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Abstract
In the absence of a true gold standard for non-invasive baroreflex sensitivity estimation, it is difficult to quantify the accuracy 
of the variety of techniques used. A popular family of methods, usually entitled ‘sequence methods’ involves the extraction 
of (apparently) correlated sequences from blood pressure and RR-interval data and the subsequent fitting of a regression 
line to the data. This paper discusses the accuracy of sequence methods from a system identification perspective, using both 
data generated from a known mathematical model and spontaneous baroreflex data. It is shown that sequence methods can 
introduce significant bias in the baroreflex sensitivity estimate, even when great care is taken in sequence selection.

Keywords  Sequence methods · Baroreflex sensitivity · System identification

Introduction

The baroreflex sensitivity (BRS) quantifies the relationship 
between a change in blood pressure and a change in R-R 
interval (the time elapsed between two successive R-waves 
of the QRS signal on the electrocardiogram), where R-R 
interval variations are considered a response to changes in 
blood pressure (BP). A high BRS is indicative of a strong 
relationship between BP and R-Rinterval, therefore dem-
onstrating a robust baroreflex, with the opposite suggest-
ing the baroreflex is impaired. Analysis carried out in [1] 
showed that a high BRS is linked to vagal (or parasympa-
thetic) effects and not BP buffering (controlled by peripheral 
resistance), which explains why BRS assessment has been 
shown to provide insight into the probability of cardiovascu-
lar events, especially in patients with a number of underlying 
conditions [2]. The current gold standard for BRS estima-
tion, the Oxford method [3], is invasive and can be unsafe 
to perform on patients at risk of cardiovascular events, typi-
cally those patients that may benefit most from continuous 

BRS monitoring. In an attempt to find an accurate non-
invasive BRS estimation method, which can be performed 
in a clinical setting, a number of non-invasive methods have 
been developed using spontaneous data [4]. Spontaneous 
data, in this case, is considered spontaneous fluctuations in 
BP and HR, recorded while the subject is in standing and 
supine positions, without any external stimulus. The non-
invasive methods developed range from spectral analysis 
methods [5] to autoregressive methods [6], and everything 
in between [7– 9], with sequence methods emerging as a 
popular method [10, 11].

Results obtained from recent non-invasive BRS methods 
are being compared to those obtained using the sequence 
methods [12– 14], identifying the sequence methods as the 
de facto gold standard for non-invasive BRS estimation. As 
sequence methods become more prevalent, their reliability as 
accurate BRS estimators is questioned. In 2019, Silvia et al 
[15] investigated the BRS estimates obtained using sequence 
methods applied to the complete BP and R-R interval series, 
in comparison to those obtained from a low-pass (LP) and 
high-pass (HP) filtered series. The results show correlation 
between estimates obtained from the original series and the 
HP series, with little to no association with the LP estimates. 
This suggests that sequence methods only quantify short 
term fluctuations in the baroreflex, such as respiratory fluc-
tuations, failing to accurately capture long term effects, like 
sympathetic mediated changes in BP and HR. In 2020, Wes-
sel et al [16] concluded that the sequence selection criteria 
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are incapable of distinguishing between the random and 
baroreflex controlled sequences, their results suggesting that 
sequence methods have“a potentially large methodological 
bias as an estimate for the baroreflex sensitivity”. In 2020, 
Wessel et al [16] concluded that the sequence selection cri-
teria are incapable of distinguishing between the random and 
baroreflex controlled sequences, their results suggesting that 
sequence methods have“a potentially large methodological 
bias as an estimate for the baroreflex sensitivity”. In 2020, 
Chen et al [13] calculated BRS in rats using the traditional, 
invasive, Oxford method and compared them to estimates 
obtained using the sequence methods (applied to spontane-
ous readings). Their results show a positive bias in the mean 
gain estimates, and a high standard deviation, for the BRS 
estimates obtained using sequence methods compared to 
those obtained using the Oxford method. The high standard 
deviation suggests that, while the gains are higher than the 
Oxford method, the estimates are not just offset by a constant 
across all cases, but that the bias introduced varies from case 
to case. This disparity between cases makes it difficult to 
account for the bias when trying to assess if a patient has an 
impaired or non impaired baroreflex when using sequence 
methods for BRS estimation.

The main contribution of this paper is a critical examina-
tion of the theoretical foundation behind the use of sequence 
method for baroreflex sensitivity estimation. The analysis 
aims to explain the persistent positive bias seen in BRS esti-
mates obtained using sequence methods when compared to 
alternative non invasive BRS estimation methods [4, 13, 16]. 
While other studies show a positive bias in BRS estimates 
obtained using sequence methods, this paper determines the 
source of the bias in the BRS estimates, and if refinements 
made to the sequence selection process are sufficient to over-
come the bias.

It should be noted that the analysis in this paper primarily 
focusses on the‘beat-to-beat’baroreflex, mediated primar-
ily by A-fibers, characterized by myelinated axons with a 
lower activation threshold (approximately 60 mmHg) and 
near-constant activity throughout the cardiac cycle, encoding 
blood pressure levels through a frequency-modulated code 
of action potentials. A-fibers also feature a high conduction 
speed, relative to C-fibers, which are typically only acti-
vated during noxious or perilous stimuli, such as substantial 
increases in blood pressure, which may be characteristic of 
the Oxford method [17–19]. As a result, the results in this 
paper, and results from other non-invasive BRS studies, may 
not be directly comparable to those obtained using the inva-
sive Oxford method for BRS estimation.

The remainder of the paper is organised as follows. Sec-
tions 2.2 and 2.3 describe the state of the art of BRS estima-
tion and the development of sequence methods; Sect. 2.4 
analyses the effect sequencing data has on gain estimation; 
Sect. 2.5 details the development of a controlled numerical 

example where sequence methods can be tested on a system 
with a known gain; Sect. 2.6 demonstrates the prevalence of 
positive gain bias in BRS estimates using sequence methods, 
in comparison to methods from the control systems sciences; 
Sect. 3 presents the results of the paper; Sect. 4 discusses 
the results of the paper; and Sect. 5 draws the conclusions 
on the study.

Materials and methods

The baroreflex

The baroreflex is the homeostatic mechanism that maintains 
BP, by correcting small changes in BP, detected through 
baroreceptors, via alteration of cardiac output and peripheral 
resistance. Figure 1 depicts the baroreflex loop as a feedback 
control loop, which regulates RR interval via the central 
nervous system (CNS). In this instance, both respiration and 
modulation of the sinus node are considered noise sources. 
The gain of the CNS block represents BRS. It is also worth 
noting that the effectors of BP operate on a variety of time 
scales. Spectral indices around 0.25Hz typically represent 
respiration, oscillations around 1Hz represent cardiac activ-
ity, with 0.1Hz reflecting sympathetic and vagal tone [1, 20].

BRS estimation

The Oxford method [3] is the current gold standard for 
BRS estimation, using a vasodilator or constrictor to elicit a 
strong change in BP, and the subsequent RR-interval change 
recorded. The relationship between BP and RR-interval is 
plotted, a linear regression line [21] is fitted to the data, 
and the regression coefficient (slope) identified as the BRS 
gain. Alternatively, researchers [22] have suggested employ-
ing mathematical functions with a nonlinear sigmoidal-like 

Fig. 1   The baroreflex loop with two external noise sources, nr repre-
senting respiration and ns representing central modulation of the sinus 
node
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shape to represent the baroreflex buffering response to the 
pharmaceutical stimuli observed. The approach in [22] aims 
to further improve the accuracy of the estimated BRS gain. 
The invasive nature of the test makes it impossible to carry 
out in a routine clinical setting, expensive, and can be unsafe 
to perform on patients with a number of underlying condi-
tions [23]. Since the ability to accurately, and safely, assess 
BRS is most beneficial for patients with a history of cardiac 
events or cardiac related underlying conditions, the majority 
of which cannot safely undergo the Oxford procedure, the 
need for a simple, non-invasive alternative is paramount. 
To date, no gold standard for non-invasive BRS estimation 
exists, though a number of methods have been proposed, 
ranging from spectral analysis methods to regression meth-
ods, including sequence methods [4].

The majority of non-invasive BRS estimation methods 
developed can be categorised as time- or frequency-domain 
approaches. Frequency domain approaches typically inves-
tigate the BP and RR interval variability through spectral 
anaylsis [4]. Frequency domain approaches rely on the 
assumption that the frequency range of interest is the region 
representing heart rate variability under the influence of the 
baroreflex. If the frequency range is correct, in theory the 
effects of noise sources in the BRS estimate are mitigated. 
While time domain methods focus on the identification of 
changes in RR interval driven by changes in BP, and quan-
tifying the strength of the response, time domain methods 
attempt to mitigate the noise sources through the selection 
of baroreflex driven portions of the recordings.

Sequence methods for BRS estimation

Over the past three decades, sequence methods have become 
a popular method for non-invasive measurement of BRS 
[10, 24–28]. A sequence method, first introduced by Di 
Rienzo in 1985 [29], analyses BP and ECG signals, recorded 
without any external stimulus, for correlated increases or 
decreases in both the input (BP) and output (RR-interval). 
Under the sequence method philosophy, a set of data points 
is considered a valid sequence if it has three, or more, con-
secutive increasing or decreasing points in input and out-
put data. Examples of positive-going and negative-going 
sequences are shown in Figure 2. Following sequence selec-
tion, a regression line is fit to each individual input/output 
sequence. The ‘gain’ for the sequence is the regression coef-
ficient and the BRS for the data set is determined as the 
average of all the regression coefficients.

In contrast, Gouveia et al [27] fit a global regression line 
through all selected sequences, a method that was further 
developed in [30] and [31].

In 1988, Bertinieri et al [32] further refined the sequence 
selection criteria to include a minimum changes of at least 
≥ 1mmHg in blood pressure, ≥ 4ms in RR-interval, and 

a delay of one beat is assumed [32]. Since then, various 
researchers have chosen to use a variety of minimum thresh-
olds, delays and some include a minimum correlation coef-
ficient (r) in an attempt to make the gain estimates more 
robust to noise. In 2009, Laude et al [33] investigated the 
optimal combination of minimum sequence lengths, vari-
able thresholds, delays and r values, in an attempt to stand-
ardise the sequence selection criteria. The authors carried 
out their experiment on mice data sets, investigating BRS 
estimation using sequences of various lengths, using various 
BP/R-R interval thresholds and different delays between the 
input and output. It also investigates whether a minimum r 
is required. The study concluded that sequence methods, 
when applied to data from mice, should consider sequences 
of three beats, or more, with a delay of zero or three beats. 
Thresholds for the r, SBP, or PI were deemed unnecessary.

Analytical overview of sequence methods

The increase in popularity of sequence methods calls for a 
rigorous analysis of the sequence methods to verify their 
validity as a reliable identification method. In this section, 
the effects sequencing data has on any associated noise con-
tamination and, in turn, it’s effects on gain estimation, are 
considered.

Sequences within a system identification framework

Spontaneous BP and ECG readings, used for non-invasive 
BRS estimation methods, such as the EuroBaVar dataset [4], 
are continuous BP and ECG readings taken from individu-
als without any external interventions/stimulus imposed for 
the purpose of the recordings i.e. the closed-loop baroreflex 

Fig. 2   Example of valid sequence selection. The graph highlights 
three instances where three, or more, matching increases/decreases in 
both the input (u(t)) and the output (y(t)) are observed
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is intact. When dealing with closed-loop data, a number of 
fundamental properties must be considered when modelling 
the system’s behaviour.

Identification methods, used to elicit open-loop dynamics 
from closed loop data, can be divided [34] into three catego-
ries: (a) direct methods, where the measured input–output 
signals are used and the feedback loop is ignored, (b) indi-
rect methods, where some information about the feedback 
is available and an effective open-loop input signal can be 
formed, and (c) joint input–output methods, where both 
input and output signals are treated as outputs driven by 
noise and the feedback system. Spontaneous BP and ECG 
readings do not provide any information about the feedback 
loop or noise present in the system, meaning that direct 
methods are appropriate when dealing with the development 
of BRS estimation methods from spontaneous BP and ECG 
readings. However,it should be noted that direct methods, 
applied as if the feedback does not exist, only work well if 
the true system can be described within the chosen model 
structure (both the dynamic model and the noise model). In 
time-domain identification, given that sampled data is used, 
a discrete time system representation is used, via a general 
time-domain model structure of:

where y(t) is the output signal (RR-interval), u(t) is the input 
signal (BP), and e(t) is an unknown white noise sequence, 
with a mean value of zero and assumed to be uncorrelated 
with past or future values of u(t). t is the discrete-time index. 
G(q) is the open-loop system of interest, with H(q) repre-
senting the noise model.

If an inadequate noise model (H(q)) is used, devia-
tions from the true noise characteristics will introduce bias 
in the estimate of system G(q). Sequence methods con-
sider G(q) = k , where k is a positive rational number, and 
H(q) = 0 . Since sequence methods, in essence, consider 
the system to be a simple gain and do not account for any 
dynamics, in either the main system or the noise model, a 
bias in the BRS estimate is highly likely.

Generic analysis of sequence methods

Suppose that the input signal for a system (such as the 
baroreflex) is described by a ramp of the form:

where t is the discrete-time index and p can take on the 
values +1,−1 . This input is passed through the system 
described by a simple gain, with the output corrupted by 
measurement noise e(t) = [−n, n] , as:

(1)y(t) = G(q)u(t) + H(q)e(t)

(2)u(t) = p t

(3)y(t) = sku(t) + e(t)

where k < n . We assume that the gain, k, is +ve, though s 
can take on the values +1,−1 . In the case of baroreflex sen-
sitivity, s is always +1 (i.e. a +ve change in blood pressure 
causes a +ve change in RR-interval), but we will retain the 
flexibility in order to determine general conclusions. Now, a 
sequence is selected where the output is going in a consistent 
direction, in a similar manner to ‘Seq 1’ shown in Figure 2,

and we assume that the next point, y(r + 1) , is inflected com-
pared to the points in Y(r, i). Four cases, corresponding to 
all possible combinations of p and s will now be considered.

Case 1  p = +1 , s = +1 The input to the system is a +ve 
going ramp:

The system is described by:

For an inflection:

But

giving, from (7), that

and e(r) is positively biased with respect to e(r + 1) , with 
the result that the estimate for k from the sequence Y(r, i) is 
positively biased.

Case 2  p = +1 , s = −1 The input to the system is a +ve 
going ramp:

The system is described by:

For an inflection:

But

giving, from (12), that

and e(r) is negatively biased with respect to e(r + 1) , with 
the result that the estimate for k from the sequence Y(r, i) is 
negatively biased.

(4)Y(r, i) = [y(r − i) y(r − i + 1) … y(r − 1) y(r)]

(5)u(t) = t

(6)y(t) = k u(t) + e(t)

(7)y(r + 1) + e(r + 1) < y(r) + e(r)

(8)y(r + 1) = y(r) + k

(9)e(r + 1) < e(r) − k

(10)u(t) = t

(11)y(t) = −k u(t) + e(t)

(12)y(r + 1) + e(r + 1) > y(r) + e(r)

(13)y(r + 1) = y(r) − k

(14)e(r + 1) > e(r) + k



507Physical and Engineering Sciences in Medicine (2024) 47:503–516	

Case 3 p = −1 , s = +1 The input to the system is a -ve 
going ramp:

The system is described by:

For an inflection:

But

giving, from (17), that

and e(r) is negatively biased with respect to e(r + 1) , with 
the result that the estimate for k from the sequence Y(r, i) is 
negatively biased.

Case 4 p = −1 , s = −1 The input to the system is a -ve 
going ramp:

The system is described by:

For an inflection:

But

(15)u(t) = −t

(16)y(t) = k u(t) + e(t)

(17)y(r + 1) + e(r + 1) > y(r) + e(r)

(18)y(r + 1) = y(r) − k

(19)e(r + 1) > e(r) + k

(20)u(t) = −t

(21)y(t) = −k u(t) + e(t)

(22)y(r + 1) + e(r + 1) < y(r) + e(r)

giving, from (7), that

and e(r) is positively biased with respect to e(r + 1) , with 
the result that the estimate for k from the sequence Y(r, i) is 
positively biased.

Artificial numerical example

Section  2.4.2 provides a generic analysis of sequences 
and highlights potential limitations associated with using 
sequence methods as a method of gain estimation, this sec-
tion builds on that by investigating these points in the con-
text of a controlled numeric example. In this section, an ideal 
system is simulated to examine, experimentally, the effect 
of sequence methods under known, controlled, conditions. 
Specifically, cases 1 and 3, detailed in Sect. 2.4.2, where the 
system is a simple positive gain, with additive noise, with 
both positive- and negative-going input sequences, depicted 
in Figure 3, are examined within a numerical framework.

Problem setup

Input signal   The input signal, a surrogate for BP, is gener-
ated using a zero mean, random number generator, which is 
passed through a discrete time 7th order Butterworth filter 
with transfer function:

(23)y(r + 1) = y(r) + k

(24)e(r + 1) < e(r) − k

Fig. 3   Numerical experiment 
set up. The input signal u(t) is 
formed by passing a sequence 
of random numbers through a 
low pass filter. The system is 
described by a simplain gain, 
in this case 2. The output y(t) 
is formed by the output of 
the filter and additive white 
noise e(t). Sequence selec-
tion is determined by the valid 
sequence criteria (outlined in 
Table 2). From the sequences 
the system’s gain is estimated 
using a gain estimation method 
(outlined in section 2.5.3)
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where n is the order of the model, q is the backward shift 
operator and the ai and bi are chosen to achieve unity dc 
gain. The signal was filtered both forward and backwards, 
giving a zero phase distortion, and an effective filter order 
of 14. Note that there is a strong relationship between Ωc , 
the normalised filter cut-off frequency, and the maximum 
sequence length Lmax that can be achieved in u(t), given by 
the approximate relation:

However, the max sequence length, determined by the simul-
taneous minimum in both u(t) and y(t), is also dependent on 
the signal-to-noise ratio (SNR) in y(t), which is determined 
by the amplitude, m, of the measurement noise, e(t). The 
relationship between Ωc and the maximum sequence length 
that can be achieved in u(t), and SNR and the maximum 
sequence length that can be achieved in y(t) is illustrated in 
Figure 4. The average sequence length for various combina-
tions of Ωc and SNR is shown in Table 1.

System   The system, a surrogate for baroreflex sensitivity, 
is a simple gain of 2, with additive zero mean, white noise. 
The noise signal is a surrogate for unquantified factors that 
influence the baroreflex.

Output signal   The output of the simulated system, a sur-
rogate for R-R interval, is:

where u(t) is the input, e(t) is zero mean white noise and 
y(t) is the output.

(25)F(q) =
bo + b1q + ... + bnq

n

1 + a1q + ... + anq
n

(26)Lmax ≈ 3.26 + 7e−8Ωc

(27)y(t) = 2u(t) + e(t)

Sequence selection

After generating both u(t) and y(t), valid sequences are 
extracted. In the literature, a number of variations on the 
criteria for a valid sequence are presented, as detailed in 
Sect. 2.3, this study considers four sets of selection criteria, 
as documented in Table 2.

The input and output thresholds used for criteria c and d 
in Table 2 are calculated using:

where �2

BP
 denotes the variance in BP, �2

u
 denoted the vari-

ance on the input signal, and

where �2

RR
 denotes the variance in RR-interval and �2

y
 denote 

the variance on the output signal. The relationship between 
�
2
u
 and fc is characterised as:

where, �2

rnd
 is the variance on the signal generated by the 

random number generator. The relationship between �2
y
 , fc 

and SNR is characterised as:

The input and output variances change with Ωc and SNR, 
in turn varying the input and output thresholds in each 
case; �2

x
 decreases as Ωc decreases, while �2

y
 decreases as Ωc 

decreases and increases as SNR decreases.
These four criteria were chosen to examine the effects of 

sequence selection refinements and to what extent, if any, 
they improve the accuracy of the gain estimates, in compari-
son to the original sequence method. Criteria set a represents 
the original sequence method [29]; Criteria set b, a sequence 
method with an additional threshold on r; Criteria set c, a 
method with both r and minimum signal thresholds; and Cri-
teria set 4, a method with a longer minimum sequence length 
and minimum signal thresholds. It should also be noted that 
while, in the literature, some methods account for a delay 
between the input and output, a lag is not considered in the 
current numerical case as there is no delay in the system 
generating y(t) from u(t).

Gain estimation methods

To examine the accuracy of sequence methods (GEM 2 and 
GEM 3) as a gain estimation method, their performance 
is compared to a sequence-free gain estimation method, 
GEM 1. GEM 1 through 3 are defined as follows:

(28)Input threshold =
BP threshold

�
2

BP

× �
2

u
,

(29)Output threshold =
RR threshold

�
2

RR

× �
2

y
,

(30)�
2

u
= fc�

2

rnd

(31)�
2

y
= k1fce

−k2SNR + k3fc

Table 1   The average sequence length for various combinations of Ω
c
 

and SNR

Ω
SNR

3dB 8dB 20dB

0.1 3.538 3.759 6.049

0.2 3.734 4.195 6.321

0.3 3.739 4.164 5.166

0.4 3.641 3.849 4.280

0.5 3.534 3.496 3.722

0.6 3.360 3.351 3.439

0.7 3.262 3.262 3.304

0.8 3.211 3.232 3.286

0.9 3.219 3.236 3.278

0.99 3.233 3.250 3.306
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Gain estimation method 1 (GEM 1) Linear regression 
applied to the complete data set, where the gain is the 
regression coefficient [21].

Gain estimation method 2 (GEM 2) Linear regression 
applied to all data points identified as valid sequences, 
where the gain is the regression coefficient [27].

Gain estimation method 3 (GEM 3) Linear regression 
applied to individual (valid) sequences, where the gain is 
the average of all the individual regression coefficients 
[35].

Methods 2 and 3 are applied four times, using the vari-
ous sequence selection criteria detailed in Table 2. Fig-
ure 5 provides an illustration of the three gain estimation 
methods in action, highlighting the differences in their use 
of the data, and showing that GEM 2 results in a smaller 

number of data points compared to GEM 1, with multiple 
(individual) regression lines for GEM 3.

Experimental analysis using the EuroBaVar data set

The efficacy of sequence methods, as a BRS estimation 
method, is now examined, via the EuroBaVar experimental 
data set [4]. BRS estimates, obtained from the spontaneous 
blood pressure signals, are examined for trends that align 
with those seen in the numerical example, i.e. positive bias 
in BRS estimates calculated using the sequence methods, 
compared to alternative, system identification (SI) based 
methods.

EuroBaVar data set

The EuroBaVar dataset [4] is an open source dataset consist-
ing of 42 files corresponding to spontaneous, non-invasive 
BP and HR readings from 21 subjects in both supine and 
standing positions for approximately 10 min. The data is 
recorded on a beat by beat basis, using a Finapres®system, 
for BP, and an ECG system, for RR-interval. Subjects 13 
and 18 are considered to have an impaired baroreflex, while 
a number of subjects are considered to be at risk of impaired 
baroreflex due to underlying conditions. Valid, non-inva-
sive, BRS estimation methods must be capable of clearly 

Fig. 4   Examining the effect of ΩC and SNR, on the maximum 
sequence length achieved in u(t) and y(t).  denotes the input sig-
nal u(t) with   and  marking alternate valid sequences,   denoted 

the output of the system before the noise signal is added ( 2∗u(t) ), 
 denoted the noise signal e(t) and  denotes the output signal 

y(t) with  and  marking alternate valid sequences

Table 2   Sequence selection criteria used for the numerical example

Criteria Sequence 
length

r Input threshold Output 
threshold

a 3+ 0 No No
b 3+ 0.85 No No
c 3+ 0.7 Yes Yes
d 4+ 0 Yes Yes
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distinguishing subjects 13 and 18 as impaired, while also 
(ideally) highlighting the subjects at risk of an impaired 
baroreflex with a lower BRS estimate than the healthy 
volunteers.

BRS estimation methods employed

To examine the accuracy of sequence methods as a BRS 
estimation method, BRS estimates calculated using 7 esti-
mation methods applied to the EuroBaVar dataset are com-
pared. Methods 1a through 1d, outlined in Table 3 represent 
4 sequence methods with equivalence to the sequence selec-
tion criteria used in the numerical case, outlined in Table 2.

Methods 2a through 2c represent BRS estimation meth-
ods based on a rigorous SI approach developed by McLoone 
et al [36]. This method was selected for comparison due 
to its utilisation of ARMAX models, which account for a 
dynamic noise component, unlike sequence methods. In 
addition, in [36] a weighting function applied to the fre-
quency spectrum places greater importance on frequencies 
associated with the baroreflex, thereby further reducing the 
effect of noise on the BRS estimate. The data preprocessing, 
and the initial steps, are the same for each of methods 2a → 
2c, as follows:

•	 Resample signals u(t) and y(t) at 1.5Hz.
•	 Pass u(t) and y(t) through Butterworth filters with high 

pass Ωc = 0.05 and low pass Ωc = 0.5Hz cut-off frequen-

cies. The frequency range used is that specifically associ-
ated with the human baroreflex.

•	 An autoregressive moving average (ARMAX) model is 
fit to the data using a prediction error method.

•	 A Gaussian-based non-uniform weighting function W(f) is 
applied to the frequency response of the identified model, 
where 

 with � a constant, which determines the width of the 
Gaussian weighting function.

•	 In general, a representative average value on a continu-
ous frequency variable f, over a range [fmin, fmax] , can be 
obtained as: 

(32)W(f ) = e
−

(f−f0 )
2

2�2 ,

(33)BRS(fmin, fmax) =
1

Nw
∫

fmax

fmin

W(f ).|Gyu(f )|df ,

Fig. 5   Three estimation methods applied to the numerical example: 
a GEM 1: a linear regression fit to the entire data sets, b GEM 2: a 
linear regression fit to selected (sequence) data points, and c GEM 
3: a linear regression fit to each individual sequence. m represents 
the overall gain estimate from each method, np represents the num-

ber of data points considered in (a) and (b), while nseq represents the 
number of sequences considered in (c). For this illustration, a specific 
cut-off frequency ( Ωc = 0.1 ), SNR ( = 0dB ), and a reduced number of 
data points in u(t) and y(t), are chosen to clearly highlight the differ-
ences between the three methods

Table 3   Valid sequence criteria used with the experimental data

Criteria Sequence 
length

r BP threshold 
(mmHg)

RR 
threshold(ms)

a 3+ 0 0 0
b 3+ 0.85 0 0
c 3+ 0.7 4 1
d 4+ 0 4 1
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 where W(f) defines the ‘weighting’ applied at each fre-
quency over the interval [fmin, fmax] , f0 is the centre fre-
quency of each band, and Nw is a normalisation factor, 
where 

 If Gyu is only available at Nf  discrete frequency points 
fi = fmin + i Δf , i = 0, 1,… ,Nf − 1 , where Δf  is the 
frequency interval between points, then equation (33) 
becomes: 

 with Nw =
∑Nf

i=1
W(i).

Method 2a

•	 BRS gain is calculated using equation (35) with a fre-
quency range 0.05 to 0.15Hz

Method 2b

•	 BRS gain is calculated using equation (35) with a fre-
quency range 0.15 to 0.4Hz

Method 2c

•	 BRS gain is the average of the gain estimates obtained from 
methods 2a and 2b.

Results

Numerical example results

The analysis carried out in Sect. 2.4.2 demonstrates the 
effect of sequencing data sets on the noise properties of 
the system, demonstrating that the gain obtained from 
the sequenced data is positively biased. The numerical 
example investigates these findings through a dedicated 
numerical example, where the gain = 2 . Table 4 shows the 
gain estimates obtained using the gain estimation methods 
outlined in Sect. 2.5 (GEM 1, 2 & 3). Over the years, a 
number of refinements to the sequence selection criteria 
(Sect. 2.3) proposed, to improve the fidelity of sequence 

(34)Nw = ∫
fmax

fmin

W(f )df .

(35)BRS = 1∕Nw

Nf−1∑

i=0

W(i).|Gyu(i)|,

methods and reduce the effects of noise on the gain esti-
mates. To investigate the effects of the refinements on the 
gain estimates, four different sequence criteria (outlined 
in Table 2) were applied to the numerical data.

Considering the original sequence method (GEM 3 using 
criteria a in Table 3), it is apparent that this sequence method 
returns higher gain estimates than those obtained using lin-
ear regression analysis (GEM 1), with the accuracy of the 
estimates decreasing as the amount of noise added to the 
system increases. While GEM 2 does provide a significantly 
better estimate compared to GEM 3, using all the data (via 
GEM 1) proves to be the most resilient to noise.

The effect of the refinements on the gain estimate were 
investigated through the addition of threshold and correla-
tion coefficients limits to the sequence selection process 
(criteria b and c). The refinements do improve the accuracy 
of the gain estimates, but only marginally. However, the 
increase in minimum sequence length from 3 to 4 (criteria 
d) provides a more significant improvement in accuracy 
of GEM 3 across a number of cases, though fidelity still 
suffers for cases with significant additive noise.

EuroBaVar data set results

Considering the analytical examination (section  2.4.2), 
and the increased gain estimates observed when using the 
sequence methods in the numerical example, the results sug-
gest that consistently higher BRS gains are obtained using 
sequence methods. From Table 5, which contains the BRS 
estimates obtained using the methods outlined in Sect. 2.6, 
the results show that, in the majority of cases, the BRS esti-
mates obtained using sequence methods are consistently 
higher than those obtained using a SI-based approach that 
accounts for the closed-loop nature of the baroreflex, with 
the exceptions highlighted by a yellow cell colour.

Table 5 also identifies those subjects deemed to have 
an impaired baroreflex, i.e. subject 13 and 18, highlighted 
by a green row colour, and the patients with underlying 
conditions with risk of an impaired baroreflex, highlighted 
by a blue row colour. For these special cases, it should be 
noted that not only do the sequence methods overestimate 
the gain, but there are also a number of cases where a BRS 
estimate cannot be obtained from the data using sequence 
methods, the majority of which are subjects deemed to 
have an impaired baroreflex. This means that sequence 
methods frequently fail in cases where accurate BRS esti-
mation is vital.
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Table 4   Gain estimation using three methods, (i) GEM 1: linear regression applied to entire data set, (ii) GEM 2: linear regression applied to 
data points selected through sequence methods and (iii) GEM 3: average slope of the regression coefficient of each sequence

Criteria

Linear Regression Analysis Sequence Methods

Ω
SNR GEM 1 GEM 2 GEM 3

3dB 8dB 20dB 3dB 8dB 20dB 3dB 8dB 20dB

a

0.1 2.02 2.00 2.00 2.14 2.09 2.03 15.92 10.13 4.72

0.2 1.98 2.00 2.00 2.15 2.12 2.01 7.25 4.58 2.46

0.3 1.99 2.00 2.00 2.17 2.10 2.00 4.92 3.36 2.18

0.4 1.99 2.01 2.00 2.14 2.07 2.00 3.64 2.67 2.08

0.5 2.01 2.00 2.00 2.13 2.04 2.00 2.99 2.41 2.04

0.6 2.02 1.99 2.00 2.10 2.03 2.00 2.69 2.28 2.03

0.7 2.00 1.99 2.00 2.07 2.02 2.00 2.42 2.17 2.01

0.8 1.99 2.00 2.00 2.10 2.05 2.00 2.39 2.15 2.02

0.9 2.00 2.00 2.00 2.10 2.04 2.01 2.32 2.12 2.01

0.99 2.01 2.00 2.00 2.07 2.03 2.01 2.32 2.10 2.02

b

0.1 2.14 2.09 2.03 15.54 10.15 4.74

0.2 2.15 2.12 2.01 6.85 4.55 2.45

0.3 2.17 2.10 2.00 4.69 3.36 2.17

0.4 2.14 2.07 2.00 3.54 2.68 2.08

0.5 2.13 2.04 2.00 2.91 2.43 2.05

0.6 2.10 2.03 2.00 2.66 2.29 2.03

0.7 2.07 2.02 2.00 2.41 2.19 2.01

0.8 2.10 2.05 2.00 2.39 2.17 2.02

0.9 2.10 2.04 2.01 2.30 2.14 2.01

0.99 2.07 2.03 2.01 2.30 2.11 2.02

c

0.1 2.15 2.10 2.03 14.59 8.72 4.29

0.2 2.15 2.12 2.01 6.77 4.44 2.41

0.3 2.18 2.10 2.00 4.51 3.18 2.11

0.4 2.14 2.07 2.00 3.56 2.64 2.07

0.5 2.13 2.04 2.00 2.92 2.40 2.04

0.6 2.10 2.03 2.01 2.58 2.26 2.02

0.7 2.08 2.02 2.00 2.41 2.17 2.01

0.8 2.10 2.04 2.00 2.34 2.15 2.02

0.9 2.10 2.04 2.01 2.31 2.12 2.01

0.99 2.07 2.03 2.01 2.30 2.10 2.02

d

0.1 2.25 2.16 2.04 8.54 5.76 2.70

0.2 2.18 2.15 2.01 4.09 3.14 2.13

0.3 2.15 2.11 2.01 2.78 2.48 2.05

0.4 2.09 2.06 2.01 2.40 2.20 2.03

0.5 2.07 2.05 2.01 2.19 2.10 2.01

0.6 2.07 2.05 2.02 2.13 2.07 2.02

0.7 2.05 2.03 2.01 2.07 2.05 2.01

0.8 2.04 2.04 2.01 2.05 2.04 2.02

0.9 2.05 2.04 2.01 2.06 2.04 2.02

0.99 2.04 2.04 2.01 2.07 2.04 2.02

The criteria column corresponds to the valid sequence criteria outlined in Table 2, Ω
c
 represents the normalised cut-off frequency of the LPF and 

SNR represents the SNR of the e(t).It should be noted that the true gain of the system is 2
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Discussion

Numerical example

Sequencing data for the purpose of BRS estimation is con-
sidered to help reduce the effects of unmeasurable external 
stimuli on the R-R and BP signals by choosing ‘barorecep-
tor-like’ events, with the objective of increasing the accuracy 
of the gain estimates obtained [29]. From Table 4, in the 
case of the numerical example where the noise introduced 
into the system is exactly known and specifiable, it is appar-
ent that the sequence methods overestimate the gain of the 
system, with particular sensitivity to measurement noise. In 
comparison the two linear regression methods both perform 
better where significant noise is present; however, it should 
be noted that the case where only sequenced data points 
(GEM 2) are used, the gain estimated is still biased. This 
indicates that the data points not selected contain important 
information about the system and are useful for improvement 
in gain estimate fidelity.

While more recent sequence methods contain refine-
ments to the sequence selection criteria, involving the use of 

correlation coefficient limits and input/output thresholds, the 
results in Table 4 show that they provide little improvement, 
in the majority of cases. In the cases that there is improve-
ment, the difference, unfortunately, is marginal.

Experimental example

Following on from Sect. 4.1, BRS estimates obtained using 
sequence methods (see 2.6.2 Method 1a–d) are compared 
with those obtained using a rigorous SI protocol (see 2.6.2 
Method 2a–c) for instances of gain overestimation, similar 
to that seen in the numerical example. From Table 5, it is 
apparent that the BRS estimates obtained using the sequence 
methods have consistently higher values than those obtained 
with the SI based identification method.

Concerns regarding overestimation evident in BRS esti-
mates obtained using sequence methods, does not arise 
from the presence of overestimation, or even the extent of 
overestimation. Rather, the inconsistency in the degree of 
overestimation between subjects is a cause for concern. 
If overestimation observed in BRS estimates is consistent 
between cases, it might be manageable by adjusting the 

Table 5   BRS estimates from 6 sequence methods applied to the 21 participants of the EuroBaVar study

(1a)Sequence method: 3, or more, consecutive paralleled increases/decreases in both BP and RR, a minimum r of 0.7, a minimum BP thresh-
old of 1mmHg and a minimum R-R interval threshold of 4ms, (1b)Sequence method: 3, or more, consecutive paralleled increases/decreases in 
both BP and R-R and a minimum r of 0.7, (1c)Sequence method: 4, or more, consecutive paralleled increases/decreases in both BP and RR, a 
minimum BP threshold of 1mmHg and a minimum R-R threshold of 5ms, (2a) LF estimation from McLoone's method, (2b) HF estimation from 
McLoone's method, and (2c) average of the LF and HF estimations from McLoone’s method
The green highlighted rows indicate the two patients with impaired baroreflexes, with the blue highlighted rows indicate patients with underlying 
conditions that may have a lowered BRS estiamtion than the healthy volunteers. The yellow highlighted cells indicate the cases where sequence 
method estimates were not higher than SI based estimates. NaN indicates an inability to obtain a BRS estimate
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estimates (or the threshold for low BRS) to account for the 
gain error. However, from Table 5, the disparity between 
estimates obtained using the sequence and the McLoone 
methods vary from case to case, suggesting that the noise 
present in the recordings vary from subject to subject. This 
is expected, as the metabolic demands of other subsystems in 
the body vary from person to person, at any given time. The 
inter-person variability would translate to the BRS estimate 
under the guise of noise in methods that do not account for 
a noise model, such as sequence methods.

However, one main cause for concern with sequence 
methods is the inability to detect sufficient valid sequences 
to make a realistic BRS estimate in patients with an impaired 
baroreflex. Sequence methods require concurrent increases/
decreases in BP and RR-interval, which are not always pre-
sent in subjects with impaired baroreflex, as seen in patients 
13 and 18, in Table 5.

Observations and future work

This study investigates the apparent overestimation of BRS 
gain observed when using sequence methods in a number 
of studies [4, 13, 16], by analysing the effect sequencing 
data has on gain estimation (Sect. 2.4.2). The analysis sug-
gests that the sequence methods are limited by the fact that 
sequenced R-R interval data contains a significant amount 
of noise (ie. non-baroreflex related effects). The events 
excluded by the sequence methods appear to contain key 
information about the gain of the system, with exclusion of 
the corresponding data points leading to persistent overesti-
mation of the gain of the system.

The spontaneous nature of the R-R interval and BP 
readings could play a role in the inability of sequence 
methods to distinguish between ‘baroreflex like’and‘un-
baroreflex’events. The Oxford method applies linear regres-
sion analysis to a dataset where the observed change in 
R-Rinterval is primarily driven by a sudden strong change 
in BP, minimising the effect of non-baroreflex effectors on 
R-R interval. The inclusion of planned movements that are 
known to stimulate the baroreflex [37] during the record-
ings could potentially improve the accuracy of sequence 
methods by ensuring the sequences selected are ‘baroreflex 
like’. Known baroreflex stimulating movements include the 
Valsalva maneuver [38], timed sit-to-stand maneuver [39], 
and the neck chamber technique [40], all of which would 
continue to allow for BRS estimation in a routine, clinical 
setting. The recording and analysis of experimental data, 
where patients carry out the above movements, would allow 
researchers to investigate if the addition of dedicated barore-
flex stimulating movements improve the accuracy of the 
sequence methods.

Conclusion

The work presented in this paper provides a detailed analysis 
of sequence methods and their efficacy as a BRS estimation 
method, from a SI perspective. An initial analytical approach 
outlines how sequencing data sets can lead to biased gain 
estimates. This is then confirmed through a numerical exam-
ple, demonstrating that, in the case of a simple gain sys-
tem, the sequencing of data leads to gain overestimation, 
especially in cases where there is significant noise present. 
Recent refinements made to sequence methods, viz. the 
addition of a correlation metric and a minimum threshold 
improve the situation to some extent, but are insufficient 
in completely rectifying the bias in the gain estimates. The 
limitations of sequence methods outlined from the analyti-
cal study, and the numerical example, are borne out in the 
analysis of the experimental data. This can be seen in the 
consistently higher BRS estimates obtained using sequence 
methods, in comparison to those obtained using a rigor-
ous SI method. The analysis carried out, especially in the 
experimental analysis, shows potential cause for concern 
with using sequence methods as a BRS estimation method, 
and subsequently the estimates being used as a diagnostic 
tool for subjects with an impaired baroreflex.
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