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Abstract—The consumption of energy by Machine Learning
(ML) has increased significantly. There is growing concern about
the sustainable use of ML, where choosing the best ML model
should also consider energy efficiency. The main objective of
the Green Machine Learning paradigm is the simultaneous
optimisation of accuracy and energy consumption. The literature
has presented some suggestions for metrics to be used. How-
ever, these metrics have not been extensively compared among
different ML models. To address this aspect, in this paper, we
have analysed six Machine Learning models applied to three
benchmark datasets for binary classification tasks, focusing on
performance and energy consumption. The results of the F1-
Score show that the random forests model outperformed the
other models, while logistic regression was more energy efficient.
These results demonstrate the trade-offs between model perfor-
mance and energy consumption, providing valuable guidance
for algorithm selection. Performance metrics are an essential
benchmark, with Python’s Scikit-Learn suite of models often
outperforming neural networks in classification tasks. Future
research should extend energy analysis to other machine learning
methods and consider metrics that balance performance and
energy consumption.

Index Terms—Green Computing, Green Machine Learning,
Energy-efficient Machine Learning, Computer Arithmetic

I. INTRODUCTION

Green Computing commonly refers to an artificial intelli-
gence system that is environmentally friendly and helps reduce
carbon emissions [1], [2]. Lannelongue et al. [3] presented
ten simple guidelines that can effectively improve the sustain-
ability of computing applications. The applications of green
computing are extensive and diverse, spanning fields such as
robotics [4], biology [5], IoT [6], [7] and smart cities [8], [9].
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An emerging area of research that has received considerable
attention is Green Machine Learning (GML) [10], [11], which
aims to develop strategies and techniques to reduce the carbon
footprint and computational costs associated with Machine
Learning (ML) environment. It is essential to focus on this
aspect, as ML is increasingly used in industry [12] and re-
search [13], addressing these algorithms’ energy consumption
and carbon emissions is imperative.

To achieve this goal, the first step is to measure the
energy consumption of ML algorithms. The simplest way is to
measure the processing time using functions such as ‘tic-toc’
in Matlab [14]. However, this procedure is not precise as other
simultaneous processes run in the background, which may
influence computing time. Additionally, it does not consider
CO2 emissions, which depend on many other factors, such as
whether computation is done locally or in the cloud and the
energy consumption period. Another example of measurement
is explained in the work of Garcı́a-Martı́n et al. [15], a
review paper that focuses on calculating how much energy
is used when ML systems are running, aiming to make
them more energy-efficient and environmentally friendly by
understanding their energy demands.

This paper will employ an alternative approach to measuring
energy consumption. It will use the CodeCarbon [16] library,
which is available in Python. The main goal of this paper
is to compare six machine learning models’ performance
and energy consumption metrics for binary classification
on three benchmark datasets. The models being compared
are Logistic Regression (LogReg), Support Vector Machine
(SVM), Random Forests (RF), Gradient Boosting Classifier
(XGBoost), Residual Neural Networks (RNN) and Multilayer
Neural Networks (MLNN). Additionally, we investigate the
impact of subsampling and feature reduction on predicting
power and energy consumption. This analysis can provide
valuable insights into ML models’ performance and energy
efficiency.
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The contributions to Green Machine Learning are as fol-
lows:

• We thoroughly investigate six ML models’ effectiveness
and energy consumption using three benchmark datasets
tailored to binary classification tasks. By systematically
analysing the impact of pre-processing techniques, such
as parameter and feature resolution methods, on power
consumption, this research highlights strategies for opti-
mising energy-efficient implementations of ML.

• This work goes beyond a simple performance evaluation
by analysing model effectiveness and power consumption
trade-offs. Through rigorous statistical testing, the most
appropriate ML algorithms are identified based on both
performance metrics and energy efficiency benchmarks.
In particular, the results challenge conventional wisdom
by highlighting traditional ML models’ competitive per-
formance and energy efficiency, such as logistic regres-
sion and random forests, compared to more complex
neural network architectures.

• This work sets a precedent for future research efforts by
advocating the extension of energy analysis to different
ML modalities beyond classification tasks and the devel-
opment of nuanced metrics that balance performance and
energy considerations.

The remainder of this paper is divided into five sections.
Section 2 discusses ML, Deep Learning, and the Friedman
Test. Section 3 describes the methodology. Section 4 presents
the results. Finally, Section 5 presents the conclusions.

II. BACKGROUND

This section briefly discusses the topics covered in this
paper: ML and Deep Learning, which are the core of this
study, and the Friedman Test, which is used to analyse the
results.

A. Machine Learning

Machine learning is a fundamental aspect of Artificial
Intelligence (AI). Its goal is to enable algorithms to ‘learn’
from data, similarly to human learning processes. ML tech-
niques aim to replicate cognitive abilities, allowing the ma-
chines to recognise patterns, make decisions and improve
their performance over time. Examples of these techniques
are supervised learning, unsupervised learning, reinforcement
learning [17], [18], and deep learning, each with different
objectives and data characteristics [19]. This study focuses on
supervised learning models. The following ML models were
used: Logistic Regression [20], Support Vector Machine [21],
Random Forests [22], and Gradient Boosting Classifier [22].

B. Deep Learning

Deep Learning (DL) is an ML technique that uses layers
of architecture inspired by the structure and function of
the human brain [23]. Based on Artificial Neural Networks
(ANNs), a data processing paradigm inspired by the way
the biological nervous system processes data. It consists of
interconnected layers and deep learning algorithms that excel

Dataset Selection Data pre-processing

ML Models Selection Experiments

Metrics Analysis Statistical Testing

Fig. 1. Flowchart of the experiments performed to compare the performance
of the ML models.

TABLE I
NUMBER OF SAMPLES AND FEATURES FROM THE DATASETS USED WITHIN

THE EXPERIMENTS.

Name # Samples # Features
AIDS Clinical Trials Group Study 175 [28] 2139 23
TUANDROMD (Tezpur University Android Malware Dataset) [29] 4464 241
Predict students’ dropout and academic success [30] 4424 36

at processing complex, high-dimensional data and delivering
advanced results in tasks such as image recognition [24] and
natural language processing [25]. The automatic extraction of
complex features from raw data allows deep learning models
to achieve performance in a wide range of domains. The fol-
lowing deep learning models are used in this study: Residual
Neural Networks [26] and Multilayer Neural Networks [26].

III. METHODOLOGY

The methodology adopted in developing this paper is illus-
trated in Fig. 1. A detailed analysis of the diagram is presented
in the subsequent sections.

A. Datasets

Three datasets from the UC Irvine repository for ML [27]
were selected for the experiments based on the number of
observations and the features. These datasets are suitable for
investigating classification-oriented problems, and some of
their parameters are presented in Table I.

Four different types of experiments were carried out with
each of the datasets. The difference in each experiment re-
lied on the data pre-processing step. These experiments are
outlined as follows:

• Full datasets
• Sub-sampled datasets
• Full datasets with a reduced number of features
• Sub-sampled datasets with a reduced number of features
When reducing features, 95% of the variance was retained,

and only 20% remained when reducing the number of obser-
vations.

B. Machine Learning Models

Six ML models were selected based on the work presented
by [31]. The models were implemented using Python Version
3.11. Four of these models were implemented from the Scikit-
Learn [32] Library Version 1.4, with the library’s default
hyperparameters. These models are now described: i) Logistic
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TABLE II
ARCHITECTURE OF THE NEURAL NETWORKS USED

RNN MLNN
No. layers 4 (in residual block) 5
Activation function ReLu ReLu
Output layer activation function Sigmoid Sigmoid
Neurons per layer 256, 128, 64, 64 128, 256, 512, 256, 128

Regression, ii) Support Vector Machine, iii) Random Forests,
and iv) Gradient Boosting Classifier. Two neural network
models were designed specifically for this purpose: i) Residual
Neural Networks and ii) Multilayer Neural Networks.

The construction of the neural network algorithms is ex-
plained in Table II in terms of the chosen architectures.

C. Experiments

To conduct the experiments in this paper, a computer with
the following specifications was used:

• Model: Dell Latitude 5540 Laptop
• Platform System: Linux 6.2.0
• RAM Memory: 16 GB
• CPU model: 13th Gen Intel(R) Core(TM) i7-1365U
As mentioned in Section III-A, four different pre-processing

methods were established for each dataset, resulting in 12
pre-processed datasets. The experiments were carried out
immediately after the pre-processing and used stratified 10-
fold cross-validation with four repetitions for each of the 6
ML algorithms, 12 pre-processed datasets, and 40 iterations
per dataset, totalling 2,880 experiments.

D. Metrics

The metrics employed to assess the performance of the
ML models were divided into two categories: classification
performance and energy consumption. For classification per-
formance analysis, the F1-Score was selected, represented by
Eq. (1):

F1− Score =
2× TP

2× TP + FP + FN
(1)

where TP is the number of true positives, FP is the number
of false positives, and FN is the number of false negatives.

The experiment separately measured energy consumption
in three stages: data pre-processing, training, and testing. The
energy consumption (measured in kWh) was also evaluated
using the CodeCarbon [16] library.

CodeCarbon employs a global carbon intensity of electricity
per cloud provider or country for energy measurement. This
data is augmented by a tracking system that monitors the
power supply to the underlying hardware at frequent intervals,
usually by default at every 15 seconds. A standardised ratio
of 3 watts per 8 GB RAM is employed to ensure the accuracy
of its calculations. Furthermore, the energy consumption of
Intel processors is tracked by drawing from Intel RAPL files.
It is crucial to highlight that the measurement is initiated upon
the initial invocation of the start method and ceases operation
upon the call to the stop method.

E. Statistical Test

The Friedman and Post-Hoc Tests were used to conduct sta-
tistical analyses and compare the energy consumption between
the different experiments.

1) Friedman Test: The Friedman Test, a non-parametric
statistical test that allows for comparisons between different
data samples, was used to determine if there was a statistically
significant difference among the metrics produced by each ML
model.

The test was conducted using the friedmanchisquare func-
tion from the Scipy Python library [33]. Three assumptions
were examined, leading to the consideration of a null hypoth-
esis:

• The group (ML Models) is measured on three or more
different occasions;

• The group is a random sample of the population;
• The dependent variable is measured at the ordinal or

continuous level.

We used a significance level of 0.05.
2) Post-Hoc Tests: After performing the Friedman test and

observing a significant result, it is conventional to perform
post-hoc tests to identify specific pairwise groups that ex-
hibit a considerable difference. This paper employed Miller’s
method to compare all pairs comprehensively [34].The scikit-
posthocs [35] library was employed to perform the post hoc
analysis.

Finally, the Condorcet contest was computed to compare
the algorithms’ performance. This method counts the number
of positive encounters between two contenders, in this case,
the number of positive significant differences found using the
post hoc test between two models.

IV. RESULTS

To facilitate understanding, the results have been system-
atically categorised into different sections that examine the
designated metrics, namely classification performance, energy
consumption, and the statistical analyses carried out using the
Friedman and post-hoc tests.

A. Classification Performance

Table III shows each model’s mean and standard deviation
of F1-Score values across all datasets. The best values for
each dataset were highlighted. For the AIDS dataset, XG-
Boost showed the highest mean value using the full and the
subsampled dataset. When using PCA, the MLNN had the
highest mean value, and when employing subsampling and
PCA, RF outperformed the rest of the models. On the other
hand, for the MALWARE dataset, RF had the highest mean
value independently of the pre-processing steps used. Finally,
for the students’ dataset, RF and XGboost obtained the highest
mean value using the Full dataset, while logistic regression
obtained a higher value when employing subsampling, PCA
and both. The highest values were obtained for all the datasets
when neither subsampling nor PCA was used.
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TABLE III
MEAN AND STANDARD DEVIATION OF F1-SCORE VALUES FOR EACH MODEL ACROSS ALL DATASETS.

Dataset Subsampling PCA LogReg SVM RF XGBoost MLNN RNN

AIDS

0.6943 (0.05) 0.7329 (0.04) 0.7554 (0.04) 0.7683 (0.04) 0.7008 (0.04) 0.6990 (0.06)
✓ 0.6715 (0.05) 0.6634 (0.06) 0.6898 (0.05) 0.7307 (0.04) 0.1180 (0.15) 0.5262 (0.12)

✓ 0.5852 (0.05) 0.6359 (0.06) 0.6670 (0.06) 0.6776 (0.05) 0.6948 (0.05) 0.6675 (0.08)
✓ ✓ 0.5783 (0.06) 0.5697 (0.06) 0.6342 (0.05) 0.6240 (0.06) 0.5334 (0.19) 0.5406 (0.17)

MALWARE

0.9919 (0.00) 0.9903 (0.00) 0.9964 (0.00) 0.9915 (0.00) 0.9905 (0.00) 0.9755 (0.04)
✓ 0.9860 (0.00) 0.9867 (0.00) 0.9917 (0.00) 0.9876 (0.00) 0.9768 (0.01) 0.9706 (0.02)

✓ 0.9889 (0.00) 0.9958 (0.00) 0.9966 (0.00) 0.9949 (0.00) 0.9913 (0.00) 0.9860 (0.01)
✓ ✓ 0.9867 (0.00) 0.9879 (0.00) 0.9890 (0.00) 0.9867 (0.00) 0.9771 (0.01) 0.9768 (0.01)

Students’

0.9116 (0.01) 0.9079 (0.01) 0.9121 (0.01) 0.9121 (0.01) 0.9030 (0.01) 0.8959 (0.02)
✓ 0.9058 (0.01) 0.8909 (0.01) 0.9025 (0.01) 0.8989 (0.01) 0.8882 (0.02) 0.8892 (0.02)

✓ 0.8087 (0.00) 0.8084 (0.00) 0.7349 (0.02) 0.7957 (0.01) 0.8087 (0.00) 0.8086 (0.00)
✓ ✓ 0.8086 (0.00) 0.8082 (0.00) 0.7163 (0.02) 0.7815 (0.01) 0.8081 (0.00) 0.8070 (0.00)

TABLE IV
MEAN AND STANDARD DEVIATION OF ENERGY CONSUMPTION DURING

THE PRE-PROCESSING STEP

Dataset Subsampling PCA Energy Consumption (mWh)

AIDS

0.0143 (0.01)
✓ 0.0397 (0.03)

✓ 0.0471 (0.04)
✓ ✓ 0.0563 (0.03)

MALWARE

0.0575 (0.03)
✓ 0.0807 (0.05)

✓ 0.6520 (0.15)
✓ ✓ 0.4141 (0.16)

Students’

0.0414 (0.05)
✓ 0.1063 (0.09)

✓ 0.1325 (0.08)
✓ ✓ 0.1861 (0.13)

B. Energy Consumption

Table IV shows the energy consumption of the pre-
processing step across all experiments. The pre-processing step
was independent of the Machine Learning models used, so the
mean and standard deviation were calculated using the values
from all experiments. The best results can be observed when
neither PCA nor subsampling is used. When analysing each
experiment separately, it can be observed that the PCA method
has a higher value than the subsampling. Usually, the value
of the energy in the combination of PCA and subsampling
is greater than when analysed separately, but the MALWARE
dataset shows a different result.

Table V shows the energy expended during training. The
logistic regression model exhibited significantly higher power
consumption when compared to other ML methods, regardless
of the pre-processing technique chosen. Contrary to the results
observed in the pre-processing step, the combined use of PCA
and subsampling in the training step gives a better result, using
less energy than when no method is used, or each technique
is used alone. Another notable observation is that the SVM
model took significantly more time without using any method
and only using PCA, but this was reduced using subsampling.

Table VI shows the energy consumption during the pre-
diction step. Regardless of the dataset or the pre-processing
method, the XGBoost model performs better than the other

models analysed and achieves the best results. Again, some of
the considerations made in the previous table can be observed,
such as the lower energy consumption when both PCA and
subsampling are used. In addition, the SVM model shows
high values when the subsampling method is not used on the
Students’ dataset.

C. Post-Hoc Tests

Tables VII and VIII show the values obtained from the
Miller-Friedman post-hoc test for the F1-Score and the sum
of energy consumption during training and prediction, respec-
tively, allowing a more comprehensive comparison between
the different ML models. In these tables, the up arrow (↑)
indicates that a positive statistically significant difference was
found between the model in the row and the model in the
column, the down arrow (↓) indicates a negative considerable
difference, and the left/right arrow (↔) suggests that no
significant difference was found. The arrows are sorted from
left to right for each dataset: AIDS, MALWARE and Students’.
The last column shows the result of the Condorcet contest,
which sums the positive significant difference (↑) for each
model.

Table VII shows the results for the F1-Score metric. When
evaluating the F1-Score metric, the Random Forest model
shows a positive and significant discrepancy compared to its
counterparts within at least one of the datasets. This variation
indicates the RF model performance advantage when evaluated
using the F1-Score metric. The RF model obtained a result of
10 for the Condorcet method, and the second best result, the
XGBoost model, was 6. The RNN model performs the lowest
result.

Table VIII shows the statistical test results for the sum of
the energy consumption during training and prediction. The
logistic regression model is the most efficient regarding energy
consumption, while the random forests model also performs
well on this metric. Both models can be strong contenders, as
there is no notable difference between them in the Condorcet
Method. Once again, the worst result is seen for a Neural
Network model, now in the MLNN model.

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 20,2025 at 08:44:42 UTC from IEEE Xplore.  Restrictions apply. 



TABLE V
MEAN AND STANDARD DEVIATION OF ENERGY CONSUMPTION (mWh) DURING TRAINING STEP.

Dataset Subsampling PCA LogReg SVM RF XGBoost MLNN RNN

AIDS

0.0909 (0.05) 0.5174 (0.03) 0.5245 (0.02) 0.9150 (0.05) 1.8268 (0.17) 1.3575 (0.17)
✓ 0.0497 (0.02) 0.0604 (0.02) 0.2453 (0.04) 0.3046 (0.05) 1.4780 (0.23) 1.2008 (0.21)

✓ 0.0546 (0.02) 0.6364 (0.05) 0.9359 (0.05) 0.9197 (0.05) 2.0476 (0.21) 1.4248 (0.24)
✓ ✓ 0.0385 (0.02) 0.0848 (0.02) 0.4210 (0.06) 0.4113 (0.07) 1.6352 (0.29) 1.2370 (0.27)

MALWARE

0.3419 (0.11) 1.8123 (0.08) 0.5303 (0.04) 1.6644 (0.05) 2.4698 (0.07) 1.7267 (0.58)
✓ 0.1632 (0.10) 0.2047 (0.03) 0.2978 (0.04) 0.4270 (0.04) 1.6093 (0.06) 1.3768 (0.70)

✓ 0.1627 (0.05) 0.8268 (0.05) 1.0557 (0.05) 2.7180 (0.11) 2.6874 (0.68) 1.3508 (0.11)
✓ ✓ 0.1018 (0.05) 0.2581 (0.03) 0.4955 (0.05) 0.8137 (0.05) 1.8618 (0.79) 1.0933 (0.10)

Students’

0.1565 (0.07) 31.5021 (7.88) 1.0609 (0.06) 1.5637 (0.09) 2.4111 (0.07) 1.5509 (0.34)
✓ 0.1616 (0.14) 0.4614 (0.16) 0.3231 (0.04) 0.4523 (0.04) 1.6560 (0.48) 1.2722 (0.49)

✓ 0.0581 (0.02) 18.4786 (2.04) 1.0359 (0.11) 0.6075 (0.09) 2.6496 (0.39) 1.4675 (0.41)
✓ ✓ 0.0388 (0.01) 0.4113 (0.12) 0.4959 (0.05) 0.3391 (0.04) 1.7399 (0.09) 1.1291 (0.10)

TABLE VI
MEAN AND STANDARD DEVIATION OF ENERGY CONSUMPTION (mWh) DURING PREDICTION STEP.

Dataset Subsampling PCA LogReg SVM RF XGBoost MLNN RNN

AIDS

0.0252 (0.02) 0.0656 (0.01) 0.0313 (0.01) 0.0087 (0.00) 0.1942 (0.01) 0.1632 (0.02)
✓ 0.0427 (0.04) 0.0331 (0.01) 0.0277 (0.01) 0.0093 (0.00) 0.1924 (0.01) 0.1723 (0.02)

✓ 0.0278 (0.01) 0.0571 (0.02) 0.0333 (0.01) 0.0089 (0.00) 0.1899 (0.01) 0.1665 (0.02)
✓ ✓ 0.0210 (0.01) 0.0470 (0.01) 0.0329 (0.01) 0.0099 (0.01) 0.2052 (0.03) 0.1669 (0.03)

MALWARE

0.0274 (0.03) 0.1335 (0.01) 0.0367 (0.01) 0.0094 (0.00) 0.2115 (0.03) 0.2029 (0.03)
✓ 0.0291 (0.02) 0.0678 (0.02) 0.0282 (0.01) 0.0091 (0.00) 0.2042 (0.02) 0.2345 (0.04)

✓ 0.0261 (0.01) 0.0550 (0.02) 0.0290 (0.01) 0.0113 (0.01) 0.2056 (0.02) 0.1818 (0.03)
✓ ✓ 0.0302 (0.03) 0.0376 (0.02) 0.0247 (0.01) 0.0075 (0.00) 0.2117 (0.03) 0.2954 (0.76)

Students’

0.0322 (0.03) 2.6525 (0.77) 0.0516 (0.01) 0.0102 (0.01) 0.1937 (0.02) 0.1740 (0.03)
✓ 0.0441 (0.04) 0.3550 (0.11) 0.0380 (0.01) 0.0087 (0.00) 0.2212 (0.05) 0.1777 (0.03)

✓ 0.0312 (0.01) 2.0865 (0.35) 0.0635 (0.03) 0.0071 (0.00) 0.2042 (0.03) 0.1719 (0.03)
✓ ✓ 0.0267 (0.01) 0.3685 (0.12) 0.0474 (0.02) 0.0067 (0.00) 0.2109 (0.03) 0.1851 (0.03)

TABLE VII
MILLER-FRIEDMAN POST HOC TEST AND CONDORCET METHOD RESULT

FROM THE F1-SCORE USING THE FULL DATASETS.

Model LogReg SVM RF XGBoost MLNN RNN Con.
LogReg X ↓↔↔ ↓↓↔ ↓↔↔ ↔↔↑ ↔↑↑ 3

SVM ↑↔↔ X ↔↓↔ ↔↔↔ ↑↔↔ ↔↑↑ 4
RF ↑↑↔ ↔↑↔ X ↔↑↔ ↑↑↑ ↑↑↑ 10

XGBoost ↑↔↔ ↔↔↔ ↔↓↔ X ↑↔↑ ↑↑↑ 6
MLNN ↔↔↓ ↓↔↔ ↓↓↓ ↓↔↓ X ↔↑↔ 1
RNN ↔↓↓ ↔↓↓ ↓↓↓ ↓↓↓ ↔↓↔ X 0

TABLE VIII
MILLER-FRIEDMAN POST HOC TEST AND CONDORCET METHOD

RESULTS FROM THE ENERGY CONSUMPTION DURING TRAINING AND
PREDICTION USING THE FULL DATASETS.

Model LogReg SVM RF XGBoost MLNN RNN Con.
LogReg X ↑↑↑ ↔↔↔ ↑↑↑ ↑↑↑ ↑↑↑ 12

SVM ↓↓↓ X ↔↓↓ ↔↓↓ ↑↔↔ ↑↔↓ 2
RF ↔↔↔ ↔↑↑ X ↑↔↔ ↑↑↑ ↑↑↑ 9

XGBoost ↓↓↓ ↔↑↑ ↓↔↔ X ↑↑↑ ↔↔↔ 5
MLNN ↓↓↓ ↓↔↔ ↓↓↓ ↓↓↓ X ↔↓↔ 0
RNN ↓↓↓ ↓↔↑ ↓↓↓ ↔↔↔ ↔↑↔ X 2

V. CONCLUSIONS

This study analysed six ML models’ energy consumption
and classification performance in binary classification tasks.
The experiments used three benchmark datasets with tabular
numeric data from the UCI database. Furthermore, four exper-
iments were performed using different pre-processing steps for
each machine learning model: (i) full dataset, (ii) subsampling
20% of the dataset, (iii) PCA maintaining 95% of covariance,

(iv) and performing both subsampling and PCA steps.
The experiments showed that PCA consumes more energy

than the subsampling step during the pre-processing step.
Moreover, the subsampling step, in most cases, reduces the en-
ergy consumption during training more effectively than PCA.
When using both, the energy consumption increased during the
pre-processing in two datasets but decreased in one. This could
be justified because the subsampling step is performed before
PCA, reducing energy consumption. Nevertheless, the energy
consumption during the training step was mainly reduced
using both pre-processing steps.

Regarding the F1-Score, the subsampling step performed
better in the AIDS and Students dataset than when using
PCA in most of the experiments. At the same time, PCA
outperformed in the MALWARE dataset. This was justified
because the latter dataset has a larger number of features.

Finally, a post hoc Friedman test was computed to inves-
tigate statistical significance, and the Condorcet method was
employed to compare the different models. The F1 Score and
the sum of the training and prediction energy consumption
from the Full dataset experiments were used in this compari-
son. The results showed that the Random Forest was the model
with the best performance regarding the F1 Score, while the
Logistic Regression was regarding the energy consumption.
However, when comparing both models, Random Forest was
statistically significantly better in two datasets relating to
the F1-Score. At the same time, no significant difference
was found regarding energy consumption. Therefore, Random
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Forest was shown to be the most robust algorithm within the
task at hand.

In the future, this energy analysis will be extended using
more datasets with different properties and tasks. Additionally,
it would be highly interesting to include other metrics to
compare the models’ performance.
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