chromosome. peddy measures sex as the ratio of 

heterozygous to homozygous genotypes in this region (Pedersen and Quinlan, 2017). 

There are no discrepancies between clinically reported sex and sex inferred from 

genotypes across the cohort (Figure 2-10). 

 

 

Figure 2-10 Cohort-level sex-check. 

Genotype inferred sex is estimated from the proportion of heterozygous/homozygous-alternative genotypes 
on the X chromosome. The higher the proportion of such calls, the increased likelihood of female sex. 
Colours, red (female) and blue (male), illustrate the sex reported from clinical data. 

 

2.7.2.2 Relatedness confirmation 

There are no contradictions between self-reported relationships and relationships 

inferred from genotypes across the cohort (Figure 2-11). peddy runs a modification of 

the KING algorithm across a total of 23,556 variant sites (Manichaikul et al., 2010; 

Pedersen and Quinlan, 2017). This relatedness inference generates and plots statistics 

IBS0 and IBS2. IBS0 represents the number of variant sites at which a pair of individuals 

shares 0 alleles, for example a site at which one individual is A/A and the other is G/G. 

IBS0 enables the differentiation between sibling-pair and parent-offspring relationships, 

not possible through traditional relatedness estimates as both relationships are 
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estimated at 0.5. IBS0 would be expected near 0 for parent-offspring pairs as sites not 

shared between parent and offspring would be Mendelian violations. In contrast, an IBS0 

statistic greater than 0 indicates that not all variant sites are shared, as would be 

expected in sibling-pair relationships. IBS2 estimates the number of variant sites at which 

both samples share the same genotype (both alleles). In plotting IBS0 and IBS2 

separation can be made between related and unrelated individuals, while also 

differentiating between sibling-pair and parent-offspring relationships. 

 

 

Figure 2-11 Relatedness inference. 

IBS0 statistics vs IBS2 statistics plots the number of variant sites at which individuals share 0 alleles (x-axis) 
vs the number of variant sites with the same genotype (y-axis). Colours represent the clinically reported 
relationships within the cohort as outlined in the key. 

 

2.7.2.3 Identification of population substructures 

All samples within the cohort are of European ancestry as estimated by peddy  

(Pedersen and Quinlan, 2017). This randomised PCA is trained on 2,504 samples from 

the 1000 Genomes Project (Halko, Martinsson and Tropp, 2009; The 1000 Genomes 

Project Consortium, 2015). Four principal components of the cohort are projected onto 

1000G, and ancestry is predicted (Figure 2-12). 
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Figure 2-12 Ancestry evaluation through principal components 1 and 2. 

The first two principal components are calculated during PCA of 1000 genomes dataset and the cohort under 
analysis and are plotted against each other. Each point on the graph represents an individual, with bold 
square points representing the samples under investigation and faint points representing samples from the 
1000G dataset. Samples cluster into ‘super-populations,’ with corresponding ancestry denoted by colour, 
outlined in the legend. The cohort under investigation are visible as bold purple squares, clustering within 
the European population. Abbreviations: PC principal component, PCA principal component analysis, AFR 
African, AMR Ad Mixed American, EAS East Asian, EUR European, SAS South Asian. 
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2.7.3 Cohort-level QC of Cohort 3 

Software and corresponding versions used throughout cohort QC of Cohort 3 are listed 

in Table 2-26. 

 

Software  Version 

Plink 1.07 

R studio 4.0.3 

ggplot2 3.3.3 

Tidyverse 1.3.0 

Table 2-26 Software used at cohort-level QC. 

 

The genome-wide genotyping dataset of Cohort 3 was interrogated during cohort QC in 

plink format (bfile). Default sex, family IDs and parental information were updated using 

plink - - update-sex, - - update-ids and - - update-parents, respectively. 

 

Pruning of variants for analysis was carried out using the following plink parameters: 

 
 

2.7.3.1 Sex Check 

Plink - - sex-check compared sex assignments against sex imputed from X-chromosome 

inbreeding coefficients. 

 

Sex check was performed on the genome-wide genotype data of Cohort 3. To confirm 

sample identity, sex-check was performed by evaluating X chromosome inbreeding 

coefficients as measured by an F-statistic. The default F value threshold to determine 

imputed set is <0.2 indicating a female call and values >0.8 indicating male assignment. 

A problem status occurs when there is discordance between the imputed sex and that 

input from phenotypic data, otherwise the sample is passed by the sex-check. 

 

Sex check designated 14 individuals as male and 15 individuals as female. No 

discordance between reported and imputed sex was identified and no individuals were 

excluded from further analyses. 

 --geno 0.2  
--hwe 0.000001 
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2.7.3.2 Relatedness Confirmation 

Plink - - genome was used to compute genome-wide identity by descent (IBD) estimates 

and report the proportion of IBD, i.e., PI_HAT= P(IBD=2) + 0.5*P(IBD=1). 

Imputation of relatedness was carried out as further confirmation of sample identity and 

as verification of familial relationships, as well as identifying any potential duplicate 

samples. Plink estimates relatedness by calculating genome-wide estimates of identity 

by decent (IBD) for each pair of individuals in the cohort. IBD is an estimate of the number 

of alleles in the pair of individuals that are derived from the same ancestral chromosome. 

 

Relatedness was imputed from genome-wide genotypes across the cohort. These 

variant sites were pruned to variant sites with an 80% genotyping rate and passing a 

Hardy-Weinburg exact test at a threshold of p<=1e-06 (removing n=3,823 variant sites). 

Investigation into the validity of the familial relationship was carried out in the comparison 

of expected IBD and IBD estimated (Figure 2-13). A linear relationship is expected to 

indicate correct familial relationship data. Deviation from this expectation indicates 

discordance between input family information and imputed IBD.  
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Figure 2-13 Expected IBD vs estimated IBD. 

Expected pairwise IBD is derived from phenotypic data, while estimated pairwise IBD is calculated from 
genotypes. Deviations from expectation would be identified as points straying from a linear relationship. 
Pairwise relationships are present for this cohort of 29 individuals estimated from genome-wide genotyping.  

 

2.7.4 Variant quality 

The 23,556 variant sites interrogated by peddy were assessed for depth of coverage and 

rate of heterozygosity. Presented here are the variant filtration metrics for Cohort 2 

indicating that sequenced samples fall within the expected range (Figure 2-14, Table 

2-27). Deviations from this range would be indicative of potential sample contamination 

or consanguinity within the dataset. 
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Figure 2-14 Rate of heterozygosity across samples. 

Each individual in the cohort is represented as a blue point. All samples are reported as ‘OK’ as per peddy 
expected range for proportion of heterozygous calls across 23,556 variant sites (X-axis) and depth of 
coverage (y-axis). 

 

Family 

ID 

Sample 

ID 

Mean 

Depth 

Heterozygous 

Call Rate 

Het 

Ratio 

Inter-decile range of b-

allele frequency 

AS315 AS315 34.89 0.99 0.34 0.21 

AS322 AS322C1 35.91 0.99 0.34 0.20 

AS420 AS420F 42.83 1 0.35 0.19 

AS420 AS420C2 42.03 1 0.35 0.19 

AS420 AS420C1 33.26 1 0.35 0.22 

AS420 AS420M 30.48 0.99 0.35 0.24 

 

Table 2-27 Heterozygosity check.  

Reported are QC measures pertaining to rates of heterozygosity at the annotated variant call sites. Mean 
Depth presents the mean depth of coverage for the annotated variant sites. The proportion of sites that were 
heterozygous is presented as Het Ratio. Inter-decile range of b-allele frequency is computed as the number 
of alternative allele sites as a proportion of reference and alterative variant sites and reported the difference 
between the 90th and the 10th percentile of the b-allele frequency. Large values of this measure are likely 
to indicate sample contamination. 
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2.8 Variant annotation 

Variant annotation was aligned for annotation of the variant set of Cohort 1, Cohort 2 and 

Cohort 3 as follows (Table 2-28). 

 

Software Version 

dbNSFP (Liu et al., 2020) 4.0a (Cohort 1 and 2), 4.3a (Cohort 3) 

Java openjdk version "1.8.0_242" 

Rstudio version 4.0.2 (Cohort 1 and 2), version 

4.0.3 (Cohort 3) 

tidyverse 1.3.0 

Table 2-28 Variant annotation software and versions. 

 

2.8.1 dbNSFP annotation 

Variants were annotated using dbNSFP (database of non-synonymous functional 

variants) through the java search_dbNSFP40a tool. dbNSFP compiles annotations from 

29 prediction algorithms, nine conservation scores, allele frequencies from major 

population databases, including 1000 Genomes and gnomAD, as well as gene-based 

annotations of expression and interactions (Liu et al., 2016). These annotations are 

applied to an input call-set in VCF format using the dbNSFP java database search tool. 

 

Optional parameters -p (output existing VCF columns), -v hg19/hg38 (specifying 

reference genome), and -g (include full gene annotation set) were applied. Cohort 1 and 

Cohort 2 have been aligned to hg19, while Cohort 3 has been aligned to GrCh38. 

 

For a full outline of the variables included in the annotation refer to: 

 https://sites.google.com/site/jpopgen/dbNSFP. 

 

https://sites.google.com/site/jpopgen/dbNSFP
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2.8.2 Formatting and cleaning the dataset 

Reading dbNSFP annotation file directly to R in the absence of a data manipulation tool 

results in widespread errors, because of incorrect parsing. Due to the large number of 

variables under analysis in the input file (n=483), default parsing is the most effective 

strategy to input the data into a workable R environment (version 4.0.2 (Cohort 1 and 2), 

version 4.0.3 (Cohort 3)). The tidyverse toolkit was used in this manipulation. Specifically, 

readr (read_tsv) function was used to parse the dataset.  

 

 

Parsing is designated by the first 1000 rows in the data frame. This results in 

chromosome variables being designated as doubles. However, this causes errors when 

chromosomes X and Y are evaluated. For this reason, default parsing is overridden to 

consider all chromosome names as characters. 

### dbNSFP annotation 
 
#Set java memory requirements and set temporary directory to hold temporary files 
generated  
 
java  /// 
-Xmx6G -Xmx6G /// 
-Djava.io.tmpdir= <tmp>  /// 
 
# Run dbNSFP java search tool to run annotation 
 
search_dbNSFP43a /// 
 
# Define input and output files 
-i <input_vcf>  /// 
-o <output_csv> /// 
 
# output existing VCF columns in annotated csv output file 
-p  /// 
 
# include the full gene annotation set 
-g  /// 
 
# specify the reference genome 
-v hg38 

 
read_tsv(“", na = c("."), 
col_types = cols( 
hg19_chr = col_character(), 
hg18_chr = col_character(), 
'#chr' = col_character(), 
 
MutPred_score = col_skip(), 
MIM_id = col_skip(), 
.default = col_guess() 
) 
) 
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As outlined above parsing overwriting default parsing option was specified for variables. 

With the reason for each outlined.  

 

problems() was used to evaluate any parsing issues. 

as_tibble() was used to convert from data frame to tibble for optimal manipulation. 

 

 

2.9 Rare variant selection by allele frequency 

Rare variants isolated based on minor allele frequencies collated in the Genome 

Aggregation Database (gnomAD), using the non-Finnish European cohort (n=7,718 

individuals). Parameters used in rare variant filter are specified per cohort under 

investigation in Table 2-29. The annotated variant were filtered according to the workflow 

presented in Figure 2-15, and as detailed in 2.9 and 2.10. 
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Figure 2-15 Flow of variant filtering. 

Arrows show the direction of flow from each level of filtering (specified on the left). SFARI refers to Simons 
Foundation Autism Research Initiative Gene Module (Abrahams et al., 2013). DDD refers to the 
gene2phenotype database arising from the DDD study (Wright et al., 2015). 
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Cohort Parameter Description Cut-Off Reference 

1 gnomAD_exomes_NFE_AF Alternative 

allele frequency 

in the non-

Finnish 

European 

gnomAD 

exome samples 

(56,885 

samples) 

Rare 

variants 

isolated 

as those 

appearing 

at an 

allele 

frequency 

of less 

than 5% 

(Karczewski 

et al., 2020) 

2 gnomAD_genomes_NFE_AF 

<= 0.05 

Alternative 

allele frequency 

in the non-

Finnish 

European 

gnomAD 

genome 

samples (7,718 

samples) 

Rare 

variants 

isolated 

as those 

appearing 

at an 

allele 

frequency 

of less 

than 5% 

(Karczewski 

et al., 2020) 

3 gnomAD_genomes_NFE_AF 

<= 0.05 

Alternative 

allele frequency 

in the non-

Finnish 

European 

gnomAD 

genome 

samples 

(gnomAD 

genome 

samples v3.1) 

Rare 

variants 

isolated 

as those 

appearing 

at an 

allele 

frequency 

of less 

than 5% 

(Karczewski 

et al., 2020) 

Table 2-29 Rare variant isolation parameters. 
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2.10 Pathogenic variant selection  

Putatively pathogenic variants were classed as such when satisfying two or more of the 

conditions outlined in Table 2-30. CADD is an algorithm-based estimate of variant 

pathogenicity. The CADD phred-like score is phred-like rank score based on whole 

genome raw CADD scores. The larger the CADD-phred score the more likely the SNV 

annotated has damaging effect. The CADD-phred filter was set at variants with a score 

of >= 20. SIFT and Polyphen-2 were taken as candidate pathogenicity measures due to 

their widespread use in human genomics. Criteria for pathogenic as determined by SIFT 

was taken as “D,” indicating damaging, measured by SIFT4G_pred (SIFT 4G < 0.05). 

 

In addition to these classifications, REVEL was considered for use in pathogenicity 

determination.  REVEL variant scoring ranges from zero to one representing the 

proportion of trees in the random forest classifying the variant under investigation as 

pathogenic (Ioannidis et al., 2016). 

 

Parameter Description Cut-Off Reference 

CADD_phred >= 20 This is phred-like 

rank score based 

on whole genome 

CADD raw 

scores. The 

larger the score 

the more likely 

the SNP has 

damaging effect. 

CADD phred-like 

score of greater 

than or equal to 

20. 

(Kircher et al., 

2014) 

grepl('D', 

SIFT4G_pred) 

If SIFT4G is < 

0.05 the 

corresponding 

nsSNV is 

predicted as 

"D(amaging)"; 

otherwise, it is 

predicted as 

"T(olerated)". 

D(amaging) or 

SIFT 4G < 0.05. 

SIFT 4G scores 

range from 0 to 1. 

The smaller the 

score the 

more likely the 

variant has 

damaging effect. 

(Ng and Henikoff, 

2003) 
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grepl('D', 

Polyphen2_HDIV_pred) 

Polyphen2 score 

based on 

HumDiv, i.e., 

hdiv_prob. 

The score ranges 

from 0 to 1. 

"D" ("probably 

damaging", HDIV 

score in [0.957,1] 

(Adzhubei, 

Jordan and 

Sunyaev, 2013) 

Table 2-30 Pathogenicity parameters. 

 

 

2.11 Autism and neurodevelopmental-associated variant selection 

Variants were further subset to those with relevant to neurodevelopmental conditions by 

subsetting to variants impacting the gene lists specified in Table 2-31. The largest 

curated gene list to date in collating a gene-list for autism is most the SFARI Gene 

database (Abrahams et al., 2013). This regularly maintained resource presents evidence 

supporting the role of >1,000 genes in autism (currently n=1,045 genes as of February 

2022 update), with use of a gene-phenotype association scoring system to represent the 

confidence of a given gene in autism. This gene scoring approach collates all available 

evidence supporting the relevance of the gene to autism risk and categorises each gene 

depending on the strength of evidence as gene scores of 1 (high confidence), 2 (strong 

confidence), 3 (suggestive evidence) and/or S (syndromic). 

 

 A similarly scored gene list of neurodevelopmental condition-relevant genes is DDD 

gene2phenotype gene list generated from the DDD study. This  gene list is collated from 

variants identified in a cohort of children with severe and complex neurodevelopmental 

phenotypes (Wright et al., 2015). DDD assigns genes with a level of certainty of 

association, given as “Definitive,” “Strong,” or “Limited.” 

 

## Pathogenic Variant Isolation Following dbNSFP Annotation 
 
# Define output variant set 
<PathogenicVariantSet> <-  /// 
 
# Specify starting variant set 
filter(<FullVariantSet>,  /// 
 
# Specify conditions to be satisfied using OR arguments 
CADD_phred >= 20 & grepl('D', SIFT4G_pred) |  /// 
CADD_phred >= 20 & grepl('D', Polyphen2_HDIV_pred) |  /// 
grepl('D', SIFT4G_pred) & grepl('D', Polyphen2_HDIV_pred)) 
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Variants were further subset based on confidence scoring within these databases. 

SFARI Genes with high confidence in autism-associated were designated as those with 

a gene score of 2 and/or syndromic. This subset results in a combined gene set of SFARI 

high confidence (n=393) and syndromic genes (n=126) of 510 genes, of 960 overall 

SFARI Genes. The DDD Gene Set was subset to those determined by the consortium 

with confirmed evidence of pathogenicity. This subsets to 1,648 genes of 2,664 genes 

overall. 

 

Parameter Description Cut-Off Reference 

SFARI Gene A maintained 

database of genes 

implicated in autism 

susceptibility 

Ensembl GeneID 

present in SFARI-

Gene_genes_08-

07-2020release 

(Abrahams et al., 

2013) 

DDD A curated list of 

genes associated 

with developmental 

conditions 

OMIM GeneID 

present in 

DDG2P_8_9_2020 

 

(Wright et al., 

2015) 

Table 2-31 Autism and neurodevelopmental condition gene list filtration. 

 

2.12 Filtering by genotype 

Software Version 

RStudio 4.0.2 (Cohort 1 and 2), 4.0.3 (Cohort 3) 

tidyverse 1.3.0 

Table 2-32 Software and versions used in variant filtering by genotype. 

 

Where joint genotyping was performed at cohort-level (Cohort 1 and Cohort 2), 

homozygosity in for alternative alleles was detected by filtering for variant sites with a 

1/1 genotype (Table 2-32). Heterozygosity in these cohorts was detected by filtering for 

variant sites with either a 0/1 or 1/0 genotype. Homozygosity in Cohort 3 was detected 

by filtering for variant sites with a per individual allele count of two for the alternative 

allele. Heterozygosity was detected by filtering variant sites with an allele count of 1 for 

the alternative allele.  

 

Across sample variant filtering by genotype was performed by tidyverse filter function 

using operator %in% and inverse operator !%in% on variant rsID. 
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2.13 Application of an evidence-based curation framework to aid gene 

discovery 

2.13.1  Dataset under investigation 

This study interrogates Cohort 2. To summarise, this dataset is comprised of non-

synonymous SNVs arising from WGS of 6 individuals (3 probands and 3 unaffected 

relatives. Rare putative pathogenic variants with relevance to autism have been isolated 

as outlined in 2.2. 

 

This filtering strategy isolates 91 genes (Supplemental Table 1) in which autism-relevant 

variants are occurring. Each of these genes are a candidate for curation in this study. 

 

2.13.2  Evaluation of ClinGen curated genes 

With the aim of applying the proposed gene curation strategy to otherwise uncurated 

genes, genes were excluded when curation records exist in the ClinGen Gene-Disease 

Validity database (Table 2-33).  

 

Database Source Date of 

export 

Number 

of genes  

Referenc

e 

Clinical Genome 

Resource: Gene-

Disease Clinical 

Validity Browser 

https://www.clinicalgenome.org/curat

ion-activities/gene-disease-validity/ 

2020-

09-28 

1,848 (Strande 

et al., 

2017) 

Table 2-33 ClinGen gene-disease clinical validity dataset.  

This table details the export of genes which have been curated through the ClinGen Gene-Disease Validity 
process, hereafter referred to as ‘ClinGen gene list.’ Detailed are the number of genes curated at the date 
of export specified. Note: the number of genes curated is subject to frequent increase as users submit new 
entries. 

 

tidyverse functions read_csv and filter were used to cross-check the dataset under 

investigation with the ClinGen gene list (Table 2-34). 

 

Software Version 

RStudio 4.0.2  

tidyverse 1.3.0 

Table 2-34 Software used in ClinGen gene exclusion. 
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2.13.3  Evaluation of number of reports relevant to autism 

A targeted search was carried out to determine the presence/absence of literature 

related to each gene under investigation and its relevance to autism. Two approaches 

were taken to carry out this search as follows.  

 

2.13.3.1 GeneCards search for autism-relevant reports 

GeneCards®: The Human Gene Database is a searchable, integrative database 

providing information on human genes (Stelzer et al., 2016). The publications tool within 

GeneCards provides titles of and links to research articles in PubMed, as associated via 

Novoseek, HGNC, Entrez Gene, UniProtKB, GAD, HMDB, and/or DrugBank. Genes 

were searched against this database using the search terms “autism.” Number of reports 

correct as of 2020-09-30.  

 

2.13.3.2 SFARI Human Gene Module search for autism-relevant reports 

The SFARI Gene Human Gene module is a thoroughly annotated and well-maintained 

list of genes that have been studied in the context of autism (Abrahams et al., 2013). 

This database compiled autism-relevant reports as follows: 

“Reports – This section includes citations for the studies connecting the gene to 

ASD. The reports table includes the following columns of information about each 

report: the type of report (Primary, Positive Association, Negative Association, 

and Support), its title, the author and year of the publication, whether the report 

was ASD-specific, and any associated disorders mentioned in the report. These 

articles are not necessarily limited to the field of autism research. We also include 

links to the PubMed abstracts of the reference articles.” 

 

Genes were sequentially searched against this database for autism-relevant reports 

and autism-specific reports. Number of reports correct as of Q2 2020 release. 
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2.13.4  Gene selection for curation by Schaaf et al. (2020) modified ClinGen 

curation framework 

Following evaluation of ClinGen curated genes and evaluation of number of reports 

relevant to autism, as detailed above and summarised in Figure 2-16, candidate genes 

were selected for gene curation though the proposed curation framework (Schaaf et al., 

2020). 

 

 

Figure 2-16 Gene selection for curation.  

Genes arising from Cohort 2 outlined in Figure 4-2 were excluded from this analysis when already curated 
by ClinGen. Genes were selected for analysis when evidence of autism association is reported in the 
literature.  
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As demonstrated in Table 2-35, SFARI Gene was the effective method of report 

selection, referencing reports which were not identified by GeneCards. SFARI Gene 

reporting was further stratified based on reporting in an autism specific study versus a 

study non-specific to autism. Fifteen genes with evidence supporting autism association, 

and not previously curated through the ClinGen Gene-Disease validity process remain 

as candidates for interrogation in this study. Three genes had greater than five autism 

reports as evaluated by SFARI Human Gene Module and were prioritised for curation on 

the basis that a greater number of reports may yield a greater number of variants within 

each gene as candidates for curation. NAV2, NINL and CACNA2D3 were selected for 

curation in this study. 
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Gene name 

(“genename” as 

assigned   through 

dbNSFP 4.0a 

annotation) 

 

GeneCards search for autism-relevant 

reports 

SFARI Human Gene Module search for autism-relevant reports 

Publications based on 

search on “autism” in 

GeneCards publication 

search 

Number of 

autism-relevant 

publications 

(GeneCards) 

Presence in SFARI 

Human Gene 

Module 2.0 

(Release Q2 2020) 

Total number of 

relevant non-autism-

specific reports 

mentioning gene 

Number of 

autism-specific 

reports 

implicating the 

gene 

GRHL3 No 
 

No 
  

AMPD1 Yes 2 Yes 3 3 

NTRK1 Yes 2 Yes 8 1 

ERCC6 No 
 

No 
  

PAPSS2 No 
 

No 
  

NAV2 No 
 

Yes 9 6 

SLC6A5 No 
 

No 
  

LRP4 No 
 

No 
  

C12orf57 No 
 

Yes 11 1 

CCDC65 No 
 

No 
  

TRPV4 No 
 

No 
  

EP400 No 
 

Yes 6 5 

FREM2 No 
 

No 
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TOGARAM1 No 
 

No 
  

PYGL No 
 

No 
  

KIAA0586 No 
 

No 
  

TRIP11 No 
 

No 
  

MAP1A Yes 1 Yes 3 3 

CGNL1 No 
 

Yes 4 4 

DNAH9 No 
 

No 
  

SCN4A No 
 

Yes 4 3 

COMP No 
 

No 
  

ZC3H4 No 
 

Yes 3 3 

MED25 No 
 

No 
  

STAMBP No 
 

No 
  

UNC80 No 
 

Yes 5 2 

COL4A4 No 
 

No 
  

COL6A3 No 
 

No 
  

SNX5 No 
 

Yes 3 2 

NINL No 
 

Yes 6 6 

PLXNB1 No 
 

Yes 3 3 

CACNA2D3 No 
 

Yes 7 6 

TBCK No 
 

Yes 1 0 

FAT4 No 
 

No 
  



   

 

82 

 

PLK4 No 
 

No 
  

SKIV2L No 
 

No 
  

PKHD1 No 
 

No 
  

FBXL4 No 
 

No 
  

ADGRG6 No 
 

No 
  

PLXNA4 Yes 1 Yes 4 3 

HR No 
 

No 
  

CRB2 No 
 

No 
  

Table 2-35 Evaluation of number of reports relevant to autism.  

Genes included in this table are those arising from analysis on 6 individuals by WGS as detailed in Figure 4-2. This table outlines the number of reports obtained through two 
avenues of evaluation: GeneCard search and SFARI Human Gene Module search. Yes/No indicate the presence or absence of reports for each gene by the corresponding 
search method. Grey filled observations indicate N/A values where no reports are retrieved. Highlighted in bold are three genes for which the highest number of SFARI reports 
are available for interrogation. 
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2.13.4.1 Evaluation of gene constraint scores 

The three genes selected for gene curation were evaluated for putative pathogenicity of 

variants occurring within these genes through gnomAD analysis estimating constraint 

(Karczewski et al., 2020). Constraint is estimated by variant type, i.e., LoF and missense. 

Observed/expected (o/e) is a continuous measure of how tolerant a gene is to a certain 

class of variation. Low o/e values indicate the gene is under stronger selection for that 

class of variation than a gene with a higher value. 90% confidence interval (CI) is given 

for each o/e value. Z score given is the deviation of observed counts from the expected 

number. Positive Z scores indicate increased constraint. The closer pLI is to one, the 

more intolerant of protein-truncating variants the transcript is predicted to be. 

 

2.14 Evaluating the inclusion of ACMG59 in autism and 

neurodevelopmental gene lists 

This analysis was carried out using the software presented in Table 2-36. 

 

Software Version 

RStudio  4.0.3 

Tidyverse 1.3.0 

ggvenn 0.1.8 

Table 2-36 Software and versions used in evaluation of ACMG59 overlap. 

 
ACMG59, from American College of Medical Genetics and Genomics (ACMG) (Version 

2.0 06-04-2021 export), SFARI Gene (13-01-2021 release), DDD gene2phenotype (09-

04-2021 export) and the autism gene panel list compiled in Identifying autism gene 

panels were queried for overlap. Nomenclature was aligned using HGNC Multi-Symbol 

Tool (Version: 2021-01-06 update) as already outlined. Overlap filtering was run by 

tidyverse filter function using operator %in% and inverse operator !%in% on HUGO 

aligned gene name.  

 

This overlap of genes in the clinical gene-sets presented in is further quantified by 

jaccard similarity coefficient measured as: 
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# Define the jaccard similarity coefficient 
 
 jaccard <- function(a, b) { 
     intersection = length(intersect(a, b)) 
     union = length(a) + length(b) - intersection 
     return (intersection/union) 
} 
 
# Compute the jaccard similarity coefficient 
 
jaccard(a,b) 
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Chapter 3. An analysis strategy to isolate exonic rare 

pathogenic single nucleotide variants using next-generation 

sequence data. 

 

Presentations arising from the contents of this chapter: 

“Rare genetic variation in autism; an exome sequencing study.” Fiana Ní Ghrálaigh, 

Cathal Ormond, Elaine Kenny, Louise Gallagher & Lorna M. Lopez  

Poster presented at the Irish Society for Human Genetics, September 2020 (Appendix 

III-V). 

 

“Analysis Pipeline of Whole Genome Sequencing Data in Neurodevelopmental 

Disorders.” Fiana Ní Ghrálaigh, Niamh M. Ryan, Louise Gallagher, Lorna M. Lopez 

Poster presented at the British Neuroscience Association Festival of Neuroscience, April 

2019 (Appendix III-VI). 
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3.1 Abstract 

Key hypothesis and key outcomes. The key aim of this chapter was to establish an 

analysis pipeline to isolate rare, putatively pathogenic SNVs with autism-relevance. This 

chapter details analysis of a WES cohort of 42 individuals, varied in family structure. This 

work has enabled the development of a variant interpretation strategy from align 

sequence reads to a filtered and relevant variant call-set. The key outcome of this 

chapter is an analysis pipeline, which was applied to the datasets analysed within this 

thesis. A further outcome of this chapter is a high-quality and robustly annotated set of 

rare putatively pathogenic variants with evidence for autism relevance. Further value will 

be gained from this variant set in the future upon combined analyses of these data with 

larger autism sequencing cohorts. 

 

3.2 Introduction 

3.2.1 Next-generation sequencing 

NGS enables variant detection across many classes and sizes of variation, across the 

allele frequency spectrum. Management of NGS output requires application of tools and 

algorithms to manipulate the large-scale datasets generated. These tools and algorithms 

are used in combination in bioinformatic pipelines to translate raw data into interpretable 

variant callsets for downstream biological interpretation. 

 

3.2.2 An introduction to GATK and the gVCF file format 

NGS technologies output large raw read files (FASTQ files). These files require 

substantial computational power to process from raw sequencer generated reads 

(FASTQ files), through aligned reads that have been mapped to a reference genome 

(BAM files), to a readily interpretable called variant file (VCF files). VCF files can then be 

manipulated and interrogated for biological relevance. There is currently no gold 

standard in genome analysis pipeline, however GATK is a widely applied collection of 

bioinformatic tools and is robustly maintained and supported by the Broad Institute 

(Figure 3-1). The GATK Best Practices provide guidelines for effective use of the tool 

set, enabling manipulation of parameters to suit the data set under investigation, for 

example specification of target intervals or specification of reference genome. The GATK 

Best Practices Workflow also incorporates use of widely applied tools Picard and BWA 

(Li, 2013; Broad Institute, 2019). This multi-step analysis strategy guides bioinformatic 

analysis from raw sequence read to a variant call set for biological interpretation.  
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Figure 3-1 GATK best practices.  

Workflow recommended from GATK. Taken from  

https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-
Indels- 

 

Jointly genotyping is an approach to genotyping that determines genotypes at each locus 

with consideration of the other genotypes in the call-set. This approach is taken in GATK 

Best Practices. Joint genotyping requires the use of HaplotypeCaller to generate input 

genotype assignments. The gVCF file format details all variant sites in the genome 

whether reference (ref) or alternative (alt), as opposed to the traditional VCF file listing 

alternative variant sites only. Joint genotyping is a more time and computationally 

intensive approach to genotyping, however, it improves the detection of rare variants in 

the genome making it beneficial for use in a family-based study design where accurate 

and sensitive rare variant discovery is required. 

 

3.2.3 The reference genome 

Following the initial publication of the mapped human genome by the Human Genome 

Project in 2003, iterations of the reference human genome continue to emerge with 

improving quality enabled by advances in sequencing technologies. GrCh38, curated by 

the Genome Reference Consortium in 2013, is the most recent reference genome 

release with gaps and errors in the original Human Genome Project reference genome 

corrected by shotgun sequencing  (Schneider et al., 2017). hg19, also referred to as 

GrCh37, was released in 2009 by the Genome Reference Consortium and while it has 

been updated to GrCh38 it remains widely applied in genome sequencing studies. 

https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
https://gatk.broadinstitute.org/hc/en-us/articles/360035535932-Germline-short-variant-discovery-SNPs-Indels-
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GrCh38 and hg19 reference genomes are currently the most common genome builds to 

which human sequence data are aligned. Depending on the availability of existing 

datasets and analysis requirements of a study there may be reasons to use a previous 

genome build. These reasons include enabling use of legacy analysis pipelines 

developed on a previous genome build. Another reason is the need for consistency 

throughout dataset analysis. To achieve a cohesive dataset which can be cross analysed 

it is necessary to use the same reference genome build to avoid genomic coordinate 

discrepancies. Finally, annotation databases have lagged in their reannotation to 

GRCh38 coordinates, often making hg19 a more efficient reference genome for 

alignment.  

 

3.2.4 Cohort-level QC measures 

Sample identity is a major concern in the reproducibility and reliability of genomic 

datasets. Even with strict protocols for QC and the maintenance of a high standard of 

data control and data processing, errors are observed across datasets and cohorts. 

Specifically sample identity is key to robust linkage of genetic and corresponding 

phenotypic data. Large-scale cohort analyses frequently observe misidentification of 

samples. This can result from many possible errors such as pipetting errors at sample 

collection, DNA extraction and preparation or errors in library preparation, such as 

mislabelling of sequencer indices. Mismatches in genetic and phenotypic information 

may also be the result of errors at the time of phenotypic data collection.  

 

There are several features of genomic datasets that may be used as QC measures to 

identify such errors. Most commonly, genotype imputed sex can be cross-referenced 

with sex reported at phenotyping. In family-studies, relatedness may be used as a means 

of QC by determining the degree of genomic sharing with that expected on the basis of 

reported familial relationship. In the case of relatedness assignment, it is important to 

consider possible true errors in relatedness that are not related to sample mix-up such 

as adoptive families or families for which parental relationships are not as expected. 

Deviations from expectation in these factors can be used to flag samples as discordant 

for reported phenotype, resulting in a need for further investigation and potential removal 

from the study. 
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3.2.5 Allele frequency annotation 

The rate at which a particular variant occurs in the population is a key annotation to be 

made. Depending on the genetic architecture of the disease/disorder and the study 

approach used, variants will be isolated based on their absence or low frequency in a 

sample from the general population. Typically, common variants are defined as genetic 

variants with a minor allele frequency of greater than 0.05, meaning occurrence in over 

5% of the population. Rare variants are defined as genetic variants of low frequency with 

a minor allele frequency of less than 0.05, meaning occurrence in less than 5% of the 

population. Very rare variants are classed as those occurring in less than 1% of the 

population. Rare variants are of key importance in many complex conditions, including 

autism, however by nature they are challenging to identify, and even more challenging 

to confidently associate with a phenotype. For example, a study of rare 

neurodevelopmental-associated variants, in this case CNVs, required a minimum of five 

cases of a rare variant within the cohort to enable robust stratification of their trait of 

interest, cognition (Kendall et al., 2019). At a population frequency of less than 5%, rare 

variant identification requires large sample sizes to achieve variant identification. 

However, a family-based study design enriches for within family rare variants often giving 

power to association analysis (Glahn et al., 2019). 

 

Rarity is determined by the frequency of the less common allele, or minor allele (MAF) 

in the population. Population-based cohorts are used to estimate the MAF of a given 

variant within an unaffected population. These include 1000 Genomes (2,504 low 

coverage and exome sequence data) (The 1000 Genomes Project Consortium, 2015), 

Exome Aggregation Consortium (ExAC) (60,706 exomes) (Lek et al., 2016), and most 

recently emerging as leader in the field, gnomAD (v3: 71,702 whole genomes mapped 

to GRCh38 reference genome) (Karczewski et al., 2020). The estimation of ancestry of 

the individual from genotype is critical to determine the expected rarity of a particular 

variant. Population stratification is key to establishing the MAF of a given variant in the 

relevant population substructure.  

 

3.2.6 Algorithm based approaches to measure predicted pathogenicity 

Accurate pathogenicity prediction is essential to variant interpretation and putting 

variants in the context of their biological impact, however interpretation remains an 

enormous challenge. Bioinformatic tools and scoring algorithms have been developed 

with an aim to provide these variant annotations and prioritise variants that are impacting 

on human phenotypes. 
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The degree to which a variant may impact the carrier can be estimated by the change in 

genomic sequence that it causes. At a broad level, a variant may have a synonymous or 

non-synonymous change to the protein sequence. Synonymous refers to a change in 

genetic code that does not result in a change to the amino acid encoded. Non-

synonymous refers to variant sites at which a variant is encoding a different amino acid 

to wild-type, potentially impacting protein function. Within the non-synonymous effect of 

variation, variant changes can be further categorised by the way in which protein 

sequence is disrupted. Missense variants cause a change in sequence that results in 

production of a different amino acid to wild type. Loss-of-function (LoF) variants are 

predicted to cause a complete disruption to the protein-coding gene in which it is found 

(Figure 3-2). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-2 Classes of LoF variation affecting protein-coding regions. 

Taken from MacArthur & Tyler-Smith (2010): “A model three-exon gene is shown both intact (top) and 
following the introduction of various types of LOF variant (red triangles). Effects on the transcript produced 
by the gene are shown at the right. LOF variants typically result in a loss of protein-coding functionality 

downstream of the variant (red boxes).” 

 

Missense variants are far more abundant in the genome than LoF variants, with the 

majority having no harmful effect on gene function (Ronemus et al., 2014). For this 

reason, it is common to eliminate missense variants, which are not predicted to be 

pathogenic by scoring algorithms, based on functionality and conservation, from analysis 

of putative autism variants.  

 

A variety of bioinformatic statistical tools are available to determine the expected 

pathogenicity of a given variant (Ng and Henikoff, 2003; Adzhubei, Jordan and Sunyaev, 
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2013; Kircher et al., 2014; Jagadeesh et al., 2016). Each score is based on an individual 

algorithm, many considering a combination of variant genomic coordinates, amino acid 

consequence, base-pair change and conservation of the gene in which the variant is 

occurring.  

 

Individual pathogenicity scoring approaches are typically used in a combined consensus 

approach, for example pathogenic by SIFT and PolyPhen-2 scoring. SIFT (Ng and 

Henikoff, 2003) and PolyPhen-2 (Adzhubei, Jordan and Sunyaev, 2013) both predict the 

effect of amino acid substitution on protein function. However, use of these algorithms 

comes with certain limitations. Firstly, SIFT and PolyPhen-2 are highly dependent on the 

protein sequence database that is used to retrieve homologous sequences. Secondly, 

there is incomplete coverage of the genome by these scores. By excluding variants 

reaching standards for pathogenic by these algorithms, there is potential to exclude true 

pathogenic variants solely on the basis that they are missing the appropriate scoring by 

individual algorithms. 

 

With the high volume of potential variant annotation tools available, algorithms-based 

approaches have been created to incorporate multiple scoring measures and output a 

singular determination of pathogenicity. Most popular in the field, is CADD, Combined 

Annotation-Dependent Depletion (Rentzsch et al., 2019).  

 

In practice, CADD outputs variant specific raw scores and PHRED-scales scores, which 

are normalised to all potential SNVs in the genome (~9 billion). A PHRED-scaled CADD 

score of >10 indicates a raw CADD score occurring in the top 10% of reference SNVs, 

and a score of >20 indicates a raw CADD score in the top 1%. A variant cannot be 

deemed as pathogenic based on a blanket CADD score cut-off, similarly a variant cannot 

be deemed benign by having a CADD score below a cut-off value. Rather consideration 

is needed of phenotype severity, mode of inheritance and also resources for genomic 

interpretation of the output variant list (Rentzsch et al., 2019). Instead, the top-ranked 

variants in a dataset should be further investigated in a way that is particular to the study 

design. 

 

3.2.7 Database annotation – retrieval of known information from databases 

Database search tools are available to retrieve existing variant information from a set of 

input coordinates or variant IDs. The advantages of using such annotation databases 

comes from the ability to carry out multiple levels of annotation in a fast and effective 
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way. However, the utility of these databases hinges of the maintenance of the tool and 

the frequency at which it is updated, specifically in line with release of new versions of 

individual annotation sources, e.g., CADD (Rentzsch et al., 2019), Clinvar (Landrum et 

al., 2018). 

 

Some commonly used annotation databases include dbNSFP, Variant Effect Predictor 

(VEP) and Annovar. dbNSFP compiles annotations from 29 prediction algorithms, nine 

conservation scores, allele frequencies from major population databases, including 1000 

Genomes and gnomAD, as well as gene-based annotations of expression and 

interactions (Liu et al., 2016). These annotations are applied to an input call-set in VCF 

format using the dbNSFP java database search tool, as has been applied in this chapter.  

 

3.2.8 Exonic variation in focus  

Genetic variants associated with autism disrupt a wide variety of biological pathways and 

processes (De Rubeis et al., 2014). Huge efforts have been made to understand these 

pathways and how they are disrupted in autism. Identifying pathways and processes 

showing an increased mutational burden in autism advances our understanding of 

autism aetiology. The role of non-coding variation in autism has been established, as 

has been introduced in 1.7.3 (Turner et al., 2016; Brandler et al., 2018). The 

interpretation of non-coding variation is challenging but despite this robust gene-

phenotype associations have been made in neurodevelopmental conditions (Wright et 

al., 2021). As cohort sample sizes increase and power to detect rare non-coding variation 

increases these variant classes are likely to uncover much of the rare genetic 

contribution to autism. 

 

WES enables detection of rare variation within the protein-coding genome. Satterstrom 

et al. demonstrate the ability of whole-exome sequencing to identify rare autism-relevant 

variants when sample sizes are large in their association of 102 genes with autism 

(Satterstrom et al., 2020). Compilation of gene-lists containing genes involved in a given 

process, are invaluable in establishing the process which a putative variant may be 

disrupting, and such gene lists are often consulted for membership when investigating 

the impact of a variant (Feliciano et al., 2019).  
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Sequencing studies of autism cohorts can compile variants in affected individuals into  

gene lists against which rare variants may be searched, such as pathway based gene 

lists (Yuen et al., 2015). Further to these autism-associated processes, genes associated 

with schizophrenia and ID may be informative to consider in analyses (Iossifov et al., 

2014). This due to the shared global gene expression pathways identified among some 

psychiatric conditions (Gandal et al., 2018).  

 

While these pathways and processes are frequently implicated in autism, these lists of 

gene do not constitute a clinically relevant gene-list. Consequently, these gene lists 

should not be considered a finite and exclusive list of genes to be used in genetic testing 

in autism. The establishment and maintenance of databases in which gene-level 

information is openly shared are crucial to progress the field. The largest curated gene 

list to date in collating a gene-list for autism is most the SFARI Gene database 

(Abrahams et al., 2013). This regularly maintained resource presents evidence 

supporting the role of >1,000 genes in autism (currently n=1,045 genes as of February 

2022 update), with use of a gene-phenotype association scoring system to represent the 

confidence of a given gene in autism. This gene scoring approach collates all available 

evidence supporting the relevance of the gene to autism risk and categorises each gene 

depending on the strength of evidence as gene scores of 1 (high confidence), 2 (strong 

confidence), 3 (suggestive evidence) and/or S (syndromic). 

 

 While this is an invaluable tool for use in research, the lack of a systematic evidenced 

based framework means this has limited applicability in clinical settings, such as 

diagnostic testing. A similarly scored gene list of neurodevelopmental condition-relevant 

genes is DDD gene2phenotype gene list generated from the DDD study. This  gene list 

is collated from variants identified in a cohort of children with severe and complex 

neurodevelopmental phenotypes (Wright et al., 2015). DDD assigns genes with a level 

of certainty of association, given as “Definitive,” “Strong,” or “Limited.” 
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3.2.9 Hypothesis and aims 

No gold-standard pipeline currently exists for the isolation of rare exonic SNVs from NGS 

datasets. The research outlined within this chapter has yielded a strategy for the isolation 

of such variants in autism cohorts as is applied in Chapters 4 and 5. This pipeline has 

been informed by literature in the field and makes use of available databases to leverage 

existing information, including SFARI gene and DDD (Abrahams et al., 2013; Wright et 

al., 2015). Rare SNVs in autism-relevant genes are detectable by WES. This dataset is 

limited in its power to provide statistically significant rare variant autism associations. 

However, the data can be leveraged to build an analysis strategy for use in the 

identification of rare SNVs in autism. Putatively pathogenic autism-relevant SNVs may 

be identified through these analyses building evidence toward existing gene-phenotype 

association.  

 

The aims of this chapter are: 

1) to establish an analysis strategy for isolation of rare exonic pathogenic SNVs from 

NGS data. 

2) to discover rare putatively pathogenic autism-relevant SNVs in a cohort of autistic 

individuals and their unaffected family members. 
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3.3 Results 

3.3.1 Cohort in summary 

This chapter describes analysis of WES of Cohort 1. Cohort 1 is a dataset of a total of 

42 individuals. Ascertainment of this cohort is described in 2.1.1. The cohort is comprised 

of 23 putatively simplex cases of autism and their unaffected family members whose 

genotypes have been used, where available, to restrict to putatively pathogenic variation, 

as will be described in 3.3.5.  

 

3.3.2 Low-confidence variant filtering 

The initial variant call-set of a total of 127,842 variant sites comprised of SNVs, Indels 

and other variants as detailed in Table 3-1. Table 3-1 shows successful variant calling 

as demonstrated by the breakdown of variants by variant type. As expected, the largest 

proportion of variants called are SNVs. Mixed variants in these analyses account for 

single variant positions at which both SNVs and indels are occurring in the cohort. GATK 

Haplotype Caller is unable to call SVs or CNVs. 

 

Variant Type Cohort Count 

SNV 117,101 

Indel  10,310 

Mixed 431 

Table 3-1 Variant count by variant type. 

Exact variant counts per variant type. SNV refers to single nucleotide variants; Indel refers to insertion 

deletion variants; Mixed refers to variant loci at which both SNVs and indels have been identified.  

 

Towards filtering to high-confidence variants, the VQSR machine learning filtering 

approach was applied through GATK, as specified in 2.6.1.3. VQSR flagged a total of 

17,283 SNV and indel variant sites likely to be sequencing artefacts. VQSR is not 

compatible with non-SNV and indel variant sites. These variants were instead hard-

filtered using a more crude approach of hard-filter removal of variant sites on the basis 

of quality score normalised by read depth (Quality by Depth < 2.0; generic filtering 

recommendation), probability of strand bias at the site (Fisher Strand > 200.0; little to no 

strand bias at the site will be indicated by values close to 0) and position of reference 

versus allele positions within reads (Read Position Rank Sum Test < -20.0; a negative 

score indicates the alternative allele is found at the ends of reads more often than the 
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reference and a score close to zero indicates little difference between positions in the 

reads). A total of 110,559 variants were retained in the call-set. 

 

Following VQSR of SNVs and Indels and hard-filtering based on sequencing metrics, 

variants were hard-filtered to isolate and remove those variants deviating from Hardy-

Weinburg equilibrium (exact test <10-6) and variant sites missing greater than 10% of 

data. A total of 106,590 (of n=110,559) high-confidence variants were retained in the 

call-set for downstream annotation. Variants remaining following these QC filters were 

counted and plotted by variant type. The variant calling and joint genotyping pipeline is 

effective across the exome, as shown by the variant counts by chromosome (Figure 3-3). 

The inconsistency in number of variants per chromosome is expected given the 

difference in chromosomal length and the variation in the number of probes targeting 

each chromosome. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3-3 Cohort-level variant count by chromosome.  

The bar chart shows counts of the overall variants (SNV, indels and mixed variant) called from the cohort 
and presents them across the genome per chromosome. Note that mitochondrial chromosomes variants 
were not included in these analyses. The inconsistency in number of variants per chromosome is expected 
given the difference in chromosomal length and the variation in the number of probes targeting each 
chromosome in the whole exome sequencing panel. 

 



   

 

97 

 

3.3.3 Variant annotation 

Annotation by dbNSFP at the cohort-level for a total of 34 whole exomes passing QC. 

dbNSFP annotates all non-synonymous variation according to the specified parameters. 

In this case dbNSFP has annotated with optional parameters -p (output existing VCF 

columns), -v hg19 (specifying reference genome), and -g (include full gene annotation 

set). 

 

A total of 36,872 SNVs were found in annotation as non-synonymous variants. A total of 

69,718 SNVs were not found and are excluded, and further analysis of this variant class 

falls outside the aim of this project. Further analysis of these excluded variant classes 

will be necessary to characterise the full variant set per individual. dbNSFP annotated 

each of the 37,148 counts of the non-synonymous SNVs identified with 511 variables.  
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Figure 3-4 Flow of variant filtering with cohort-level variant counts.  

Arrows show the direction of flow from each level of filtering (specified on the left). Rare variants are 
determined on the basis of their allele frequency reported in gnomAD, with an allele frequency of less than 
or equal to 0.05 indicating rarity. Predicted pathogenicity is determined by consensus scoring as pathogenic 
by CADD (Phred greater than or equal to 20), SIFT4G (“Damaging”) and Polyphen-2 (HDIV “Damaging”). 
Gene-level autism associations are determined by gene membership in SFARI or DDD databases. SFARI 
refers to Simons Foundation Autism Research Initiative Gene Module (Abrahams et al., 2013). DDD refers 
to the gene2phenotype database arising from the DDD study (Wright et al., 2015). 
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3.3.4 Variant filtration 

The workflow developed and applied in these analyses is presented in Figure 3-4. The 

full set of non-synonymous variants which has been annotated as described in 3.3.3 are 

subject to further subsetting on the bases of allele frequency, predicted pathogenicity 

and gene-level associations as follows. 

 

3.3.4.1 Allele frequency filtration 

The estimation of ancestry of the individual from genotype is critical to determine the 

expected rarity of a particular variant. Population stratification is key to establishing the 

MAF of a given variant in the relevant population substructure. PCA of the cohort advised 

of a European ancestry in all individuals within the cohort. To align with the parameter 

gnomAD_exomes_NFE_AF, was selected as the relevant allele frequency for filtration 

of this cohort. This quantifies the frequency which the alternative allele was observed in 

the non-Finnish European gnomAD exome cohort of 56,885 individuals. Variants were 

restricted to those observed in less than 5% of this population (<= 0.05). A total of 17,667 

non-synonymous rare variants remains for further analysis. Common genetic variation, 

while putatively pathogenic in this complex condition, is beyond the scope of this analysis 

strategy. 

 

3.3.4.2 Pathogenicity filtration  

Due to the inconsistencies and differences in approach of pathogenicity prediction 

algorithms described earlier, a consensus scoring approach was taken to determine 

variant pathogenicity. Variants determined to be predicted pathogenic were required to 

be predicted pathogenic by greater than or equal to 2 of the specified condition as 

detailed below.  

 

As previously described, CADD is an algorithm-based estimate of variant pathogenicity. 

The CADD phred-like score is phred-like rank score based on whole genome raw CADD 

scores. The larger the CADD-phred score the more likely the SNV annotated has 

damaging effect. The CADD-phred filter was set at variants with a score of >= 20. A total 

of 9,624 variants satisfy this criterion. 

 

SIFT and Polyphen-2 were taken as candidate pathogenicity measures due to their 

widespread use in human genomics. Criteria for pathogenic as determined by SIFT was 

taken as “D,” indicating damaging, measured by SIFT4G_pred (SIFT 4G < 0.05). A total 
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of 6,182 variant were scored pathogenic. Polyphen2_HDIV_pred with a score of “D”, 

indicating damaging (HDIV score in [0.957,1]), isolated 4,638 pathogenic variants. 

 

REVEL score filtering was applied to the annotated variant set at two levels 

>= 0.75 and >= 0.5. This strategy identified just 382 and 1,388 variants respectively, that 

satisfy this criterion. REVEL was excluded as a candidate pathogenicity filter score as it 

so greatly contradicted the other pathogenicity scores investigated. A total of 6,167 

variants were designated as consensus predicted pathogenic (Figure 3-4). 

 

3.3.4.3 Gene-set filtration 

Rare predicted pathogenic variants were further filtered for those that occur in genes that 

have been associated with autism and neurodevelopmental conditions. The gene-sets 

used towards this goal were the SFARI Gene database (SFARI-Gene_genes_08-07-

2020release_09-07-2020export) and the DDD gene2phenotype database 

(DDG2P_8_9_2020).  

 

The annotated and filtered variant set were filtered for those associated with autism 

through SFARI by ENSEMBL gene IDs to avoid complications of filtering on gene names 

in the case that there are multiple gene names used. A total of 87 variants remaining 

when restricting variants to the 960 genes included in the database. Variants were further 

subset to higher confidence SFARI Gene variants, those with a gene-disease evidence 

score of one of two. This resulted in isolation of 29 variants. In parallel to this filtration 

the annotated and filtered variant set were restricted to those occurring only in DDD 

gene2phenotype genes, as identified by Online Mendelian Inheritance in Man (OMIM) 

ID for consistency across annotations. A total of 212 variants were isolated. This was 

further restricted to 111 variants when only those genes with a confirmed association 

with developmental conditions were included. Both variant sets arising from gene-level 

filtration were taken for downstream analysis, as outlined in Figure 3-4. Just 5 variants 

overlapped in these parallel gene lists filters, i.e., five variants isolated have evidence for 

phenotype association as determined by both SFARI and DDD. The variants isolated 

through this filtration strategy are shown graphically in Figure 3-5.  
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Figure 3-5 Spread of variation across genomic regions.  

Chromosomes are shown around the outer track of the figure (1:22, X). The gene names are given on the 
inner track. These are the genes in which the rare pathogenic autism-relevant variants outlined in Figure 3-4 
are located. Links are made in purple (affected n=103 variants) and blue (unaffected n=86 variants) between 
each gene and the respective affection status of the individual harbouring the variant. Affected denotes 
individuals with an autism diagnosis. 
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The rare putatively pathogenic variants were subset to those occurring in affected 

individual and those occurring in unaffected family members. The number of variants is 

presented per individual in Figure 3-6. There is no statistically significant difference in 

the number of variants per individual dependant on affection status (Wilcoxon, p=0.69). 

Figure 3-6 Per individual counts of variants under investigation.  

Box plots are representative of affection status as detailed in the figure legend. Points on boxplot indicate each individual represented, 
against the number of rare putatively pathogenic variants occurring in the autism-relevant gene set investigated. Wilcoxon statistic was 

computed between groups with no significant difference in number of variants identified between groups.  
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3.3.5 Trios in focus 

This cohort comprises of singletons and trios. Here probands were selected for further 

investigation where both parent samples were also included in the cohort. Five probands 

and their unaffected family members, 16 individuals total, were subset from the cohort. 

Family structure within this cohort was used to subset the identified putatively pathogenic 

variants to those with added confidence in pathogenicity on the basis of their absence 

from unaffected family members. Variants in probands that are absent in unaffected 

family members were isolated from the variant subset of rare putatively pathogenic 

variants in autism-relevant genes where present and results are presented in Table 3-2.  

 

Table 3-2 Trios in focus.  

Presented are the number of de novo variants isolated from 5 probands within the cohort, where both parent 
samples were available. Where applicable further detail is given on variants of interest identified. Phenotype 
is given as that specified in Decipher GrCh38. 

 

3.3.6 Biological interpretation of variation impacting MATN3 

Analysis of trio data within Cohort 1 yielded a single de novo variant of interest occurring 

in proband AS217C1. This variant, rs77245812 is a single base G>A change impacting 

position chr2:20202930, within the protein coding gene MATN3. The protein encoded by 

this gene forms a major component of the extracellular matrix of cartilage and has been 

reported to be involved in the formation of filamentous networks in the extracellular 

matrices of a variety of human tissues (Chapman et al., 2001). Variation within MATN3 

has been associated with Multiple Epiphyseal Dysplasia 5, Osteoarthritis Susceptibility 

2, and Spondyloepimetaphyseal Dysplasia, Borochowitz-Cormier-Daire Type, as 

reported by OMIM:602109 (Amberger et al., 2015). Null mouse models for MATN3 have 

Proband 
ID 

Homozygous de 
novo variant 
subset 

Heterozygous de 
novo variant 
subset 

Gene 
Name  

Decipher 
Reported 
Phenotype  
 

AS157C1 0 0 N/A N/A 
 

AS217C1 1 0 MATN3 Multiple 
Epiphyseal 
Dysplasia Type 5 
 

AS218C1 0 0 N/A N/A 
 

AS306 0 0 N/A N/A 
 

AS420C1 0 0 N/A N/A 
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been generated by Ko et al. (2004) reporting no obvious skeletal malformations in 

homozygous mutant mice and the authors suggest redundancy in the matrilin family of 

proteins (Ko et al., 2004). The single base change identified in within Cohort 1 results in 

an amino acid change of p.Thr303Met as estimated by HGVSp_SNPeff through 

dbNSFP. Following evaluation of the biological implication of variation within this gene, 

the reported autism phenotype of this proband cannot be accounted for by rs77245812. 

This gene is not included in SFARI gene, lacking autism-specific associations (Abrahams 

et al., 2013). 
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3.4 Discussion 

This chapter describes preliminary analyses of this cohort of WES data of 42 individuals. 

Three outputs are generated from the research outlined here. Firstly, a variant set of rare 

predicted pathogenic variants (n=135) occurring in genes with evidence of relevance to 

autism and neurodevelopmental conditions (Figure 3-5). Secondly, an analysis strategy 

has been developed for further application in discovery of rare coding autism-relevant 

variation. Finally, this analysis has resulted in the generation of robustly and uniformly 

processed and quality-controlled variant-call sets which will be combined with large 

whole-exome sequencing studies of autism, both in-house and internationally, bringing 

research value to these studies. 

 

3.4.1 Variant-level QC 

Genomic data processing was carried out as recommended by the Genome Analysis 

Tool-Kit (Van der Auwera et al., 2013) (Figure 3-1) with parameters adapted from GitHub 

commit: cathaloruaidh/WGSVariantFiltering. 

 

Reads failing the duplicate read filter were removed from analysis and Base Quality 

Score Recalibration (BQSR) was applied. Base quality scores are per-base estimates of 

error arising from sequencing machines. The scores represent the confidence that an 

individual base has been correctly called. Accurate variant calling is dependent on 

accuracy of base quality scoring. However, initial base quality scores are subject to 

technical errors and biases arising from sequencing. BQSR overcomes these errors by 

applying a machine-learning algorithm to model the inaccuracies and adjust the base 

quality scores to represent true base quality scores more accurately. 

 

Following BAM processing variant calling was carried out using the GATK Haplotype 

Caller, calling SNVs and indels. Genotyping was carried out at cohort-level by jointly 

genotyping samples. The advantages to jointly genotyping, as opposed to genotyping at 

the sample-by-sample level are: 

a) Improved sensitivity in the detection of rare variants 

b) Improved distinction of homozygous reference variant site and missing variant sites 

c)  Greater ability to filter out false positives. 

 

Rather than applying independent hard filters to the variant call-set, VQSR is applied 

with subsequent filtration on VQSLOD, i.e., the log of the odds ratio of the variant being 

true versus false under the model. This filtration method is advantageous as it considers 

https://github.com/cathaloruaidh
https://github.com/cathaloruaidh/WGSVariantFiltering
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each variant annotation in combination to minimise the number of confident variants lost. 

Variants failing the Hardy-Weinburg Equilibrium filter were excluded from analysis on the 

basis that departure from Hardy-Weinburg equilibrium may indicate inaccurate 

genotyping. Variant sites with a high proportion of missing data are removed from 

analysis also. The analyses described in this chapter interpret the SNVs detected 

through this variant detection strategy only. Future analysis incorporating the mixed 

variant sites and indels summarised in Table 3-1, with the SNVs described will improve 

these analyses considering a more complete view of the exonic variants detected. 

 

3.4.2 Cohort-level QC 

Sample identity is critical in building and maintaining datasets, particularly clinical 

datasets due to the potential for results to be returned to individuals and inform medical 

and lifestyle decision making. QC measures such as those outlined in these analyses 

aim to highlight sample mix-up and discrepancies in biologically imputed characteristics 

against those reported.  

 

Early identification of errors is key to avoidance of significant time and resource losses 

associated with processing of invalid data and the necessary re-analysis of datasets 

following eventual removal of invalid data points. In this chapter, two methods of cohort-

level QC checks have been carried out. Both, plink and peddy approaches were 

successful in flagging samples for removal (Purcell et al., 2007; Pedersen and Quinlan, 

2017). peddy computes relatedness as IBS, identity by state, rather than more traditional 

IBD, identity by descent measures. In a family-based study, this statistic has the added 

benefit of differentiating between sibling-sibling and parent-child relationship, both 

having a coefficient of relatedness of 0.5 (Figure 2-4, Figure 2-5). 

 

An important consideration when evaluating discordance in phenotypic and genomic 

data is the possibility of errors in reported affection status or other phenotyping 

measures. Schaaf et al. outline the importance of robust clinical phenotyping in studies 

of human disease (Schaaf et al., 2020). Incorrect assignment of affection can have a 

detrimental impact on the integrity of the dataset. Inclusion of a neurodevelopmental-

affected individual, who have been incorrectly assigned as unaffected or a control, may 

harbour a pathogenic neurodevelopmental-relevant variant which may then be 

considered as non-pathogenic due to the designation of the individual as unaffected. 

This may have further impacts on the cohort in the situation where the variant under 

consideration is shared with another affected individual within the cohort, however 
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presence of the variant in an unaffected individual weakens the evidence supporting the 

role of the variant in the neurodevelopmental phenotype. For this reason, clinical 

diagnosis of affected individuals has been validated by Prof. Louise Gallagher (Child & 

Adolescent Psychiatrist) prior to inclusion in the study and assignment of affection status 

(2.1.1). 

 

3.4.3 Selection of rare variant parameters 

These analyses focus of the discovery of variants that are rare in the population. Rarity 

is determined by the frequency of the alternative allele in the population. Large scale 

projects have been carried out to determine allele frequencies in the general human 

population. Key to the analysis of MAF is the ancestral background of each sample under 

investigation, to determine which alleles are rare given the presence of variant alleles in 

a similar genetic background. Importantly, large sample sizes are required to identify 

extremely rare variants. The largest collection is gnomAD, composed of a total of 

125,748 human exomes and 15,708 human genomes, from  (Karczewski et al., 2020) 

 

In determining variants that are rare in the population, MAF cut-off thresholds vary 

depending on study, typically using MAF <0.01 or MAF <0.05. In these analyses the 

allele frequency cut-off is set at 0.05 to ensure variants are rare but include as many rare 

variants as possible to avoid discarding potential variants of interest. In keeping these 

variants that are rare by population standards, while including those that are not 

necessarily “very rare 0.01” or “ultra-rare 0.001”. Given the small sample size of this 

cohort and that these sequences are already restricted to exonic variants, this less 

stringent allele frequency threshold still yields a manageable variant set for downstream 

interpretation. 

 

Allele frequencies are determined in this cohort for the gnomAD non-Finnish European 

cohort, as annotated within dbNSFP version 4.0a (Liu et al., 2020). Two factors were 

considered in the selection of datasets from which allele frequency would be determined. 

Firstly, the larger sample size in the gnomAD WES dataset when compared to the 

gnomAD WGS dataset. This larger sample size hosts data on a larger number of 

individuals, potentially making for more accurate estimations of the true population allele 

frequency of any given variant. For this reason, it is possible that the use of this dataset 

may be preferable to the smaller WGS dataset. However, it is important to note that the 

1000 genomes dataset, which prior to the release of gnomAD was the favoured database 
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of allele frequencies, consistent of just 2,500 individuals, of which a subset is of 

European descent (Auton et al., 2015).  

 

The second consideration is the appropriate use of the genome dataset when analysing 

a WES dataset. Specifically, use of this dataset enables determination of non-coding 

variant allele frequencies. This is critical to determine allele frequencies of what is the 

largest proportion of variants that are called. Rare variants were isolated as those 

satisfying the parameter in the gnomAD WES dataset, due to the sample size of the 

gnomAD exome population enabling accurate allele frequency determination, in 

combination with the lack of requirement for allele frequency estimates outside of the 

exome. 

 

3.4.4 Selection of pathogenicity predicting parameters 

The number of variants identified through NGS is constantly growing and there is a huge 

need for analyses to assess variation tolerance and prioritise those which are candidates 

for causing disease/disorder. The approaches and tools used in this study, CADD, SIFT, 

Polyphen-2, while informative and widely applied, come with limitations. Functional 

prediction across bioinformatic tools is inconsistent (Niroula and Vihinen, 2019). At the 

molecular level, the disruption caused by a genetic variant can range from no disturbance 

to detrimental effects on genomic sites that are key to protein function. These effects are 

particularly difficult to categorise in the case of missense variants. Missense variants are 

far more abundant in the genome than LoF variants, with the majority having no harmful 

effect on gene function (Ronemus et al., 2014). Specifically, half of the variants predicted 

to be deleterious correspond to nearly neutral variants, which have minimal clinical 

relevance, but they will be subject to purifying selection (Miosge et al., 2015). 

 

The consensus scoring approach, here where a variant is required to satisfy 

pathogenicity thresholds in two of three scoring to be deemed pathogenic, is an effort to 

overcome inconsistencies in pathogenicity prediction. However, pathogenicity filter 

algorithms REVEL and ClinPred when applied alone have been demonstrated to be well 

tuned and could be as useful when applied independently than a consensus scoring 

approach (Ioannidis et al., 2016; Alirezaie et al., 2018; Gunning et al., 2021). The 

purpose of variant scoring is key to selection of pathogenicity prediction parameters. 

Predictors may perform well for evaluation of variants in a research setting, but when not 

as well in when applied in clinical variant assessment (Gunning et al., 2021). A further 

consideration when scoring variant pathogenicity is the performance, as measured by 
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the specificity of the tool in the population under investigation (Niroula and Vihinen, 2019) 

(Figure 3-7). Taken together these limitations highlight the need to benchmark variant 

pathogenicity criteria against variants that are representative of the study. 

 

 

 

Figure 3-7 Performance of variant tolerance predictors for variants in ethnic groups. 

Taken from Niroula et al. (2019): “Performance of variant tolerance predictors for variants in ethnic groups. 
Specificities of prediction tools for common variants (AF ≥1% and <25%) in different populations. AFR, 
African; AMR, American; EAS, East Asian; FIN, Finnish; NFE, non-Finnish European; OTH, Other; SAS, 
South Asian; MA, MutationAssessor; MT2, MutationTaster2; PPH2, PolyPhen-2. 
https://doi.org/10.1371/journal.pcbi.1006481.g002.” 

 

3.4.5 Relevance of variation identified 

The analysis presented here applies a stringent variant filtration strategy to identify 

putatively pathogenic rare variation in genes with existing reports of association to autism 

and neurodevelopment. This pipeline is limited to the isolation of rare exonic SNVs, 

however NGS technologies enable additional classes of variation to be detected, with 

evidence supporting their involvement in the genetic basis of autism, such as CNVs, SVs 

and tandem repeat expansions as will be discussed later. There are future opportunities 

to explore these classes of variation in Cohort 1 and enable expansion of the 

understanding of the genetic basis of autism within this cohort. While variant discovery 

did not yield pathogenic SNVs with association to autism, expansion beyond this gene-

set based variant filtration strategy will enable detection of more genetic variants which 

could be contributing to the phenotype.  

 

Expanding beyond this filtration strategy may detect causative variation in the cohort, 

when unrestricted by the requirement to restrict analyses to genes with an existing gene-

disease association reported. This gene-set based filtration step within the variant 

isolation strategy is a weakness, leaving many rare putatively pathogenic variants 

https://doi.org/10.1371/journal.pcbi.1006481.g002
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uninterrogated. However, there is opportunity to overcome this in the future with an 

increase in sample size, achievable by analysis of this dataset in combination with other 

WES autism datasets, such as those described in Table 1-2. Large sample sizes give 

statistical power to enable gene-phenotype associations, while the small sample size of 

Cohort 1 enables only variant detection within known autism-associated genes. 
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3.4.6 Conclusion 

This chapter describes analysis of a WES cohort of 42 individuals, varied in family 

structure. This work has enabled the development of a variant interpretation strategy 

from align sequence reads to a filtered and relevant variant call-set. No gold-standard 

pipeline currently exists for the isolation of rare exonic SNVs from NGS datasets. The 

research outlined within this chapter has yielded a strategy for the isolation of such 

variants in autism cohorts as is applied in Chapters 4 and 5.  

 

Sample size and variability in family structure within this dataset limit the use of this 

cohort. This study is statistically underpowered to perform rare variant association testing 

and subsequently cannot be used to draw overall conclusions on the genomic basis of 

autism. However, analysis of this dataset has led to a high-quality and robustly annotated 

set of rare putatively pathogenic variants with evidence for autism relevance. Importantly, 

these findings have not be confirmed by Sanger sequencing and have not been validated 

to clinical genetic standards. Further value will be gained from this work in the future 

upon combined analyses of these data with larger autism sequencing cohorts. 
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Chapter 4. Evaluating gene-phenotype relationships through 

gene curation. 

 

Presentations arising from the contents of this chapter: 

“Application of an evidence-based curation framework to aid gene discovery: a pilot 

investigation in an autism family cohort.” Fiana Ní Ghrálaigh, Louise Gallagher & Lorna 

M. Lopez 

Poster presented at the World Congress of Psychiatric Genetics, October 2020 

(Appendix III-IV). 

 

“Analysis Pipeline of Whole Genome Sequencing Data in Neurodevelopmental 

Disorders.” Fiana Ní Ghrálaigh, Niamh M. Ryan, Louise Gallagher, Lorna M. Lopez 

Poster presented at the British Neuroscience Association Festival of Neuroscience, April 

2019 (Appendix III-VI). 
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4.1 Abstract 

Here, a gene-phenotype curation framework is in applied to three genes, NAV2, NINL 

and CACNA2D3. The dataset from which variant data is derived for curation is a set of 

rare putatively pathogenic exonic variants impacting autism-relevant genes are identified 

through WGS in a cohort of six individuals. All three genes achieved a classification of 

“Limited” by the Schaaf et al. (2020) gene curation framework, despite confidence in 

autism association supported by SFARI Gene. 

 

4.2 Introduction 

4.2.1 A family-based approach to identifying autism-associated variation 

Penetrance refers to the number of cases harbouring a particular variant for which the 

phenotype is observed. Highly penetrant pathogenic variation by nature is not common 

in a healthy population as it would result in a high prevalence of a phenotype associated 

with reduced fecundity. Rather they can be expected to be and have been found to be 

rare in allele frequency. As specified in 3.4.3, rarity can be defined as a MAF of less than 

5% in the population. Where cases aggregate within a family there is an expectation that 

the family harbours an enrichment of inherited, penetrant pathogenic variation.  

 

Population-based studies require a variant to reach genome-wide significance in a large 

proportion of the unrelated affected individuals to be associated. In keeping with this, a 

variant will need to be sufficiently common to be identified as statistically associated. To 

identify rare variation in an unrelated cohort very large sample sizes are required to reach 

statistical association. Currently population-based studies are applied with an aim to 

identify common genetic variation. However, the effects of common variation are small 

and cannot explain observed patterns of heritability such as those seen in autism and 

other neurodevelopmental conditions. While autism is known to have a common 

component to its genetic basis, common variants are not expected to be the causative 

variation in multiplex families. 

 

4.2.2 Dissecting gene-phenotype relationships 

Disentangling gene-phenotype relationships in a complex condition faces many 

challenges. Until these challenges are overcome there is ambiguity in the degree of 

causation a variant is contributing to the condition. In the area of rare disease, including 

rare neurodevelopmental conditions, variant specific phenotypic data is crucial to 
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collating individual level information to reach sample sizes sufficient to gain insights into 

gene-disease relationships. One example of these resources is DECIPHER used by 

clinicians to share phenotype and genotype data of over 43,000 patients (Firth et al., 

2009). Phenotyping collated per variant locus has improved diagnosis of severe 

developmental conditions and has potential to inform on disrupted processes causing 

these phenotypes (Fitzpatrick and Firth, 2020). 

 

Strategies and guidelines to streamline curation of gene-disease relationships are key to 

determination of pathogenicity of a variation relevant to a condition. At the early stages 

of variant discovery OMIM was and still is in certain diseases and disorders, a gold-

standard resource to be use in variant interpretation (Amberger, Bocchini and Hamosh, 

2011; Amberger et al., 2019).  

 

Further examples of successful resource development include the ClinGen framework. 

This framework outlines a standardised procedure, with specific criteria for assessment 

clinical validity and a quantitative approach, to collect evidence to support gene-disease 

association (Strande et al., 2017). Expert gene curation panels can then systematically 

validate the gene-disease relationship. Another widely applied toolkit in genomic analysis 

comes from the ACMG, who maintain a set of standards and guidelines to adhere to in 

variant interpretation (Green et al., 2013). A potential solution for disentangling gene-

phenotype relationships comes from a proposed adaptation of the ClinGen gene curation 

framework for use in autism, accounting for the degree of certainty in autism diagnoses 

in studies reporting association and accounting for co-occurring diagnoses and well as 

incorporating genetic evidence, providing consistency throughout gene discovery  

(Schaaf et al., 2020).  

 

4.2.3 Hypothesis and aims 

Gene curation in the context of autism can be used to quantify the evidence supporting 

gene-phenotype associations arising from sequencing studies. An evidence-based 

curation framework accounting for phenotypic heterogeneity has been proposed for use 

in autism. This chapter focuses on application of a gene curation framework in autism. 

The dataset from which variant data is derived for curation is a set of rare putatively 

pathogenic exonic variants impacting autism-relevant genes are identified through WGS 

in a cohort of six individuals. A subset of these impacted genes is selected for evaluation 

by gene curation through the framework.  
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The aims of this chapter are: 

1) to apply an analysis strategy for isolation of rare exonic pathogenic SNVs from NGS 

data. 

2) to isolate de novo variation in an autism-affected proband using a family-based 

approach to variant discovery. 

3) to dissect gene-phenotype relationships through application of a gene curation 

framework. 
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4.3 Results 

4.3.1 Cohort-level QC 

This chapter describes analysis of WGS of Cohort 2. Cohort 2 is a dataset of six 

individuals and includes three autistic probands, as summarised in Table 4-1 and Table 

4-2. Ascertainment of this cohort is described in 2.1.2. All samples are also included in 

Cohort 1. The pedigree in focus in this chapter is presented in Figure 4-1. 

 

Cohort Overview N = 6 

Number of families 1 quad family 

2 affected singletons  

Male probands N=1 

Female probands N=2 

Table 4-1 Overview of Cohort 2.  

Outlined are the family structures included in the cohort and proband counts by sex. 

 

FID IID Sex Phenotype Parental ID 

AS315 AS315C F Autism N/A 

AS322 AS322C1 F ASD, ADHD N/A 

AS420 AS420C1 

M Autism, moderate ID, 

self-injurious behaviour, 

catatonia, 

dysmorphology 

Father; AS420F 

Mother; AS420M 

AS420 AS420C2 

M Unknown Father; AS420F 

Mother; AS420M 

AS420 AS420F M Unknown N/A 

AS420 AS420M F Unknown N/A 

Table 4-2 Cohort 2 phenotype, sex, and parental ID. 

Outlined are reported relationships, sex and clinically validated phenotype for individuals analysed within 
Cohort 2. 

 

 



   

 

117 

 

 

Figure 4-1 Pedigree AS420. 

Red marking indicates affection in the proband. Affection here refers to the complex phenotype of autism 
regression in infancy, and co-occurring moderate intellectual disability, severe self-injurious behaviours, and 
catatonia over the course of development. 

 

4.3.2 Variant filtration 

The workflow developed and applied in these analyses is presented in Figure 4-2. The 

full set of non-synonymous variants which has been annotated as described in Materials 

and Methods 2.8, are subject to further subsetting on the bases of allele frequency, 

predicted pathogenicity and gene-level associations as follows. 

 

Rare putatively pathogenic autism-relevant variants were isolated as detailed in Chapter 

3, yielding 107 variants of relevance in six individuals (Figure 4-2). These variants were 

further subset to those occurring in affected individuals, (three unrelated probands) and 

unaffected individuals (family members of one proband) (Figure 4-3). A subset of the 

variants isolated through the framework outlined in Figure 4-2 have been curated through 

an evidence-based gene curation as follows within this chapter. 
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Figure 4-2 Flow of variant filtering with cohort-level variant counts.  

Arrows show the direction of flow from each level of filtering (specified on the left). SFARI refers to Simons 
Foundation Autism Research Initiative Gene Module. DDD refers to the gene2phenotype database arising 
from the DDD study. 
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Figure 4-3 Spread of variation across genomic regions.  

Chromosomes are shown around the outer track of the figure (1:22, X). The gene names are given on the 
inner track. These are the genes in which the rare pathogenic autism-relevant variants outlined in Fig.1 are 
located. Links are made in purple (affected; n=3 individuals, n=91 variants) and blue (unaffected; n=3 
individuals, n=69 variants) between each gene and the respective affection status of the individual 
harbouring the variant. Affected denotes individuals with an autism diagnosis. 

 

4.3.2.1 Isolation of de novo variation 

This cohort of six individuals include a quad family with one proband, an unaffected 

sibling and unaffected family members (Figure 4-1). This structure enables the further 

subset of variants to those that are unique to the proband and may be of relevance in 

this sporadic case of autism. Due to the severity in the phenotype of this proband, as 

detailed in 2.1.2, it is hypothesised that rare highly penetrant variation is causative of the 

phenotype.  
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In addition to this, there is complexity in the phenotype of this individual with the proband 

experiencing regression in infancy, and co-occurring moderate ID, severe self-injurious 

behaviours, and catatonia over the course of development. Following this hypothesis, de 

novo rare predicted pathogenic variants were isolated for further interpretation, not 

restricted to those in autism and neurodevelopmental-relevant genes. Table 4-3 presents 

variant counts in this family context. No homozygous variants were isolated as unique to 

proband in this variant call-set. 

 

Variant Call Set Variant Count 

Rare pathogenic variants 280 variants 

Paternal inherited (of 271 paternal 

variants) 

152 variants 

Maternal inherited (of 267 maternal 

variants) 

144 variants 

Shared unaffected sibling variants (of 280 

sibling variants) 

153 variants 

de novo variation unique to proband 0 variants 

Table 4-3 Variant transmission in a quad family of autism. 

Variation is here determined a variant locus at which an individual has a 0/1, 1/0 or 1/1 genotype, indicating 
heterozygous or homozygous alterative allele presence. Variant counts refer to number of variants in the 
proband variant call-set. Here the rare (gnomAD <5%,) predicted pathogenic (through CADD, SIFT4G and 

Polyphen-2) variant call set of family members are queried against that of the proband.  

 

Homozygous variant sites in the proband where there is heterozygosity in both parents 

are isolated in Table 4-4 and Table 4-5. Candidate variants are excluded based on 

homozygosity in unaffected family members (i.e., paternal, maternal of sibling 

homozygosity).  
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Variant Call Set Variant Count 

Homozygous rare pathogenic variants 10 variants 

Paternal homozygosity detected 1 variant 

Maternal homozygosity detected  1 variant 

Sibling homozygosity detected 4 variants 

de novo variation unique to proband 4 variants 

Table 4-4 Recessive inherited homozygosity in an affected proband. 

Homozygous variation is here determined a variant locus at which an individual has a 1/1 genotype. Variant 
counts refer to number of variants in the proband variant call-set. Here the rare (gnomAD <5%,) predicted 
pathogenic (through CADD, SIFT4G and Polyphen-2) variant call set of family members are queried against 
that of the proband.  

 

Chromosome ID ref alt Gene  Ensembl Gene ID Clinvar 

ID 

chr2 rs116298748 G A COL5A2 ENSG00000204262 136944 

chr7 rs146095374 C A TYW1B ENSG00000277149 N/A 

chr20 rs34396614 C G MYLK2 ENSG00000101306 36652 

chrX rs45557031 G A C1GALT1C1 ENSG00000171155 460285 

Table 4-5 Homozygous proband variants in focus. 

 

4.3.2.2 Biological interpretation of variants identified 

Of the four homozygous variants identified in the proband under investigation, none 

impact genes that are included in SFARI Gene, indicating that none of these variants 

have existing evidence supporting association with autism. The genes identified have 

been implicated in a number of phenotypes that are unobserved in the proband including 

Ehlers-Danlos Syndrome (COL5A2), Cardiomyopathy (MYLK2) and Tn syndrome, a rare 

autoimmune disease (C1GALT1C1) (Richards et al., 1998; Ju and Cummings, 2005). 

 

TYW1B is a protein-coding gene encoding a component of the wybutosine biosynthesis 

pathway. Wybutosine is a hypermodified guanosine found in phenylalanine tRNA. A 

recent case report links a large-scale chromosomal rearrangement impacting a number 

of genes including TYW1B, with an MRD44-like phenotype which includes intellectual 

disability, microcephaly, finger anomalies, and facial dysmorphia (Córdova-Fletes et al., 

2022). This phenotype is not consistent with the complex phenotype observed in the 

proband investigated here, however the intellectual disability resulting from large-scale 

genomic changes in this region may be suggestive of a role of the single base change 
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identified here, rs146095374 impacting TYW1B, accounting for aspects of the 

neurodevelopmental phenotype reported.  

 

4.3.3 Evaluating gene-phenotype relationships through gene curation 

4.3.3.1 Gene selection for curation  

Candidate genes curation through an evidence-based framework were selected from the 

dataset analysed within this chapter as outlined in Figure 4-4. Candidate genes are those 

in which putatively pathogenic variants in autism-associated genes were identified. 

Genes were excluded where ClinGen curation is completed (Figure 4-4). ClinGen 

curation refers to curation following the ClinGen guidelines rather than the modified 

ClinGen guidelines proposed by Schaaf et al. (2020).  
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Figure 4-4 Gene selection for curation.  

Classification of three genes with highest number of autism reports. Genes were excluded from this analysis 
when already curated by ClinGen. Genes were selected for analysis when evidence of autism association 
is reported in the literature.  

 

Candidate genes were prioritised for gene curation based on the number of reported 

autism cases for which a variant in the gene had been associated. Selection of those 

with the highest number of reports lead to gene selection with the most evidence to feed 

into the gene curation framework. Two metrics of reports were used for this purpose: 

GeneCards publication search and SFARI Human Gene Module.  
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Three genes were selected for curation using by the Schaaf et al. (2020) framework. 

These genes were selected based on the highest number of autism specific reports of 

all candidate genes. NAV2 (11p15.1, neuron navigator 2), NINL (20p11.21, ninein Like) 

and CACNA2D3 (3p21.1-p14.3, calcium channel voltage-dependent alpha 2/delta 

subunit 3) are detailed in Table 4-6 along with gnomAD constraint scores measuring 

predicted tolerance of each gene to LoF and missense variation.  

 

Gene 

Symbol 

Gene Name Cytogenetic 

Location 

ClinGen 

Curation 

gnomAD Constraint 

Scores 

Loss-of-

Function 

Missense 

CACNA2D3 Calcium 

channel, 

voltage-

dependent, 

alpha 2/delta 

subunit 3 

3p21.1-p14.3 Not 

curated 

pLI = 0.58 

o/e = 0.22  

CI= 0.14 - 

0.34 

Z = 1.86 

o/e 

= 0.78  

CI= 0.72 -

0.84 

 

NAV2 Neuron 

navigator 2 

11p15.1 Not 

curated 

pLI = 1 

o/e = 0.16  

CI= 0.11 - 

0.25 

Z = 1.39  

o/e = 0.9  

CI= 0.86 - 

0.94 

NINL Ninein Like 20p11.21 Not 

curated 

pLI = 0 

o/e = 0.89  

CI= 0.72 - 

1.09 

Z = -0.98 

o/e = 1.1  

CI= 1.04 - 

1.16 

Table 4-6 Constraint metrics are estimated based on expected vs observed SNVs identified within the gene.  

These estimates are further broken down by variant type with LoF and missense variant constraint scored 
indicated in this table. Observed/expected (o/e) is a continuous measure of how tolerant a gene is to a 
certain class of variation. Low o/e values indicate the gene is under stronger selection for that class of 
variation than a gene with a higher value. 90% confidence interval (CI) is given for each o/e value. Z score 
given is the deviation of observed counts from the expected number. Positive Z scores indicate increased 
constraint. The closer pLI is to one, the more intolerant of protein-truncating variants the transcript is 

predicted to be. 
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4.3.3.2 Gene scoring 

Gene scoring was carried out per Schaaf et al. modified ClinGen Gene-Disease Validity 

scoring guidelines. Detailed accounts of scoring are presented for the three genes 

selected NAV2 (Table 7-1, Table 7-2), NINL (Table 7-3) and CACNA2D3 (Table 7-4). 

Scoring was carried out for each reported autism case harbouring a variant in the 

specified gene. Variant characteristics were recorded from supplemental tables 

associated with the publication, denoted by author and year of publication in Table 4-7. 

A gene matrix was constructed following that proposed by Schaaf et al. where each 

variant score was summed to generate a gene-level classification. 

 

Phenotype methods for each study and the quality score that they have been assigned 

here, through the modified ClinGen gene-disease curation framework are presented in 

Table 4-7. This table presents also details on consideration of cognitive ability of the 

study participants and highlights studies where robustness of autism diagnosis may be 

compromised by insufficient consideration of intellectual ability. This lack of 

consideration in phenotyping leads to ambiguity in assignment of an autism diagnosis 

and for this reason results in a downgrading in gene-disease association scoring as 

shown in Table 7-1. 
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Authors 

(Year): 

Title 

Phenotyping Method/ Notes: Quality of 

Autism 

Phenotype 

Report 

 

Cognitive Ability 

Cautionary Comment 

Assigned 

De Rubeis 

S, et al. 

(2014) 

Autism: As part of the ASC, all subjects were diagnosed with “Autistic Disorder” as the 

primary phenotype (DSM-5). 

Cognition: No information provided. 

 

High 

confidence. 

No cautionary comment 

required. 

Guo H, et 

al. (2018) 

Autism: Autism diagnosed primarily according to DSM-IV/5 criteria, documenting 

additional co-occurring conditions where possible. 

Cognition: "[T]he majority of patients with severe DNMs (de novo mutations) and a 

cognitive assessment showed evidence of some form of intellectual impairment. Only 

TNRC6B, NCKAP1, and one of the two ZNF292 LGD DNMs occur in Autism patients with 

an IQ in the normal range." 

 

High 

confidence. 

Uncertainty regarding validity 

of Autism diagnosis 

considering insufficient 

information regarding 

intellectual ability. 

Iossifov et 

al. (2014) 

Autism: Simons Simplex Collection (SSC) - extensive autism phenotyping, including ADI-

R, ADOS, cognitive testing, Vineland, SRS, SCQ (see https://www.sfari.org/resources/ssc-

instruments/ for full phenotyping information). 

Cognition: No information provided; however, as part of the SSC, thorough cognitive 

testing was performed. 

 

High 

confidence. 

No cautionary comment 

required. 

 Leblond 

CS, et al. 

(2019) 

 

Autism: Extensive autism phenotyping, including ASSQ, DISCO-10, DISCO-11. 

Cognition: WISC or WEIS, IQ (DISCO) 

High 

confidence. 

ID included in study evaluate 

case by case. 
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Lim ET, et 

al. (2017) 

Autism: As part of the ASC, all subjects were diagnosed with “Autistic Disorder” as the 

primary phenotype (DSM-5). 

Cognition: No information provided. 

 

High 

confidence. 

No cautionary comment 

required. 

O'Roak BJ, 

et al. 

(2012) 

Autism: Simons Simplex Collection (SSC) - extensive autism phenotyping, including ADI-

R, ADOS, cognitive testing, Vineland, SRS, SCQ (see https://www.sfari.org/resources/ssc-

instruments/ 

for full phenotyping information). 

Cognition: Little information provided; however, as part of the SSC, thorough cognitive 

testing was performed. 

 

High 

confidence. 

No cautionary comment 

required. 

Ruzzo EK, 

et al. 

(2019) 

Autism: No specific information about phenotyping assessments provided - notes that 

"[s]tudy subjects were carefully selected from the Autism Genetic Resource Exchange 

(AGRE) and chosen from families including two or more individuals with autism (those with 

a "derived affected status" of "autism," "broad-spectrum," "nqa," "asd," or "spectrum.")" 

 Cognition: No information provided 

 

High confidence No cautionary comment 

required 

Sanders 

SJ, et al. 

(2012) 

Autism: Simons Simplex Collection (SSC) - extensive autism phenotyping, including ADI-

R, ADOS, cognitive testing, Vineland, SRS, SCQ (see https://www.sfari.org/resources/ssc-

instruments/ 

 for full phenotyping information. 

Cognition: Little information provided; however, as part of the SSC, thorough cognitive 

testing was performed. 

 

High 

confidence. 

No cautionary comment 

required. 

https://www.sfari.org/resources/ssc-instruments/
https://www.sfari.org/resources/ssc-instruments/
https://www.sfari.org/resources/ssc-instruments/
https://www.sfari.org/resources/ssc-instruments/
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Table 4-7 Evaluating phenotyping in sequencing studies of autism. 

This tables presents autism studies in which variants were identified in one or more of the three genes under investigation: NINL, NAV2 or CACNA2D3. Phenotype methods are 
recorded for both autism and cognition as reported in respective study methods. Confidence scores and cautionary notes are assigned according to Schaaf et al. (2020) 
recommendations. Where a variant has been scored from these studies by Schaaf et al. confidence scores have been taken directly from those assigned in the guidelines study. 

Wang T, et 

al. (2016) 

Autism: Autism diagnosed according to DSM-IV criteria. 

Cognition: No information available. 

High 

confidence. 

Uncertainty regarding validity 

of ASD diagnosis 

considering insufficient 

information regarding 

intellectual ability. 

 Wu H, et 

al. (2019) 

Autism: Autism Clinical and Genetic Resources in China (ACGC) cohort. Diagnosed 

according to DSM-IV or DSM-V by experienced clinicians. In addition, co-occurring 

conditions including medical problems, such as epilepsy, gastrointestinal issues, and sleep 

disorders; developmental diagnoses, such as ID and language delay; and mental-health 

conditions, such as ADHD, obsessive-compulsive disorder, and depression, were collected 

for presenting patients. 

Cognition: No information provided for this individual. 

 

High 

confidence. 

ID included in study evaluate 

case by case. 

Yuen RK et 

al. (2017) 

Autism: Autism diagnosis of all participants must have met criteria on one or both 

diagnostic measures: ADI-R and ADOS or considered a clinical diagnosis when given by 

an expert clinician according to the DSM IV or V edition). 

Cognition: "Many participants were assessed with standardized measures of intelligence 

(IQ), language, and general adaptive function. 19.6% had scores within the range for ID 

(FSIQ < 70)."  

 

High 

confidence. 

No cautionary comment 

required. 
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Variants reported in genes NAV2, NINL and CACNA2D3 were individually scored 

according to the gene scoring matrix outlined by Schaaf et al. (2020) (Table 7-1-Table 

7-4). Variant reports were identified as specified in 2.13.3. Individual variant data was 

extracted from the publication source specified per variant and collated per gene as 

shown in the respective matrices. Where available experimental evidence was evaluated 

using the experimental scoring matrix proposed by Schaaf et al. (2020) (Table 7-2). 

Variants scored were restricted to variants where the proband carried the pathogenic 

variant under investigation. For example the non-synonymous coding variant identified 

in CACNA2D3 (Chr3(hg19):g. 54925398G>A, V629M (De Rubeis et al., 2014)), is a 

variant which would otherwise be awarded default scoring of 2, autosomal dominant 

variant. However, while identified through a trio study of autism with the aim of isolating 

de novo variation, the proband carried the reference allele while the variant detected is 

a paternal variant. For this reason, several variant reports counted in Table 2-35 were 

excluded from scoring. 

 

Key to the scoring matrix are variant specific details including gnomAD allele frequency 

and to determine rarity of the alternative allele in an unaffected population and protein 

coding consequence as an estimate of pathogenicity (gnomAD v2.1.1 October 2020). 

Mode of inheritance is recorded where parent genotype information is available. 
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Individual report scores were totalled and the sum of scores were used to designate 

classifications of each gene (Table 7-1-Table 7-4). All genes, despite enriching for those 

genes with the highest number of autism-specific reports, were designated as having 

limited evidence supporting their role in autism, as presented in Table 4-8. This limited 

classification is derived from the ClinGen protocol, justified as follows: “There is limited 

evidence to support a causal role for this gene in this disease, such as: Fewer than three 

observations of variants with sufficient supporting evidence for disease causality OR 

Variants have been observed in probands, but none have sufficient evidence for disease 

causality. Limited experimental data supporting the gene-disease association” (Gene-

Disease Validity Standard Operating Procedures, Version 7 - ClinGen | Clinical Genome 

Resource, 2019).  

 

 

Gene SFARI Gene Score Sum of scores   Classification 

NAV2 Strong Candidate 
(SFARI Gene Score 2) 
 

0.5 Limited 

NINL Strong Candidate 
(SFARI Gene Score 2) 
 

4.5 Limited 

CACNA2D3 High Confidence  
(SFARI Gene Score 1) 
 

5.0 Limited 

Table 4-8 Classification of three genes with highest number of autism reports. 

The three genes with the highest number of autism reports (6 publications each) were selected for curation. 
Sum of scores represents the raw sum of genetic and experimental evidence towards autism based on 
Schaaf et al. framework with gene classification. SFARI Gene score is included here as a comparative score 
to that determined by the gene curation framework. SFARI Gene score of 1 or 2, as are assigned to all three 

genes, indicate support for autism association as determined by SFARI Gene curation.  

 

The “limited” classification of these genes is a result of downgrading of variants identified. 

The most frequently applied downgrading justifications are outlined in Table 4-9. These 

downgrading classifications may be used to inform variant discovery pipelines, such as 

allele frequency thresholds in gnomAD or criteria for predicted gene disruption of 

missense variants. In addition, phenotypic data collected during cohort ascertainment 

should consider the impact of cognition scoring measures on downstream variant 

associations with autism. 
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Frequently applied variant downgrading  Rationale 

de novo missense variant with suggested 

functional evidence 

Limited evidence of disruption of 

gene function 

Observed in gnomAD Allele identified in an unaffected 

control cohort 

Synonymous variant with no functional data 

provided 

Unknown impact on gene function 

WES/WGS not performed Lack of confidence in sequence 

quality 

Lack of confidence in ID/ cognition score Autism phenotype in the presence 

of ID 

Intronic variant Unknown impact on gene function 

Proband carries reference allele Variant not clearly associated with 

autism 

Inherited missense variant without functional 

evidence 

No evidence of disruption of gene 

function 

Table 4-9 Modified ClinGen downgrading frequently applied in variant scoring matrices. 
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4.4 Discussion 

This chapter reports on gene-phenotype curation of a subset of genes identified through 

WGS of an autism cohort of six individuals. When restricted to affected individuals three 

genes in which rare putatively pathogenic autism-relevant SNVs were detected were 

selected for curation. These genes were prioritised for curation on the number of autism-

reported variants impacting the genes. Curation was carried perform on NAV2, NINL and 

CACNA2D3. Each of these gene was classified as “Limited,” scoring the gene-phenotype 

association (Table 4-8) (Gene-Disease Validity Standard Operating Procedures, Version 

7 - ClinGen | Clinical Genome Resource, 2019). This implies that while these genes are 

implicated in the genetics of autism, their association is not restricted to an autism only 

phenotype. In the case of the cohort investigated two of three of the probands 

investigated are affected by both autism and a co-occurring neurodevelopmental 

phenotype.  

 

Phenotypic heterogeneity has an impact on the power of genetic associations (Manchia 

et al., 2013). This effect has been demonstrated in psychiatric genetics through GWAS 

studies. Specifically, a landmark GWAS study by Ripke et al. achieved 18% phenotypic 

variance explained by PGS (Ripke et al., 2014). However, Stahl  et al. reported a GWAS 

study with comparable sample size, achieved 8% of phenotypic variance explained by 

PGS (Stahl et al., 2019). In addition to the underlying difference in genetic architecture 

of the phenotype, the difference in variance explained by these studies is contributed to 

by heterogeneity of the sample studied. 

 

While lists of genes relevant to autism have been developed, for example two SFARI 

Gene and DDD gene2phenotype applied in these analyses, these lists are limited in their 

ability to dissect neurodevelopmental phenotypes presenting with autism (Abrahams et 

al., 2013; Wright et al., 2015; Myers, Challman, Bernier, et al., 2020). Application of a 

formal evidence-based gene curation framework, such as that proposed by Schaaf et 

al., accounts for these co-occurring diagnoses and provides consistency throughout 

gene discovery (Schaaf et al., 2020). This framework was developed with psychiatrists 

with expertise in these phenotypes and unlike SFARI Gene or the standard ClinGen 

Gene-Disease curation, downgrades evidence of association with autism when the 

individuals for whom the gene has been associated has any ID.  

 

As demonstrated in the classification of NAV2, NINL and CACNA2D3, this is a stringent 

approach resulting in three genes with multiple reports of association and SFARI scoring 
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of strong or high confidence (Scores 1 or 2), summing to a limited association with the 

autism phenotype (Table 4-8). Importantly, this interpretation comes from classification 

of just three genes and a wider classification of the full set of genetic variation associated 

with autism would be needed to determine the potential for this framework of 

classification. Furthermore, this framework is a labour-intensive process requiring 

comprehensive review of all literature reporting variation in the gene undergoing 

classification, as well as input from an expert panel and while the importance of gene 

curation is well-understood in the genomics community, this workload may not be 

feasible when considering the ~1,000 genes with some degree of evidence of 

association. 

 

In addition, the results presented associate variation in four genes with the complex 

neurodevelopmental phenotype observed in a proband within the cohort studied. This de 

novo variation was isolated in an autism-affected proband using a family-based approach 

to variant discovery, identifying four variants impacting genes COL5A2, TYW1B, MYLK2 

and C1GALT1C1. Existing evidence does not link these single-base changes to the 

phenotype observed in this individual and these variants require functional analysis to 

robustly determine their contribution. Expanding beyond this filtration strategy may detect 

causative variation in the cohort. The pipeline applied here is limited to the isolation of 

rare exonic SNVs, however NGS technologies enable additional classes of variation to 

be detected, with evidence supporting their involvement in the genetic basis of autism, 

such as CNVs, SVs and tandem repeat expansions, as will be discussed later. There are 

future opportunities to explore these classes of variation in Cohort 2 and enable 

expansion of the understanding of the genetic basis of autism within this cohort. In 

addition, this analysis has focused on identification and interpretation of exonic variants 

only. Cohort 2 has undergone WGS enabling detection of non-coding variation which will 

be informative to the genomic basis of the individuals studied. 

 

4.4.1 Conclusion 

An autism gene curation framework was applied to three genes NAV2, NINL and 

CACNA2D3 to dissect gene-phenotype associations with autism, each being scored as 

“Limited” association to autism despite literature suggesting confidence in the autism 

association. In addition, the analysis outlined in this chapter applies an analysis strategy 

for isolation of rare exonic pathogenic SNVs from WGS data and reports 107 variants in 

91 genes with existing evidence of autism-association. De novo variation was isolated in 

an autism-affected proband using a family-based approach to variant discovery, 
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identifying four variants impacting genes COL5A2, TYW1B, MYLK2 and C1GALT1C. 

These require functional analysis to robustly determine their contribution to autism.  
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Chapter 5. A pedigree driven approach to identify pathogenic 

variation in multiplex families of neurodevelopmental 

conditions. 

 

Presentations arising from the contents of this chapter: 

“Genomic syndromes in autism: Using whole genome sequencing to investigate 

multiplex families with autism and associated neurodevelopmental conditions.” Fiana Ní 

Ghrálaigh, Aoife Coghlan, Louise Gallagher & Lorna M. Lopez  

Poster presented at Genomics of Rare Diseases (Wellcome Connecting Science), April 

2022 (Appendix III-I). 
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5.1 Abstract 

Here rare putatively pathogenic SNVs in genes with evidence supporting their role in 

autism are detected, using a family-based study design to evaluate variant transmission. 

The analyses outlined in this chapter follow the framework for calling and annotation of 

rare, exonic SNVs occurring in genes with existing evidence supporting autism 

association, outlined in Chapter 3. Variant detection and interpretation have been carried 

out on four multiplex pedigrees and putatively pathogenic variation detected is detailed 

within this chapter. These findings add to evidence supporting the involvement of genes 

TTN, PSPH, RECQL4 NECTIN4 TSC2 TSHZ3 SLC26A2 and FKTN pending 

confirmation by Sanger sequencing. 

 

 

5.2 Introduction 

5.2.1 Enriching for penetrant inherited variation in multiplex pedigrees 

A multiplex family has several affected members with the causative genetic variation 

likely to lie in variant sites that are shared between affected individuals. A family-based 

genomic study involves analysis of sequencing data in unaffected and affected family 

members. 

 

Within the family-based study design comes innovative approaches to collecting and 

analysing family data, as has been summarised by Morris et al. (2015). These range 

from large population-based family-studies, for example a Utah registry which collates 

pedigree information on all state residents for decades, through to smaller family-based 

studies such as Wang et al. (2013) who analyse only independent probands from within 

families to inform on IQ differences in autistic individuals (Nelson et al., 2013; Wang et 

al., 2013; Morris et al., 2015). Leveraging affection status informs on variant penetrance 

and narrows the search for causative variation within families. Studying large pedigrees 

of multiplex or extended families leads to a more homogenous causative variant set, due 

to the high degree of genetic sharing between related individuals. In contrast to a case-

control or population-based study design, this causative variant set can be isolated in 

the absence of control genomes.  

 



   

 

137 

 

5.2.2 Using family structure to inform on mode of variant transmission 

Families boost the ability to perform association and linkage studies effectively by 

enriching for a causative variant, as compared to population-based studies. This is 

particularly valuable in autism where a combination of genetic variants is likely to be 

causative of the complex phenotype observed (Antaki et al., 2022). In a family-based 

design it is likely that within families a smaller number of genes contributing to the 

condition will be identified, than by a population-based design where a genome-wide 

association is performed. In practice by analysing individual genomes within families, 

focus can be put on a smaller number of contributing genes, as opposed to case-control 

studies where all genes are interrogated leaving limited power for gene discovery. Larger 

multiplex and extended families with multiple affected individuals further reduce the 

sample size required for rare variant identification by increasing the number of copies of 

a variant detected (Glahn et al., 2019). 

 

Ascertainment of pedigrees for genomic research, particularly extended pedigrees, is 

challenging, with added expense and time commitment required for identification, 

recruitment, and sample collection of whole pedigrees than those involved in the study 

of unrelated individuals in a case-control approach. Unaffected family member 

genotyping and phenotyping is as important as consideration of affected individuals for 

robust evaluation of variant transmission in families. For this reason, depending on 

phenotype and the underlying genetic architecture, it may be more efficient to take a 

case-control study design. However, when considering autism there is benefit to family-

based ascertainment for genomic analysis as outlined in Chapter 1 and the informative, 

yet limited, number of loci identified through large-scale genome-wide association 

studies to date (Grove et al., 2019). While ascertainment is costly, pedigree sequencing 

can be cost effective. Given that genetic relationships between family members are 

known, WGS where appropriate can be imputed for family members that have not be 

sequenced, decreasing the effective cost per sample (Glahn et al., 2019).  

 

5.2.3 Hypothesis and aims 

Family structure enables mode of transmission of relevant genetic variation to be 

interrogated. Specifically, the contribution of de novo variation is smaller in multiplex 

families than the contribution in simplex families (Yoon et al., 2021). Rare larger multiplex 

or extended pedigrees in contrast, are expected to have a burden of rare highly penetrant 

genetic variants that are causative of autism and co-occurring phenotypes. This chapter 

leverages the additional information available from studying extended pedigrees. In 
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particular the cohort study within this chapter is hypothesised to enrich for rare fully 

penetrant SNVs, aiding in the identification of autism-associated variants. 

 

The analyses outlined in this chapter follow the framework for calling and annotation of 

rare, exonic SNVs occurring in genes with existing evidence supporting autism 

association. While this cohort is underpowered to include linkage analyses which are 

enabled by extended pedigrees, analysis is performed within this chapter on affected vs 

unaffected family members. 

 

The aim of this chapter is to identify rare putatively pathogenic SNVs in genes with 

evidence supporting their role in autism, using a family-based study design to evaluate 

variant transmission. 



   

 

139 

 

5.3 Results 

5.3.1 Cohort in summary 

Cohort 3 is a family-based dataset of 29 individuals from 4 multiplex families, as 

presented in Figure 5-1. Ascertainment of this cohort is described in 2.1.3. This chapter 

describes analysis of WGS data analysis of this cohort. One sample, AS325C1, failed at 

WGS. One family was excluded based on unmet inclusion criteria following QC. A total 

of 28 samples remains in this cohort for analysis. In parallel genome-wide genotyping 

was performed on this cohort to provide QC checks prior to sequencing. This data, for 

29 individuals was used in the cohort QC check described in 2.7.3. Based on affection 

within each family, the mode of transmission expected to be relevant was hypothesised 

independently for each family. The hypothesised mode of transmission is presented in 

Figure 5-1. 

 

 

Figure 5-1 Cohort 3 in summary. 

Proposed mode of transmission for variant interpretation.} Presented are the pedigrees of the 4 families 
sequenced in this rare cohort. The key associated with affection and sequencing status is presented 
alongside. * Denotes the mode of variant transmission hypothesised to be relevant within each family.  
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5.3.2 Variant QC 

Variant evaluation was performed on WGS raw variant calls isolated by a Sention based 

pipeline within Genuity Science Pipeline Services (detailed in 2.5.3). Raw variant calls 

were restricted to SNVs for downstream analysis. SNVs were hard-filtered to isolate and 

remove those variants deviating from Hardy-Weinburg equilibrium (exact test <10-6) and 

variant sites missing greater than 20% of data.  

 

In the absence of GATK Best Practices to produce variant calls, VQSR variant filtering 

could not be applied to isolate a high-confidence variant call-set, as was performed in 

analysis of Cohort 1 and Cohort 2. In place of VQSR, variant hard filtering was performed 

in line with GATK recommendation to remove mapping errors and sequencing errors 

from the call set Table 5-1. High-confidence variants were retained in the call-set for 

downstream annotation. 

 

Filter Description Threshold 

QD Variant quality / depth  < 2.0 

MQ Mapping Quality < 40.0 

FS Phred-score Fisher’s test p-value for strand 

bias 

> 60.0 

HaplotypeScore Consistency of the site with haplotype > 13.0 

MQRankSum Mapping quality of reference reads vs 

alternative reads 

<-12.5 

ReadPosRankSum Distance of alternative allele from the end 

of the reads 

< -8.0 

Table 5-1 GATK recommended variant quality filters for SNVs. 

Recommendations available at  

https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants. 

 

  

https://gatk.broadinstitute.org/hc/en-us/articles/360035890471-Hard-filtering-germline-short-variants
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The Ts/Tv ratio was evaluated before and after variant QC to access data quality and 

the efficacy of variant quality filtering. Data quality is reported per sample to highlight any 

discrepancies which may have arisen due to the method of sample collection, i.e., DNA 

extracted from blood or saliva.  

 

The expected Ts/Tv is 2.0-2.1 in human genome sequencing. The improvement in Ts/Tv 

ratio across all sample from outside of this range to within the range shows the need for 

low confidence variant call removal from the call-set to achieve a high confidence variant 

set (Table 5-2). 
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FID IID Raw variant call-set High-quality genotypes 

Mean Depth Ts/Tv Mean Depth Ts/Tv 

AS324 AS324C1 37.234 1.955 37.919 2.021 

AS324 AS324C2 35.278 1.959 35.481 2.021 

AS324 AS324C3 33.869 1.962 34.315 2.023 

AS324 AS324C4 34.998 1.957 35.387 2.020 

AS324 AS324C5 43.166 1.952 43.679 2.021 

AS324 AS324F 32.253 1.960 32.513 2.019 

AS324 AS324M 33.548 1.962 33.855 2.024 

AS325 AS325C2 48.401 1.950 49.283 2.022 

AS325 AS325C3 66.177 1.938 66.781 2.021 

AS325 AS325C4 33.386 1.958 33.117 2.021 

AS325 AS325F 39.771 1.950 39.523 2.020 

AS325 AS325M 39.703 1.956 39.771 2.022 

AS326 AS326C11 38.169 1.951 38.036 2.019 

AS326 AS326C12 36.175 1.954 36.419 2.020 

AS326 AS326C13 40.898 1.948 40.611 2.019 
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AS326 AS326C21 45.324 1.945 45.246 2.018 

AS326 AS326C22 30.371 1.963 30.296 2.022 

AS326 AS326F1 35.013 1.954 34.745 2.020 

AS326 AS326F2 45.869 1.947 46.062 2.020 

AS326 AS326GM 39.594 1.950 39.659 2.022 

AS326 AS326M1 39.885 1.955 40.347 2.023 

AS326 AS326M2 35.426 1.959 35.721 2.023 

AS328 AS328C1 40.217 1.955 40.185 2.022 

AS328 AS328C2 41.411 1.951 41.530 2.022 

AS328 AS328C3 32.672 1.961 32.984 2.024 

AS328 AS328F 

 

33.969 1.957 33.770 2.022 

AS328 AS328GM 

 

42.008 1.952 42.278 2.023 

AS328 AS328M 

 

45.289 1.950 45.638 2.024 

Table 5-2 Ts/Tv ratio evaluation of variant filtration. 

Presented in the table are genotype variant transitions (Ts) and Transversions (Tv) across variant sites per 
individual within Cohort 3. Transitions are defined as a change of purine bases or pyrimidine bases, i.e. A 
with G or C with T. Transversion are defined as changes between purine and pyrimidine bases, i.e. A with 
C/T, C with G or G with T. The mean depth of coverage across variant sites is also reported per individual.  
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5.3.3 Variant annotation and filtration 

Annotation by dbNSFP for the post-QC variant call-set is detailed in Table 5-2. dbNSFP 

annotates all non-synonymous variation according to the specified parameters. In this 

case dbNSFP has annotated with parameters “-p -g -v hg19” (Liu et al., 2020). Following 

annotation, variants were filtered following the framework previously applied in Chapter 

3 and Chapter 4. This has been summarised in Figure 5-2. This filtering strategy results 

in the isolation of rare, putatively pathogenic SNVs with evidence of association in 

autism. These variants are further subset on the basis of penetrance as determined by 

family genotypes, enabled by extended pedigrees analysed within this cohort as follows 

within this chapter. 
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Figure 5-2 Flow of variant filtering. 

Arrows show the direction of flow from each level of filtering (specified on the left). SFARI refers to Simons 
Foundation Autism Research Initiative Gene Module (Abrahams et al., 2013). DDD refers to the 
gene2phenotype database arising from the DDD study (Wright et al., 2015). 
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5.3.4 Pedigree AS324 variant isolation 

 

Figure 5-3 Pedigree AS324. 

 

FID IID Non-

synonymous 

SNVs 

Rare 

(<0.05) 

 

Consensus 

Predicted 

Pathogenic 

Evidence of 

gene 

association with 

Autism/NDD 

AS324 AS324C1 11,719 1,014 276 39 

AS324 AS324C2 11,668 969 251 36 

AS324 AS324C3 11,829 1,047 276 37 

AS324 AS324C4 11,808 1,043 262 39 

AS324 AS324C5 11,728 1,028 253 41 

AS324 AS324F 11,591 1,023 258 37 

AS324 AS324M 11,946 1,029 278 42 

Table 5-3 Variant counts through variant prioritisation in pedigree AS324. 

Variants were prioritised as outlined in Figure 5-2 and variant counts are presented here through prioritisation 
stages as filtered from left to right within the table. Non-synonymous SNVs are the complete set of high-
confidence variants annotated by dbNSFP as non-synonymous. These variants were subset to rare variants 
with a MAF of <5% of the population. Variants were determined to be consensus predicted pathogenic when 
fulfilling two or more of SIFT, Polyphen-2 or CADD thresholds for classification. The resulting variants were 

Autism 

Spectrum 

Disorder 

 

Other 

neurodevelopmental  

condition 

Other neurodevelopmental  

condition 
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interrogated at gene-level for their inclusion in SFARI Gene or DDD gene2phenotype as a measure of 
relevance to autism and other neurodevelopmental conditions. 

5.3.4.1 Hypothesised variant transmission 

Homozygous recessive variant(s) in affected offspring, with heterozygosity in parents, 

and heterozygosity or homozygous wildtype allele(s) in unaffected sibling are 

hypothesised to contribute to neurodevelopmental conditions within this pedigree (Figure 

5-3). 

 

5.3.4.2 Variant report 

Affected family members (AS324C1, AS324C2, AS324C3 and AS324C4) were 

interrogated for homozygous variation. Of the rare predicted pathogenic variants in 

genes with evidence supporting their role in autism, no variants were found to be 

homozygous and shared between all affected individuals. No homozygous variation 

within the variant set was carried by AS324C1 or AS324C2. One homozygous variant 

within was shared between individuals AS324C3 and AS324C4, rs55742743 (TTN; 

chr2). However, this variant is not shared between all affected family members within the 

pedigree.  

 

A total of 6 variants in the variant set were identified as shared between all affected 

individuals in either a heterozygous or homozygous state. These variants are rs1800556 

(ACADS; chr12), rs146665183 (DLL4; chr15), rs200546805 (ANKRD11; chr16), 

rs55742743 (TTN; chr2), rs1801208 (WFS1; chr4) and rs78008536 (RELN; chr7). None 

of these six candidate heterozygous variants were absent in all unaffected family 

members ruling out a heterozygous mode of pathogenicity of any single variant.  
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5.3.5 Pedigree AS325 variant isolation 

Figure 5-4 Pedigree AS325. 

FID IID Non-

synonymous 

SNVs 

Rare 

(<0.05) 

 

Consensus 

Predicted 

Pathogenic 

Evidence of 

gene 

association with 

Autism/NDD 

AS325 AS325C2 11,968 977 294 41 

AS325 AS325C3 11,977 1,020 297 35 

AS325 AS325C4 11,825 1,022 307 36 

AS325 AS325F 11,712 925 277 36 

AS325 AS325M 12,152 1,026 319 42 

Table 5-4 Variant counts through variant prioritisation in pedigree AS325. 

Variants were prioritised as outlined in Figure 5-2 and variant counts are presented here through prioritisation 
stages as filtered from left to right within the table. Non-synonymous SNVs are the complete set of high-
confidence variants annotated by dbNSFP as non-synonymous. These variants were subset to rare variants 
with a MAF of <5% of the population. Variants were determined to be consensus predicted pathogenic when 
fulfilling two or more of SIFT, Polyphen-2 or CADD thresholds for classification. The resulting variants were 
interrogated at gene-level for their inclusion in SFARI Gene or DDD gene2phenotype as a measure of 
relevance to autism and other neurodevelopmental conditions. 

 

5.3.5.1 Hypothesised variant transmission 

Maternal inherited variant(s) present in all affected offspring and absent in the unaffected 

father are hypothesised to contribute to neurodevelopmental conditions within this 

Autism Spectrum 

Disorder 

 

Other neurodevelopmental  

condition 
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pedigree. Alternatively homozygous variant(s) present in all affected individuals with 

paternal heterozygous may be pathogenic (Figure 5-4). 

 

5.3.5.2 Variant report 

Initial investigation of the homozygous rare, predicted pathogenic autism-relevant variant 

set within this pedigree identified one candidate variant, rs1800328 (OTC; chrX). This 

homozygous variant was present in the maternal sample only and was not found to be 

shared with affected offspring within the pedigree. 

 

Expanding beyond homozygous variation, this pedigree was interrogated for all variants 

within the variant set (homozygous and heterozygous) maternally inherited by all affected 

offspring and absent in the paternal genome. This search yielded 5 heterozygous 

candidate variants, rs77444104 (NECTIN4; chr1), rs1800729 (TSC2; chr16), 

rs61747224 (TSHZ3; chr19), rs78676079 (SLC26A2; chr5) and rs41277797 (FKTN; 

chr9).  
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5.3.6 Pedigree AS326 variant isolation 

 

 

Figure 5-5 Pedigree AS326. 

FID IID Non-

synonymous 

SNVs 

Rare 

(<0.05) 

 

Consensus 

Predicted 

Pathogenic 

Evidence of 

gene 

association with 

Autism/NDD 

AS326 AS326C11 11,678 984 282 42 

AS326 AS326C12 11,861 957 282 52 

AS326 AS326C13 11,698 924 274 48 

AS326 AS326C21 11,610 947 258 36 

AS326 AS326C22 11,458 918 238 30 

AS326 AS326F1 11,682 941 288 47 

AS326 AS326F2 11,716 922 252 35 

Autism Spectrum 

Disorder 

 

Other neurodevelopmental  

condition 
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AS326 AS326GM 11,736 1,013 265 33 

AS326 AS326M1 11,893 975 259 42 

AS326 AS326M2 11,833 989 267 42 

Table 5-5 Variant counts through variant prioritisation in pedigree AS326. 

Variants were prioritised as outlined in Figure 5-2 and variant counts are presented here through prioritisation 
stages as filtered from left to right within the table. Non-synonymous SNVs are the complete set of high-
confidence variants annotated by dbNSFP as non-synonymous. These variants were subset to rare variants 
with a MAF of <5% of the population. Variants were determined to be consensus predicted pathogenic when 
fulfilling two or more of SIFT, Polyphen-2 or CADD thresholds for classification. The resulting variants were 
interrogated at gene-level for their inclusion in SFARI Gene or DDD gene2phenotype as a measure of 
relevance to autism and other neurodevelopmental conditions. 

 

5.3.6.1 Hypothesised variant transmission 

Maternal inherited variant(s) with homozygosity in shared across affected individuals and 

absent from unaffected individuals are hypothesised to contribute to 

neurodevelopmental conditions within this extended pedigree (Figure 5-5). 

 

5.3.6.2 Variant report 

Initial investigation of the homozygous rare, predicted pathogenic autism-relevant variant 

set within this pedigree identified one shared variant, rs113964173 (MYH11; chr16), in 

AS326C11 and AS326C12. As this variant is shared by an affected and unaffected 

sibling it is not considered as being causative. Three homozygous variants were 

identified in the unaffected fathers within the pedigree (rs34144324 (GRID2; chr4) 

(AS326F1), rs753740777 (POLA1; chrX) (AS326F2) and rs1800273 (DMD; chrX) 

(AS326F2) and for this reason are not considered to be causative.  

 

Evaluation of the complete variant set (homozygous and heterozygous) identified 5 

heterozygous variants shared across all affected individuals (AS326C11, AS326C21 and 

AS326C22). These variants are rs146798796 (TPP1; chr11), rs149558764 (LRP6; 

chr12), rs116105292 (TDO2; chr4), rs1059582 (HLA-DRB1; chr6) and rs779037714 

(TRPV6; chr7). None of these 5 variants were absent across all unaffected individuals in 

the pedigree. 
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5.3.7 Pedigree AS328 variant isolation 

 

Figure 5-6 Pedigree AS328. 

FID IID Non-

synonymous 

SNVs 

Rare 

(<0.05) 

 

Consensus 

Predicted 

Pathogenic 

Evidence of 

gene 

association with 

Autism/NDD 

AS328 AS328C1 11,644 926 281 38 

AS328 AS328C2 11,507 896 257 31 

AS328 AS328C3 11,993 996 314 45 

AS328 AS328F 11,824 958 267 40 

AS328 AS328GM 12,053 1,033 308 53 

AS328 AS328M 11,964 1,001 314 36 

Table 5-6 Variant counts through variant prioritisation in pedigree AS328. 

Variants were prioritised as outlined in Figure 5-2 and variant counts are presented here through prioritisation 
stages as filtered from left to right within the table. Non-synonymous SNVs are the complete set of high-
confidence variants annotated by dbNSFP as non-synonymous. These variants were subset to rare variants 
with a MAF of <5% of the population. Variants were determined to be consensus predicted pathogenic when 
fulfilling two or more of SIFT, Polyphen-2 or CADD thresholds for classification. The resulting variants were 
interrogated at gene-level for their inclusion in SFARI Gene or DDD gene2phenotype as a measure of 
relevance to autism and other neurodevelopmental conditions. 
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5.3.7.1 Hypothesised mode of transmission 

Maternal inherited variant(s) shared by all affected offspring are hypothesised to 

contribute to neurodevelopmental conditions within this pedigree. The causative 

variant(s) is expected to be heterozygous dominant in all affected individuals with wild 

type homozygosity in unaffected family members. Alternatively, the causative variant(s) 

may be homozygous in all affected individuals with heterozygosity in unaffected family 

members from whom a variant allele would be expected to have been transmitted (Figure 

5-6). 

 

5.3.7.2 Variant report 

Initial investigation of the rare, predicted pathogenic autism-relevant variant set within 

this pedigree was carried out on maternal inherited variation shared between affected 

offspring. A total of 10 heterozygous variants within this call set were shared by all 

affected family members within the pedigree (AS328M, AS328C1, AS328C2 and 

AS328C3) (Table 5-7).  

 

Of the 10 variants shared between affected family members presented in Table 5-7, 4 

variants are not carried by unaffected members (AS328F and AS328GM). These 

variants are presented in Table 5-8. 
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dbSNP rsID Chromosome Position Gene Ref Alt Minor Allele 

Frequency 

rs72648273 chr2 178,539,771 TTN G C 0.0043 

rs199895260 chr2 178,589,803 TTN C T 0.0042 

rs34144324 chr4 92,590,245 GRID2 C T 0.0462 

rs116105292 chr4 15,591,1563 TDO2 A C 0.0430 

rs1059582 chr6 32,584,240 HLA-DRB1 G C 0.0094 

rs2229792 chr6 33,163,724 COL11A2 G A 0.0247 

rs147304638 chr7 56,015,138 PSPH G A 0.0011 

rs34293591 chr8 144,513,286 RECQL4 C T 0.0275 

rs118113109 chr12 52,568,196 KRT74 C T 0.0193 

rs200555745 chr16 88,716,580 PIEZO1 C T 0.0009 

Table 5-7 Variants shared between affected individuals in pedigree AS328. 

Variant IDs are given by dbSNP rs IDs. Variant position is reported as 1-based with coordinates per GrCh38. Ref refers to the reference allele and alt refer to the alternative allele. 
Allele frequencies are reported from gnomAD v2.1.1 European (non-Finnish) combined exome and genome cohorts of high-quality genotypes, except for rs147304638 and 

rs34293591 where allele frequency is reported from dbSNP gnomAD European genomes report. 

 

  



   

 

155 

 

dbSNP rsID Chromosome Position Gene Ref Alt Minor Allele 

Frequency 

rs72648273 chr2 178,539,771 TTN G C 0.0043 

rs199895260 chr2 178,589,803 TTN C T 0.0042 

rs147304638 chr7 56,015,138 PSPH G A 0.0011 

rs34293591 chr8 144,513,286 RECQL4 C T 0.0275 

Table 5-8 Candidate causative variants in pedigree AS328. 

Variant IDs are given by dbSNP rs IDs. Variant position is reported as 1-based with coordinates per GrCh38. Ref refers to the reference allele and alt refer to the alternative allele. 
Allele frequencies are reported from gnomAD v2.1.1 combined exome and genome cohorts of high-quality genotypes, except for rs147304638 and rs34293591 where allele 
frequency is reported from dbSNP gnomAD European genomes report.
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Of note within this set of 4 candidate variants are missense variants rs72648273 and 

rs199895260 impacting the protein coding gene TTN on chromosome 2 as presented in Table 

5-8. Both variants are maternally inherited by all affected offspring from affected AS328M. 

TTN encodes a large protein of striated muscle which plays a key role in muscle assembly, 

force transmission at the Z line of the sarcomere, and maintenance of resting tension in the I 

band region (Itoh-Satoh et al., 2002). OMIM reports implication of variation in this gene in 

Cardiomyopathy, Muscular Dystrophy, Myofibrillar Myopathy With Early Respiratory Failure 

and Salih Myopathy (OMIM: 188840). In addition to these associations, SFARI gene collated 

16 reports of autism with variation detected in TTN and designates this gene as a strong 

candidate gene causative of syndromic autism (Abrahams et al., 2013). Single base missense 

variants in TTN have been identified in four unrelated probands from the Simon’s Simplex 

Collection, adding evidence that rs72648273 and rs199895260 which are also missense 

variants within pedigree AS328 may be pathogenic (Iossifov et al., 2012; O ’ Roak et al., 2012). 

 

Homozygous rare predicted pathogenic variants were also investigated in autism-relevant 

genes identifying variation in the three affected offspring in this pedigree (AS328C1, AS328C2, 

AS328C3). Variant rs116105292 (TDO2, chr4) was identified as homozygous in AS328C1. 

Variant rs34144324 (GRID2, chr4) was identified as homozygous in AS324C3. These 

homozygous variants were unique to these individuals. 
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5.4 Discussion 

5.4.1 Summary of results 

This chapter describes the detection of rare, exonic SNVs in four pedigrees with multiple 

affected individuals. Family structure has been leveraged to hypothesise the mode of 

transmission of putatively pathogenic family, considering each pedigree family by family. This 

approach was successful in the isolation of predicted pathogenic variation in two of four 

families reported on here. This supports the use of a multiplex family approach in genomic 

studies of autism, particularly when sample size is limited and underpowered to perform 

linkage analyses. 

 

However, the analysis pipeline applied here is limited to the isolation of rare exonic SNVs, 

while NGS technologies enable additional classes of variation to be detected, with evidence 

supporting their involvement in the genetic basis of autism, such as CNVs, SVs and tandem 

repeat expansions as will be discussed later. There are future opportunities to explore these 

classes of variation in Cohort 3 and there is potential to detect non-coding variation using the 

complete variant set sequenced by WGS.  

 

5.4.1.1 Pedigree AS324 

Variants were isolated by restricting to rare predicted pathogenic variation within the SFARI 

Gene (Abrahams et al., 2013) and DDD gene2phenotype (Wright et al., 2015) gene lists within 

this pedigree. Restricting variant discovery to the hypothesised mode of transmission 

identified variant rs55742743 in AS324C3 and AS324C4. This variant may be contributory to 

the neurodevelopmental phenotype of these individuals. As this variant was not identified in a 

homozygous state in the other affected individuals it can be determined that while the variant 

may be contributory in AS324C3 and AS324C4, it is likely not a single gene cause of the 

phenotype at family-level. Further investigation beyond this restrictive call set is necessary to 

identify novel variation, without existing evidence of association, which may be contributing to 

the burden of neurodevelopmental conditions within this pedigree. 

 

5.4.1.2 Pedigree AS325 

Restricting variant discovery to the hypothesised mode of transmission identified 5 candidate 

potentially contributory heterozygous variants shared between all affected family members. 

Further investigation through in vitro/in vivo functional evaluation is needed to determine 
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whether heterozygosity of these variants is likely to be pathogenic in these individuals. In 

addition, AS325C1 requires follow-up sequencing having failed. 

 

5.4.1.3 Pedigree AS326 

Restricting variant discovery to the hypothesised mode of transmission yielded no candidate 

variants. Further investigation beyond this restrictive call set is necessary to identify novel 

variation, without existing evidence of association, which may be contributing to the burden of 

neurodevelopmental conditions within this pedigree. Furthermore, variant rs113964173 

shared by affected (AS326C11) and unaffected (AS326C12) siblings should be further 

investigated through in vitro/in vivo functional evaluation to determine relevance to the autism 

phenotype of AS326C11. Sex differences in the sibling carrying this variant may explain a 

variable manifestation of the condition resulting from a female protective effect in AS326C12. 

 

5.4.1.4 Pedigree AS328 

Restricting variant discovery to the hypothesised mode of transmission yielded 4 

heterozygous candidate variants (Table 5-8). Of note within this set of 4 candidate variants 

are missense variants rs72648273 and rs199895260 impacting TTN. Both variants are 

maternally inherited by all affected offspring from affected AS328M. TTN has been classified 

by SFARI Gene as a gene score of 2S indicating strong evidence for implication in idiopathic 

autism as well as syndromic autism. Syndromic variant scoring by SFARI Gene classifies 

variants “that are associated with a substantial degree of increased risk and consistently linked 

to additional characteristics not required for an ASD diagnosis” (Abrahams et al., 2013). 

Further investigation through in vitro/in vivo functional evaluation is needed to confirm 

pathogenicity of these heterozygous variants. 

 

5.4.2 Conclusion 

The variant filtration approach applied subset variants to those impacting genes with evidence 

for autism and neurodevelopmental condition association, as determined by presence in 

SFARI Gene and DDD gene2 phenotype. These gene lists were unrestricted in this filtration, 

i.e., genes were not subset to those with substantial evidence supporting the association as 

indicated by Gene score of 1 or 2 in SFARI (Abrahams et al., 2013) or assigned “High 

Confidence” by DDD (Wright et al., 2015). Functional analyses, for example the 

CRISPR/Cas9-induced mutagenesis of DDX3X, a monogenic neurodevelopmental cause, are 

required to robustly assign causation to the variants identified through these analyses 
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(Radford et al., 2022). In efforts for discovery of gene-phenotype association, analysis should 

extend beyond this gene-set enabling variant detection across all genes and non-coding 

regions of the genome. The approach applied here is a first pass analysis which with increased 

sample size should be evaluated at a more widespread level across the genome or in parallel 

to large-scale WGS efforts.  
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Chapter 6. Determining the clinical utility of gene panels in autism; 

a study of diagnostic yield and relevance. 

 

The contents of this chapter have been published in part as the following article: 

Ní Ghrálaigh, F. et al. (2022) ‘Brief Report: Evaluating the Diagnostic Yield of Commercial 

Gene Panels in Autism’, Journal of Autism and Developmental Disorders 2022. Springer, pp. 

1–5. doi: 10.1007/S10803-021-05417-7 (Appendix IV-II). 

 

Presentations arising from the contents of this chapter: 

“Determining the clinical utility of gene panels in autism; a study of diagnostic yield, relevance, 

and penetrance.” Fiana Ní Ghrálaigh, Thomas Dinneen, Ellen McCarthy, Daniel N. Murphy, 

Louise Gallagher & Lorna M. Lopez 

Poster presented at the World Congress of Psychiatric Genetics, October 2021 (Appendix III-

II). 

 

“Evaluating the diagnostic yield of commercial gene panels in autism.” Fiana Ní Ghrálaigh, 

Ellen McCarthy, Daniel N. Murphy, Louise Gallagher & Lorna M. Lopez 

Poster presented at the Irish Society for Human Genetics, September 2021 (Appendix III-III). 

 

“A Search for Rare Variants in a Family-Based Study of ASD.” Fiana Ní Ghrálaigh, Jessica E. 

Smith, Elaine Kenny Louise Gallagher & Lorna M. Lopez 

Poster presented at the World Congress of Psychiatric Genetics, October 2018, and the Irish 

Society for Human Genetics, September 2018 (Appendix III-VII). 
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6.1 Abstract 

This chapter aims to overcome challenges in translation of genomic findings to clinical 

application. The analysis performed in this chapter adds to this discussion of the 

heterogeneity of clinical sequencing tests, “gene panels,” marketed for application in 

autism by evaluating their clinical utility and considering gene selection. This analysis 

demonstrates the low diagnostic yield of autism gene panels currently. In addition, this 

chapter determines the clinical relevance of genes included within these panels. This 

work concludes that commercial gene panels marketed for autism are currently of limited 

clinical utility. 

 

6.2 Introduction 

Clinical genetic diagnosis is limited to the identification of rare causative variants for 

evaluation of symptomatic individuals at present. Diagnostic genetic testing in 

neurodevelopmental conditions and neuropsychiatric conditions is limited.  

 

6.2.1 The benefits of genetic diagnosis in psychiatric conditions 

The broad opportunity of precision medicine is to advance therapeutics. At the individual 

level there are benefits to receiving a genetic diagnosis in psychiatry. Understanding 

cause is of profound importance to individuals and families living with 

neurodevelopmental and neuropsychiatric conditions. The International Society of 

Psychiatric Genetics propose in their consensus statement on genetic testing that the 

“identification of known pathogenic variants may help diagnose rare conditions that have 

important medical and psychiatric implications for individual patients and may inform 

family counselling” (Genetic Testing Statement | ISPG - International Society of 

Psychiatric Genetics, no date). Specifically, genetic diagnosis establishes the primary 

etiology of clinical diagnoses. This may enable healthcare providers to provide genetic 

or reproductive counselling for affected individuals and their families. A genetic diagnosis 

give opportunity for provision of personalised medicine, such as provision of anticipatory 

medical guidance and treatment plans (Moeschler et al., 2014). 

 

A further benefit to receiving a genetic diagnosis may be the opportunity to take part in 

targeted research, such as variant specific clinical trials. While there are currently no 

genotype-guided precision therapies available for use in autism, many examples of 

treatments are available or in development for variant specific forms of epilepsy, another 
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neurodevelopmental condition. One such example is treatment of SCN1A-related 

epilepsy with an antisense oligonucleotide to block exon splicing. This treatment almost 

entirely prevents seizures and resulting death in mouse models and is currently in Phase 

I clinical trial (Carvill et al., 2018; Han et al., 2020). With the increasing number of genes 

associated with autism comes an increase in potential targets for treatment. Genomic 

discovery in autism will enable to discovery of molecular targets for autism, and potential 

precision medicine gene targets for rare syndromic causes of autism. Beyond clinical 

treatment strategies, a genetic diagnosis can be of great personal utility to an affected 

individual by enabling access to etiology-specific advocacy organisations for example 

22q11Ireland (https://www.22q11ireland.org).  

 

Pharmacogenomic testing is another stream of genetic testing in neuropsychiatric 

conditions; with the aim of predicting drug response rather than aiding diagnosis. This 

area of genomics research in neuropsychiatric conditions shows huge potential in 

medical management of conditions, with genotype guided therapy leading to better 

patient response (Bousman et al., 2019). An example of success in translation of 

pharmacogenomics into the clinical setting is CYP2D6 testing to identify under and rapid 

metabolisers of selective serotonin reuptake inhibitors in the context of treatment of 

major depressive disorder (Hall-Flavin et al., 2013). Beyond this introduction to 

pharmacogenomics, unless otherwise specified, in the context of this thesis, genomics 

of psychiatric conditions refers only to genomics efforts to identify causative variation, 

and further discussion is beyond the scope of this thesis. 

 

6.3 Genetic heterogeneity of autism 

Genetic diagnosis in autism is limited by the ability to robustly determine the clinical 

relevance of putatively pathogenic genetic variation. Genomic research in autism is 

progressing quickly, enabled by advancements in NGS technologies and the subsequent 

establishment of large-scale sequencing cohorts and pedigree-based sequencing 

cohorts (Glahn et al., 2019; Ní Ghrálaigh, Gallagher and Lopez, 2020). To date, more 

than 990 genes have been identified as having some link to autism (Abrahams et al., 

2013). Despite this progress, major challenges remain in the translation of findings from 

research to clinic (7.2).  

 

At cohort-level, studies discovering “autism genes” are compounded by an apparent lack 

of specificity to autism. A candidate pathogenic variant may be evaluated, in most autism 
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cases, as being contributory to the genetic risk rather than being wholly causative of an 

individual’s condition. For example, in individuals affected by both autism and ID, genes 

identified show relevance to both autism and other neurodevelopmental conditions 

(Myers, Challman, Bernier, et al., 2020). For these reasons, the development of effective 

gene panels to aid autism diagnosis is extremely complicated. To date there are a 

number of curated gene lists for autism. These include genes involved biological 

pathways critical to brain development and function.  

 

Despite progress, autism genomics has yet to reach the target of establishing a 

comprehensive gene list with clinical utility. This arises from the challenges with 

interpretation of  the genetic and phenotypic heterogeneity of autism (Myers, Challman, 

Bernier, et al., 2020), and the resulting the lack of a consensus in establishing a gene 

curation framework. As outlined in Chapter 4, approaches have been developed to 

address these challenges in gene-phenotype curation. 

 

6.4 Interpreting the clinical relevance of genetic findings 

Multi-disciplinary experts propose WES as a first-tier diagnostic test to be applied to the 

genomes of individuals affected by neurodevelopmental conditions (Srivastava et al., 

2019). The full potential for WGS in a clinical setting has yet to be determined; the 

additional costs and the technical demands of data processing and data storage, and 

data interpretation may not yet be justified for routine clinical use.  

 

Targeted gene panels have been successfully developed for disease-specific use, such 

as in hereditary cancer (LaDuca et al., 2019). The applicability of such gene panels in 

autism would at this time be extremely limited. At present no genes can be exclusively 

associated with autism, i.e. association in the absence of ID or other co-occurring 

neurodevelopmental conditions (Myers, Challman, Bernier, et al., 2020).  

 

Evaluation of the clinical implication of a given genetic variant is a further level of variant 

annotation. A key distinction currently, is clinical investigation in research vs. clinical 

settings, with the latter requiring use of accredited clinical molecular laboratories, 

technologies, and analysis strategies. Existing variant information for those variants, 

which are characterised to have clinical significance, are accessible through databases 

such as OMIM, ClinVar and Human Gene Mutation Database (HGMD) (McKusick-

Nathans Institute of Genetic Medicine, Johns Hopkins University (Baltimore, no date; 

Stenson et al., 2017; Landrum et al., 2018). Commercial genome analysis platforms 



   

 

164 

 

present a useful option to perform variant interpretation with minimal need for 

computational infrastructure and bioinformatic analysis expertise. Some examples 

include Complete Genomics, Agilent Alissa Interpret and SOPHiA DDM (Appendix III-V). 

These platforms benefit from the use of in-house algorithms to identify the variants most 

relevant to disease. However, patenting controls mean that there is often a lack of 

transparency in the methods of the variant ranking systems used by these platforms.  
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6.4.1 Hypothesis and aims 

Despite the challenges in translation of genomic findings to clinical application, 

commercial gene panels are available and marketed for use in autism diagnosis. Hoang 

et al. (2018) evaluated many of these gene panels, clearly demonstrating their 

heterogeneity (Hoang, Buchanan and Scherer, 2018). Their survey shows large 

variability in the number of genes being tested by panels, lack of consensus in the genes 

selected for inclusion, as well as variability in the reporting of laboratory qualification and 

reporting protocols. The analysis performed in this chapter adds to this discussion of the 

heterogeneity of clinical sequencing tests, “gene panels,” marketed for application in 

autism by evaluating their clinical utility and considering gene selection. 

 

The aims of this thesis chapter are: 

1) Evaluate the diagnostic yield of commercial gene panels marketed for use in 

autism and determine the relevance gene selection for these panels. 

2) Determine the overlap of ACMG59 genes and autism-related gene lists. 

 

https://link.springer.com/article/10.1007/s10803-021-05417-7#ref-CR6
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6.5 Results 

6.5.1 Evaluating the diagnostic yield of commercial gene panels in autism 

Here we estimate the clinical utility of commercial gene panels marketed for use in 

autism. Diagnostic yield, which is the proportion of cases interrogated for which a genetic 

cause can be determined, is a strong measure of the clinical utility of a sequencing 

technology. 

 

6.5.1.1 Identifying autism gene panels 

Commercial gene panels marketed for use in autism, collated through literature search 

and systematic searching (October 2020-January 2021), are presented in Table 6-1. 

Gene panels marketed for use in autism were identified and collated through the 

following approaches: web browser search (search terms “autism gene panel”, “ASD 

gene panel”, “sequencing tests for autism spectrum disorder”, “gene panels for autism 

testing” and “autism genetic testing”), gene panels analysed by Hoang et al. (2018) 

(Hoang, Buchanan and Scherer, 2018) and Genomics England PanelApp (search terms 

“Autism”, “ASD”) (Martin et al., 2019). Panels identified for which gene lists were not 

provided were excluded from analyses (CGC genetics “Autism” panel & Michigan 

Medicine “Autism/ Intellectual Disability Panels”).  
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Gene Panel Provider Source 

Ambry Genetics https://www.ambrygen.com/providers/genetic-testing/62/neurology/autismnext 

Asper Neurogenetics https://www.asperbio.com/asper-neurogenetics/autism-spectrum-disorders-ngs-panel/ 

Blueprint Genetics https://blueprintgenetics.com/tests/panels/neurology/autism-spectrum-disorders-panel/ 

Center for Human Genetics https://www.ncbi.nlm.nih.gov/gtr/tests/529181/ 

Centogene https://www.centogene.com/science/centopedia/syndromic-autism-gene-panel.html 

Centogene https://www.centogene.com/diagnostics/ngs-panels/neurology.html 

EGL Genetics https://www.egl-eurofins.com/tests/MM021 

Fulgent Genetics https://www.fulgentgenetics.com/Autism 

GeneDx https://www.genedx.com/test-catalog/available-tests/autismid-xpanded-panel/ 

GENETAQ http://genetaq.com/en/catalogue/test/autism 

Genomics England PanelApp https://panelapp.genomicsengland.co.uk/panels/657/ 

Greenwood Genetic Centre https://www.ggc.org/test-finder-item/syndromic-autism-sequencing-panel 

GX Sciences https://www.gxsciences.com/genetic-testing-autism-s/202.htm 

MNG Laboratories https://mnglabs.com/tests/NGS325/comprehensive-intellectual-disability-autism-ngs-panel-and-copy-number-analysis-

mtdna 

Munroe-Meyer Institute https://www.unmc.edu/mmi/geneticslab/_documents/gene-lists/genelist-p-autism-v3-117.pdf 

Prevention Genetics https://www.preventiongenetics.com/testInfo?val=Autism+Spectrum+Disorders+%28ASD%29+Panel 

Reference Laboratory Genomics https://www.ncbi.nlm.nih.gov/gtr/tests/559901/overview/ 

Sema4 https://sema4.com/products/test-catalog/comprehensive-autism-spectrum-disorders-panel-228/ 

Table 6-1 Source of autism-relevant gene panels investigated.  

Outlined are the company names for 18 targeted gene panels marketed for use in autism with the sources at which gene lists and descriptions were obtained (collated October 
2020-January 2021). 

https://www.ambrygen.com/providers/genetic-testing/62/neurology/autismnext
https://www.asperbio.com/asper-neurogenetics/autism-spectrum-disorders-ngs-panel/
https://blueprintgenetics.com/tests/panels/neurology/autism-spectrum-disorders-panel/
https://www.ncbi.nlm.nih.gov/gtr/tests/529181/
https://www.centogene.com/science/centopedia/syndromic-autism-gene-panel.html
https://www.centogene.com/diagnostics/ngs-panels/neurology.html
https://www.egl-eurofins.com/tests/MM021
https://www.fulgentgenetics.com/Autism
https://www.genedx.com/test-catalog/available-tests/autismid-xpanded-panel/
http://genetaq.com/en/catalogue/test/autism
https://panelapp.genomicsengland.co.uk/panels/657/
https://www.ggc.org/test-finder-item/syndromic-autism-sequencing-panel
https://www.gxsciences.com/genetic-testing-autism-s/202.htm
https://mnglabs.com/tests/NGS325/comprehensive-intellectual-disability-autism-ngs-panel-and-copy-number-analysis-mtdna
https://mnglabs.com/tests/NGS325/comprehensive-intellectual-disability-autism-ngs-panel-and-copy-number-analysis-mtdna
https://www.unmc.edu/mmi/geneticslab/_documents/gene-lists/genelist-p-autism-v3-117.pdf
https://www.preventiongenetics.com/testInfo?val=Autism+Spectrum+Disorders+%28ASD%29+Panel
https://www.ncbi.nlm.nih.gov/gtr/tests/559901/overview/
https://sema4.com/products/test-catalog/comprehensive-autism-spectrum-disorders-panel-228/
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6.5.1.2 Refining gene lists 

Gene lists corresponding to each of the targeted gene panels presented, were collated, 

and refined. Each gene panel identified provided a list of genes targeted by the probes. 

By nature, these gene lists arise from a variety of sources and were compiled at varying 

times. For this reason, gene lists were run through HUGO Gene Nomenclature 

Committee (HGNC) Multi-Symbol Tool (Version: 2021-01-06 update). Where the gene 

symbol reported by the provider is an approved gene symbol in HGNC, it is used in 

analyses. Where the gene symbol is no longer approved by HGNC, it was updated to 

the approved gene symbol given by HGNC. A small number of deviations occurred that 

could not be resolved, which resulted in the removal genes from the analyses. Gene 

counts reported in these analyses reflect these updates. 

 

6.5.1.3 Estimating the diagnostic yield of commercial gene panels in autism 

Diagnostic yield, which is the proportion of cases interrogated for which a genetic cause 

can be determined, is a strong measure of the clinical utility of a sequencing technology. 

Feliciano et al. (2019) estimate the diagnostic yield of WES to be 10.4% in the initial 457 

families enrolled in the SPARK cohort (Feliciano et al., 2019). A ‘likely pathogenic’ 

variant, a variant with greater than 90% certainty of being disease causing, was identified 

in a further 3.4% of families studied. This estimate comes from the identification of a 

variant that fulfils either the ‘likely pathogenic’ or ‘pathogenic’ criteria, according to ACMG 

standards (Richards et al., 2015).  

 

To determine the clinical utility of each autism gene panel, variants meeting ‘likely 

pathogenic’ or ‘pathogenic’ criteria in the SPARK cohort can be limited to those within 

the gene set of each panel, respectively. In doing so, we ask how many of the pathogenic 

variants identified by Feliciano et al. would have been identified in the SPARK cohort 

with application of an autism gene panel, instead of application of WES. 

 

Clinically relevant variants, as identified and characterised by WES in the Simon’s 

Powering Autism Research Knowledge (SPARK) cohort, were used to determine the 

clinical utility of each panel. Variants included in these analyses are those reported in 

Feliciano et al. (2019), comprising inherited and de novo SNVs, indels and CNVs 

(Feliciano et al., 2019). Reported chromosomal abnormalities were not included. Gene 

lists were assembled to include those for which clinically relevant SNVs and indels could 

be defined and those that fall within the boundaries of clinically relevant CNVs. While 
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targeted gene panels lack the ability to define CNV boundaries, genes within these 

variants will appear as deleted or duplicated, thus a variant site will be detected. For this 

reason, this class of variation has been considered in these analyses where it would 

otherwise be excluded. 

 

6.5.1.4 Determining and reporting diagnostic yield 

Diagnostic yield was calculated as the proportion of individuals with relevant variants that 

would have been identified in the SPARK WES cohort if using the gene lists for each 

gene panel. Diagnostic yield was determined by cross-referencing the gene list of each 

gene panel with the lists of implicated genes in the SPARK cohort.  

 

The number of individuals in the cohort was taken as 472 affected individuals (465 

offspring and seven parents) as detailed by Feliciano et al. (2019). In keeping with this 

study, 13 individuals, those in families self-reporting a genetic diagnosis were not 

included in the estimates of diagnostic yield. With this justification, diagnostic yield was 

calculated as the number of individuals with a relevant variant, as a percentage of the 

total cohort of 459 affected individuals without a genetic diagnosis. 

 

The number of individuals for which a clinically relevant finding would have been 

identified by using each targeted gene panel is reported for both pathogenic and 

probable pathogenic variants, as assigned by Feliciano et al. (2019). The diagnostic yield 

of each gene panel, estimated with respect to Feliciano et al. (2019) analyses, is 

presented in Table 6-4. The diagnostic yields range from 0.22% to 10.02%, with most 

gene panels achieving a diagnostic yield below 3%. 

 

6.5.1.5  Determining and reporting correlation 

SFARI Gene is a database (all gene scores and genetic categories) of genes implicated 

in autism susceptibility (Version: 2021-01-13 release) (Table 6-2,Table 6-3). Each panel 

was assessed for overlap with SFARI Gene to determine the proportion of genes 

included on commercial panels that have known relevance to autism. Where necessary, 

the SFARI Gene list (n=1,003) was updated to HGNC approved gene symbols (n=5) and 

genes with symbol mismatch (n=3) were removed. The number of genes targeted by 

each panel that overlap with SFARI Gene are estimated as a percentage of the total 

genes in the panel. SFARI Gene was subset to high-confidence autism-associated 
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genes, assigned as such based on SFARI Gene scoring of 1 or 2. Percentage overlap 

was calculated for the subset of high-confidence genes and presented.  

 

Software Version 

RStudio  4.0.3 

Tidyverse 1.3.0 

Table 6-2 Software versions used in analyses. 

 

Input Data Version Source 

SFARI Gene list 01-13-2021 release https://gene.sfari.org/database/human-

gene/ 

 

Gene panel gene 

list 

Up to date as of 

January 2021 

 

As specified in 6.5.1.1. 

Clinically relevant 

variant set 

As published  Feliciano et al. (2019)  

Table 6-3 Data input files with sources and versions used in analyses. 

 

The degree of overlap of gene lists of each gene panel, with SFARI Gene is presented 

in Table 6-4 The overlap is expressed as the percentage of genes interrogated by each 

panel that are also included in SFARI Gene. Most genes included in these gene panels 

have some relevance to autism, illustrated by the inclusion of a large proportion the 

panel-specific genes in the SFARI Gene database (Abrahams et al., 2013). SFARI Gene 

is a collated list of genes for which there is evidence of association with autism and is 

used here as an arbitrary measure of ‘relevance’ of genes included with autism. The 

Genomics England PanelApp (Autism Version 0.2) was used as a positive control in the 

analysis. Its gene list is derived from SFARI Gene, reflected in the 100% overlap with the 

database. Conversely, Gx Sciences (Developmental Nutrigenomic Panel) has an 

overlap of just 15.15% of genes with those in SFARI Gene, reflecting the more specific 

intended application of this gene panel (nutrigenomics rather than diagnostics). SFARI 

Gene was subset to high-confidence autism-associated genes, assigned as such based 

on SFARI Gene scoring of 1 or 2 (Table 6-4). 

 

Pearson’s product-moment correlation was computed with 16 degrees freedom for 

diagnostic yield and number of genes targeted and for diagnostic yield against 

https://gene.sfari.org/database/human-gene/
https://gene.sfari.org/database/human-gene/
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percentage overlap with SFARI Gene (all genes). Diagnostic yield of the gene panels 

and size of the panel were found to be positively correlated, (r = 0.82, p = 3.033e-05), 

indicating an increased number of genes per gene panel enables detection of a clinically 

relevant variant in a greater number of individuals. No significant correlation between 

percentage overlap with SFARI Gene and diagnostic yield was detected. 
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Service provider Panel name Number of 

genes targeted 

Percentage overlap with SFARI Gene Diagnostic yield 

in SPARK  

SFARI Gene 

All Genes  

SFARI High Confidence 

Genes (Scores 1 and 2) 

Ambry Genetics AutismNext Panel 72 87.5% 76.39% 2.61% 

Asper Neurogenetics Autism Spectrum Disorders NGS 

Panel 

76 88.16% 71.05% 2.83% (0.22%) 

Blueprint Genetics Autism Spectrum Disorders 

Panel 

75 45.33% 36% 1.53% (0.44%) 

Center for Human 

Genetics 

Autism Spectrum Disorder 53-

Gene Panel 

53 84.91% 45.28% 1.96% (0.22%) 

Centogene Syndromic Autism Gene Panel 50 88% 76% 2.4% (0.22%) 

Centogene Intellectual Disability Panel 599 43.41% 24.54% 5.23% (1.31%) 

EGL Genetics Autism Spectrum Disorders Tier 

2 Panel 

62 74.19% 66.13% 2.18%  

Fulgent Genetics Autism NGS Panel 121 

 

 

76.86% 55.37% 4.36% (0.44%) 
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GeneDx Autism/ID Xpanded Panel 2641 20.64% 10.98% 10.02% (3.49%) 

GENETAQ Autism 27 92.59% 66.67% 1.53%  

Genomics England 

PanelApp 

Autism (Version 0.20) 733 100% 42.7% 7.63% (1.96%) 

Greenwood Genetic 

Centre 

Syndromic Autism Sequencing 

Panel 

83 80.72% 69.88% 3.05% 

GX Sciences Developmental Nutrigenomic 

Panel 

33 15.15% 0% 0.22% 

MNG Laboratories Comprehensive Disability/Autism 

Panel 

1345 19.85% 12.04% 6.1% (1.3%) 

Munroe-Meyer 

Institute 

Autism/Intellectual 

Disability/Multiple Anomalies 

Panel 

117 55.56% 41.88% 2.4% (0.22%) 

Prevention Genetics Autism Spectrum Disorders 

Panel 

170 95.29% 90.59% 6.32% (0.44%) 

Reference 

Laboratory 

Genomics 

Autism Spectrum Disorders 

(Expanded Panel) 

77 77.92% 64.94% 3.05% (0.44%) 

Sema4 Comprehensive Autism 

Spectrum Disorders Panel (228) 

228 57.46% 43.42% 4.79% (0.87%) 
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Table 6-4: Diagnostic yield of gene panels marketed for use in autism.  

Presented are gene panels relevant to autism. Diagnostic yield of gene panels marketed for use in autism. 
Presented are gene panels relevant to autism. The number of genes present in each gene panel are correct 
as of January 2021. Gene lists were updated to HGNC approved gene symbols where necessary. 
Percentage overlap with SFARI is estimated as the proportion of genes within each respective gene list 
appearing in SFARI Gene (01-13-2021 release). This overlap is presented for both the complete SFARI 
Gene gene lists and the High Confidence SFARI Genes only (Scores 1 and 2). Diagnostic yield is estimated 
as the number of individuals for which a genetic cause of autism was identified as a proportion of those 
investigated (459 affected individuals for which no genetic diagnosis was previously reported). Pathogenic 
variation is considered as variants listed in Feliciano et al. (2019). Variants considered are de novo and 
inherited SNVs, indel variants, and CNVs. Diagnostic yield of pathogenic variation is listed, with the 
additional diagnostic yield achieved by inclusion of probable pathogenic variants listed in brackets alongside. 
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6.5.2 Evaluating the inclusion of ACMG59 in autism and neurodevelopmental 

condition gene lists 

6.5.2.1 Determining the overlap of autism gene lists with ACMG59 

The ACMG has published recommendations for reporting genetic variation from clinical 

exome and genome sequencing (Miller et al., 2021). Within these genes, 59 at time of 

analysis, variants that may be pathogenic have been characterised in ClinVar (Landrum 

et al., 2018). These variants are recommended for reporting as they are likely to be 

informative to the individual carrying the variant, and potentially their family members. 

Variants identified within these genes are likely to be secondary findings, i.e., unrelated 

to the primary purpose of performing the test. However, these genes may be of 

neurodevelopmental relevance and subsequently may be the target of genomic 

interrogation in these individuals in a research setting. 

 

Here three autism-relevant genes lists (SFARI Gene, DDD gene2phenotype and the 

genes targeted by autism gene panels) were interrogated for overlap with the ACMG 

gene list of clinically actionable genes (Table 6-6) (Figure 6-1).  Six genes, included in 

all autism gene lists investigated are found on the ACMG59 gene list (PTEN, TSC1, 

TSC2, BRCA2, FBN1 and SMAD4). Furthermore, three of these six genes (PTEN, TSC1 

and TSC2) are scored as “High Confidence” for autism-association and two of the six 

genes (FBN1 and SMAD4) are scored as “Strong Candidate” for autism-association.  
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Figure 6-1 The overlap of autism gene lists with ACMG59.  

Differentiated by colour are three autism-relevant gene lists (Blue-SFARI Gene; Yellow- DDD ND Gene to 
Phenotype gene lists; Grey- Collated gene list arising from commercial gene panels marketed for use in 
autism). The overlap is shown between these gene lists, and between each gene list and ACMG59, in red. 
These gene lists are further detailed in Table 6-4. Counts represent the number of genes within each 
category of overlap. 

 

The autism gene list with the most substantial overlap with ACMG59 is DDD 

gene2phenotype, notably also the gene panel targeting the largest number of genes 

(n=2,426). Of particular interest are the three genes interrogated by gene panels and 

featuring on the ACMG59 gene lists, which are not interrogated by SFARI Gene or 

DD2GP. Given that these genes are not interrogated by either SFARI Gene or DDD 

gene2phenotype, the evidence supporting the inclusion of these genes in the gene 

panels is of concern and will be discussed later. 

 

This overlap of genes in the clinical gene-sets presented in Figure 6-1 is further quantified by jaccard 

similarity coefficient, presented in  

Table 6-5,  measured as: 
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Gene Set Gene Set Jaccard Similarity Coefficient 

SFARI ACMG59 0.006610009 

SFARI Gene Panels 0.2496529 

SFARI DDDG2P 0.1363184 

DDDG2P ACMG59 0.008090615 

DDDG2P Gene Panels 0.3663823 

Gene Panels ACMG59 0.003941441 

 

Table 6-5 Jaccard Similarity Coefficients of Clinical Gene set Overlaps.  Presented are pair-wise jaccard 
similarity coefficients for the clinical gene sets under investigation. The overlap is shown between these 
gene lists, and between each gene list and ACMG59, in red. These gene lists are further detailed in Table 
6-4.



   

 

178 

 

 

Gene List Description Number of 

Genes 

Source/Reference Release/Export 

Query Gene Set 

ACMG59 The ACMG has published 

recommendations for reporting 

incidental findings in the exons of 

these genes 

59 https://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/ 

(Kalia et al., 2017) 

Version 2.0 

06-04-2021 export 

Autism Gene Set 

SFARI SFARI Gene is a well-maintained 

database for the autism research 

community. This gene list 

collates genes implicated in 

autism susceptibility.  

1,000 https://gene.sfari.org/ 

(Abrahams et al., 2013) 

Gene lists has been refined as detailed in 6.5.1.2. 

13-01-2021 release 

DDD 

gene2phenotype 

This gene lists are the 

neurodevelopmental condition 

“ND” gene list arising from the 

DDD study.  

2,426 https://www.deciphergenomics.org/ddd/ddgenes 

(Wright et al., 2015) 

09-04-2021 export 

Gene Panels This gene lists includes all genes 

targeted by 18 autism 

commercial gene panels.  

3,500 This gene list is compiled and refined as detailed in this chapter. 

(Ní Ghrálaigh et al., 2022) 

 

Current as of January 

2021 

Table 6-6 Description of gene lists used.  

The column gene list lists the shortened name of each list as it is referred to within these analyses. Description gives context to the relevance of each gene list to these analyses. 
Columns 3-5 give further detail on the gene lists. Note that all gene symbols within these gene lists are HGNC approved. 

https://www.ncbi.nlm.nih.gov/clinvar/docs/acmg/
https://gene.sfari.org/
https://www.deciphergenomics.org/ddd/ddgenes
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Gene 

Symbol 

(HGNC) 

Gene Description 

(GeneCards) 

Interrogated 

by 

Disease Phenotype (Coriell Institute) GeneReviews® SFARI 

Gene 

Score  

ACTA2 Actin Alpha 2, Smooth 

Muscle 

DDD Marfan syndrome, Loeys-Dietz syndromes, 

and familial thoracic aortic aneurysms and 

dissections 

(Milewicz and 

Regalado, 1993; Dietz, 

2017; Loeys, 2017) 

Not 

scored 

ATP7B ATPase Copper 

Transporting Beta 

Gene Panels Wilson disease (Weiss, 1993) Not 

scored 

BRCA1 BRCA1 DNA Repair 

Associated 

DDD Hereditary breast and ovarian cancer  (Petrucelli, Daly and 

Pal, 1993) 

Not 

scored 

BRCA2 BRCA2 DNA Repair 

Associated 

Gene Panels, 

SFARI, DDD 

Hereditary breast and ovarian cancer  (Petrucelli, Daly and 

Pal, 1993) 

3 

DSP Desmoplakin DDD Arrhythmogenic right ventricular 

cardiomyopathy 

(McNally, MacLeod 

and Dellefave-Castillo, 

1993) 

Not 

scored 

FBN1 Fibrillin 1 Gene Panels, 

SFARI, DDD 

Marfan syndrome, Loeys-Dietz syndromes, 

and familial thoracic aortic aneurysms and 

dissections 

(Milewicz and 

Regalado, 1993; Dietz, 

2017; Loeys, 2017) 

2 

 

KCNQ1 Potassium Voltage-

Gated Channel 

Subfamily Q Member 1 

DDD Romano-Ward long-QT syndrome types 1, 2, 

and 3, Brugada syndrome 

(Yunis and Bhonsale, 

2020) 

Not 

scored 
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LDLR Low Density Lipoprotein 

Receptor 

SFARI Familial hypercholesterolemia  (Youngblom, Pariani 

and Knowles, 1993) 

3 

LMNA Lamin A/C Gene Panels, 

DDD 

Hypertrophic cardiomyopathy, dilated 

cardiomyopathy 

(Cirino and Ho, 1993) Not 

scored 

MYH11 Myosin Heavy Chain 11 DDD Marfan syndrome, Loeys-Dietz syndromes, 

and familial thoracic aortic aneurysms and 

dissections 

(Milewicz and 

Regalado, 1993; Dietz, 

2017; Loeys, 2017) 

Not 

scored 

OTC Ornithine 

Transcarbamylase 

Gene Panels, 

DDD 

Ornithine transcarbamylase deficiency (Lichter-Konecki et al., 

2016) 

Not 

scored 

PMS2 PMS1 Homolog 2, 

Mismatch Repair System 

Component 

DDD Lynch syndrome (Idos and Valle, 2004) Not 

scored 

PTEN Phosphatase And Tensin 

Homolog 

Gene Panels, 

SFARI, DDD 

PTEN hamartoma tumour syndrome (Mester, 2016) 1 

RET Ret Proto-Oncogene Gene Panels, 

DDD 

Multiple endocrine neoplasia type 2, Familial 

medullary thyroid cancer 

(Eng, 1993) Not 

scored 

RYR1 Ryanodine Receptor 1 DDD Malignant hyperthermia susceptibility (Allen, 1994) Not 

scored 

RYR2 Ryanodine Receptor 2 Gene Panels Catecholaminergic polymorphic ventricular 

tachycardia 

(Maragna and 

Napolitano, 2018) 

Not 

scored 

SDHD Succinate 

Dehydrogenase 

Complex Subunit D 

Gene Panels Hereditary 

paragangliomapheochromocytoma syndrome 

(Else, Greenberg and 

Fishbein, 1993) 

Not 

scored 
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SMAD3 SMAD Family Member 3 DDD Marfan syndrome, Loeys-Dietz syndromes, 

and familial thoracic aortic aneurysms and 

dissections 

(Milewicz and 

Regalado, 1993; Dietz, 

2017; Loeys, 2017) 

Not 

scored 

SMAD4 SMAD Family Member 4 Gene Panels, 

SFARI, DDD 

Juvenile polyposis (Hussain and Church, 

2020) 

2 

TGFBR1 Transforming Growth 

Factor Beta Receptor 1 

Gene Panels, 

DDD 

Marfan syndrome, Loeys-Dietz syndromes, 

and familial thoracic aortic aneurysms and 

dissections 

(Milewicz and 

Regalado, 1993; Dietz, 

2017; Loeys, 2017) 

Not 

scored 

TGFBR2 Transforming Growth 

Factor Beta Receptor 2 

Gene Panels, 

DDD 

Marfan syndrome, Loeys-Dietz syndromes, 

and familial thoracic aortic aneurysms and 

dissections 

(Milewicz and 

Regalado, 1993; Dietz, 

2017; Loeys, 2017) 

Not 

scored 

TSC1 TSC Complex Subunit 1 Gene Panels, 

SFARI, DDD 

Tuberous sclerosis complex (Northrup et al., 1993) 1 

TSC2 TSC Complex Subunit 2 Gene Panels, 

SFARI, DDD 

Tuberous sclerosis complex (Northrup et al., 1993) 1 

WT1 WT1 Transcription 

Factor 

DDD WT1-related Wilms tumour (Dome and Huff, 1993) Not 

scored 

Table 6-7  Clinical relevance of overlapping genes.  

This table details and expands on genes included on the ACMG59 gene lists of clinically actionable genes, which are also interrogated by one or more autism-relevant gene lists. 
All gene symbols included are HGNC approved, gene descriptions are sourced from GeneCards (https://www.genecards.org/). Disease phenotype associated with each gene is 
specified as per Coriell Institute for Medical Research (https://www.coriell.org/). Literature documenting the gene-disease association and clinical handling of genetic variation 
with each gene is referenced as Gene Reviews (a point-of-care resource for clinicians, providing clinically relevant and medically actionable information for inherited conditions). 
Where scored, the SFARI Gene score (13-01-2021 release) is given as a measure of the level of evidence supporting a genes association with autism. Genes are scored on a 
scale of 1-3 based on the number of autism reports of variation within the gene. SFARI Gene scores are interpreted as 1; High Confidence, 2; Strong Candidate; 3, Suggestive 
Evidence. Where genes are “Not scored” by SFARI Gene, no reports of autism have been associated with variation within the gene, as per the SFARI Gene database. 

https://www.genecards.org/
https://www.coriell.org/
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6.5.2.2 Determining the clinical relevance of overlapping gene 

The clinical relevance of genes overlapping ACMG59 are detailed in Table 6-7. The genes 

detailed in the table have evidence of neurodevelopmental association and may be targeted 

in the future or are currently targeted by commercial genetic testing strategies in autism and 

other neurodevelopmental conditions. The disease phenotype associated with the ACMG59 

gene is given in Table 6-7 alongside the SFARI Gene Score. As shown, 17/24 overlapping 

genes have not been scored by SFARI Gene. Of those that have, two genes have been 

assigned SFARI Gene scores of three indicating a lack of robust evidence supporting the 

association. 
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6.6 Discussion 

6.6.1 A lower number of targeted genes on commercial gene panels is associated 

with reduced detection of clinically relevant variants. 

Considering the low diagnostic yield of the gene panels that were investigated, we can infer 

that, while the gene selection for inclusion in autism gene panels is evidence-based, these 

gene lists are not extensive enough to justify use in genetic diagnosis in the context of autism, 

a complex trait for which hundreds of genes have been associated (Table 6-4). The GeneDx 

“Autism/ID Xpanded Panel” represents the autism gene panel with the highest number of 

individuals for which a genetic diagnosis would have been obtained with its application 

(10.02%). This diagnostic yield is comparable to that of WES, 10.4% (Feliciano et al., 2019) 

and that of chromosomal microarray sequencing with a median diagnostic yield of 8.1% 

(Savatt and Myers, 2021). However, important to note is that this gene panel targets many 

more genes (n=2,641) than some of the smaller gene panels, for example GENETAQ “Autism” 

panel (n=27), with a diagnostic yield of just 1.53%. The positive correlation of diagnostic yield 

associated with inclusion of a larger number of genes, reflects well the complex genetic 

architecture of autism and the number of loci expected to be associated. Critically, it must be 

communicated to healthcare providers ordering these diagnostic tests, that if a targeted gene 

panel test has a negative result for detection of pathogenic variation, one cannot conclude that 

a causative variant is not present. Rather, it is more likely that genetic causes have been 

missed due to the absence of the gene of interest from that panel. 

 

This raises the question whether autism is an appropriate candidate for the development of 

commercial gene panels, which are limited due to the size of the gene panel, the cost and 

current knowledge of the genetic basis of autism. This suggests that sequencing technologies 

with a broader coverage, such as WGS may be more effective. Balancing the reduction in 

costs associated with restriction of the proportion of the genome covered, with the potential 

benefit of sequencing the entire genome must be considered based on the genetic architecture 

underlying the condition. Following developments in WGS, particularly with the advent of long-

read sequencing, this technology has the potential to cover up to 100% of the human genome. 

When restricting variant discovery to coding regions only, just 1% of the human genome is 

explored. Targeted sequencing, including the use of gene panels or clinical exome 

sequencing, presents the opportunity to significantly reduce costs associated with genetic 

sequencing, challenges associated with variant interpretation and limitations associated with 

large data storage. However, these benefits come at the cost of restricting variant discovery 

to a miniscule proportion of the genome, depending on the number of genes targeted (Table 

1-1).  
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Expanding beyond targeted autism genes, WGS presents the opportunity to explore more of 

the human genome and, ultimately, to further increase the diagnostic yield in autism (Yuen et 

al., 2015). Progress in non-coding variant annotation and interpretation, accompanied by a 

decrease in sequencing costs, may further popularize the clinical use of WGS. Currently, WES 

is proposed as the first-tier diagnostic test for neurodevelopmental conditions (Srivastava et 

al., 2019). Recent advances in data analysis have led to a capability of CNV calling by WES, 

eliminating the need for CMA entirely. This has enabled WES with CNV calling to achieve a 

high diagnostic yield in neuropsychiatric conditions. The diagnostic yield in autism using 

clinical exome sequencing has been estimated at 6.1% in autism (20% overall yield in 

neurodevelopmental conditions) (Martinez-Granero et al., 2021). Genotyping chips have 

limited clinical utility for rare genetic variation of SNVs and should not be used to guide health 

decisions without validation (Mn et al., 2021).  

 

6.6.2 Challenges in the handling of genetic findings 

6.6.2.1 Reporting of secondary findings 

Consideration is needed of the potential to uncover of incidental genetic findings when 

analysing genomic research data. Incidental findings here refer to clinically relevant and 

potentially clinically actionable findings, unrelated to the primary purpose of performing the 

test. This discussion comes with several factors to consider, specifically ethical consideration. 

This is particularly considered in the context of ‘actionable’ findings such as variants in 

ACMG59 genes. Secondary findings found in a research setting require clinical validation of 

the findings and clinical reporting, resulting in communication preferably from a genetic 

counsellor, all considered only where the participant has consented for such findings to be 

communicated back.  

 

Investigation of the overlap of autism-relevant genes with the ACMG59 list of gene in which 

variants in the exons of the genes may be clinically actionable for the individual, highlights that 

consideration must be made to the uncovering of secondary findings within these genes which 

may have impacts on an individual’s life, unrelated to autism (Figure 6-1). Six genes, included 

in all autism gene lists investigated are found on the ACMG59 gene list (PTEN, TSC1, TSC2, 

BRCA2, FBN1 and SMAD4). Furthermore, three of these six genes (PTEN, TSC1 and TSC2) 

are scored as “High Confidence” for autism-association and two of the six genes (FBN1 and 

SMAD4) are scored as “Strong Candidate” for autism-association.  
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While these genes show strong evidence supporting the need to sequence and interrogate 

them to determine the genetic basis of autism, there is risk of identification of secondary 

actionable genetic variation in a research context. With this risk comes a need for sensitivity 

in data handling and strict informed consent at study enrolment. A strategy for clinical 

validation and return of result is required should a putatively pathogenic variant be identified. 

Secondary findings found in a research setting require appropriate clinical validation of the 

findings and clinical reporting, and access to follow up genetic counselling which may not be 

universally available, as is the case in Ireland with major gaps in resourcing for provision of 

genetic advice (Lynch and Borg, 2016). This requires the appropriate consent for return of 

incidental findings. While these variants are “individually rare, they are collectively common.” 

This means the likelihood of identifying a rare secondary genetic finding in both large-scale 

and smaller research cohort is not uncommon, as shown in a 2.7% diagnostic yield of 

ACMG59 pathogenic variation in a cohort of 101 epilepsy patients (Benson et al., 2020). 

 

These genes discussed show evidence for autism association, a benefit to their inclusion when 

determining the genetic basis of autism, which should be weighed against the risk, or reward 

depending on the preferences of the individual, of identification of secondary genetic finding. 

However, 17 of the 24 autism-relevant genes overlapping with ACMG59 show lack of evidence 

of autism association, as determined by number of reports in the SFARI Gene database. 

Notably most of these genes are overlapping by the gene list arising from the Deciphering 

Developmental Disorder study, a gene list collated from severely affected neurodevelopmental 

cohort with atypical presentations, but likely relevant also to autism. Of note are the three 

genes (SDHD, ATP7B and RYR2) interrogated by commercial gene panels marketed for use 

in autism. These genes are “Not scored” by SFARI Gene, potentially indicating insufficient 

evidence for justification in targeted autism sequencing in any case.  

 

PheWAS analysis has been performed to understand pleiotropic effects of rare variation in the 

ACMG59 genes on psychiatric phenotypes. This approach did not identify any ACMG59 genes 

that are significantly enriched with rare deleterious variants that confer risk for psychiatric 

conditions, showing a lack of association between psychiatric conditions and incidental 

findings in these medically actionable genes (Feng et al., 2022). These findings suggest there 

may be little benefit of inclusion of these genes within autism gene panels, while a relevant 

finding brings healthcare challenges, requiring feedback and onward referral for further 

medical investigation where appropriate. Further follow-up may be required with a need for 

routine surveillance, for example pathogenic variation in PTEN where breast or bowel 

screening might be indicated. 
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Important to this discussion is that four genes (BMPR1A, SMAD4, ATP7B, and OTC) were 

added to the ACMG59 gene list in the update from version 1 to version 2 (Richards et al., 

2015; Kalia et al., 2017). Three of these four genes are autism-relevant genes (Table 6-7), 

which may have been included in targeted autism gene panels developed prior to update of 

ACMG59. Importantly ACMG59 is not a definite collection of genes in which clinically 

actionable pathogenic variation may occur. In the time since these analyses were carried out 

a recent iteration of ACMG, ACMG73 has been released (Miller et al., 2021). As new genomic 

findings emerge this list will continue to be expanded. Van der School et al. (2022) report 

variation in many genes not included on the ACMG list but with evidence of association to a 

disorder for which disease manifestation could be influenced, suggesting that such a list is 

arbitrary at best (van der Schoot et al., 2022). 

 

6.6.3 Ethical considerations 

6.6.3.1 Re-analysis of variation 

Alongside, the consideration of incidental findings comes the responsibility of re-analysis as 

functional prediction tools improve and study sizes increase (Deignan et al., 2019). These 

advancements may lead to different interpretation of a variant’s significance, or to availability 

of new information supporting its relevance. There is currently no legal requirement to 

recontact patients as new genetic findings emerge and there are major barriers to doing so, 

including procedures for re-analysis and re-contact, consenting and clinical resources (Carrieri 

et al., 2019; David et al., 2019). Progress is being made to facilitate clinical utilisation of 

changing variant classification and gene-disease relationships as they emerge. One such 

example is ClinGen GenomeConnect, a patient registry with capacity to trigger re-analysis as 

variants are updated in ClinVar (Savatt et al., 2018). This service can supplement laboratory 

and clinician efforts to keep patients informed about their genetic testing results and expands 

patient-centred data sharing. 

 

6.6.3.2 Risk communication in psychiatric genetics 

Psychiatric genetic testing is available through direct-to-consumer (DTC) testing despite the 

limitations, gaps in knowledge and ethical complications discussed already. If the technology 

is made available to individuals, it is difficult to prevent its premature application, due to the 

huge benefits to a genetic diagnosis already mentioned. Substantial individual stress arises in 

the communication of genetic findings, whether identified in a clinical setting or population-
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based DTC testing. Among the risks of clinical interpretation of DTC genetic tests, particularly 

SNP chip technologies, are false positives, in particular where rare variants are under 

investigation (Mn et al., 2021). Another risk associated with DTC genetic testing is false 

reassurance arising for tests being less thorough than a customer realises. This is true for 

example in BRCA1 and BRCA2 variant testing for which some DTC tests only analyse a 

subset of potential variants, thus missing most of the variants associated and providing false 

reassurance to ~80% of individuals with a disease-causing variant (Rebbeck et al., 2018). 

Unclear meaning of disease-causing variation is also a concern when DTC genetic tests are 

used in a population cohort, i.e. outside the context of symptoms or family history of the related 

disease (Wright et al., 2019). 

 

Risk communication becomes complicated with variants of small to moderate impact on 

outcomes (Eeltink et al., 2021).  Adding to the discussion on genetic counselling, we must also 

consider the outcome of a PGS in psychiatry, specifically just because an individual’s risk has 

been identified does not mean the outcome can be changed. Elements of consent become 

difficult when communicating around PGS and potential impact, or lack of impact, on an 

individual’s life. Clinician guidance is crucial to overcome unrealistic expectations of the results 

a genetic test may deliver, to ensure that consent remains valid (R. Horton and Lucassen, 

2019). Key to these efforts are genetic counselling where possible, and clinician training in 

genomic literacy (JI et al., 2018). Complex nomenclature, changing penetrance estimates, 

changing variant annotations, complex data formats and modest effect sizes are among the 

complexities associated with return of psychiatric genetic results. Tools have been developed 

to bridge the gap between genomic expertise and the treating clinician, for example GenoPred, 

a tool for converting PGS to an absolute scale risk (Pain et al., 2021). Primers with the aim of 

translating the vast amounts of genomic literature into directly relevant key messages are also 

convenient for bridging this gap. These strategies, among many others, in the translation of 

genomic technologies into clinical settings are key to accompany technological advances in 

genomic medicine (R. H. Horton and Lucassen, 2019).  

 

6.6.4 Conclusion 

Gene panels have potential for clinical utility provided the relevant expertise and infrastructure 

for variant interpretation are available and cost effective. However, current evidence does not 

support their applicability in autism (Buxbaum et al., 2020; Myers, Challman, Martin, et al., 

2020). Achieving the goal of a comprehensive autism gene panel will require uniform robust 

phenotyping to account for the heterogeneity in autism presentation, as discussed in Chapter 

4. Consideration must be made of the inclusion of genes in which pathogenic variation, when 
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detected, is clinically actionable; the benefits of their inclusion weighed against the clinical 

management of their identification. To conclude, evaluation of the diagnostic yield of 

commercial gene panels marketed for autism determines that they are currently of limited 

clinical utility. 
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Chapter 7. General Discussion and Future Directions 
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7.1 Overview of aims and findings 

7.1.1 Strengths and weaknesses of this research 

The variant discovery performed in Cohorts 1, 2 and 3 here applies a stringent variant filtration 

strategy to identify putatively pathogenic rare variation in genes with existing reports of 

association to autism and neurodevelopment. This pipeline is limited to the isolation of rare 

exonic SNVs, however NGS technologies enable additional classes of variation to be 

detected, with evidence supporting their involvement in the genetic basis of autism, such as 

CNVs, SVs and tandem repeat expansions. There are future opportunities to explore these 

classes of variation in Cohort 1, 2 and 3 and enable expansion of the understanding of the 

genetic basis of autism within this cohort. While variant discovery did not yield pathogenic 

SNVs with association to autism, expansion beyond this gene-set based variant filtration 

strategy will enable detection of more genetic variants which could be contributing to the 

phenotype.  

 

Expanding beyond this filtration strategy may detect causative variation in the cohort, when 

unrestricted by the requirement to restrict analyses to genes with an existing gene-disease 

association reported. This gene-set based filtration step within the variant isolation strategy is 

a weakness, leaving many rare putatively pathogenic variants uninterrogated. However, there 

is opportunity to overcome this in the future with an increase in sample size, achievable by 

analysis of this dataset in combination with other WES and WGS autism datasets, such as 

those described in Table 1-2. Large sample sizes give statistical power to enable gene-

phenotype associations, while the small sample sizes studied in this thesis enable only variant 

detection within known autism-associated genes. 

 

The strength of this work comes from the relevance of this research in the translation of autism 

genomic findings to clinically impactful knowledge, as detailed in the sections to follow. While 

clinically relevant variation identification was limited in this thesis, the knowledge gained 

through evaluation of clinical gene panels and gene curation strategies may be applied in both 

research and clinical settings.  

 

7.1.2 An analysis strategy to isolate exonic rare pathogenic SNVs using next-

generation sequence data. 

This analysis aimed to establish a strategy for isolation of rare exonic pathogenic SNVs from 

NGS data. In doing so, this work also aimed to discover rare putatively pathogenic autism-

relevant SNVs in a cohort of autism-affected individuals and their unaffected family members.  
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The strategy described in this study outputs high-confidence SNV calls that are rare by MAF, 

as estimated by gnomAD, and pathogenic, as predicted by consensus scoring of CADD, SIFT 

and PolyPhen-2 (Ng and Henikoff, 2003; Adzhubei, Jordan and Sunyaev, 2013; Karczewski 

et al., 2019; Rentzsch et al., 2019). Power for statistical associations of rare variant burden is 

limited by the small sample sizes of Cohort 1, Cohort 2, and Cohort 3. In the absence of power, 

variant discovery is restricted to genes with existing evidence for autism associations, 

specifically SFARI Gene and DDD gene2phenotype (Abrahams et al., 2013; Wright et al., 

2015). This approach is restrictive, limiting variant discovery to a small subset of variation. In 

future, this cohort will contribute to larger sequencing efforts in autism and enabled by greater 

sample sizes will contribute to building understanding of the genetic basis of autism. 

 

7.1.3 Evaluating gene-phenotype relationships through gene curation; a WGS study 

in autism. 

This analysis aimed to dissect gene-phenotype relationships through application of an autism 

gene curation framework. To achieve this, rare exonic pathogenic SNVs from WGS data were 

identified by applying the analysis strategy outlined in Chapter 3.  

 

In consideration of genes for curation, genes were enriched for those with a high level of 

evidence supporting autism association. Despite this all genes evaluated were classified as 

having a limited gene-phenotype association. Just one of the three evaluated genes had 

experimental evidence supporting an autism association highlighting the need for in vitro and 

in vivo functional studies alongside predictive genomic analysis to build robust evidence for 

gene-phenotype associations. Gene curation through the proposed framework accounts for 

the degree of certainty in autism diagnoses in studies reporting association and accounts for 

co-occurring diagnoses. This strategy, if applied widely, will provide consistency throughout 

gene discovery, and ultimately aid in the translation of genomic findings to the clinic. 

 

7.1.4 A pedigree driven approach to identify pathogenic variation in multiplex 

families of neurodevelopmental conditions. 

The aim of this analysis was to identify rare putatively pathogenic SNVs in genes with evidence 

supporting their role in autism, using a family-based study design to evaluate variant 

transmission. This analysis analysed WGS data from a rare cohort of multiplex and extended 

pedigrees. Mode of pathogenic variant transmission was hypothesised based on reported 

affection status through family structure. Of the four families investigated putatively pathogenic 
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heterozygous variation predicted to be causative, was detected in three families. One of these 

families harboured two predicted pathogenic variants impacting TTN in all affected individuals 

and absent from unaffected family members. Accompanied by the existing level of evidence 

supporting variation in this gene as a single gene cause of autism, this is the likely rare variant 

cause of affection within this family.  

 

The approach applied is a first pass analysis which with increased sample size should be 

evaluated at a more widespread level across the genome and in parallel to large-scale WGS 

efforts. 

 

7.1.5 Determining the clinical utility of gene panels in autism; a study of diagnostic 

yield and relevance. 

This analysis aimed to evaluate the diagnostic yield of commercial gene panels marketed for 

use in autism and determine the relevance gene selection for these panels. This work also 

aimed to determine the overlap of ACMG59 genes and autism-relevant gene lists. 

 

Current evidence does not support the applicability of targeted gene panels in autism 

(Buxbaum et al., 2020; Myers, Challman, Bernier, et al., 2020). Evaluation of the diagnostic 

yield of the autism gene panels, through secondary analysis of the SPARK WES cohort, 

determined that they are currently of limited clinical utility. Gene selection for inclusion in 

autism gene panels was found to be evidence-based, as indicated by the proportion of known 

autism genes included in these targeted sequencing panels. However, no panel was extensive 

enough to justify use in genetic diagnosis in the context of autism, a complex trait for which 

hundreds of genes have been associated. Analysis was performed on the overlap between 

ACMG59, a gene list of medically actionable genes, with genes association with autism and 

neurodevelopmental conditions. ACMG59 was also investigated for overlap with the genes 

included in the autism gene panels evaluated for diagnostic yield. This found a substantial 

number of genes which are associated with autism, which are also recommended to be 

reported on should a pathogenic variant be detected. These findings should impact the 

decision to apply these targeted autism gene panels, in their current form, in a clinical or 

research setting.  

 

Importantly the limited scope for detection of putatively pathogenic variation to aid autism 

diagnosis should be considered by clinicians when discussing and consenting for this genetic 

testing. As highlighted by the overlap of these genes with ACMG59, pleotropic effects of the 

genes targeted for sequencing should be considered when ordering these genetic tests, as 
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well as preparation for appropriate follow-up should a variant in a clinically actionable gene be 

detected. Achieving the goal of a clinically valuable autism gene panel requires a 

comprehensive gene list of genes robustly associated with autism, specifically autism in the 

absence of other neurodevelopmental conditions. Application of a formal evidence-based 

gene curation framework, such as that evaluated in Chapter 4 works towards this goal. 

 

7.2 Future Directions: Translating variant discovery from research to clinic 

Variant discovery is key to building understanding of the biology underlying 

neurodevelopmental conditions and their etiology. There is huge potential for this translation 

to be integrated across healthcare systems. At this scale, success has been demonstrated in 

variant discovery and diagnosis in rare disease in routine healthcare system, through WGS 

within the UKBiobank population cohort (Turro et al., 2020). Genetic diagnosis can 

subsequently facilitate variant-specific medical decision making. This has been demonstrated 

in the context of rare disease by Bhatia et al., reporting changes in treatment in 27% of patients 

following a genetic diagnosis from whole exome or WGS (Bhatia et al., 2021). 

 

However, barriers must be addressed to enable the translation of genomic findings to clinically 

informative biomarkers in autism and neurodevelopmental conditions. Heterogeneity is the 

cause for these barriers, as has been described throughout this thesis at the genotype and 

phenotype level. Heterogeneity must be accounted for when considering the role and 

relevance of a putatively pathogenic variant. Informed prediction, while reliable in some 

conditions, is impacted by the heterogeneity of neuropsychiatric and neurodevelopmental 

conditions (Nunes, Trappenberg and Alda, 2020). At case-level a family-based study design 

can control for some levels of heterogeneity from the shared genetic and environmental effect 

between family members, enabling variant discovery. However, at condition-level future work 

on variant discovery must evaluate and limit biases influencing variant discovery to achieve 

the full potential of genomic data and to ensure broad translatability of findings to the clinic.  

 

7.2.1 Phenotypic biases 

Autism cohorts are biased by their mode of ascertainment. Clinically ascertained cohorts 

select for more severely affected individual than a population-based study design. DDD from 

which the DDD gene2phenotype gene list was derived recruits only the most severe 

neurodevelopmental-affected individuals, presenting with more complex phenotypes (Wright 

et al., 2015). In contrast, SPARK is biased towards less severe autism phenotypes by the 

sample collection strategy used (Feliciano et al., 2019). The individuals participating have 
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given saliva samples for sequencing, a method of collection which can be difficult for those 

with neurodevelopmental challenges potentially excluding these individuals from the study. 

These biases are reflected in the genetic architecture of these cohorts and the genetic findings 

emerging from their study. Specifically, it would be expected to discover an enrichment of rare 

highly penetrant variants in the DDD study when compared to SPARK. Conversely, it may be 

expected to discover higher polygenic burden in the SPARK cohort, indicating a higher burden 

of common genetic variants of lower effect sizes resulting in the autism phenotype. While both 

approaches yield impactful variant discovery in autism and neurodevelopmental conditions, 

consideration must be given to the penetrance of these variants when translating into the 

clinic.  

 

7.2.2 Ancestral population biases 

Research with broad applicability is currently challenging to apply to non-European 

populations. Most genomes sampled in research studies come from European ancestral 

populations. 23andMe is currently the most ancestral diverse genomic cohort. While not 

exempt from the biases affecting all population-based cohorts (73% European), this cohort 

holds genetic information on some of the largest cohorts of Africa in the world (Dr Sarah 

Laskey 23andMe, WCPG 2021). Discoveries made in underrepresented non-European 

populations have potential to impact healthcare broadly, beyond the ancestral population in 

which they are identified. For example, genetic sequencing applied to a cohort of ~15,000 

African American individuals resulted in detection of variation in EXOC3L1, associating the 

protein product of the gene as a key facilitator of lipid receptor trafficking, giving insight to the 

biology underpinning cholesterol levels generally (Lanktree et al., 2015). Working towards 

genomic research with broad applicability requires ancestry-based reference genomes 

enabling robust assessment of allele frequency and adaptation of widely applied analysis 

strategies to analyse non-European samples most accurately.  

 

7.2.3 Sex biases 

Autism is diagnosed 3-4 times more in males than females (Loomes, Hull and Mandy, 2017). 

Phenotypically autism varies in presentation in male and female individuals with males more 

likely to receive a diagnosis of autism than females (Kreiser and White, 2013). However, this 

difference does not account completely for the higher ratio observed. A Female Protective 

Effect has been proposed for autism whereby females can accumulate more risk than males 

before being affected by autism. Evidence for FPE in autism comes from both common and 

rare variation (Antaki et al., 2022). Namely an increased burden of rare de novo variation in 

autistic females cases has been observed widely (Sanders et al., 2015). A similar trend is 



 

195 

 

seen for the increased burden of common variant polygenic risk in affected females when 

compared to affected males (Antaki et al., 2022). In the family context, Wigdor et al. provide 

evidence supporting a FPE against autism in the context of common, inherited variation 

(Wigdor et al., 2022). Under FPE, more siblings of female autism cases are affected compared 

to siblings of male cases. Wigdor et al. show evidence of FPE in both affected and unaffected 

members of autism-impacted families with mothers of autistic children carrying on average 

more common, inherited genetic risk for autism than fathers (Wigdor et al., 2022). 

 

7.3 Future Directions: Maximising potential through data integration 

A major challenge facing autism genomics is the integration of all aspects of its genomic basis, 

including both common and rare variation. regulatory effects, and epigenetic modifications 

(Figure 7-1). In order to maximise the data already existing in the field, best practices must be 

set out in the optimum analysis of all of these factors to best illustrate the genomic architecture 

of autism. As the research outlined in this thesis progressed, recent developments in genomics 

have impacted and will continue to benefit the field of autism genomics. Progress has been 

made in the annotation of non-coding variants as summarised in 7.3.1. The complete human 

genome has been sequenced, enabled by long-read sequencing technologies, as 

summarised in 7.3.2. While not investigated within this thesis, progress has been made on the 

characterisation of the contribution of common variation in autism which has resulted from 

increased sample sizes and improvement in methods of association (7.3.3). 

 

7.3.1 Integrating the coding and non-coding genome 

WGS enables sequencing of non-coding variation, undetected by targeted sequencing and 

WES. Investigations to date into the contribution of this variation in these genomic regions 

have associated genetic variants with autism and neurodevelopmental conditions (Turner et 

al., 2016; Brandler et al., 2018; Wright et al., 2021). Work is underway to overcome challenges 

in discovery and interpretation of non-coding variation, where variant consequence is not as 

readily predicted as protein-coding variation. Collaborative efforts towards this goal, such as 

the generation of recommendations for clinical interpretation of non-coding variant by 

Ellingford et al., will be key to maximising the potential of WGS datasets in the future (Ellingford 

et al., 2021).    
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Figure 7-1 Pathway from sequencing to clinical implementation.  

Outlined are the main stages of autism gene discovery; from variant discovery (blue), through genomic data 
analysis (yellow), to accurate translation for meaningful diagnosis (green). Re-annotation refers to regular re-
analysis of genetic diagnosis, as additional variants reach significant association with autism. The variant 
highlighted in red, here a SNV, represents any variant type detectable through application of genomic technologies 
(Table 1-1). Epigenetic modifications include methylation changes, histone modification or microRNA 
dysregulations (reviewed (Eshraghi et al., 2018). Research is ongoing to integrate genomic variants with other 
variation within an individual’s genome, as described by (McGuire et al., 2020). 

 

7.3.2 Integrating classes of variation 

The complete set of genomic variation is known to contribute to the genetic basis of autism. 

Enabled by WGS, repeat expansions, CNVs, SVs have been implicated in autism (Pinto et al., 

2010; Brandler et al., 2018; Mitra et al., 2021). Long-read sequencing enables sequencing of 

genomic regions inaccessible through NGS (Ebbert et al., 2019). As well expanding coverage 

of genome sequencing, long-read sequencing will enable detection of variant classes 

otherwise challenging to robustly quantify, such as repeat expansions, large SVs, and 

chromosomal rearrangements. In 2022, the Telomere-to-Telomere consortium completed 

sequencing of the complete human genome, sequencing 8% more of the human genome than 

the previous iteration (Nurk et al., 2022). With expanded coverage of the genome and added 

power of variant class detection, long-read sequencing application in autism is already in 

progress and will continue to contribute to understanding of the genetic basis of autism 

(Begum et al., 2021; Noyes et al., 2022).   
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7.3.3 Integrating rare and common variation 

The role of rare variation has been highlighted throughout this thesis in the context of autism. 

Autism-associated rare variants were identified using exonic WGS data in 15% of autistic 

individuals from the latest MSSNG cohort and 17% of probands in the Simon’s Simplex 

Collection (Trost et al., 2022). Rare variation has been implicated across complex traits and 

there is potential for rare variant discovery at large-scale from well powered GWAS by WGS 

in the future (Wainschtein et al., 2022). Common genetic variation, while not investigated in 

the research outlined in this thesis, is likely to account for a proportion of the unexplained 

heritability of autism. Enabled by increased sample size, common variant discovery will 

progress building on the association made to date (Grove et al., 2019).  

 

Common variant discovery will lead to improved polygenic scoring. PGS has huge potential 

benefit to psychiatric genetics as a clinical predictor, of which there are currently very few 

available. As discussed earlier, in the context of genetic diagnoses of rare variation, PGS has 

potential to have benefit in both prediction of disease status and prediction of treatment 

response, and this potential has been demonstrated in psychiatric conditions (Lewis and 

Vassos, 2020). This potential has already been demonstrated by the success of translating a 

high PGS for schizophrenia as a predictor of poor lithium response in the treatment of bipolar 

disorder (Amare et al., 2018). 

 

However, PGS has major limitations acting as a barrier to their translation to clinical settings. 

PGS is currently not useful to guide diagnosis at the individual level (So, Sham and Valencia, 

2017). Clinical application of PGS is currently limited to interpretation of the extremes of the 

normal distribution of risk (Khera et al., 2018). A combined approach to evaluation of rare and 

common variation will provide a more wholistic view of the genetic basis of autism. A “Genomic 

Risk Score” derived from a “Rare Variant Risk Score” and “Common Variant Risk Score” 

through multivariable regression showed a 40% improvement in predictive accuracy for autism 

than common or rare variant scoring alone (Antaki et al., 2022). Integration of variation across 

the allele frequency spectrum will enable comprehensive understanding of the genetic basis 

of autism. 
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7.4 Conclusion  

Genomic technologies have accelerated research progress in autism genomics 

and promises to further transform our understanding of the genetic basis of this 

neurodevelopmental condition. This thesis introduces the current evidence for the genetic 

basis of autism, presents the progress of large-scale studies to date and highlights the 

potential of genomic technologies. This thesis outlines building an analysis pipeline to 

evaluate rare genetic variation in the context of autism, applying a gene curation strategy to 

dissect gene-phenotype associations, discovery of rare variants in a rare cohort of multiplex 

extended family affected by neurodevelopmental conditions and finally examines the clinical 

utility of targeted gene panel sequencing in autism.  

 

Together this work describes rare variant discovery and evaluation of its clinical utility in autism 

with an aim to contribute to the greater goal of understanding the genetic basis of autism. This 

thesis supports the importance of identifying rare genetic variants in family-based 

studies. Genomics is central to personalised medicine and is a key feature of the future 

healthcare. Autism genomics has potential to improve our biological understanding of 

neurodevelopmental conditions, to aid diagnosis and to inform medical decision-making in the 

future. 
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Appendix II: Supplemental Tables 

Gene symbols as annotated by dbNSFP v4.0a  

ADGRG6 HGSNAT RECQL4 

AHDC1 HR RELN 

ALMS1 HSPG2 RNF135 

AMPD1 IFT140 SCARF2 

ANK2 KCNB1 SCN4A 

ATP10A KIAA0586 SEPSECS 

C12orf57 KIF7 SIK1 

CACNA2D3 KMT2A SKIV2L 

CCDC39 LAMA2 SLC6A5 

CCDC65 LMOD3 SNX5 

CDH23 LRP4 SPEG 

CGNL1 LYST STAMBP 

COL11A1 MAP1A TBCK 

COL4A4 MED25 TCOF1 

COL6A3 NAV2 TOGARAM1 

COMP NEB TRIP11 

CRB2 NHS TRPV4 

DNAH9 NINL TSC2 

DYM NPHP4 TTN 

EDA NTRK1 UNC80 

ENPP1 OTC WDR62 

EP400 OTOGL XRCC4 

ERCC6 P3H1 ZC3H4 

FANCC PAPSS2  

FAT4 PCCB  

FBXL4 PEX10  

FLNB PEX6  

FREM2 PHF3  

GALT PKHD1  

GATA2 PLK4  

GLI2 PLXNA4  

GLIS3 PLXNB1  

GPSM2 PYGL  

GRHL3 RAI1  

Supplemental Table 1 Candidate autism-relevant genes for curation arising from variant discovery in Cohort 4.
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not predicted/proven 

null 

0.5/ (0-1.5) 0 Default score downgraded for 

genetic evidence: inherited 

missense variant without 

functional evidence, observed 

in gnomAD (score reduced to 

0) 

Sanders 

SJ, et al. 

(2012) 

ID: 12241.p1 

Sex: Female 

Phenotype: 

Autism 

 

 

Genotyping Method: WES 

Variant reported: [Chr11(hg19): g. 

20139742G>A, NM_145117, 

D2410N] 

Impact: Missense (DAMAGING 

*Warning! Low confidence.) 

gnomAD: 1.19e-5 

Inheritance: de novo 

Autosomal Dominant -

> Variant is de novo 

2/ (0-3) 0.5 Default score downgraded for 

genetic evidence: de novo 

missense variant with 

suggested functional 

evidence, observed in 

gnomAD (score reduced to 

0.5) 

O'Roak 

BJ, et al. 

(2012) 

ID: 11459.p1 

Sex: Male 

Phenotype: 

Autism 

 

 

Genotyping Method: WES 

Variant reported: [Chr11(hg19): g. 

20119143C>Y] 

Impact: coding-synonymous 

gnomAD: Not present 

Inheritance: de novo (also lists 

father as parent of origin) 

Autosomal Dominant -

> Variant is de novo 

2/ (0-3) N/A Not scored: unknown impact 

of synonymous variants; no 

functional data provided. 
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Lim ET, et 

al. (2017) 

ID: 37434 

Sex: Male 

Phenotype: 

Autism 

 

 

Genotyping Method: WES; 

resequencing of post-zygotic 

mutations (PZMs) 

Variant reported:  

[Chr11(hg19), g. 20117286C>T, 

L1983] 

Impact: 

SYNONYMOUS_CODING 

gnomAD: 7.95e-5 

Inheritance: de novo 

Autosomal Dominant -

> Variant is de novo 

2/ (0-3) N/A Not scored: unknown impact 

of synonymous variants; no 

functional data provided. 

Lim ET, et 

al. (2017) 

ID: NP053 

Sex: Female 

Phenotype: 

Autism 

 

 

Genotyping Method: WES; 

resequencing of post-zygotic 

mutations (PZMs) 

Variant reported:  

[Chr11(hg19), g. 19854079G>A, 

R35H] 

Impact: missense 

gnomAD: 4.24e-5 

Inheritance: de novo 

Autosomal Dominant -

> Variant is de novo 

2/ (0-3) 0 Default score downgraded for 

genetic evidence: de novo 

missense variant without 

functional evidence, observed 

in gnomAD (score reduced to 

0) 

Iossifov et 

al. (2014) 

ID: 11397 

Sex: Male 

Phenotype: 

Autism 

 

 

Genotyping Method: WES 

Variant reported:  

[Chr11(hg19): g. 11:20057523:C: 

A] 

Impact: synonymous 

gnomAD: Not present 

Inheritance: de novo 

Autosomal Dominant -

> Variant is de novo 

2/ (0-3) N/A Not scored: unknown impact 

of synonymous variants; no 

functional data provided. 

Iossifov et 

al. (2014) 

ID: 12389 

Sex: Male 

Genotyping Method: WES 

Variant reported:  

Autosomal Dominant -

> Variant is de novo 

2/ (0-3) 0 Default score downgraded for 

genetic evidence: de novo 



 

vi 

 

Phenotype: 

Autism 

 

 

[Chr11(hg19): g. 11:19914032:C: 

T] 

Impact: Missense 

gnomAD: 6.02e-5 

Inheritance: de novo 

missense variant without 

functional evidence, observed 

in gnomAD (score reduced to 

0) 

Iossifov et 

al. (2014) 

ID: 14179 

Sex: Male 

Phenotype: 

Autism 

 

 

Genotyping Method: WES 

Variant reported:  

[Chr11(hg19): g. 11:20104534: 

G:C] 

Impact: intron 

gnomAD: Not present 

Inheritance: de novo 

Autosomal Dominant -

> Variant is de novo 

2/ (0-3) 0 No points awarded - intronic 

variant. No evidence to 

suggest variant is pathogenic 

Iossifov et 

al. (2014) 

ID: 14604 

Sex: Male 

Phenotype: 

Autism 

 

 

Genotyping Method: WES 

Variant reported:  

[Chr11(hg19): g. 11:20117286:C: 

T] 

Impact: synonymous 

gnomAD: 7.95e-5 

Inheritance: de novo (father 

parent of origin) 

Autosomal Dominant -

> Variant is de novo 

2/ (0-3) 0 Not scored: unknown impact 

of synonymous variants; no 

functional data provided. 

Iossifov et 

al. (2014) 

ID: 11459 

Sex: Male 

Phenotype: 

Autism 

 

 

Genotyping Method: WES 

Variant reported:  

[Chr11(hg19): g. 11:20119143:C: 

T] 

Impact: synonymous 

gnomAD: Not present 

Inheritance: de novo  

Autosomal Dominant -

> Variant is de novo 

2/ (0-3) 0 Not scored: unknown impact 

of synonymous variants; no 

functional data provided. 
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Iossifov et 

al. (2014) 

ID: 12241 

Sex: Female 

Phenotype: 

Autism 

 

 

Genotyping Method: WES 

Variant reported:  

[Chr11(hg19): g. 11:20139742: G: 

A] 

Impact: missense 

gnomAD: 1.19e-5 

Inheritance: de novo  

Autosomal Dominant -

> Variant is de novo 

2/ (0-3) 0 Default score downgraded for 

genetic evidence: de novo 

missense variant without 

functional evidence, observed 

in gnomAD (score reduced to 

0) 

Guo H, et 

al. (2018) 

ID: M08710 

Sex: Male 

Phenotype: 

Autism 

Variant scored in PMID: 

27824329 

  N/A Variant already scored 

 

Table 7-1 Genetic evidence matrix for curation of NAV2 gene-phenotype relationship. 

This scoring matrix follows the template proposed by Schaaf et al. (2020). Variant-level information was compiled from the publications specified for each report of a proband 
carrying a variant in the NAV2. Sequencing method, variant coordinates, genomic impact, gnomAD allele frequency and mode of inheritance are reported for each incidence 

of the variant. 
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Authors 

(Year): Title 

Findings presented Genotype information of 

model organism 

Quality of the 

data presented  

Evidence 

Type 

Suggested Points 

Per Report  

Default/(Range) 

Peeters PJ, 

et al. (2004) 

General impaired acuity of several sensory systems (olfactory, 

auditory, visual and pain sensation) which in case of the visual 

system was corroborated by the morphological observation of 

hypoplasia of the optic nerve. 

Wild-type, heterozygote, 

and homozygote unc53H2 

mutant mice 

Low confidence Non-human 

model 

organism 

2(0-4) 

Table 7-2 Experimental evidence matrix for curation of NAV2 gene-phenotype relationship. 

Presented is the gene scoring matrix for experimental evidence supporting the roles of NAV2 in autism. Scoring and justification are given following Schaaf et al.(2020) modified 
ClinGen curation framework. The evidence reported in this table is taken together with the variant-level evidence outlined in Table 7-1, to give an overall gene-disease curation 
classification. 

 

  

https://www.ncbi.nlm.nih.gov/pubmed/15158073
https://www.ncbi.nlm.nih.gov/pubmed/15158073
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Authors 

(Year): 

Title 

Reported 

Case Details 

Reported Variant 

Information 

(variants checked in 

gnomAD (v2.1.1) in Oct. 

2020) 

Evidence Type Suggested Points 

Per Case 

Default/(Range) 

Final Score 

(incorporating genetic 

evidence, phenotype 

quality, expert input) 

Notes 

(justification for score) 

De Rubeis 

S, et al. 

(2014) 

ID: AC02-

1141-01 

Sex: Male 

Phenotype: 

Autism 

 

 

Genotyping Method: 

WES 

Variant reported:  

[Chr20(hg19), 

g.25477488A>C, 

NM_025176] 

Impact: Intronic 

gnomAD: Not present 

Inheritance: de novo 

Autosomal Dominant -> 

Variant is de novo 

2/ (0-3) 0 No points awarded - intronic 

variant that does not occur in a 

canonical splice site. No 

evidence to suggest variant is 

pathogenic 

Iossifov I et 

al. (2014) 

ID: 12036.p1 

Sex: Male 

Phenotype: 

Autism 

 

 

Genotyping Method: 

WES 

Variant reported:  

[Chr20(hg19): 

25459809T>A, p. K651X] 

Impact: LoF_nonsense 

gnomAD: Not present 

Inheritance: de novo 

Autosomal Dominant -> 

Variant is de novo 

2/ (0-3) 2 Default score applied: WES 

identifies a de novo nonsense 

variant does not present in 

gnomAD; high quality autism 

phenotyping 

Leblond 

CS, et al. 

(2019) 

ID: 

PN400119 

Sex: Female 

Phenotype: 

Autism 

 

Genotyping Method: 

lllumina SNP array 

(>4.3million SNPs) and 

WES 

Variant reported: 248KB 

[Chr20(hg19), g. 

Paternally inherited 

deletion 

N/A - Deletion 

involving more than 

one gene 

0 Downgraded for lack of 

confidence in ID. Deletion also 

spans other genes 

 

Borderline to mild ID (Full‐scale 

IQ [FSIQ] 50–85)  



 

x 

 

 

 

25388358_ 25604606del] 

Impact: deletion 

gnomAD: NA 

Inheritance: de novo 

 

Ruzzo EK, 

et al. 

(2019) 

ID: 

iHART2459 

Sex: Male 

Phenotype: 

Autism 

 

 

Genotyping Method: 

WGS 

Variant reported:  

[Chr20(hg19), 

g.25443018>A, ,] 

Impact: splice site donor- 

PTV 

gnomAD: not present 

Inheritance: maternal 

Autosomal Dominant -> 

Predicted/Proven null 

variant 

1.5/ (0-2) 1.5 Default awarded- splice site 

variant in protein truncating 

Wu H, et 

al. (2019) 

ID: 

GX0389.p1 

Sex: Male 

Phenotype: 

Autism 

 

 

Genotyping Method: 

WES 

Variant reported:  

[Chr20(hg19), g. 

25479032G>A, p.Q698X, 

NM_025176] 

Impact: exonic stopgain 

gnomAD:  

Inheritance: paternal 

Autosomal Dominant -> 

Other variant type not 

predicted/proven null 

1.5/ (0-2) 1 Downgraded because of 

cognition score. Cognition score 

not presented for this individual 

Table 7-3 Genetic evidence matrix for curation of NINL gene-phenotype relationship.  

Note that no experimental evidence supports this gene-disease association and not experimental evidence contributes to the overall ClinGen association score reported.  
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Authors 

(Year): Title 

Reported Case Details Reported Variant Information 

(variants checked in gnomAD 

(v2.1.1) in Oct. 2020) 

Evidence Type Suggested 

Points Per 

Case 

Default/(Range

) 

Final Score 

(incorporating 

genetic 

evidence, 

phenotype 

quality, expert 

input) 

Notes 

(justification for score) 

C Yuen RK et 

al. (2017) 

ID: AU045514 

Sex: Unknown 

Phenotype: Autism  

 

 

Genotyping Method: WGS (Complete 

Genomics), validated with Sanger 

sequencing 

Variant reported: [Chr3(GRCh37): g. 

54420739_ 54420740A>T] 

Impact: Splice site variant 

gnomAD: Not present. 

Inheritance: Inherited 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

0.5/ (0-1.5) 0.5 Default awarded 

De Rubeis S, 

et al. (2014) 

ID: 

UK10K_SKUSE5080203 

Sex: Male  

Phenotype: Autism 

 

 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): 

g.54872646G>T, E508X] 

Impact: LoF_nonsense 

gnomAD: Not present. 

Inheritance: de novo 

Autosomal Dominant 

-> Variant is de novo 

2/ (0-3) 2 Default awarded 

De Rubeis S, 

et al. (2014) 

ID: 09C96031 

Sex: Male 

Phenotype: Autism 

 

 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): g. 

55038892A>C, NM_018398] 

Impact: Intron 

gnomAD: 2.85e-5 

Inheritance: de novo 

Autosomal Dominant 

-> Variant is de novo 

2/ (0-3) 0 No points awarded - intronic 

variant present in gnomAD No 

evidence to suggest variant is 

pathogenic 



 

xii 

 

De Rubeis S, 

et al. (2014) 

ID: 10C114435 

Sex: Male 

Phenotype: Father 

 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): g. 

54925398G>A, V629M] 

Impact: 

NON_SYNONYMOUS_CODING 

gnomAD:  

Inheritance: Paternal variant (not in 

proband) 

 Not scored  Proband carries reference allele 

De Rubeis S, 

et al. (2014) 

ID: 10C114435 

Sex: Male 

Phenotype: Father 

 

 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): g. 

54930795G>A, D662N] 

Impact: 

NON_SYNONYMOUS_CODING 

gnomAD:  

Inheritance: Paternal variant (not in 

proband) 

 Not scored  Proband carries reference allele 

De Rubeis S, 

et al. (2014) 

ID: 09C91623 

Sex: Female 

Phenotype: Mother 

 

 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): g. 

54596896G>A, R110H] 

Impact: 

NON_SYNONYMOUS_CODING 

gnomAD:  

Inheritance: Maternal variant (not in 

proband) 

 Not scored  Proband carries reference allele 

De Rubeis S, 

et al. (2014) 

ID: DEASD_0336_001 

Sex: Male 

Phenotype: Autism 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): g. 

54913067G>A, R477Q] 

Impact: 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

0.5/ (0-1.5) 0 Default score downgraded for 

genetic evidence: inherited 

missense variant without 



 

xiii 

 

 

 

NON_SYNONYMOUS_CODING 

gnomAD: 2.93e-5 

Inheritance: Paternal inheritance 

functional evidence, observed in 

gnomAD (score reduced to 0) 

De Rubeis S, 

et al. (2014) 

ID: 08C79339 

Sex: Male 

Phenotype: Autism 

 

 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): g. 

54922021G>A, A604T] 

Impact: 

NON_SYNONYMOUS_CODING 

gnomAD: 5.7e-5 

Inheritance: Maternal inheritance 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

0.5/ (0-1.5) 0 Default score downgraded for 

genetic evidence: inherited 

missense variant without 

functional evidence, observed in 

gnomAD (score reduced to 0) 

De Rubeis S, 

et al. (2014) 

ID: 

NDAR_INVWJ720YXQ_

wes1 

Sex: Male 

Phenotype: Autism 

 

 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): g. 

54930795G>A, D662N] 

Impact: 

NON_SYNONYMOUS_CODING 

gnomAD: 1.6e-5 

Inheritance: Paternal inheritance 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

0.5/ (0-1.5) 0 Default score downgraded for 

genetic evidence: inherited 

missense variant without 

functional evidence, observed in 

gnomAD (score reduced to 0) 

De Rubeis S, 

et al. (2014) 

ID: 10C107584 

Sex: Male 

Phenotype: Father 

 

 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): g. 

54913048A>G, R471G] 

Impact: 

NON_SYNONYMOUS_CODING 

gnomAD:  

Inheritance: 

 Not scored  Proband carries reference allele 

De Rubeis S, 

et al. (2014) 

ID: 10C108003 

Sex: Male  

Phenotype: Autism 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): g. 

54925422C>G, R637G] 

Impact: 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

0.5/ (0-1.5) 0.5  



 

xiv 

 

 

 

NON_SYNONYMOUS_CODING 

gnomAD: Not present 

Inheritance: Maternally inherited 

De Rubeis S, 

et al. (2014) 

ID: DEautism_0077_600 

Sex: Female 

Phenotype: Mother 

 

 

Genotyping Method: WES  

Variant reported: [Chr3(hg19): g. 

54922020C>G, D603E] 

Impact: 

NON_SYNONYMOUS_CODING 

gnomAD:  

Inheritance: 

 Not scored  Proband carries reference allele 

Iossifov I et 

al. (2014) 

ID: 13526.p1 

Sex: Male 

Phenotype: Autism 

 

 

Genotyping Method: WES 

Variant reported:  

[Chr3(hg19): 54921984A>G] 

Impact: LoF_3splice 

gnomAD: Not present 

Inheritance: de novo 

Autosomal Dominant 

-> Variant is de novo 

2/ (0-3) 2  

Guo et al. 

(2018 

ID: SD0023.p1 

Sex: Female 

Phenotype: Autism 

 

Genotyping Method: Targeted 

sequencing of 211 autism candidate 

genes (Phase II-2); single-molecule 

molecular inversion probes 

Variant Reported:  

[Chr3(GRCh37): g. 54850898G>A, 

NM_018398: exon14, p. Arg3568Trp] 

Impact: splice-donor 

gnomAD: Not present 

Inheritance: Maternally inherited 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

0.5/ (0-1.5) 0 Default score downgraded for 

genetic evidence: WES/WGS 

not used (-0.5) 
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Guo et al. 

(2018) 

ID: M23096 

Sex: Male 

Phenotype: Autism 

 

Genotyping Method: Targeted 

sequencing of 211 autism candidate 

genes (Phase I); single-molecule 

molecular inversion probes 

Variant Reported:  

[Chr3(GRCh37): g. 54930847C>T, 

NM_018398: exon26, p.A773V] 

Impact: Missense 

gnomAD: Not present 

Inheritance: Maternally inherited 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

0.5/ (0-1.5) 0 Default score downgraded for 

genetic evidence: WES/WGS 

not used (-0.5) 

Guo et al. 

(2018) 

ID: M08461 

Sex: Female 

Phenotype: Autism 

 

Genotyping Method: Targeted 

sequencing of 211 autism candidate 

genes (Phase I); single-molecule 

molecular inversion probes 

Variant Reported:  

[Chr3(GRCh37): g. 54930847C>T, 

NM_018398: exon26, p.A773V] 

Impact: Missense 

gnomAD: Not present 

Inheritance: Maternally inherited 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

NOT SCORED 0 Variant already scored 

Wang T, et al. 

(2016) 

ID: SKLMG_M23096 

Sex:  

Phenotype: Autism 

 

 

Genotyping Method: MIP-based 

resequencing, validated with PCR and 

Sanger sequencing 

Variant reported:  

[Chr3(GRCh37): g.54930847C>T, p. 

Ala773Val] 

Impact: Missense 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

NOT SCORED 0 Variant already scored 
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gnomAD:  

Inheritance: Maternally inherited 

Wang T, et al. 

(2016) 

ID: SKLMG_M08461 

Sex:  

Phenotype: Autism 

 

 

Genotyping Method: MIP-based 

resequencing, validated with PCR and 

Sanger sequencing 

Variant reported:  

[Chr3(GRCh37): g.54930847C>T, p. 

Ala773Val] 

Impact: Missense 

gnomAD:  

Inheritance: Maternally inherited 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

NOT SCORED 0 Variant already scored 

Wang T, et al. 

(2016) 

ID: SKLMG_M23110 

Sex:  

Phenotype: Autism 

 

 

Genotyping Method: MIP-based 

resequencing, validated with PCR and 

Sanger sequencing 

Variant reported:  

[Chr3(GRCh37): g.54604066G>A, p. 

Ala275Thr] 

Impact: Missense 

gnomAD: Not present 

Inheritance: Paternal inherited 

Autosomal Dominant 

-> Other variant type 

not predicted/proven 

null 

0.5/ (0-1.5) 0 Default score downgraded for 

genetic evidence: WES/WGS 

not used (-0.5) 

Table 7-4 Genetic evidence matrix for curation of CACNA2D3 gene-disease relationship.  

Duplicate samples were identified in Guo et al. (2018) and Wang T, et al. (2016). Only one score has been taken per participant. Note that no experimental evidence supports 
this gene-disease association and not experimental evidence contributes to the overall ClinGen association score reported.  
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Appendix V-I: Determining the Clinical Utility of Autism Gene Panels  

Available at https://github.com/FianaNG/autism_gene_panels. 

https://github.com/FianaNG/autism_gene_panels

