
Abstract—This paper examines models based on Gaussian
Process (GP) priors for electrical load forecasting. This
methodology is seen to encompass a number of popular
forecasting methods, such as Basic Structural Models (BSMs) and
Seasonal Auto-Regressive Intergrated (SARI) as special cases.
The GP forecasting models are shown to have some desirable
properties and their performance is examined on weekly and
yearly Irish load data.

Index Terms—Electricity demand, Gaussian processes, load
forecasting, modeling.

I. INTRODUCTION

HE load forecasting problem [1] has attracted wide
interest from a variety of research communities in an effort

to provide increasingly accurate forecasts of demand. Accurate
forecasts of demand are required, on a variety of timescales, in
order to reduce spinning reserve, schedule maintenance and
optimize energy trading mechanisms [2].

In the main, parametric structures are employed in load
forecasting modes. For example, electrical load has been
decomposed by many authors (e.g. [3], [4] and [5] to mention
but a few) into a trend and cyclical component The presence of
a trend and cyclical component in Irish load has also been
examined in [6] and by Moutter et. al. [7] for a New Zealand
utility. The above references utilize linear models, while a
wide variety of nonlinear models have also been employed,
including the addition of nonlinear autoregressive components
[8], Hammerstein/Wiener models [9] and a wide range of
techniques based on artificial neural networks as exemplified
in [10], [11] and [12]. Some load forecasting techniques have
also been reported which use a statistical/inference approach,
rather than that of a fixed parametric model structure, e.g. [13]
and [14].

For time series models, where the underlying parametric
structure is largely unknown, one of the significant challenges
is to determine an appropriate form of parameterisation for the
forecasting model. Some implementations, such as neural
network models, are claimed to be ‘non-parametric’, since
there is a generalized set of basis functions, which are
combined in a linear, or nonlinear, way. However, the
particular form of the basis functions must be chosen, as must
the finite set of weights and biases, which strengthen the
parametric typing of the system. One could muse, however,

that if an infinite set of basis functions and parameters were
used, then the structure would be truly non-parametric.

One class of model, which can reasonably be classed as
non-parametric, is a model based on Gaussian process (GP)
priors, which can be considered (in some sense) to have
equivalence to a model based on an infinite set of nonlinear
basis functions [15]. The central idea here is, without
parameterising the model, to place a prior directly on the
space of functions. This can be thought of as the generalization
of a Gaussian distribution over a finite vector space to a
function space of infinite dimension. Then, rather then
specifying the parameters of the model, the GP is specified by
its mean and covariance function, where the covariance
function has a particular (but simple) parametric structure,
enumerated by a set of hyperparameters. While GPs have been
used in time series forecasting [16], to the best of these
authors’ knowledge, this is the first application of GP to the
electrical load forecasting problem. There are a number of
features that make GPs potentially attractive in a load
forecasting context, including:
• Models can be determined using a relatively small number

of points (unlike neural networks), which makes them
potentially useful in forecasting of annual load,

• Co-variance functions are modular – they can easily be
synthesized from components representing particular
features in the data e.g. seasonality,

• They extend in a very seamless way from linear to
nonlinear synthesis,

• Though not specifically recommended for extrapolation,
they perform is a safe manner when asked to extrapolate
outside the training data, and

• Confidence intervals are easy to evaluate, which help to
indicate where model is unreliable (e.g. lack of training
data).

However, GPs are not without their difficulties and, in
common with neural networks, the determination of the
(hyper) parameters requires the solution of a non-convex
optimization problem. Also, in spite of the fact that GPs are
described by relatively few hyperparameters, their
dimensionality is determined by the amount of training data,
which possibly presents some problems, since the covariance
matrix must be inverted in order to perform a prediction.
These issues are dealt with in the paper in the context of the
development of GP-based forecasting models for weekly and
annual Irish electrical load.
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II. GAUSSIAN PROCESS MODELS

Consider a stochastic process with output y∈ℜ conditional on
input z∈ℜq. Suppose we have N measurements of input-

output pairs, ( , )zi i i
N

y
� �

=1
, and denote these by M. We are

interested in using this data to learn the posterior probability
distribution of y at some arbitrary input value z; that is, p(y|z,
M). The following exposition of GPs is necessarily brief, with
the reader directed to [18] for a more complete treatment.

A Covariance Formulation

Consider initially conventional Bayesian parametric modelling
approaches to solving the special case where y(z)=f(z)+v i.e. a
smooth scalar function f(z) with additive Gaussian white
measurement noise v, that is, the classical regression task. For
example, say we believe that f(z) has the form Ψ(z)θθθθ with:

Ψ( ) ( ) ( )z z z= ϕ ϕ1 � p (1)

and θθθθ the model parameters (that is, f(z) consists of a weighted
combination of fixed basis functions ϕi(z),i=1..p). We have
that:

p y M p y p M d( | , ) ( | , ) ( | )z z= � θθθθ θθθθ θθθθ (2)

where p(θθθθ|M) is the probability distribution over the set of
possible models. Bayes Rule states that:
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where the likelihood p M|θθθθ
� �

embodies the information

provided by the measured data, the prior p θθθθ
� �

embodies our

prior beliefs regarding the process and p(M) is simply a
normalising factor which is hereafter ignored. Assuming a
Gaussian prior, then we have:
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where:

Y = [y1 … yN]T is the vector of measured outputs�
( ) ( )Y z z= ΨΨΨΨ θθθθ ΨΨΨΨ θθθθ1 � N

T

ΛΛΛΛv is the measurement noise covariance
θθθθ and ΛΛΛΛθθθθ the mean and covariance of the prior resp.

with large variance specified when we have little confidence in
our prior knowledge. Commonly, it is assumed that the
probability distribution p(y|z,M) is sharply peaked so that:
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where θθθθMAP is the value of the parameter vector θθθθ for which
p(θθθθ|M) is maximal. The mean prediction from this model (i.e.
the fit to the function f(z)) is therefore Ψ(z)θθθθMAP, with variance
ΛΛΛΛv. Notice that owing to linearity dependence of the output on
the parameters and because the prior distribution of the

parameters θθθθ is Gaussian, the prior probability distribution of
the observations p(y(z1),y(z2),…,y(zn)) is also Gaussian for any
set of inputs {zk∈ℜq, k=1,..n} and any n. For example, when
the prior on the parameters is mean zero, it is readily verified
that p(y(z1),y(z2)) is mean zero with covariance,
cov(y(zi),y(zj)):
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A multivariate normal joint prior p(y(z1),y(z2),…,y(zn)) is the
defining property of a Gaussian Process prior (GP) model.
The multi-variate normal distribution is characterised by its
mean (assumed zero in the sequel for convenience although
this may be readily relaxed) and covariance. Evidently, the
foregoing basis function model is one example of a GP model,
corresponding to a specific choice of covariance function. In
general, we use a GP model to carry out inference as follows.
We have that:

p y M p y p Mi i
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where p yi i
N

i i
N({y } , |{ } , )= =1 1z z is the prior and p(M) acts simply as

a normalising constant and so can be ignored here. Hence,
substituting for our Gaussian prior
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where Λ11=C(y(z),y(z)), the ijth element of the covariance
matrix ΛΛΛΛ22 is equal to C(y(zi),y(zj) and the ith element of vector
Λ12 equals C(y(z),y(zi)). Applying the partitioned matrix
inversion lemma [17], it follows that
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The mean prediction from this model is therefore 1 ( )y z , with

variance Λ(x). Note that 2 ( )y z is simply a weighted linear
combination of the measured data points, Y, using weights
ΛΛΛΛ12

TΛΛΛΛ11
-1

.

B Popular Examples of GP Prior Models

The Gaussian process prior formulation used here is not new
[18], but does provide a useful unifying framework which
encompasses a broad spectrum of popular models. Within a
regression context special cases of GP models include, for
example, linear regression models, basis function models
(including those with infinitely many basis functions), splines
and certain types of multi-layer perceptron [15,16,19,20]. It is
also clear that a GP is a Bayesian form of kernel regression
model [21,22]. The GP framework also encompasses the case
of linear dynamics with Gaussian process and observation
noise (and thereby Kalman filters/smoothers). This is of
particular relevance to the forecasting context and may be seen



as follows1. Consider the standard linear stochastic state-space
equations:

x Fx G u

y H x v
i i i i i

i i i i

+ = +
= +
1 (11)

with xo, ui, vi are uncorrelated zero mean Gaussian processes
such that:

cov (ui,uj)=Qiδij, cov(vi,vj)=Riδij, cov(xo,xo)=ΠΠΠΠo (12)

This stochastic state-space formulation is the basis for a
number of popular approaches used in forecasting,
backcasting, smoothing and signal extraction including the
Basic Structural Model (BSM) approach of Harvey [23], the
Dynamic Harmonic Regression method of Young et al. [24].
It follows from the linearity of the dynamics (11) that the state
x and output y are normally distributed with zero mean and
covariance:
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is the state transition matrix. Evidently, the linear state space
model is simply a Gaussian process prior model with
covariance function defined by (13). It is readily verified
using the partitioned matrix inversion lemma [17] that the
various forms of recursive Kalman smoother equations (with
Kalman filter forward pass followed by fixed interval
smoothing backward pass) for calculating the posterior mean
and covariance are precisely equivalent to the en bloc
formulation (10). Of course, the special structure of the
covariance function (16) is exploited in the Kalman smoother
formulation to reduce the computational burden associated
with the calculations. Specifically, while inversion of the
covariance matrix in (10) generally requires O(N3) operations,
where N is the number of measured data values, covariance
matrices associated with the covariance function (16) can be
inverted in O(N2) operations; see, for example, [25].

1 An equivalence between Kalman smoothers associated with integrated
random walk models and a certain en bloc kernel regression approach has, for
example, been previously noted by Young & Pedregal (1999).

III. LOAD FORECASTING – WEEKLY DATA

Ireland operates an island network with demand coming
from a mixture of domestic, commercial and industrial users,
with a peak load of 3800 MW. It is strongly driven by weather
inputs, particularly temperature, at the weekly level. A number
of studies have examined the load forecasting problem for this
data and can provide a benchmark for the current study,
especially since a number of them fall into the sub-categories
of GPs indicated in Section II B.

A. Irish Load Data

A total of 679 weekly data points are available, shown in
Fig. 1.

Fig.1 Weekly Irish Load Data

The strong seasonality of the data is evident, along with
special annual events, such as Christmas and Summer
vacation.

B Covariance Function Synthesis

Since every sum of valid covariance functions is a valid
covariance function, it is possible to define elemental, or
primitive, covariance functions that can be combined as
required. (Covariance functions can also be generated from
various products of simpler covariance functions). Elemental
covariance functions relevant to the present forecasting context
include the following.

1) Smooth Nonlinearity/Trend
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where k
ix denotes the kth element of vector xi. This

covariance function simply expresses that the outputs
associated with input values close to each other have a higher
correlation than outputs associated with input values far away
from each other. There is length scale parameter rk associated
with each input which characterises the distance in that
direction over which observations are correlated. The
parameter α∈(0,2] determines the rate of decay, while
parameter a defines the vertical scale of variations of a typical
function.



2) Linear Component �
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It is straightforward to verify that this covariance function is
equivalent to the linear model:

�
=

=

D

1k

k
iki xm)(y x (19)

where the prior distributions, p(mk), k=1..D, are Gaussian zero
mean with covariance wk and it is assumed that wi, wj are
independent for i≠j.

3) White Noise
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4) Periodic/Seasonal Component
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This models a function that is periodic with period � k in the kth

input direction. Similarly to the nonlinear/trend component
described above, rk determines the length scale over which
observations are correlated within a single period. See Fig.2
for an illustration of this covariance function.

Fig.2: Covariance matrix representing seasonal data

With regard to the Irish weekly load forecasting context, the
presence of a trend, a seasonal component and a white noise
component is evident by inspection (it remains of course to
establish if other elements might be present). The following
covariance function is therefore postulated:
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where the vector of regressors, [ ]T
1ii yi −=x . The regressor

vector and hyperparameters of the covariance are selected to
maximise the likelihood of the training data (a simple gradient
descent optimisation). As an example, the weekly forecast for
a full year is shown Fig.3. It can be seen that predictable
features, such as the Christmas week, are captured very
accurately by the GP model. Enumerated forecast results for
this GP model are presented in Table 1.
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Fig.3: One Year ahead predictions

Table 1: GP results compared with BSM and SARI models

Year SARI BSM GP
MAPE

(%)
MSPE

(%)
MAPE

(%)
MSPE

(%)
MAPE

(%)
MSPE

(%)

1996 2.69 3.22 3.89 4.52 2.18 2.87
1997 7.57 8.14 4.93 5.63 1.91 2.52
1998 6.65 6.97 2.42 2.99 1.84 2.46
1999 1.81 2.32 2.57 3.69 1.84 2.34
2000 2.03 2.77 3.08 4.27 2.12 2.56
Ave. 4.15 4.68 3.38 4.22 1.98 2.55

Forecasting accuracy is assessed by making one year ahead
predictions (52 weeks) over five consecutive years i.e. for a
dataset containing N years of data, the first N-5 years are used
as training data to forecast the N-4th year, then the first N-4
years are used as training data to forecast the N-3rd year and so
on. The metrics used are the Mean Absolute Percentage Error
(MAPE) and the Mean Square Percentage Error (MSPE):
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It can be seen that the GP model consistently generates
significantly more accurate forecasts than either the SARI
(Seasonal AutoRegressive Integrated) or BSM models
developed in previous studies [26,27] for Irish weekly load
data.

IV. LOAD FORECASTING – YEARLY DATA

A. Irish Load Data

Fig.4 shows the load expressed as total electricity sales (TS)
over 41 years, plotted with Irish Gross Domestic Product
(GDP) as a candidate explanatory variable. In general, the data
can be characterized as having a rising trend with a sharp
change in slope towards the latter years.
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Fig.4: Irish annual load data characteristics

Initially, the use of a linear regression model for forecasting
annual electricity sales in Ireland is studied (such models are
in widespread use for such data). Running five year forecasts
are considered i.e. a forecast is made for the 5 years following
a section of training data. As before, the mean and the
standard deviation of the MAPE and the MSPE are employed
as metrics. The forecast period encompasses the period of
major change in the growth rate of the Irish economy.
Consequently, it is hoped that a method capable of providing
accurate forecasts for this period may be able to assist in
forecasting sales in future years where continuing economic
change is anticipated (forecasts of GDP corresponding to a
variety of economic scenarios are available from the Economic
and Social Research Institute Ireland). Table 2 shows the mean
and standard deviation of MAPE and MSPE for various
choices of regressor, where yi represents the load in year i.

Table 2: MAPE and MSPE for different regressor choices

However, a more revealing result is the variation in the
prediction error with the forecast period, shown in Fig.5.
Evidently, the forecasts rapidly become inaccurate following
the economic changes mentioned.
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Fig.5: Change in prediction error with date of forecast

Some insight into this behaviour can be gained by noting that
while the rate of growth of GDP increases abruptly at a certain
point, a corresponding change in electricity sales is not
apparent. This is further verified by partitioning the data into
two periods and noting that linear regression models
individually fitted to the data in these two periods have
substantially different parameter values. It appears, therefore,
that the annual electricity data has a non-
stationary/heteroscedastic character. Forecasting in such cases
is well known to be challenging.

B. Covariance Function Synthesis

The standard form of linear regression model is also, of
course, an example of a GP model (see Section II B). The
requirement is for a more appropriate choice of covariance
function which better reflects the character of the data. The
sales data is primarily a trend, with no periodic component. It
seems, moreover, that the trend can be approximately
partitioned into two regions each with linear dependence on
time and GDP, although a single linear model is not valid over
the entire dataset. That is, we require a linear model with
varying slope and offset of the form:
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where the slope mk and offset bk vary with the explanatory
variable xi and ηi is Gaussian white noise. Assuming that the
slope and offset parameters are independent with zero mean
Gaussian prior distributions we have that:
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where v is the noise covariance. The variation of the slope and
offset could be modelled in many ways, but for simplicity we
initially use the previous nonlinear/trend elemental covariance
and assume that the slope and offset vary with time but not
with GDP. That is, with regressor vector, [ ]Tii GDPi=x :

REGRESSOR
[i] [i GDP] [i GDP yi-1] [i GDP yi-1 yi-2]

mean 7.88 4.54 4.87 6.68MAPE
(%) std 3.93 3.05 2.90 5.00

mean 8.61 5.20 6.20 8.37MSPE
(%) std 3.92 3.64 3.42 6.05
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In the limiting case where rm, rb →∞ a standard linear
regression model (see ) is recovered. The hyperparameters of
the covariance are selected to maximise the likelihood of the
training data (a simple gradient descent optimisation). The fit
for the training time gets much better with this new covariance
function. The MAPE during the training time, if all data is
used, is 2.67% with the linear model and 1.63% with the new
model.

V. CONCLUSION

Gaussian processes have been shown to be not only a viable
forecasting methodology but also a potential unifying
framework within which many existing forecasting
methodologies may be cast. In many cases, existing methods
such as structural models, SARI models and, indeed, neural
networks, can be looked on as special cases of the general GP
model. As such, in their most general form, GPs are likely to
produce superior results, providing a suitable form of
covariance function can be found. In the forecasting examples
considered, the form of covariance function can be readily
determined from a cursory inspection of the data. However,
two potential problems arise with the use of GPs:
• The determination of the hyperparameters of the

covariance function represents, in general, a non-convex
optimization problem, and

• The use of the GP model requires the determination of a
matrix inverse at each forecasting step, as evidenced in
(10), with the dimension of the inverse dependent on the
number of training points used.

For the applications considered, the above were not found to
be problematic, but arguably the requirement for a significant
matrix inverse in the case of the annual data obviates the need
for a (relatively) complex GP model implementing a
reasonably simple linear model. One other difficulty, in the
particular case of the annual load, is the length of the forecast
duration relative to the amount of training data available.
Typically, forecasts of 5 to 15 years are required, demanding
that the GP model operate well outside the space of the
training data, with resulting poor performance, since the GP
model forecast decays to zero as one moves away from the
training data. Parametric models do not exhibit this feature,
though extrapolation outside the training data carries no
guarantees of model validity. Some comment is also worthy in
relation to the comparison of a nonlinear GP model with the
linear BSM and SARI for the weekly data. The use of neural
network-based SARI and BSM models improved the MAPE
performance by approx 1% [27], which would still not wipe
out the advantage of GPs demonstrated in Table 1.
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