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Abstract - In semiconductor manufacturing advanced process 
control (APC) refers to a range of  techniques that can be used to 
improve process capability. As the dimensions of electronic 
devices have decreased, the application of APC has become more 
and more important for the critical stages of production 
processes. However, the economic disadvantage of employing 
APC is that it requires feedback information in the form of 
downstream metrology data, which is both time consuming and 
costly to obtain.   
 

I. INTRODUCTION  
 
Virtual metrology (VM) is a cost-effective approach proposed 
to replace some of the actual metrology. In VM modelling and 
simulation are used to predict the key metrology 
characteristics from more accessible in-line measurements 
available on modern semiconductor manufacturing processes. 
This includes both traditional process variables such as flow 
rates, pressures and microwave power and advanced sensor 
data such as plasma impedance monitors (PIM) and Optical 
Emissions Spectroscopy (OES) signals [1]. In addition to the 
usual challenges presented by highly nonlinear and complex 
processes,  a major issue when applying VM to semiconductor 
manufacturing processes is handling the large numbers of 
highly correlated variables that are typically recorded in 
modern facilities. For example, in the plasma etch process 
considered in this paper an OES derived dataset consisting of 
over 12000 input variables is available. The challenge is to 
extract from this data the key process characteristics and a 
model that reliably predicts the evolution of the process etch 
rate, a metrology variable that has a significant impact on 
manufacturing yield [2,3].  
 
In this paper four different VM algorithms, Principal 
Component Regression (PCR), Partial Least Squares (PLS), 
Forward Selection Component Analysis (FSCA) and Forward 
Selection Regression (FSR) are investigated for this problem 
and practical measures for achieving realisable 
implementations when faced with computational and memory 
constraints are explored.  
 
The paper is structured as follows: Section II explains the four 
VM algorithms. Section III describes the experimental setup, 
the dataset collected and issues such as training and test data 
selection. Results and analysis are presented in Section IV and 
finally the conclusions of are given in Section V. 

 
II. FOUR  DIFFERENT VM ALGORITHMS 

 
A.  PCR 
Principal Component Regression (PCR) is a common 
regression technique based on Principal Component Analysis 
(PCA). PCA is a matrix factorisation technique that selects 
variables based on the directions of largest variance in the 
data. Specifically, using standard PCA notation, if X is an 
n×m data matrix then it can be decomposed as 
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where ti and pi are n×1 and m×1 vectors, respectively, and 
scalar r is the  rank of X. The vectors ti and pi, referred to as 
scores and loadings, respectively are the principal components 
of matrix X. The decomposition can also be expressed in 
matrix form with vectors ti and pi forming the columns of the 
corresponding matrices T (n×r) and P (m×r). 
 
Statistically, the ordered principal components can be 
interpreted as the directions of largest variance in the data. In 
general, when there is a significant level of redundancy only a 
small number of components are needed to capture the 
information in the data. Hence, a selected number of principal 
components based on variance explained can constitute a new 
set of variables. 
 
There are several algorithms which can be used to compute 
the principal components, for example nonlinear iterative 
partial least square (NIPALS), singular value decomposition 
(SVD), the power method (POWER) and eigen-value 
decomposition (EVD) [4], NIPALS [5], the one adopted in 
this work, is an iterative algorithm that computes the 
eigenvectors of the matrix X, one at the time in order of 
significance. 
 
For a set of inputs X and a set of outputs Y Multiple Linear 
Regression (MLR) is a modelling technique that attempts to 
establish a linear relationship between them. MLR can be 
written as 

XBY =  
where B is the matrix of the linear coefficients. In PCR the 
input matrix is substituted by the selected scores of X. 
Therefore, the MLR formula becomes: 

TBY =  
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PCR is thus a two step process, first variable selection and 
then regression. The advantages are that it yields parsimonious 
models, it solves the collinearity problem and, by eliminating 
the less significant principal components, it reduces the impact 
of noise. The main disadvantage is that useful features for 
predicting Y may be in the discarded principal components. 
 
B.  PLS 
Partial Least Squares (PLS) is an extension of the NIPALS 
algorithm for PCA that attempts to address the deficiency of 
PCR by taking into account the prediction of output Y in 
determining the decomposition of inputs into a set of loadings 
and scores. The main idea of PLS is to successively select 
directions of variation in the input data X that maximize the 
output variation that can be predicted. Thus the PLS 
decomposition consists of outer relations (X and Y 
individually) 

TTPX =     and     TUQY =
and an inner relation linking X and Y 

TBU =  
with the final regression model given by 

TTBQY =  
If Y is one dimensional U=Y and Q is the identity matrix. In 
the NIPALS implementation of PLS the recursive computation 
of the columns of T and U is done simultaneously with 
information exchanged between them at each step to ensure 
optimal alignment [2].  
 
C. FSR 
Forward Selection Regression (FSR), Backward Selection 
Regression (BSR) and Stepwise Regression (SR) are well 
established variable selection/model building techniques in 
classical linear regression [6]. In FSR variables are added to 
the model one at a time. At each step the selected variable is 
the one that yields the best improvement in the model 
prediction. In contrast, BSR starts with a model containing all 
the candidate variables and the variables that have the least 
impact on performance are successively removed. SR 
techniques use a combination of both approaches in attempt to 
obtain more optimal results. All three methods are 
approximate solutions to the problem of finding the best 
subset of predictor variables given a set of m candidates. This 
is a NP-hard problem and is computationally intractable as the 
number of candidate variables increases. Consequently, 
optimality has to be sacrificed for computational efficiency. In 
this work FSR was chosen as it has the lowest computational 
complexity and has been found, in practice, to give 
comparable performance to other methods [7]. The specific 
implementation of FSR adopted is as follows: 
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4. Repeat from 2 until a specified stopping criterion has 
been satisfied. 

 
The stopping criterion can be based on statistical significance 
testing, cross-validation on test data or a specified maximum 
model dimension. Here cross-validation on test data  
 
D. FSCA 
Forward Selection Component Analysis is an extension of 
FSR for selecting a subset of variables that best represent a set 
of variables X. 
 

1.  Given data matrix X, set XX =~ . 
 
2.   Select Xx ~~ ∈  such that  
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4. Repeat from 1 until a specified stopping criterion has 
been satisfied. 

 
The set of vectors returned by FSCA are orthogonal 
components that summarize the information contained in X. 
The corresponding columns of X are the selected variables (x).  
When the level of redundancy in the data is high the 
performance of FSCA in terms of explaining the variance in X 
with a small number of components can approach that of PCA. 
Having identified the FSCA decomposition the set of 
components  or corresponding selected variables x can be 
used to build a regression model in a similar fashion to PCR. 

*~x

*~x

 
While FSR is relatively efficient, FSCA is computationally 
demanding  with O(m3) complexity compared to O(m2)  for 
FSR. This makes direct application of FSCA intractable for 
large data sets.  In these circumstances an approximation to 
FSCA can be obtained by partitioning the data set into 
sections and applying FSCA to each section to obtain a 
reduced set of variables. FSCA can then be applied to this 
reduced set of variables to obtain an aggregate set of 
components that are representative of the original data set. 
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III. EXPERIMENTAL SETUP 
 
The four VM algorithms described above are compared on a 
Plasma Etching Optical Emission Spectroscopy (OES) dataset 
for etch rate prediction. The data collected consist of 2000 
etch rate samples (Fig. 1) and for each of the samples a full 
OES spectra (2048 channels) is measured. In order to reduce 
the huge amount of OES data each of the OES spectra is 
summarised by their 6 statistical moments (Kurtosis, Mean, 
Skewness, Variance, Maximum and Minimum).   

 
Figure 1: Measured etch rate for the 2000 samples. 
 
In order to assess the potential for predicting etch rate the 
available data is split into training and test data sets with the 
training data used to build prediction models and the test data 
used to evaluate their performance. Two different partitions of 
the data set are considered as follows: 
 

• Dataset 1: The first 1000 samples are used as training 
data and the remaining samples are used as test data.  

• Dataset 2: The data is divided into odd and even 
sample numbers with the odd samples used as 
training data and the even samples used as test data. 

 
Dataset 2 provides training data representative of the full 
range of etch rate variations and will be useful for establishing 
the extent to which the OES signals can be used to predict etch 
rate. In contrast, in dataset 1 provides less complete coverage 
of the operating space and will provide an indication of the 
stationarity of the relationship between the OES signals and 
etch rate. 
  
The performance of the different VM models developed will 
be measured in terms of the Normalised Mean Square 
Prediction Error (NMSE) defined as: 

ˆvar( ) *100
var( )

y yNMSE
y
−= . 

Here var() is the sample variance, and y  and  are the 
measured and predicted output data, respectively. 

ŷ

IV. RESULTS AND COMPARISON 
 
A..  PCA and PLS variable selection 
Applying PCA to Datasets 1 and 2 (Figure 2) shows that there 
is little difference between the structure of the variance in each 
data set as a function of the number of principal components 
(PCs)  It is also clear that there is huge redundancy in the data 
with 20 principal components able to explain more than 95% 
of the variation contained in data (12288 variables). 
 
A similar pattern is observed with PLS, except that now the 
selected components explain much less of the variance in the 
input data. (more than 100 components are needed to capture 
90% of the data variation). This is as expected since PLS 
focuses on explaining the output variation rather than the input 
variation. 

Figure 2: Plot of input data variation explained by PCA and 
PLS components explained as a function of the number of PCs 
 
B.. Variable selection with FSR and FSCA 
Tables 1 to 4 show the variable selected by FSR and FSCA for 
Dataset 1 and Dataset 2. The order of the variables is shown in 
the first column, the OES signal statistic and the channel 
number corresponding the selected variable are given in 
columns two and three respectively and the NMSE 
performance of the resulting linear regression models on the 
Training  and data Test sets are given in the last two columns. 
The linear models are regressions on the currently and all 
previously selected variables. 
 
In addition, a plot of the input variance explained as a function 
of the number of selected components is given Figure 3 for 
FSR and FSCA for each of the data sets.  
 
The FSR results show that Mean of the OES signals is the 
most useful predictor of etch rate (especially on Dataset 1) . At 
the same time, the Minimum statistic appears to have little 
value as it has not been selected as a regressor for either 
dataset. A similar pattern is observed when with FSCA 

108 ASMC 2009

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on April 13,2010 at 11:55:52 UTC from IEEE Xplore.  Restrictions apply. 



selected components.  As expected the NMSE performance of 
FSCA is substantially inferior to FSR. 
 
Note that the FSCA components were computed using a 2 step 
process. First, FSCA is used to generate the top 30 FSCs for 
each of the six signal statistics. This results is an reduced data 
set of 180 selected variables. FSCA is then applied again to 
select the first 30 FSCs of the new dataset. 

Figure 3: Input variance explained by FSCA/FSR components 
as a function of the number of FSCA/FSR components. 
 
C. Prediction with PCR and PLS 
Figure 4 shows the NMSE  obtained using PCR on Dataset 1 
and 2, in relation to the number of principal component 
selected. Figure 5 shows the same relationship for PLS.  
 
As expected PLS  outperforms PCR on both Datasets, when 
the number of principal components involved becomes big 
enough. This is due to the variable selection process, that 
chooses the principal components most correlated to the 
output. 
 
Prediction results on Dataset 2 are better than results on 
Dataset 1. Obviously this is consequence of the different 
choice of training sets. In Dataset 1 the choice of training 
points spans the first half of the data, while in Dataset 2 it 
sampled through all the data. Hence, Dataset 2 is better suited 
for a detection of the global trend of etch rate. The significant 
drop in performance from training to test data in Dataset 1 
suggests that the linear trend changes from the first to the 
second half of the process. This is likely due to process drift 
over time due to chamber seasoning and clouding of the OES 
window. 
 

Figure 4: Prediction error for etch rate using PCR on Dataset 
1 and 2 
 

Figure 5: Prediction error for etch rate using PLS on Dataset 1 
and 2 

Figure 7: Prediction error for etch rate using FSR on Dataset 1 
and 2 
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D. Prediction with FSR and FSCA 
Prediction results of etch rate using FSR are shown in Figure 
7.  Consistently with PCR and PLS, FSR performs better on 
Dataset 2 than 1. 
Moreover, on both Datasets, with a comparable number of 
components/variables involved, FSR gives a better 
performance than PCR and PLS. A linear fit of predicted etch 
rate and measured etch rate is shown in Figure 7 and Figure 8, 
for Dataset 1 and 2, respectively. The R-squared value of the 
linear fit in Figure 7 is 0.87 for test and 0.97 for training. For 
Figure 8 that is 0.94 for test and 0.95 for training. 
 

Figure 7: Linear fit of etch rate predicted with etch rate 
measured in Dataset 1 

 
Figure 8: Linear fit of etch rate predicted with etch rate 
measured in Dataset 2 
 
Figure 9 shows the prediction results of etch rate using  FSCA. 
The performance is better again on Dataset 2 than 1, but 
overall it is worse than FSR.  
 

A summary of the prediction results of the 4 VM algorithms,  
each of them computed with 30 principal components or 30 
selected variables is shown in Table 5. 

 
Figure 9: Prediction error for etch rate using FSCA on Dataset 
1 and 2. 
 

V. CONCLUSIONS 
FSCA/FSR  can be viewed as operating at the opposite end of 
the spectrum to their counterparts PCR/PLS. Whereas 
PCR/PLS generate a compact representation of the variance in 
the data by employing linear combinations of all input 
variables, FSCA/FSR seek to employ only a few variables to 
capture the observed variation. Thus, while PCR/PLS are 
optimal in the sense of maximising the variance explained, 
FSCA/FSR can often achieve comparable performance when 
there is a large degree of correlation among the input 
variables. 
 
This is the case with OES data. Channels around peaks are 
generally strongly correlated and peaks arising from the same 
underlying chemistry are also strongly correlated. In PCA/PLS 
highly correlated variables are given equal weighting in 
computation of a PC, (the so-called grouping effect) whereas 
FSCA/FSR choose only one representative variable from each 
group. Therefore FSCA/FSR are much more effective that 
PCA/PLS for feature selection. 
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Order Statistics Channel Training 
NMSE 

Test 
NMSE 

1 Mean 1805 12.742 34.757 
2 Mean 248 9.124 31.922 
3 Mean 1418 8.239 24.154 
4 Max 1386 7.69 23.043 
5 Mean 668 7.452 22.752 
6 Mean 658 6.626 26.244 
7 Mean 1671 6.339 23.628 
8 Skewness 1408 6.19 20.682 
9 Skewness 678 5.866 18.681 
10 Kurtosis 334 5.492 16.596 
15 Mean 789 4.389 15.632 
20 Mean 1510 3.743 18.74 
25 Kurtosis 1720 3.305 18.415 
30 Skewness 530 3.031 16.424 

 
Table 1: FSR variable selection on Dataset 1 
 

Order Statistics Channel Training 
NMSE 

Test 
NMSE 

1 Mean 1766 16.938 16.935 
2 Mean 68 12.869 13.306 
3 Var 798 11.772 12.407 
4 Var 678 11.211 11.994 
5 Max 1405 10.73 11.234 
6 Var 1915 10.168 10.263 
7 Var 691 9.578 9.623 
8 Kurtosis 346 9.306 9.644 
9 Mean 1926 9.02 9.363 
10 Kurtosis 334 8.729 9.089 
15 Var 1886 7.391 8.078 
20 Var 1733 6.451 6.965 
25 Skewness 1879 5.659 6.492 
30 Var 299 5.074 5.612 

 
Table 2: FSR variable selection on Dataset 2 
 
 
 
 
 
 
 
 

 
 

Order Statistics Channel Training 
NMSE 

Test 
NMSE 

1 Min 40 27.001 60.583
2 Mean 18 26.496 60.935
3 Max 67 23.537 54.883
4 Mean 3 23.433 54.879
5 Var 526 21.561 51.424
6 Min 20 13.105 33.589
7 Min 33 12.994 33.327
8 Skewness 902 12.731 32.813
9 Min 57 12.253 31.723
10 Mean 698 11.992 32.08
15 Min 46 9.89 8.347
20 Kurtosis 533 9.714 8.536
25 Max 1511 9.144 5.435
30 Skewness 33 9.065 6.085

 
Table 3: FSCA variable selection on Dataset 1 
 

Order Statistics Channel Training 
NMSE 

Test 
NMSE 

1 Min 45 24.153 23.963 
2 Kurtosis 784 24.153 23.962 
3 Mean 18 20.16 19.879 
4 Max 835 20.145 19.945 
5 Max 877 18.238 18.249 
6 Max 806 17.062 17.397 
7 Min 40 16.671 16.642 
8 Mean 1842 16.402 16.414 
9 Kurtosis 445 16.157 16.54 
10 Max 1824 16.156 16.527 
15 Max 90 14.462 14.604 
20 Min 2 13.209 13.319 
25 Kurtosis 590 13.18 13.31 
30 Skewness 6 12.494 12.648 

 
Table 4: FSCA variable selection on Dataset 2 
 

Regression 
Method 

NMSE 
Training 
Dataset1 

NMSE 
Training 
Dataset2 

NMSE 
Test 

Dataset1

NMSE 
Test 

Dataset2
PCR 7.05 8.40 20.57 9.33
PLS 1.07 1.37 37.20 17.12
FSCA 9.06 12.49 25.91 12.65
FSR 3.03 5.07 16.42 5.61

 
Table 5: prediction error for the 4 VM algorithms (30 
principal components or 30 selected variables). 
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