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Abstract— This paper proposes a novel approach for com-
puting the meta distribution of the signal-to-interference-plus-
noise ratio (SINR) for the downlink transmission in a wireless
network with Rayleigh fading. The novel approach relies on
an approximation mix of exact and mean-field analysis of
interference (dominant interferer-based approximation) to reduce
the complexity of analysis and enhance tractability. In particular,
the proposed approximation omits the need to compute the first
or the second moment of the SINR that is used in the beta
approximation typically adopted in the literature but requires
of computing the joint distance distributions. We first derive
the proposed approximation based on a Poisson point process
(PPP) network with a standard path-loss and Rayleigh fading
and then illustrate its accuracy and operability in another four
widely used point processes: Poisson bipolar network, Matérn
cluster process (MCP), K-tier PPP and Poisson line Cox process
(PLCP). Specifically, we obtain the SINR meta distribution for
PLCP networks for the first time. Even though the proposed
approximation looks simple but it shows good matching in
comparison to the popular beta approximation as well as the
Monte-Carlo simulations, which opens the door to adopting this
approximation in more advanced network architectures.

Index Terms— Meta distribution, approximation, stochastic
geometry, Poisson network, reliability, PLCP.

I. INTRODUCTION

A. Motivation

IN WIRELESS communication, the accurate modeling of
the locations of the base stations (BSs) is essential to

characterize the system performance and obtain the critical
design insights [1]. Traditionally, the locations of BSs are
modeled by lattices, which are intractable in analysis [2].
However, to enhance the spatial reuse and meet an exponential
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growth in mobile traffic, the deployment of BSs becomes irreg-
ular and heterogeneous. For instance, macro, pico, and femto
BSs can coexist, and UAVs or other high altitude platforms
are deployed to help offload the ground BSs, which yield
different path loss exponents [3], [4] and more complicated
system models. In this case, stochastic geometry provides the
tools which are widely utilized in modeling, characterizing,
and obtaining design insights of the wireless networks with
randomly placed nodes [5], [6]. Among many point processes,
the Poisson point process (PPP) is a widely used model due to
its analytical tractability and stationarity. This property results
in a simple expression for the probability generating functional
(PGFL) [7]. While most of the stochastic geometry-based
analyses are confined to the spatial average, the performance
from the perspective of each user is ignored. Taking coverage
probability, for example, this performance is obtained by
averaging over the channel fading and the point process by
utilizing the Laplace transform of the interference with the
aid of PGFL [8]. Such performance metric quantifies the over-
all signal-to-interference-plus-noise ratio (SINR) performance,
however, limited information about the individual links. For
example, a cellular network with a coverage probability of
0.8 does not mean that all the links have the same success
probability, some may have 0.95 while the others may have
0.6, and two networks with the same coverage probabilities
would differ greatly. In other words, it is crucial to obtain key
information about “the distribution of success probability of
the individual link in a given network” [9], which reveals the
reliability and quality of service (QoS) of the network and
is a fundamental design objective for cellular operators. This
new and fundamental performance metric is called the SIR
meta distribution [5], defined as a complementary cumulative
distribution function (CCDF) of SIR success probability given
the realization [10], [11].

While SIR/SINR meta distribution is an important perfor-
mance metric, it is difficult to compute since the exact integral
expression is derived by using Gil-Pelaez theorem [12] which
requires the imaginary moments of the conditional success
probability. Generally, beta approximation is applied to obtain
the approximated SIR/SINR meta distribution, which only
requires the first and the second moments of the conditional
success probability. However, even deriving the first and the
second moments of the conditional success probability is not
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always simple. Therefore, given the importance of SIR/SINR
meta distribution and the difficulties of deriving it, in this
work, we provide an alternative approximation to SIR/SINR
meta which mainly requires distance distributions.

We propose a novel approach to compute SINR meta
distribution which relies on an approximation mix of exact
and mean-field analysis of interference and reduces the com-
plexity of the analysis and enhances tractability. In this paper,
we call the proposed approximation ‘dominant interferer-
based approximation’, however, we would like to clarify that
this approximation is obtained by considering the dominant
interferer(s) exactly while the rest are in the average sense.
In other words, we considered all the interference.

B. Related Work

Literature related to this work can be categorized into: (i) the
concept of meta distribution and existing approximations and
(ii) the applications of meta distribution in different system
models. A brief discussion on related works in each of these
categories is discussed in the following lines.

Stochastic geometry is a strong mathematical tool that
enables characterizing the statistics of various large-scale
wireless networks. In the analysis of wireless networks with
randomly deployed nodes based on stochastic geometry, the
PPP is the most widely used model. The authors in [8] and [13]
presented a tutorial on the fundamental concepts of the point
process, modeling the interference in large-scale networks,
and a comprehensive survey on single-tier, multi-tier, and
cognitive cellular networks. Most of the existing studies focus
on spatial averaging performance metrics. However, it yields
limited information about the individual links.

The concept of the meta distribution can be traced back
to [14], where the authors computed the distribution of the out-
age probability in a large-scale wireless network instead of the
spatial average. They obtained the outage distribution bound
by calculating the moments. Similar works about individual
links can be found in [15], [16], [17], [18], [19], and [20]. The
definition and examples, Poisson bipolar networks and PPP
networks, of meta distribution in wireless networks was pro-
vided in [10]. Since computing the meta distribution requires
calculating the moments of conditional success probability,
the exact equation is hard to derive.Therefore, statistical
inequalities and approximations are extremely useful. The
beta approximation is the most common one, which only
requires the first two moments [5]. In [11], the author provided
a closed-form result for the SIR meta distribution by only
considered the nearest interferer in Poission and Poisson
bipolar networks. Fourier-Jacobi expansion of moments to
reconstruct meta distribution is used in [21]. The separability
of computing SIR meta distribution for any independent fading
is analyzed in [22], their results show that the separable form
behaves as a good approximation of the SIR meta distribution
in Ginibre and triangular lattice networks when the SINR
threshold is chosen large enough. The authors in [9] study the
asymptotics of the moments as the SINR threshold approaches
0 for general networks. They provide the meta distribution of
general networks by shifting the meta distribution of Poisson

networks, and the shift gain is obtained by computing the
ratio of the mean interference-to-signal ratios between the
point process under consideration and the PPP. Based on the
moments of the conditional success probability, the authors
in [21] and [23] provide the numerical methods to calculate
the meta distribution.

The meta distribution of both Poisson and non-Poisson
cellular networks has already been addressed in few works. For
instance, authors in [24] analyzed the binomial Poisson process
(BPP)-based networks, and [9], [25] utilized the deployment
gain to approximate the meta distribution for general networks.
The SIR meta distribution of a 1-D hardcore point process was
investigated in [26]. Authors in [27] studied a Poisson line Cox
bipolar network and a Poisson stick line Cox bipolar network,
and proposed a transdimensional PPP approximation, which
highly reduces the complexity and improves the tractability of
vehicular network analysis. SIR meta distribution for cellular
networks with BS cooperation is analyzed in [28], [29], [30],
[31], and [32], with power control, offloading, or with non-
orthogonal multiple access (NOMA), respectively. SIR meta
distribution of the moving networks is analyzed in [33].
In [34], the authors characterized the meta distribution of the
downlink SIR for the typical cell in the case of the BSs are
modeled by PPP. The meta distribution of downlink SIR in a
Poisson cluster process-based HetNet network was analyzed
in [25], in which the authors considered a K-tier HetNet
modeled by a combination of PPP and PCP. Interestingly,
they used mapping theorem [35], [36] to map the interference
from i-th tiers onto one tier, which forms a new and unknown
distribution, and obtained the meta distribution based on the
new interference.

Unlike existing literature, this work aims to provide an
alternative approximation to compute the meta distribution in
the case of downlink Poisson networks with Rayleigh fading
without requiring computing the moments of success prob-
ability. Instead, the proposed approximation mainly requires
computing the joint distance distribution of the first and the
second nearest nodes in the network.

C. Contribution

This paper derives a dominant interferer-based approxi-
mation of SINR meta distribution in downlink networks.
Different from existing literature which mainly focused on
beta distribution and approximated the moments of success
probability, we consider a novel method that approximates the
interference, consequently, the SINR meta distribution can be
approximated by using a Lambert W function. The resulting
approximation shows a good matching in different scenarios
with both beta approximation and Monte-Carlo simulations in
a large range of BS densities.

The contributions of this paper are:
• We first derive approximate analytical expressions of the

downlink conditional success probability for the PPP
networks with a standard path loss model, and all the
channels are subject to Rayleigh fading, which is based
on the exact term of the dominant interferer(s) and the
mean of the remaining interferers.
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• We obtain the expression of the dominant interferer-based
approximation of the SINR meta distribution, which can
be written as a Lambert W function and mainly requires
computing the joint CDF and the PDF of the first and
the second nearest BS in the network. We show that
the proposed approximation can be extended to the j-
th nearest interfering BSs, which is more general, but the
nearest interferer is already accurate enough, e.g., the gap
between the exact value and the proposed approximation
in the case of PPP networks with λ = 1 km−2 and θ =
26 dB is about 0.02, while at most be about 0.03 at other
points. We also show that the proposed approximation
performs well at large path loss scenarios, say α = 3.5, 4.

• By applying the proposed approximation, we obtain the
SINR meta distribution in four different wireless net-
works modeled by Poisson bipolar network, K-tier PPP,
Matérn cluster process, and PLCP, and show that the
proposed approximation is good matching and simple
to compute since it mainly requires the joint distance
distribution.

• Additionally, we derive the SINR meta distribution of the
PLCP network, which has not been derived in existing
literature, to the best of the authors’ knowledge. Our
results reveal that the proposed approximation highly
reduces the complexity of computing its SINR meta
distribution.

II. THE SINR META DISTRIBUTION

In this section, we introduce the SINR meta distribution
based on a standard PPP wireless cellular network and focus
on the downlink transmission in this network where the base
stations (BSs) are modeled by a PPP, denoted by Φ, with
density λ. We simply assume that all the BSs are active.
In particular, we assume that the density of cellular users
are much larger than the density of BSs, which leads to all
BSs being active, and the user connects with the nearest BS
since it provides the strongest average received power. We are
interested in the SINR meta distribution of the network and
its approximations.

Let xi be the locations of the BSs, where xi ∈ Φ, i ∈ N∪{0}
and x0 is location of the nearest BS to the origin. Here,
we condition a user to be at the origin and this user becomes
the typical user on averaging over the point process. We focus
on the SINR of the typical user which is equivalent to any
other arbitrary deterministic location owing to the stationarity
of PPP. We use a standard path-loss model with exponent
α > 2 and hxi models the small scale Rayleigh fading of
the channel between the typical user and the i-th BS, which
is i.i.d and follows the exponential distribution with mean of
unity.

Let pt be the transmit power of the BSs, the SINR at the
typical user is

SINR =
pthx0 ||x0||−α∑

x∈Φ\{x0} pthx||x||−α + σ2
, (1)

where σ2 is thermal noise. Consequently, the conditional
success probability of the typical link is given by

Ps(θ) = P(SINR > θ|Φ). (2)

For an arbitrary realization of Φ, we analyze the fraction
of links that exceed the reliability threshold θ, and the target
reliability is an argument to the SINR meta distribution. With
that being said, our goal is to obtain the percentiles of users
that achieve downlink coverage (SINR above θ) at an arbitrary
realization of the PPP network.

Definition 1 (Meta Distribution): Generally, the SINR meta
distribution of downlink is defined in [5] as

F̄ (θ, γ) = P(Ps(θ) > γ), (3)

where γ ∈ [0, 1] and Ps(θ) is known as the success probability
given the realizations of Φ, i.e. the locations of BSs.

III. MATHEMATICAL ANALYSIS

Before investigating the SINR meta distribution, we first
introduce some important distance distributions in PPP net-
works. In the following text, let Ri = ||xi|| be the distance
from the i-th interfering BS to the typical user and recall that
x0 is location of the serving BS. To simplify the notation,
we use xi to present the locations of BSs which are ordered
by the distances to the origin. That is, xj presents the
j-th nearest interfering BS and Rj denotes the distance to
the j-th nearest interferer BS.

Lemma 1 (Distance Distribution): As mentioned above,
R0 is the distance between the user and the nearest BS, which
is the serving BSs, and Rj is the distance to the j-th closest BS.
The joint and marginal distance distributions are respectively
given in [37] as

fR0,R1,...,Rj
(r0,r1, . . . ,rj)=(2λπ)j+1r0r1 · · · rj exp(−λπr2

j ),

fR0,R1(r0, r1)=(2πλ)2r0r1 exp(−πλr2
1),

fR1(r1)=2(πλ)2r3
1 exp(−πλr2

1),

fR0(r0)=2πλr0 exp(−πλr2
0), (4)

consequently, the conditional PDF and CDF are

fR0|R1(r0 | R1) =
2r0

R2
1

, (0 < r0 < R1) (5)

fR1,...,Rj (r1, . . . , rj) =
fR0,R1,...,Rj

(r0, r1, . . . , rj)
fR0|R1(r0 | R1)

, (6)

FR0|R1(r0 | R1) =
r2
0

R2
1

, (0 < r0 < r1). (7)

After obtaining the distance distributions, we are able to
compute the SINR meta distribution and its approximation,
which are provided in the next two subsections.

A. Existing Methods for Computing SINR Meta Distribution

Clearly, SINR meta distribution is a two parameters com-
plementary cumulative distribution function (CCDF). We first
give the exact expression of SINR meta distribution. Typically,
(3) is solved by using the Gil-Pelaez theorem [5], [12]. The
exact expression of SIR meta distribution is given in [5] and
noise is added as an exponential factor to the moments.
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Theorem 1 (Exact Expression of SINR Meta Distribution):
The exact expression is given by

F̄ (θ, γ) =
1
2

+
1
π

∫ ∞

0

ℑ(exp(−jt log γ)Mjt(θ))
t

dt, (8)

where j is the imaginary unit, Mb(θ) is the b-th moment of
Ps(θ) and ℑ(·) is the imaginary part of a complex number,
and

Mb(θ) =
∫ ∞

0

exp
(
− λFb

)
exp

(
− bθ

pt
rασ2

)
fR0(r)dr,

(9)

in which,

Fb = πδ

∞∑
k=1

(
b

k

)
(−1)k+1 αθkR2

0

−2 + kα

×2F1(k,−δ + k, 1− δ + k,−θ), (10)

where δ = 2/α and 2F1 is the Gaussian hypergeometric
function.

Proof: See Appendix A.
However, (8) is difficult to compute since it requires the imagi-
nary moments and three nested integrals. The beta distribution
approximation is widely used to approximate the SINR meta
distribution since their higher moments are very close [5], and
it only requires the first and the second moments of the success
probability.

Remark 1 (Beta Approximation): Using the beta approxi-
mation as mentioned in [5], the SINR meta distribution can
be approximated as

F̄ ′(θ, γ) ≈ 1− Iγ

(
M1(θ)(M1(θ)−M2(θ))

M2(θ)−M2
1 (θ)

,

(M1(θ)−M2(θ))(1−M1(θ))
M2(θ)−M2

1 (θ)

)
, (11)

where,

Ix(a, b) =

∫ x

0
ta−1(1− t)b−1dt

B(a, b)
, (12)

and B(a, b) =
∫ 1

0
ta−1(1− t)b−1dt.

As shown in (11), beta approximation only requires to compute
the first two moments, which highly reduces the computing
complexity.

B. Proposed Approximation

Notice that the closer interference has the higher impact
on the system performance compared to the rest of the inter-
ferers. Here, we provide an alternative approximation which
approximates the interference by considering the j-th nearest
interfering BSs and the conditional expectation of the sum of
the remaining interfering BSs [38], [39].

We rewrite the aggregate interference based on the approx-
imation policy mentioned above.

Lemma 2 (Approximated Interference): The interference at
the typical user can be approximated as

Ij ≈
j∑

k=1

pthxk
R−α

k + ptG(Rj), (13)

where

G(Rj) =
2πλ

α− 2
R2−α

j . (14)
Proof: As mentioned, the closer interfering BSs have a

higher impact on the system performance, hence, we consider
the interference term composed of the exact expression of the
closest j interferers and the conditional mean of the rest of
the terms,

Ij =
∑
i∈N

pthxi ||xi||−α =
j∑

k=1

pthxk
R−α

k +
∞∑

k=j+1

pthxk
R−α

k

≈
j∑

k=1

pthxk
R−α

k + ptE
[ ∑

i∈N\{1,...,j}

hxi
||xi||−α

∣∣∣∣ Rj

]
,

(15)

and let G(Rj) denotes the average interference (without pt)
from the remaining interferers, which is a function of the
location of the j-th closest interferer, Rj , given by

G(Rj) = E
[ ∑

i∈N\{1,...,j}

hxi
||xi||−α

∣∣∣∣ Rj

]
(a)
= E

[ ∑
i∈N\{1,...,j}

R−α
i

∣∣∣∣ Rj

]
(b)
=

2πλ

α− 2
R2−α

j , (16)

where step (a) follows from the assumption that all fading
gains are independent and exponentially distributed with mean
of unity and step (b) follows Campbell’s theorem [40] with
conversion from Cartesian to polar coordinates.

Approximated success probability is the final requirement
to derive the approximated SINR meta distribution. Based on
the approximation of the aggregate interference, we rewrite
the interference term in SINR and the success probability is
given in the following lemma.

Lemma 3 (Approximated Conditional Success Probability):
The conditional success probability is approximated by

Ps,j(θ) ≈ exp
(
− θ

pt
Rα

0 (ptG(Rj) + σ2)
)

×
(

1

1 + θRα
0

∑j
k=1 R−α

k

)
. (17)

Proof: Recall that Ri = ||xi|| is the distance from the
i-th closest interfering BS to the typical user and R0 is the
distance to the serving BS. The conditional success probability
is

Ps,j(θ)

= P
(

pthx0R
−α
0∑

i∈N pthxi
R−α

i + σ2
> θ

∣∣∣∣ Φ
)

= P
(

hx0 >
θ

pt
Rα

0 (
j∑

k=1

pthxk
R−α

k

+
∑

i∈N\{1,...,j}

pthxi
R−α

i + σ2)
∣∣∣∣ Φ

)

≈ Eh{xk}

[
exp

(
− θRα

0

j∑
k=1

hxk
R−α

k
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− θRα
0 G(Rj)−

θ

pt
Rα

0 σ2

)]
= exp

(
− θ

pt
Rα

0 (ptG(Rj) + σ2)
) j∏

k=1

(
1

1 + θRα
0 R−α

k

)
(a)
≈ exp

(
− θ

pt
Rα

0 (ptG(Rj)+σ2)
)(

1

1 + θRα
0

∑j
k=1 R−α

k

)
,

(18)

in which step (a) follows by ignoring the higher order terms
of θ(R0

Rj
)α.

Now we are able to proceed to the final expression of the
proposed approximation. Since there is less multiplication in
conditional success probability in (17) compared to (46), the
SINR meta distribution can be easily obtained.

Theorem 2 (Approximated Meta Distribution): The
approximated SINR meta distribution, F̄ ′j(θ, γ), is given
by

F̄ ′j(θ, γ) ≈
∫

(R+)j

FR0|R1(Kj(r1, r2, . . . , rj))

×fR1,R2,...Rj
(r1, r2, . . . , rj)dr1dr2, . . . drj , (19)

which is a j-dimensional integral, and

Kj(r1, r2, . . . , rj)

=
(
− 1

θ
∑j

k=1 r−α
k

+
1

s(rj)
W

(
0,

s(rj) exp(s(rj)θ−1(
∑j

k=1 r−α
k )−1)

γθr−α
1

)) 1
α

,

(20)

where W (k, x) is the k-th branch of the Lambert W
function, s(rj) = θ

pt
(ptG(rj) + σ2), FR0|R1(r) and

fR1,R2,...Rj
(r1, r2, . . . , rj) are given in (6) and (7).

Proof: By using the definition of SINR meta distribution,
the CCDF of the conditional success probability is given by

F̄ ′j(θ, γ)
= P(Ps,j(θ) > γ)

= ER1,...,Rj

[
P
(

exp
(
− θ

pt
Rα

0 (ptG(Rj) + σ2)
)

j∏
k=1

(
1

1 + θRα
0 R−α

k

)
> γ | R1, . . . , Rj

)]
= ER1,...,Rj

[
P
(

exp(−s(Rj)Rα
0 )

> γ

j∏
k=1

(
1 + θRα

0 R−α
k

)
| R1, . . . , Rj

)]
≈ ER1,...,Rj

[
P
(

exp(−s(Rj)Rα
0 )

> γ

(
1 + θRα

0

j∑
k=0

R−α
k

)
| R1, . . . , Rj

)]
(a)
= ER1,...,Rj

[
P
(

R0 <

(
− 1

θ
∑j

k=1 R−α
k

+
1

s(Rj)
W

(
0,

s(Rj) exp(s(Rj)θ−1(
∑j

k=1 R−α
k )−1)

γθ
∑j

k=1 R−α
k

)) 1
α

| R1, . . . , Rj

)]
,

(21)

where step (a) follows from that Lambert W function defined
by: W (0, x) exp(W (0, x)) = x, and this step can be solved
by using MATLAB or Mathematica, and the proof completes
by using the conditional CDF of R0 and the joint PDF of
R1, . . . , Rj provided in Lemma 1.

Observing that (19) requires to computing the joint PDF
from R1 to Rj , we observe that it is still too complex and not
practical in general. Considering that the nearest interferer BS
has the highest impact on the system performance, we further
simplify the proposed approximation which only composed
of the exact expression of the nearest interferer and the
conditional mean of the rest of the terms.

We would like to clarify that the approximation proposed in
Cor. 1 is considering the dominant interferer exactly while the
rest are considered in an average sense. However, we name
it the dominant interferer-based approximation to simplify the
name.

Corollary 1 (The Dominant Interferer-Based Meta Distri-
bution): If we only consider the first nearest interferer BS
exactly while the rest are considered in an average sense, (19)
can be further simplified,

F̄ ′1(θ, γ) ≈
∫ ∞

0

FR0|R1(K1(r, θ, γ))fR1(r)dr, (22)

where,

K1(r, θ, γ)=
(
− 1

θr−α
+

1
s(r)

W

(
0,

s(r) exp(s(r)θ−1rα)
γθr−α

)) 1
α

,

(23)

in which s(r) = θ
pt

(ptG(r) + σ2) and G(r) = 2πλ
α−2r2−α.

Proof: Proof completes by setting j = 1 in (19).
Remark 2: In the case of σ2 = 0, e.g., approximation of

SIR meta distribution, s(r) = θG(r), (23) can be further
simplified,

K ′
1(r, θ, γ)=

(
− 1

θr−α
+

1
s(r)

W

(
0,

s′(r)
γ

exp(s′(r))
)) 1

α

,

(24)

where s′(r) = 2πλ
(α−2)r

2. Moreover, if we only consider the
dominant interferer, that is G(r) = 0,

K ′′
1 (r, θ, γ) =

(
1

γθr−α
− 1

θr−α

) 1
α

= r

(
1− γ

γθ

) 1
α

, (25)

consequently, (22) becomes

F̄ ′′(θ, γ) = min
(

1,

(
1− γ

γθ

) 1
α
)

, (26)

which is the same as the result of the nearest-interferer-only
approximation mentioned in [11, Cor. 3].

The difference and relation between the proposed approx-
imation, dominant-interferer approximation (22), and the
nearest-interferer-only approximation, [11, Cor. 3], are: (i) the
nearest-interferer-only approximation is an upper bound of
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the meta distribution while the proposed approximation is
neither upper bound nor lower bound and it is tighter (more
details shown in Numerical Results Section), (ii) the proposed
approximation considered all the interferer while the result in
[11, Cor. 3] removed some interferers, and (iii) the proposed
approximated SINR meta distribution is an approximation of
exact SINR meta distribution and nearest-interferer-only meta
distribution and SIR meta distribution are special cases of the
proposed approximation.
The SINR meta distribution is computed by the joint CDF
and the PDF of the first and the second nearest BSs, which
are the fundamental distance distributions of point processes.
Hence, the proposed approximation has different requirements
compared with the beta approximation. In the point processes
which are able to obtain the joint distance distributions,
the proposed approximation can be a candidate approach
to approximate the SINR meta distribution. In the numeri-
cal results part, we show that the dominant interferer-based
approximation is already very accurate, e.g., the gap between
the exact value and the proposed approximation in the case of
PPP networks with λ = 1 km−2 and θ = 26 dB is about 0.02,
while the gaps for the remaining points are at most about 0.03,
in the downlink SINR meta distribution of Poisson network
with Rayleigh fading.

IV. THE PROPOSED APPROXIMATION
IN POISSON NETWORKS

In this section, we use the proposed approximation in three
wireless cellular networks modeled by three commonly used
point processes, respectively, and one ad hoc network, to show
its accuracy and tractability. The one ad hoc scenario and
three cellular scenarios are (i) Poisson bipolar networks, (ii)
Matérn cluster process (MCP), (iii) K-tier Poisson network,
and (iv) Poisson line Cox process (PLCP), respectively. In (i),
(ii) and (iii), we give the expressions of the SINR meta
distribution for both beta approximation and the proposed
approximation. In (iv), we use the proposed approximation
under PLCP-distributed interference and PPP-approximated
interference, respectively, and compared the proposed approx-
imation with a transdimensional PPP-based (TPPP-based)
approximation as mentioned in [27, (16)].

A. Poisson Bipolar Networks

In this part, we consider a Poisson bipolar model, where
the transmitters form a PPP, denoted by Φ with density λ, and
each of the transmitter has a dedicated receiver at distance
R in a random direction. Let pt be the transmit power and
all channels are subject to Rayleigh fading, and we use the
standard path loss model with exponent α.

Before investigating the SINR meta distribution, we first
introduce some important distance distributions in Poisson
bipolar networks. Note that in Poisson bipolar network, each
receiver has a dedicate transmitter at distance R. Therefore, the
distance to the serving BS is determined and independent from
the nearest interferer, while the distance distribution of the
nearest interferer follows the first contact distance distribution
in PPP. The CDF of R0 given R1 equals to the CDF of R0,

which is a shifted step function, and R1 is the the contact
distance in PPP,

fR0(r) = ∆R(r),

FR0(r) =

{
0, r < R,

1, r ≥ R,
,

fR1(r) = 2πλr exp(−πλr2), (27)

in which ∆a(x) is an impulse at a and satisfies
∫∞
0

∆a(r)dr = 1.
The SIR success probability and b-th moment of the con-

ditional success probability of a Poisson bipolar network are
well known [5], [40] and given by

Ps,SIR(θ) = exp(−Cθδ),

Mb,SIR(θ) = exp
(
− Cθδ Γ(b + δ)

Γ(1 + δ)Γ(b)

)
, (28)

where δ = 2/α and C is a coefficient that does not depend on
θ: C = λπR2Γ(1− δ)Γ(1 + δ). Therefore, the SINR success
probability and the b-th moment are obtained by adding the
exponential term and given by, respectively,

Ps(θ) = Ps,SIR(θ) exp
(
− θRα

pt
σ2

)
,

Mb(θ) = exp
(
− Cθδ Γ(b + δ)

Γ(1 + δ)Γ(b)

)
exp

(
− b

θRα

pt
σ2

)
.

(29)

Therefore, the beta approximation of the SINR meta dis-
tribution of a Poisson bipolar network is obtained by sub-
stituting (29) into (11), and the proposed approximation of
the SINR meta distribution is obtained by substituting (27)
into (22).

B. Matérn Cluster Process

In this part, we consider a Matérn cluster point process to
model the locations of users and BSs [41]. In MCP, the clusters
are modeled as disks with radii rc whose centers are modeled
as a PPP, Φ with density λ, while the users are uniformly
distributed within the disk. Assume that the user associates
with its cluster BS. Let pt be the transmit power of BSs and
all channels are subject to Rayleigh fading, and we use the
standard path loss model with exponent α.

In order to use the proposed approximation, some distance
distributions are given below. Since we assume that the user
associates with its cluster BS, the distance to the serving BS is
independent from the nearest interferer. The CDF of R0 given
R1 equals to the CDF of R0 and R1 is the the first contact
distance in PPP,

fR0(r) =
2r

r2
c

, r < rc,

fR1(r) = 2πλr exp(−πλr2),

FR0(r) =
r2

r2
c

, r < rc, (30)

where rc is the user cluster radius.
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The SINR conditional success probability and the b-th
moment are, respectively, given by

Ps(θ)

= P(SINR > θ|R0) = P
(

pthR−α
0

I + σ2
> θ|R0

)
= P

(
h >

θRα
0

pt
(I + σ2)|R0

)
= EI

[
exp

(
− g(R0)(I + σ2)

)]
=

∏
i∈N

(
1

1 + g(R0)ptR
−α
i

)
exp(−g(R0)σ2),

Mb(θ) = E
[ ∏

i∈N

(
1

1 + g(R0)ptR
−α
i

)b

exp(−bg(R0)σ2)
]

=
∫ rc

0

exp
(
− 2πλ

∫ ∞

0

[
1−

(
1

1 + g(r)ptz−α

)b]
zdz

)
exp(−bg(r)σ2)fR0(r)dr, (31)

where g(r) = θrα

pt
.

Therefore, the beta approximation of the SINR meta
distribution of a MCP network is obtained by substitut-
ing (31) into (11), and the proposed approximation of the
SINR meta distribution is obtained by substituting (30)
into (22).

C. K-Tier Poisson Point Process

In this part, we consider a general K-tier cellular network
model, where BSs of each tier follow a homogeneous inde-
pendent PPP Φi with density λi. For the BSs in the i-th tier,
the transmit power is pt,i. Assume that the user associates
with the BS that provides the strongest average received
power.

In order to use the proposed approximation, which is a
function of the first and the second nearest BSs, we map the
BSs on the i-th tier to the 1-st tier to obtain the distance
distributions of the first and the second nearest BSs. After
mapping, the equivalent density in the 1-st tier is

λ′i = (
pt,1

pt,i
)−δλi. (32)

By the results of linear mapping and the superposition prop-
erty of the point process, the new 1-tier network is still a
homogeneous PPP Φ′ with density

λ′ =
∑
i=1

(
pt,1

pt,i
)−δλ′i. (33)

We then use the result from the single tier PPP network.
The b-th moment is

Mb(θ) = E
[

exp
(
− λ′Fb

)
exp

(
− bθ

pt
Rα

0 σ2

)]
, (34)

where Fb is given in (10).
Therefore, the beta approximation of the SINR meta distri-

bution of a K-tier PPP network is obtained by substituting (34)
into (11), and the proposed approximation of the SINR
meta distribution is obtained by substituting the equivalent

Fig. 1. Illustration of the conditional SINR success probability of a Poisson
line Cox process for λ = 1.6 BS/km2, where λl = 0.4/π km/km2 and
λp = 0.4 /km. The markers denote the BSs, users are indicated by crosses,
blue segments denote the links and gray lines denote the Poisson line process.
The number next to each link is its success probability. Note that all the links
have a number denoting the success probability, but due to the limitation of
the space, some numbers may not show.

BS density in (33) and the distance distribution in Lemma 1
into (22).

D. Poisson Line Cox Process

In this section, we consider a general Poisson line Cox
process (PLCP) cellular network model, as shown in Fig. 1,
where the locations of BSs and users are modeled by the
same Poisson line process, with line density µl = πλl, where
λl is the point density of the corresponding point process
in representation space, and two independent 1D PPPs, with
densities λp and λp,u, respectively. Let Φ be the point set of the
locations of BSs and the corresponding density is λ = λpλlπ.
Assume that the user associates with the nearest BS. Noting
that in PLCP network, we define the user point process since
it influence the distance distribution, e.g., a typical line passes
though the user.

To obtain the distance distribution, we need to compute the
probability of the number of the points falling in a unit region.
In PLCP, the PMF of the number of points in B(0, r) is given
in [42] and [43] and obtained by

P(Np(B(0, r) ∩ Φ!
0) = k) = (−λp)k

∂kL!
(0,r)(λp)

∂λk
p

, (35)

where Np(A ∩ Φ) denotes the counting measure, which
counts the number of points in point set Φ falling in the A,
Φ!

0 denotes the reduced Palm distribution [43, Cor. 4.2],
in which a typical line passes though the origin, B(0, r)
denotes the ball centered at the origin with radius r and
L!

(0,r)(s) is Laplace transform of the total chord length in
B(0, r) under the Palm distribution,

L!
(0,r)(s)

= exp
[
−2sr−2πλl

∫ r

0

1−exp
(
−2s

√
r2−ρ2

)
dρ

]
. (36)
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Lemma 4 (Distance Distributions of PLCP): The PDF of
R0 and the PDF of R1 are, respectively, given by

fR0(r0)

= 2
(

λp + πλl

∫ r0

0

2r0λp√
r2
0 − x2

exp(−2λp

√
r2
0 − x2)dx

)
× exp

[
−2λpr0−2πλl

∫ r0

0

1−exp
(
−2λp

√
r2
0−ρ2

)
dρ

]
,

(37)
fR1(r1)

= exp
[
−2λpr1−2πλl

∫ r1

0

1−exp
(
−2λp

√
r2
1 − ρ2

)
dρ

]
×

[
λp

(
− 2 + 4r1λp

+ 4λpλlπ

∫ r1

0

2
√

r2
1 − x2 exp(−2λp

√
r2
1 − x2)dx

− 2πλl

∫ r1

0

r1(2−4λp

√
r2
1−x2)√

r2
1−x2

exp(−2λp

√
r2
1 − x2)dx

+ 4πλl

∫ r1

0

r1λp√
r2
1 − x2

exp(−2λp

√
r2
1 − x2)dx

× (r1 + πλl

∫ r1

0

2
√

r2
1 − x2 exp(−2λp

√
r2
1 − x2)dx)

)
+ 2(λp + πλl

∫ r1

0

2r1λp√
r2
1 − x2

exp(−2λp

√
r2
0 − x2)dx)

]
.

(38)
Proof: The first contact distance distribution is derived

by computing the void probability, which is defined as the
probability of no points in B(0, r). From the definition of
PLCP, the void probability, which is also the CCDF of R0,
immediately follows,

P(R0 > r0)

= P(Np(B(0, r0) ∩ Φ!
0) = 0) = L!

(0,r0)
(λp)

= exp
[
−2λpr0−2πλl

∫ r0

0

1−exp
(
−2λp

√
r2
0−ρ2

)
dρ

]
,

(39)

fR0(r0) then obtain by one minus the derivative of above
equation over r0. Similarly, the CCDF of the distance to the
second neighbor in PLCP is derived by

P(R1 > r1) = P(Np(B(0, r1) ∩ Φ!
0) = 0)

+ P(Np(B(0, r1) ∩ Φ!
0) = 1)

= L!
(0,r1)

(λp) + (−λp)
∂L!

(0,r1)
(λp)

∂λp
, (40)

proof completes by taking the derivative over r1,

fR1(r1) = −
∂L!

(0,r1)
(λp)

∂r1
− (−λp)

∂2L!
(0,r1)

(λp)

∂λp∂r1
. (41)

In what follows, we compute the conditional distance dis-
tribution in PLCP networks.

Lemma 5 (Conditional Distance Distribution of PLCP):
The conditional CDF FR0|R1(r0|R1) is the final requirement

to approach the proposed approximation of the SINR meta
distribution,

FR0|R1(r0|R1)

=
fR0(r0)
fR1(R1)

− fR0(r0)
fR1(R1)

exp(−2λp(R1 − r0))

× exp
(
− 2πλl

∫ R1

0

1

− exp
(
− 2λp

(√
R2

1 − ρ2 −
√

max(0, r2
0 − ρ2)

))
dρ

)
.

(42)
Proof: We first obtain FR1|R0(r1|r0), which denotes the

CDF of the distance to the second nearest neighbor (which is
the probability that the distance to the second nearest neighbor
is less than r1) given the nearest one located at distance r0.
To do so, we start with computing the CCDF,

F̄R1|R0(r1|R0)
= P(R1 > r1|R0)

= P(Np(B(0, r1) ∩ Φ!
0 −B(0, R0) ∩ Φ!

0) = 0)

= L!
(0,r1)−(0,R0)

(λp)

= exp
(
− 2πλl

∫ r1

0

1− exp
(
− 2λp

(√
r2
1 − ρ2 −

√
max(0, r2

0 − ρ2)
))

dρ

)
× exp(−2λp(r1 −R0)), (43)

in which the subscript (0, r1) − (0, R0) denotes the area
B(o, r1)\B(o, R0), then the proof completes by applying the
Bayes’ theorem.

Note that the interference distribution of PLCP networks
is slightly different from PPP networks. Hence, the approx-
imation of the interference term G(R1) in (22) should be
recomputed, which is shown in the following lemma.

Lemma 6 (Interference Approximation of PLCP): In
PLCP, the conditional mean of the rest interference (without
pt), is given by

G1(R1) = 2πλlλp

( ∫ ∞

R1

∫ ∞

0

(ρ2 + r2)
−α
2 drdρ

+
∫ R1

0

∫ ∞

√
ρ2−r2

(ρ2 + r2)
−α
2 drdρ

)
+ 2λp

R1−α
1

α− 1
.

(44)
Proof: In PLCP, the remaining interference is composed

of three parts: (i) interference from the typical line (the
line passes though the origin, L0), (ii) interference from the
remaining lines, which do not intersect with B(0, R1) and (iii)
interference from the remaining lines, which intersect with
B(0, R1):

G1(R1) = E
[ ∑

i∈N\{1}

hxi
||xi||−α|R1

]

= E
[ ∑

x∈L0\{B(0,R1)}

||x||−α|R1

]

Authorized licensed use limited to: Maynooth University Library. Downloaded on January 21,2025 at 15:36:53 UTC from IEEE Xplore.  Restrictions apply. 



QIN et al.: DOMINANT INTERFERER PLUS MEAN FIELD-BASED APPROXIMATION FOR SINR META DISTRIBUTION 3671

+ E
[ ∑

x∈Φ0\{B(0,R1)},ρ<R1

||x||−α|R1

]

+ E
[ ∑

x∈Φ0\{B(0,R1)},ρ>R1

||x||−α|R1

]
, (45)

in which Φ0 = Φ!
0 \ L0, ρ denotes the distance from the

line to the origin, and the proof completes by using Camp-
bell’s theorem [40] with conversion from Cartesian to polar
coordinates.
Since PPP is a good approximation of PLCP [43], we compute
the proposed approximation based on (14) and (44), respec-
tively, in the numerical result section and compare these two
approximations.

Consequently, the proposed approximation of the SINR
meta distribution is obtained by substituting the distance
distribution in (42) and (41) into (22). Besides, authors in [27]
provides an interesting approximation to the SIR meta distribu-
tion of PLP with fixed transmission distance and we compare
the proposed approximation to their approximation (by adding
the noise and taking the expectation over R0).

Here, we provide some advantages and limitations of the
proposed approximation. The proposed approximation has
different requirements, which are joint distance distributions
and a spatial average of the interference except for the nearest
interferer, compared to the traditional approximation. There-
fore, for the point processes where the joint distance distri-
butions are available or can be approximated, the proposed
approximation is simple since it only needs one integral which
is about the distance to the nearest interferer (the expectation
over R1). Besides, computing moments is not always trivial,
it depends on the system model, e.g., the point process. The
moments of PPP, MCP, and Poisson bipolar networks are
trivial, for PLCP, however, the moments are not straight-
forward owing to the locations of interferers. For instance
in [43, (7.46)] is the Laplace transform of the interference
in PLCP networks, which is the PGFL part of the moments.
Therefore, the proposed dominant interferer-based approxima-
tion does provide some simplicity in computing SINR meta
distribution. However, the proposed approximation is restricted
by the ability to solve R0 (step (a) in (21)), e.g., it can not be
solved under Nakagami-m fading, and for the point processes
which has an unknown joint distance distribution, the proposed
approximation may not work.

V. NUMERICAL RESULTS

In this section, we validate the proposed approximation via
Monte-Carlo simulations with a large number of iterations
(5 × 105 iterations, in which 100 for location realizations
and 5000 for fading realizations) to ensure the accuracy, and
compare it with the beta approximation and the exact value
of the SINR meta distribution. We start with the standard
PPP network. We first generate two realizations of PPPs for
the locations of users and BSs. Users are located in the
Voronoi cells formed by BSs. While the realizations of PPPs
are fixed, the fading realizations change in each iteration and
we compute the success probability for each link. We then
obtain the CCDF of the success probability of each realization.

Unless stated otherwise, we use the system parameters listed
herein. The transmit power of BS is pt = 10 W, path-loss
exponent is α = 4, noise power is σ2 = 10−9 W and the
density of BS changes from 0.1 to 10 BS/km2. In the single-
tier case either pt or σ2 can be set to 1 since only their ratio
matters, however, we set the values of pt or σ2 separately
since we have a K-tier PPP network and we would like to be
consistent in parameters.

Note that in (22), Lambert W function W (·, ·) is used. When
we compute this function in MATLAB, we need to write the
code by using logarithmic input which allows for much larger
arguments than the built-in function to avoid infinity output,
and related codes can be found in [44].

Besides, to analyze the accuracy of the proposed approxi-
mation, we verify it through KL divergence [45] numerically
which compares the probability distribution of the proposed
approximation with the exact distribution:

DKL,prop|exact =
∑
γ′∈χ

f ′1(γ
′, θ) log

(
f ′1(γ

′, θ)
f(γ′, θ)

)
,

in which f ′1(γ
′, θ) is obtained by discretizing F̄ ′1(γ, θ):

f ′1(γ
′(i), θ) = F̄ ′1(γ(i), θ) − F̄ ′1(γ(i + 1), θ), γ′(i) = γ(i),

χ denotes the probability space: χ = 0.01, 0.02, . . . , 0.99, and
similar steps for obtaining f(γ′, θ) from F (γ′, θ). In addition,
we compared the KL divergence of the proposed approxima-
tion with the beta approximation and the KL divergence of
beta approximation is

DKL,beta|exact =
∑
γ′∈χ

f ′(γ′, θ) log
(

f ′(γ′, θ)
f(γ′, θ)

)
,

in which f ′(γ′, θ) is obtained by discretizing F̄ ′(γ, θ). Note
that the above analysis is based on the numerical results,
and the lower absolute value implies better approximation
performance.

In Fig. 2, we plot the exact value, beta approximation and
the proposed approximation of SINR meta distribution against
θ or γ at different values of γ or θ under λ = 1 km−2.
As shown, the proposed approximation shows good matching
at low values of θ and γ. However, when it comes to very high
values, especially θ, a small gap exists. The reason for the gap
at high values of θ is that we ignore the high order terms of
θ in both (18) and (21). Such gaps exist even if we increase
the values of j in (19) (j = 2 shows almost the same curve as
j = 1, in which the difference is less than 0.1, hence, omitted
in Fig. 5), hence the dominant interferer-based approximation
(Cor. 1) is a more efficient way (comparing (22) to (19) )
since no need of computing joint distribution of R1, . . . , Rj

(only fR1(r) and FR0|R1(r) are required) and a simple integral
completes the analysis. Notice that, the logarithmic scale is
used for the y-axis in Fig. 2 since the gap is negligible in
linear scale (e.g., the gap between the proposed approximation
and exact value at θ = 26 dB is actually 0.02).

Fig. 3 shows the gap between the proposed approximation
and beta and exact value of SINR meta distribution for a large
range of BS densities. The proposed approximation shows
very good performance at a large range of density of BS and
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Fig. 2. SINR meta distribution of PPP networks at λ = 1 BS/km2, α = 4 and pt = 10 W. The solid lines are exact values based on simulations, dash lines
are for beta approximation, and markers for the proposed approximation, respectively.

Fig. 3. SINR meta distribution of PPP networks at different density values from λ = 0.1 to λ = 10 BS/km2, α = 4 and pt = 10 W. The solid lines are
exact values based on simulations, dash lines are for beta approximation and markers are for the proposed approximation, respectively. γ = 0.3, 0.6, 0.9 in
(a), (b), (c), respectively.

low values of θ, and its performance is even better than beta
distribution, while saving a large amount of computing time.

Notice that the accuracy of dominant interferer-based
approximation strongly depends on the path loss exponent.
While α = 4 is an important case, user connections in
mm-Wave band will be line-of-sight, say UAV networks, hence
in Fig. 4 (a),(b),(c) we plot α = 2.5, 3, 3.5, respectively.
Clearly, the proposed approximation becomes more accurate
with the increase of α and in small values of α a gap exists.
In Fig. 4 (d) we plot the nearest-interferer-only approximation,
which is an upper bound of the system performance, and
as mentioned in Remark 2, the proposed approximation is
tighter by considering the mean of the remaining interferers
(all the interferers except the nearest one) but it is neither
upper bound nor lower bound: as can be observed from Fig. 2
that the proposed approximation does indeed become higher
than the exact value specially at high values of θ. On the
other hand, it can be observed from Fig. 4 that the proposed
approximation is lower than the exact value.

The KL divergence analysis of the proposed approximation
is provided in Table I. As shown in Table I, the proposed
approximation at high values of α shows a competitive results
compared with the beta approximation.

In the following part of this section, we follow the same
simulation steps by conditioning on each realization of point
processes, generating a large iterations of channel fading and
computing the conditional success probability of each link.
We plot the simulation results of the proposed approximation
in the four different scenarios, Poisson bipolar network, MCP,
K-tier PPP and PLCP, and compare the results with the

traditional beta approximation and simulation based exact
value of SINR meta distribution.

A. Numerical Results of Poisson Bipolar Networks

Fig. 5 and Fig. 6 show the SINR meta distribution of
Poisson bipolar networks. The proposed approximation shows
good matching at all values of θ and γ. In Fig. 6, we plot the
SINR meta distribution under 10 different values of R. With
the increase of the distance, system’s reliability drops sharply
and approaches 0, which is owing to the fixed transmission
distance and the noise power.

The KL divergence analysis of the proposed approxima-
tion under Poisson bipolar networks is provided in Table II,
in which the unit of R is meter. As shown in Table II, the
proposed approximation shows a competitive results compared
with the beta approximation.

B. Numerical Results of MCP

Fig. 7 and Fig. 8 show the SINR meta distribution of MCP
networks. In Fig. 8, we plot the SINR meta distribution under
different values of user cluster radii. As expected, SINR meta
distribution decrease with the increase of the user cluster
radii. Besides, compared to the Poisson bipolar networks,
the reliability of MCP networks drops slower and does not
approach 0. Clearly, the proposed approximation shows good
performance, especially at large values of γ.

The KL divergence analysis of the proposed approximation
under MCP networks is provided in Table III, in which the
unit of rc is meter. As shown in Table III, the proposed
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Fig. 4. SINR meta distribution of PPP networks at different path-loss values (a) α = 2.5, (b) α = 3, (c) α = 3.5, respectively, while λ = 1 BS/km2 and
pt = 10 W. The solid lines are exact values based on simulations, dash lines are for beta approximation and markers are for the proposed approximation,
respectively. (d) The nearest-interferer-only approximation and the proposed dominant interferer-based approximation of SINR meta distribution at α = 3.5.

TABLE I
KL DIVERGENCE ANALYSIS OF PPP NETWORKS

Fig. 5. Meta distribution of a Poisson bipolar network at λ = 10 BS/km2, α = 4, pt = 10 W and R = 50 m. The solid lines are exact values based on
simulations and markers for the proposed approximation, respectively.

approximation shows a competitive results compared with the
beta approximation.

C. Numerical Results of K-Tier Networks

Fig. 9 and Fig. 10 show the SINR meta distributions for
a 2-tier and 3-tier network, respectively. Here we can see
that the proposed approximation also works well for multi-tier

networks by mapping the i-th tier to the first tier and obtaining
the equivalent distance distributions and the density of the
new point process. In this way, we can avoid computing the
association probability and the summation of the aggregate
interference of different tiers.

Since the analysis of K-tier PPP is similar to PPP, the KL
divergence analysis is omitted.
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Fig. 6. Meta distribution of a Poisson bipolar network at λ = 10 BS/km2, α = 4, pt = 10 W. The solid lines are exact values based on simulations, dash
lines are for beta approximation and markers are for the proposed approximation, respectively. R is in meter and γ = 0.3, 0.6, 0.9 in (a,b,c), respectively.

TABLE II
KL DIVERGENCE ANALYSIS OF POISSON BIPOLAR NETWORKS

Fig. 7. Meta distribution of MCP networks at λ = 10 BS/km2, α = 4 and pt = 10 W. The solid lines are exact values based on simulations, dash lines
are for beta approximation and markers for the proposed approximation, respectively.

Fig. 8. Meta distribution of a MCP network at λ = 1 BS/km2, α = 4 and pt = 10 W. The solid lines are exact values based on simulations, dash lines
are for beta approximation and markers are for the proposed approximation, respectively. rc is in meter and γ = 0.3, 0.6, 0.9 in (a,b,c), respectively.

D. Numerical Results of PLCP
Fig. 11 and Fig. 12 display the SINR meta distribution of

PLCP networks. In Fig. 12, we plot the SINR meta distribution
in two different line and point densities. While we fix the
overall density of the BSs, with the increasing of the line
density, the fraction of links exceeding the reliability threshold

increases. The reason is that as the line density increases
(λl →∞) while the overall average number of points remains
unchanged, the PLCP converges to a homogeneous 2D PPP
with point density λ = πλlλp, as shown in the green curves
with diamond markers in Fig. 12; and as the line density
decreases (λl → 0) while the overall average number of points
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TABLE III
KL DIVERGENCE ANALYSIS OF MCP NETWORKS

Fig. 9. Meta distribution of a K-tier PPP network, where K = 2, λ1 = 1 BS/km2, λ2 = 3 BS/km2, α = 4, pt,1 = 10 W and pt,2 = 5. The solid lines
are exact values based on simulations, dash lines are for beta approximation and markers for the proposed approximation, respectively.

Fig. 10. Meta distribution of a K-tier PPP network, where K = 3, λ1 = 0.1 BS/km2, λ2 = 0.5 BS/km2, λ3 = 5 BS/km2, α = 4, pt,1 = 10 W,
pt,2 = 2 W and pt,3 = 0.2 W. The solid lines are exact values based on simulations, dash lines are for beta approximation and markers for the proposed
approximation, respectively.

Fig. 11. The SINR meta distribution of a PLCP network, where λl = 8/π km/km2, λp = 0.2 /km (the density of BSs is 1.6 BS/km2), α = 4, pt = 10 W.
The solid lines are exact values based on simulations and markers for the proposed approximation, respectively.

remains unchanged, the PLCP reduces to a homogeneous 1D
PPP with point density λ = λp. However, since the analysis of
1D PPP with λp = ∞ is challenging, we plot the SINR meta
distribution of 1D PPP with density λ = 2λp,2, as shown in
the gray curves with square markers in Fig. 12. In these two

asymptotical scenarios, the first contact distance in the case of
2D PPP is further than that of 1D PPP. Hence, system is more
reliable with the line density decreasing since shorter serving
distance and the system performance is bounded by 2D PPP
and 1D PPP with corresponding point densities.
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Fig. 12. The SINR meta distribution of PLCP networks, while the density of the BS is fixed at 1.6 BS/km2, the line and point densities are different,
λl,1 = 5λl,2, α = 4, pt = 10 W. The unit of λl is in km/km2. The solid lines are exact values based on simulations and markers for the proposed
approximation, respectively. The green curves with diamond markers are the SINR meta distribution of a 2D PPP network with density λ = πλl,1λp,1 and
the gray curves with square markers are the SINR meta distribution of a 1D PPP network with density λ = 2λp,2.

Fig. 13. The SINR meta distribution of PLCP networks under three approximations, (i) TPPP approximation [27, (16)]: green and crossing markers,
(ii) proposed approximation with PPP-approximated interference: orange and diamond markers, and (iii) proposed approximation with PLCP interference: red
dash lines, and (iv) the exact value: blue and solid lines. The curves are plotted under λl = 8/π km/km2 and λp = 0.2 /km.

TABLE IV
KL DIVERGENCE ANALYSIS OF PLCP NETWORKS

Besides, in Fig. 13, we plot the proposed approxima-
tion with PLCP interference, PPP-approximated interference,
respectively, and the approximation mentioned in [27, (16)],
which is based on the transdimensional PPP (TPPP).
As shown, PPP is a good approximation of PLCP and all
approximations provide good matching results.

The KL divergence analysis of the proposed approximation
under PLCP networks is provided in Table IV. As shown in
Table IV, the proposed approximation shows a good matching

result, and the PPP interference also shows a good matching
result, which is because PPP is a good approximation of PLCP.

VI. CONCLUSION

This paper analyzes a dominant interferer-based approxi-
mation, considering the dominate interferers exactly while the
rest interferers in an average sense, for SINR meta distribution
in the downlink Poisson cellular networks. We first obtain the
proposed approximation in a standard PPP networks with all
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the channel links subject to the Rayleigh fading. The applied
approximation shows good matching with the exact value
of SINR meta distribution at large range of BS densities,
SINR thresholds and various system parameters. Compared
with the traditional method, the proposed approximation does
not require computing the moments of conditional success
probability. It can be derived in a simple form based on
the Lambert W function and the joint CDF and PDF of the
first and the second nearest BSs’ distance distribution, which
highly reduces calculation complexity and is highly time-
efficient. To illustrate the accuracy and operability, we extend
the proposed approximation in four different scenarios and
compare the results with the popular used beta approximation
as well as the Monte-Carlo simulations. Meanwhile, we derive
the SINR meta distribution for the PLCP networks for the
first time based on the proposed approximation since it avoids
computing the b-th moments and highly reduce the complexity
of the calculation process.

Throughout this paper, we focus on validating the proposed
approximation with simulations and beta approximation in
downlink scenarios. For the uplink cases, system models are
more complex, e.g., transmit power may be a function of
the serving distance (inverse power control), the locations
of interferers can be closer to the BSs, and maybe more
than one active user within one Voronoi cell (depends on
the transmission policy). Therefore, the distance distributions,
as well as system model, are way more complicated than
downlink scenarios. While we only compute the SINR meta
distribution in the downlink in this paper, uplink analysis,
as well as some more complex system models, such as cluster
distributed BSs [25] and [46], can be an interesting future
research direction.

APPENDIX

A. Proof of Theorem 1

Given Φ, the success probability is given by

Ps(θ) =
∏
i∈N

(
1

1 + θ||xi||−α||x0||α

)
exp

(
− θ

pt
||x0||ασ2

)
.

(46)

Hence, following the Campbell’s theorem [40] with conversion
from Cartesian to polar coordinates, we have the b-th moment,

Mb(θ) = E||x0||

[
E

[ ∏
i∈N

(
1

1 + θ||xi||−α||x0||α

)b ∣∣∣∣ ||x0||
]

× exp
(
− bθ

pt
||x0||ασ2

)]
= ER0

[
exp

(
− 2πλ

∫ ∞

r0

[
1−

(
1

1+θr−αRα
0

)b]
rdr

)
× exp

(
− bθ

pt
Rα

0 σ2

)]
= ER0

[
exp

(
− λFb

)
exp

(
− bθ

pt
Rα

0 σ2

)]
, (47)

where,

Fb = 2π

∫ ∞

R0

[
1−

(
1

1 + θr−αRα
0

)b]
rdr

(a)
= πδ

∫ ∞

Rα
0

[
1−

(
u

u + θRα
0

)b]
uδ−1du

(b)
= πδ

∫ ∞

Rα
0

∞∑
k=1

(
b

k

)
(−1)k+1

(
θRα

0

u + θRα
0

)k

uδ−1du

= πδ
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k=1

(
b

k

)
(−1)k+1(θRα

0 )k

∫ ∞

Rα
0

(
uδ−1

(u + θRα
0 )k

)
du

= πδ

∞∑
k=1

(
b

k

)
(−1)k+1 αθkR2

0

−2 + kα

× 2F1(k,−δ + k, 1− δ + k,−θ), (48)

where step (a) follows from using the replacement u = rα

and step (b) follows from the binomial expansion. Notice that
the above expression is different from the one derived in [19],
since the association policies are different: the typical user
in this section associated with the nearest BS, while the user
in the Poisson bipolar network has a dedicated serving BS.
Therefore, the locations of interfering BSs in this section are
different from [19]: lower bound of the integration is not zero.
Besides, since we included the noise here, the relative distance
process (RDP) approach mentioned in [5] and [47] cannot be
used.
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