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Model-Free Linear Noncausal Optimal Control
of Wave Energy Converters via
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Abstract— This article introduces a novel reinforcement learn-
ing (RL) method for wave energy converters (WECs), which
directly generates linear noncausal optimal control (LNOC)
policies on continuous action space. Unlike other existing WEC
RL algorithms looking at the problem mainly from a learning
perspective, the proposed RL approach adopts a control-theoretic
approach by delving into the underlying WEC energy maxi-
mization (EM) optimal control problem (OCP). This leads to
control-informed decisions on choosing the RL state, as well as
developing the RL structure. The proposed model-free LNOC
(MF-LNOC) offers substantial advantages, including significantly
improved performance due to the use of noncausal information,
a simplified RL with linear actor and quadratic critic structures,
and remarkable fast convergence speeds, achieved using less than
150 s of data points, for a benchmarked point absorber, which can
be further shortened using the replay technique. This reduction
in training time allows for controller reconfiguration in pace with
sea changes. Demonstrative numerical simulations are presented
to verify the efficacy of the proposed methods. The proposed
MF-LNOC also shows robustness against wave prediction inaccu-
racies and changing sea conditions. The MF-LNOC methodology
can be highly attractive for WEC developers who want to design
an efficient and reliable controller for WECs but also hope to
avoid the challenge of establishing a control-oriented model that
can preserve high fidelity over a wide range of sea conditions.

Index Terms— Optimal control, reinforcement learning (RL),
wave energy converter (WEC), wave prediction.

I. INTRODUCTION

WAVE energy has a significant potential in supply-
ing renewable energy to complement other renewable

sources. However, the current levalised cost for wave energy
is significantly higher than the other renewable (and con-
ventional) sources, and it is well-known that a reliable and
efficient wave energy converter (WEC) controller can reduce
the unit cost of wave energy [1]. Early WEC control methods
based on the impedance-matching principle are challenging
to implement in the actual sea conditions which include a
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wide range of wave frequencies [2]. Optimal control provides a
natural mechanism to maximize energy conversion from waves
and has attracted significant research attention [3], [4], [5].

The WEC energy maximization (EM) optimal control prob-
lem (OCP) is essentially different from conventional OCPs in
three respects. First, a WEC EM OCP aims to maximize the
power conversion rate, represented by a product of the power
take-off (PTO) force and the device relative velocity, leading
to an indefinite stage cost, rather than the positive-definite
stage cost for conventional tracking and regulating OCPs.
Second, the impact of wave excitation, treated as a disturbance
input in the WEC EM-OCP, is beneficial for the EM control
objective. Therefore, the disturbance handling principle for a
convention OCP cannot be adopted here because, in the WEC
EM OCP, kinetic energy transferred from ocean waves needs to
be captured/enhanced rather than attenuated. Third, the WEC
EM-OCP is essentially a noncausal control problem; that is,
the current optimal control action depends on the future wave
information. Using wave the prediction, the energy conversion
rate can be significantly increased, even doubled in some sea
states [2], [6].

Based on this principle, many optimal control methods have
been developed for WECs, with comprehensive reviews avail-
able in [1] and [3]. Targeting WECs with nonlinear dynamics,
many online optimal control algorithms have been devel-
oped, including those based on dynamic programming [6],
Prontrayin’s minimality principle [4], spectral method [7],
pseudospectral method [8], [9], and moment matching [10].
Despite being able to handle nonlinearities, those algorithms
can sometimes be difficult to design and implement in real
time. On the other hand, when a linear model can adequately
describe WEC dynamics, the noncausal WEC EM OCP can be
solved with a closed-form analytic control policy, referred to as
the linear noncausal optimal control (LNOC), which consists
of a causal feedback part and an anticausal feedforward part to
incorporate wave prediction. Since the control coefficients of
LNOC can be calculated offline, the implementation of which
does not require online computation, developing representative
linear WEC models for WEC LNOC becomes increasingly
attractive. Some successful initial application examples of
LNOC have been reported in [11], while an example of linear
representative modeling is reported in [12].

Despite the advantages mentioned above, establishing a
linear control-oriented model that can represent the WEC
dynamics with adequate accuracy can be challenging for some
WECs, since a linear WEC model described by (the physical)
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Cummins’ equation [13], is usually obtained around the pre-
defined equilibrium point with a small movement assumption.
With a well-designed WEC controller, e.g., LNOC, large
oscillations, to maximize energy output, result, particularly for
those sea conditions containing more exploitable energy. This,
paradoxically [14] invalidates the small movement assumption
and, therefore, leads to a substantial deterioration in model
fidelity. A WEC LNOC design based on such an inaccurate
model can lead to significant performance degradation [15],
[16]. Other aspects that could potentially lead to a change
in WEC dynamics include: 1) changing sea state; 2) varying
mooring dynamics due to slow drift motions of the WEC;
3) changing tidal elevation [17]; 4) marine growth on the WEC
[18]; and 5) water leakage into the WEC and other noncritical
subsystem partial failure [19].

To cope with model inaccuracy problems, WEC research
engineers have developed adaptive mechanisms, which can
automatically correct a WEC linear model, using measured
data from sensors, to remain representative of the actual WEC
dynamic behavior [15], [18]. In [20], an adaptive model-
correcting mechanism is developed to update a representative
WEC linear model based on which an LNOC is developed.
However, a significant critical drawback of the cited adaptive
methods is the lack of a passivity guarantee, a feature not
only reflecting the principle that a WEC can not only generate
more energy than it receives but also ensuring the existence,
convergence, and stability of the resultant LNOC. Failure to
enforce passivity in the model update process can lead to a loss
of control stability, resulting in potential catastrophic failure
for WEC operation.

An alternative way of dealing with model change is to
generate control coefficients directly from real-time data.
Reinforcement learning (RL), as a class of machine learn-
ing methods, has demonstrated its efficacy across a wide
range of disciplines in finding optimal actions in uncer-
tain environments [21], [22]. Despite significant success in
other applications, applying RL to solve the WEC EM-OCP
is less straightforward. First, the continuous control signal
invalidates the direct application of those RL algorithms
well-developed for discrete-action-space problems. To resolve
this problem, pioneering WEC RL algorithms adopted a
suboptimal approach, involving the use of a prefixed causal
suboptimal feedback structure. The WEC EM-OCP of finding
the continuous optimal control signal is therefore reformulated
into finding the optimal feedback coefficients, which can
be discretized in the action space. For example, in [19],
an RL-based method is developed for WEC controllers to
adapt the damping coefficient of a WEC resistive controller
using input-output data. Subsequently, Anderlini et al. [23]
develop an automatic data-driven reactive control tuning mech-
anism. As a complementary result, Q-learning methods, with
tabular and function approximators, are benchmarked in [24].

Meanwhile, inspired by the recent development of RL
algorithms for continuous action spaces, such as determinis-
tic deep policy gradient (DDPG) [25], twin delayed DDPG
(TD3) [26], and soft actor–critic (SAC) [27], WEC researchers
attempt to develop real-time algorithms directly targeting
the WEC EM-OCP without being restricted by the prefixed

causal suboptimal feedback structures. In [28], featuring the
development of a model-based MPC based on a linearized
model, an RL algorithm is developed using the SAC structure,
which shows its potential for improving energy performance
in some sea states, compared with the MPC based on an
inaccurate linearized model. Nevertheless, the SAC-based RL
method adopted in [28], similar to other actor–critic (AC)
methods, needs to use separate neural network (NN) function
approximates to represent the actor and the critic, respectively.
This feature significantly increases the required data points to
train the AC structure. As a compromise, in [28], modeling
efforts are required to initialize a reference model-based MPC
to accelerate training. In [29], to improve the convergence
performance of the SAC developed in [28], the authors adopted
the Bayesian policy gradient with the AC framework, referred
to as “BAC.” The BAC developed in [29] achieves a perfor-
mance close to the optimized feedback u(t) = Fz(t)+ Gv(t),
with training time reduced from approximately 8.4, for SAC
in [28], to 1.5 h.

Meanwhile, the OCP for linear systems with convex
quadratic cost functions, often known as “linear quadratic
regulators (LQRs),” has some favorable unique features, such
as the existence of analytic linear feedback optimal control
policies and analytic quadratic value functions. Those favor-
able features are preserved in the corresponding model-free
LQR (MF-LQR) problems. In [30], a policy-iterative RL
algorithm is developed, which shows that: 1) the Q-function
is quadratically dependent on an augmented vector consisting
of the state and control action; 2) the resultant control action
is linearly dependent on the state; 3) only (nx + nu)(nx +

nu + 1)/2 parameters need to be estimated in the training
process, with nx and nu being the orders of the system state
and control input, respectively; and 4) theoretical guarantees
on convergence and stability can be established. Neverthe-
less, those approaches focusing on causal LQRs cannot be
directly translated into the noncausal WEC control problem
of maximizing energy output.

The presence of a persistent disturbance is another non-
trivial problem in a learning-based control system since the
disturbance-induced bias, when unaccounted in the design
process, may prevent the convergence of control parameters
to their optimal values [31], [32]. To resolve this problem,
several approaches have been proposed. For example, Jiang
and Jiang [33] integrate a learning-based approach with con-
ventional disturbance attenuation tools, such as back-stepping
and sliding mode control. In [34], the disturbance attenuation
control problem is considered in an H∞ structure. After
reformulating theH∞ problem into a zero-sum game structure,
a data-driven RL method can be developed to solve the
associated Hamilton–Jacobi–Isaacs (HJI) functions. In [32],
by actively compensating for the disturbance-induced bias,
robust optimal tracking is achieved for systems subject to
an L2 disturbance. However, those approaches cannot solve
the WEC EM-OCP of maximizing the benefit of disturbance
utilization in optimizing the predefined performance index.

Therefore, despite some achievements made, the existing
RL-based WEC control methods cannot optimally solve the
panchromatic WEC EM control problem, which is inherently
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noncausal and use wave prediction information to improve
performance. Furthermore, the ability to deal with slow varia-
tions in sea state, which define the spectral shape of the wave
excitation, is also important.

Targeting those limitations, in this article, we present a
novel model-free method to formulate LNOC (MF-LNOC)
in a continuous action space, by developing a control-
theoretic approach. Rather than solely relying on the learning
techniques, as in SAC and BAC, to achieve convergence,
MF-LNOC based on the control-theoretic approach directly
investigates the underlying WEC EM-OCP, which gives the
informed decision on selecting the state and the structure of
RL. We show that, with the novel formulation, features such as
fixed linear actor and quadratic critic structures, and guarantees
of convergence and stability, are preserved from MF-LQR to
MF-LNOC.

Solving the WEC control problem using the proposed
MF-LNOC has the following advantages.

1) Significantly Improved Performance: The proposed
MF-LNOC solves the noncausal WEC EM-OCP,
without being limited to any causal suboptimal struc-
ture. By directly incorporating future wave excitation
in the RL, the MF-LNOC shows significant per-
formance improvement over even the best-tuned
causal linear feedback controller, which is regarded
as the performance limit for existing WEC RL
methods [19], [23], [28], [29].

2) Simplified RL Structure: By investigating the underlying
control problem, MF-LNOC leads to control-informed
selections of the RL structures, which, similar to the
MF-LQR case, also have a prefixed linear actor and a
quadratic critic. This avoids the need for multiple NNs
for the actor and the critic as in [26], [28], and [29].

3) Fast Convergence Speed: In the proposed MF-LNOC,
only a total of N (N + 1)/2 parameters in the quadratic
actor need to be determined from the linear least squares
(LLSs) solution during the training process, where N :=

nx +nu +n p, with nx , nu , and n p being the orders of the
system state and input, and the wave prediction horizon,
respectively. Even without using the replay technique,
the off-policy training process can achieve convergence
within less than 150 s of exploration, thanks to the
simplified structure, and the ensured convergence. This
enables the MF-LNOC to update the RL parameters in
pace with sea changes for the WEC to remain in its best
performance.

In summary, the proposed MF-LNOC enables WEC devel-
opers to formulate a simple, computationally efficient, and
control law, with guaranteed convergence and stability without
the need for the first principles of WEC modeling, which is
known to be challenging for some WEC designs. This also
allows the tracking of model variations across sea states, in the
sense of “representative linear models” [12], [35]. It will be
shown that the convergence rate of the learning algorithm
proposed in this article is of the order of 2–3 min, which is
entirely adequate to deal with sea state changes which typically
occur over the course of 20 min or more. This computational

Fig. 1. Dynamic diagram of the float (SWL: still wave level and PTO: power
take-off unit).

efficiency is crucial, compared with existing learning methods
applied to wave energy control which take, at minimum, 1.5 h.

The remainder of this article is organized as follows.
Section II presents the preliminaries, including WEC dynam-
ics, WEC control problem formulation, and WEC RL
backgrounds. Section III presents the main result of the
MF-LNOC based on the control-theoretic approach. Some
real-time implementation issues are discussed in Section IV.
Numerical examples are given in Section V, and finally, this
article is concluded in Section VI.

Notation: Let Rn and Ra×b be the space of all real
n-dimensional vectors, and all a × b dimensional matrices,
respectively; Na:b and N≥a denote a set of integers from
a to b and greater than or equal to a, respectively. For
column vectors z1 and z2, [z1, z2] denotes a column vector
[zT

1 zT
2 ]

T. za:b := [za, za+1, . . . , zb]. An element with subscript
i |k represents horizon i , predicted/estimated/calculated at time
step k. w

n p

k denotes an n p-step sequence wk:k+n p−1, obtained at
time step k. In denotes the n × n identity matrix. 0a×b denotes
an a × b matrix composed entirely of zero entries. “s.t.” is
the abbreviation of “subject to.” “w.r.t.” is the abbreviation of
“with respect to.”

II. PRELIMINARIES

A. WEC Dynamics

In this article, we consider a point absorber-type WEC,
restricted in heave motion only, whose dynamic diagram is
shown in Fig. 1.

From Newton’s law, the motion of the float can be
described by

M v̇(t) = − fh(t) − frad(t) + fex(t) + fu(t) (1)

where M is the float mass; fu(t) is the PTO manipulable force;
and v(t) is the heave velocity. In (1), the hydrostatic restoring
force fh(t) is modeled by

fh(t) = khz(t) (2)

where z(t) denotes the heave displacement, and hydrostatic
stiffness kh = ρgSw, where ρ, g, and Sw denote the water
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density, gravitational acceleration, and cross-sectional area of
the buoy, respectively. The radiation force frad(t) models the
frequency-dependent damping effect due to the radiated waves
produced by the buoy motion. Using the standard assumptions
associated with linear potential theory [36], the radiation force
can be modeled by a linear convolution of the radiation
impulse response hr (t) and heave velocity v(t) as follows:

frad(t) =

∫ t

−∞

hr (τ )v(t − τ) dτ + µ∞v̇(t) (3)

where µ∞ is the added mass asymptote at infinite frequency.
hr (t) and µ∞ can be calculated via hydrodynamic codes,
such as NEMOH [37]. The wave excitation force fex(t),
corresponding to the force experienced by the body due to
wave action, is treated as a predictable additive disturbance.
Please refer to [38] for a comprehensive review of methods to
calculate, estimate, and/or predict the excitation force over a
short-term interval. With (2) and (3), the dynamic equation (1)
results in Cummins’ [13] equation

(m + µ∞)v̇ = fex(t) − khz(t)

−

∫ t

−∞

hr (τ )v(t − τ) dτ + fu(t). (4)

To develop a control-oriented model, we use a state-space
model with minimal realization to approximate the convolution
term in (3) via ẋr (t) = Ar xr (t) + Brv(t)

yr (t) = Cr xr (t) + Drv(t) ≈

∫ t

−∞

hr (τ )v(t − τ) dτ
(5)

where (Ar , Br Cr , Dr ) and xr ∈ Rnr are the state-space
matrices and the associated state vector, respectively.

Defining the overall system state vector x(t) :=

[z(t), v(t), xr (t)], the control input u(t) := fu(t), and dis-
turbance input w(t) := fex(t), the WEC dynamics described
by Cummins’ equation (4) can be modeled by the following
linear time-variant (LTI) system:

ẋ(t) = Acx(t) + Bwcw(t) + Bucu(t) (6)

with coefficients

Ac =


0 1 0

−
kh

m
−

Dr

m
−

Cr

m
0 Br Ar

, Bwc = Buc =


0
1
m
0


Cz =

[
1 0 01×nr

]
, Cv =

[
0 1 01×nr

]
and m := M + m∞.

B. WEC Optimal Control Problem Setup

The WEC EM OCP aims to maximize the energy converted
in the PTO,

∫
p(t)dt , where p(t) is the instantaneous power

produced, with the consideration of quadratic PTO losses

p(x(t), u(t)) := −v(t)u(t) − ru2(t). (7)

In (7), the first term −v(t)u(t) is converted energy, while the
second term −ru2(t) represents the energy losses, with r > 0.

Assumption 1 (Passivity): The WEC model (6) is passive
with respect to a virtual performance output yp(t), defined
such that u(t)yp(t) = −p(x(t), u(t)).

We assume that Assumption 1 holds throughout this article.
In fact, passivity is a property characteristic of all WECs, since
a WEC cannot generate more energy than it absorbs.

To facilitate the design of a linear noncausal optimal con-
troller (LNOC), the continuous-time control-oriented model
is discretized via a zero-order hold (ZOH) equivalent, with
sampling period ts , which leads to

xk+1 = Axk + Buuk + Bwwk (8)

where (A, Bu, Bw) are the corresponding discrete-time state-
space matrices and wk is the instantaneous value of excitation
force at time step k, wk = fex(kts). The energy captured, using
the ZOH convention, i.e., u(t) = uk for kts ≤ t < (k + 1)ts ,
for a single time interval starting at k, can be expressed by

ek =

∫ (k+1)ts

kts
p(x(τ ), u(τ )) dτ

= −ukCz(xk+1 − xk) − tsru2
k (9)

where Cz := [1 0 · · · 0] ∈ R1×nx . The cumulative energy
converted for a time period from 0 to k is Ek :=

∑k
i=0 ei .

C. RL Background

In an RL framework, an agent, which is in a state st at time
t , interacts with the environment modeled by a Markovian
decision process. By taking an admissible action at ∈ A,
where A denotes the action space of the state (in the learning
sense), st transitions to the state of the next time instant
st+1, with a reward observed as rt+1. The “reinforcement”
philosophy is reflected in evaluating the value functions of
taking at , defined as the accumulated and weighted future
rewards of taking action at . Subsequently, the best action at

is selected by evaluating the values associated with taking
action at .

Depending on the nature of action space A, RL problems
can be categorized into RL with a continuous action space
and RL with a discrete action space, where the former often
results in a more complex structure because the evaluation of
policy has to be performance over infinitely many actions.

Motivated by this factor, most of the existing WEC RL
algorithms use a prefixed suboptimal causal feedback control
structure, e.g., u(t) = Gv(t) in [19] and [24] or u(t) =

Fz(t) + Gv(t) in [28] and [39]. In this way, the problem
of finding the continuous action u(t) is converted into finding
the optimal feedback parameters F and G. By discretizing
the step changes in F and G as the action space, i.e., ∇F and
∇G, respectively, an RL problem with discrete action space
can be formulated, where action-value RL methods, such as
tabular Q-learning, Q-learning with function approximation,
and deep Q-Networks (DQN) can be adopted. To prevent
the fast-changing feed gains, in [19], [24], and [28], the
parameters are learnt and updated on sea stage changes,
and performance is evaluated based on the average power
generated in the particular sea states. Nevertheless, the control
policy updates can only be done after the sea state change
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is settled. Meanwhile, in [39], the parameter updates are
performed on a wave-by-wave time scale to accelerate the
training and policy update process. However, rapid fluctuations
occur in the feedback gains, indicating a significantly less
stable Q-Network, compared with [19], [24], and [28], which
could limit the application of those algorithms on real WEC
devices. This phenomenon is partially due to not having
modeled the impact of wave excitation force in the sea states,
either explicitly or implicitly, which has a substantial influence
on the WEC dynamics.

Continuous-action-space RL algorithms have the potential
to avoid the problem of being restricted by a suboptimal causal
feedback structure. Unlike discrete-action-space counterparts,
based on state–action value functions, most continuous-action-
space RL algorithms adopt an AC structure, where optimal
policies are obtained by searching over policy gradient esti-
mates [40]. The application to WEC control problems starts
from [28], where MPC based on an inaccurately linearized
model is used to reduce the training time to 8.4 h. Later in [29],
the result is improved by considering the Bayesian gradient,
which further reduces the training time to 1.5 h. However,
despite not using an explicitly suboptimal feedback structure,
the best achievable performance of those two AC methods
does not exceed the feedback policy u(t) = Fz(t) + Gv(t),
tuned with optimum parameters F and G via trial and error,
for the particular wave segments. This is because, in both [28]
and [29], the RL state contains only causal information, i.e.,
the state := [z(t), v(t), fex(t), ḟ ex(t)] and cannot exploit wave
prediction to form a noncausal optimal control law.

Given the disadvantages of the restricted solution space
associated with discrete-action-space methods, we pursue a
continuous-action-space framework, with a prefixed structure
requiring only (N + 1)N/2 variables, to be parametrized in
the training process, by extending the results of MF-LQR
to MF-LNOC for EM. Here, N is the dimension of the
continuous (learning) state

N =

{
nx + nu, for MF-LQR
nx + nu + n p, for MF-LNOC

(10)

where nx , nu , and n p denoting the dimensions of the system
state and input, and the wave prediction horizon, respec-
tively. This control-theoretic study also offers insights into
fundamental issues, which not only provides guarantees of
convergence and stability but also establishes some level of
interpretability, while avoiding the use of a purely black-box
structure, with the associated opaqueness and uncertainty of
convergence/stability.

III. MAIN RESULTS

In this section, first, we present a feedback control reformu-
lation of the WEC LNOC in Section III-A, assuming that the
model is known. Using a policy iterative method, the LNOC
formulated in the feedback form is shown to be equivalent
to the conventional LNOC [2] in the feedforward form. Next,
in Section III-B, a model-free policy iterative framework is
developed upon the result in Section III-A.

A. WEC Control Reformulation

Recall our previous results on the model-based formula-
tion [2]. The optimal control of the LNOC has a closed-form
analytic form solution

u∗

k = Kx xk + Kdwk (11)

where Kx and Kd are the feedback and feedforward coeffi-
cients that can be determined in [2, Algorithm 2]. However,
it is more straightforward to develop an RL formulation for
control in feedback form. To resolve this problem, we reformu-
late the control problem setup using a feedback representation
based on an augmented state, consisting of the systems state
x and the prediction of excitation force w.

Similar to the implementation principle of WEC MPC, the
proposed WEC EM control is designed and implemented fol-
lowing a receding horizon manner. Here, we use the subscript
i |k to denote the state or input at horizon i , predicted/estimated
at time k. Assuming the availability of a prediction of the wave
excitation force wk for k ∈ N0:n p−1, we define the following
control problem to be solved, recursively, at each time step k

Pn p

k : inf
u

∞∑
k=0

L
(
xi |k, xi+1|k, ui |k

)
s.t. xi+1|k = Axi |k + Buui |k + Bwwk+i , i ∈ N0:n p−1

xi+1|k = Axi |k + Buui |k, i ∈ N≥n p

x0|k = xk (12)

and apply the first element of the optimal solution as the
control sequence, i.e., uk = u∗

0|k . Here, the superscripts and
subscripts of P represent the wave prediction length n p, and
the time instant k, respectively; the stage cost L is defined as
the negative of ek in (9), i.e.,

L
(
xi |k, xi+1|k, ui |k

)
:= ui,kCz

(
xi+1|k − xi |k

)
+ tsru2

i,k (13)

such that minimizing the cost function L corresponds to max-
imizing the accumulated converted energy; the resultant value
function of Pn p

k , i.e., the optimal cost function, is denoted
by Vn p

k .
Ideally, since WEC control does not have a natural termi-

nation time, we would like to investigate Pn p

k as n → ∞.
However, this infinite-horizon ideal case is not achievable due
to the dependence on accurate infinite-horizon wave predic-
tion, while most existing wave prediction techniques can only
provide wave prediction within a limited horizon (10–20 s)
with acceptable accuracy. With only a limited look-ahead
horizon for wave excitation wk being available for WEC
control, solving Pn p

k becomes reasonable and, in the authors’
previous result in [41], the solution of Pn p

k provides the best
approximation to the ideal intractable case.

With Assumption 1 and by partitioning the state and
input trajectories into x0:∞ = [x0:n−1, xn:∞] and u0:∞ =

[u0:n−1, un:∞], we have that the value function Vn p

k (xk, w
n p

k )

is bounded. From an application perspective, the boundedness
of Vn p

k can also be verified by observing that wk+i = 0 is
assumed for i ∈ N≥n p in Pn p

k , implying a WEC absorbing
finite energy from waves can only generate finite usable energy
(e.g., electricity).
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Next, we investigate the solution of P , predicted/calculated
at time instant k. Define the augmented predicted state

X0|k :=
[
x0|k, wk, wk+1, . . . , wk+n p−1

]
∈ Rnx +n p

X1|k :=
[
x1|k, wk+1, . . . , wk+n p−1, 0

]
∈ Rnx +n p

...

Xn p−1|k :=
[
xn p−1|k, wk+n p−1, 0, . . . , 0

]
∈ Rnx +n p

X i |k :=
[
xi |k, 0, . . . , 0

]
∈ Rnx +n p for all i ≥ n p.

The associated dynamics in (12), using the defined aug-
mented state, can be equivalently written as follows:

X i+1|k = AX i |k + Bui |k, i ∈ N≥0 (14)

with coefficients

A :=

[
A Bw D
0 T

]
, B :=

[
B
0

]
.

Here, D := [1 0 · · · 0] ∈ R1×n p ,
and M ∈ Rn p×n p is a matrix such that, for a
sequence w

n p

k = [wk, wk+1, . . . , wk+n p−1] and Mw
n p

k =

[wk+1, . . . , wk+n p−1, 0], i.e., T :=

[
0 In p−1

0 0

]
.

Using the augmented state X i |k, defined in (14), the stage
cost L(xi |k, xi+1|k, ui |k) can be equivalently written as follows:

L
(
X i |k, ui |k

)
:= ui |kCX X i |k + (1/2)Ru2

i |k (15)

where CX :=

[
Cz(A−I )
Cz Bw D

]
and R := 2tsr + 2Cz Bu . Defining

augmented states X i |k , and using (14) and (15), the control
problem Pn p

k can be equivalently expressed as follows:

Pn p

k : inf
u

∞∑
k=0

L
(
X i |k, ui |k

)
s.t. X i+1|k = AX i |k + Bui |k

X0|k = Xk . (16)

Lemma 1 (Preservation of Passivity): Suppose
Assumption 1 holds. The following augmented dynamics

Xk+1 = AXk + Buk

are strictly passive w.r.t. a virtual performance output Yk ∈ R
defined such that ukYk = L(Xk, uk).

Proof: See the Appendix.
With guaranteed passivity from Lemma 1, we can guarantee

the existence and uniqueness of solution for Pn p

k in the
following theorem.

Theorem 1 [42]: The optimal control action at time k, com-
puted from OCP Pn p

k , with a receding horizon implementation,
takes the form of

uk = u∗

0|k = F X0|k = F Xk (17)

where the feedback coefficient

F := −
(
R + BT H B

)−1(
CX + BT H A

)
(18)

with H ∈ R(nx +n p)×(nx +n p) is the unique and stabilizing solu-
tion of the discrete-time algebraic Ricatti equation (DARE)

H = AT H A −
(
CX + BT H A

)T(
R + BT H B

)−1

Algorithm 1 Offline Model-Based PI to Solve DARE (19) and
to Calculate F

×
(
CX + BT H A

)
(19)

with the corresponding value function Vn p

k (Xk) =

(1/2)X T
k H Xk .

Remark 1: Despite being formulated in a similar way to
MPC, but rather than being implemented online, the WEC
control problem Pn p

k yields a closed-form analytic optimal
control law

uk = F Xk (20)

for each time instant k. The control coefficient F is fixed and
is precalculated offline in the design stage, that is, no online
optimization is required.

Remark 2: By partitioning F =
[
Fx Fw

]
, where Fx ∈

R1×nx and Fw ∈ R1×n p , the optimal control law (20) can be
rewritten as follows:

uk = Fx xk + Fww
n p

k

which consists of a state feedback part, similar to conventional
optimal control, and a feed-forward part, which incorporates
wave forecast information to further improve EM control
performance.

Instead of directly solving DARE (19) to obtain the optimal
control policy (20), the controller can also be equivalently
calculated using recursive iterations. We rewrite DARE (19)
as follows:

(A + BF)T H(A + BF) − H + F T RF + 2F T CX = 0.

(21)

Based on (21), we develop the following learning-based
algorithm to calculate H and F , implemented in a policy
iteration (PI) manner. Hereinafter, we use the superscript j
to denote an element updated at iteration step j .

Remark 3: H i and F i , calculated in Algorithm 1, converge
to H and F calculated via (19) and (20), respectively. The
algorithm is an application of Hewer’s method, the conver-
gence properties of which have been studied in [43].

Thus, we have formulated the LNOC using PI, based
on complete knowledge of the system dynamics. With
Algorithm 1, the associated augmented Ricatti equation can be
solved with stable feedback from the augmented state, which
leads to an equivalent result to the noncausal optimal controller
calculated via the existing approach [2]. The resultant value
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function, i.e., the optimal cost function, depends quadratically
on the augmented state.

B. Model-Free Reformulation of the Policy Iterative Method

To obviate the requirement for a WEC model,
in Section III-B, a model-free method will be developed,
to solve for H and F , where neither the policy evaluation
nor policy improvement steps require model information.

To begin with, define J (Xk) as the control cost function
associated with ui |k = F j xi |k and subject to the same dynam-
ics as follows (16):

J (Xk) =

∞∑
i=0

L
(
X i |k, ui |k

)
. (22)

With fixed F j , the associated cost function has the structure
of J (Xk) = (1/2)X T

k H j Xk . Following the principle of RL,
we iteratively update H j and F j , such that they can converge
to H and F , respectively.

1) Policy Improvement Step Design: In the policy improve-
ment step j + 1, we fix H j+1. The control Bellman equation
gives

J (Xk) = L
(
X0|k, u0|k

)
+ J

(
X1|k

)
= L(Xk, uk) + J

(
X1|k

)
. (23)

Here, X1|k is determined by state transitions within the predic-
tive control horizon using X1|k = AXk + Bu0; L(Xk, uk) is
the the immediate control cost L(Xk, uk) at state Xk of taking
action uk ; and J (X1|k) is the accumulated cost forever after,
defined as J (X1|k) :=

∑
∞

i=1 L(X i |k, ui |k).
Note that, since convergence and stability can be established

in the control-theoretic formulation, we can directly target the
accumulated energy, without the need for a discount factor
γ in accumulated costs (22) and Bellman equation (23),
avoiding the risk of a “short-sighted” bias in such WEC control
formulations.

Next, we define an action-value-function Q(Xk, uk) as the
right-hand-side of the Bellman equation (23)

Q(Xk, uk) := L(Xk, uk) + J
(
X1|k

)
. (24)

With the defined action-value-function (24), we can formu-
late the policy improvement procedure. Using the augmented
dynamics in (14), (24) can be equivalently rewritten as follows:

Q(Xk, uk)

= ukCX Xk +
1
2

Ru2
k +

1
2

XT
1|k H j+1 X1|k

= ukCX Xk +
1
2

Ru2
k

+
1
2
(AXk + Buk)

T H j+1(AXk + Buk)

=
1
2

[
Xk

uk

]T[
AT H j+1 A AT H j+1 B + CT

X
BT H j+1 A + CX R + BT H j+1 B

][
Xk

uk

]
.

(25)

Here, we know from (25) that the action-value-function
Q(Xk, uk) has a quadratic structure depending on Xk and

uk . Therefore, consider the action-value function Q(Xk, uk)

written in the general quadratic form

Q(Xk, uk) =
1
2

[
Xk

uk

]T

M j+1
[

Xk

uk

]
(26)

where M j+1 can be partitioned into

M j+1
=

[
M j+1

X X M j+1
u X

T

M j+1
u X M j+1

uu

]

with M j+1
X X ∈ R(nx +n p)×(nx +n p), M j+1

ux ∈ R1×(nx +n p), and
M j+1

uu ∈ R. Applying the first order condition, i.e.,
∂ Q(Xk, uk)/∂uk = 0, we have uk = F Xk , where

F j+1
= −

(
R + BT H j+1 B

)−1(
CX + BT H j+1 A

)
= −M j+1

uu
−1

M j+1
u X . (27)

Remark 4: Rather than solving for the value function
(1/2)X T

k H Xk as in the model-based PI formulated in
Section III, the algorithm developed in this section solves
for an action-value-function Q(Xk, uk) (24). In this manner,
the optimal control policy update is achieved by (27), the
calculation of which requires no information on the WEC
dynamics.

2) Policy Evaluation Step Design: Next, we develop the
policy evaluation step by assuming F j is fixed. Observe that
the Q-function satisfies

J (Xk) = Q
(
Xk, F j Xk

)
, J

(
X1|k

)
= Q

(
X1|k, F j X1|k

)
and that the cost function J satisfies

J (Xk) = L
(
Xk, F j Xk

)
+ J

(
X1|k

)
.

Therefore, we have the Q-function Bellman equation

Q
(
Xk, F j Xk

)
= L

(
Xk, F j Xk

)
+ Q

(
X1|k, F j X1|k

)
. (28)

Since x1|k = Ax0|k+Buu∗

0|k+Bwwk = Axk+Buuk+Bwwk =

xk+1, we can define

X̄ k+1 :=
[
xk+1, wk+1, . . . , wk+n p−1, 0

]
= X1|k .

Here, X̄ k+1 can be obtained from Xk+1, measured at time
step k + 1, by replacing the last element wk+n p with 0.
By substituting the Q-function in (24) with (26), the Bellman
equation for the Q-function becomes

2L
(
Xk, F j Xk

)
=

[
Xk

F j Xk

]T

M j+1
[

Xk

F j Xk

]
−

[
X̄ k+1

F j X̄ k+1

]T

M j+1

[
X̄ k+1

F j X̄ k+1

]
. (29)

In (29), the augmented state Xk and X̃ k+1, and the running cost
L , can be measured. Next, we develop a computing method
to update M̃ , from (29).

For a vector z ∈ Rl , l := nx + n p + 1, define a vector
operator ζ(.) : Rl

7→ Rnθ , nθ := l(l + 1)/2, such that

ζ (z) =
[
z2

1, z1z2, . . . , z1zl , z2
2, z2z3, . . . , zl−1zl , z2

l

]
. (30)
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For a symmetric matrix W ∈ Rl×l , define a matrix operator
θ(.) : Rl×l

7→ Rnθ , such that

θ(W ) :=
[
W11, 2W12, . . . , W1l , W22, 2W23, . . . , 2W(l−1)l , W 2

ll

]
(31)

where Wab denotes the a and b entry of matrix W . Here,
we call θ(W ) the vectorisation of W and, from θ(W ), the
matrix W can be straightforwardly reconstructed. With the
defined operators (30) and (31), (29) is rearranged into

Yk = ZT
k 2 (32)

where

Yk = 2L
(
Xk, F j Xk

)
Zk = ζ

([
Xk, F j Xk

])
− ζ

([
X̄ k+1, F j X̄ k+1

])
2 = θ

(
M j+1). (33)

Remark 5: Using (32), 2 j+1, and the corresponding M j+1,
can be estimated based on LLSs method [44], using the
collected data of the augmented state trajectories of Xk and
the running cost L , rather than requiring full knowledge of the
WEC dynamics.

Remark 6: With the proposed control-theoretic formulation,
the MF-LNOC developed in this article extends the results
of MF-LQR [30] to WEC MF-LNOC, enabling the use of
disturbance preview to maximize energy, and establishing
theoretical guarantees on convergence and stability.

Despite having continuous state and action spaces, the
proposed MF-LNOC aims to learn the action-value-function
Q(Xk, uk), which has a fixed analytic quadratic structure, with
a total of only N (N +1)/2 variables to be parameterized in the
policy evaluation step, significantly less than training multiple
NNs as in conventional RL, see [28], [29].

IV. IMPLEMENTATION

Based on the results of the control-theoretic analysis in
Section III, we present the implementation of the proposed
approach. In the MF-LNOC framework, the state and action
of learning at time step k are defined as follows:

state :=
[
xk, wk, . . . , wk+n p−1

]
, action := uk

where xk is the control state; wk, . . . , wk+n p−1 are the wave
excitation force values between time step k–k +n p −1; and uk

is the manipulated PTO force. In the training process, since
the training process takes place after completing one training
epoch, we can use the measured/estimated values from wk to
wk+n p−1, which is considered noncausal at time step k.

However, when not all the states are available, a compromise
has to be made by using all the available state information.
Therefore, assuming the heave displacement zk and heave
velocity vk can be measured/estimated, the state and action
of learning is chosen as follows:

state :=
[
zk, vk, wk, . . . , wk+n p−1

]
, action := uk .

The RL reward function is defined as follows:

reward := energy converted in one sampling interval.

Fig. 2. Implementation framework of the MF-LNOC based on the con-
trol-theoretic approach.

Algorithm 2 Design Procedure of the Proposed MF-LNOC

The accumulated reward, considered in MF-LNOC, represents
the total energy that can be generated from the wave excitation
effects between k and k+n p−1. The proposed approach adopts
a receding-horizon control implementation like MPC, in line
with the recursive updates of wave excitation predictions.

The design procedure of the MF-LNOC, based on the
control-theoretic approach, is summarized in Algorithm 2. The
policy improvement step aims to update the critic, which has
a fixed quadratic structure, depending on Xk

J (Xk) = Q
(
Xk, F j Xk

)
and the policy evaluation steps aim to update the actor
(control) with a fixed linear structure, depending on Xk

uk(Xk) = F j Xk .

Here, Q(., .) and F are defined in (26) and (27), respectively.
The implementation is illustrated in Fig. 2.

Compared with SAC [28] and BAC [29], which use NN
function approximations, with this control-theoretic approach,
only N (N + 1)/2 parameters need to be estimated from the
training process. In addition, this control-theoretic approach
also minimizes the effort of choosing hyperparameters. In fact,
if we use a batched least square (BLS) algorithm, the imple-
mentation does not involve any hyperparameter tuning, which
further simplifies the controller design process.

Remark 7 (Persistent Excitation (PE) Condition): Similar
to other data-driven control methods, implementation of the
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MF-LNOC requires a PE condition to ensure sufficient explo-
ration of the space, such that the kernel matrix M , and
the control coefficient F , converge to their desired values.
Therefore, in the exploration mode, we take random input to
the system [45].

Remark 8 (Convergence and Stability Guarantee): The
PI-based learning method, adopted in Algorithm 2, is a
trivial generalization of [46], and using the PE condition,
the convergence guarantee is proven in [46]. The stability is
therefore preserved from model-based LNOC, established in
Theorem 1, to MF-LNOC.

V. NUMERICAL SIMULATION

In this section, we present several sets of numerical exam-
ples to verify the efficacy of the proposed method. The first
set of simulations will be presented based on a reduced
2nd-order system, where the perfect prediction of wave exci-
tation force is available. In this fully observable, accurate
forecasting scenario, we verified that MF-LNOC converges
to the true optimal values calculated using a model-based
approach. Next, we present three sets of simulations based
on a full-order system, with partial state observability of only
the heave displacement and heave velocity. The focus will
be on benchmarking performance, the data points required
to train an MF-LNOC, adaptation to cope with the changing
sea conditions, and sensitivity to wave excitation forecasting
errors.

A. Simulation Case I—With Full State Information

The first simulation presented here is based on a reduced-
order model, the result of which is easier to reproduce
and verify, for demonstration of the design procedure, the
implementation, and convergence to the optimal model-based
controller.

The adopted parameters are

A =

[
0.7726 0.1834

−2.1783 0.7614

]
, Bu = Bw =

[
0.0588
0.5635

]
× 10−3

R = 0.0011. (34)

The wave excitation force is generated using a JONSWAP
spectrum [45], with a significant wave high of 3 m, a peak
period of 5 s, and a peakedness parameter of 3.3. The
excitation force dynamics, i.e., the LTI subsystem representing
the input/output relationship between wave elevation and wave
excitation force, are taken from [47, eqs. (54)–(56)]. The wave
excitation force profile wk is shown in Fig. 3.

When the model (34) is available, the control coefficients
can be calculated either by solving the DARE (19) or by
model-based PI via Algorithm 1. Both methods lead to the
following identical result:

F =
[
81.2804 −65.2976 0.0148 0.0537

]
. (35)

Next, we show that the MF-LNOC can recover the value of
F from data collected in the past, without any knowledge of
the system dynamics.

The implementation of the MF-LNOC follows Algorithm 2,
where the data are assumed to have been generated with wk

Fig. 3. 1000-s of wave excitation force profile generated using a JONSWAP
wave spectrum, with a significant wave height 3 m, a peak period 5 s, and a
peakedness parameter 3.3, and using wave excitation dynamics from [47].

Fig. 4. ath element of vector 2k , estimated in the policy evaluation
steps using Algorithm 2, for the full state observation case. Convergence of
all 15 MF-LNOC parameters is achieved after 100 s.

Fig. 5. Residue estimation error of the linear mapping, i.e., Yk − Z k
k 2 with

estimated 2 in Fig. 4, for the full-state observation case.

in Fig. 3 and a random signal generator input with maximal
magnitude of 50-N. Since the WEC is strictly dissipative, any
bounded input used in generating the data satisfies the initial
stable requirement for the PI.

To better demonstrate the process of conversion, we demon-
strate based on a recursive least square (RLS) estimator [44].
Initialize the RLS estimator with a vector 20 = 0nθ ×1 and a
positive definite matrix P0 = Inθ

. For each iteration, update
Pk+1 and 2k+1 via the following two steps:

Pk+1 =
1
λ

Pk −
1
λ

Pk Zk
(
λ Inθ

+ Z T
k Pk Zk

)−1
Z T

k Pk

2k+1 = 2k + Pk+1 Zk
(
Yk − ZT

k 2k
)

(36)

where the convergence of 2k to a least squares estimate of
2 is proven in [48]. The corresponding M is calculated by
M = θ−1(2k).

A forgetting factor λ = 0.98 is chosen. Figs. 4 and 5 show
the trajectory of the estimated 2, and the estimation error
characterized by Yk−ZT

k 2, respectively. Note that 2 converges
after a 120-s estimator “warming-up” period. Asymptotically,
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Fig. 6. Residue estimation error Yk − Z k
k 2 with 2 estimated using an RLS

with λ = 0.982, for the partial state observation case. Estimation error is
dramatically reduced, but does not diminish for the partial state observation
case.

the estimation error converges to 0. The estimated action-
value-function kernel matrix is

M =

 1226 2.502 −0.0713 −0.1790 0.0424
2.502 101.3 0.05764 0.03054 −0.03407

−0.0713 0.05764 3.71×10−5 2.80×10−5 7.70×10−6

−0.1790 0.03054 2.80×10−5 3.72×10−5 2.80×10−5

0.0424 −0.03407 7.70×10−6 2.80×10−5
−5.217×10−4

.

The LNOC coefficient is calculated, in the policy improvement
step, as follows:

F = −M−1
uu Mu X

=
[
81.2804 −65.2976 0.0148 0.0537

]
(37)

which shows the efficacy of the proposed MF-LNOC in accu-
rately recovering the control coefficient F in (35) calculated
from model-based approaches. The result of Simulation Case
I verify that, with the control-informed decision, indeed, gives
a correct guess of the RL structure.

B. Simulation Case II—With Partial State Information

The second simulation set is based on a full-order WEC
model, the parameters of which are adopted from [2] and [47].
The state-space approximation of the radiation dynamics (3) is

Ar =

0 0 −17.9
1 0 −17.7
0 1 −4.41

, Br =

38.6
379
89


Cr =

0
0
1

T

, Dr = 0.

The simulation parameters are r = 5 × 10−3 for (7), sampling
period ts = 0.2 s and wave excitation prediction step n p = 5.
Heave elevation zk , and heave velocity vk , are assumed to be
directly measurable.

However, now due to the unavailability of knowledge of the
WEC dynamics, a model-based WEC state estimator cannot
be designed. Therefore, the MF-LNOC is formulated based on
reduced-order augmented state trajectories Xk := [zk, vk, w

n p

k ]

and X̄ x+1 := [zk+1, vk+1, w
n p−1
k+1 , 0]. Fig. 6 shows the training

error when using the RLS estimator (36). Compared with
Figs. 4 and 5, we can see that, after a 100-s “warming-up”
period, the estimate of the actor-value-function remains close
to 0, rather than converging to 0. This is because, when the
system has higher order dynamics, with partial availability
of the state, the proposed MF-LNOC can only find the best
estimate of the actor-value-function from the reduced-order
states, for the full-order system.

Fig. 7. Performance benchmark among the trained MF-LNOC (blue solid
line), a best-tuned resistive control via trial and error (black dotted line), and a
best-tuned reactive control via trial and error, based on a 1000-s wave segment,
generated from a JONSWAP spectrum, with a significant wave height of 4 m,
a peak period of 6 s, and a peakedness factor of 3.3. Energy output: 2.381 ×

104 J for MF-LNOC, 2.271 × 104 J for “reactive” and 2.023 × 104 J for
“resistive.” (a) Control input response. (b) Energy output response.

Fig. 8. Corresponding state responses of Fig. 7. (a) Heave displacement z.
(b) Heave velocity v response.

After the training process, we have the MF-LNOC control
coefficient: F = [173.2 −136.9 −0.0147 −0.0552 0.0929 −

0.0603 − 0.0077].
Next, we present a set of time simulations, based on a

1000-s wave segment, generated from a JONSWAP spectrum,
with a significant wave height of 4 m, a peak period of 6 s, and
a peakedness factor of 3.3. The MF-LNOC is benchmarked
with two feedback control frameworks.

1) A resistive controller, uk = Gvk , referred to as
“resistive.”

2) A reactive controller with the structure uk = Fzk +Gvk ,
referred to as “reactive.”

Here, both resistive and reactive controllers are optimally
tuned via trial and error based on the same waveform seg-
ments, and fixed with parameters that lead to the most energy
being produced.

Fig. 7 shows the energy produced for the three controllers.
Figs. 7 and 8 show the control input and energy produced, and
heave displacement and velocity responses, respectively.

We can observe that despite having similar control input
magnitudes and resulting in similar levels of oscillations, the
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Fig. 9. Minor sea state change. (a) 1000-s wave excitation force wk segment,
based on a different sea state with a significant wave height of 3.8 m,
a peak period of 5.5 s, and the same peakedness factor of 3.3. Energy output
performance benchmark study based on wk profile above, using the same
controllers as shown in Fig. 7 (bottom). (b) Energy output: 3.080 × 104 J for
MF-LNOC, 2.937 × 104 J for “reactive,” and 2.613 × 104 J for “resistive.”

energy generated using MF-LNOC reaches 2.381 × 104 J,
compared to 2.271 × 104 J with the best-tuned “reactive”
uk = 125zk − 161vk and 2.023 × 104 J with the best-tuned
“resistive” uk = −164vk . This result is significant because
even with two feedback controllers specifically tuned with
optimal parameters for the testing wave segments, MF-LNOC,
without the need for sea segment-based tuning can still achieve
a 4.81% performance advantage.

Next, we introduce a minor change in the sea state to test the
inherent robustness of MF-LNOC. Fig. 9 shows a benchmark
study, based on the JONSWAP-generated wave segment, with
the significant wave height changed from 4 to 3.3 m, and the
peaked period from 6 to 5 m. The peakedness factor remains
unchanged. Since there is no major change in WEC dynam-
ics, MF-LNOC does not need to be retrained/reparametrised.
The energies generated are 3.080 × 104 J for the proposed
MF-LNOC, 2.937 × 104 J for the reactive controller and
2.613 × 104 J, respectively, representing a 4.87% and a
18.87% performance advantages of using the proposed MF-
LNOC, compared with “reactive” and “resistive” controller,
respectively.

To further test the adaption to major sea state changes that
lead to changes in dynamics, we assume that the significant
wave height changes from 4 to 2.5 m, the peak period changes
from 6 to 4 s, and the radiation dynamics change to

Ar =

0 0 −19
1 0 −17
0 1 −4.6

, Br =

38.6
370
85


Cr =

0
0
1

T

, Dr = 0. (38)

In this case, we reparameterized MF-LNOC by switching
on the training mechanism in Algorithm 2.

Fig. 10 shows the residue error in the retraining process.
After 150 s, the error is dramatically reduced and maintained at
a minimum level. The corresponding MF-LNOC coefficients

Fig. 10. Major sea state change: residual estimation error Yk − Z k
k 2 with

2 estimated using the estimator as shown in Fig. 6, tested in a case of both
dynamics and sea changes.

Fig. 11. Major sea state change. (a) 1000-s wave excitation force wk
segment used for simulation, which was generated based on a sea state with a
significant wave height of 2.5 m, a peak period of 4 s, and the same peakedness
factor of 3.3. (b) Energy output: 4.189 × 104 J for MF-LNOC, 4.021 ×

104 J for the best-retuned “reactive,” and 3.568 × 104 J for the best-retuned
“resistive,” respectively.

have been updated to F = [183.7 − 145.5 − 0.0301 −

0.0266 0.0447 − 0.0213 − 0.0156].
Fig. 11 presents a comparative time simulation of

MF-LNOC, compared with “reactive” and “resistive,” both
retuned to their optimal values. The energy generated is
4.189 × 104 J for the retrained MF-LNOC, 4.021 × 104 J
for the best-retuned “reactive” (uk = 120zk − 155vk), and
3.568 × 104 J for the best-retuned “resistive” (uk = −160vk),
respectively. This represents a 4.18% and 17.40% performance
advantage of using the MF-LNOC over the best achievable
performances of the “reactive” and “resistive,” respectively.

Note that the above optimal performance of the best-retuned
feedback policies is only achievable for existing RL algo-
rithms [23], [25], [28], [29], after completing the retraining
process for the existing WEC RL algorithm, among which the
fastest converging algorithms will need approximately 1.5 h,
as reported in [29], although the time may be slightly reduced
for retraining. This further highlights the advantage of the
proposed MF-LNOC, which allows control reparametrization
to be completed in just 150 s, well in pace with a typical sea
change of 30 min [49].

Since MF-LNOC requires wave prediction, a natural ques-
tion is how the performance will be affected when realistic
imperfect wave prediction is used, which inevitably introduces
inaccuracies. Therefore, we present the time simulations using
the same settings, and wave segments, as shown in Fig. 11.
Nevertheless, rather than using the true value of fex as in
the previous simulations, we generate fex predictions using
a widely used autoregressive (AR) model [50], where the
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Fig. 12. Snapshot of the inaccurate fex predictions used in the sensitivity
study of magnitude error. [Black solid line: true fex value; black dotted line:
50 scenarios of fex, with artificially induced error on magnitudes, for the
Monte Carlo stress test; blue dashed line: fex predicted using “AR1” (AR
parametrized based on a different sea state); and purple dashed line: fex
predicted using “AR2” (AR parametrized based on the same sea state)].

p-step-ahead wave excitation force, predicted at time instant
k, is calculated using

ŵk+p =

H∑
i=1

φi ŵk+p−i (39)

where ŵ denotes the predicted value of w; H denoted the AR
model order, set as H = 15; ŵk+p−i = wk+p−i for p < i
since the value of w is known up to k.

Two parameterization of the AR coefficients φ are bench-
marked.

1) AR parameterised using fex in Fig. 9(a) of a different
sea state, referred to as “AR1.”

2) AR parameterised using fex in Fig. 11(a), of the same
sea state, referred to as “AR2.”

A snapshot of the fex predictions, calculated using predic-
tors “AR1” and “AR2” are shown in Fig. 12, in the blue
and purple dashed lines, respectively. The energy produced
is 4.184 × 104 and 4.186 × 104 J, when “AR1” and “AR2”
are used, respectively, showing only minor decreases in energy
produced, even when the AR model is trained from a different
sea state. This is because, as in the model-based case, the
performance of MF-LNOC heavily depends on the wave
prediction between 0 and 1 s, which is fairly accurate for both
cases.

To further test the sensitivity of the MF-LNOC, we present,
in Figs. 12 and 13, two sets of Monte Carlo stress tests, with
artificially induced errors in magnitude and phase, respectively.
In Fig. 12, a snapshot of 50 scenarios of fex predictions used in
the Monte Carlo magnitude stress test is shown in black dotted
lines. The energy generated is 4.182 × 104 J on average for
the 50 scenarios, with a maximum of 4.196 × 104 J and a
minimum of 4.164 × 104 J. The result shows only 0.06%
performance degradation, even for the worst case, implying
that the proposed MF-LNOC is robust to fex prediction errors
in magnitudes.

Fig. 13(a) shows a snapshot of the inaccurate fex prediction
used in the second Monte Carlo stress test, where the predicted
fex deviates from the true value in time delays from 0 to 1.5 s,
with a step increase of 0.05 s. The corresponding responses
for energy generated are shown in Fig. 13(b). A substantial
decrease occurs, with generated energy reduced to 3.962 ×

104 J, with a 0.5-s phase lag, and further reduced to 3.411 ×

Fig. 13. (a) Snapshot of the inaccurate fex predictions used in the sensitivity
study of magnitude error. (Black solid line: true fex value; black dotted line:
fex prediction, with artificially induced time delays from 0 to 1.5 s; and
blue/purple dashed line: fex predicted using “AR1”/“AR2.”) (b) Energy output
response.

104 J, with a phase lag of 1.5 s. This means that MF-LNOC is
sensitive to phase errors in fex predictions. However, as shown
in the blue and purple dashed lines in Fig. 13(a), predictions
are fairly accurate within 1 s of prediction, even using a simple
AR with simple model structure parameterized from a different
sea state.

VI. CONCLUSION

This article develops a control-theoretic approach for the
EM control problem for WECs, via the formulation of a
model-free linear noncausal optimal controller (MF-LNOC),
based on reinforcement Q-learning. The MF-LNOC devel-
oped in this article offers several advantages over existing
WEC RL-based control algorithms. First, the MF-LNOC
algorithm can leverage wave-by-wave prediction information
to improve energy conversion efficiency. Second, unlike exist-
ing learning-based algorithms that rely on prefixed parametric
feedback control structures, the MF-LNOC algorithm avoids
such limitations, enabling the full utilization of the perfor-
mance potential of WECs. Third, the MF-LNOC eliminates
the need for discretizing the decision space into a small
number of action spaces, allowing for a more precise and
comprehensive exploration of the solution space, and resulting
in improved control precision. Finally, the MF-LNOC offers
practical benefits regarding data requirements for training.
It requires significantly fewer data points to converge than
other RL-based approaches, reducing the time and resources
needed to train the controller. The results demonstrate that
the MF-LNOC achieves performance close to that of the
(exact) model-based controller. This is significant, as it is
well known that both the linearizing assumptions (especially
small movement) for boundary-element-based hydrodynamic
codes, and sensitivity to modeling errors, are challenged
in the design of WEC control systems [12], [16]. Further-
more, the proposed algorithm can be employed in two ways:
1) formulation of a controller or 2) adaptation of the controller
to accommodate model changes, which may occur as a result
of operating point changes (device nonlinearity or sea state
changes). The MF-LNOC proposed in this article expands
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the possibilities for WEC developers to formulate simple,
reliable, and efficient controllers, flexible and robust to sea
state variations and changes in the implicit “representative
linearized model,” without relying on complex first principles
modeling.

APPENDIX
PROOF OF LEMMA 1

Assumption 1 implies that, for the undisturbed system
ẋ(t) = Ax(t) + Buu(t), there exists a positive definite matrix
Pc ∈ Rnx ×nx > 0 such that

d
dt

(
1
2

xT(t)Pcx(t)
)

< −p(x(t), u(t)) (40)

holds for all x(t) and u(t), where p(x, u) is defined in (7).
Integrating both sides of (40) from t = kts to (k + 1)ts , and
with u(t) = uk , we have

1
2
(Axk + Buk)

T Pc(Axk + Buuk) −
1
2

xT
k Pcxk

< −

∫ (k+1)ts

kts
p(x(τ ), u(τ ))dτ. (41)

Here, we have shown passivity for the undisturbed discrete-
time system. Next, we show the passivity for the augmented
system, considering a disturbance. Equation (41) can be equiv-
alently written in the form of a linear matrix inequality

1
2

[
AT Pc A − Pc AT Pc Bu − Cx

BT
u Pc A − Cx BT

u Pc Bu − R

]
≤ −δ0 Inx +1 (42)

for some δ0 > 0, where R is defined in (15); Cx := Cz(A− I ).
This further implies (via the Schur complement) that there

exist positive constants 0 < δ1 < δ0 and γ0 > 0 such that

1
2

 AT Pc A − Pc AT Pc Bu − Cx AT Pc Bw

BT
u Pc A − Cx BT

u Pc Bu−R BT
u Pc Bw

BT
w Pc A AT Pc Bu − CT

x − γ0

 ≤ −δ1 Inx +1+nw
.

(43)

By pre- and post-multiplying (43) with [xk, uk, wk]
T and

[xk, uk, wk], respectively, we have that, for disturbed system
xk+1 = Axk + Buuk + Bwwk

1
2

(
xT

k+1 Pcxk+1 − xT
k Pcxk − γ0w

2
k

)
≤ −L(Xk, uk) − δ1

(
xT

k xk + u2
k

)
.

Define a block diagonal matrix

Paug =


Pc

γ0
. . .

γn p−1


where γi+1 = γi + 2δ1 for i ∈ N0:i−2. For the augmented
dynamics Xk+1 = AXk + Buk , we have

1
2

(
XT

k+1 Paug Xk+1 − XT
k Paug Xk

)
=

1
2

(
xT

k+1 Pcxk+1 − xT
k Pcxk − γ0w

2
k

)
− δ1

n p−1∑
i=1

w2
k+i

≤ −L(Xk, uk) − δ1
(
X T

k Xk + u2
k

)
which completes the proof.
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