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Abstract

We tile a path from the theoretical world of Collatz sequences, which are fascinating, seemingly undeci-
pherable mathematical objects, to the experimental wet lab world of algorithmic DNA origami, which is
our proposed technique to run algorithms using self-assembling DNA nanostructures. The common thread
throughout these seemingly unrelated worlds is the use of tile self-assembly models to reason about the
problem at hand.

In the case of Collatz sequences (also known as 3x+1 sequences), we study 6 Wang tiles, which give this
thesis its name, that assemble Collatz sequences in tilings. These Collatz tilings provide a microscope for
studying Collatz sequences symbolically in many bases (base 2, 3, 6, and more) and allow us to interpret
known results in our 2D tiling framework, as well as partially characterising the complexity of predicting
Collatz iterations, Chapter 1.

We then use these 6 tiles to visualise a conjecture by Erdős on powers of two that we encode as the
halting problem (from blank tape) of a 15-state 2-symbol Turing machine. This construction implies that
knowing the busy beaver value BB(15) is at least as hard as solving Erdős’ conjecture, which seems to put
BB(15) out of reach since the conjecture has been open for decades, Chapter 2.

We go on to show that our 6 tiles can simulate arbitrary Boolean circuits in a model of tile assembly
that we introduce: the Maze-Walking Tile Assembly Model. This is when our journey starts entering the
realm of wet lab experiments, as we argue that our Maze-Walking TAM is suited to DNA nanostructure
implementation, Chapter 3.

We make this claim concrete in Chapter 4 by introducing the Scaffolded DNA Computer, a thermody-
namically favoured model of computation very close in spirit to the Maze-Walking TAM. In the wet lab
we implement eight DNA-based programs for this computer (corresponding to over 100 DNA program
executions), including a 7-bit adder running within a DNA origami, or, as we call it, an algorithmic DNA
origami.
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Résumé

Nous pavons un chemin entre le monde théorique des suites de Collatz, qui sont des objets mathématiques
d’une complexité fascinante, et le monde des sciences expérimentales réalisées en laboratoire au travers des
origamis ADN algorithmiques, la méthode que nous introduisons pour exécuter des algorithmes en utilisant
des nanostructures ADN qui s’auto-assemblent. Le fil rouge qui relie ces mondes a priori complètement
étrangers est l’utilisation des modèles d’auto-assemblage pour traiter les problèmes à résoudre.

Dans le cas des suites de Collatz (aussi connues sous le nom de suites de Syracuse, ou 3x + 1), nous
étudions 6 tuiles de Wang, d’où la thèse tire son nom, qui peuvent assembler les suites de Collatz
en des pavages. Ces pavages de Collatz constituent un microscope pour étudier les suites de Collatz
symboliquement dans plusieurs bases (base 2, 3, 6, et d’autres) et ils nous permettent aussi d’interpréter
des résultats connus dans ce contexte de pavages 2D, ainsi que de caractériser partiellement la complexité
de prédire les itérations de Collatz, Chapitre 1.

Ensuite, nous utilisons ces 6 tuiles pour visualiser une conjecture d’Erdős sur les puissances de deux,
que l’on encode comme le problème de l’arrêt (depuis ruban vide) d’une machine de Turing à 15 états et
2 symboles. Cette construction implique que déterminer la valeur “busy beaver” BB(15) est aussi dur
que de résoudre la conjecture d’Erdős, ce qui semble mettre BB(15) hors de portée de notre savoir étant
donné que la conjecture est ouverte depuis plusieurs décennies, Chapitre 2.

Puis, nous montrons que nos 6 tuiles peuvent simuler n’importe quel circuit Booléen dans un modèle
d’auto-assemblage que nous introduisons: le modèle de tuiles auto-assemblantes marcheuses de labyrinthe
(“Maze-Walking Tile Assembly Model”). C’est ici que notre voyage commence son entrée dans le monde
des sciences expérimentales réalisées en laboratoire, car nous défendons l’idée que notre modèle est
particulièrement adapté pour être implémenté avec des nanostructures ADN, Chapitre 3.

Nous concrétisons cette idée dans le Chapitre 4 en introduisant l’Ordinateur à Échafaudage ADN
(“Scaffolded DNA Computer”), un modèle thermodynamiquement favorable très proche du “Maze-Walking
TAM” précédemment introduit. En laboratoire, nous implémentons huit programmes ADN pour cet
ordinateur (correspondant à la réalisation de plus d’une centaine d’expériences), dont en particulier
un additionneur 7 bits qui s’exécute à l’intérieur d’un origami ADN, ou plutôt, d’un origami ADN
algorithmique.
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Coimriú

Tílimid cosán ó shaol teoiriciúil na seicheamh Collatz, ar nithe iontacha agus matamaiticiúla atá dothuigthe
de réir dealraimh iad, go dtí saol saotharlainne fliche eispéireasaí oragámaí DNA algartamaigh, arb é sin an
teicníc atá beartaithe againn chun algartaim a rith ag baint úsáid as nanastruchtúir DNA fhéinchóimeála.
An snáithe a nascann na saolta sin le chéile, saolta nach bhfuil aon bhaint acu lena chéile de réir dealraimh,
ná úsáid a bhaint as samhlacha féinchóimeála tíleanna chun an fhadhb atá i gceist a réasúnú.

I gcás na seicheamh Collatz (ar a dtugtar seichimh 3x + 1 chomh maith), déanaimid staidéar ar 6 thíl
Wang, a thugann an t-ainm don tráchtas seo, a bhailíonn seichimh Collatz i dtíleanna. Soláthraítear
micreascóp leis na tíleanna Collatz sin chun staidéar a dhéanamh ar sheichimh Collatz ar bhonn siombalach
in go leor bonn (bonn 2, 3, 6, agus níos mó) agus cuirtear ar ár gcumas leo torthaí aitheanta inár gcreat
tíleála 2T a léirmhíniú, chomh maith leis an gcastacht a bhaineann le hathtriallta Collatz a thuar go
páirteach, Caibidil 1.

Úsáidimid na 6 thíl sin ansin chun tuairimíocht ó Erdős a shamhlú ar chumhachtaí dhá cheann a
ionchódaímid mar fhadhb stad (ó théip bhán) meaisín 15 staid 2 shiombail Turing. Tugtar le tuiscint leis
an bhfoirgníocht sin go bhfuil sé ar a laghad chomh deacair céanna an béabhar gnóthach BB(15) a fháil
amach agus atá sé Erdős’ a réiteach, a bhfuil an chuma air go ndéantar BB(15) dorochtana leis ós rud é
go bhfuil an tuairimíocht oscailte le fiche nó tríocha bliain anuas, Caibidil 2 .

Léirímid ansin gur féidir lenár 6 thíl ciorcaid threallacha Boole a insamhladh i samhail de chóimeáil
tíleanna a thugaimid isteach: an Maze-Walking Tile Assembly Model. Is é sin nuair a thosaíonn ár
dturas ag dul isteach i réimse na dturgnamh saotharlainne fliche, agus muid ag argóint go bhfuil ár TAM
Maze-Walking oiriúnach do chur chun feidhme nanastruchtúr DNA, Caibidil 3.

Neartaímid an t-éileamh sin i gCaibidil 4 tríd an Ríomhaire DNA Scafláilte a thabhairt isteach, samhail
theirmidinimiciúil ríomha atá an-chosúil de réir spride leis an Maze-Walking TAM. Sa tsaotharlann fhliuch
cuirimid ocht gclár DNA-bhunaithe chun feidhme don ríomhaire seo (a chomhfhreagraíonn do bhreis is
100 cur i gcrích clár DNA), lena n-áirítear suimitheoir 7 ngiotán a ritheann laistigh d’oragámaí DNA, nó,
oragámaí DNA algartamach, mar a thugaimid air.
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2 Contents

Software

A fundamental aspect of our approach to research – and a common thread to all the chapters of this thesis
– is the need to systematically write software that will allow us to creatively explore the research topic at
hand (and guide our intuition) or simply, be more efficient. Here are the software that we developed for
each part of this thesis:

1. coreli: a Python library implementing most of the concepts presented in Chapter 1, see Appendix C1.
https://github.com/tcosmo/coreli

2. simcqca: a simulator for the Collatz Quasi Cellular Automaton (CQCA) model that we introduced
in [156] (see Chapter 1, Section 1.2). https://github.com/tcosmo/simcqca

3. bbsim: an online Turing machine simulator that features the Erdős’-conjecture machines that we
construct in Chapter 2. https://dna.hamilton.ie/tsterin/bbsim/

4. bbchallenge: an online collaborative platform dedicated to solving the conjecture BB(5) =

47, 176, 870 [109, 1], see Appendix D. https://bbchallenge.org and https://github.com/bbchallenge

5. mawatam: a simulator for the Maze-Walking aTAM, see Chapter 3. https://github.com/tcosmo/
mawatam

6. cosmix: a library that we created to automatically produce experiments’ wet lab mixes in the context
of the Algorithmic DNA origami project, see Chapter 4. https://github.com/tcosmo/cosmix

Conference and invited talks

During my PhD I was given several opportunities to share the research presented in this thesis:

1. “Tales of the Collatz process in binary, ternary and senary”, October 20th 2020, at the 14th
International Conference on Reachability Problems, online event. Presenting the results of [154,
156], respectively covered in this thesis by Chapter 1, Section 1.6 and Section 1.2.

2. “Small tile sets that compute while solving mazes”, September 16th 2021, at the 27th International
Conference on DNA Computing and Molecular Programming, online event. Presenting the results
of [49], see Chapter 3.

3. “6 tiles”, April 6th 2022, invited talk at Turku University in Finland. Presenting what would then
become Chapter 1.

4. “Algorithmic DNA origami: Scaffolded DNA computation in one and two dimensions”, joint talk
with Abeer Eshra, August 9th 2022, at the 28th International Conference on DNA Computing
and Molecular Programming, in Albuquerque, New Mexico. Presenting what would then become
Chapter 4.

1This library was initially released in the context of our first work on the Collatz process, [154].

https://github.com/tcosmo/coreli
https://github.com/tcosmo/simcqca
https://dna.hamilton.ie/tsterin/bbsim/
https://bbchallenge.org
https://github.com/bbchallenge
https://github.com/tcosmo/mawatam
https://github.com/tcosmo/mawatam
https://github.com/tcosmo/cosmix
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Chapter 0

Introduction

Figure 0.1: From Collatz sequences to algorithmic DNA origami.2

One way to introduce this thesis is to distribute its content, a bit naïvely, on an axis separating theory
from experiments, Figure 0.1. When doing so, the 6 Collatz tiles (introduced in Chapter 1), that give
the name to this thesis, appear to sit right in the middle as they can be considered rather experimental
compared to a pure mathematical study of Collatz sequences (we use the tiles to perform experiments on
Collatz sequences) and rather theoretical compared to wet lab experiments on algorithmic DNA origami
(Chapter 4).

Arguably, it is not surprising that tiles (more specifically, Wang tiles) could occupy such a versatile
position in between theory and experiments. Indeed, historically, introduced by Hao Wang in 1961 [170]
and consisting of non-rotable square tiles with colors on their sides, Wang tiles have been the center of
some rather theoretical questions at the frontier of mathematical logic and computer science where the
main object of study were infinite tilings of the plane made of these tiles (two adjacent tiles must have the
same color on their shared edge). One theoretical question that was particularly studied has been the
search for aperiodic tile sets, i.e. tile sets such that any tiling of the plane is not periodic (no translation
of the plane gives the same tiling). Over the course of 70 years, many constructions have been given, the
first one by Berger in 1966 with 20,426 tiles [14] and the last one by Jeandel and Rao in 2015 with 11 tiles
and 4 colors [84]. We say the last one because Jeandel and Rao show by exhaustive computer search that
10 tiles or 3 colors cannot give aperiodicity. Other constructions with 14 tiles by Kari [85] and, based on
the same technique, 13 tiles by Culik [51], had been given prior to the 11 tiles result.

On the experimental side, and in particular, experiments involving DNA-based nanostructures, Wang
tiles have played a very important role in the main theoretical models of algorithmic self-assembly. The
key idea of self-assembly is to have individual components come together to form a structure solely based

2Busy beaver image generated by DALL·E [132]: “Engraving of a beaver working on a computer”.
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on the local interactions of these components with one another – i.e. there is no centralised architect
supervising the construction of the structure. DNA is a material that is fit for experimenting with
self-assembly in practice since DNA strands can play the role of the individual components and the bases
A, T, G, C can be used to encode the local interaction rules using Watson-Crick base-pairing: A binds to
T and G binds to C. Algorithmic self-assembly pushes the idea of self-assembly further by having the final
assembled structure be the result of a computation that is propagated through the structure while it is
self-assembled – imagine a self-assembled Boolean circuit where gates would successively attach to the
circuit by self-assembly. In this context, Wang tiles are a formidable tool of abstraction as they serve
as a natural model for self-assembly: tiles are the individual components and the colors on their sides
encode local interactions. In particular, Winfree’s abstract Tile Assembly Model (aTAM), introduced
in 1998 [174], has been widely studied theoretically [136, 149, 125, 57, 180] and used in practice as a
crucial abstraction for making algorithmically self-assembling structures in the wet lab [183, 66, 145, 10,
143, 144, 37, 70, 9, 135, 108, 176]. Refinements of the aTAM, such as the kinetic Tile Assembly Model
(kTAM) [175], give physically realistic predictions of the kinetics of tile assembly systems and have been
routinely used in the wet-lab to simulate these systems prior to implementation or to fit simulations to
experimental results [66, 145, 183].

In this thesis, we study a particular set of 6 Wang tiles, that we call the Collatz tile set, which initially
came to our attention for their ability to represent a fascinating mathematical problem, the Collatz
problem (Chapter 1). The Collatz problem, whose origins traces back to the 1930s, asks a simple question
but is still open and has left generations of researchers – including us – baffled by its complexity. Take a
positive integer x and play the following game: if the number is even, divide it by 2, and if it is odd replace
it by 3x+1, then repeat. Starting from x = 77 we would get 77, 232, 116, 58, 29, 88, 44, 22, 11, 34, 17, 52,
26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1, 4, 2, 1, . . . . We eventually reached 1 which loops forever in the cycle
{4, 2, 1}! The Collatz conjecture states that this is no coincidence and that starting from any natural
number (other than 0) we would have reached 1. Despite tremendous efforts, wonderfully summarised in
Jeffrey C. Lagarias’s surveys and entire book dedicated on the problem [100, 101, 96], the Collatz problem
is still open and its resolution seems very far away. Our main contributions, based on previous work that
we did on the topic [154, 156], is to reformulate the Collatz problem in terms of tiles and show that the
tiles provide a geometric framework (a microscope) for experimenting with the conjecture and reasoning
about the computational abilities of the Collatz process, Chapter 1. In more details, we start by studying
the arithmetic relations that naturally occur in tilings made with the Collatz tiles and their interpretation
in the 2-adic, 3-adic and 6-adic integers (see Appendix A for a survival guide on p-adic integers), then, we
show how the 6 tiles can simulate the Collatz process and analyse the complexity of several prediction
problems in these tilings, some of which we are to put in circuit complexity class NC1 and outside AC0,
see Section 1.4. Finally, we apply this framework to reasoning about Collatz cycles and ancestors: (a) we
show that the existence of Collatz integer cycles reduces to a simple, yet apparently untractable, geometric
question and (b) we provide a tile-based proof of the fact that proving the Collatz conjectures on any set
of the form α+ 2nN with n ∈ N and α < 2n is enough to prove the Collatz conjecture in N (special case
of [117]), as well as establishing the link between constructing Collatz ancestors and solving an (easy)
instance of the discrete logarithm problem.

In Chapter 2 (preprint available [158]), we start by using the 6 Collatz tiles to reformulate another
number-theoretical conjecture: Erdős’ conjecture on powers of two, which has been open since the 1980s
[65]. This conjecture is quite simple to state: “for all n > 8, there is at least one digit 2 in the base-3
representation of 2n”. Then, our focus deviates a bit from tiles3, as we encode this conjecture in a small
Turing machine with 15 states and 2 symbols. In turn, this construction allows us to qualify the hardness of

3Although, the busy beaver function has been used in the past in the context of tiling systems [136].
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knowing the busy beaver value BB(15): it is at least as hard as solving Erdős’ conjecture. The busy beaver
function n 7→ BB(n), introduced by Radó in 1962 [131], is a central object in the theory of computability
as it is one of the first reported examples of a non-computable function (as well as, arguably, one of the
most natural), see Chapter 2 for its definition. Only four of its values are known to date, BB(1) = 1,
BB(2) = 6, BB(3) = 21, BB(4) = 107 [19], and it is conjectured that BB(5) = 47, 176, 870 [109, 1]. It is
known that BB(6) > 10 ↑↑ 15 [113] (a tetration, i.e. tower of 15 powers of 10). It is also known how to
relate some of its values to hard mathematical problems, for instance, knowing BB(744) is at least as
hard as solving Riemann Hypothesis [1]. Our result, which links BB(15) to Erdős’ conjecture on powers
of two gives the smallest busy beaver value for which a connection to a natural, independently studied
mathematical problem is known.

Chapter 3 (published in [49]) represents the pivot in this thesis from theoretical concerns (Collatz
sequences, busy beaver) to experimental concerns (building DNA-based computing devices in the wet lab).
While the initial motivation for this chapter was to understand if there were conditions under which the 6
Collatz tiles could be said to be Turing-complete, we ended up introducing a new model for self-assembly,
the Maze-Walking TAM, with wet lab implementation in sight (we implemented in the wet lab a variation
on this model in Chapter 4). Indeed, in Chapter 1, we failed to find Turing-completeness of the six Collatz
tiles in the wild (i.e. in the context of Collatz sequences), and we conjectured there may be limits to their
computational abilities, but we provided concrete examples of the complex patterns they generate, and
computations they preform. Hence, it felt natural to harness this complexity and use it as a programming
language. We do so by introducing a new model, the Maze-Walking TAM, which allows tiled structures to
be disconnected (whereas Collatz-related assemblies need to be connected). In this model we show that
the 6 Collatz tiles simulate any Boolean circuit efficiently and we even find a tile set with only 4 tiles
that is also Turing-complete. In this work, we make the hypothesis that our model is fit for practical
implementation with DNA-based nanostructure by interpreting the disconnected aspect of the model as
having our tiles connected within an underlying structure such as a DNA origami which is one of the most
used methods for the self-assembly of DNA nanostructures [137]. Our Turing-completeness results with
the 6 Collatz tiles or even the size-4 tile set are appealing in practice because they suggest that in that
model, only very few interactions would need to be designed in the lab in order to get full Turing power.

In Chapter 4 we give a first step towards the wet lab implementation of the model introduced in
Chapter 3. More specifically, we implement a slight refinement of that model that we call the Scaffolded
DNA Computer. This tile-assembly model is Turing complete, but for the sake of experimental feasibility,
we implement a simplification that restricts us to Finite State Machines instead of arbitrary Boolean
circuits. Nonetheless, we are excited about this experimental work because it features a promising idea:
computing within a DNA origami, i.e. have the computation be part of the process that assembles the
DNA origami itself (rather than computing on top of the structure). This idea allows us to inherit a very
strong property of DNA origami: the target structure is thermodynamically favored. This is in stark
contrast with most algorithmic systems that have been implemented with DNA to date [189, 188, 163,
128, 183] where the computationally correct structure is not the equilibrium structure which comes with
several experimental challenges (such as algorithmic errors, spurious nucleation or leak) which, in principle,
we do not face. We successfully implement 6 finite-state programs in a simplified 1D setup, including a
4-bit adder, reporting a 91% average yield and 2 finite-state programs in a 2D origami context, including
a 7-bit adder.

Hence, the six Collatz tiles and tiling systems in general represent the common thread throughout
this thesis and we regard them as a fascinating tool for studying a broad range of topics, from Collatz
sequences to algorithmic DNA origami.
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Chapter 1

Breaking Collatz sequences into bits, trits
and tiles

1.1 Motivation

The Collatz problem is known under many names such as: the 3n + 1 problem, the 3x + 1 problem,
Ulam’s conjecture, Thwaites’ conjecture, the Syracuse problem, etc. The essence of the problem seems to
trace back to Lothar Collatz’s notebooks from the 1930s and is known to have circulated in mathematical
circles in the 1950s [102]. The first printed occurrence of the problem seems to be a 1971 written version
of a lecture by H. S. Coxeter [50, 102]. We highly recommend Jeffrey C. Lagarias’s overview article for
more history, context and perspective on the problem [102].

Let N = {0, 1, 2, . . . } be the set of natural numbers and N+ = {1, 2, . . . }. The Collatz process is defined
on the natural numbers as iterating the map C(x) = x/2 when x ∈ N is even and C(x) = 3x+ 1 when x
is odd. Because 3x+ 1 is always even when x is odd, it also natural to consider a slight variant of C, the
map T where T (x) = x/2 when x is even and T (x) = (3x+1)/2 when x is odd. The Collatz conjecture
states that iterating T (or C) from any natural number x ∈ N+ leads to 1. In this work, we only focus on
T as it is more convenient to work with in our case4. For instance, iterating T from x = 45 gives:

45, 68, 34, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 2, 1, 2, 1, . . .

As of 2020, the conjecture had been computer-verified up to 268 [8].

The conjecture can be divided in two seemingly independent conjectures: (Divergent orbits conjecture)
there are no x ∈ N such that limn→∞ Tn(x) = +∞ and (Nontrivial cycles conjecture) the only cycle of T
in N+ is {1, 2}.

The Collatz problem beyond natural numbers: Z2

Although T and C are defined in N, there are no obstacles to looking at the Collatz map in the negative
numbers. Three new cycles show up in the negative numbers: the cycle of −1, the cycle of −5 and the

4The choice of focusing on T for convenience of analysis has also been made in several other studies, such as [161, 162,
67, 178, 99, 139].
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cycle of −17 [17, 102]. Furthermore, any negative number seems to reach one of these cycles. Would there
be a more general conjecture to state about Collatz cycles?

It turns out that there is a set as big as R and which includes N, Z and almost all of Q, where the
Collatz map is naturally defined: the set of 2-adic integers, Z2, which is the set of binary representations
that are infinite on their most significant side. This set comes with a ring structure, i.e. well defined +

and × operations. Maps T and C are well defined in Z2 since (a) the parity of x ∈ Z2 is given by its least
significant bit, (b) dividing an even number by 2 consists in removing its least significant 0 and (c) the
operation x 7→ 3x+ 1 can be computed thanks to the definition of + and × in Z2. To know more about
Z2 please refer to Appendix A.

Hence, Collatz sequences are naturally defined in Z2, which gives a unified framework for representing
Collatz iterates in the natural numbers, the integers, the rationals (with odd denominator), and irrational5

2-adic numbers. The generalisation of the Collatz conjecture – more specifically of the divergent orbits
conjecture – in Z2 is Lagarias periodicity conjecture [99] – slightly reformulated: “The Collatz sequence
of an eventually periodic 2-adic integer is eventually periodic”.

Numbers of Z2 with eventually periodic representations are exactly the rational numbers with odd
denominator6 and their parity is given by the parity of their numerator (see Appendix A, Theorem A.3).
Hence, we can iterate T on − 1

23 = (00100001011)∞001 ∈ Z2 (we can compute this 2-adic expansion
thanks to the algorithm given in Appendix A, Remark A.4), which has odd parity, and test the conjecture:
− 1

23 ,
10
23 ,

5
23
, 19

23 ,
40
23 ,

20
23 ,

10
23 ,

5
23
, . . . . We’ve reached the cycle of 5

23 : the Collatz sequence of − 1
23 is

eventually periodic.

Hence, Z2 provides a binary symbolic framework which, through Lagarias’ periodicity conjecture,
naturally generalises part of the Collatz conjecture to Q. We will extensively rely on Z2 (and Z3, and Z6)
in this work.

The Collatz problem is hard

The Collatz problem is notoriously extremely hard and its solution seems to be still very far away in
spite of more than half a century of research, wonderfully summarised in Jeffrey C. Lagarias’s surveys
and entire book dedicated on the problem [100, 101, 96]. To date, the strongest (arguably) result on the
conjecture is due to Terrence Tao and states that, in a certain sense, almost all positive integers reach
1 under Collatz iterations [159]. Famously, mathematician Paul Erdős said that “Mathematics is not
yet ready for such problems” and, reportedly, he would also have described the problem as “Hopeless.
Absolutely hopeless.” [102]. As a warning, the Collatz problem is also given as Problem 2 in Richard
Guy’s 1983 paper “Don’t try to solve these problems!” [76].

Nonetheless, let’s lay out our motivation to study such a beast. The question at the heart of this work
is: “what is the computational power of the Collatz process?”. Indeed, predicting the long-term behavior
of Collatz orbits seems to be very hard. This fact allows one to wonder if the Collatz process, given some
carefully crafted input, could be able to simulate a general-purpose computer, i.e. be Turing-complete.
While it could seem unreasonable that a system with such a simple definition would be Turing-complete, we
cannot rule this possibility out, especially in the light of the following points: (a) some other systems with
very simple definitions but complex-looking orbits are known to be Turing-complete: Elementary Cellular
Automaton “rule 110” being one of the most breathtaking examples [47] and (b) a direct generalisation of
the Collatz map, namely, Generalised Collatz Maps, is known to be Turing-complete [46, 90, 89].

5For instance, the irrational
√
−7 is well defined in Z2 and we could compute its Collatz sequence, Appendix A.

6Rationals with even denominators cannot be represented in Z2, Appendix A.
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Generalised Collatz maps

On this topic we highly recommend reading the extensive review chapter on generalised Collatz functions
by Michel and Margenstern [114] in Lagarias’ book on the Collatz problem [96]. In 1972, Conway defined
Generalised Collatz Maps (GCMs) [46] and we give an equivalent definition7 that only uses integer
parameters (instead of rationals):

Definition 1.1 (Generalised Collatz Map). A function f is called a Generalised Collatz map if it is
defined by f(x) = fi(x) = ai

x−i
N + bi when x ≡ i mod N , with N ∈ N+ and ai, bi ∈ Z for 0 ≤ i < N .

The Collatz map T is given by N = 2, a0 = 1, b0 = 0, a1 = 3, b1 = 2.

In essence, Conway shows that GCMs simulate a model – which historically was formally introduced
later8 – called fractran [45]. fractran programs simulate Minsky’s counter machines [115]. Minsky’s
counter machines can simulate Turing machines – given at least two counters. Hence, GCMs are Turing-
complete. Koiran and Moore give a slightly different construction that directly simulates any k-instruction
3-counter Minsky machine with N = 30k maps [90]. Using a different reduction to 2-counter machines,
Kaščák exhibits an Universal GCM with N = 396 maps [89].

In terms of complexity, all known constructions for simulating Turing machines with GCMs are at least
exponentially slow because of the use, at some point, of encodings à la Gödel – i.e. encoding information
using prime factorisation. Interestingly, GCMs of two variables (not defined here) are known to simulate
Turing machines efficiently [118]. Whether GCMs of one variable (as presented here) can simulate Turing
machines efficiently is an open problem [118].

The generalised Collatz problem can be stated for GCMs: “Given a GCM f , can it be decided whether
for all integers x ∈ N+, there exists i ∈ N such that f (i)(x) = 1?”. Kurtz and Simon have shown this
problem is Π0

2-complete [95].9

We argue that there is a problem that is suited to more GCMs than the above generalised Collatz
problem and that has a flavor that is more computer science than mathematics. Take the GCM (which
looks a lot like Collatz!) x 7→ 3x/2 if x is even and x 7→ 3(x+ 1)/2 if x is odd. The generalised Collatz
problem can be trivially answered negatively on this map since any orbit diverges. However, consider the
statement: for all x ∈ N, x eventually reaches two successive odd iterates. If that statement is true then
there are no Mahler’s Z-numbers which is a problem that has been open for decades, see Appendix B. The
parity of the iterates of x is known, in Collatz terminology, as the parity vector of x. Mahler’s problem
asks if the parity vector of any x contains two successive 1s. For Collatz, reaching the trivial cycle from
x ∈ N corresponds to the parity vector of x reaching the infinitely repeated pattern 01. This notion
generalises well to arbitrary GCMs with N maps by considering the sequence of iterates modulo N – it
corresponds to which of the N maps has been chosen at each step and can be seen as the sequence of
states that a GCM traverses while processing an input. The problem, that we loosely define here (see
Section 1.4 for more), becomes parity vector prediction: “can the parity vector of x ∈ N be predicted?”.
Because GCMs are Turing-complete, we do not expect their parity vectors to be easy to predict in general.
However, the question stands for particular maps10.

7The original definition requires f(x) = rix+ si to be integral for all x ≡ i mod N and ri, si ∈ Q. The equivalence with
our definition can be seen by writing x = Ny + i and then evaluating in y = 0 and y = 1 to get that the new coefficients are
integers.

8fractran was formally introduced in 1987 while Conway’s result on the Turing completeness of GCMs is from 1972.
9This means that any mathematical statement of the form “For all x, there exists y, φ(x, y)” with no unbounded

quantifiers in predicate φ can be reformulated as a Collatz-like question.
10Here is a GCM where predicting the parity vector is easy: x 7→ x/2 when x is even and x 7→ (x− 1)/2 when x is odd.

The parity vector of x is its base-2 representation! See Remark 1.31.
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Looking for structure in Collatz iterates

We made the case that the Collatz process could be Turing-complete. However, to date, this possibility is
supported by little evidence as it seems very hard to enforce any type of control in the behavior of Collatz
iterates. Also, the Collatz conjecture seems to indicate the difficulty of encoding divergent programs in
Collatz dynamics, although this remark is purely intuitive and speculative11. The Collatz process could
very well linger in the mysterious zone of processes that are too complex to be analysed but not complex
enough to be programmed.

Whether the Collatz process is Turing-complete or not, asking “What is the computational power of the
Collatz process?”, which can also be refined in “What is the complexity of predicting Collatz iterates?”
remains a motivating question to us as it shifts the point of view on the Collatz process from mathematics
to computer science. These questions invite us to study the Collatz process symbolically in search of
structure.

In this chapter, we start by summarising results of our previous work [156] where we show that binary
Collatz traces also feature ternary Collatz iterates, Section 1.2. Then we present a more generalised
framework based on 6 Wang tiles, which we call “the Collatz tiles”, full of arithmetical properties and
which allow to reason about Collatz sequences geometrically, Section 1.3. Then, we study the complexity
of prediction of various tiling problems that occur naturally with these tiles, Section 1.4. Finally, we apply
our framework to reason about Collatz cycles, Section 1.5, and Collatz-ancestors, Section 1.6.

We think of the tile-based framework that we introduce as a microscope which allows to study, with
clockwork precision, the machinery of the Collatz map on base-2, base-3, base-6 and mixed base represen-
tations.

We invite the reader to use our Python library coreli v0.0.3, see Appendix C, which provides routines
to experiment with the ideas that we present here. In particular, all the tilings that illustrate the chapter
were computed and outputted by coreli.

11One could imagine for instance that divergent programs would be encoded with some sort of fuel within Collatz and
that starting with more fuel would lead to more iterations of the program.
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1.2 The Collatz process in base 2 and 3: reading trits in bits

In order to explore the computational abilities of the Collatz process we study it symbolically. We mean
that we study the action of the Collatz process on some encoding of numbers. As computer scientists, our
heart naturally goes to binary representations of numbers. It turns out that this choice of representation
which, at first sight, is arbitrary, is actually quite natural to consider when it comes to the Collatz process
and there has been a fruitful trend of studying Collatz iterates in binary [16, 22, 146, 42, 78, 106, 31]. We
feel particularly indebted to [31] that initially sparked our interest for studying the Collatz process in
binary.

In this section, we summarize the main result of our previous work [156]: somehow, the binary traces of
Collatz iterates also contain the ternary representation of these same iterates (Theorem 11 in [156]12), see
Figure 1.4.

In binary, deducing whether a number is even or odd only amounts to looking at its least significant bit
(LSB) and, applying the x/2 branch of the Collatz map merely corresponds to removing a trailing 0 from
the binary representation of x. For instance, if we divide number 14, 1110 in binary, by 2 we get 7, which
is 111 in binary. Hence, to get an understanding of one application of the Collatz map in binary, we are
only left with the task of interpreting the action of x 7→ 3x+ 1 on binary representations of numbers.

Convention: LSB to the right. As implicitly used above, in this work, we choose the convention of
placing the LSB of binary representations (and later, p-adic representations) to the right: 1101 represents
thirteen and not eleven.

Interpreting x 7→ 3x+ 1 in binary as a finite state transducer

To make sense of the operation x 7→ 3x+ 1 in binary let’s focus first on the operation x 7→ 3x. Let’s then
note the seemingly unimportant fact that 3x = x+ 2x. In binary, the latter interprets as “Add x to its
left shift”. Let’s give an example on 3× 13, 13 is 1101 in binary:

1 1 0 1
+ 0 1 1 0 1 0

1 0 0 1 1 1

We get 100111 which is, as expected, the binary representation of 3× 13 = 39. Note that we have used 0

and 1 to signify the propagation of a carry over a 0 or a 1. From this, we understand that, in binary, the
operation x 7→ 3x correspond to adding each bit of x to its right neighbour and a potential carry
(or add with 0 for the LSB), which can be visualised as follows:

At each step that is depicted in Figure 1.1 the bit inside the blue dashed box gets added to the bit and
the potential carry in the magenta box. The result of this addition gets written in the green dashed box
and a carry is potentially generated for the next step. For instance, at step 4, bit 1 in dashed blue box
gets added to bit 1 in magenta box, which produces a 0 in the dashed green box and generates a carry for
step 5. At step 5, bit 0 in the dashed blue box (it is a leading 0 as we have finished to scan the entire
input) gets added to bit 1 and its carry in the magenta box. This produces a 0 in the dashed green box
and generates a carry for step 6.

The logic that is depicted in Figure 1.1 can be reformulated as a Finite State Transducer (FST), which
is a Finite State Automaton that reads and outputs at each step. Here, the state is the content of the

12Theorem 16 in the arxiv version [155].
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Figure 1.1: Six successive applications of the local rule “adding each bit of x to its right neighbour and a
potential carry” on x = 13, 1101 in binary. This corresponds to computing 3x = 39, 100111 in binary – see
step 6. The LSB is added to an imaginary trailing 0 (in grey). After step 6, leading 0s will be produced for ever,
signalling the end of the computation. The content of the magenta box is either 0, 1, 0 or 1 and maintains the
state of the computation. The blue (resp. green) dashed box contains the input (resp. output) bit of each step of
the computation. Adding two or more ones generates a carry for the next step.

magenta box in Figure 1.1 and can be either 0, 1, 0 or 1 and the input/output alphabet is {0,1}. The
input (resp. output) corresponds to the bit in the blue (resp. green) dashed box in Figure 1.1. Here is the
FST, which we call the “3x+ i” FST:

(a) The “3x+ i” FST.

(b) The “3x+ i” FST, minimised.

Figure 1.2: The “3x+ i” finite state transducer. (a) This transducer reads x ∈ N in binary, bits by bits (from the
LSB) and, given enough leading 0s in the representation of x, outputs the representation of 3x or 3x+ 1 or 3x+ 2
depending on initial state. Initial state 0 gives 3x, initial states 0 or 1 give 3x+ 1 and initial state 1 gives 3x+ 2.
(b) States 0 and 1 are redundant and can be merged to give an equivalent minimal 3-state FST (state 1 has been
renamed 2). The minimised FST computes 3x+ i with i ∈ {0, 1, 2} the initial state of the computation.

We realise that starting the computation of Figure 1.1 with 0 (or 1) instead of 0 in the magenta box
at step 1 would have computed 3x+ 1 instead of 3x since an extra imaginary carry (or bit) would have
been added to the output. Hence, after this point, we get an answer to our question about interpreting
x 7→ 3x+ 1 in binary: it corresponds to processing the binary representation of x with the “3x+ i” FST
(Figure 1.2(a)), starting from initial state 0 or 1 – or just state 1 in the minimised version of Figure 1.2(b).

Nonetheless, a few points about the “3x+ i” transducer:

1. The FST (Figure 1.2(a)), reads binary representations from their Least Significant Bit and, given
enough leading 0s in the input, outputs the binary representation of 3x + i where i ∈ {0, 1, 2}
depends only on the initial state. If the initial state is 0, then i = 0, if the initial state is 0 or 1

then i = 1 and finally, if the initial state is 1 then i = 2. See [156] for a proof. We can see that in
this carry-annotated representation, states 1 and 0 of Figure 1.2(a) are redundant: their read/write
behavior is the same and they lead to the same states in each case. Hence, these states can be safely
merge to give a minimal equivalent FST with 3 states, Figure 1.2(b), where we removed state 0 and
where state 1 has been renamed to 2. In this section, we realise that these three states corresponds
to ternary digits (or trits) which is the main result of our previous work [156].
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2. The need for having leading 0s in the input merely comes from the fact that often, we need more
bits to represent 3x + i than we need for x. In fact, because 3x + i ≤ 4x for all x ≥ 2 in N and
i ∈ {0, 1, 2}, we know that 3x+ i uses at most 2 more bits than x, hence running any binary input
with two extra leading 0s is a safe way to always get the complete output of the FST. Another,
beautiful, way to consider this issue is to add an infinite amount of leading 0s to any finite input
and let the FST run forever which will produce an infinite amount of leading 0s in the output as
well. In that context, inputs and outputs of the FST are semi-infinite binary strings (infinite on the
most significant side), i.e. 2-adic integers (see Appendix A). Point 1 generalises beautifully to 2-adic
integers as we get that, for all x ∈ Z2, the output of the “3x+ i” FST is 3x+ i ∈ Z2, with i given
by the initial state13 (see Point 1).

3. The FST is reversible, in the sense that inversing read:write instructions yields a FST that is still
deterministic. In the context of Figure 1.1 this idea corresponds to reading input bits in the green
dashed box instead of the blue one and writing output bits in the blue dashed box instead of the
green one. Mathematically, this corresponds to computing division by 3 instead of multiplication
by 3 in binary, more precisely, in Z2, the reversed FST computes (x− i)/3 with i corresponding to
the initial state and is defined in the same way as in Point 1. For instance, running the reversed
“3x+1” FST (for ever) from input 0 ∈ Z2 and state 1 outputs y = . . . 01010101, which is the 2-adic
representation14 of −1/3 (see Appendix A).

13Indeed, one can show that for all n we have 3xn + i = sn2n + yn with xn ∈ N (resp. yn ∈ N) the natural number
represented in binary by the n least significant bits of the input (resp. output), sn ∈ {0, 1, 2} the state of the minimised
“3x + i” FST after n steps. When n → ∞ we get 3x + i = y as needed since limn→∞ sn2n = 0 and limn→∞ xn = x,
limn→∞ yn = y in Z2 (see Appendix A). In the context of the tiles (Section 1.3), the relation 3xn + i = sn2n + yn is the
particular case of a rectangle of width n and height 1 with xn given on the north side and i given on the east side, see
Corollary 1.16.

14To get convinced that y = . . . 01010101 represents −1/3 remark that 2y + y = . . . 11111111 which is the representation
of −1, hence 3y = −1.
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Given the interpretations that we have given of operations x 7→ x/2 and x 7→ (3x + 1)/2 in binary,
we can start iterating the Collatz map in binary and introduce the carry-annotated Collatz trace of a
number15. Here is the carry-annotated trace of 99 (1100011 in binary, magenta):

Figure 1.3: Carry-annotated Collatz trace of 99, 1100011 in binary (magenta) as introduced15 in [156].
Each row of the trace corresponds to an odd iterate of the Collatz sequence of 99, even iterates are placed
on the same row as they correspond to trailing 0s. Imaginary carries (red) are placed on top of the first
trailing 0 of each row, which corresponds to where the “3x+i” FST starts running (in state 0). In blue is
shown when the iterates reach the cycle 1,2 for the first time.

The trace is constructed by applying the “3x+i” FST (Figure 1.2) on each successive odd Collatz iterate:
there is one odd iterate per row – rows are read in binary, ignoring the value of the carries. For instance,
the first 3 rows correspond to 99 (1100011 in binary, magenta in Figure 1.3), 149 (10010101 in binary)
and 7 (111 in binary) which are indeed the first three odd iterates in the Collatz sequence of 99 (odd
iterates in bold):

99, 149, 224, 112, 56, 28, 14, 7, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1, 2, . . .

Successive even iterates are placed on the same row of the trace as they only differ in a trailing 0, for
instance the third row contains the representations of 224, 112, 56, 28, 14 and 7, depending on where the
last trailing 0 is placed. In red, we highlight the imaginary carry that is placed right after the last trailing
1 of a row, signifying the starting position of the “3x+i” FST in state 0 which computes the operation
3x+1 on that row’s odd iterate. Highlighted in blue the first occurrence of the cycle 1,2 which here occurs
after 7 applications of the “3x+ i” FST (i.e. after 8 rows in the trace and equivalently, 8 odd iterates).

The main result of our previous work [156] is that vertical columns of these traces can be interpreted in
ternary where 0,0̄,1 and 1̄ (that we call base 3’) respectively correspond to ternary digits16 0, 1, 1, 2 (i.e.
the states of the minimised “3x+ i” FST, Figure 1.2(b)). More specifically, we obtain a base conversion
result where, for each position of the trace that is to the left of the most significant non-zero bit of
x, interpreting the vertical column directly north of the position in ternary gives the same number as
interpreting the horizontal row directly west of the position in binary – in the context of the Collatz tiles
(Section 1.3), this result is “only” a special case of Corollary 1.16, see Remark 1.19:

From this result, we conclude that columns also iterate the Collatz process (function T ) but, in base
3. Note the nice symmetry: in base 3, the simple operation is x 7→ 3x + 1 since it only corresponds

15Formally, these traces are space-time diagrams of the Collatz Quasi-Cellular Automaton as described in [156].
16Conversely, [156] gives a simple rule for knowing which of 0̄ or 1 is used to represent ternary digit 1.
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Figure 1.4: Three instances of the base-conversion result of [156]: three orange L-shaped corners such
that north and west of green represent the same number respectively in base 3’ (i.e. base 3 but where
there are two encodings of ternary digit 1, 0̄ and 1, and where digit 2 is 1̄) and in base 2 (where carries
are ignored). Right orange L-shaped corner: we read J1̄K3′ = J2K3 = 2 to the north of the green cell and
J1̄0K2 = 2 to the west of the green cell. Centre orange L-shaped corner: we read J0̄00̄K3′ = J101K3 = 10 to
the north of the green cell and J1̄010K2 = 10 to the west of the green cell. Left orange L-shaped corner:
we read J0̄K3′ = J1K3 = 1 to the north of the green cell and J1̄K2 = 1 to the west of the green cell.

to adding ternary digit 1 at the end of the representation, which happens within the same column in
carry annotated traces (base 3’ symbol 0̄ with red-coloured carry is appended at the end of odd iterates),
whereas computing x 7→ x/2 is harder. This computation is performed, from least significant symbol to
most significant symbol, by another finite state transducer, the “(x− i)/2” transducer, see Figure 1.5(a).

(a) The “(x− i)/2” FST. (b) The “(x− i)/2” FST, minimised.

Figure 1.5: The “(x− 1)/2” finite state transducer. (a) This transducer reads x ∈ N in ternary (actually, base 3′,
see above), trits by trits (from the least significant digit) and, outputs the representation of (x− i)/2 depending
on initial state i. (b) minimised FST once we have merged transitions that are identical when base 3’ symbols
0, 0̄, 1, 1̄ are converted to base 3 symbols 0, 1, 1, 2.

Contrarily to the “3x+i” FST, there is no need to use leading 0s since the representation of (x− i)/2
uses less space that the one of x. Similarly to the “3x+i” FST, inputs and outputs can be interpreted on
semi-infinite ternary strings, which are known as 3-adic integers whose set is denoted Z3, see Appendix A.
For all x ∈ Z3, the “(x− i)/2” FST gives the 3-adic representation of (x− i)/2 when processing x (and
running for infinitely many steps). The “(x − i)/2” FST is also reversible as inverting its read/write
instructions yields a deterministic machine that computes x 7→ 2x+ i. Finally, in [156] we had remarked
that the “3x+ i” and “(x− i)/2” FSTs are dual, in the sense that the symbols of one are the states of the
other (and vice versa) and that there is a transition q0 → q1, r : w in one machine iff there is a transition
r → w, q0 : q1 in the other, see Figure 1.6.
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Figure 1.6: The binary “3x+ i” FST (left) and ternary “(x− i)/2” FST (right) are dual: the symbols
of one are the states of the other (and vice versa) and that there is a transition q0 → q1, r : w in one
machine iff there is a transition r → w, q0 : q1 in the other. An example is given in blue: 1→ 2, 1 : 0 in
the “3x+ i” FST (left) gives 1→ 0, 1 : 2 in the “(x− i)/2” FST (right).

The fact that the two FSTs are dual should have revealed the 6 Collatz tiles to our eyes (Section 1.3)
since pairs of FSTs that are dual while processing their inputs in orthogonal directions can always be
converted into Wang tile sets17 and vice versa, see Section 2.2 in [84]. But, we did not notice them
until Matthew Cook brought them to our attention and opened the discussion of converting the base
conversion result that we had on carry-annotated in terms of tiles. This theory revealed to be more general
(making an analogy with microscopes, one could also say that the tiles give a “better resolution” than the
carry-annotated traces) and we present this theory, that sprouted from our discussions with Matthew
Cook, in the next section.

17The size of the corresponding tile set is the product of the number of states of each machine, here: 6 = 3× 2.
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1.3 The Collatz process in base 6 and beyond: Collatz tilings

In this section, we study a set of 6 Wang tiles, that we call “the Collatz tile set”, Figure 1.7, that can
represent Collatz sequences in base 2, 3, 6 (and many others). We acknowledge Matthew Cook for bringing
this tile set to our attention and initiating the discussion on how our results of [156] would be interpreted,
and generalised, with the tiles. We also remark that the tiles can be deduced from Korec’s base 6 Collatz
Cellular Automaton [93]. This tile set can be used to work on other problems than Collatz, such as Erdős
conjecture on powers of two (see Chapter 2) or Mahler’s 3/2 problem (see Appendix B) and has been
implicitly studied in the case of Mahler’s problem [87, 91].

Our main innovations in this study are (a) the interpretation of the color of each tile’s side as a digit
in base 2 or 3 (b) the focus on finite paths in tilings, interpreted as affine functions (Theorem 1.13) (c)
the interpretation of infinite horizontal/vertical/diagonal paths as respectively 2-adic, 3-adic and 6-adic
integers which are transformed by the functions of each finite path (Theorem 1.25). We then proceed to
demonstrate how these tiles can assemble Collatz sequences, Theorem 1.35, and use this result to reason
about Collatz cycles (Section 1.5) and Collatz ancestors (Section 1.6). These results generalise the base
conversion property seen in binary Collatz traces that we highlighted in our previous work [156] (see
Remark 1.19).

Figure 1.7: The Collatz tile set, or (2,3)-CRT tile set. Colors on horizontal edges are labelled in {0, 1}, colors on
vertical edges are labelled in {0, 1, 2}. North-east, south-east and south-west corners are deterministic and total,
Definition-Lemma 1.2. The north-west corner is non-deterministic and non-total, Remark 1.3.

Definition-Lemma 1.2 (Collatz tile set, or (2,3)-CRT tile set). The Collatz tile set, or (2,3)-CRT tile
set, is the set of six Wang tiles given in Figure 1.7. We denote this tile set by C. Tile t ∈ {0, 1, 2, 3, 4, 5} is
labelled by glues n, s ∈ {0, 1} on the North and South and e, w ∈ {0, 1, 2} on the East and West such that:

t = 3n+ e = 2w + s

Hence, corners (n, e) ∈ {0, 1} × {0, 1, 2} and (s, w) ∈ {0, 1} × {0, 1, 2} of the tiles are deterministic and
total, i.e. there is exactly one distinct tile for each possible choice of these corners. Secondly, tile t is the
only solution in {0, 1, 2, 3, 4, 5} of the system of equations for the corner (s, e) ∈ {0, 1} × {0, 1, 2}:

t ≡ s mod 2

t ≡ e mod 3

In other words, the corner (s, e) solves the Chinese Remainder Theorem (CRT) in Z/2× Z/3 ' Z/6, and
hence (s, e) is a third deterministic and total corner for the tile set.

Proof. All the properties can be manually checked for each tile. For instance on tile 5 we get (n, e, s, w) =
(1, 2, 1, 2) and: 5 = 3× 1 + 2 = 2× 2 + 1. Furthermore, 5 is the only number in {0, 1, 2, 3, 4, 5} such that
5 ≡ 1 mod 2 and 5 ≡ 2 mod 3.
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Remark 1.3 (North-west corner is not deterministic). The only corner of the tiles that is not
deterministic (and not total) is north-west, (n,w) ∈ {0, 1} × {0, 1, 2}. Indeed: (i) (n,w) = (0, 0) is used
by both tiles 0 and 1, (ii) (n,w) = (1, 2) is used by both tiles 4 and 5 and (iii) no tile has (n,w) = (1, 0)

nor (n,w) = (0, 2).

Reminder on the Chinese Remainder Theorem (CRT). The Chinese Remainder Theorem can
be stated in different ways, but perhaps its most general statement is that rings Z/n1 × Z/n2 · · · × Z/nk
and Z/n1n2 . . . nk are isomorphic (noted ') if and only if n1, . . . , nk ∈ N+ are pairwise coprime. One
of the consequences of that statement is that for such ni, the system of k equations x ≡ ai mod [ni]

with 0 ≤ ai < ni always admits a unique solution in {0, . . . , n1n2 . . . nk − 1} and that this solution is
different for each possible n1n2 . . . nk assignments of the ai. Another consequence is that arithmetical
operations + and × in Z/n1n2 . . . nk can be performed in parallel in each Z/ni and then reassembled in
order to get the result in Z/n1n2 . . . nk thanks to the ring isomorphism between Z/n1 × Z/n2 · · · × Z/nk
and Z/n1n2 . . . nk, a property that we will use, see Remark 1.26.

Remark 1.4 ((n,m)-CRT tile set). We have seen that the South-East corner of the Collatz tiles is
solving the Chinese Remainder Theorem for Z/2× Z/3 ' Z/6. More generally, for any pair of coprimes
(n,m) ∈ N2 we can construct the (n,m)-CRT tile set which has nm tiles, one per possible South-East
corner in Z/n×Z/m. The label of each tile is the solution of the CRT in Z/n×Z/m ' Z/nm, meaning that
tile t ∈ {0, . . . , nm− 1} is the only one such that t ≡ s mod n and t ≡ e mod m with (s, e) ∈ Z/n× Z/m
the South-East corner. The two other sides of the tiles, North and West, are respectively given by the
quotient of t by m and the quotient of t by n. Most of what we say in this chapter, especially Theorem 1.13,
can be generalised to these (n,m)-CRT tile sets. The tiles can also be generalised to higher dimensions as
well as beyond coprimes [92].

Now that we have our Collatz tiles, we can consider tilings made of these tiles. More precisely, by tilings
we mean partial tilings:

Definition 1.5 (Partial tilings). Let Z̃ = Z + 1
2 . A partial tiling of the Collatz tile set, or partial

tiling for short, is a partial function T : Z̃2 7→ C where, if defined, T (x, y) is one of the six Collatz tiles
(Definition 1.2) present at position (x, y) ∈ Z̃2. The corners of the tiles in T are positioned in Z2. In this
work we use the expressions partial tiling, tiling, and assembly interchangeably.

We need a notion of what is a valid partial tiling, also see Figure 1.8:

Definition 1.6 (Valid tilings). A valid partial tiling T meets the following three conditions: (i) There
are no color mismatches in T , i.e. adjacent colors always match, (ii) T is 8-connected, i.e. any tile is
reachable from any other by walking across tiles that share an edge or a corner18, (iii) Any horizontal row
and vertical column of T is 2-connected, i.e. there must be no empty position separating two tiles that
are defined on the same row/column.

1.3.1 Valued paths in tilings

The central element of this work is to consider finite paths in tilings and interpret them as functions. The
main result of this section is that in a valid tiling, the function computed by a path only depends on its
starting and ending position, Theorem 1.13. From this result we get an arithmetical interpretation of any

18By lifting this constraint of connectivity, we lose the connection to these arithmetical problems, but we gain the ability
to simulate arbitrary Boolean circuits with the Collatz tiles, Chapter 3.
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Figure 1.8: A valid partial tiling and three invalid tilings, each one respectively in breach of each rule of
Definition 1.6.

valid rectangular tiling, Corollary 1.16. In the next Section 1.3.2, we show how to concretely compute the
output of the function of a path on any given input.

Definition 1.7 (Base interpretation functions). Let J·K2 : {0, 1}∗ → N the function that interprets
finite binary strings to base-2 represented natural numbers. Similarly, define J·K3 : {0, 1, 2}∗ → N and
J·K6 : {0, 1, 2, 3, 4, 5}∗ → N for base 3 and base 6.

Definition 1.8 (Valued path). A valued path is a finite list of valued edges (e0, v0), . . . , (en−1, vn−1) where
edge ei is one of {→,←, ↓, ↑,↘,↖,↙,↗} and where valuation vi ∈ {0, 1} if ei is horizontal, vi ∈ {0, 1, 2}
if ei is vertical and vi ∈ {0, 1, 2, 3, 4, 5} if ei is diagonal. Let P be the set of valued paths. In the plane,
each edge of a path is drawn at the tip of the previous one.

Figure 1.9: Left: functions computed by individual valued edges. Centre: horizontal, vertical and south-
east diagonal paths respectively correspond to base 2, base 3 and base 6 (Lemma 1.10), here: 6 = J110K2,
7 = J21K3 and 29 = J45K6. Right: functions computed by two other more complex paths.

Definition 1.9 (Function of a path). Let A be the set of affine functions with rational coefficients, seen
as formal objects: we do not define the domains of these functions or run them on any inputs (yet) but
just allows to compose them. We define the function of a path by the morphism φ : P → A which is
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defined on individual valued edges, see Figure 1.9 left:

φ(→, v) = 2x+ v φ(←, v) = (x− v)/2
φ(↓, v) = 3x+ v φ(↑, v) = (x− v)/3
φ(↘, v) = 6x+ v φ(↖, v) = (x− v)/6

φ(↙, v) = 3

2
x+

2bv/2c − 3bv/3c
2

φ(↗, v) = 2

3
x+

3bv/3c − 2bv/2c
3

Then, for path p = (e0, v0), . . . , (en−1, vn−1) ∈ P we set φ(p) = φ(en−1, vn−1) ◦ φ(en−2, vn−2) ◦ · · · ◦
φ(e0, v0), and we say that p computes φ(p). Note that edges that go in opposite directions with the same
valuation compute inverse functions to one another, e.g. φ(→, v) ◦ φ(←, v) = x 7→ x.

Lemma 1.10 (Remarkable paths: base 2, base 3, base 6). Horizontal paths correspond to base 2, vertical
path to base 3 and south-east diagonal path to base 6 – Figure 1.9 centre:

1. A horizontal path → · · · → of length n valued v ∈ {0, 1}n computes the function x 7→ 2nx+ JvK2

2. A vertical path ↓ . . . ↓ of length n valued v ∈ {0, 1, 2}n computes x 7→ 3nx+ JvK3

3. A diagonal path ↘ · · · ↘ of length n valued v ∈ {0, 1, 2, 3, 4, 5}n computes x 7→ 6nx+ JvK6

Proof. Immediate consequence of Definition 1.8. For instance, the function computed by a valued
horizontal path (→, vn−1), . . . , (→, v0) of length n is x 7→ 2nx+

∑n−1
i=0 2ivi = x 7→ 2nx+ JvK2.

Example 1.11. Figure 1.9 right gives the functions computed by two paths, using the composition rule
given in Definition 1.8.

Reading paths in tilings. So far, we have defined paths abstractly but their definition is motivated by
tilings made of the Collatz tile set. Indeed, in a tiling, we can follow such paths and read their valuations in
the color of tiles’ edges for horizontal/vertical edges and in tiles’ names for diagonal edges, Figure 1.10(b)
the valuation of the brown path in is 0,3,0,0,2,1,0,5.

Looking at paths at the scale of just one tile makes us realise that our tiles commute, Figure 1.10(a):

Lemma 1.12 (The tiles commute). On each of the 6 Collatz tiles, from the top left corner, the paths
→↓, ↓→ and ↘ compute the same function. Similarly, from the top right corner, the paths ←↓, ↓← and
↙ compute the same function. Same holds for these paths with edges in the reversed direction.

Proof. This property can be verified individually on each tile. Figure 1.10(a) shows the result for tile
4: path →↓ valued (1, 1) computes the function x 7→ 3(2x+ 1) + 1 and path ↓→ valued (2, 0) computes
x 7→ 2(3x+ 2). In both cases this corresponds to the function x 7→ 6x+ 4.

From this local commutation property, we get one of our main results, illustrated in Figure 1.10(b):

Theorem 1.13. Let T be a valid partial tiling of the Collatz tile set and A and B two points in Z2.
Then, all valued paths in T from A to B compute the same function: fAB .

Proof. Without loss of generality we can suppose that paths do not contain diagonal edges as they
can be replaced by two edges which will compute the same function, Lemma 1.12. For instance, by
using tile 4, valued edge (↗, 4) can be replaced by (↑, 2)(→, 1) and both paths compute the function
x 7→ 2

3x+ 3b4/3c−2b4/2c
3 = x 7→ 2

3x−
1
3 .

The essence of the theorem can be first understood by looking at the special case of monotonic paths,
i.e. paths that only ever use horizontal (resp. vertical) edges in the same direction. If points A and B are
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one the same column/row then there is only one monotonic path from A to B and the result is obvious.
The following illustrates the case where the slope from A to B is positive:

In that case, by determinism and totality of the south-east corner of the tiles, there is a unique way
to tile the region north-west from the path. Because of Lemma 1.12, each successive tiling step can be
used to update the path in a way that does not change the function computed by the path, i.e. each
successive updated path computes the same function, fAB = x 7→ 8

9x−
4
9 in the above example. Indeed,

when the path uses the motif →↑ we can make it commute to ↑→ by changing the valuation depending
on which tile is placed without changing the function locally computed by these edges. At the end of this
process, we have transformed our initial path into its canonical version (in blue) which is of the form
↑n→m with n+m the Manhattan distance between A and B and whose valuation is given after the tiling
process is complete. Hence, when the slope from A to B is positive, all monotonic path from A to B can
be transformed into the same canonical path, and they all compute the same function, fAB. If the slope
from A to B is negative, the same argument can be used with the canonical path →n↓m (with n +m

the Manhattan distance between A and B) that is obtained by tiling north-east to the path (using the
determinism and totality of the south-west corner of the tiles). Note that we have implicitly used the
condition that the tiling in which the path is located is valid (Definition 1.6), especially rule 1 which
ensures that there are no color mismatches (mismatches would invalidate the uniqueness of each edge’s
valuation) and rule 3 (Figure 1.8) which ensures that each successive tiling steps will not create color
mismatches – which would invalidate the commutation property of Lemma 1.12 – since two tiles cannot
“bump into each other” from opposite directions on a given row or column (which could create a mismatch
if the disagreed on their shared edge). Hence, we have the result for monotonic paths.

We treat the case of arbitrary paths by induction on the length of the path. More precisely, our induction
hypothesis is, for n ∈ N+, H(n) : “For all A and B in Z2, for all valued path p in T from A to B of length
n, then the function computed by p is the same as the function computed by the canonical path pAB”.
Where the canonical path pAB is of the form→n (resp. ↑n) if A and B are on the same row (resp. column)
with n the distance between A and B; or of the form ↑n→m (resp. →n↓m) with n+m the Manhattan
distance between A and B if the slope between A and B is positive (resp. negative). The valuation of
the canonical path pAB is given by extending the tiling T until the canonical path is fully tiled which
is always possible (and uniquely defined) by using the determinism and totality of the south-east and
south-west corners of the tiles (and, using the same argument than in the monotonic case, relying on rule
1 and rule 3 of Definition 1.6, Figure 1.8, for no color mismatches being initially present or introduced
during the tiling process). Let’s prove the induction:
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Base case n = 1. If n = 1 then the induction hypothesis is vacuously true if the Manhattan distance
from A to B is strictly more than 1 (or equal to 0). If A and B are at distance of 1 from each other then
there is a unique path from A to B of length 1 , which is the canonical path pAB, and the hypothesis holds.

Inductive step. Let n ∈ N+ and let’s assume that H(n) is true for all 1 ≤ k ≤ n. Now we consider
H(n+ 1). The hypothesis is vacuously true if M ∈ N, the Manhattan distance from A to B is strictly
more than n+ 1 (or equal to 0). Let’s suppose that that 0 < M ≤ n+ 1. We treat the case where the
slope from A to B is positive, all other cases (A and B on the same row/column or with negative slope)
can be treated similarly. Consider a valued path p in T from A to B of length n+ 1. There are 4 cases to
study for the last edge of p (as it is either →, ←, ↑ or ↓) and we call B’ the point before B and that edge,
the path p′ from A to B’ is of length n and by induction hypothesis p′ computes the same function as its
canonical version pAB’ (in blue):

Let φ : P → A the morphism that converts paths to functions (Definition 1.8), we want to show that
φ(p) = φ(pAB) and we know that φ(p′) = φ(pAB’) by induction hypothesis (φ(pAB) is fAB from the
theorem statement). Let + be the concatenation operation on paths, and let’s denote the last valued edge
of p by

−−→
B’B, then we have p = p′ +

−−→
B’B.

1. Case 1:
−−→
B’B is → (with any valuation). Then by definition of canonical paths, as illustrated above

in this case we have pAB = pAB’ +
−−→
B’B. Using Definition 1.8, we have φ(pAB) = φ(

−−→
B’B) ◦ φ(pAB’) =

φ(
−−→
B’B) ◦ φ(p′) = φ(p′ +

−−→
B’B) = φ(p), as needed.

2. Case 2:
−−→
B’B is← (with any valuation). Then by definition canonical paths, as illustrated above in this

case we have pAB+
−−→
BB’ = pAB’. Hence, φ(

−−→
BB’)◦φ(pAB) = φ(p′). We have φ(

−−→
B’B)◦φ(

−−→
BB’)◦φ(pAB) =

φ(p′ +
−−→
B’B) which gives φ(pAB) = φ(p) because φ(

−−→
BB’) ◦ φ(

−−→
B’B) = x 7→ x (for instance take

−−→
B’B

to be (←, 1) then
−−→
BB’ is (→, 1) and their respective functions are x 7→ (x− 1)/2 and x 7→ 2x+ 1

which are indeed compositional inverses to one another).
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3. Case 3:
−−→
B’B is ↑ (with any valuation). Call B” the point where the canonical path pAB’ switches

from using ↑ to → (illustrated above). Point B” is always defined because we supposed that there is
a positive slope from A to B. Then, because we have proven the result on monotonic paths, we know
that the paths from B” to B respectively highlighted in dashed red and blue plus the black

−−→
BB’ edge

in the above illustration compute the same function. Hence, from point B”, we can replace the end
of path pAB’ by the dashed red portion, which gives us pAB by definition of canonical paths and that
still computes the same function as pAB’ +

−−→
BB’ which is the function computed by p′ +

−−→
BB’ = p.

Hence, we have φ(p) = φ(pAB).

4. Case 4:
−−→
B’B is ↓ (with any valuation). Call B” the point just before the canonical path pAB’ switches

from using ↑ to → (illustrated above) – it is always defined because of the positive slope between A
and B. The monotonic paths between B” and B’ in blue in the above illustration and dashed red
path plus edge

−−→
BB’ compute the same function (we proved the theorem in the case of monotonic

paths in the first part of this proof). Hence, we can edit pAB’ to use the dashed red path plus
edge

−−→
BB’ and we still get the function φ(pAB’). Hence we have φ(pAB +

−−→
BB’) = φ(pAB’). Hence

φ(
−−→
BB’) ◦ φ(pAB) = φ(pAB’) = φ(p′) and then φ(

−−→
B’B) ◦ φ(

−−→
BB’) ◦ φ(pAB) = φ(p′ +

−−→
B’B) which gives

φ(pAB) = φ(p) because φ(
−−→
B’B) ◦ φ(

−−→
BB’) = x 7→ x by the same argument as in Case 2.

In all cases we get the result when there is a positive slope from A to B. The other possibilities, i.e.
negative slope from A to B or having A and B on the same column or row are proved similarly.

(a) Tile 4 commutes (Lemma 1.12) in the sense that
paths →↓, ↓→ and ↘ compute the same function
x 7→ 6x+ 4.

(b) All paths from A to B compute the same function
(Theorem 1.13), here: fAB : x 7→ 32

9
x+ 1

9
.

Figure 1.10: An important property of the Collatz tiles is that two paths that share the same starting
and ending position compute the same function, Theorem 1.13.

Corollary 1.14. In a valid partial tiling any valued loop – i.e. valued path that starts and ends at the
same point – computes the function x 7→ x.

Proof. By Theorem 1.13, a path that starts and end at position A computes the same function as the
loop around one of the tiles of which A is a corner of, which can be verified to be x 7→ x for each of the
six tiles.

Corollary 1.15. Let T be a valid partial tiling such that their exists a valued path from A to B. Then
we have fAB = f−1

BA meaning fAB ◦ fBA = x 7→ x.

Proof. By Definition 1.6, a valid partial tiling is 8-connected, hence there is always a path between points
A and B of the tiling. By Theorem 1.13, any path from A to B computes the same function hence fAB is
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well-defined. By composing a path from A to B and from B to A we get a loop, which computes x 7→ x

by Corollary 1.14, hence we have fAB ◦ fBA = fAA = x 7→ x.

(a) 33J11001K2 + J212K3 = 25J210K3 + J11010K2, giv-
ing 27× 25 + 23 = 32× 21 + 26 = 698. (b) 50 = J122K6 = 33J001K2 + J212K3 = 23J020K3 +

J010K2.

(c) An instance of base conversion: J10111K2 = J212K3 = J035K6 = 23, Corollary 1.18.

Figure 1.11: The sides of rectangular assemblies satisfy 3hJvnorthK2 + JveastK3 = 2wJvwestK3 + JvsouthK2,
Corollary 1.16. In the case of squares we also read this equality on the south-east diagonal interpreted in
base 6, Jvsouth-eastK6. When JvnorthK2 = 0 and JvwestK3 = 0 we get base conversion, Corollary 1.18.

Rectangular tilings and base conversion. A direct consequence of Theorem 1.13 is the following
Corollary that allows us to arithmetically interpret any rectangular tiling of the Collatz tile set:

Corollary 1.16 (Rectangles). Any valid rectangular tiling of width w and height h of the Collatz tile
set satisfies the following equation: 3hJvnorthK2 + JveastK3 = 2wJvwestK3 + JvsouthK2. Where vnorth, vsouth,
vwest and veast are the respective valuations of the paths along each side of the rectangle. In the special
case of squares, the previous values are also equal to Jvsouth-eastK6 with vsouth-east the valuation along the
south-east diagonal. See Figure 1.11(a) and 1.11(b).

Proof. This is a direct application of Theorem 1.13 by considering the paths→w↓h (in blue in Figure 1.11(a)
and 1.11(b)) and ↓h→w (in red in Figure 1.11(a) and 1.11(b)) from the north-west corner to the south-east
corner of the rectangle. Indeed, using Lemma 1.10, the function computed by the blue path is f = x 7→
2w3hx+3hJvnorthK2+JveastK3 and the function computed by the red path is f ′ = x 7→ 3h2wx+2wJvwestK3+
JvsouthK2, by Theorem 1.13 we have f = f ′ which gives 3hJvnorthK2 + JveastK3 = 2wJvwestK3 + JvsouthK2 by
identification of polynomial coefficients, as needed. In the case of a square (h = w), using Lemma 1.10,
the function computed along the north-west south-east diagonal is f ′′ = x 7→ 6hx+ Jvsouth-eastK6 and since
f = f ′ = f ′′ by Theorem 1.13, we get the result.

Remark 1.17 (Chinese Remainder Theorem (again) and macrotiles). The south-east corner of width-w
height-h rectangular tilings is solving the CRT in Z/2w × Z/3h ' Z/2w3h. Hence, a rectangular assembly
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can be seen as a digit in base 2w3h (or base 6k in the particular case of squares) and can be considered as
a macrotile: by changing scale, we can change the base in which we are reading the tilings.

Corollary 1.18 (Base conversion). Any valid rectangular tiling such that JvnorthK2 = 0 and JvwestK3 = 0

satisfies JvsouthK2 = JveastK3 = Jvsouth-eastK6 with vnorth, vsouth, vwest and veast the respective valuations of
each side of the rectangle and vsouth-east the valuation of the diagonal path that ends in the south-east
corner of the rectangle. In other words, the same number is being converted between base 3, 6 and 2
within this rectangle. See Figure 1.11(c).

Proof. This is a direct consequence of Corollary 1.16: 3hJvnorthK2+JveastK3 = 2wJvwestK3+JvsouthK2 becomes
JvsouthK2 = JveastK3 when JvnorthK2 = 0 and JvwestK3 = 0 and we also get JvsouthK2 = JveastK3 = Jvsouth-eastK6
since the valuation of the north side is 0 (brown path in Figure 1.11(c)).

Remark 1.19. In essence, Corollary 1.18 is the same result as Theorem 11 of our previous work [156] –
Theorem 16 in the arxiv version [155]. The CQCA model introduced in that work is effective (it is a CA
augmented with the (easily, linear-time, computable) feature of quickly doing iterated divisions by 2 on an
even numbers until they become odd). This in turn makes the CQCA well-suited to simulation of Collatz
(and some related systems), as well as to stating and proving Collatz and Collatz-like prediction problems
that rely on considering base 2 and 3 expansions. However, the more general Theorem 1.13 that we have
stated here and subsequent Theorem 1.25 would have been awkward to derive in the CQCA framework of
[156] as CQCA traces are slightly too coarse-grained compared to tiles that have glue information that
clearly advertises the structure of paths. Additionally, tiles are fundamentally more general than the
model of [156] because they are not restricted to the study of the Collatz problem: the Collatz process
is only one particular type of assemblies, see Theorem 1.35. In this thesis we show how two other open
problems relate to the tiles: Erdős’ conjecture on powers of two (Chapter 2) and Mahler’s 3/2 problem
(Appendix B).

1.3.2 Reading the output of a path in a tiling

In Section 1.3.1 we have interpreted valued paths in tilings as abstract functions but we have not shown
how to read input/output mappings of these functions in tilings. This is the goal of the current section.
The types of numbers on which our functions are going to operate are the p-adic integers, and more
precisely the 2-adic, 3-adic and 6-adic integers: Z2,Z3 and Z6. Although they can seem foreign, we are
going to see that these numbers are particularly suited to our tilings and that they appear naturally when
considering Collatz cycles, Section 1.5.

We refer the reader to Appendix A for more background on Zp, the ring of p-adic integers. We can
briefly mention that Zp (here Z2, Z3, Z6) is the ring of base-p strings that are infinite on their most
significant side. In Zp, we have19 limn→∞ pn = 0. Zp is uncountable and contains N (numbers with
infinitely many leading 0s), Z (numbers with infinitely many leading digit p− 1) and almost all20 of Q
(numbers with eventually repeating representation). There is no ring isomorphism (') from Zp to R. For
example, 1

2 6∈ Z2 but
√
−7 ∈ Z2, two reasons for which Z2 6' R. Similarly, Zp 6' Zq when p 6= q, meaning

that Z2, Z3 and Z6 represent different kinds of numbers, see Appendix A.

Definition 1.20 (2-adic, 3-adic and 6-adic value of a point A ∈ Z2). Let T be a valid partial tiling and
A = (x, y) ∈ Z2. Figure 1.12 illustrates the following:

19This – at first – strange-looking equality can be interpreted visually: pn in base p consists of a 1 followed by n 0s.
Hence, the bigger n is the higher in the digits of pn you need to look to differentiate it from 0, which is the meaning of
limn→∞ pn = 0.

20Zp contains exactly the subset of Q of fractions whose denominator is not a multiple of p.
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Figure 1.12: 2-adic, 3-adic and 6-adic value of a point A ∈ Z2 in a tiling, Definition 1.20.

• If for all i ∈ N the edge (x− i− 1, y) to (x− i, y) is valued in T by bi ∈ {0, 1}, then the 2-adic value
of A is uA = . . . b2b1b0 ∈ Z2.

• If for all i ∈ N the edge (x, y − i− 1) to (x, y − i) is valued in T by ti ∈ {0, 1, 2}, then the 3-adic
value of A is vA = . . . t2t1t0 ∈ Z3.

• If for all i ∈ N the edge (x− i− 1, y − i− 1) to (x− i, y − i) is valued in T by si ∈ {0, 1, 2, 3, 4, 5},
then the 6-adic value of A is wA = . . . s2s1s0 ∈ Z6.

Remark 1.21. Definition 1.20 can be interpreted in terms of convergence of sequences of functions.
Indeed, if we take a length-n finite suffix of the left-infinite horizontal path that defines the 2-adic value
v ∈ Z2 of some point in a tiling we get the path → · · · → valued bn−1 . . . b0 ∈ {0, 1}n. By Lemma 1.10, we
know that the associated function is fn = x 7→ 2nx+ Jbn−1 . . . b0K2. The sequence of functions (fn)n∈N

converges uniformly21 in Z2 to the constant function f = x 7→ v, which justifies mapping this left-infinite
path to the value v ∈ Z2. In other words, while a finite horizontal path can be seen as the action of
appending a binary suffix to a number, a left-infinite horizontal path corresponds to an entire number of
Z2 itself. The same remark goes for vertical paths and Z3 and south-east diagonal paths and Z6.

Remark 1.22 (Where are the reals?). The theory that is developed here has a strong focus on p-adic
integers, i.e. numbers with an infinite base p expansion on the most significant side. It is legitimate
to wonder if there is room for the more familiar real numbers in our tilings and it turns out that there
is! Let α = 0.b0b1b2 · · · ∈ [0, 1] be a unit-interval real expressed with binary “decimals”. Then, the
right-infinite path where each edge (i + 1, y) to (i, y) for i ∈ N is valued by bi can be interpreted as
being α, in a very similar way to Remark 1.21. The same goes vertically with base 3 expansions of
reals and diagonally for base 6 expansions; we call these representations of the reals R2, R3 and R6,
Figure 1.13. Complications arise when looking at reals in tilings: (a) representation is not unique, for
instance, 0.01111 . . . = 0.10000 . . . in R2 and (b) these representations involves use of the north-west
corners of the tiles which is not deterministic. For these reasons, and especially (b), we do not try to
extend the theory to reals. Nonetheless, R6 is used in a beautiful way to reformulate Mahler’s 3/2 problem
with the six tiles, Appendix B.

After choosing some A ∈ Z2, the numbers/strings uA ∈ Z2 and vA ∈ Z3 are two degrees of freedom that
one can use to uniquely define the north-west quadrant of a tiling anchored by its south-east corner A. In
particular, because the south-east corners of the six tiles are both deterministic and total (see Figure 1.7),
any choice of (uA, vA) ∈ Z2 × Z3 yields a valid, unique and complete tiling of the north-west quadrant.

21The result comes from the fact that for all x ∈ Z2 and n ∈ N, fn(x)− f(x) ends with n zeros. See Chapter 8 in [3] which
is about real functions but that also applies in Z2 (or more precisely, in Q2, see Appendix A) in our case. Uniform convergence
of a sequence of functions is stronger than the more intuitive pointwise convergence which asks that limn→∞ fn(x) = f(x)
for all x in the domain of f and here directly comes from limn→∞ 2n = 0 in Z2.
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Figure 1.13: Reals in base 2,3 and 6 can also be read in tilings.

Reciprocally, if in the north-west quadrant we set the semi-infinite south-east-pointing diagonal wA ∈ Z6

(ending at A), we get a valid, unique, and complete tiling of the quadrant and thus well-defined values of
(uA, vA) ∈ Z2 × Z3: that is because the south-west and north-east corners of the tiles are deterministic
too (i.e., by tiling to the north-east and south-west from the diagonal wA). This fact is yet another
manifestation of the Chinese Remainder Theorem generalised to Z2 × Z3 ' Z6 (ring isomorphism). We
concretise this fact in the following:

Lemma 1.23. Let T be a valid partial tiling and A ∈ Z2 be such that all the positions in the north-west
quadrant anchored at A are tiled. Then A has a 6-adic value wA ∈ Z6 if and only if it has 2-adic and
3-adic values (uA, vA) ∈ Z2 × Z3. The mapping ψ : Z2 × Z3 → Z6 such that ψ(uA, vA) = wA is a ring
isomorphism, i.e. Z2 × Z3 ' Z6.

Proof. If A has a 6-adic value then, by determinism and totality of the south-west and north-east
corners of the tiles, we can reconstruct its uniquely corresponding 2-adic and 3-adic values. Reciprocally,
if A has a 2-adic and a 3-adic value, by totality and determinism of the the south-east corner of
the tiles, we can reconstruct its uniquely corresponding 6-adic value. The fact that the mapping
ψ : Z2 × Z3 → Z6 such that ψ(uA, vA) = wA is a ring isomorphism, which means that ψ(1, 1) = 1 and
ψ(u+ u′, v+ v′) = ψ(u, v) + ψ(u′, v′) and ψ(u× u′, v× v′) = ψ(u, v)× ψ(u′, v′), is directly obtained by
extending to the limit the Chinese Remainder Theorem which gives ring isomorphisms Z2k × Z3k ' Z6k

for all k ∈ N [80].

Remark 1.24 (Aperiodicity of 6-adic values). In practice, it is easier to work with the pair (uA, vA) ∈
Z2 × Z3 rather than with their associated 6-adic value wA ∈ Z6 (Lemma 1.23) because wA is typically
aperiodic, hence hard to describe. For instance, if both uA and vA are eventually periodic, i.e. uA ∈ Z2∩Q
and vA ∈ Z3 ∩ Q, then wA is eventually periodic if and only if uA = vA. Said otherwise, as soon as
uA 6= vA (i.e. uA and vA do not represent the same rational number), we have that wA is aperiodic, or
equivalently, wA 6∈ Q. See Appendix A for a proof. The implication in terms of tilings is that simple
choices of uA and vA can lead to complex tilings of the north-west quadrant, for instance choosing uA = 0

(south-most border) and vA = 1 (east-most border) gives22:

22Matthew Cook pointed out that we give here an algorithm for computing OEIS sequence https://oeis.org/A055620
and that choosing uA = 1 and vA = 0 gives https://oeis.org/A054869.

https://oeis.org/A055620
https://oeis.org/A054869


28 Chapter 1. Breaking Collatz sequences into bits, trits and tiles

We can see that despite its simple south and east borders – which uniquely determine the tiling because of
the determinism and totality of the south-east corner of the tiles – this tiling is complex, and its south-east
diagonal (brown), which corresponds to wA ∈ Z6, is not periodic (no matter how much we extend the
tiling by adding leading 0s on the south and east sides).

Figure 1.14: Computing with the blue valued path from A to B in an (invisible) tiling (Theorem 1.25).
The function of that path, fAB , is independent from the path (Theorem 1.13).

Theorem 1.25. Let T be a valid partial tiling and A and B two points in Z2 such that there exists a
valued path in T from A to B computing fAB (see Theorem 1.13). Assume that for any p ∈ {2, 3, 6}, the
p-adic values zA and zB, of A and B, are defined in T . Then, zB = fAB(zA). See Figure 1.14.

Proof. It is enough to prove the result for p ∈ {2, 3} since, by Lemma 1.23, thanks to the ring isomorphism
Z2 × Z3 ' Z6, performing operations in Z6 is equivalent to performing operations in parallel in Z2 and
Z3, i.e. if we are given a 6-adic value for points A and B we can compute their corresponding 2-adic and
3-adic values and work with them directly: the ring isomorphism ensures that operations performed on
them will also apply to their associated 6-adic values. Because of path composition (Definition 1.8) it
is enough to show the result for paths consisting of only one valued edge. Furthermore, we can further
restrict to edges ←, →, ↑ and ↓ since diagonal edges can be obtained by composing horizontal and vertical
edges. Cases where p = 2 and the edge is horizontal (resp. p = 3 and the edge is vertical) are immediate
since by definition, the operation of fAB merely consists in adding/removing a trailing binary symbol
(resp. ternary symbol). The cases that remain to be studied are when p = 2 and the edge is vertical and
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when p = 3 and the edge is horizontal. By reversibility of the operations computed by edges we are left
with only 2 cases to study, where the vertical edge is ↓ and the horizontal edge is ←:

• Case 1: p = 2 and the valued edge between A and B is (↓, v) with v ∈ {0, 1, 2}. We need to show
that uB = fAB(uA) = 3uA + v with uA the 2-adic value of A and uB the 2-adic value of B:

Call v0 = v and vn for n ∈ N+ the valuation of the nth vertical edge parallel to the west of v.
Call u(n)

A the last n bits of uA and u(n)
B the last n bits of uB. Then, by Corollary 1.16 we have:

3u(n)A +v = 2nvn+u(n)B . Knowing that limn→∞ 2nvn = 0 in Z2 (cf. Appendix A) we get 3uA+v = uB

when n → ∞, as needed. Note: the sequence of trits vn gives the succession of states that the
minimised “3x+ i” finite state transducer, Figure 1.2(b), will traverse when processing input uA

(which outputs uB).

• Case 2: p = 3 and the valued edge between A and B is (←, b) with b ∈ {0, 1}. We need to show
that vB = fAB(vA) = (vA − b)/2 with vA the 3-adic value of A and vB the 3-adic value of B:

Call b0 = b and bn for n ∈ N+ the valuation of the nth horizontal edge parallel to the north of
b. Call v(n)A the last n trits of vA and v(n)B the last n trits of vB. Then, by Corollary 1.16 we
have: 3nbn + v(n)A = 2v(n)B + b which rewrites into v(n)B = (3nbn + v(n)A − b)/2. When n→∞ we get
vB = (vA − b)/2 since limn→∞ 3nbn = 0 in Z3 (cf. Appendix A), as needed. Note: the sequence
of bits bn gives the succession of states that the minimised “(x − i)/2” finite state transducer,
Figure 1.5(b), will traverse when processing input vA (which outputs vB).

In all the cases we get the result.

Remark 1.26 (Two birds one stone). In Theorem 1.25, we see that fAB is applied in parallel on both the
2-adic and the 3-adic value of point A (or equivalently, on its 6-adic value). This idea is put in practice in
Example 1.27.

Example 1.27. Although Theorem 1.25 is a statement about tilings that are already formed, we can
use it in practice to compute the output of the function of a given path on some given 2-adic/3-adic/6-
adic inputs. Let’s compute the output of function fAB : x 7→ 576x + 502, defined by the blue path
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between A and B below (valued 1,1,0,2,5,1,0), on 2-adic input uA = −1/3 = . . . 010101 ∈ Z2 (i.e.
pattern 01 repeated forever23), and 3-adic input vA = 46 = . . . 001201 ∈ Z3 positioned at point A.
Specifying these allows for a unique tiling grown north-east and south-west of the path (we are only
using corners of the tiles that are deterministic and total). By Theorem 1.25, we expect to read outputs
fAB(−1/3) = 310 = . . . 00100110110 ∈ Z2 and fAB(46) = 26998 = . . . 01101000221 ∈ Z3 once the tiling
reveals the 2-adic and 3-adic values of point B:24

For the sake of brevity, we do not explore all the possible paths that one could consider computing with.
Important remarks are that (a) one can focus on monotonic paths only (i.e. the sequence of coordinates
along the path are monotonic in x in y), such as the blue path above, since, if there is a path from A to B
in a valid tiling then there is also a monotonic path and they compute the same function (Theorem 1.13)
and (b) some monotonic paths may constrain their inputs: a canonical example is that the path consisting
only of valued edge (←, 0) constraints a 2-adic input to have its last bit equal to 0 since, otherwise, the
operation x 7→ x/2 is not defined25 in Z2. These constraints can be computed with the tiles and are
“only” fixing the last n digits of an input to a particular value with n the length of the path, i.e. the
domain of the function computed by the path if of the form α+ pnZp, with p ∈ {2, 3, 6} and α < pn, with
p depending on the case considered. For instance, in Figure 1.16, the given path of length 12 is forcing
2-adic inputs to end in 100001011001.

23To get convinced that x = . . . 010101 represents −1/3, note that 2x = . . . 0101010, hence x+ 2x = . . . 1111 = −1. We
can also get this 2-adic expansion thanks to the algorithm given in Appendix A, Remark A.4.

24Note that we have not bothered to tile the region north-west of A, as it is “only” computing the (aperiodic) 6-adic
value of A associated to (−1/3, 46) ∈ Z2 × Z3, Lemma 1.23 and Remark 1.24.

25Indeed, Z2 is not a field meaning that not all divisions are allowed, see Appendix A.
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1.3.3 Tiling Collatz sequences

We finally get to the moment where we relate our 6 tiles to Collatz sequences. We do so through the
concept of a parity vector which has been central in the study of the Collatz process [161, 178, 139]:

Definition 1.28 (Parity vectors). A parity vector is a finite sequence of bits, i.e. an element of {0, 1}n

for some n ∈ N. An infinite parity vector is an infinite sequences of bits, i.e. an element of {0, 1}N. The
infinite Collatz parity vector of x ∈ Z2 is the infinite sequence of bits Tn(x) mod 2 for n ∈ N and T the
Collatz map T (x) = x/2 if x ∈ Z2 is even and T (x) = (3x+ 1)/2 if it is odd.

Example 1.29. The infinite Collatz parity vector of x = 73 ∈ Z2 starts with [1, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, . . . ]

since the first 11 T -iterates of x are: [73, 110, 55, 83, 125, 188, 94, 47, 71, 107, 161, . . . ].

Definition 1.30 (Q : Z2 → Z2). The infinite Collatz parity vector of x ∈ Z2 can be identified with the
2-adic integer sharing the same sequence of bits and is denoted Q(x) ∈ Z2 in that case. In other words, the
function Q : Z2 → Z2 maps a 2-adic integer to its infinite Collatz parity vector, seen as a 2-adic integer.

The following is known about Q [139]:

1. Q is a bijection. This means that distinct inputs in Z2 to the Collatz process will have distinct
infinite parity vectors and that for any infinite parity vector, there exists an input in Z2 whose
Collatz sequence follows that parity vector.

2. If x and y in Z2 share their last n bits, i.e. x ≡ y mod 2n, then Q(x) and Q(y) also share their last
n bits, i.e. Q(x) ≡ Q(y) mod 2n. This implies that Q is continuous everywhere in Z2.

3. Q is nowhere differentiable [15].

4. If Q(x) is eventually periodic then the Collatz sequence of x is also eventually periodic (i.e. reaches
a cycle in Z2).

5. If Q(x) is eventually periodic then x is also eventually periodic, i.e. Q(x) ∈ Q⇒ x ∈ Q.

6. Lagarias’ periodicity conjecture (c.f. Section 1.1) states that the Collatz sequence of an eventually
periodic number in Z2 is eventually periodic. That is equivalent to the converse of Point 5 together
with Point 4: the conjecture states that Q(Q ∩ Z2) ⊆ Q.

Remark 1.31 (Are parity vectors numbers?). In Appendix A, Remark A.4, we make the point that
the 2-adic representation of a rational 2-adic x ∈ Z2 (or in fact any 2-adic) can be seen as being the
parity vector of x under the “trivial” Collatz-like map x 7→ x/2 if x is even (least significant bit is 0) and
x 7→ (x− 1)/2 if x is odd (least significant bit is 1) – this map is also known as the shift map26. This, plus
the fact that Q is bijective, forces us to wonder if Collatz parity vectors could be thought of as numbers
expressed in the “Collatz-base”. The main problem of this analogy is that we do not know how to perform
any operation in that “base”, i.e. Q(x+ y) and Q(x× y), in general, do not seem to be related to Q(x)

and Q(y).

Remark 1.32 (Predicting parity vectors). The infinite Collatz parity vector of x ∈ Z2 can be thought
as giving which of the maps x 7→ x/2 or x 7→ (3x + 1)/2 is used at each step of the Collatz sequence
of x. Infinite parity vectors can be easily generalised to Generalised Collatz Maps (Section 1.1) by
looking at the sequence giving which of the N maps of a GCM is used at each step of processing a
particular input. Computationally speaking, infinite parity vectors are natural objects to study since they

26This is because it shifts the representation of a 2-adic integer by one to the right, i.e. it gets rid of the least significant
bit. It is known that T = Q−1 ◦ S ◦Q [15, 139].
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represent the sequence of states in which a GCM will be while processing a given input. Since GCMs are
Turing-complete, we know that predicting parity vectors in general is arbitrarily hard. In the specific
case of Collatz, although it is in P, the exact complexity of predicting parity vectors arbitrarily far in the
future is unknown, see Section 1.4, Remark 1.32. Nonetheless, it is expected to be non-trivial as it is not
even known if an eventually periodic x produces an eventually periodic infinite parity vector (Lagarias’
periodicity conjecture).

We are going to associate parity vectors to a particular kind of infinite valued paths in a straightforward
way:

Definition 1.33 (Path representation of a parity vector). Consider a parity vector, finite or infinite
(Definition 1.28). Replace bits equal to 0 with valued edge (←, 0) and bits equal to 1 with valued edge
(↙, 4), the resulting sequence defines a valued path that we call the path representation of a parity vector
and is denoted p ∈ {0, 1}∗ in the finite case and p ∈ {0, 1}N in the infinite case. From now on, we identify
Collatz parity vectors with their path representation. Similarly, from now on we define the function Q to
be from Z2 to {(←, 0), (↙, 4)}N.

Remark 1.34. The function computed by (←, 0) is x 7→ x/2 and the function computed by (↙, 4) is
x 7→ (3x+ 1)/2, that is T to a T!

Theorem 1.35 (Tiling Collatz sequences). Let p ∈ {(←, 0), (↙, 4)}N be the path representation of the
infinite Collatz parity vector of some z ∈ Z2 (Definition 1.33). Call An = (xn, yn) ∈ Z2 each point along
p for n ∈ N and let A0 = (0, 0). Then, there is a unique valid tiling of the region north-west from p

delimited to the north by y = 0, i.e. {(x, y) | y ≤ 0 and x ≤ x|y|} ⊆ Z2. In that tiling, un ∈ Z2 the 2-adic
value of An is defined for all n and we have: u0 = z = Q−1(p) and un = Tn(u0). In that sense, we have
tiled the Collatz sequence of z, starting from its parity vector p ∈ {(←, 0), (↙, 4)}N. See Figure 1.15.

Proof. The fact that there is a unique valid tiling of the region north-west from p delimited to the north
by y = 0 directly comes from the determinism and totality of the south-east corner of the tiles.

Once we have the tiling, the result directly follows from Theorem 1.25 since the edge (←, 0) computes the
function x 7→ x/2 and forces the last bit of x to be 0, i.e. is applied when x is even and (↙, 4) computes
the function x 7→ (3x+ 1)/2 and forces the last bit of x to be 1, i.e. is applied when x is odd. Hence, by
iteration, rows after rows, we read un (the 2-adic value of An) which gives the successive Collatz-iterates
of u0 = z = Q−1(p) in Z2.

Finite parity vectors can be interpreted in terms of finite Collatz sequences, restricted to the natural
numbers, they will prove useful when thinking about Collatz cycles, Section 1.5:

Corollary 1.36. Let p ∈ {(←, 0), (↙, 4)}n be the path representation of a finite parity vector (Defini-
tion 1.33). Then, there is a unique tiling of the finite triangular region north-west from p, and we have
β = Tn(α) with α and β natural numbers respectively given in binary and ternary on the north and west
sides of that triangular region, see Figure 1.16.

Proof. Uniqueness of the tiling is immediate by determinism and totality of the south-east corner of the
tiles. The fact that β = Tn(α) is a consequence of Theorem 1.35: if we embed this finite tiling in a bigger
tiling where α has been prepended with an infinite amount of 0s, we know that each row gives successive
Collatz iterate in Z2, and even N since α ∈ N. Now, by base conversion (Corollary 1.18), the last row
(which is Tn(α)) is also given in base-3 by the column where we read β.
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(a) Tiling the Collatz sequence of 99 from p ∈ {(←, 0), (↙, 4)}N, the path representation of its infinite Collatz
parity vector (Definition 1.33). Intuitively, the parity vector defines a path upon which we can tile the Collatz
iterations of 99, but backwards (the input is the parity vector, the output is 99). We get u0 = J1100011K2 = 99
and, for instance, u3 ∈ Z2, the 2-adic value of point A3, satisfies u3 = J1110000K2 = 112 = T 3(99). There is one
odd iterate per horizontal row. The Collatz sequence of 99 eventually reaches the trivial cycle 2, 1 of which we
see 3 repetitions here (highlighted in red). The trivial cycle’s path repeats the pattern (←, 0), (↙, 4) for ever,
corresponding to alternating even/odd parities.

(b) Tiling the Collatz sequence of − 1
23

from p ∈ {(←, 0), (↙, 4)}N, the path representation of its infinite Collatz
parity vector (Definition 1.33). We get u0 = (00100001011)∞001 ∈ Z2 = − 1

23
(we can compute this 2-adic

expansion thanks to the algorithm given in Appendix A, Remark A.4), and, for instance, u3 ∈ Z2, the 2-adic
value of point A3, satisfies u3 = (00010110010)∞1 ∈ Z2 = 19

23
= T 3(− 1

23
). There is one odd (i.e. last significant

bit 1) iterate per horizontal row. The Collatz sequence of − 1
23

eventually reaches the cycle 5
23
, 19

23
, 40

23
, 20

23
, 10

23
of

which we see 4 repetitions here. This cycle’s path repeats the pattern (↙, 4), (↙, 4), (←, 0), (←, 0), (←, 0) for ever,
corresponding to odd/odd/even/even/even parities.

Figure 1.15: Tiling the Collatz sequences of 99 and − 1
23 from their respective infinite Collatz parity vector,

see Theorem 1.35.

Figure 1.16: Tiling north-west from the path representation of length-12 parity vector p =
[1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0] gives T 12(2137) = 127 with 2137 and 127 respectively given in binary and ternary on
the north and west sides of the final assembly. The first 12 Collatz iterates of 2137 follow the parities given by p.

Remark 1.37 (coreli). You can compute the pair (α, β) for an arbitrary parity vector using our library
coreli v0.0.3 (see Appendix C), same example as Figure 1.16:

>>> from coreli import ParityVector
>>> pv = ParityVector([1,0,1,1,0,0,0,1,1,0,0,0])
>>> pv.first_occurrence()
(2137, 127)
>>> pv.first_occurrence(symbolic=True)
('100001011001', '11201')
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You can also get the tiling corresponding to a parity vector, see Appendix C:

>>> from coreli import ParityVector
>>> pv = ParityVector([1,0,1,1,0,0,0,1,1,0,0,0])
>>> tiling = pv.to_tiling()
>>> tiling.all_steps()
>>> tiling.draw_svg().saveSvg("tiling.svg")

Will get you the following image which is (almost27) the same as Figure 1.16:

Remark 1.38 (Explicit formulae for α and β). While Corollary 1.36 gives a way to reconstruct the α and
β of a parity vector (Figure 1.16) via the tiles, there are explicit formulae that are known in the literature
[178, 139]. If we call (p0, . . . , pn−1) ∈ {0, 1}n the parity vector and σi =

∑i
j=0 pj its partial sums and

k = σn−1 the number of 1s in the parity vector (i.e. the number of odd terms), then we have [178, 139]:

α ≡ −
n−1∑
i=0

pi2
i3−σi mod 2n (1.1)

β ≡
n−1∑
i=0

pi2
−(n−i)3k−σi mod 3k (1.2)

Note that these formulae respectively give us the last n bits of α and last k trits of β, which is the same
that we get by tiling since n is the width of the assembly and k its height (Figure 1.16) – our α and β are
the smallest representants of these congruence classes. Let’s interpret the formula of α, that we slightly
rewrite α ≡

∑n−1
i=0 pi2

i(−3−σi) mod 2n. Let’s first interpret the term (−3−σi). The 2-adic representation
of −3−σi is given by filling an assembly whose south border is the 2-adic representation of −30 = −1
(i.e. …1111) and east border is valued with σi 0s as each row will correspond to iterating the operation
x 7→ x/3 starting from −30 = −1. We will get the 2-adic representation of −3−σi on the north side of
this assembly (Theorem 1.25), its last n bits give (−3−σi) mod 2n. Then, the formula for α asks us to
sum these representations with i extra trailing 0s when bit pi is not zero.

Remark 1.39 (Function computed by the path of a parity vector). Let p ∈ {(←, 0), (↙, 4)}n be the
path representation of a finite parity vector (Definition 1.33) with n ∈ N+. We know that the function f
that it computes is affine, of the form f(x) = ax+ b, by Definition 1.9 we get that a = 3k/2n with k the
number of edges (↙, 4) in p, we also get that b ≥ 0. We remark that α and β given by Corollary 1.36
finish to characterise f since we have f(α) = β (Theorem 1.25). We get, b = β − 3k

2nα. And since b ≥ 0,
we learn that 2nβ ≥ 3kα. Function f can be understood as computing x 7→ Tn(x), when x ≡ α mod 2n.
In Section 1.5, where we look at Collatz cycles, what we will do will amount to solving f(x0) = x0 with
the tiles (Theorem 1.58), which gives x0 = b/(1− a) = 2nβ−3kα

2n−3k
since a = 3k

2n 6= 1. Note that we get that
27The difference is that coreli has put some tiles 2 “below” the parity vector as it is the only tile that has a 1 on the

west and a 0 on the north, a constraint that appears when ↙ follows ←.
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x0 ≥ 0 iff a < 1, meaning 3k < 2n which gives the condition k < n log3(2) in a positive integer cycle, with
n the length of the cycle and k the number of odd iterates in the cycle (k is the height of path p and
there is one odd iterate per row). The function f of a parity vector, or more specifically f−1, called vs
in [178, 117], has been important in the historical study of the Collatz problem and the results of this
remark can be found in [178, 117].

Remark 1.40 (But we don’t know the parity vectors). Theorem 1.35 gives the link between the six tiles
and Collatz sequences. However, in order to tile the Collatz sequence of x ∈ Z2 we first need to know its
infinite Collatz parity vector, and to the best of our knowledge, the only way to know the infinite Collatz
parity vector of x in general is to compute the Collatz sequence of x, which puts us in a difficult position.
This does not impact us for the rest of this work as Section 1.6 and Section 1.5 feature parity vectors as
their main objects of study, but, if we wanted to compute the Collatz iterates of x, Theorem 1.35 does
directly not help us.

To remediate this issue, we introduce two additional tiles, R and S, that will allow us to compute parity
vectors at the same time as the Collatz sequence of an input x ∈ Z2, see Figure 1.17. Tile S is responsible
for detecting trailing 0s of each horizontal row of the tiling and tile R, which is almost identical to tile 4
except for its east color, is responsible for triggering the x 7→ (3x+ 1)/2 operation when the trailing 1
of a row is reached. Fig 1.17(c) shows how to use these tiles to compute the first 9 steps of the Collatz
sequence of 119: starting from a north-east 9× 9 square border, Corollary 1.36 allows us to conclude that
in the reconstructed assembly, the westmost side gives the ternary expression of T 9(119) = J0201K3 = 19.
The corresponding constructed finite parity vector is highlighted in blue. The same technique can be used
to get the Collatz sequence of an arbitrary x ∈ Z2 by specifying an infinite south-going column of glue S
instead of the finite one used here. When focusing on natural numbers only, we are not limited to giving
the input in binary: by base conversion, Corollary 1.18, we can for instance specify our input in base 3,
Figure 1.17(d). We could also have done in base 6, or in the many bases that we can work with with
these tiles, Remark 1.17.
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(a) The Collatz tile set, or (2,3)-CRT tile set. (b) The two additional Collatz tiles: R and S.

(c) Computing the 9th Collatz iterate of 119, input in binary, output in ternary. The dark blue curve highlights
the first 9 edges of the Collatz parity vector of 119 that has been constructed by the tiles.

(d) Computing the 9th Collatz iterate of 119, input in ternary, output in ternary. The dark blue curve shows the
parity vector, and the black curve (line) highlights the instance of base conversion (Corollary 1.18): 119 has been
converted from base 3 to 2.

Figure 1.17: Tiles R and S, in addition to the six Collatz tiles allow us to compute Collatz sequences without
having to know the parity vector in advance.
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(a) Rectangle-NE-SE:
one of two regions to be
tiled.

(b) Rectangle-SW (c) Parity-Vector-NW

(d) Collatz-tile-
prediction

Figure 1.18: Four Collatz-related prediction problems: in each case a finite valued border is given (solid
lines with arrows), and an area that can be uniquely tilted is delimited by the dashed lines. We want to
know the valued border along the dashed lines.

1.4 Complexity of predicting Collatz tilings

In Section 1.1 we asked: what is the complexity of predicting Collatz iterates? Indeed, the hardness of the
Collatz conjecture seems to be intrinsically linked to our inability to predict the long-term behavior of
Collatz iterates so it is natural to wonder about the complexity of this prediction problem. Our focus on
the digit expansions of Collatz iterates is exploited here as a kind of microscope to peer into the mechanics
of the Collatz function.

Overview of Section 1.4 First, we introduce relevant background from computational complexity
theory, including some preliminary observations about the four tiling problems studied in this section.
In Section 1.4.1, we introduce several natural, time bounded, prediction problems for GCMs, and an
open problem which aims at potentially separating the difficulty of bounded-time prediction of 2D
GCMs, 1D GCMs, and the Collatz function. Then in Section 1.4.2, using tiles, we reformalise Collatz
function prediction as Collatz-tile-prediction, as well as stating three closely related tiling problems
(Rectangle-NE-SE, Rectangle-SW, Parity-Vector-NW). All four tiling problems are of the form:
given some finite region of the plane, bordered by a path that is partially valued (“input”) such that
the region inside can be uniquely tiled, what values (“output”) does the tiling place on the remaining
unvalued border? See Figure 1.18. What we care most about mathematically measuring how difficult these
problems are, which we tackle using computational complexity theory. We make use of the arithmetical
relations that we’ve shown to exist within tilings (Section 1.3.3) to show that some of these problems
are easy (Rectangle-NE-SE and Rectangle-SW are in NC1, but not in AC0). Likewise, tiling a
bounded region from a parity vector provided as input, (Parity-Vector-NW, is in NC1. However,
despite the structure we’ve found, we leave a number of questions open. For the problem we leave open,
Collatz-tile-prediction, we have at least narrowed the possibilities to where the difficulty lies.

Complexity classes and immediate observations Since the four prediction problems (Figure 1.18)
delimit regions that are deterministically tiled (see Figure 1.7), it is immediate that all four problems are
in the complexity class P;28 it takes merely O(n2) tiling steps to tile an area with border length O(n).

To better understand, and tease apart, the complexity of these problems we look within the fine-grained
structure of P. The hardest such problems we consider are P-complete: problems that are in P and that

28P is the class of problems solved by Turing Machines that run in time polynomial in input size, or equivalently by
uniform31 families of Boolean circuits of polynomial size (and depth).
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any problem in P can be reduced29 to them. It is worth noting that it would be a groundbreaking result
to show that Collatz prediction (in any reasonable form) is P-complete as it would imply that the tiles
and/or Collatz itself could run any polynomial algorithm efficiently. If the reader is skeptical that a tile
set as small as the 6 tiles could have P-complete prediction problem, we remark that there is a 7-tile
simulation30 of cellular automaton rule 110, hence there is a tile set with only 7 tiles with a P-complete
prediction problem. Within P, we focus on classes in the NC and AC hierarchies:

Definition 1.41 (Complexity class AC). For i ∈ N, ACi is the class of problems solved by uniform31

Boolean circuits of unbounded-fanin AND, OR gates, and fanin-1 NOT gates, of depth O(logn)i and size
nO(1) in input length n. Also, AC = ∪i∈N ACi.

Definition 1.42 (Complexity class NC). For i ∈ N, NCi is the class of problems solved by uniform
Boolean circuits, of fanin-2 AND, OR gates, and fanin 1 NOT gates, of depth O(logn)i and size nO(1) in
input length n. Also, NC = ∪i∈N NCi.

Remark 1.43. NC and AC and both contained in P, since polynomial size circuits are easily simulated
by polynomial time Turing Machines. Also, since a size-O(k) tree of bounded fanin gates can simulate a
k-fanin gate we get that ACi ⊂ NCi+1, meaning that the (infinite) AC and NC hierarchies interleave, and
that NC = AC. Problems in class that are low (small i) in the NC and AC hierarchies are intuitively,
some sometimes provably, simple. For example, NC1 corresponds to Boolean formulae [116, 27, 26], and
AC0 is even simpler, being famous for a problem it does not contain: Parity, binary strings with an odd
number of 1s [82, 118]. Since Parity ∈ NC1 we know AC0 ( NC1, but we do not know which of the
following inclusions are strict NC1 ⊂ NC2 ⊂ NC3 ⊂ · · · ⊂ NC ⊂ P. It is widely conjectured [73, 118] that
NC ( P, hence by putting Collatz-related tiling problems in low complexity classes such as NC1 we are
lending weight to the notion that these are simple problems, almost certainly much simpler than analogous
P-complete tiling problems.30 In particular, we would be proving that these problems have such a simple
combinatorial structure that they do not require explicit sequential simulation and, moreover, that they
can be decomposed (parallelised) to give significant shortcuts to prediction of long-term dynamics.

1.4.1 What complexity should we expect? The case of 1D and 2D GCMs

As mentioned in Section 1.1, GCMs in one and two dimensions simulate single-tape deterministic Turing
Machines. In 2D, the standard construction [90] has one map application per Turing Machine step.
Furthermore, any 2D GCM can be simulated on a Turing Machine, in time polynomial in the number of
input bits and number of steps (the digit expansion of the two variables grows in length by at most an
additive constant per map application). Hence, 2D-GCM-prediction is P-complete:

29Logarithmic space reductions are commonly used when comparing (say) L, NL and P [118]. For classes (conjectured to
be) strictly contained in L, tighter notions of reduction may be needed (we don’t want to the reduction providing ‘too much
power’).

30In SI A, [183], Figure S4(b), gates g and f can be used to simulate Rule 110, which in turn can be simulated by 4 tiles
each. These 8 tiles can be further optimised to 7 tiles by sharing one glue type between both half-layers.

31A note is warranted on the notion of uniformity for Boolean circuits. A Boolean circuit family, that decides a language,
is a set of circuits C = {cn|cn has n ∈ N input gates and one output gate}, one circuit for each input length n. Without
further qualification on the definition, there are families that decide the halting problem or other undecidable/hard problems
(cn outputs 1 iff the nth (Turing machine, input) pair, encoded in unary, halts). Hence, in this work, we require that
there is an algorithm that given n constructs (an encoding of) cn, and in particular, that algorithm ‘should not be too
powerful’: the powerfulness of the algorithm is the strength of the uniformity condition. For intuition, when thinking about
problems outside of P, polynomial time uniformity, or ‘P-uniform circuits’, is sufficient since the uniformity condition is
weaker than the problem itself so can not possibly be used to ‘cheat’. Here, since we deal with complexity classes within
P, even stronger uniformity conditions are needed (meaning, weaker circuit-generating algorithms). Generally, the gold
standard is DLOGTIME-uniformity [12], as it is known to be equivalent to other seemingly natural notions yet easy enough
to work with [77]. A DLOGTIME-uniform circuit family has an associated deterministic logarithmic time Turing Machine,
that has random access to its input (a suitably simple encoding of the circuit as a string), which can be repeatedly applied
to verify the circuit structure component-wise. Giving a full proof of uniformity spans from checking mundane details to
solving multi-year open problems [77].
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Problem: 2D-GCM-prediction
Input: 2D GCM G, two values x, y ∈ N written in binary, and t ∈ N in unary32

Output: What is the value of Gt(x, y)?

Since the Collatz function is a 1D GCM, let’s consider:

Problem: 1D-GCM-prediction
Input: 1D GCM G, value x ∈ N written in binary, and t ∈ N in unary
Output: What is the value of Gt(x)?

Certainly 1D-GCM-prediction is in P, but what is its exact complexity? The best known simulation
technique for 1D GCMs simulating Turing machines is singly-exponentially slow [46, 90]. We don’t know
if such a drastic slowdown is required, a fascinating open problem [90]. If an exponential slowdown is
required for a reasonable notion of simulation, we could place prediction in NC:

Open problem 1.44. Is 1D-GCM-prediction in NC?

The 2-map Collatz function, which, if anything, might be easier to predict than many-map 1D GCMs:

Problem: Collatz-function-prediction
Input: A value x ∈ N written in binary, and t ∈ N in unary
Output: What is T t(x), the tth iterate of the Collatz function?

Open problem 1.45. Is 1D-GCM-prediction, for the special case of the Collatz function, in NC?

1.4.2 Complexity of Collatz tiling prediction problems

We reformulate Collatz-function-prediction in terms of the 8-tile extended Collatz tile (Figure 1.17)
set with ternary input and output:

Problem: Collatz-tile-prediction (Figure 1.18(d), example in Figure 1.17(d))
Input: A number x ∈ N, with x given in binary or ternary.
Output: Using the extended Collatz tile set (Figure 1.17): if x is in ternary (written using m

trits): The output is the west side values of the tiled n × (m + n) rectangle defined
by: an east side of length m+ n, with ternary x written (from north to south) on east
followed by n ‘S’ glues, and a number of ‘0’ glues along the north side equal to n the
length of the binary string encoding x. Else if x is in binary (written using n bits):
The output is the west side values of the tiled n× n rectangle defined by: a north side
of length n with the binary string encoding x (from west to east), and with n ‘S’ glues
on the east side.

It can be seen that Collatz-function-prediction and Collatz-tile-prediction are essentially
identical, and that their hardness-of-prediction is identical (up to binary/ternary base conversion, and the
fact that the former asks for prediction of t iterates of the Collatz function T and the latter asks for n in
odd iterates of T ). Before discussing Collatz-tile-prediction, we first define and characterise three
related prediction problems.

32For finite-time prediction problems, the time bound t is typically given in unary, for the following reason. What we care
about is the difficulty of predicting t time steps into the future on some, typically binary/ternary/etc., input string w. If
we also gave t as a binary word, t′ ∈ {0, 1}Θ(log t), it would mean that running our prediction algorithm for merely t steps
would takes time at least exponential |t′|, so for short input strings, such as |w| ∈ O(log t), we would have unnecessarily slow
running time in terms of the overall input length which is |w|+ |t′|.
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Problem: Rectangle-NE-SE, see Figure 1.18(a)
Input: Rectangle: north and east valued sides (resp. south and east)
Output: South and west valued sides (resp. north and west)

Theorem 1.46. Rectangle-NE-SE is in NC1 and not in AC0.

Proof. First, to show that Rectangle-NE-SE is not in AC0 we reduce it to Parity which is not in
AC0, as noted in Remark 1.43. It can be easily verified that each of the 6 tiles compute parity in the
following two senses: a north glue is the parity of the bit pair (east mod 2, south), and the south side is
the parity of (east mod 2, north). Consider the 1× n rectangle, with 0 on its single north edge and a
length-n ternary string w ∈ {0, 1, 2}n along the east. The rectangle has a unique tiling (Figure 1.7 and
Definition-Lemma 1.2) that outputs the parity of the number of 1s in w as its single south edge, as shown
in Figure 4.10, left, hence if binary input is given on east (i.e. ternary without 2s), predicting the south
glue gives a decision procedure for Parity. Similarly, if input is given on south and east, we can set the
south glue of the rectangle to 0, and, after uniquely tiling the rectangle, the parity of w appears as the
north glue of the rectangle (Figure 4.10, right).

Figure 1.19: Two examples of
tiles computing Parity. In both
cases, the input is w = 210,
which has an odd number of 1s,
hence the output is 1.
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Next we show that Rectangle-NE-SE is in NC1. If the north and east sides are given, by Corollary 1.16,
we have the following arithmetical relation: 3hJnorthK2 + JeastK3 = 2wJwestK3 + JsouthK2 with w, h the
width and height of the rectangle. We can compute the number K = 3hJnorthK2 + JeastK3 in NC1 (proof:
writing 3h down as a ternary string 100 . . . 0 of length h+1 is computable by a constant depth circuit since
h is essentially given in unary in the problem statement; addition is in AC0 by a simple carry propagation
formula [29]; multiplication is also in NC1 [29]; and more recently base conversion was shown to be in
NC1 [77]).33,34 Then (in either ternary or binary) we compute the quotient q of K/2w as well as the
remainder m = K mod 2w, i.e. we are doing Euclidean division using the fact that m < 2w), and write q
out in base 3 to give the west side, and m in base two to give the south.

If the east and south sides are given, by Remark 1.17, the tiling of the rectangle solves the Chinese
Remainder Theorem (CRT) in Z/3h × Z/2w in the following sense: since JeastK3 < 3h, JsouthK2 < 2w,
and 3h, 2w are coprime, the CRT gives a unique positive integer K < 3h2w such that K ≡ JeastK3 mod 3h

and K ≡ JsouthK2 mod 2w. Converting from a CRT representation (JsouthK2, JeastK3) to K is in
NC1 (Theorem 3.3 in [39] shows it is in L-uniform NC1, and Theorem 4.1 of [77] improves that to
DLOGTIME-uniform NC1). In the tiled rectangle, we get 3hJnorthK2+JeastK3 = 2wJwestK3+JsouthK2 = K

(Corollary 1.16), and we can extract north and west by computing the quotient of K by 3h and 2w, which
is in NC1 [77], and convert to respectively base 2 and base 3 to get north and west.

Problem: Rectangle-SW, see Figure 1.18(b)
Input: Rectangle: south and west valued sides, given in binary and ternary, respectively
Output: North (in binary) and east (in ternary) valued sides

Theorem 1.47. Rectangle-SW is in NC1.

Proof. By Corollary 1.16, we have the arithmetical relation 3hJnorthK2 + JeastK3 = 2wJwestK3 + JsouthK2
with w, h the width and height of the rectangle. We will use the technique from the proof of Theorem 1.46:
compute the number K = 2wJwestK3 + JsouthK2 in NC1 [77]. Then, since JeastK3 < 3h, we can use
Euclidean division to compute K/3h = q where quotient q = JnorthK2, and K mod 3h = m where
reminder m = JeastK3 (convert K to base 3 and take the last h trits), all in NC1 [77]. Finally, since base
conversion is in NC1 [77], write out q in base 2 as the north value, and and m in base 3 as east.

Intuitively, we believe that Rectangle-SW is not in AC0, but we don’t have a proof! Hence, we leave
the following open:

Open problem 1.48 (Rectangle-SW 6∈ AC0?). Is Rectangle-SW in AC0?

Similarly, we would tend to believe that reconstructing the α and β of a parity-vector (see Corollary 1.36)
is in NC1 and not in AC0, but we have no proof:

Problem: Parity-Vector-NW, see Figure 1.18(c)
Input: A parity vector p ∈ {0, 1}n (Definition 1.28)
Output: North and west valued sides of the corresponding triangular assembly (respectively

representing α and β of Corollary 1.36)
33The uniformity31 of these constructions is straightforward to show, except for base conversion (and division, and Chinese

remaindering) which has a significant history [77].
34A technicality is that these arithmetical problems are function problems, not decisions problems, which means we are

abusing notation by saying they are in NC1 or AC0. However, there are straightforward mappings between the two. For
example, when we say addition is in AC0 we either (equivalently) mean that it is in the function analog of AC0 (sometimes
called FAC0), or that we are computing the ith bit of the sum s, for any 0 ≤ i < |s|).
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Theorem 1.49. Parity-Vector-NW is in NC1.

Proof. Let n be the length of the parity vector. As noted in Remark 1.38, α is defined by the summation
in Equation (1.1), each of the terms of which correspond to an instance of Rectangle-NE-SE (with
south side 111 . . . 1 and east 000 . . . 0 as inputs), and so by Theorem 1.46 each is NC1 computable. It
turns out35 that there are uniform TC0 circuits for iterated addition (polynomial in n, n-bit additions)
[77, 88] and thus that problem is in NC1. The composition of two O(logn) depth circuits is gives the
statement. Similar approach for β using Equation (1.2).

Open problem 1.50. Is Parity-Vector-NW outside of AC0?

In the beginning of this section, we defined Collatz-tile-prediction, and argued that it is a natural
tiling-based encoding of the problem Collatz-function-prediction. Despite the tools developed in
this section we leave its complexity open, putting it in NC would certainly imply strong results on the
structure of Collatz iterations:

Open problem 1.51. Is Collatz-tile-prediction in NC? Is it outside of AC0?

Remark 1.52. With respect to membership in classes such as NC, or NC1, or P-complete, the question
of predicting merely a single bit of the parity vector, specifically, the last bit of the parity vector, is as
hard as writing out the entire parity vector. Also, the complexity of producing the first (least significant)
bit of T t(x) is as hard as computing the LSB for all T i(x), 1 ≤ i ≤ t. The reason is straightforward: given
an algorithm that predicts the first bit of T t(x), in other words the tth bit of the parity vector, that
either runs in parallel (e.g. in NC) or sequentially (e.g. in P), respectively, we can easily generalise that
algorithm to produce the entire parity vector by running it t times, to get the first bit of T i(x) for all
1 ≤ i ≤ t, (in parallel or sequentially, respectively).

Remark 1.53 (Easy rectangle, hard rectangle, predicting parity vectors). One thing that we can say –
and was also pointed at in our earlier work, see Figure 4 in [156] – about Collatz-tile-prediction is
that part of it is simple (i.e. in NC1) as it reduces to Rectangle-NE-SE and more precisely, base 3 to 2
conversion (Corollary 1.18):

35To get a more intuitive, but deeper, NC2 algorithm it suffices to observe that the sum has ≤ n terms, each a ≤ n bit
number, hence their addition is performed using a circuit of depth O(log2 n): the circuit is a tree of depth O(logn) nodes
where each node is a O(logn) depth circuit (with fanin ≤ 2 gates, and noting that addition is in AC0, and hence in NC1).



1.4. Complexity of predicting Collatz tilings 43

On the example on the right we see that the easy rectangle is “only” carrying-out the computation of
converting J11102K3 from base 3 to base 2 J1110111K2 (Corollary 1.18), which is an instance of Rectangle-
NE-SE thus in NC1.

It is in what we call the “hard rectangle”, whose complexity is open (Open problem 1.51), that the
Collatz parity vector of J1110111K2 emerges (highlighted in blue). This setting leaves open the complexity
of predicting parity vectors, which we believe must be somewhat challenging to settle since it is not even
known if an eventually periodic binary inputs produces an eventually periodic parity vector (Lagarias’
periodicity conjecture, see Section 1.3.3 and [99, 139]).

Remark 1.54 (Hardness is in the parity vector). With Parity-Vector-NW we know that reconstructing
a Collatz sequence once we have its parity vector is easy: its in NC1. Hence, while we do not know the
exact complexity of Collatz-tile-prediction, we know that, assuming that predicting the parity vector
is NC1-hard, then Collatz-tile-prediction is as hard as predicting the parity vector. In other words:
hardness is in the parity vector. A practical implication of the complexity of Collatz-tile-prediction
being open is that in a Collatz tiling, parts far from the parity vector are easy to predict but for parts
close to the parity vector hardness of prediction still contains some mystery. In particular this means that,
assuming NC1 6= P, essentially the only hope to simulate Turing machines efficiently within Collatz traces
is if that simulation exploits some hardness of prediction property of the parity vector, and in does not
solely rely on the high-order bits of each iterate (i.e. NC1 part of the diagram). In future work, we intend
to continue researching the complexity of predicting Collatz parity vectors with the hope to place it in
NC or L, which would procure strong evidence that Collatz iterates cannot efficiently simulate Turing
machines at all.
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1.5 Application to Collatz cycles

A fundamental question on the Collatz process is: “what are the x such that x = T k(x) for some k ∈ N?”.
Generally, the question is stated in the natural numbers, i.e. x ∈ N, and only 2 cycles are known: the
cycle containing 0 and the cycle containing 1. When extending the question of Collatz cycles to the
negative numbers, 3 more cycles are known: the cycle containing −1, the cycle containing −5 and the
cycle containing −17. When extending the question to Z2, we get infinitely36 many more cycles, such as
the cycle containing 5

23 , see Section 1.1. Famously, the following has been conjectured [17, 102]:

Conjecture 1.55 (Nontrivial cycles conjecture). There is only one cycle of T in N+, the cycle {1,2}, also
called the trivial cycle.

Remark 1.56. More generally, in Z, it is conjectured that T has only five cycles: respectively containing
1, 0, -1, -5, and -17 [17, 102].

In this section, we aim at reformulating questions about Collatz cycles in the context of our six tiles.
In particular, we see that Conjecture 1.55 admits simple geometric reformulations in terms of tilings,
Theorem 1.61 and Theorem 1.68. But first, let’s highlight some results that are known on Collatz cycles
and that we will either use or illustrate in our study:

1. A Collatz cycle on the positive integers must contain more than 10,439,860,591 elements and at least
6,586,818,670 odd iterates [64, 102].

2. In a Collatz cycle on the positive integers of size n, all elements are strictly less than 2n [140, 64].

3. There are no cycles (called circuits) on the positive integers whose iterates modulo 2 repeat a pattern
of the form 1m0m

′ with m,m′ ∈ N [153, 138]. See Remark 1.63.

4. In Z2, all Collatz cycles are rational. Furthermore, any 2-adic rational that is in a Collatz cycle is
also in Z3 and Z6 [178]. See Theorem 1.58 below.

In order to reformulate Conjecture 1.55 in terms of tilings, we will make great use of the notion of parity
vector introduced in Definition 1.28 and Definition 1.33.

Definition 1.57 (Support of a cycle). Let n ∈ N. A parity vector U ∈ {0, 1}n (Definition 1.28) is the
support of a Collatz cycle if there exists x ∈ Z2 such that Tn(x) = x and Uk = T k(x) mod 2 for 0 ≤ k < n.
In that case, we also say that p ∈ {(←, 0), (↙, 4)}n, the path representation of U , is the support of this
Collatz cycle.

Theorem 1.58 (Rational cycles are in Z2 ∩ Z3 ∩ Z6). Let U ∈ {0, 1}n be a parity vector. Then there
exists a unique x ∈ Q ∩ Z2 ∩ Z3 ∩ Z6 such that U is the support of the Collatz cycle of x.

Proof. This theorem can be deduced easily from [178] 2.12 and 2.13, since we get the following explicit
formula for x ∈ Q:

x =

∑k−1
i=0 3k−1−i2di

2n − 3k

With n the length of U , k its number of 1s di the position of the ith 1 in U (starting from 0). We see
that x is a 2-adic, 3-adic and 6-adic rational because 2n − 3k cannot be a multiple of 2, 3, or 6. Hence
x ∈ Q ∩ Z2 ∩ Z3 ∩ Z6.

36This will be justified in this section.
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However, we can also show this result visually with the above illustration: repeat the path representation
of U in both direction infinitely to the south-west and north-east in the plane (blue in the above illustration).
There is a unique valid tiling that can be constructed north-west from it and by Corollary 1.36 we know that
it reconstructs the Collatz sequence of x. Also, by construction, the tiling is cyclic since we have repeated
the same parity vector in both directions (tiling constraints are the same at each repetition of the parity
vector). Hence, we will read the 2-adic, 3-adic, and 6-adic values of x respectively horizontally, vertically
and in diagonal, in this tiling (solid black in above illustration). By construction, these representations
are eventually periodic and x follows the parity sequence given by U under Collatz iterations. Hence we
have the result and x ∈ Q ∩ Z2 ∩ Z3 ∩ Z6.

Remark 1.59 (coreli). For a given parity vector U , you can compute the rational number that
cycles under Collatz iterations while following the parities given by U , by using our library coreli (see
Appendix C):

>>> from coreli import ParityVector
>>> pv = ParityVector([0,1,1,0,1])
>>> pv.cyclic_rational()
46/5

We can verify that this result is correct by iterating Collatz over this rational and confirm that they
have the parities given by [0,1,1,0,1]:

>>> from coreli import T, iterates
>>> from sympy import Rational
>>> iterates(T, len(pv), Rational(46,5))
[46/5, 23/5, 37/5, 58/5, 29/5, 46/5]

We get the immediate reformulation of Conjecture 1.55 in terms of parity vectors:

Theorem 1.60. Conjecture 1.55 is equivalent to the following: the parity vectors that support a positive
integer cycle are only those of the form (01)n or (10)n for some n ∈ N. See Figure 1.20.

Proof. (01)n or (10)n correspond to the parity of different length instances of the trivial cycle either
starting from 2 or 1: 2,1,2 and 1,2,1.

With the 6 tiles, together with Point 2, we get the following reformulation:
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(a) The parity vector [1, 0, 1, 0, 1, 0] supports the
cycle {1, 2}, starting at 1.

(b) The parity vector [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1]
supports the cycle {1, 2}, starting at 2.

Figure 1.20: Example of parity vectors that support the trivial cycle {1, 2}, Theorem 1.60.

Theorem 1.61. Let p ∈ {(←, 0), (↙, 4)}∗ be the path representation of some parity vector. Then p is
the support of a positive integer cycle if and only if α = β with α, β ∈ N in the reconstructed triangular
assembly north-west from p as given by Corollary 1.36.

Proof. If α = β then p is the support of a positive integer cycle. Suppose that p is the support of a
positive integer cycle and α 6= β. Then, x ∈ Q ∩ Z2 ∩ Z3 ∩ Z6 given by Theorem 1.58 that cycles along p
is of the form c2n + α with c > 0 ∈ N, by Section 1.3.3, Point 2. Hence x > 2n which is in contradiction
with this section’s Point 2: in a positive cycle of length n all elements are less than 2n.

Example 1.62. Figure 1.20(a) shows that parity vector [1, 0, 1, 0, 1, 0] supports the trivial cycle {1, 2},
we have α = β = 1. Figure 1.20(b) shows that parity vector [0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1] also supports the
trivial cycle {1, 2}, we have α = β = 2. Figure 1.16, shows that parity vector [1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 0, 0]
is not the support of a cycle since α = 2137 and β = 127, α 6= β.

Remark 1.63. It is quite mesmerizing that it is so hard to prove, in general, that as soon as we deviate
from the simple staircase geometry of the trivial cycle’s parity vector (Figure 1.20), such as in Figure 1.16,
we never get α = β. Some restricted families of parity vectors have been proven not to give α = β, such
as circuits defined in Point 3, which we can illustrate on parity vector 1304 where α 6= β:

We can also reformulate Theorem 1.61 in terms of a natural tile to look at in the triangular assembly of
a parity vector: the most complex tile, i.e. the north-most west-most tile which has the property that it
will be deduced last when tiling the region. An integer cycle requires that the most complex tile is the
same for all rotations of the parity vector concatenated to itself, Theorem 1.68 and Figure 1.21.

Definition 1.64 (Most complex tile). Let p ∈ {(←, 0), (↙, 4)}n be the path representation of some parity
vector of length n. Then the most complex tile of p, mct(p) ∈ {0, 1, 2, 3, 4, 5}, is the north-most west-most
tile in the triangular assembly reconstructed north-west of p (see Corollary 1.36). The most complex tiles
of some parity vectors are highlighted in red in Figure 1.21.
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Figure 1.21: Four successive rotations of 2p with p the path representation of parity vector [1, 1, 0, 1]. The
two repetitions of p are delimited by a black dot in the first (top-left) assembly. Their respective most
complex tile is 2, 5, 4, 3 (Definition 1.64), highlighted in red. Because these most complex tiles are not
all-0 or all-5, we know that p is not the support of an integer cycle, Theorem 1.68.

.

Remark 1.65 (coreli). We can compute the “most complex tile” of a parity vector with coreli
(Appendix C), using examples of Figure 1.21:

>>> from coreli import ParityVector
>>> ParityVector([1,1,0,1]*2).most_complex_tile()
2

>>> ParityVector([1,1,0,1]*2).rotate()
[1, 0, 1, 1, 1, 0, 1, 1]
>>> ParityVector([1,1,0,1]*2).rotate().most_complex_tile()
3

>>> ParityVector([1,1,0,1]*2).rotate(-1)
[1, 1, 1, 0, 1, 1, 1, 0]
>>> ParityVector([1,1,0,1]*2).rotate(-1).most_complex_tile()
5

Remark 1.66 (The most complex tile is not that complex). Based on the arithmetic formulae for the
north and west sides of the triangular assembly reconstructed from a parity vector (Remark 1.38) we
know that computing the most complex tile is feasible in NC1 which is widely believed to be a strict
subset of P, see Theorem 1.49, Section 1.4.

Definition 1.67 (Rotation of a parity vector). Let p ∈ {(←, 0), (↙, 4)}n be the path representation of
some parity vector of length n. Then R(p) is the rightward rotation of p. For instance, if p corresponds
to parity vector [0, 1, 0, 0] then R(p) corresponds to [0, 0, 1, 0], R2(p) to [0, 0, 0, 1] and R3(p) to [1, 0, 0, 0].

Theorem 1.68. Let p ∈ {(←, 0), (↙, 4)}n and let 2p be p concatenated to itself. Then, integer cycles
are characterised in terms of most complex tiles as follows:
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• p is the support of a cycle in N+ if and only if the most complex tile of all rotations of 2p is always
0, i.e. mct(Ri(2p)) = 0 for 0 ≤ i < n

• p is the support of a cycle in Z− if and only if the most complex tile of all rotations of 2p is always
5, i.e. mct(Ri(2p)) = 5 for 0 ≤ i < n

Proof. If mct(Ri(2p)) = 0 for 0 ≤ i < n then p is the support of a cycle in N+ since the statement implies
that there is a translation of the parity vector, north-west to the original one, that is entirely valued with
0s and hence makes all elements of the cycles positive integers (note that mct is not well-defined for flat
parity vectors of the form 0n which is why we exclude 0 here by working in N+). Same reasoning shows
that if mct(Ri(2p)) = 5 for 0 ≤ i < n then p is the support of a cycle in Z−.

The other direction crucially relies on this section Point 2 as if p is the support of a cycle in N+ and
mct(Ri(2p)) 6= 0 for all 0 ≤ i < n we’d get an iterate bigger than 2n which is impossible for a cycle of
length n (Point 2). Same argument in the negative case.

Example 1.69. Figure 1.21 illustrates Theorem 1.68 in the case of parity vector [1, 1, 0, 1] with path
representation p ∈ {(←, 0), (↙, 4)}4. Indeed, the first four rotations of 2p give most complex tiles 2,5,4,3
which is not all-0 or all-5. Hence [1, 1, 0, 1] is not the support of an integer cycle and indeed, it has α = 11

and β = 20, α 6= β (Theorem 1.61):

Remark 1.70 (Most complex tiles distribution is close to random: integer cycles are unlikely). We do
the following experiment: we take all 1024 parity vectors37 of length 10 and, similarly to the setting of
Theorem 1.68, for each p we compute the most complex tile of the first 10 rotations of 2p. This gives us,
for each parity vector a distribution of tiles in {0, 1, 2, 3, 4, 5}. We consider the Shannon entropy of each
of these distributions, i.e. a number between 0 and 1 that is 1 if the distribution is uniform and 0 if the
distribution is concentrated on only one tile. We get an average entropy of 0.82, which is quite close to
1, meaning that in average the most complex tile of the rotations of a parity vector is close to random.
We also get max entropy of 0.98 for parity vector [1, 1, 1, 0, 1, 0, 0, 0, 0, 0] and expected min entropy of 0
for the three parity vectors corresponding to integer cycles (by Theorem 1.68 their distribution of most
complex tiles is concentrated on only one tile: 0 or 5), which are (10)5 and (01)5 for the trivial cycle {1, 2}
and (1)10 for the negative cycle {−1}. This small experiment illustrates how unlikely integer cycles are:
for instance, by Point 1, the parity vector of a positive cycle must be of length at least roughly 10 billion
and then, we need all of its billions of rotations to place only tile 0 as most complex tile which is in stark
contrast with the acquired belief that the most complex tiles of rotations of parity vectors are essentially
random. In future work it would be interesting to run this kind of experiment on larger parity vectors
and see if the corresponding distributions pass the randomness statistical test suites such as NIST used
for evaluating pseudorandom number generators [11, 13].

37We actually exclude the completely flat parity vector (0)10, which makes 1023 parity vectors in total.
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1.6 Application to Collatz ancestors

A rather natural question to ask about the Collatz process is: “what are the Collatz-ancestors of x ∈ N?”
– where a Collatz-ancestor of x is a y ∈ N such that Tn(y) = x for some n ∈ N. Indeed, the Collatz
conjecture itself can be reformulated as: “The set of Collatz-ancestors of 1 is N+”. Another justification
to study Collatz-ancestors is a line of research that looks for sufficient sets, i.e. subsets of N on which
proving the Collatz conjecture is sufficient to get the conjecture on all N [94, 6, 117, 31]. The most general
result known to us states that it is enough to prove the Collatz conjecture on A+BN for any A,B ∈ N
and B > 0 [117]. To prove this result, the author shows that for all x ∈ N there is a Collatz-ancestor of
some descendant of x in A+BN.

A case – perhaps the only case – where the set of Collatz-ancestors is simple to describe is when x is a
multiple of three:

Lemma 1.71 (Multiples of three have no odd Collatz-ancestors). Let x ∈ N. If x is a multiple of three,
i.e. x ∈ 3N, then the set of Collatz-ancestors of x is {2nx | n ∈ N}, i.e. x has no odd Collatz-ancestor. If
x is not a multiple of three, i.e. x ∈ N \ 3N, then x has infinitely many odd Collatz-ancestors.

Proof. Let x = T (y) with y ∈ N odd. Then 2x = 3y + 1. We get 2x ≡ 1 mod 3, whose unique solution
is x ≡ 2 mod 3. If x ≡ 0 mod 3 then xn = 2nx ≡ 0 mod 3 for all n ∈ N meaning no y odd can satisfy
xn = T (y), meaning that x has no odd Collatz-ancestors and that its set of Collatz-ancestors is exactly
{2nx | n ∈ N}. If x =∈ N \ 3N then xn = 2nx alternates parity 1 and 2 (or 2 and 1) modulo 3, giving
infinitely many xn ≡ 2 mod 3. Take any such xn = 3z + 2 with z ∈ N, inverting xn = (3y + 1)/2

we get 2(3z + 2) = 3y + 1 giving y = 2z + 1 which is odd and which is a Collatz-ancestor of x since
Tn+1(y) = Tn(xn) = x.

We can refine the question on Collatz-ancestors a bit more by asking, for some k ∈ N: “what are the
Collatz-ancestors of x ∈ N at odd-distance k?”, where a Collatz-ancestor y of x is at odd-distance k if
its trajectory to x meets exactly k odd iterates. We call EPredk(x) the set of binary representations of
Collatz-ancestors at odd-distance k. This question is somehow natural because, in binary, it is asking for
ancestors whose representation has been significantly changed k times: only odd iterates get a significant
change in their binary representation since even iterates only get their trailing 0 removed. In our tilings,
k corresponds to the number of rows (or height) of the triangular assembly corresponding to x = Tn(y)

with n the number of T -steps separating y from x, in Figure 1.16 for instance we have y = α = 2137,
x = β = 127, n = 12 and k = 5.

Using a simple argument, Shallit and Wilson have shown that EPredk(x) is a regular language38

[146]. In our work39 [154], we have refined this result by giving a concrete algorithm to produce a regular
expression, regk(x), for EPredk(x). The size of regk(x) is exponential in k (as soon as x 6∈ 3N), which
is a doubly-exponential improvement on what a naïve conversion of the finite state machines of
[146] to regular expressions would give. Our work also generalised [42, 78, 72] which focused on special
cases. As a concrete example, here is reg3(14), the regular expression of EPred3(14) consisting of the
Collatz-ancestors of 14 at odd-distance 3, given in binary:

38The set EPredk(x) is infinite as soon as k > 0 and x 6≡ 0 mod 3 [146, 154].
39Unfortunately and confusingly for the reader, in our paper [154], symbols ← and ↓ respectively correspond to symbols

↙ and ← used in this thesis.
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reg3(14) = 100(000111)∗00(01)∗01(0)∗ |

10000(100011)∗100(01)∗01(0)∗ |

100001001011110(110001)∗1100(01)∗01(0)∗ |

10000100101(111000)∗11100(01)∗01(0)∗ |

100001001(011100)∗011100(01)∗01(0)∗ |

10000100101111011(001110)∗0(01)∗01(0)∗ |

100(000111)∗0001(10)∗1(0)∗ |

10000(100011)∗10001(10)∗1(0)∗ |

100001001011110(110001)∗110001(10)∗1(0)∗ |

10000100101(111000)∗1(10)∗1(0)∗ |

100001001(011100)∗01(10)∗1(0)∗ |

10000100101111011(001110)∗001(10)∗1(0)∗

By sampling the first line, for instance, we get that 100 (000111000111000111) 00 (0101) 01 (0000),
representing 4,414,271,824 in binary, is at odd-distance 3 from 14 and indeed, in its Collatz sequence there
are exactly 3 odd iterates (in bold below) before it reaches 14:

4414271824, 2207135912, 1103567956, 551783978, 275891989,

413837984, 206918992, 103459496, 51729748, 25864874, 12932437,

19398656, 9699328, 4849664, 2424832, 1212416, 606208, 303104, 151552, 75776, 37888, 18944, 9472, 4736, 2368, 1184, 592, 296, 148, 74, 37,

56, 28, 14

With this result, we get a sense that the set of Collatz-ancestors of x ∈ N, which is Pred(x) =

∪k∈NEPredk(x), bears some complexity as it is structured in layers of regular languages whose shortest-
length description known to date is exponential40 in k [154]. Intuitively, we do not expect Collatz-ancestors
sets to have much simpler descriptions in general since the Collatz problem asks whether Pred(1) = N+

or not, and, having a simple description of Pred(1) would probably settle the question.

In this section, coming back to sufficient sets, we give a visual proof that α+ 2nN is sufficient41 for all
n ∈ N and α < 2n (Corolary 1.74) using ideas that were central to [154]. Showing this result amounts to
constructing an ancestor of x that is in α+2nN for all x ∈ N \ 3N (and treat multiples of three separately).
This is a special case of [117] but we will refine the construction by giving, not just one ancestor but
infinitely many, one per layer EPredk(x) for k large enough, Theorem 1.73. Also, before the results of
[117], it was only known that α+ 2nN is sufficient for α = 1 and n ≤ 4 and was left as an open problem
[6]. We will also discuss the complexity of our construction – subject not studied in [117] – which is
surprisingly less hard than expected, Remark 1.75.

The following Lemma is central to our construction and is a visual reformulation, with the tiles, of a
well known number-theoretical result: 2 is a primitive root of (Z/3k)× for all k ∈ N+ [81] (see proof below
for context).

Lemma 1.72. Consider Kk, the set of ternary words of length k ∈ N+ that do not end with digit 0,
i.e. Kk = {t0, . . . tk−1 ∈ {0, 1, 2}k | tk−1 6= 0}. The cardinal of Kk is 2 × 3k−1. Let z ∈ Kk. Then, the
columns of the rectangular tiling of height k and width 2× 3k−1 constructed from valued west (or east)

40It takes roughly 3 pages to print reg4(1) in [154].
41This means that proving the Collatz conjecture in α+ 2nN is enough to prove the conjecture in N.
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Figure 1.22: The columns of the rectangular assembly of height k = 2 and width 2×3k−1 = 6, constructed
from west (or east) side valued 01 and south side valued 000000 enumerate – in a custom order – all
strings of K2 = {01, 02, 11, 12, 21, 22} (length-2 ternary strings not ending in 0), highlighted in teal color,
Lemma 1.72.

side z of length k and valued south side 0 . . . 0 of length 2× 3k−1 enumerate all the elements of Kk and
both west-most and east-most columns are z – Figure 1.22.

Proof. The multiplicative subgroup42 of Z/3k is denoted (Z/3k)× and contains exactly any x ∈ Z/3k that
is not a multiple of 3. The cardinal of (Z/3k)× is 2× 3k−1. The set Kk gives the ternary representations
of elements of (Z/3k)×. Element 2 is a primitive root of (Z/3k)× [81], meaning that successive powers of
2 modulo 3k enumerate (Z/3k)×, i.e. any x ∈ (Z/3k)× can be written 2i mod 3k with some i ∈ N. Let i0
be such that JzK3 ≡ 2i0 mod 3k. The rectangular tiling constructed from valued west (or east) side W = z

of length k and valued south side S = 0 . . . 0 is uniquely defined thanks to the determinism and totality of
the south-west (or south-east) corners of the tiles. Then, column at distance 0 ≤ i ≤ 2× 3k from W is
giving Ei ∈ Kk, the ternary valuation of 2i+i0 mod 3k. Indeed, by Corollary 1.16, in the sub-rectangle of
height k and width i, delimited to the east by Ei, and to the west by W , with Ni ∈ {0, 1}i and Si ∈ {0, 1}i

the north and south sides of this sub-rectangle, we have 3kJNiK2 + JEiK3 = 2iJW K3 + JSiK2 which gives
3kJNiK2 + JEiK3 = 2i × JzK3 + 0, which modulo 3k, becomes JEiK3 = 2i2i0 = 2i+i0 mod 3k. Hence, since
2 is primitive in (Z/3k)×, we have the result that successive Ei are enumerating Kk. Furthermore, by
Lagrange’s theorem, 22×3k−1+i0 = 2i0 = JzK3 in (Z/3k)×, meaning that the first and last column of the
assembly are the same, equal to z. We’ve shown the result by tiling from the west (i.e. multiplied by 2), if
we had tiled from the east (i.e. divided by 2) we would have been multiplying by 2−1 (the multiplicative
inverse of 2 in (Z/3k)×) which is also a primitive root of (Z/3k)× and the result would be the same.

Theorem 1.73. Let n ∈ N+, w ∈ {0, 1}n, and α = JwK2. Let x ∈ N \ 3N. Let k0 be the number of
odd iterates in [α, T (α), . . . , Tn−1(α)] and k1 = blog3(x)c. Then, for all k ≥ max(k0, k1), there is a
Collatz-ancestor y at odd-distance k of x such that y ∈ α+ 2nN, i.e. the last n bits of y are given by w.

Proof. Note that we have to choose x ∈ N\3N because of Lemma 1.71: multiples of 3 have no ancestors at
odd-distance greater than 0. Let p ∈ {(←, 0), (↙, 4)}n be the path representation of the parity vector of
[α, T (α), . . . , Tn−1(α)]. Then, by Corollary 1.36, there is a unique height-k0, width-n, triangular assembly
constructed north-west from p, situation that we can illustrate with the following example where n = 9,
w = 001011101, α = 93, β = T 9(93) = J012K3 = 5, k0 = 3:

42The multiplicative subgroup of Z/3k consists of the elements of Z/3k that can be inverted, i.e. the set of x ∈ Z/3k such
that there is y ∈ Z/3k such that xy = 1.
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Assume that x < 3k0 , then by Lemma 1.72, because x 6≡ 0 mod 3, there is i ∈ N such that continuing the
parity vector with i edges (←, 0) will give x on the west-most side of the assembly, for instance, in the
above example, if x = J112K3 = 14 we can take i = 6:

By construction, on the north side of the extended assembly, we read y in binary such that x = Tn+i(y)

(Corollary 1.36), the last n bits of y are given by w and y is at odd-distance k0 of x. If x ≥ 3k0 , i.e.
k1 > k0, we can extend the original assembly first with j = k1 − k0 valued edge (↙, 4) (or in fact any
parity vector of height j) and then add the right amount of edges (←, 0) to reach x, for instance if
x = J2021K3 = 61 ≤ 33 we have j = 1 then i = 5:

By construction, on the north side of the extended assembly, we read y in binary such that x = Tn+j+i(y)

(Corollary 1.36), the last n bits of y are given by w and y is at odd-distance k1 of x.

Similarly, for any k > max(k0, k1), we can keep increasing j until we get the total height of the assembly
to be k. That way, we proved what we wanted: we constructed a Collatz-ancestor of x at odd-distance k
for all k ≥ max(k0, k1).
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Corollary 1.74 (α+ 2nN is sufficient). Let n ∈ N+ and α < 2n. If the Collatz conjecture is true for all
x ∈ α + 2nN then the Collatz conjecture is true for all x ∈ N, i.e. the set α + 2nN is sufficient for the
Collatz conjecture.

Proof. If x ∈ N \ 3N, by Theorem 1.73 we get y, an ancestor of x in α+ 2nN and if the Collatz conjecture
is true for an ancestor of x it is true for x. If x ∈ 3N, if x is even, iterating T on x will eventually make it
odd. Once we get to x′ ∈ 3N that is odd, we have 2T (x′) = 3x+ 1 which gives 2T (x′) ≡ 1 mod 3 which
gives T (x′) ≡ 2 mod 3. Hence we can apply Theorem 1.73 on T (x′) and we have found the ancestor of a
descendant of x for which the Collatz conjecture is true, hence the Collatz conjecture is true for x.

Remark 1.75 (Discrete logarithm is not hard (in our case!)). In the construction of Theorem 1.73 we
essentially need to find i such that x ≡ 2i mod 3k for given x ∈ N \ 3N and k ∈ N. This is always possible
because 2 is a primitive root (or generator) of (Z/3k)× (see proof of Lemma 1.72). Finding such an i is
an instance of a general problem known as discrete logarithm:

Problem: Discrete-logarithm
Input: G a group, g a generator43 of G and x ∈ G
Output: The smallest i ∈ N such that x = gi in G

The discrete logarithm problem is a notoriously hard problem whose hardness is key to the security
of various cryptographic protocols [157]. When formulated as a decision problem, discrete logarithm is
known to be in NP and co-NP but is in the rare situation that it is suspected not to be in P and not to
be NP-complete [21]. Interestingly, the problem is in BQP, meaning that it can be solved in polynomial
time by a quantum computer, using Shor’s algorithm [148]. Studying the complexity of this problem in
various settings is an entire field of research [75].

However, surprisingly (to us), in our case, the problem is not hard! Indeed, in our case G = (Z/3k)×

which has Nk = 2 × 3k−1 elements (see Lemma 1.72). Numbers Nk are 3-smooth meaning that their
highest prime factor is 3, which is a small prime. In such a case, Pohlig-Hellman algorithm [127, 173]
computes discrete logarithm using only O(k) multiplications – as opposed to O(3k) multiplications using
naïve bruteforce search.

Hence, the construction of Theorem 1.73 can be performed using O(k) multiplications (apart from
computing discrete logarithm the construction only requires to compute O(k) Collatz steps which can be
done using O(k) multiplications) and O(3k) space (the number of bits of the ancestors – north side of the
assembly – is O(i) and i < 2× 3k−1). If we were only concerned by getting a specific bit of the ancestor,
we intuitively believe that less than O(3k) space would be required and we leave this to future work.

1.7 Conclusion and future work

In this chapter, we have introduced the 6 Collatz tiles (Section 1.3, Figure 1.7), which we connected to our
previous work [156] in Section 1.2. Then, we studied valid partial tilings made of the 6 Collatz tiles by
associating functions to paths in tilings. We showed that every path between two given points compute
the same function, Theorem 1.13. This result allowed us to arithmetically interpret rectangular tilings,
Corollary 1.16, and to show that base conversion can occur naturally in these tilings, Corollary 1.18. Then,
we saw how to apply the function of a path to a 2-adic, 3-adic or 6-adic integer, Theorem 1.25. From that
point on, we focused more specifically on Collatz sequences and showed how to tile Collatz sequences,
Theorem 1.35. We studied the complexity of predicting various types of Collatz tilings in Section 1.4 and

43A generator of a group, if it exists, is g ∈ G such that powers of g enumerate the group.
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showed that most of the hardness of predicting Collatz iterates is concentrated in predicting parity vectors,
i.e. the sequence of parities of the Collatz-iterates of a number, Remark 1.54. We then studied Collatz
cycles and showed that integer cycles can be characterised by a simple geometric property related to their
most complex tile, Theorem 1.68. Finally, we reasoned about Collatz-ancestors and gave a visual proof
that for all n ∈ N and α < 2n proving the Collatz conjecture on the set α+ 2nN is enough to prove the
Collatz conjecture on all N, Theorem 1.7344.

We view this chapter, and the tiling framework that it introduces, as a base camp from which we will
be able to pursue further research on the action of the Collatz process on symbolic representations of
numbers.

There are several topics on which we want to work on in the future:

• Interpreting more Collatz results. Throughout this chapter, we have visually interpreted known
Collatz results with the tiles. For instance, with the visual proof of Theorem 1.58 which characterises
rational cycles, or with Theorem 1.73 on the sufficiency of sets α + 2nN (a special case of [117]).
We wish to continue this effort of visualising known results with the six tiles. For instance, we
would like to interpret the complete result – not just the special case – of [117] which says that
any arithmetical progression is sufficient for the Collatz conjecture. We would also like to interpret
Elihaou’s work on cycles [64] as well as Tao’s result on the Collatz conjecture being true for almost
all positive integers [159].

• Characterising the complexity of Collatz prediction. In Section 1.4, we left several questions
open for future work concerning lower and upper complexity bounds of Collatz-related prediction
problems, most importantly to us, Open problem 1.45 (and Open problem 1.51, its tiling version)
which asks whether predicting the tth Collatz-iterate of some x ∈ N is in NC or not.

• Base 3/2. A south-west-going diagonal of edges ↙ can be interpreted in base 3/2, a non-integral
base that has been studied in the past [4, 5]. One natural property of base 3/2 is that the biggest
number that can be encoded on k digits is less than (3/2)k. Hence, in Collatz tilings, one can
simultaneously read the base 6 and 3/2 representations of a number by respectively looking at the
north-east-going and north-west-going diagonal, but base 3/2 being a lot more inefficient encoding
than base 6 in number of digits used. We believe that this encoding in fact creates constraints that
could play a role in understanding why there are no non-trivial positive integer cycles.

• Arbitrary border conditions. In this chapter we particularly focused on a specific type of south-
west-going border conditions for our assemblies, corresponding to parity vectors, see Section 1.3.3:
horizontal segments of edges ← are valued with 0, there cannot be more than one edge ↙ at once,
and they are valued 4. In general, we could break free of these constraints and study arbitrary south-
west-going border conditions. Although we move away from Collatz, questions such as characterising
“most complex tiles” (Definition 1.64) remain valid and we believe that studying this more general
context could shine some light on better understanding the special case of Collatz parity vectors.
Our intuition is that south-west-going paths in tilings can be interpreted as some kind of zigzadic
numbers with their own arithmetical rules.

44This theorem is a refinement of a special case of [117], see Section 1.6. While we’re in footnote 44, here’s the Collatz
sequence of 44 (iterating map T , see Section 1.1): [44, 22, 11, 17, 26, 13, 20, 10, 5, 8, 4, 2, 1].
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Chapter 2

Hardness of busy beaver value BB(15)

Figure 2.1: The first 75 powers of two assembled in base 3 by the 6 Collatz tiles introduced in Chapter 1.
Reading left-to-right, each column of glues (colours) corresponds to a power of two: beige glues represent
ternary digit 0, green glues 1 and red glues 2. For instance, the rightmost column encodes (from top to
bottom) 1102100210202020112020120000201120010210212220223 = 275. The complexity of the patterns
illustrates the complexity of answering Erdős’ conjecture on powers of 2: “for all n > 8, there is at least
one digit 2 in the base 3 representation of 2n” which amounts to asking if each glue-column (except for
the few first) has at least one red glue.

2.1 Foreword

Consider the rectangular infinite assembly of the 6 Collatz tiles from Figure 1.7 where all positions of
the south border have been set to 0 and where the south border has been set to . . . 001, Figure 2.1. By
Chapter 1, Theorem 1.25, we know that each successive column of this assembly gives a successive power
of 2, in base 3. Knowing if, for all n > 8, the base 3 representation of 2n contains at least one digit 2 is
an open problem known as Erdős’ conjecture on powers of 2. In terms of tiles, it asks if all columns of
Figure 2.1 contain a red glue (except for the first few columns). In this chapter, we encode this conjecture
as the halting problem (from blank tape) of two Turing machines, first with 5 states and 4 symbols and
then with 15 states and 2 symbols. In turn, these machines shed light on the difficulty of knowing busy
beaver values BB(15) and BB(5,4).
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2.2 Introduction

In the theory of computation, there lies a strange and complicated beast, the busy beaver function. This
function tracks a certain notion of algorithmic complexity, namely, the maximum number of steps any
halting algorithm of a given program-size may take. Although formulated in terms of Turing machines,
the underlying notion of “maximum algorithmic bang for your buck” that it captures could be defined in
any reasonable programming language [1].

The busy beaver function n 7→ BB(n) was introduced by Tibor Radó in 1962 and corresponds to
the maximum number of steps made by a halting deterministic Turing machine with n states and 2
symbols starting from blank input [131]. It was generalised by Brady [18, 111] to machines with k

symbols; BB(n, k). Busy beaver functions, i.e. n, k 7→ BB(n, k), or n 7→ BB(n, k) for fixed k ≥ 2, are not
computable. Otherwise the Halting problem on blank tape would be computable: take any machine with
n states and k symbols, run it for BB(n, k) + 1 steps; if it has not halted yet, we know that it will never
halt. They also dominate any computable function [1].

To date, only four non-trivial busy beaver values are known: BB(2) = 6, BB(3) = 21, BB(4) = 107 and
BB(2, 3) = 38 [111, 112]. Machines that halt without input after so many steps that they beat previously
known record-holders, with the same n and k, are called busy beaver champions and they give lower
bounds for BB(n) or BB(n, k). It is conjectured [1] that BB(5) = 47,176,870 as there is an explicit 5-state
2-symbol champion [109] that halts after 47,176,870 steps45. Since May 2022, it is known [113] that
BB(6) ≥ 10 ↑↑ 15, which is a tower 101010

...

of height 15 (tetration) – well beyond the estimated number
of atoms in the observable universe. This new bound on BB(6) beats the previously known bounds on
BB(7) and leaves one baffled by how big BB(7) must be.

A recent trend, that we follow here, uses theory to address the question: “How hard is it to know
BB(n, k)”, for various pairs n, k. One way to answer that question is to relate values of BB(n, k) to
notoriously hard mathematical problems. For instance, one can imagine designing a Turing machine that,
starting from blank tape, will halt if and only if it finds a counterexample to Goldbach’s conjecture (every
even integer greater than 2 is the sum of two primes). Such a machine was actually built, using 4,888
states and 2 symbols [186]. This result implies that knowing the value of BB(4,888) would allow us to
computably decide Goldbach’s conjecture: run the machine for BB(4,888) + 1 steps – which must be an
unbelievably huge number – and if it has halted before, then the conjecture is false otherwise it is true.
The result was later claimed to be improved to a 27-state 2-symbol machine [1], which, subject to being
proved correct, would be to date the smallest busy beaver value that relates to a natural mathematical
problem. Similar efforts led to the construction of a 5,372-state 2-symbol machine that halts if and only if
the Riemann hypothesis is false [186]; with a later claimed improvement to 744 states [1], hence knowing
the value of BB(744) is at least as hard as solving the Riemann hypothesis.

An even more drastic way to establish hardness is to find an n for which BB(n) independent of some
standard set of axioms such as PA, or ZFC. In that spirit, a 7,910-state machine whose halting problem is
independent of ZFC was constructed [186] and this was later claimed to be improved to 748 states [1].
The 748-state machine explicitly looks for a contradiction in ZFC (such as a proof of 0 = 1) which is, by
Gödel’s second incompleteness theorem, independent of ZFC. Aaronson [1] conjectures that BB(10) is
independent of PA and BB(20) is independent of ZFC meaning that the frontier between knowable and
unknowable busy beaver values could be as low as BB(10) if we limit ourselves to typical inductive proofs.

45
A (init) B C D E

0 1 R B 1 R C 1 R D 1 L A Halt
1 1 L C 1 R B 0 L E 1 L D 0 L A

Current busy beaver champion [109] for machines with 5 states
(A–E) and 2 symbols (0,1), it halts in 47,176,870 steps starting
from all-0 input and state A, which gives the lowerbound
BB(5) ≥ 47,176,870.
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2.2.1 Results and discussion

Here, we continue the approach of relating small busy beaver values to hard mathematical problems
towards obtaining insight into the location of the frontier between knowable and unknowable busy beaver
values. Our particular approach gives upper bounds on the smallest counterexample to such problems.
We do this by giving machines that search for counterexamples to an open, Collatz-related conjecture
formulated in 1979 by Erdős:

Conjecture 2.1 (Erdős [65]). For all natural numbers n > 8 there is at least one digit 2 in the base 3
representation of 2n.

In Section 2.2.2 we discuss the relationship between the Erdős, Collatz and weak Collatz conjectures.

The main technical contribution of this chapter is to prove the following theorem:

Theorem 2.2. There is an explicit 15-state 2-symbol Turing machine that halts if and only if Erdős’
conjecture is false.

That Turing machine, called M15,2, is given in Figure 2.4 and proven correct in Section 2.5. The proof
shows that M15,2 simulates, in a tight (linear time) fashion, an intuitively simpler machine with 5 states
and 4 symbols, that we call M5,4 (Figure 2.3) and whose behaviour is proven correct in Section 2.4:

Theorem 2.3. There is an explicit 5-state 4-symbol Turing machine that halts if and only if Erdős’
conjecture is false.

Why are these theorems important? Because they give a concrete sense of the hardness of knowing, i.e.
getting of a proof of, busy beaver values BB(15) and BB(5, 4). Indeed, the only method known to prove
the value of BB(n) for some n is to meticulously study all n-state machines (up to isomorphism and other
immediate symmetries [109]) and show whether they halt or not from blank tape and, from this analysis,
deduce BB(n). Since our results exhibit specific 15-state 2-symbol and 5-state 4-symbol machines whose
halting problem from blank tape reduces to Erdős’ conjecture, we get that solving BB(15) and BB(5, 4)
requires first solving that hard problem that has been open for decades. Before these results, it was known
that BB(15) and BB(5, 4) must be unbelievably huge numbers (since already BB(6) > 10 ↑↑ 15 [113]),
but our results add to that empirical knowledge by showing that it would require a qualitatively different
kind of hard mathematical work, solving an open conjecture, to know these numbers.

One corollary of Theorems 2.2 and 2.3 is that the infinite conjecture can be replaced by a finite one
(short proof in Section 2.5.3):

Corollary 2.4. Erdős’ conjecture is equivalent to the following conjecture over a finite set: for all
8 < n ≤ min(BB(15),BB(5, 4)) there is at least one digit 2 in the base 3 representation of 2n.

It should be emphasised that, although finite, this bound is certainly so large as not to be of any practical
use for proving or disproving the conjecture by explicit enumerative search for potential counterexamples.
A second implication of our results is that discovering a counterexample to Erdős conjecture gives a lower
bound to the values of BB(15) and BB(5,4):

Corollary 2.5. Let x ∈ N be the smallest counterexample to Erdős conjecture, if it exists. Then we have:
BB(15) ≥ log2 x and BB(5, 4) ≥ log2 x.

Our results make BB(15) the smallest busy beaver value linked to a natural, hard, open problem in
mathematics, a significant improvement on the BB(4,888) and BB(5,372) results cited earlier (that have
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a proof of correctness), and the BB(27) and BB(744) results (that as yet lack a published proof of
correctness). Perhaps this lowers the hope that we will ever know the value of BB(5, 4) or BB(15), as it
implies a computable procedure to solve Erdős’ conjecture.

As we’ve noted, some claimed results on the busy beaver function come with proofs, but some do not [1].
We advocate for proofs, although we acknowledge the challenges in providing human-readable correctness
proofs for small programs that are, or almost are, program-size optimal.46 Here, the proof technique for
correctness of our BB(15) candidate M15,2 amounts to proving by induction that M15,2 simulates (in a
tight sense via Definition 2.9 and Lemma 2.11) another Turing machine M5,4 (giving Theorem 2.2). M5,4

exploits the existence of a tiny finite state transducer (FST), in Figure 2.2, for multiplication by 2 in
base 3. We directly prove M5,4’s correctness by induction on its time steps (giving Theorem 2.3).

A Turing machine simulator, bbsim, was built in order to test our constructions47. The reader is invited
to run the machines of this chapter through the simulator.

2.2.2 Erdős’ conjecture and its relationship to the Collatz and weak Collatz conjectures

A first obvious fact about Conjecture 2.1 is that the bound n > 8 is set so as to exclude the three known
special cases: 1, 4 and 256 whose ternary representations are respectively 1, 11 and 100111. Secondly,
since having no digit 2 in ternary is equivalent to being a sum of distinct powers of three, Conjecture 2.1
can be restated as: for all n > 8, the number 2n is not a sum of distinct powers of 3.

The conjecture has been studied by several authors. Notably, Lagarias [97] showed a result stating that,
in some sense, the set of powers of 2 that omits the digit 2 in base three, is small. In [63], the authors
showed that, for p and q distinct primes, the digits of the base q expansions of pn are equidistributed on
average (averaging over n) which in our case suggests that digits 0, 1, 2 should appear in equal proportion
in the base 3 representation of 2n. Dimitrov and Howe [56] showed that 1, 4 and 256 are the only powers
of 2 that can be written as the sum of at most twenty-five distinct powers of 3.

The Collatz conjecture states that iterating the Collatz function T on any x ∈ N eventually yields 1,
where T (x) = x/2 if x is even and T (x) = (3x+1)/2 if x is odd. The weak Collatz conjecture (or nontrivial
cycles conjecture) states that if T k(x) = x for some k ≥ 1 and x a natural number then x ∈ {0, 1, 2}.

Although solving the weak Collatz conjecture, given current knowledge, would not directly solve Erdős’
conjecture, intuitively, Erdős’ conjecture seems to be the simpler problem of the two. Indeed, Tao [160]
justifies calling Erdős’ conjecture a “toy model” problem for the weak Collatz conjecture by giving the
number-theoretical reformulation that there are no integer solutions to 2n = 3a1 + 3a2 + · · ·+ 3ak with
n > 8 and 0 ≤ a1 < · · · < ak, which in turn seems like a simplification of a statement equivalent to the
weak Collatz conjecture, also given in [160] (Conjecture 3; Reformulated weak Collatz conjecture).

The three conjectures have been encoded using the 6 Collatz tiles (Figure 1.7). As Figure 2.1 shows,
a simple assembly made of these tiles illustrates the complexity of the patterns occurring in ternary
representations of powers of 2 which gives a sense of the complexity underlying Erdős’ conjecture. Beyond
making complex, albeit pretty, pictures there is deeper connection here: the 6 Collatz tiles can be shown
to simulate the base 3, mul2, Finite State Transducer that we introduce in Section 2.4, Figure 2.2, and
our small Turing machines use it to look for counterexamples to Erdős’ conjecture. The tile set also
simulates the inverse of the mul2 FST (which computes the operation x 7→ x/2 in ternary) which was
used to build a 3-state 4-symbol non-halting machine that runs the Collatz map on any ternary input

46The situation can be likened to the hunt for small, and fast, universal Turing machines [182], or simple models like Post
tag systems, with earlier literature often missing proofs of correctness, but some later papers using induction on machine
configurations to do the job, for example refs [120, 181].

47Simulator and machines available here: https://github.com/tcosmo/bbsim

https://github.com/tcosmo/bbsim
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[110] and finally, it also simulates the dual of that FST (which computes the operation x 7→ 3x + 1 in
binary) which can be used to simultaneously compute the Collatz map both in binary and ternary, see
Chapter 1, Section 1.2 and [156]. So these three closely-related FSTs are all encoded within that small
tile set, that in turn encodes the three conjectures (other conjectures can be encoded with the Collatz tile
set, such as Mahler’s 3/2 problem, see Appendix B).

2.2.3 Future work

This chapter opens a number of avenues for future work.

We’ve given a finite bound on the first counterexample to Erdős’ conjecture, an obvious future line of
work is to improve that cosmologically large bound by shrinking the program-size of our 15-state machine.

It would be interesting to design small Turing machines that look for counterexamples to the weak
Collatz conjecture. That way we could relate the fact of knowing busy beaver values to solving that
notoriously hard conjecture. We have already found 124-state 2-symbol, and 43-state 4-symbol, machines
that look for such counterexamples48 but we would like to further optimise them (i.e. reduce their number
of states) before formally proving that their behaviour is correct.

There are certain other open problems amenable to BB-type encodings. For instance, the Erdős–Mollin–Walsh
conjecture states that there are no three consecutive powerful numbers, wherem ∈ N is powerful ifm = a2b3

for some a, b ∈ N. It would not be difficult to give a small Turing Machine, that enumerates unary
encoded natural numbers, i.e. candidate m and a, b values, and runs the logic to check for counterexamples.
Algorithms that bounce back and forth on a tape marking off unary strings have facilitated the finding
of incredibly small universal Turing machines [120, 134, 182], so stands a chance to work well here too,
although we wouldn’t expect it to beat our main results in terms of program-size.

In fact, any problem that can be expressed as a Π1 sentence [1] should be relatable to a value of BB in the
same way that we did for Erdős’ conjecture, although many problems would presumably yield unsuitably
large program-size. It is also worth noting that some problems seem out of reach of the busy beaver
framework: for instance the Collatz conjecture, as to date, there are no known ways for an algorithm
to recognise whether or not an arbitrary trajectory is divergent, making it seemingly impossible for a
program to search for a divergent counterexample49.

In future work we also intend to make progress on settling the value of BB(5), conjectured to be
47,176,870 [1, 109], and we believe that this research goal is inherently collaborative which is why we have
created the platform https://bbchallenge.org dedicated to it, see Appendix D.

2.3 Definitions: busy beaver Turing machines

Let N = {0, 1, 2 . . . } and Z = {. . . ,−1, 0, 1, . . . }. We consider Turing machines that are deterministic,
have a single bi-infinite tape with tape cells indexed by Z, and a finite alphabet of k tape symbols that
includes a special ‘blank’ symbol (we use # or b). For readability, we use bold programming-style names,
for example check_halt. We use ‘(init)’ to denote the initial state. Each state has k transitions, one for
each of the k tape symbols that might be read by the tape head, and a transition is either (1) the halting
instruction ‘Halt’ or (2) a triple: write symbol, tape head move direction (L or R), and next state. In the
busy beaver setting used throughout this chapter, we start machines in their initial state on an all-blank

48These machines are also available here: https://github.com/tcosmo/bbsim
49Said otherwise: given current knowledge there are no reason to believe that the set of counterexamples to the Collatz

conjecture is recursively enumerable.

https://bbchallenge.org
https://github.com/tcosmo/bbsim
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tape and, at each time step, according to what symbol is read on the tape, the specified transition is
performed, until ‘Halt’ is encountered (if ever).

Let TM(n, k) be the set of such n-state, k-symbol Turing machines. Given a machine M ∈ TM(n, k), let
s(M) be the number of transitions it executes before halting, including the final Halt instruction50 and
let s(M) =∞ if M does not halt. Then, BB(n, k) is defined [1] by

BB(n, k) = max
M∈TM(n,k), s(M)<∞

s(M)

In other words, BB(n, k) is the number of steps by a machine in TM(n, k) that runs the longest without
halting. By convention, BB(n) = BB(n, 2), this being the most classic and well-studied busy beaver
function.

Some conventions: A busy beaver candidate is a Turing machine for which we don’t currently know
whether it halts or not on blank input. A busy beaver contender is a Turing machine that halts on blank
input. A busy beaver champion is a Turing machine that halts on blank input in more steps than any
other known machine with the same number of states and symbols.

A Turing machine configuration is given by: the current state, the tape contents, and an integer tape
head position. We sometimes write configurations in the following condensed format: state_name, · · · ∗
∗ ∗ ∗∗∗ ∗ ∗ ∗ . . . with ∗ any tape symbol of the machine and for tape head position. Let c1 and c2 two
configurations of some machine M and let k ∈ N, we write c1 `kM c2 to mean that M transitions from c1

to c2 in k steps. We write ` (without M) if M is clear from the context.

2.4 Five states, four symbols Turing machine

In this section we prove Theorem 2.3. To do this we define, and prove correct, a 5-state 4-symbol Turing
machine that searches for a counterexample to Erdős’ conjecture, the machine is given in Figure 2.3. The
construction begins with the mul2 finite state transducer (FST) in Figure 2.2.

F G

2 : 1

0 : 0

1 : 2

2 : 2

0 : 1

1 : 0

Figure 2.2: The mul2 Finite State Transducer that multiplies a reverse-ternary represented number
(base-3 written in reverse digit order) by 2. For example, the base 10 number 6410 is 21013 in base 3,
which we represent in reverse-ternary with a leading zero to give the input 10120, which in turn yields the
FST output 20211; the reverse-ternary of 12810. Transition arrows are labelled r : w where r is the read
symbol and w is the write symbol.

A similar FST, and its ‘dual’, can be used to compute iterations of the Collatz map [156] (Appendix B).
The fact that there is an FST that multiplies by 2 in base 3 is not surprising, since there is one for
any affine transformation in any natural-number base ≥ 1 [2]. However, in this section, we will exploit
mul2’s small size. We begin by proving its behaviour is correct (by reverse-ternary we mean the base-3
representation written in reverse digit order):

50As in [1], we took the liberty of not defining a symbol to write and a direction to move the tape head to when the
halting instruction is performed as this does not change the number of transitions that the machine executed.
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Lemma 2.6. Let x ∈ N and let w = w1 . . . wn0 ∈ {0, 1, 2}n0 be its reverse-ternary representation, with
n ≥ 0, and a single leading 0. Then, on input w the mul2 FST outputs γ = γ1γ2 . . . γn+1 ∈ {0, 1, 2}n+1

which represents y = 2x in reverse-ternary.

Proof. We give an induction on ternary word length n, with the following induction hypothesis: given a
word w = w1 . . . wn0 that represents x ∈ N (as in the lemma statement), if the FST reads from state F
then the operation x  7→ 2x is computed in reverse-ternary, and if the FST reads from state G then the
operation x  7→ 2x+ 1 is computed in reverse-ternary.

For the base case, when n = 0 we have w = 0 and, when started from state F the FST outputs 0 and
when started from state G the FST outputs 1 which corresponds to respectively applying x  7→ 2x and
x  7→ 2x+ 1.

Let’s assume that the induction hypothesis holds for n and consider the base 3 word w = w1 . . . wn+10 ∈
{0, 1, 2}n+10 that represents some x ∈ N. We first handle state F . There are three cases for the value of
the least significant digit w1 ∈ {0, 1, 2}. If w1 = 0, from the FST state F the first transition will output 0
and return to state F . Then, from state F , by applying the induction hypothesis to the length-m word
w2 . . . wm+1, which represents the number (x− w1)/3 = x/3 in base 3, we get that the FST output (on
w2 . . . wn+1) is the representation of 2x

3 .

Then, by including the first output 0, the complete output of the FST represents the number 0+3·2x
3 = 2x

which is what we wanted. Similarly, if w1 = 1 the FST outputs the representation of the number
2 + 3 · 2x−1

3 = 2x, or if w1 = 2 the FST outputs the representation of 1 + 3 · (2x−2
3 + 1) = 2x since it

moves to state G after the first transition. Likewise, if we start the FST in state G the FST outputs:
1 + 3 · 2x

3 = 2x+ 1 if w0 = 0, or 0 + 3 · (2x−1
3 + 1) = 2x+ 1 if w0 = 1, or 2 + 3 · (2x−2

3 + 1) = 2x+ 1 if
w0 = 2. In all the cases we get the result.

mul2_F mul2_G (init) find_2 rewind check_halt
0 0 R mul2_F 1 R mul2_F 0 L find_2 0 L rewind 1 R rewind
1 2 R mul2_F 0 R mul2_G 1 L find_2 1 L rewind 2 R rewind
2 1 R mul2_G 2 R mul2_G 2 L rewind 2 L rewind Halt
# (blank) # L find_2 1 R mul2_F # L check_halt # R mul2_F 0 R rewind

Figure 2.3: 5-state 4-symbol Turing machine M5,4 that halts if and only if Erdős’ conjecture is false. The
initial state of the machine is mul2_G, denoted ‘(init)’. The blank symbol is # and, since this is a
busy-beaver candidate, the initial tape is empty: . . .##### . . . (tape head underlined). Example 2.7
shows the initial 333 steps of M5,4. States mul2_F and mul2_G implement states F and G of the
“mul2” FST in Figure 2.2, that multiplies a reverse-ternary number by 2. The other states check whether
the result is a counterexample to, or one of the three special cases of, Erdős’ conjecture.

Intuitively, the 5-state 4-symbol Turing machine M5,4 in Figure 2.3 works as follows. Starting from
all-# tape and state mul2_G, M5,4 constructs successive natural number powers of 2 in base 3 (in fact
in reverse-ternary) by iterating the mul2 FST, which is embedded in its states mul2_F and mul2_G.
Then, for each power of two, M5,4 checks that there is at least one digit 2 using state find_2. If at least
one digit 2 is found, then, using state rewind the machine goes back to the start (left) and iterates on to
the next power of 2. If no digit 2 is found, such as in the three known special cases 110 = 13, 410 = 113

and 25610 = 1001113 (giving the condition n > 8 in Erdős’ conjecture), then a counter is incremented on
the tape (using state check_halt) and if this counter goes beyond value three the machine halts. The
machine halts, iff we have found a counterexample to Erdős’ conjecture, a fact we prove formally below in
Theorem 2.3.

Example 2.7. Here, we highlight 11 out of the first 334 configurations of M5,4. Five of the first 16
configurations are shown on the left (read from top to bottom), and 6 out of configurations 17 to 334 are



62 Chapter 2. Hardness of busy beaver value BB(15)

shown on the right.47 From step 5 onwards, the content of the tape is of the form c#w1 . . . wn# with
c, wi ∈ {0, 1, 2}, where c represents a single-symbol counter keeping track of the 3 special cases of Erdős
conjecture and w1 . . . wn is the reverse-ternary representation of a power of two. For instance, in the final
configuration below we have 1101011202221 as the reverse-ternary representation of 220 = 1220211010113.

mul2_G, . . .######## . . . `1 rewind, . . .#1###11# . . .

`5 rewind, . . .##0###1# . . . `6 rewind, . . .#1###22# . . .

`4 rewind, . . .##0###2# . . . `40 rewind, . . .#1###20211# . . .

`4 find_2, . . .#0#1111# . . . `8 find_2, . . .#1#11100111# . . .

`3 check_halt, . . .#000#11# . . . `8 rewind, . . .#2###111001# . . .

`254 rewind, . . .#2###1101011202221# . . .

Theorem 2.3. There is an explicit 5-state 4-symbol Turing machine that halts if and only if Erdős’
conjecture is false.

Proof. The machine is called M5,4 and is given in Figure 2.3. We index tape positions by integers in Z.
Initially (at step 0), the tape head is at position 0 and each position of the tape contains the blank symbol
#. The construction organises the tape as follows: position −1 holds a counter to keep track of the 3
known special cases of the Erdős’ conjecture (1, 4 and 256 in base 10 which are 1, 11 and 100111 in base 3),
position 0 always contains a blank # to act as a separator, and positive positions will hold reverse-ternary
representations of powers of two, i.e. least significant digit at position 1 and most significant at position
dlog3(2n)e. States mul2_F and mul2_G reproduce the logic of the “mul2” FST (Figure 2.2) where, in
state mul2_G the blank symbol behave like ternary digit 0 while in mul2_F it triggers the end of the
multiplication by 2.

Starting the Turing machine in state mul2_G appropriately initialises the process, the reader can
verify that at step 5 the machine is in state rewind, the tape head is at position 0 and the tape
content between positions −1 to 2 included is: 0#1# (tape head position underlined) and all other
positions are blank.51 From there we prove the following result (IH) by induction on n ∈ N: at step
sn = 5 + cn +

∑n
k=1 2 ∗ (dlog3(2k)e+1) either (a) M5,4 has halted, the tape head is at position −1 and

the reverse-ternary represented number written on the positive part of the tape (with digits in reverse
order) is a counterexample to Erdős’ conjecture, i.e. it has no digit equal to 2 and is of the form 2n0 with
n0 > 8, or (b) M5,4 is in state rewind, the tape head is at position 0 which contains a blank symbol and
the reverse-ternary represented number by the digits between position 1 and dlog3(2n)e is equal to 2n

and all positions coming after dlog3(2n)e are blank. The number cn in the expression of sn accounts for
extra steps that are taken by M5,4 to increment the counter at position −1 which keeps track of the three
known special cases of the conjecture: 1 = 13, 4 = 113 and 256 = 1001113. In practice, cn is defined by
cn = 0 for n ≤ 1, cn = 2 for 2 ≤ n ≤ 7 and cn = 4 for n ≥ 8.

For n = 0 we have s0 = 5 and case (b) of the induction hypothesis (IH) is verified as 1 = 20 is represented
on the positive part of the tape as seen above.

Let’s assume that the result holds for n ∈ N. If M5,4 had already halted at step sn, then case (a) of
IH still holds and nothing is left to prove. Othewise, by case (b) of IH, at step sn then M5,4 is in state
rewind at position 0 which contains a # and between positions 1 and dlog3(2n)e+ 1 the following word
is written: w = w1 . . . wdlog3(2

n)e# such that w1 . . . wdlog3(2
n)e is the reverse-ternary representation of 2n.

At step sn + 1, tape position 0 still contains the blank symbol #, M5,4 is in state mul2_F and the tape
head is at position 1 where it begins simulating the mul2 FST on w. By having the final # of w encode a

51State mul2_G was not designed to kick-start the process, but starting with it happens to give us what we need.
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0 then Lemma 2.6 applies which means that, after scanning w, the positive part of the tape contains the
reverse-ternary expression of 2 ∗ 2n = 2n+1. Either M5,4 was in state mul2_F when it read the final #
of w, in which case it will stop simulating the FST and jump to state find_2 and move the tape head to
the left. Otherwise it was in state mul2_G and read the # in which case it jumps to state mul2_F
and moves the tape head to the right where, by IH, a # will be read bringing us back to the previous
case. In both cases, dlog3(2n+1)e+ 1 symbols have been read since sn, M5,4 is in state find_2 and all
positions after and including dlog3(2n+1)e+ 1 are still blank.

State find_2 will scan to the left over the reverse-ternary expression that was just computed to search
for a digit equal to 2. If a 2 is found, then it switches to state rewind and will reach position 0 at step
sn +2 ∗ (dlog3(2n+1)e+1). In that case, we also have cn+1 = cn as by definition of cn, one can verify that
cn+1 6= cn implies that 2n+1 has no ternary digit equal to 2. Hence, if a 2 was found the machine reaches
tape position 0 at step sn+1 = 5 + cn+1 +

∑n+1
k=1 2 ∗ (dlog3(2k)e + 1), position 0 contains the blank

symbol, positions 1 to dlog3(2n+1)e hold the reverse-ternary representation of 2n+1 and all positions after
dlog3(2n+1)e are still blank, which is what we wanted under case (b) of IH. If no 2s were found then M5,4

will reach position −1 in state check_halt and if n+ 1 = 2 or n+ 1 = 8 it will respectively read a 0 or 1
which will respectively be incremented to 1 or 2, then M5,4 goes back to position 0 in state rewind and
case (b) of IH is verified as the value cn accounts for the extra steps that were taken to increment the
counter in those cases. However, if n+1 > 8 then M5,4 will read a 2 at position −1 and consequently halt
with positions 1 to dlog3(2n+1)e giving the base three representation of 2n+1 containing no digit equal to
two: a counterexample to Erdős’ conjecture has been found and it is consequently false and case (a) of IH
holds.

From this proof, if M5,4 halts then Erdős’ conjecture is false. For the reverse direction, note that M5,4

will test every single successive power of two until it finds a potential counterexample meaning that if
Erdős’ conjecture is false M5,4 will find the smallest counterexample and stop there. Hence the 5-state,
4-symbol Turing machine given in Figure 2.3 halts if and only if Erdős’ conjecture is false.

2.5 Fifteen states, two symbols Turing machine

Encoding E
0 ba
1 ab
2 aa
# bb

check halt a
a Halt

b a R mul2 G extra

check halt sim
a b L check halt a
b a R rewind b

find 2 a
a a L rewind sim
b b L find 2 sim

find 2 b
a a L find 2 sim
b b L check halt sim

find 2 sim
a a L find 2 a
b b L find 2 b

mul2 G a
a a R mul2 G sim
b a L mul2 G extra

mul2 G b
a b R mul2 F sim
b b R mul2 F sim

mul2 G extra
a b R mul2 G a
b b R rewind b

mul2 G sim (init)
a a R mul2 G a
b a R mul2 G b

rewind a
a a L rewind sim
b b L rewind sim

rewind b
a a L rewind sim
b b R mul2 G b

rewind sim
a a L rewind a
b b L rewind b

mul2 F a
a b R mul2 G sim
b a R mul2 F sim

mul2 F b
a a R mul2 F sim
b b L find 2 a

mul2 F sim
a a R mul2 F a
b b R mul2 F b

Encoding E
0 ba
1 ab
2 aa
# bb

Figure 2.4: 15-state 2-symbol Turing machine M15,2 that halts if and only if Erdős’ conjecture is false.
The initial state is mul2_G_sim, denoted ‘(init)’. The blank symbol is b, and, since this is a busy-beaver
candidate, the initial tape is empty: . . . bbbbbbb . . . (tape head position bold and underlined). States are
organised into 5 columns, one for each state of M15,2 in Figure 2.3, and inherit name prefixes from M15,2.
In Lemma 2.11 we prove that M15,2 simulates M5,4.

In this section, we prove Theorem 2.2. To do this we define the 15-state 2-symbol Turing machine M15,2

in Figure 2.4 and then prove that it halts if and only if it finds a counterexample to Erdős’ conjecture.
We begin with some remarks to guide the reader.
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2.5.1 Intuition and overview of the construction

Turing machines with two symbols can be challenging to reason about and prove correctness of for two
reasons: (1) the tape is a difficult-to-read stream of bits and (2) simple algorithmic concepts need to be
distributed across multiple states (because of the low number of symbols). We took the approach of first
designing M5,4 (Figure 2.3, relatively easy to understand), and then designing M15,2 to simulate M5,4.
(With the caveat that both machines have a few program-size optimisations.)

In order to avoid confusion, M15,2 uses alphabet {a, b} (with b blank) which is distinct to that of M5,4.
In Lemma 2.11 we prove that M15,2 simulates M5,4, via a tight notion of simulation given in Definition 2.9
and the Lemma statement. Symbols of M5,4 are encoded by those of M15,2 using the encoding function
E : {#, 0, 1, 2} → {a, b}2 defined by E(#) = bb, E(0) = ba, E(1) = ab, E(2) = aa. Intuitively, the 15
states of M15,2 are partitioned into 5 sets: the idea is that each of the five states of M5,4 is simulated by
one of the five corresponding column of states in Figure 2.4.

The naming convention for states in M15,2 is as follows: for each state of M5,4, there is a state with
the same name in M15,2, followed by _sim (short for ‘simulate’), that is responsible for initiating the
behaviour of the corresponding state in M5,4. Then, from each _sim state in M15,2 control moves to one
of two new states, suffixed by _a and _b, after reading symbol a or symbol b. At the next step, two
consecutive letters have been read and M15,2 knows which of the 4 possible cases of the encoding function
E it is considering and has sufficient information to simulate one step of M5,4. However, in many cases, for
program-size efficiency reasons, M15,2 makes a decision before it has read both symbols of the encoding.

There are two exceptions to the M15,2 state naming rule: there is no state check_halt_b as our choice
of encoding function E meant not needing to consider that case when simulating check_halt, and the
state mul2_G_extra which is involved in simulation of both mul2_G and check_halt.

Example 2.8. Here, we highlight 11 of the first 742 configurations of M15,2. The example reads
from top to bottom, then left to right. These configurations correspond represent the simulation (via
encoding E) of those highlighted in Example 2.7. For instance, in the second configuration shown we
have bb ba bb ab bb = E(#)E(0)E(#)E(1)E(#) which corresponds to the tape content of the second
configuration shown in Example 2.7. Simulation comes with a (merely linear) cost in time as here, the
first 333 steps of M5,4 are simulated in 741 steps in M15,2.

mul2_G_sim, . . . bb bb bbbb bb bb . . . `3 rewind_b, . . . bb ab bbbb ab ab bb . . .

`10 rewind_b, . . . bb ba bbbb ab bb . . . `13 rewind_sim, . . . bb ab bbbb aa aa bb . . .

`9 rewind_sim, . . . bb ab bbbb aa bb . . . `92 rewind_sim, . . . bb ab bbbb aa ba aa ab ab bb . . .

`10 find_2_sim, . . . bb ba bb ab abbb bb . . . `22 find_2_sim, . . . bb ab bb ab ab ab ba ba abbb bb . . .

`6 check_halt_sim, . . . bb baaa bb ab ab bb . . . `15 rewind_b, . . . bb aa bbbb ab ab ab ba ba ab bb . . .

`561 rewind_sim, . . . bb aa bbbb ab ab ba ab ba ab ab aa ba aa aa aa ab bb . . .

2.5.2 Proof of correctness

We define what we mean by ‘simulates’; the definition couples the dynamics of two machines so that the
tape content of one machine is mapped in a straightforward way to that of the other.

Definition 2.9 (simulates). Let M and M ′ be single-tape Turing machines with alphabets Σ and Σ′.
Then, M ′ simulates M if there exists m ∈ N, a function E : Σ → Σ′m and a computable time-scaling
function f : N → N, such that for all time steps n ∈ N of M , then for step f(n) of M ′, either both M
and M ′ have already halted, or else they are both still running and, if M has tape content . . . tn−1t

n
0 t

n
1 . . .

(where ti ∈ Σ) then M ′ has tape content . . . E(tn−1)E(tn0 )E(tn1 ) . . . .

Definition 2.10 (M15,2’s encoding function E). Let E : {#, 0, 1, 2} → {a, b}2 be M15,2’s encoding
function, where E(#) = bb, E(0) = ba, E(1) = ab and E(2) = aa.
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Our main technical lemma in this section states that M15,2 (Figure 2.4) simulates M15,2 (Figure 2.3):

Lemma 2.11. Machine M15,2 simulates M5,4, according to Definition 2.9, with encoding function E

(Definition 2.10) and time-scaling function f recursively defined by: f(0) = 0 and f(n + 1) = f(n) +

g((qn, dn), σn) with: qn being the state of M5,4 at step n, dn ∈  {L,R} the tape head direction at step
n− 1 (where d0 = R), σn ∈ {#, 0, 1, 2} the read symbol at step n, and g the partial function defined in
Figure 2.5.

Proof. Let S = {mul2_F,mul2_G, find_2, rewind, check_halt} be the set of 5 states of M5,4 and S′

be the set of 15 states of M15,2 given in Figure 2.4. We prove the result by induction on n ∈ N,
the number of steps taken by the simulated machine M5,4. Let kn = (qn, dn) ∈ S × {L,R} be M5,4’s
state at step n together with the tape-head direction at the previous step n − 1 (we take the conven-
tion d0 = R), let σn ∈ {0, 1, 2,#} be M5,4’s read symbol at step n, and let in ∈ Z be M5,4’s tape
head position at step n. We note that by inspecting Figure 2.3 the set of possible values for kn is
K = {(mul2_F,R), (mul2_G,R), (find_2,L), (check_halt,L), (rewind,L), (rewind,R)}, observing that
rewind is the only M5,4 state reachable from both left and right tape head moves.

The induction hypothesis (IH) is the definition of simulation (Definition 2.9) instantiated with E

(Definition 2.10), f as defined in the lemma statement, and the following: at step f(n)machineM15,2’s head
is at position 2in + π(dn) with π(L) = 1 and π(R) = 0 and the machine is in state h(kn) with h : K → S′

defined by h(mul2_F,R) = mul2_F_sim, h(mul2_G,R) = mul2_G_sim, h(find_2,L) = find_2_sim,
h(check_halt,L) = check_halt_sim, h(rewind,L) = rewind_sim and h(rewind,R) = rewind_b.

If n = 0, we have f(0) = 0 and both tapes are entirely blank: . . .### . . . for M5,4, and . . . bbb . . . for
M15,2 which is consistent with E(#) = bb. Additionally, k0 = (mul2_G, R), the tape head of M15,2 is
at position 0 = 2i0 + 0 with i0 = 0 being the tape head position of M5,4 and finally, M15,2 is in state
h(k0) = mul2_G_sim (which is also its initial state).

Let’s assume that the induction hypothesis (IH) holds for n ∈ N. If at step n for M5,4, and step f(n) for
M15,2, both machines have already halted they will still have halted at any future step and the IH still
holds. Let’s instead assume from now on, IH holds and we are in the second case of Definition 2.9 (both
are still running and tape contents are preserved under the encoding function E).

If kn = (mul2_F,R) and σn = 2 then the configuration of M5,4 at step n is mul2_F, . . .222 . . . with
tape head at position in. By Figure 2.3, at step n + 1 the configuration becomes mul2_G, . . . 1∗∗∗ . . .
and in+1 = in + 1 (with ∗ being whatever symbol is at position in + 1) and kn+1 = (mul2_G,R).
By IH, at step f(n) the tape head position of M15,2 is 2in + π(R) = 2in and the configuration of
M15,2 is mul2_F_sim, . . . aaaa . . . , since E(2) = aa and h(kn) = mul2_F_sim. By Figure 2.4, at step
f(n+ 1) = f(n) + g((mul2_F,R), 1) = f(n) + 2, the configuration of M15,2 is mul2_G_sim, . . . ab∗∗∗ . . .
with tape head at position 2in + 2. We have E(1) = ab (and no other tape positions than 2i and 2i+ 1

were modified), 2in + 2 = 2(in + 1) = 2in+1 + π(R) = 2in+1 + π(dn+1) and mul2_G_sim = h(kn+1)

which is everything we needed to satisfy IH at step n + 1. We leave verifications of cases σn = 0 and
σn = 1 to the reader as they are very similar. If σn = # then M5,4 writes # then goes left to state find_2,
which gives kn+1 = (find_2,L) and in+1 = in − 1. By IH, at step f(n) the tape head position of M15,2 is
2in + π(R) = 2in and the configuration of M15,2 is mul2_F_sim, . . . bbbb . . . . After g((mul2_F,R),#) = 3

steps, the configuration becomes find_2_sim, . . .∗∗∗bb . . . . This is consistent with having E(#) = bb,
moving the tape head to position 2in−1 = 2(in−1)+1 = 2in+1+π(dn+1) and having find_2sim = h(kn+1)

which is all we needed.

If kn = (mul2_G,R) and σn = 1 then the configuration of M5,4 at step n is mul2_G, . . .111 . . . with
tape head at position in. By Figure 2.3, at step n + 1 the configuration becomes mul2_G, . . . 0∗∗∗ . . .
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(mul2_F,R) (mul2_G,R) (find_2,L) (check_halt,L) (rewind,L) (rewind,R)
0 2 2 2 3 2 -
1 2 4 2 1 2 -
2 2 2 2 2 2 -
# 3 2 2 1 3 2

Figure 2.5: The partial function g of Lemma 2.11 that defines how many steps are needed by M15,2 to
simulate one step of M5,4, for each (state, move-direction-on-previous-step), and symbol, of an M5,4 step.
The function is partial, defined on only one entry of the final column, as the proof of Theorem 2.3 shows
that only symbol # can be read if M5,4 reaches state rewind coming from the left (hence by moving tape
head in direction R).

and in+1 = in + 1 and kn+1 = (mul2_G,R). By IH, at step f(n) the tape head position of M15,2 is
2in + π(R) = 2in and the configuration of M15,2 is mul2_G_sim, . . . aaab . . . as E(1) = ab and h(kn) =
mul2_G_sim. In that case, the machine will need g((mul2_G,R), 1) = 4 steps as it will have to bo
back one step to the left after having scanned the second symbol of E(1) = ab in order to write the
first symbol E(0) = ba. This is realised by the first transition of intermediate state mul2_G_extra
as we are assured to read symbol a in that case. Altogether, we get that at step f(n + 1) = f(n) + 4

the configuration of M15,2 is mul2_G_sim, . . . ba∗∗∗ . . . with mul2_G_sim = h(kn+1) and tape head at
position 2in + 2 = 2in+1 + π(dn+1) which is everything we need. We leave cases σn ∈ {0, 2,#} to the
reader.

If kn = (find_2,L), the simulation is straightforward for any σn ∈ {0, 1, 2,#} as the content of the tape
is not modified and the tape head always moves to the left, hence we leave those cases to the reader.

If kn = (rewind,L) and σn = # then the configuration of M5,4 at step n is mul2_G, . . .### . . . with
tape head at position in. By Figure 2.3, at step n + 1 the configuration becomes mul2_F, . . .#∗∗∗ . . .
and in+1 = in + 1 and kn+1 = (mul2_F,R). By IH, at step f(n) the tape head position of M15,2

is 2in + π(L) = 2in + 1 and the configuration of M15,2 is rewind_sim, . . . bbbb . . . as E(#) = bb and
h(kn) = rewind_sim. By Figure 2.4, at step f(n + 1) = f(n) + g((rewind,L),#) = f(n) + 3, the
configuration of M15,2 is mul2_F_sim, . . . bb∗∗∗ . . . with bb = E(#), mul2_F_sim = h(kn+1) and tape
head at position 2in+2 = 2in+1+π(dn+1), which is everything that we need. We leave cases σn ∈ {0, 1, 2}
to the reader as in those cases the tape head always moves to the left and the tape content is also not
modified.

If kn = (rewind,R), by the proof of Theorem 2.2, we know that necessarily σn = #, since in that case,
the tape head of M5,4 is at position in = 0 which always holds a # (the machine is just after incrementing
the ‘3 special cases of Erdős’ conjecture’ counter at position −1), hence the configuration of M5,4 at step n
is rewind, . . .### . . . and at step n+ 1 it becomes mul2_F, . . .#∗∗∗ . . . (Figure 2.3) and in+1 = in + 1 and
kn+1 = (mul2_F,R). By IH, at step f(n) the tape head position of M15,2 is 2in + π(R) = 2in and the
configuration ofM15,2 is rewind_b, . . . bbbb . . . as E(#) = bb and h(kn) = rewind_b. By Figure 2.4, at step
f(n + 1) = f(n) + g((rewind,R),#) = f(n) + 2, the configuration of M15,2 is mul2_F_sim, . . . bb∗∗∗ . . .
with bb = E(#), mul2_F_sim = h(kn+1) and the tape head is at position 2in + 2 = 2in+1 + π(dn+1),
which is everything that we need.

If kn = (check_halt,L) then note that for σn ∈ {0, 1,#} machine M5,4 will ‘increment’ the value of
σn then transition to kn+1 = (rewind,R) moving its head to in+1 = in + 1. Cases σn ∈ {#, 1} are
arguably where we make the most use of the encoding function E in order to use very few states in
M15,2 to simulate the behavior of M5,4. Indeed, if σn = # or σn = 1 then M5,4 must respectively write
1 and 2. This means that encodings must go from E(#) = bb to E(1) = ba and from E(1) = ab to
E(2) = aa. By IH, machine M15,2 is currently reading the second symbol of the encoding (because
the head is at position 2in + π(L) = 2in + 1), which is symbol b, then it is enough for M15,2, using
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only one step, just to turn that b into an a which deals with both cases and then go right to state
h(kn+1) = rewind_b while moving the head to 2in + 2 = 2in+1 + π(dn+1) which is what we need. This
gives g((check_halt,L),#) = g((check_halt,L), 1) = 1. We let the reader verify the case σn = 0 which
gives g((check_halt,L), 0) = 3.

If kn = (check_halt,L) and σn = 2 then, at step n+1machineM5,4 will halt. By IH, at step f(n) the tape
head position ofM15,2 is 2in+π(L) = 2in+1 and the configuration ofM15,2 is check_halt_sim, . . . aaaa . . . as
E(2) = aa and h(kn) = check_halt_sim. By Figure 2.4, at step f(n+1) = f(n)+g((check_halt,L), 2) =
f(n) + 2 machine M15,2 halts. Hence if M5,4 halts then M15,2 halts. Machine M15,2 has only one halting
instruction and this proof shows that it is reached only in the case where kn = (check_halt,L) and σn = 2

meaning that if M15,2 halts then M5,4 halts. Hence the machines are either both running at respectively
step n+ 1 and f(n+ 1) or both have halted.

In all cases, the induction hypothesis is propagated at step n+ 1 and we get the result: machine M15,2

simulates M5,4 according to Definition 2.9.

2.5.3 Main result and corollaries

Using our previous results, the proofs of Theorem 2.2, and Corollary 2.4 and 2.5 are almost immediate:

Theorem 2.2. There is an explicit 15-state 2-symbol Turing machine that halts if and only if Erdős’
conjecture is false.

Proof. By Lemma 2.11, M15,2 simulates M5,4 which in turns means that M15,2 halts if and only if M5,4

halts. By Theorem 2.3 this means that M15,2 halts if and only if Erdős’ conjecture is false.

Corollary 2.12. Erdős’ conjecture is equivalent to the following conjecture over a finite set: for all
8 < n ≤ min(BB(15),BB(5, 4)) there is at least one digit 2 in the base 3 representation of 2n.

Proof. From the proof of Theorem 2.3, If we run M5,4 then, at step BB(5, 4) + 1 ∈ N we know if Erdős’
conjecture is true or not: it is true if and only if M5,4 is still running. If M5,4 is still running, and because
the machine outputs fewer than one power of 2 per step, at step BB(5, 4) + 1 the power of 2 written
on the tape is at most 2BB(5,4). Analogously, M15,2 writes fewer than one power of 2 per step, hence,
at step BB(15) + 1 ∈ N the power of 2 written on the tape is at most 2BB(15). In either case, by then,
we know whether the conjecture is true or not. Hence, it is enough to check Erdős’ conjecture for all
n ≤ min(BB(15),BB(5, 4)) and we get the result.

Corollary 2.13. Let x ∈ N be the smallest counterexample to Erdős conjecture, if it exists. Then we
have: BB(15) ≥ log2 x and BB(5, 4) ≥ log2 x.

Proof. By Theorems 2.2 and 2.3, if Erdős’ conjecture has a counterexample x, then we have explicit
busy beaver contenders for BB(15) and BB(5, 4), respectively, i.e. machines M15,2 and M5,4. These
machines both halt with x = 2n0 , n0 ∈ N, written on their tape in base 3 (by the proofs of Theorems 2.2
and 2.3). M15,2 and M5,4 enumerate less than one power of 2 per time step, hence their running time is
≥ n0 = log2 x, giving the stated lowerbound on BB(15) and BB(5, 4).
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Chapter 3

Small tile sets that compute while solving
mazes

3.1 Foreword

In Chapter 1, we did not manage to show how to run arbitrary computations with the 6 Collatz tiles. We
have shown that many natural prediction problems with these tiles are in NC1 (Chapter 1, Section 1.4),
meaning that it is very unlikely that the tiles could simulate Turing machines efficiently since it is widely
believed that P 6= NC1. However, we know that with these tiles complex patterns occur easily (for
instance, Chapter 2, Figure 2.1), and one is tempted to harness them in order to simulate Boolean logic.
That is exactly what we do in this chapter, we simulate arbitrary Boolean circuits with the 6 tiles, at
the cost of one change to the model: we allow our assemblies to be disconnected. In this new model,
that we call the Maze-Walking TAM (in reference to Winfree’s abstract Tile Assembly Model, aTAM,
[174]), we also show that even just 4 tiles can have enough power to simulate arbitrary circuits. While
building disconnected assemblies could seem unphysical, the intuition that we use and further develop in
the wet-lab in Chapter 4, is that all the components of our assemblies are linked to – or more precisely for
Chapter 4, operate within – an underlying surface or structure, such as a DNA origami scaffold. Hence,
while the focus of this chapter is to prove purely theoretical results, it gives relatively realistic (simple, and
perhaps implementable) constructions for simulating arbitrary Boolean circuits on a surface, or lattice,
with pre-seeded/attached disconnected components, and gives the theoretical motivation for our model
and experiments in Chapter 4. As stated, our constructions use a very small number of tile types (only 6
or 4) which can be a useful feature in an experimental context as it requires implementation of only these
few possible glue-interactions for the model to reach full Turing-complete power.

3.2 Introduction

We can think of solving a maze as performing computation: the input is a maze, some starting location(s)
and an ending location, and the answer to the computation is a yes/no answer signifying whether the
exit is reachable from the start, or even an explicit path from start to exit. Figure 3.1 shows how a
maze encodes a circuit of OR gates: solving the maze is equivalent to executing the OR circuit with
all inputs set to bit 1; and asking about paths in the maze is equivalent to setting some inputs to 1
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directed maze OR maze circuit(b)(a) arbitrary maze circuit(c)
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Figure 3.1: Mazes, computation and Boolean circuits. Solving a directed maze (a) is formally equivalent
to executing an OR circuit (b) if we ask: Are any of the input bits that are set to 1 connected to the
output gate? The example in (b) accepts any 3-bit input x, y, z that sets x or y to 1, irrespective of z;
equivalently the maze is solvable from the top two inputs only. Even such a simple setup can be used to
solve any suitably-encoded problem in the class nondeterministic logspace (NL). (c) We generalise this
notion of ‘computation via maze solving’ in a natural way by having the maze specify arbitrary Boolean
gates along the route that need to be evaluated. In the Maze-Walking Tile Assembly Model defined in
Section 3.4.1, tiles flow through the maze, building paths from the entrances to the exit, evaluating the
circuit as they go.

and seeing which paths have 1 flowing all the way through them. It then becomes meaningful to ask
about the computational power of systems capable of solving mazes [119], for example DNA or molecular
walker-based systems.

The difficulty of maze solving varies with the complexity of the maze, such as number of dimensions, grid
layout versus more general graph, degree of nodes, or whether graph edges are directed or undirected. In
computational complexity theory terminology, solving mazes and more general graph reachability problems
lie within the class NL, i.e. problems solvable on a nondeterministic Turning machine that uses temporary
workspace only logarithmic in input length. At the simplest level, and perhaps counter-intuitively, a
system that solves a directed maze consisting of (a number of possibly disconnected) straight line segments
has enough computational power to solve any problem in L, the deterministic version of NL.52

Here, we suggest two modifications to the problem of solving mazes, which are expressive enough to
endow maze solvers with significant computational power (their prediction problem becomes P-complete),
yet, we contend, simple enough to be experimentally feasible using DNA engineering and computing
principles. The first, and most important, is that we generalise mazes to have paths patterned with logic
gates that must be solved in order to pass by them (Figure 3.1(c)). For a maze-walker this would mean it
should be able to input one or two bits of information from the site it stands upon, compute, and then
output one or two bits to adjacent sites. The second, mainly to keep things simple, is that we assume
mazes are directed (meaning a pair of adjacent positions have one directed edge between them that dictates
the direction of information flow) and have no cycles. Since we allow for fanout of 0, 1 or 2 per site, one
needs to generalise the typical notion of maze-solving somewhat: Are walkers replicating themselves to
handle fanout of 2? Or are they leaving little bit-encoding messages for other walkers/themselves to pick
up later? Somewhat similarly, how do they handle fanin of 2? These considerations lend themselves to
various models, however here we focus on having information-manipulating tiles flow through the maze,
much like lava flowing from a down a complex volcanic hillside, but clever lava that computes as it moves.
Our model is called the Maze-Walking Tile Assembly Model, or Maze-Walking TAM.

The programmer specifies a set of square tiles, with glues on the sides. A problem instance, or maze, is
52The PathReachability problem is L-complete: given a directed graph whose edges form a set of disconnected line

segments (in- and out-degree ≤ 1), and two nodes s and t, is t reachable from s? A deterministic Turing machine can start
at s and walk along the graph use only logarithmic workspace (in input length) to keep track of the current node, answering
“yes” if it reaches t and “no”, if it instead reaches a dead-end. Hence the problem is in L. Conversely, the set of configurations
of a deterministic logspace Turing Machine can be encoded as a polynomial-sized instance of PathReachability making
that problem L-complete [83].
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Figure 3.2: Two small tiles sets. (a) NAND-NXOR tile set with 4 tile types. The south side computes the
NAND of north and east, and east computes the NXOR of north and east. (b) Collatz tile set with 6
tiles, named for its relationship to the Collatz problem. These are the same tiles that were introduced in
Chapter 1, Figure 1.7.

a set of polyominos, painted with information-encoding glues. Starting at special input locations, tiles
attach one at a time, asynchronously and in parallel, wherever they match glues on two sides.53 A typical
maze can be thought of as sending a unary (“route finding”) signal, whereas our mazes send bits and
allow them to meet, interact and be changed.

In this setting, if we allow arbitrary numbers of tiles (or a clever enough walker, or a complex enough
asynchronous cellular automaton rule) it is not difficult to see how to simulate arbitrary Boolean circuits.
Take a circuit, make it planar by replacing each wire crossing with a crossover gate, then lay the circuit
out on a maze-like grid with inputs on the east, and the output on the west. Then simply build a maze
with walls tracing out the circuit wiring diagram and painted with arrows (wire directions) and logic
gates, and require the output bit(s) to satisfy the circuit logic. The question we ask is: How clever does
the maze-solver need to be in this computational setting? More precisely, we ask how many tile types are
needed to execute any Boolean circuit in the Maze-Walking TAM?

3.2.1 Main results

Our first main result is for the NAND-NXOR tile set shown in Figure 3.2(a). In the theorem statement,
by simulated we mean that the function computed by the circuit c is also computed by an instance of the
Maze-Walking TAM (see Section 3.4.1).

Theorem 3.1. Any Boolean circuit c is simulated by the 4-tile NAND-NXOR tile set in the Maze-Walking
TAM using assemblies containing ≤ 6 tiles per gate and 34 tiles per crossover gate in a planarisation of c.

Our second main result is for the Collatz tile set which has 6 tiles (Figure 3.2(b)) and is so-named
because of its ability to embed iterations of the Collatz function (see Chapter 1, Section 1.3.3).

Theorem 3.2. Any Boolean circuit c is simulated by the 6-tile Collatz tile set in the Maze-Walking TAM
using assemblies containing ≤ 14 tiles per gate and 33 tiles per crossover gate in a planarisation of c.

We finish this section with a discussion of our two tile sets and some future directions. Section 3.3 sets
these results in the context of other theoretical results. and experimental directions. Section 3.4 defines
the Maze-Walking TAM. We prove our two main theorems in Sections 3.5 and 3.6. Chapter 1 gives the

53The model is equivalent to the abstract Tile Assembly Model [136, 174, 125, 57], with multiple disconnected seed
assemblies, and where we have all tile bindings are via two matching attaching to an assembly by matching glues.
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background on the Collatz tile set and more specifically its relation to the Collatz problem (Chapter 1,
Theorem 1.35).

3.2.2 Discussion: the NAND-NXOR and Collatz tile sets

Theorems 3.1 and 3.2 place focus on the size of assemblies that simulate gates. They omit estimates of
the additional tiles (assemblies) required for the circuit wiring diagram, which warrants comment. Our
work is partially motivated by a desire to build instances of the Maze-Walking TAM, and in doing so we
would highly optimise any implemented circuit wiring diagram. Example circuit implementations, that
recognise 3-bit prime numbers, are shown in Figures 3.3(j3) and 3.5(j1), both of which are optimised for
short wire length. If we want to have a general wiring procedure for all circuits, and thus not optimised
for particular classes of circuits, the overhead incurred will be rather large, typically O(s2) space for a
circuit with s gates [40]. In practice we would not use such overly-bloated constructions.

Then, the NAND-NXOR tile set was found by explicitly trying to find a small tile set: hence its use of a
universal gate (NAND) on the south side (output). The NXOR gate (west side) helps with wire routing
allowing for even smaller gates than going via NAND-only-based circuit simulation. The Collatz tile set
came out of thinking about iterations of the Collatz function in a local digit-by-digit, or tile-by-tile, way.
In [156] a cellular automaton-like model is shown to simulate instances of the Collatz function—assemblies
of our Collatz tile set show up in iterations (configurations) of that model. The Collatz tile set, along
with the non-local rule in [156] (which can be simulated by the addition of two additional tile types
(Chapter 1, Figure 1.17 and justification in Remark 1.40), is expressive enough to run Collatz. Here we
applied computer search to the Collatz tile set to search for seed structures and assemblies that could be
used to compute more generally. We leave as an open question as to what extent such structures, or other
computational structures, naturally appear during iterations of the Collatz function.

For running Boolean circuits, if the only metric we cared about was tile set size, the NAND-NXOR tile
set wins. However, looking beyond circuits, the Collatz tile set is capable of directly implementing certain
arithmetical operations, such as computing powers of 2, powers of 3, and converting from base 3 to base
2 [156] (see Chapter 1, Corollary 1.18). These constructions use much simpler connected seeds than those
given in the proof of Theorem 3.2, and lead to more efficient (smaller) assemblies than computing via
circuits, for these kinds of arithmetical problems. In this chapter, we used computer search to find that
tiles capable of such arithmetical operations are also capable of running circuits, we leave it as future
work to discover what other operations they are efficiently capable of.

Theorems 1 and 2 prove that the problem of predicting a tile at distance n from a size n connected seed,
is P-hard (and in fact it is P-complete if we assume directed/deterministic growth since a deterministic
Turing Machine simulates the entire assembly process in time polynomial in n). It is natural to ask if
having maze-like (i.e. disconnected) seeds is necessary for such computational efficiency: we conjecture
“yes”. That is, for both tile sets, we conjecture that prediction of the tile type that goes at a given position,
at distance n from a size n connected seed and assuming directed [149] growth, is in the complexity class
NL. In particular this would mean that simulation of arbitrary Boolean circuits in the direct manner
shown here is impossible (assuming the widely-believed conjecture that NL 6= P). For the Collatz tile
set, and for connected seeds of a certain form, we know that prediction is in NL (and even, NC1, see
Chapter 1, Section 1.4). If one could show that prediction is P-hard, for seeds/inputs that represent
natural numbers that occur during iterations of the Collatz function, one could in fact show that the
Collatz process embeds rather powerful computational capabilities. Certainly a result of that form would
change the perspective on the Collatz conjecture itself.
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Our results were developed with the assistance of a simulator: https://github.com/tcosmo/mawatam.
The reader is invited to experience the results of this chapter through the simulator.

3.2.3 Future work

Experimentally, future work involves implementing instances of the Maze-Walking TAM in the wet-lab,
for instance, using a DNA origami as the underlying structure to encode maze seeds [35], building on
the systems discussed in Section 3.3.2. One experimentally-relevant criticism of this work could be to
ask why we focus on such small tile sets when we know that with DNA it is possible to build systems
with hundreds of algorithmic DNA tiles [183]. First, we would say that no algorithmic system of such a
high tile complexity, and that runs on the back of a DNA origami, has been engineered to date. Secondly,
and of more relevance to this work, is that we are exploring the fundamental boundary and complexity
trade-offs between computational power and systems size.

Theoretically, our work leaves open the following questions:

• Can Boolean circuit simulation, or any kind of universal computation, be achieved in the Maze-
Walking TAM using tile sets with less than 4 tiles?

• Can interesting behaviour occur in the Maze-Walking TAM with just 1 tile? (At first sight, this
question may look odd, however one could imagine encoding a bit by the absence or presence of a
tile at a given position in the final assembly, leaving room for expressiveness in the Maze-Walking
TAM with 1 tile.)

• Is the Maze-Walking TAM, with ≤ 4 tiles, intrinsically universal [59, 180] for the aTAM?

3.3 Related work: theoretical and experimental

3.3.1 Other routes to finding small universal tile sets

Existing small/simple universal models of computation [182] include the efficiently universal [48, 121]
2-state one-dimensional cellular automaton Rule 110, as well as universal Turing machines with just 22
instructions (5 states & 5 symbols, or 4 states & 6 symbols) [120, 134] or even just with 8 instructions (3
states, 3 symbols, but with the tape input embedded in an infinity repeated pattern) [122].

In the context of the theory of molecular computing, and algorithmic self-assembly in particular, the
smallest computationally universal self-assembling tile set to date seems to be a 7-tile system that can be
derived from [183].54 However, that construction leads to large spatial blowup via Rule 110 simulation
(Corollary S1.3, SI-A, [183]), O(s4 log2 s) for circuits size s. Another construction uses O(w2d) tile types
(for a depth d, width w circuit), essentially by hardcoding the routing of the circuit diagram in tile
types. Even direct implementation of a small universal Turing machine as a self-assembling tile set, using
known methods, although presumably achievable with a few dozen tile types, would require large input
encodings [182]. Other methods to obtain a single universal, or intrinsically universal, tile set, or even a
single tile, also use indirect and large encoding methods [59, 55, 54, 149].

By allowing for more tile types than our constructions, one could have a maze with glues that explicitly
encode gate type (one of 16), as well as glues encoding two bits at a time: that way a single tile attachment
event could read two bits and a gate type simultaneously. This idea yields a constant-size tile set with

54In Figure S4(b), SI A, [183], gates g and f can be used to simulated Rule 110, and in turn can be simulated by 4 tiles
each. These 8 tiles can be further optimised to 7 tiles by sharing one glue type between both half-layers.

https://github.com/tcosmo/mawatam
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perhaps aa few dozen tile types. Although larger than ours, such an approach would have experimental
merit. Cantu, Luchsinger, Schweller, and Wylie simulate Boolean circuits with tiles in a covert manner [30].

3.3.2 DNA-based implementations and related models

As future work we plan to give DNA-based designs and implementation for the Maze-Walking TAM. We
imagine a 2D information-encoding structure that provides the maze pattern, for example a single flat
DNA origami [137], or several DNA origamis tiled together [179, 105, 165, 167], or perhaps even a suitable
DNA DX-tile, or single-stranded tile, structure [171, 177, 184, 183]. DNA-based systems for maze-solving
have been implemented experimentally: using DNA origami (for the maze) along with hairpin activation
[35] or controlled opening of track locations [172] for movement. The phenomenon of DNA condensation
was also used for maze exploration [124]. Computation via tile-attachment in the Maze-Walking TAM
could be implemented using design principles from algorithmic DNA self-assembly [183, 66], DNA-based
molecular walkers that walk on 1D tracks and 2D DNA origami surfaces [187, 147, 141, 123, 74, 164],
and other DNA systems that compute on surfaces [23, 25, 151, 34, 36]. Finally, there has been some
theoretical and simulation-based analyses of molecular walkers [53, 133, 103, 52] including maze-solving
walkers [152], as well as papers that study computation on surfaces [129, 41, 20] using a similar setup to
ours but without molecular orientation and using different rule formats. All of these models (and ours)
describe sub-classes of asynchronous cellular automata.

3.4 Definitions

3.4.1 Maze-Walking TAM definition

A maze is number of non-intersecting polyominos positioned on Z2 where each exterior unit-length
square-side polyomino edge is labeled with a glue g = (g′, p) where g′ ∈ G is from a finite set of glue
types G, that includes the null glue, and p ∈ {z + 0.5 | z ∈ Z}2 is a glue position. An instance of the
Maze-Walking TAM T = (T,M) has a set of tiles T , where each tile t ∈ T is a unit-sized square whose
four sides labelled with four glue types from G, and a maze M . The process of self-assembly proceeds by
tiles attaching asynchronously, and one at a time, wherever they match glues on two sides (i.e. two-sided
cooperative binding in the abstract Tile Assembly Model [174, 136, 125, 57]). An assembly is a maze with
tiles attached (thus, assemblies may be connected or disconnected in 2D), and a terminal assembly is an
assembly such that no tile can be attached.

The tile set T is said to compute the function f : {0, 1}n → {0, 1} in the Maze-Walking TAM if there
is a maze M ′ with n empty (no tile) tile positions p0, p1, . . . , pn−1 ∈ Z2 and an empty (no glue) output
glue position o ∈ {z + 0.5 | z ∈ Z}2, such adding n input tiles at p0, p1, . . . , pn−1 to M ′ gives the maze
Mx such that the process of self-assembly yields terminal assemblies that all have the bit f(x) encoded by
the glue at position o. (Here, we imagine a many-one encoding function from glue types to bits.)

Maze-Walking TAM systems may be directed (one terminal assembly), or undirected (several terminal
assemblies). In this chapter the systems we study are directed, which is equivalent to saying that, for all
sequences of tile additions, at each position p ∈ Z2, there is at most one choice for what tile appears at p.
Thus, in this chapter, for each x ∈ {0, 1}n there is an associated maze Mx such that Tx = (T,Mx) has a
single terminal assembly is said to compute f(x).

3.4.2 Boolean circuit definition

A Boolean circuit is a directed acyclic graph, where edges are called wires, nodes called gates and are
labelled. In this chapter, gates have out-degree 1 or 2, except for output gates that have out-degree 0.
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Also, a node’s label is one of: input (with in-degree 0), output (with in-degree 1, out-degree 0), constant 0
or constant 1 (in-degree 0), fanout gates (in-degree 1, out-degree 2; makes two copies of its input), or is
one of the compute gates (¬, NOT of in- and out-degree 1, or any of the in-degree 2 out-degree 1 gates
that compute functions on bits, e.g. OR, AND, NAND, NXOR,55 etc.). Also, we define an additional
gate called a crossover gate (in- and out-degree of 2) swaps its inputs, used to planarise a non-planar
circuit (see below). Circuits compute, from the input gates and constant gates to the output gate, by
modifying bits according to the functions specified by gate labels.

The size of a circuit is its number of gates, and its depth is the length of the longest path from any input
gate to the output gate. A circuit cn computes a Boolean (no/yes) function f : {0, 1}n → 0, 1 on n ∈ N
of Boolean variables, by its gates computing the bit value at the output in the usual way from the n
input bits. A circuit is said to be planar if its graph is planar (can be laid out in the plane without wire
crossings).

A planarisation of a Boolean circuit c is another Boolean circuit ĉ where ĉ computes the same function
as c, has a planar embedding in R2, and ĉ has exactly the gates of c plus zero or more 2-in 2-out crossover
gates (that allow crossing of signals between a pair of wires that would otherwise intersect in the plane).
In other words, c is converted to ĉ by adding crossover gates so that ĉ has a planar embedding. An
example is shown in Figure 3.3(j2). A planar Boolean circuit c is a Boolean circuit where ĉ = c, i.e. ĉ has
zero crossover gates.

3.5 Four tiles: the NAND-NXOR tile set

The NAND-NXOR tile set is depicted in Figure 3.3(a). One of the ideas underlying all of the constructions
in this chapter can be understood by the way horizontal wires are implemented with the NAND-NXOR
tile set, Figure 3.3(b). A specific n×1 polyomino seed exposes “1” glues on its south side, which facilitates
propagation to the west of any bit coming from the east, following the assembly rules prescribed by the
tile set. As described in the proof of Theorem 3.1, the implementation of Boolean circuits using the
NAND-NXOR tile set is based on canonical constructions of logic gates exploiting NAND, NOT and
NXOR functions as primitive building blocks, Figure 3.3(h1-h5).

Theorem 3.1. Any Boolean circuit c is simulated by the 4-tile NAND-NXOR tile set in the Maze-Walking
TAM using assemblies containing ≤ 6 tiles per gate and 34 tiles per crossover gate in a planarisation of c.

Proof. A circuit is simulated by appropriately placing gadgets together to form a maze.

Tiles simulating wires and gates. We will show that the gadgets in Figure 3.3 are building blocks
(for a maze) that advertise glues that are designed to force directed growth when given appropriate
bit-encoding glue input(s).

Figure 3.3(b,c) details how the NAND-NXOR tile set simulates horizontal and vertical wires. Vertical
tile-wires have a parity constraint: in a vertical wire carrying the bit x ∈ {0, 1}, every second tile correctly
advertises x to the south, and every other tile advertises its negation ∼x. If the circuit’s layout requires a
turn from south-to-west, from an odd length vertical wire (advertises ∼x) then a single horizontal negation
gadget (Figure 3.3(h1, right)) is placed at the bottom of the wire to change the signal to x (correct the
“error”). With that correction, vertical and horizontal wire segments can be used to send a signal from
the origin to any location in the south-west quadrant of Z2.

55In this chapter we use the notation NXOR(x, y) = NOT(XOR(x, y)) (and read “NOT exclusive OR”) to denote what is
more commonly, but confusingly, written XNOR (read “exclusive NOR”).
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Figure 3.3: Circuit-simulating gadgets for the NAND-NXOR tile set. In all parts of the construction
growth proceeds to the west and south (and never north nor east). (a) NAND-NXOR tile set. Seed
structures to implement (b) horizontal west-growing and (c) vertical south-growing wires. Examples of
communicating of 0 and 1 are shown for each. Vertical wires are of even length; in cases where odd length
is required we use a horizontal NOT gates during a turn from south-to-west (see proof of Theorem 3.1).
(d) Turn west-to-south, (e) turn south-to-west, (f) fanout west-to-south, and (g) fanout south-to-west.
The two isolated unit-size squares in (f,g) are there only to prevent unintended cooperative growth after a
fanout. (h1–5) Various logic gates (full set in Figure 3.4). (i1) Crossover gate with an example in (i2)
with design based on the 3 XOR gates construction given in [30]. (j1) An example Boolean circuit that
decides whether a 3-bit number is prime. (j2) Circuit converted to a grid layout and (j3) implemented
using NAND-NXOR tile gadgets. The implementation in (j3) is somewhat optimised for space efficiency.
(j4) The terminal assembly (execution) for the circuit example on non-prime input 610 = 1102.
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Figure 3.3(d–g,h1–h5,i1) shows two turns (south-to-west and west-to-south) and two kinds of fanout-2
gates, as well as a number of compute gates and a crossover gate. In addition NAND, and NXOR, gates
are shown in Figure 3.3(a): present inputs x, y at North and East, and read NXOR(x, y) on West and/or
NAND(x, y) on South. (For completeness, Figure 3.4 gives direct simulations of all 16 possible gates
with 1 or 2 inputs and one output.) No gate is larger than NOR (see Figure 3.3(h5) and Figure 3.4),
which uses 6 tiles. The crossover gate is simulated using 34 tiles (intuitively, it uses a well-known idea of
implementing crossover with three XOR gates and three fanout gates). This gives the size bounds on tiles
per gate and crossovers in the theorem statement.

We claim that each gadget in Figures 3.3(b–g,h1–h5,i1) and Figure 3.4 is directed, meaning that after
input glue(s) are given to the gadget, then for each dotted region in the gadget there is exactly one tile
type that can be placed. This can be seen by noting that (i) for all gadgets, and all inputs to a gadget,
tiles attach using their North and East sides only, and by (ii) the fact that the NAND-NXOR tile set is
deterministic on North and East sides.

Laying the circuit out on a grid. For the Boolean circuit c, let ĉ be its planarisation as defined
in Section 3.4.2; a planarisation always exists—just draw the circuit on the plane replacing each of the
s′ ∈ N wire crossings with a crossover gate (various planarisations may be used to optimise s′, or other
circuit parameters).

Second, we layer cn: meaning that we organise gates (including crossover gates) of cn into consecutive
layers with layer 0 containing all input and constant gates, and so that layer i contains gates that take
their inputs from the outputs of gates in layers < i. The number of layers is equal to the depth d of cn,
with the output gate being the sole gate in layer d− 1. More precisely, layer i is located at x-coordinate
−i (our convention is to draw circuits from right to left).

Third, we increase the height between gates, and width between layers, so that there is enough room to
draw all wires so that they are composed of horizontal and vertical segments only (where information
flows to the west and to the south, respectively), that meet at right angles (thus wires have south-to-west
and west-to-south turns, only). We call the resulting circuit a grid-layout circuit, and an example given in
Figure 3.3(j2). Using the gadgets described above, the maze/seed structure traces out the wires and gate
locations according to the south-west grid-layout circuit, leaving enough room so that gates and wires to
not intersect.

Computation. For any circuit c we have described (at a high level) how to lay out a maze M ′, in
the notation of Section 3.4.1. We next need to encode circuit inputs, as follows. Since input gates are
instances of gates, we assume that in M ′ there are n tile positions that are empty and positioned adjacent
to wires (so that their bit values will feed into a layer of gates via horizontal wire gadgets). Let n be the
number of inputs to c and let x = x0x1 · · ·xn−1 ∈ {0, 1}n denote an input to c. To the maze M ′ we add
n more tiles so that the n input glue positions of the maze are of respective types x0x1 · · ·xn−1, to give
an maze Mx that encodes x (the example in Figure 3.3(j4) has 3 encoded input bits).

Assembly proceeds, starting at each of the n input glues in parallel (and at any positions that encode
0/1 constant bits), according to the Maze-Walking TAM definition (Section 3.4.1). Throughout the entire
self-assembly process, at each position there is exactly one tile type that can be placed (this is because it
is true for individual gadgets as already argued). Also, self-assembly terminates, for the simple reason
that no tile can attach outside of the bounding box of the maze Mx. Thus one terminal assembly is
eventually produced, that by its definition, encodes an execution of the circuit c with the output bit
presented at the glue position that represents the simulated circuit output gate (labeled “out” in the
example in Figure 3.3(j3)).
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Example 3.3. Figure 3.3(j1-j4) illustrates the general construction described in Theorem 3.1 in the
context of a circuit that recognises prime numbers on 3 bits, i.e. the circuit will output 1 if and only if
xyz ∈ {010, 011, 101, 111} which are the binary encodings of numbers {2, 3, 5, 7}. The circuit implements
the formula: (((NOT x) AND y) OR (x AND z)) and uses one crossover as well as one fanout gate,
Figure 3.3(j1). To facilitate the final Maze-Walking TAM implementation, the circuit is laid out on a grid
using only south-to-west and west-to-south turns, Figure 3.3(j2). Then, the circuit is implemented with
tiles, Figure 3.3(j2), using the gadgets of Figure 3.3 and finally, the circuit executes on input 1102 = 6

and outputs 0 as 6 is not prime, Figure 3.3(j4). Note two details: (1) The implementation of the crossover
gate, Figure 3.3(i1), contains three embedded XOR gadgets and three embedded fanout gadgets—using
tiles to implement a known construction to simulate crossover with XORs. (2) The way the OR gate is
implemented in Figure 3.3(j3) (yellow overlay) is slightly different than Figure 3.3(h3) as the negation of
the east-coming input is performed vertically instead of horizontally; this is an optimisation that exploits
the difference in length parity of the two vertical wires coming in to the gate.

Figure 3.4: Implementation of all 2-input 1-output Boolean gates using gadgets over the NAND-NXOR
tile set in the Maze-Walking TAM. The gadgets are ordered with respect to their truth table, which refers
to the 4-bit output of the 4 respective inputs 00, 01, 10, 11; i.e. the canonical truth-table definition of a
2-in 1-out gate (we use the same notation for gates with one (NOT, identity) or zero inputs (constants)).
For instance, the truth table 1101 encodes gate g such that g(00) = 1, g(01) = 1, g(10) = 0 and g(11) = 1.
The common English name of the gate is also given when there is one. The constant gadgets (0000
and 1111) are used to simulate constant gates (0/1) and circuit input gates xi ∈ {0, 1}, and require the
presence of an additional glue (not shown) to trigger growth, e.g. by being placed next to a wire gadget as
shown in Figure 3.3(j4).

3.6 Six tiles: the Collatz tile set

In this section, we illustrate efficient Boolean circuit simulation in the Maze-Walking TAM with the
Collatz tile set which consists of of 6 tile types and 3 glues and is shown in Figure 3.2(b).

On the one hand, the NAND-NXOR tile set was explicitly designed to compute, via the placement of a
single tile, the universal NAND function. From there it was augmented (with bits on the west sides) that
facilitate simulation of circuit wiring, and efficient simulation (few tiles) of non-NAND gates. On the other
hand, the Collatz tile set came about from studies on the Collatz problem, see Chapter 1. Specifically,
glue patterns in some tiled regions (e.g. rectangles) relate to notoriously hard mathematical problems such
as the Collatz conjecture [156] or an open problem of Erdős’ [65, 98]: Is it the case that for all n > 8 there
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is at least one 2 in the ternary representation of 2n? See Chapters 1 and 2. We noticed that this pattern
complexity could be leveraged, with the aid of computer search56, to build gadgets for computation in the
Maze-Walking TAM (Figure 3.5).

Theorem 3.2. Any Boolean circuit c is simulated by the 6-tile Collatz tile set in the Maze-Walking TAM
using assemblies containing ≤ 14 tiles per gate and 33 tiles per crossover gate in a planarisation of c.

Proof. Tiles simulating wires and gates. We will show that the gadgets in Figure 3.5 can used to
build mazes that simulate arbitrary Boolean circuits and that the growth triggered by the placement of
input tiles is directed, which in turn implies that the correct bit is output by the simulation of c on some
binary input word x.

Figure 3.5(b,c) details how the Collatz tile set simulates horizontal and vertical wires. Horizontal
tile-wires have a parity constraint: in a horizontal wire carrying the bit x ∈ {0, 1}, every second tile
correctly advertises x to the west, and every other tile advertises its negation ∼x. To handle this, there
are two west-to-south turns, one for turning from even length, and one for turning from odd length,
horizontal wires Figure 3.5(d1). Only west-to-south fanout is used in the constructions with this tileset,
Figure 3.5(e). This fanout gate comes in two variants whether it is applied at an even or an odd horizontal
wire position. If the gadget is applied at an odd wire position, it has the particularity of negating the
output west-going signal.

Negating a signal (either to correct a horizontal parity effect, or to simulate a NOT gate) can be achieved
in several ways. If the signal ever turns south, this can easily be done thanks to Figure 3.5(d2) which
implements both a turn and a negation at the same time. If the signal never turns south, the programmer
can use an odd-length horizontal wire which implements a negation. If using an odd-length horizontal
wire is not possible given the constraints on circuit layout, the programmer can use the horizontal buffer
gadget Figure 3.5(h) which has the effect of copying the incoming signal to the next immediate column to
the west which inverts the parity constraint of the horizontal wire and allows it to reproduce the behavior
of an odd-length horizontal wire. This method is used in Figure 3.5(j1), for instance on the horizontal
wire which connects the input Z to its target AND gate.

Glue labelled polyominos, or seed structures, for south-to-west turns is shown in Figure 3.5(i). Notably,
a growth stopper (1× 1 polyomino, with four null glues) is used to prevent spurious growth that would
happen in the north-west direction otherwise.

A crossover gadget seed structure is given in Figure 3.5(f), it was the smallest found by computer search
and it costs 33 tiles. The gate preserves the horizontal alignment of the incoming northern bit: it exits at
the south of the gate at the same x-position that it entered. However, the incoming eastern bit is deviated
three units to the south.

Seed (polyomino) structures that simulate Boolean (compute) gates are rectangular and were found by
computer search using the input convention that signals come from the east and, if there are two of them
the inputs should be one vertical block apart57. Figure 3.5(g1,g2) gives the seed structure of an OR gate
and an AND gate. For completeness, Figure 3.6 gives the implementation of all Boolean gates, the biggest
of them is NOR with a cost of 14 tiles. This gives the tiles bounds per gate and crossover in the theorem
statement. Remarkably, seed structures for AND, OR, NAND, NOR are very similar in the sense that
they differ by at most 2 glues.

56Computer search was performed through the Maze-Walking TAM simulator: https://github.com/tcosmo/mawatam
57Using computer search, we were able to find rectangular seed structures of Boolean gates corresponding to all the input

conventions that we experimented with. This leads us to believe that the ability of the Collatz tileset to simulate Boolean
gates is not tied to a particular input convention.

https://github.com/tcosmo/mawatam
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Figure 3.5: Circuit-simulating gadgets for the Collatz tile set. Growth proceeds to the west and south
exclusively. (a) the Collatz tile set. Seed structures to implement (b) horizontal west-growing and
(c) vertical south-growing wires. Horizontal wires are of even length. When turning to the south the
appropriate turn can be used to transmit the signal (d1) or its negation (d2). (e) Fanout gadgets depending
on the parity of the incoming horizontal wire, if the length is odd, the gadget also negates the west-going
signal. (f) The smallest crossover gate found by computer search. (g) Common Boolean gates, also found
by computer search. (h) The buffer gadget is used to change the parity of an horizontal wire. (i) Turn
south-to-west. (j1) Collatz-tileset implementation of the 3-bit prime recognition circuit and (j2) execution
of the circuit on 710 = 1112 which is prime.
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We claim that each gadget in Figure 3.5 and Figure 3.6 is directed, meaning that after input glues are
supplied to the gadget then for each dotted region in the gadget there is exactly one tile type that can
be placed. This can be seen by noting that (i) all gadgets use either North and East sides to attach or
South and East sides to attach (South and East attachments are only used for horizontal wires and turn
south-to-west gadgets, Figure 3.5(b,i)), (ii) North and East attachments cannot compete with South and
East attachments because all signals travel in the south-west direction and South and East constraints are
never given directly by the seed but occur after tiles attach, and (iii) the Collatz tile set is deterministic
on North and East sides and South and East sides.

Laying the circuit out on a grid. We use the same circuit layout technique given in the the proof of
Theorem 3.1.

Computation. Similarly to the proof of Theorem 3.1, throughout the entire assembly process, because
of the directedness of all the gadgets that we use, at each position there is exactly one tile type that can
be placed. Thus one final assembly is produced, that encodes an execution of the circuit, and in particular
outputs the same bit as the n-bit circuit c on any input word x ∈ {0, 1}n.

Example 3.4. The 3-bit prime recognition circuit (Figure 3.3(j1,j2)) was implemented using the Collatz
tile set, Figure 3.5(j1,j2).

Figure 3.6: Implementation of all 2-input 1-output Boolean gates using gadgets over the Collatz tile set in
the Maze-Walking TAM. The gadgets are ordered with respect to their truth table which refers to the
4-bit output of the 4 respective inputs 00, 01, 10, 11; i.e. the canonical truth-table definition of a 2-in
1-out gate (we use the same notation for gates with one (NOT, identity) or zero inputs (constants)). For
instance, the truth table 1101 encodes gate g such that g(00) = 1, g(01) = 1, g(10) = 0 and g(11) = 1.
The common English name of the gate is also given when there is one. The constant gadgets (0000
and 1111) are used to simulate constant gates (0/1) and circuit input gates xi ∈ {0, 1}, and require the
presence of an additional glue (not shown) to trigger growth, e.g. by being placed next to a wire gadget as
shown in Figure 3.5(j2).
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Chapter 4

Algorithmic DNA origami: Scaffolded DNA
computation
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4.1 Introduction

In this chapter we introduce a variation of the Maze-Walking TAM (Chapter 3) that we call the Scaffolded
DNA Computer. The models are close enough that the proof of Turing-completeness for the Maze-Walking
TAM carries over to the Scaffolded DNA Computer, we omit the details. Similarly small tile sets such as
the Collatz tile set are enough to simulate arbitrary Boolean circuits in the Scaffolded DNA Computer.
We begin by observing that the one dimensional (1D) restriction of the Scaffolded DNA Computer is
capable of simulating finite state machines (FSMs) and hence is an interesting model in its own right. We
experimentally implement six programs in the 1D model. We go on to implement two 1D
programs within a 2D DNA origami. This work can be considered as a significant first step in the
direction of implementing the full 2D model.

At its core, our idea consists in performing computation within DNA origami (see below for context on
DNA origami) during structure formation: at annealing, staples of the origami are selected algorithmically
depending on an input and a function to compute. Our primary design goals are (a) to inherit key
properties of DNA origami (such as the thermodynamical favorability of the target structure) and (b)
introducing a kinetic pathway for error correction, based on strand displacement58.

DNA Origami

Introduced in 2006 by Paul W. K. Rothemund [137], DNA origami is arguably the most high-yield and
robust technique known for the self-assembly of DNA-based nanostructures. The technique is conceptually

58In this work we do not provide data to support the claim that we have a kinetic pathway for error correction, but we
hypothesize that the proposed mechanism plays an important role, see Section 4.3.



84 Chapter 4. Algorithmic DNA origami: Scaffolded DNA computation

Figure 4.1: Blueprint of a rectangular DNA origami [137] made with the software scadnano [58]. DNA
origami consists in having a long scaffold strand being folded by short staples strands. Here, the scaffold
is the long, circular, strand in blue and the staples are the short, colored strands. In practice, the scaffold
strand is extracted from a virus, M13mp18 [137] (M13 in short), and is put at low concentration (typically
between 1nM and 10nM) while staples are chemically synthetised and are put at high concentration
(typically 10 times more than the scaffold). To make an origami, mix your scaffold strand with your
staples and anneal in a PCR machine – for instance, drop the temperature from 90C to 20C in 2 hours.

simple59: a long, low-concentration, strand of DNA, called a scaffold, is folded into a specific structure
using short, high-concentration, strands, called staples. In practice, the scaffold is often circa 7,000 bases
long and is extracted from a virus (M13mp18 [137], M13 in short) while the staples are circa 40 bases
long, are chemically synthetised and are designed to “grab” intended parts of the scaffold, bring them
close together, and thus fold the structure into its target design.

As to the robustness of the technique, one can significantly change many experimental variables, such as
concentration, temperature (annealing protocol) or strand purity, without impacting, in most cases, the
correct formation of the target structure at high yield (i.e. for 2D shapes, close to 100% of structures
should match the target structure when viewed by atomic force microscope (AFM)). The technique has
seen many developments throughout the years with, for instance, the assembly of 3D shapes [7, 61], the
assembly of big shapes [166], in vivo usage [190, 104] or use as a fundamental building block for molecular
robots [163, 36] or as a seed structure for DNA computing systems [183].

A key property of DNA origami is the inherent thermodynamic favourability of the target structures which
is provided by the beautiful design principles of having a low-concentration scaffold that seeds/touches
exactly one copy of each high-concentration staple species.

DNA Origami does not compute

However, from the molecular computing point of view, DNA origami (i.e. scaffold plus staple strands)
simply does not compute!60 In particular, each pixel in a target shape can be uniquely assigned a
short DNA sequence, that specifies that pixel and nothing else—there is no form of function computation
nor any computationally complex notion of input-to-output mapping other than uniquely addressed
“hardcoding”. This type of hardcoding stands in contrast to known molecular computing methods such
as algorithmic self-assembly where each pixel in a target structure could have one of several possible
associated sequences/strands, the choice of which is determined by (a) a short information-encoding input

59We recommend the following animation made by Shawn Douglas which helps to understand DNA origami, visually:
https://www.youtube.com/watch?v=p4C_aFlyhfI. We also highly recommend this talk by Paul K. Rothemund (DNA
origami’s inventor): https://www.youtube.com/watch?v=WhGG__boRxU.

60Many publications in DNA/RNA/protein nanotechnology and engineering use the word “programming” to refer to the
design capabilities enabled by the use of information-based polymers. However, in this work, when we talk about computing
with DNA, we mean something stronger: the ability to encode an algorithm in the DNA molecules. We do not wish to
debate what is or is not an algorithm, but for here it suffices to say that when claiming something as computing we believe
the claim should be backed up by reference or characterisation in terms of a well-defined model of computation, such as
finite state machines, Boolean circuits, or other mathematically-defined models of computation that capture what it means
to compute a function or some such formal object (whether already existing in the literature or perhaps completely novel).

https://www.youtube.com/watch?v=p4C_aFlyhfI
https://www.youtube.com/watch?v=WhGG__boRxU
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(e.g. a short bit sequence) and (b) a sequence of information-processing steps (e.g. via Boolean logic gates)
leading to the assembly of that pixel [183].61

Although published DNA origami designs do not perform computation, origami structures have been
used extensively as a structural support tool in various studies on DNA computation, examples include:

1. DNA origami as an information-encoding structural-support seed for algorithmic self-assembly
systems; including systems where the origami seed encodes inputs with 2 to 6 bits [183, 66, 145, 10].

2. DNA origami being used as a (flat) substrate upon which Boolean DNA circuits are assembled [23,
25, 151, 34, 36], and (somewhat relatedly) upon which DNA walkers trek [187, 147, 141, 123, 74,
164].

Algorithmic DNA origami

We introduce the Scaffolded DNA Computer which performs computation during the assembly of a
scaffolded structure, such as a DNA origami. That way, we inherit the beautiful properties of DNA
origami and additionally make it compute: we are introducing Algorithmic DNA Origami.

The key ideas of our design is (a) to add information-bearing extensions, called toeholds, on the ends
of the structures’ staples (b) have several staples with different toeholds compete for the same scaffold
domain. Thermodynamically, the system should eventually select the staples that have matching toeholds
to already-present neighbouring staples; some input staples are initially present with a unique toehold in
order to drive the system towards a unique equilibrium.

Our proposal stands in contrast to prior work (see Section 4.3.2) in that computation occurs in the
process of forming the origami.

4.1.1 Summary of contributions and chapter structure

We give four main contributions:

1. Theory and design: The Scaffolded DNA Computer, a new theoretical model of computation,
is defined in Section 4.2, and some basic properties are stated including its relationship with
thermodynamics and relationship with existing models of computation.

2. Our strand-level and domain-level design is described in Section 4.3. DNA sequence design principles
(in the presence of non-designed scaffold) are given in Figure 4.6. We compare our system to other
DNA-based computation methods in Section 4.3.2.

3. 1D results. Implementation of 6 Scaffolded DNA Computer programs in 1D (Section 4.4): bit-copy,
parity, addition, multiplyBy3, 3-state nfa, divideBy2.

For example the addition program takes two 4-bit numbers as input and outputs their sum in
binary. We run these programs on several inputs each, leading to a total of 77 reported experiments
(excluding controls). We estimate an overall yield of 91 % for deterministic programs in the 1D
Scaffolded DNA Computer, using a bulk fluorescence measurement technique.

4. 2D results. Implementation of two 2D Scaffolded DNA Computer programs (Section 4.5): bit-copy
and addition, computations that are run up to 14 helices and output is read using single-molecule
AFM readout. The 2D addition program takes two 7-bit numbers as input and outputs their sum
in binary.

61For brevity, we omit a more formal and nuanced analysis of what is and is not computing in this context.
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By 1D/2D we mean that the underlying scaffold that we use is either 1D or 2D. In 1D we use a
linear, synthetic 120-base scaffold while in 2D we use a full DNA origami rectangular M13 scaffold. Our
computations operate horizontally in 1D and vertically in 2D. Additional supporting material, background
context and discussion, for these contributions are given in Appendix E, specifically:

• Appendix E.1 provides a few future work theory questions.

• Appendix E.2 contains design, and experimental controls, for a novel sequence independent reporting
mechanism developed for our 1D Scaffolded DNA Computer.

• Appendix E.3 contains DNA sequences, and a few additional results in Appendix E.4.

Finally, although we do not report the designs and data here, the systems presented here build upon two
simpler 1D prototypes for bit-copy implemented over distance 1, and then over distance 3.

4.2 Model of computation: Scaffolded DNA Computer
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(a) Scaffolded DNA Computer instance (b) example computation
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Figure 4.2: A simple 2D bit-copying instance of a Scaffolded DNA Computer. (a) The programmer
specifies a tile set, a scaffold design (here, a small 2× 2 grid), an input position on the scaffold (red; only
one tile is permitted to bind at the input position), and which (compute) tiles may go at other positions.
The tiles have only two colours (beige is 0, green is 1) on their binding sides. (b) An example execution.
Tiles bind, unbind (if not adjacent to other matching-colour tiles), and can be displaced by other tiles
with an equal number, or more, matching colours. Eventually no more moves happen. In this example,
the final configuration is unique: all executions lead to the same result, i.e. the input colours are copied
throughout the grid.

4.2.1 Model of computation

Our proposed model generalises the Maze-Walking Tile Assembly Model [49] described in Chapter 3 (and
shares some of its computational abilities).

Scaffolded DNA Computer definition A Scaffolded DNA Computer (Figure 4.2) consists of a finite
set of square non-rotatable62 tiles T = {t1, t2, . . . , tk}, with a colour on each side, as well as a finite
connected scaffold of locations where tiles can be placed (formally, the scaffold is a connected subset
of the 2D grid indexed by pairs of integers (x, y) ∈ Z2). Each position p ∈ Z2 has an associated set of
p-permitted tiles Tp ⊂ T that may be placed at that position p. One or more scaffold locations positions

62Although we forbid rotation of tiles, it is of course a physically reasonable property, however (a) any tiles set that allows
for rotation can be simulated by a slightly larger tile set (more colours) that does not. Unlike the abstract Tile Assembly
Model [174], here there is no notion of differing glue/colour strength nor temperature–although we do consider the number
of matching colour (bonds) as an important property.
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are called input positions q ∈ Z2, and in this work63 they are restricted to allow just one tile type Tq ∈ T .
Instead of a typical colour (which can form a bond), a tile side may be the null colour, (grey in the figures)
meaning it does not bond with any other tile side.

The system begins with no tiles on the scaffold, and then one by one tiles may attach or detach according
to the following rule: the tile that attaches at position p ∈ Z2 is chosen nondeterministically
from those p-permitted tiles that preserve or increase the number of matching colours.

Final configuration(s). At each step, the tiles positioned on the scaffold is called a configuration.
When no more attachments can happen, we have a final configuration; the computation has finished. The
final configuration may be unique or not (a good programmer typically endevours to program the system
to ensure uniqueness).

Thermodynamically optimal final configurations. Among final configurations, some of them
maximise the number of matching colours on adjacent tile sides. We call these configurations thermody-
namically optimal final configurations. Moreover if there is only one thermodynamically optimal final
configuration, we say it is unique. In this work, we only design systems with unique thermodynamically
optimal final configuration. Examples 4.1, 4.3, 4.4, have a unique final configuration, but one could craft
an example that does not.

4.2.2 Examples and computational power of the Scaffolded DNA Computer

Like other 2D tile based models [57, 125, 180], and thermodynamics based models [60, 33] we expect the
Scaffolded DNA Computer to have strong computational abilities; indeed it is quite close to, and inspired
by, the Maze-Walking Tile Assembly Model, see Chapter 3, which is known to be capable of simulating
Boolean circuits (even with as few as four tile types!), a result that carries over to the Scaffolded DNA
Computer.

Here, we mainly focus on experimental implementation of the Scaffolded DNA Computer, leaving a full
theoretical analysis of the model’s computational capabilities to future work. However, we need some
basic theoretical results in order to frame our results in terms of known computational models, and to
give a systematic way to describe the computations that we implement.

2-sided Scaffolded DNA Computer. In this work we will implement a restricted version of the
Scaffolded DNA Computer that we call “2-sided”: where the tiles have at most 2 of their sides coloured
(the other 2 sides are set to a ”null colour” that does not form a bond). We implement this 2-sided
restriction of the model, both on 1D (Section 4.4) and 2D scaffolds (Section 4.5).

Example 4.1 (bit-copy).

Figure 4.3 gives a minimal 1D example of computation with the 2-sided Scaffolded DNA Computer:
copying a bit. Bit 0 is represented by color beige and bit 1 by color green. Putting a beige (resp. green)
tile at position A triggers the assembly of an entirely beige (resp. green) chain: we say that bit 0 (resp.
1) has been copied (over 4 scaffold positions on Figure 4.3). Although it is a very primitive type of
computation this example depicts the main idea that we exploit in this work: having several tiles (which
will become DNA strands) compete for the same scaffold position and be selected according to their

63It is possible to add additional nondeterminism to the model, by permitting one of several tiles at an input position–this
would enable a form of randomised algorithm where the randomness comes from the choice of input at some position. We
leave exploration of that aspect of the model to future work.
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Figure 4.3: Bit-copy example: Copying a bit with a 1D instance of the Scaffolded DNA Computer
(2-sided). The user provides a single input tile, inputting 0 or 1, that attaches to position A. At the other
scaffold positions, two tiles compete: one representing bit 0 (beige) and the other bit 1 (green). Putting a
beige (resp. green) tile at position A triggers the assembly of an entirely beige (resp. green) chain: bit
0 (resp. 1) has been copied over 4 positions. Tiles competing for position D have an output decoration
indicating that the output is 0 or 1.

matching colors (which will become matching toeholds). We implemented bit copy both in 1D and 2D, cf.
Section 4.4.2 and Section 4.5.2.

Example 4.2 (4-bit parity-checker). See Figure 4.10(b–d).

Example 4.3 (4-bit addition). See Figure 4.11(b–d).

Example 4.4 (hardcoded square-grid DNA origami, no computation). An origami is an example
of our model where there are as many tile types as scaffold positions (ignoring certain details about DNA
origami, such as lattice arrangement of staples, and origami scaffold routing).

Finite state machines. Finite state machines are a well-studied model of computation which allow us
to represent familiar computations such as addition, multiplication by a constant, parity64 and many
others [118]. A deterministic finite state machine starts in one of a finite set of states, then reads the first
input symbol, and moves to a new state (possibly outputting an output symbol). It then reads a new
symbol, and so on, until all input symbols are read. The output is either the name of the final state (for
example: ‘yes’ or ‘no’), or else an output word produced by the machine. For brevity, we do not give
a fully formal set of definitions, but the notions used can be easily formalised [118]. We show that the
2-sided Scaffolded DNA Computer is available to simulate any finite state machine, Theorem 4.5. The
core idea of the construction is depicted in Figure 4.4: at each scaffold position (apart from the first),
a number of tiles compete and that number is equal to the number of states in the machine. At each
step a tile is selected, with that selection ultimately depending on the tile at the first position which
corresponds to the initial state of the machine (and the first symbol of the input word). Thus the input
tile directs/determines the (deterministic) computation. See Appendix E.1.2 and E.1.1 for additional
comments and open questions.

Theorem 4.5. Any finite state machines M , on length-n ∈ N input, is simulated by a 2-sided Scaffolded
DNA Computer S (where simulate means that: (a) S’s scaffold is a line of n tile positions, with the input
position being the leftmost; (b) the final configuration is unique and its rightmost tile-side colour contains
the final state of M).

64parity consists in computing the parity of the number of 1s in a binary string.
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Figure 4.4: Simulating finite state machines with the Scaffolded DNA Computer (2-sided). (a) transitions
of the finite state machine are transformed into tiles, colors encode both the input symbols and state
transition information (b) assuming the machine has N states then N tile will compete at each scaffold
position apart from position A where only one tile can be place – corresponding to the initial state of
the machine and first input symbol (c) converting the parity 2-state machines into tiles. The machine
computes the parity of the number of 1s in a binary string. (d) executing parity on input 1011 using the
Scaffolded DNA Computer. We expect the output to be 1 (the output is the state in which the machine
is after scanning input 1011) because there is an odd number of 1s in 1011. The input 1011 is encoded
as the bottom-left bit of each tile. Two tiles compete at each scaffold position (they correspond to both
parity state 0 and 1) apart from position A where the initial parity is 0.

Proof (sketch). Figure 4.4(a) and (b) give the construction: a tile encodes current state and current read
symbol on its left side and next state and next read symbol on its right side. At each scaffold position
apart from the first one, 1 tile per machine state is in competition: the winner is the only tile that matches
the color on the right side of the tile at the previous position. At the first position the tile (or tiles in the
non-deterministic case), are defined by the initial state of the machine and the first read symbol.

4.3 Fundamental strand-level mechanism

In this work, we present a DNA-based implementation of the 2-sided restriction of the Scaffolded DNA
Computer. By 2-sided we mean that the square tiles we implement use only 2 of their 4 sides. Our
implementation is based on a simple mechanism, which can be applied both to 1D scaffolds (Figure 4.5a,
and see Section 4.4) and 2D scaffolds (Figure 4.5(b), and see Section 4.5). The implementation is based
on the following principles:
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Figure 4.5: Fundamental strand-level mechanism for implementing the 2-sided Scaffolded DNA Computer
on 1D scaffolds and 2D scaffolds. Diagram shows two possible pathways of our mechanism in 1D (a)
and 2D (b). Two strands (or more in practice) compete for scaffold position B. The thermodynamically
favored state is when toehold t is bound to t*, which eventually decides the winner of the competition. In
the case of an incorrect t-s* attachement, we rely on strand displacement to correct this error and bring
the system to the favored t-t* bond. The mechanism is essentially the same in 1D and 2D apart from the
fact that, in 2D, the displacement has to occur through several parallel scaffold helices which is intuitively
harder than the 1D case.

1. The scaffold corresponds to a long DNA strand divided into a number of binding domains. Each
binding domain is associated to a position in the 2D grid.

2. Tiles are implemented by short single-stranded DNA strands consisting of:

• A domain that exactly complements one of the binding domains of the scaffold.

• One toehold at each end of the strand (or only at one end) of which sequence corresponds to a
colour of the tile set.

3. Competition. The set of permitted tiles at a scaffold position correspond to strands in a 1-to-1
mapping, with the same binding domain but different toeholds that compete for the scaffold
position. If a strand with incorrect toehold (i.e. tile colour) binds at a position, there is always a
strand displacement pathway to discard the incorrect strand, see Figure 4.5. Displacement is
intuitively harder in 2D than in 1D as, in 2D it has to occur through several parallel scaffold helices.

4.3.1 Toehold design

We designed 8 information-encoding toeholds, each with 12 bases,65 that allow us to simulate eight different
colors in the Scaffolded DNA Computer model, Figure 4.6. We refer to these toeholds by their symbolic
names 000, 001 …111. The toeholds were designed with relatively few criteria in mind, Figure 4.6(b).
Broadly speaking the only constraint that we designed for was orthogonality: toehold t and toehold s∗

65Here we say 8 information-encoding toeholds, to delineate from the DNA sequence level of abstraction where we actually
designed 16 toeholds: one set of 8 toeholds for even scaffold positions and the other 8 for odd scaffold positions. This was
done in order to avoid unintended hairpin formation: if we naively had used only 8 toeholds, a strand having the same logical
(symbolic) toehold on both ends would result in one end being the reverse complement of the other, giving an unwanted
hairpin. See Appendix E.3 for details.
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Figure 4.6: (a) symbolic representation of the eight 12-base toeholds that were designed in this work (in
fact, two of each toehold were designed to prevent intra-strand binding see Appendix E.3). Light gray
represents the reverse Watson-Crick complement of a toehold. b) Main principles for toeholds sequence
design. Energies were computed using NUPACK4 pfunc [69] at 53◦C. (c) The designed sequences of toeholds
000 and 111. (d) Mapping between a 2-sided tile and its DNA-based strand implementation.

should interact favorably if and only if t = s. All interactions were measured at 53 ◦C, [Na] = 1 M and
[Mg++] = 0 using NUPACK4 pfunc [69]. We designed the sequences using Nuad66.

Note that we intentionally (as a design principle) designed the toeholds independently of the scaffold
sequences that we used them with (synthetic 120 base linear scaffold in 1D, whose sequence comes from
two pieces of M13 sequence, and a standard 7,249 base M13 scaffold in 2D). This choice was motivated as
follows:

1. Designing against spurious interactions with long strands (7,249 bases for M13 scaffold) is a
challenging problem. One issue is that it tends to over-constrain the sequence design task because
of the huge number of possible interactions.

2. With high formation temperature (> 50 ◦C is typical for DNA origami), even long toeholds of > 12

bases would be likely not to have too many interactions with the scaffold.

3. In the 2D origami case, the M13 scaffold is mainly entirely bound by perfect staples meaning that it
is very unlikely that toeholds have the unintended behaviour of binding the scaffold.

In the case of our 1D system where we use a 120 bases synthetic scaffold we conducted significant
post-design analysis on ten sets of designed toeholds before choosing the one that performed best over a
set of criteria that included examining some of the many possible unintended interactions. We re-used the
same toeholds with no additional analysis in our 2D origami system (see Section 4.5). All the sequences
that we designed and used are reported in Appendix E.3.

4.3.2 Comparison with other DNA-based computation methods

From its inception [174] algorithmic self-assembly has been a driving force in the field of DNA computing.
Experimental algorithmic self-assembly systems have seen significant success [183, 66, 145, 10], with recent
work demonstrating 21 6-bit Boolean circuits on well over 100 distinct computations [183]. There remains
much to do in this exciting research direction.

66https://github.com/UC-Davis-molecular-computing/nuad, project led by David Doty, UC Davis.

https://github.com/UC-Davis-molecular-computing/nuad
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Our proposed Scaffolded DNA Computer implementation takes a rather different approach, and by doing
so avoids some (not all) of the challenges for algorithmic tile systems. Primarily, spurious (unwanted)
nucleation of structures is avoided in our thermodynamically favoured design (but is a major challenge and
open research theme for tile-based systems). Just like regular origami, by depending on a low concentration
scaffold to tether a completed computation together, it should be impossible for large unwanted structures
to spuriously form (assuming we hold above the stable toehold binding temperature), even for computing
systems spanning a full M13 scaffold.

For our implementation, the kinds of algorithmic errors we could expect could be different, and perhaps
in principle occur at a lower rate than for algorithmic tile self-assembly. As Figure 4.5 shows, for each
computing element the correct logical operation (computing step) is favoured, even when an algorithmically-
erroneous (mismatching toehold) binding step first occurs—this displacement of errors is one of the key
design features that we feel is exciting about the approach. Of course, in a large system we might have
to anneal very slowly, or wait a long time, but no more than a few hours or a day sounds feasible, this
remains to be explored.

DNA strand displacement circuits are another popular form of DNA computing [189, 188, 71, 185, 28].
Many implementations do not have a thermodynamically favoured target (output) configuration, and suffer
from ‘leak’ (error) pathways. Recent work on enforcing kinetic [38, 150] and thermodynamic [168, 169]
barriers to leak pathways hold great promise. Here, our proposal is to aim for a purely thermodynamically
favoured output.

It is important to make a clear distinction between our proposed Scaffolded DNA Computer implemen-
tation, and the decade-long history of DNA computation, and DNA walkers, that use DNA origami as
a support. As with previously cited systems, those systems have challenges of self-assembly problems,
some needing complex preparation in order to prepare the system in a high-energy state and/or prevent
pre-triggering, for example [163]. Our proposed implementation would not have such concerns, it is
one-pot and the correct computation is favoured by design, at least theoretical tile-level and strand-level
abstractions, and with good design principles also at the DNA implementation level.

Kinetic traps. Of course, like in all programmed nucleic acid systems (whether thermodynamically
favoured or not) our implementations of the Scaffolded DNA Computer could have unintended kinetic
traps, due to DNA sequence impurities, or inadequate DNA sequence design, or our incomplete biophysical,
energetic and mechanical understanding of DNA in the complex setting of DNA origami (helices, crossovers,
adversarial scaffold sequence). These present interesting and novel challenges for this approach to DNA
computing.

4.4 1D Scaffolded DNA Computer

4.4.1 Experimental setup

The DNA-based mechanism (Figure 4.5) with which we implement the Scaffolded DNA Computer is, to
the best of our knowledge, novel and untested. Hence we decided to first experiment with it in a simple 1D
environment using a 120-base synthetic scaffold.67 We use a 120-base sequence extracted from M13 p7249,
see Appendix E.3. We divide the scaffold in five 24-base domains A,B,C,D,E. Our 1D Scaffolded DNA
Computer operates on domains A,B,C,D while domain E is used for reporting purposes only. We attach
our 8 toeholds to both ends of domains A,B,C,D in all possible ways. In total, our system (including

67In fact, we also prototyped the model on two earlier smaller systems, not reported here.
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Figure 4.7: Sequence independent reporting mechanism. For reporting at position A, the strand at
position B is equipped with domain F* complementary to the ATTO-590-labelled strand F present in
solution. In order to report a 0, the strand at position A is equipped with domain Q* complementary to a
quencher-labelled strand Q present in solution. However, to report a 1 no reporting domain appears on
the strand at position A. That way, reporting 0 triggers quenching (a) and reporting 1 does not (b). We
use the exact same principle to report at positions B, C and D with the same domains Q* and F* each
time: our reporting mechanism is independent of domains A,B,C,D. In a computation, the quencher and
fluorophore are always in solution and two or more strands compete at the reporting position, some with
domain Q* and some without, that way we read the output of our computations.

reporting) consists of 254 strands, see Appendix E.3. Strands were ordered from IDT, unpurified apart
from the 120-base scaffold (PAGE) and quencher/fluorophore labelled strands (HPLC).

Sequence independent reporting mechanism. We use fluorescent labelling to report the results of
our computations. We use the fluorophore/quencher pair ATTO-590/Iowa Black FQ. We report a binary
signal with the convention that quenching is 0 and absence of quenching is 1. We wish to report outputs
at all sites A,B,C,D of our system in a way that is independent of these domains’ sequences. We use the
mechanism depicted in Figure 4.7 in order to do so. The mechanism uses the fixed domains Q* and F*
which are added to adjacent domains on the scaffold in order to report, see Appendix E.2 for sequence
design principles of domains Q and F. Strands compete at the reporting position with and without domain
Q* depending on their respective output. Consequently, we observe quenching or lack of quenching as an
output of our programs. Note that with this system we can report at most one output at a time and
that for instance, reporting at site B prevents us to use following sites C and D in our computation. Our
strategy is to perform one experiment per output bit: for example, to report a full 4-bit addition we
run 4 experiments, one for each output bit (Section 4.4.4). Finally we manage to slightly modify this
binary reporting mechanism in order to get a third output value thanks to what we call late quenching,
Section 4.4.7.

Baseline 0 and baseline 1. We tested our reporting mechanism in 15 different control configurations
for reporting bit 0, and 15 others for reporting bit 1, varying the reporting position (A,B,C,D), the strands
present at non-reporting positions, and the total amount of DNA present in solution, see Appendix E.2.
By control we mean that there was at most one strand present per scaffold position (no competition,
no computation) in these experiments. We call baseline 0 and baseline 1 the average values (after
normalisation, see below) that we got from these bit 0 and bit 1 controls.

Data normalisation. The only normalisation that we perform is dividing each curve by their first data
point (the measured fluorescence value after 5min at 80 ◦C).

Experimental protocol. To conduct a 1D Scaffolded DNA Computer experiment, we mix together the
strands corresponding to all of the tiles of the computation (at 1 µM per strand type) together with our
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synthetic scaffold (at 100 nM) and fluorescent-reporting related strands (example mix in Appendix E.3)68.
Then we anneal the mix while reporting fluorescence in a qPCR machine (QuantStudio 5) always using
the same ∼3h protocol: Hold at 80 ◦C for 5 minutes, drop from 80 ◦C to 70 ◦C gradually within 20 minutes
by -0.5 ◦C/min, drop from 69 ◦C to 20 ◦C over the course of 155 minutes by -0.3 ◦C/min. Each mix is
divided into two qPCR wells and we report the averaged normalised signal from these two wells.

Programs. As presented in Figure 4.4, we intend to simulate Finite State Machines with our 1D
Scaffolded DNA Computer. With 8 logical toeholds (16 toehold sequences in practice) we are limited to
machines where states and symbols can be encoded on three bits (since 23 = 8) altogether69. For instance,
we can have two bits of symbols (i.e. ≤4 symbols) and one bit of state (i.e. ≤2 states) or vice-versa. The
more states in a machine, the more strands compete for the same scaffold position, Figure 4.4. We report
up to four strands competing for the same scaffold position in our results. We implement 6 Scaffolded
DNA Computer programs: bit-copy, parity, addition, multiplyBy3, 3-state nfa, divideBy2 that
we experimentally ran on a total of 35 inputs. Full details are given in Sections 4.4.2 to 4.4.7.

4-bit inputs/outputs. We use the 4 scaffold positions A, B, C, D to encode 4-bit input-words for our
programs. Longer scaffold would allow for longer input bitstrings70. For most programs, such as our 4-bit
adder, Section 4.4.4, we also report 4-bit outputs. This requires us to run 4 experiments: one to read each
output bit. This brings the number of experiments that we report to a total of 77 (excluding controls).

Yield estimation. The yield of a Scaffolded DNA Computer program can be defined as the proportion
of annealed polymers reporting the correct output. In order to estimate this yield we compute the average
distance between the final values of our curves and their corresponding baseline (baseline 0 when the
output is supposed to be 0 and baseline 1 when it is supposed to be 1). This estimation formula slightly
differs for 3-state NFA, see Section 4.4.6. We report a global 91 % yield over our deterministic programs
(89 % if we include the more challenging 3-state NFA). This 91 % global estimate is almost certainly
a pessimistic estimate on the actual yield since we (harshly) compare our signals to a ‘no computation’
baseline as we currently lack a way to force our systems to full completion [130]. See Section 4.6 for
further discussion.

4.4.2 Program 1: bit-copy

bit-copy design. bit-copy consists in propagating an input bit 0 or 1 along a chain of tiles. Figure 4.8(b)
presents the program at tile-abstraction level: two tiles compete for each scaffold position B,C,D and they
are selected according to which tile 0 or 1 is placed at position A. The corresponding strand diagram is
given in Figure 4.8(d).

bit-copy results. Figure 4.8(c) presents the output of the bit-copying at position D (i.e. maximal
distance from the input). We observe than when a 0 (resp. 1) is copied the output signal is close to the
baseline 0 (resp. 1). Figure 4.9 reports the bit-copy outputs at additional intermediary positions A,B
and C (no competition at position A). We observe (i) a sudden drop of the copy 1 signal at position D
compared to positions A,B,C that are very close to baseline 1 and (ii) final values of the copy 0 signals are
increasingly away from baseline 0 with their distance to A suggesting that the efficiency of our program

68In principle 10x or 100x smaller concentrations could be used for out system, but we found signal to be weaker, i.e.
worse signal-to-noise, at lower concentrations.

69These constraints still allow for many computations: there are at least 88 ' 16, 000, 000 such machines.
70With current 24-base domain design, using full M13 p7249 would allow to process 302-bit inputs. Attempting such a

massive scale-up introduces new challenges that are left to future work.
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program name competitive
complexity

number
of inputs tested

corresponding
number of experiments

yield
estimation

bit-copy 2 2 8 90 %
parity 2 5 5 89 %
addition 2 4 16 88 %
multiplyBy3 3 7 28 93 %
3-state NFA 4 16 16 79 %
divideBy2 (ternary) 2 1 4 97 %

total: 35 total: 77
average:

91 % deterministic
89 % including NFA

Table 4.1: Summary of 1D Scaffolded DNA Computer results. The “competitive complexity” of a
Scaffolded DNA Computer program is the maximum number of strands in competition at a given scaffold
position – it generally corresponds to the number of states in the simulated finite state machine. We
tested several inputs for each program. We often have to read 4-bit outputs which requires to run 4
experiments per input: one per output bit. The “yield estimation” is computed by measuring the average
distance of the last values of the curves outputting a 0 to baseline 0 and the curves outputting a 1 to
baseline 1 (slightly different rule for 3-state NFA, see Section 4.4.6).
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Figure 4.8: Distance 4 bit-copy, i.e. reporting at position D. (a) bit-copy program: tile set, scaffold
and compute tiles. (b) Tile-level abstraction of the computation on inputs 0 and 1. Two tiles compete
at each of positions B, C, and D; but only one input tile (0 or 1) is provided at position A. Annealing
a mix of DNA strands that encode the program and input performs the bit-copy computation. (c)
Normalised fluorescence bit-copy results at position D. We observe more quenching when copying 0
(bottom purple curve) than when copying 1 (top purple curve). The values baseline 0 and baseline 1 are
each the mean completion level of 15 non-computing/non-competitive systems that make polymers of
distance 1–4 (Figure E.1). (d) Strand-level abstraction of the computation. Tiles map to strands in a
straightforward 1-to-1 manner (Figure 4.6(d)) and a sequence-independent reporting mechanism is used
(Figure 4.7).
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Figure 4.9: bit-copy results at positions A,B,C and D. Similarly to Figure 4.8 which focuses on bit-copy
at position D (also shown here) one can run the bit-copy program up to positions A, B and C. Note that
there is no competition between tiles at position A because it is the input position hence copy 0/1 at A
are effectively controls and should match the baseline.

decreases with the distance from the input, which is what we expect. More quantitatively, we estimate a
90 % yield on bit-copy results (yield definition in Section 4.4.1).

4.4.3 Program 2: parity

parity design. parity consists in deciding whether the number of ones in a binary string is odd or
not. This task is solved by the 2-state machine featured in Figure 4.10: strings with an even number of
ones end up in state 0 and strings with an odd number of ones end up in state 1. For instance, the output
of parity on 1011 is 1 (odd number of ones), see Figure 4.10(c); the output on 1111 is 0 (even number
of ones). We run parity on 4-bit inputs, 1 bit per scaffold position and we report the final state of the
computation, 0 or 1, at D. Two tiles (i.e. strands) compete at positions B,C,D (because there are two
states in the parity machine). The tile at position A is uniquely determined by the first bit of the input
and the fact that the initial parity is 0 (initial machine state).

parity results. Figure 4.10(e) and (f) report executions of parity on 5 inputs. The executions are
successful because the final signal of each curve reporting a 0 (resp. 1) is close to baseline 0 (resp. 1).
Quantitatively, we measure a 89 % estimated yield on parity results (yield definition in Section 4.4.1).
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Figure 4.10: parity results. (a) 2-state finite state machines that computes parity. Input words that
end up in the doubly-circled state 1 contain an odd number of ones. For instance, input words 0010 or
0111 contain an odd number of ones and their final state is the doubly-circled state 1. (b) Conversion of
the state machine into tiles following the method of Figure 4.4. (c) Example instantiations of the tiles at
different scaffold positions and corresponding strands. (d) Example parity computation on input 1011:
two tiles (i.e. strands) compete at scaffold positions B,C,D. The tile at position A is given by the initial
state of the machine (parity 0) and the first input bit. (e) Normalised fluorescence results of parity on
input 1011. (f) Normalised fluorescence results of parity on inputs 0010, 0111, 1111, 0000.
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(a) ADDITION 2-state machine (b) ADDITION tiles schema
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output

Figure 4.11: addition results. (a) 2-state finite state machine that computes addition. The machine
reads two bits a time (one from each input number that we are adding) and outputs the sum of the
two bits with the carry, given by the state, at each steps. addition processes inputs from their least-
significant bit. (b) Conversion of the state machine into tiles following the method of Figure 4.4. (c)
Example instantiations of the tiles at different scaffold positions and corresponding strands. (d) Example
computation of the last (most-signficant) bit of 10 + 3 = 13 (1101 in binary), which is binary digit 1.
Two tiles (i.e. strands) compete at each scaffold position B, C and D. The tile at position A is given by
the initial state of the machine (carry 0) and the first input bits. (e) To compute the 4 output bits of 10 +
3 = 13 we perform 4 experiments, one per output bit, reporting successively at positions A, B, C and D.
Here we read the output 1101 as each bit’s curve finishes close to the corresponding baseline: e.g. bit 0 is
the least significant bit of 1101 (underlined) and the blue curve (partially hidden by purple) is closest to
baseline 1. (f) and (g) addition results on 7 + 1 = 8 and 12 + 3 = 15.

4.4.4 Program 3: addition (4-bit adder)

addition design. addition is performed in binary by the finite state machine depicted in Figure 4.11(a).
In hindsight the machine is a formal way to express what we know since primary school: the only thing to
remember while processing an addition is the current carry. In binary there are only two possible carry
values: 0 or 1, hence the two states in the machine. The machine reads two input bits at a time (one from
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Figure 4.12: Additional addition result: signed addition −1 = 1 = 0. The number −1 is represented by
binary 1111 which exploits the overflow that 1111 + 0001 = 0000 on 4 bits.

each number we are adding), starting from the least significant side, and outputs the sum of these two
bits with the state-encoded carry at each step. Our scaffold has 4 domains hence we can compute the
addition of any two 4-bit numbers (discarding potential overflows). With our reporting mechanism we
can only output one bit per experiment so we perform four experiments per addition: one per output bit.
Figure 4.11(d) gives the tile-level abstraction of computing the last (most-significant) bit of 10 + 3 = 13
(1101 in binary) which is the binary digit 1. Two tiles (i.e. strands) compete at scaffold positions B, C, D
and the tile at position A is determined by the initial state of the machine (carry 0) and the first input
bits. Converting the tile abstraction into strands is a simple conversion and some examples are given in
Figure 4.11(c).

addition results. Figure 4.11(e) reports the computed 4 bits of 10 + 3 = 13 (1101 in binary). Each
curve corresponds to an output bit, the blue curve (partially hidden by purple) corresponds to the
least-significant bit of 1101 (underlined), computed at scaffold position A. We successfully read 1101 as
each curve is closest to the correct baseline. Similarly we correctly read the results of 7 + 1 = 8 (1000
in binary) and 12 + 3 = 8 (1111 in binary) in Figure 4.11(f) and (g). Figure 4.12 give an additional
addition result with the signed addition −1+1 = 0: the number −1 is represented by binary 1111 which
exploits the overflow that 1111 + 0001 = 0000 on 4 bits. Quantitatively, we measure a 88 % estimated
yield on parity results (definition in Section 4.4.1).



100 Chapter 4. Algorithmic DNA origami: Scaffolded DNA computation
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Figure 4.13: multiplyBy3 results. (a) 3-state machine that computes the operations x 7→ 3x + i
(i ∈ {0, 1, 2} is the initial state) in binary. Three tiles compete at each scaffold position B,C,D (because
3 states). Binary inputs are read from their least-significant side. For instance, processing 0100 (4 in
binary, least-significant bit is underlined) from state 2 outputs 1110 which is 3× 4 + 2 = 14 in binary. (b)
Conversion of the state machine into tiles following the method of Figure 4.4. (b’) Example instantiations
of the tiles at different scaffold positions and corresponding strands. (c) multiplyBy3 results on 3×4 = 12,
1100 in binary (least-significant bit 0 is underlined). Bit 0 is read with the blue curve reaching baseline
0. We correctly read output 1100 as each bit’s curve is closest to the correct baseline. (d) and (e)
multiplyBy3 results on 3× 4 + 1 = 13 (1101 in binary) and 3× 4 + 2 = 14 (1110 in binary).

4.4.5 Program 4: multiplyBy3

multiplyBy3 design. Figure 4.13 gives the 3-state machine that computes the operations x 7→ 3x+ i

(i ∈ {0, 1, 2} is the initial state) in binary, which we first met in Chapter 1 Figure 1.2. Binary inputs are
read from their least-significant side. For instance, processing 0100 (4 in binary, least-significant bit is
underlined) from state 2 outputs 1110 which is 3× 4 + 2 = 14 in binary [156]. Figure 4.13 (b) and (b’)
give the conversion from the machine to tiles and examples of how they are turned into strands. Three
tiles (e.g strands) compete at each scaffold position B,C,D (because 3 states).
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multiplyBy3 results. Figure 4.13 (c) shows the results of 3× 4 = 12 (1100 in binary least-significant
bit 0 is underlined). Bit 0 is read with the blue curve reaching baseline 0. We correctly read output 1100.
Similarly, we read the results of 3 × 4 + 1 = 13 (1101 in binary) and 3 × 4 + 2 = 14 (1110 in binary),
Figure 4.13 (d) and (e). Figure E.3 gives 4 more multiplyBy3 results: 3 × 5 = 15, 3 × 3 + 1 = 10,
3× 1 + 2 = 5 and 3× 2 + 2 = 8. We measure a 93 % estimated yield (yield definition in Section 4.4.1).

4.4.6 Program 5: 3-state NFA

3-state NFA design. For the sake of simplicity, Figure 4.4 and Theorem 4.5 only covered the simulation
of deterministic finite sate machines, that is, machines where there is always only one choice for the
next state to visit. In fact, our framework can also handle non-deterministic machines: an example that
we implement is depicted in Figure 4.14(a). The non-determinism comes here from the fact that there
are two possible choices for next state when reading symbol 1 in state 2 (red arrows). A deterministic
machines outputs a 1 (or yes) from an input if it is able to reach at least one doubly-circled state.
Figure 4.14(e) shows that input 1101 is able to reach two ”yes” states hence the corresponding output is
yes. Figure 4.14(f) gives the output and detailed yes/no counts for all 4-bit input. Any non-deterministic
machine can be converted into a deterministic machines that will output yes for the exact same inputs, at
the cost of having more states: Figure 4.14(b) shows the smallest deterministic machine corresponding to
3-state NFA, it has 7 states.

Practically, as we are toehold-limited, simulating non-deterministic machines is powerful because it
allows us to run bigger machines machines than we possibly could deterministically. Here, we don’t have
enough toeholds to simulate the deterministic 7-state machine: it would require 3 bits for state and 1 bit
for symbol and we only have 3 bits in total with our 8 toeholds. However, we can simulate the smaller
non-deterministic machine (2 bits for state and 1 bit for symbol), which computes the same results.

In the non-deterministic case, our DNA-based system, instead of assembling one polymer, will assemble
as many polymers as leaves in the non-deterministic computation tree of the input, e.g. 3 polymers for
input 1011, Figure 4.14(e). Up to four tiles (e.g strands) compete at each scaffold position B,C,D (because
up to 4 transitions to consider). Interpreting results becomes more challenging because deducing whether
the output is yes or no requires a fine-grained quantification of our quenching signals. Take the case of
the two top cyan curves in Figure 4.14(f) corresponding to inputs 0010 and 0110. They roughly reach
the half-mark between baseline 1 and baseline 0 which is consistent with the fact that their computation
contains 1 yes and 1 no: half of the polymers quench and the global output is yes. More generally, as soon
as there is 1 no, signals drop significantly because of the corresponding quenching polymers population.

3-state NFA results. We are able to read the correct outputs in almost all the cases. The most
challenging cases are inputs 12 to 15. For instance, the pink curve corresponding to input 1101 reaches a
signal almost as low as the pink curve corresponding to input 0001 (top-left plot) but in the first case
the output is yes (2 yes, 1 no) and no in the second case (0 yes, 1 no). Hence it is difficult to clearly
differentiate yes/no answers in this case.

Estimated non-deterministic yield. We use a similar idea as for deterministic machines in order to
estimate the yield of 3-state NFA results. We set the following targets depending on yes/no counts: (a)
“1 yes 0 no” curves should reach baseline 1 (b) “0 yes 1 no” and “0 yes 2 no” curves should reach baseline
0 (c) “1 yes 1 no” curves shoud reach halfway between baseline 0 and baseline 1 (d) the “2 yes 1 no” curve
should reach 2/3 of the way between baseline 0 and baseline 1. We measure the average distance of the
final values of each curve to their respective target. We get a 79 % estimated yield which is lower than
deterministic computations but which is expected as non-determinism is a harder task.
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Figure 4.14: 3-state NFA results. (a) non-deterministic 3-state machine: when reading a 1 in state 2
there are two choices for next state.An input word is accepted (output yes=1) if it can reach at least one
doubly-circled state (state 0 and 1). (b) any non-deterministic machine can be simulated by a determinitic
one, at the cost of more states, here the minimal number of states in the deterministic case is 7. (c)
Translating the machine into tiles, the non-determinism appears as there are two tiles with West color
state-2 symbol-1 with different East color (circled in red). (d) Translation to strands. (e) Example
execution on input 1101: the computation is a tree, 2 yes and 1 no are reached hence this output is 1 (at
least 1 yes). (f) Detail of the machine output and yes/no counts for all 16 4-bit inputs. (f) Results of all
16 4-bit executions.
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4.4.7 Program 6: divideBy2 (ternary reporting)

divideBy2 design. We implement division by 2 in base 3 which is performed by the 2-state machine71

depicted in Figure 4.15(a), which we first met in Chapter 1, Section 1.5. Important: contrarily to
addition or multiplyBy3, this machine processes inputs starting at their most-significant base-3 digit
(trit). For instance, the operation 76/2 = 38 is computed by processing 2211 (76 written in ternary, most
significant trit underlined) from state 0 which outputs 1102 (38 written in ternary).

Reporting output 2 with late quenching. The reporting mechanism that we use was originally
designed to only report binary outputs: 0 or 1, Figure 4.7. By a happy mistake mistake, we found a
way to use it which allows us to report a third output, 2. We call this phenomenon late quenching.
Indeed, if instead of using 20-base domain Q* at a reporting position (Figure 4.7 (a)), we use one of our
12-base computing toeholds (in particular toehold 5, sequence CACTACCAGTCC), Figure 4.15(d), we
obtain a quite strong secondary structure with our quencher-labelled strand Q (-10.61 kcal/mol at 37C,
Figure 4.15(e)). This means that the quencher-labelled strand Q will spuriously bind to toehold 5 at
temperatures lower than the Q-Q* interaction hence we should see quenching occuring later than when
reporting a 0. We tend to see normal Q-Q* quenching in the 65-75C range (green curve in Figure 4.15(f))
whereas this late quenching phenomenon occurs in the 30-50C range: cyan in Figure 4.15(f) is a control
for the mechanism (no competition between strands).

divideBy2 results. Using late-quenching we can report computations that use a ternary alphabet.
Figure 4.15(f) reports successful results for 76/2 = 38: we read 1102 as curves for the first two 1s reach
baseline 1 (blue and orange curves), the green curve for 0 reaches baseline 0 and the purple curve for 2
features late quenching which correspond to reading a 2. We measure a 93 % estimated yield (definition
in Section 4.4.1, ignoring ternary value 2).

71This machine is very close in structure to the binary parity machine (Figures 4.4 and 4.10) and this is related to the
mathematical fact that deciding if a ternary number is divisible by 2 amounts to computing the parity of its number of 1s,
which is exactly what parity does [156].
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Figure 4.15: divideBy2 results. (a) 2-state machine that computes x 7→ x/2 in base 3 (ternary).
Important: this machine processes inputs starting at their most-significant base-3 digit (trit). For
instance, the operation 76/2 = 38 is computed by processing 2211 (76 in ternary, most significant trit
underlined) from state 0 which outputs 1102 (38 in ternary). (b) and (c) Correponding tiles and example
strands. (d) and (e) In order to report the base-3 digit 2 we introduce a mechanism that we call late
quenching. The quencher-labelled domain Q has a strong secondary structure with toehold 5 (101 in
binary) shown in (e) of -10.61 kcal/mol free energy. This means that at lower temperature than the
Q-Q* interaction we expect to see Q spuriously bind to toehold 5. (f) 76/2 = 38 results. The cyan curve
is a control for late quenching (no competition) and we see that the quenching is triggered later than
usual Q-Q* quenching (which happens in the green curve). We successfully read output 1102 where least
significant digit 2 is reported at scaffold position D using late quenching (purple curve).
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4.5 2D Scaffolded DNA Computer

4.5.1 Scaffolded DNA Computer instance on a 2D scaffold

For implementation of the Scaffolded DNA Computer on a 2D scaffold, we chose a rectangular DNA
origami chassis [44] shown in Figure 4.16. The origami design uses a relatively standard crossover pattern.
We added a square of twelve 5’ biotin staple modifications (bottom left), used as a control for streptavidin
labelling efficiency (bottom left).

Primarily, the design includes a computing region (shown as tiles on right hand side, Figure 4.16) that
houses a 7-bit Scaffolded DNA Computer instance. We used our “universal” set of 16 toeholds (design
in Section 4.3), appending them to staples according to the schema Figure 4.6. This gave a total of
392 designed computing staples (8 at the input location A, and 64 each at the other 6 locations B–G),
although only 126 were ordered for the computations reported here.

Some of the computing strands/staples have 3’ and/or 5’ biotins; typically those toeholds that encode
bit 1 are labelled, and bit-0 toeholds are unlabelled. Staple computing strands, were ordered unpurified in
plates, as were biotin-modified staple computing strands, both from IDT. M13 scaffold was ordered from
Tillibit.

Experimental Protocol AFM imaging was carried out on a Bruker Fastscan, with Fastscan-D probes.
Streptavidin protein was purchased from Rockland. Samples were annealed as follows: Hold at 90C for 5
minutes; drop to 60C by -1 ◦C per minute; drop to 50 ◦C by -0.1 ◦C per minute; drop to 45 ◦C by -0.1 ◦C
per minute; drop to 20 ◦C and hold.

For AFM imaging, typically 1.5 µl of sample was deposited into 80 µl of 12.5 mM Mg++, 1xTAE on a
freshly cleaved mica surface. After imaging to check for quantity and quality of origami, 1 µl of 5 µM,
streptavidin was added using a protocol similar to that from previous work [183]. Streptavidin imaging
of the kind used here (single streptavidin molecules on the end of 12bp duplexes) is challenging: during
some imaging sessions, streptavidin didn’t show brightly. In that scenario, we added 0.5 µl more to the
droplet on mica. Imaging was not consistent in terms of quality during different sessions. We repeated
imaging of the samples to get the best images we could.

As noted, read-out of our computations is by AFM imaging of biotin-streptavidin labelled strands on
DNA origami. Although similar techniques have been used with success in the past [24, 66], it is known
to be technically challenging to read-out single molecule labels in some contexts [183], and our system is
perhaps even more challenging to image due to the streptavidin proteins being on the end of a 12-base
duplex extending from the origami surface.

4.5.2 Program 1: bit-copy

See Figure 4.17 for the 7-bit 2D Scaffolded DNA Computer bit-copy program. Section 4.4.2 gives the
details of the tile set, and Figure 4.8 shows the strand level of the computation for 4-bit copy (in the 1D
setting). If input A is 1, then all subsequent positions should compute 1. and if A is 0, then all positions
should encode 0. We labeled the 1’s with biotin to be visible when imaging with streptavidin, and 0’s
were regular unmodified strands. We see in the diagram in Figure 4.17(left) copy 0 shows no orange dots
(labels) and copy 1 shows 7 dots.

Hardcoded controls. For bit-copy computations we had additional control experiments where
only single-bit strands are added (meaning no competition, and thus no computation). We call this a
“hardcoded” control. Hardcoded-0 means we only add the strands {A0, B0, C0, D0, E0, F0, G0} and
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Figure 4.16: 2D Scaffolded DNA Computer chasis, taken from [44]. Left: scadnano design [58] (based on
an original origami design by David Doty for use in another project; the origami has some features not
needed for our work here including the single stranded region on top and the poly-T extensions in the
shape of a number 7). M13 scaffold is in blue and staples are various colours. Small blue dots indicate
poly-T extensions, in the shape of the number ‘7’. Twelve biotin modifications (orange dots, bottom left)
were added to staples to control for streptavidin imaging. Along the right had side there is a vertical
computation region, labelled A–G, where seven staples positions house staples modified with our set of 16
toeholds (Appendix E.3). Right: AFM of single origami. The poly-T extensions (shaped like a ‘7’), and
the computation region (a line segment of six 12bp duplexs), are seen as lighter in colour (taller, in z
direction) than the rest of the origami. Also, the single stranded part of the handle is more faintly visible
above and to the right of the origami. The biotin control square is not visbile because this AFM image is
taken before adding streptavidin.

hardcoded-1 means we only add strands {A1, B1, C1, D1, E1, F1, G1}. Since each staple position has
exactly one staple that fits at that position, and since origami is known to form with relatively high yield
of staples bound, we hope to have as high as possible yield of imaged streptavidins at those positions.

Of course experiments with computing strands should have, if anything, lower yield of streptavidin
labelling than these hardcoded controls. Section 4.5.3 gives an analysis of the controls (to be used in the
following paragraph).

Analysis of copy 0 and copy 1 experiments. Biotin/streptavidin labelling challenges and limitations
are discussed below in Section 4.5.3. copy -0 wide scan in Figure 4.17(g) shows 4 structures out of 10
with what might have 1 streptavidin label, i.e. a putative error in the computation. The rate of erroneous
structures is 40%, giving a success rate of 60% which fairs reasonably with our our 74% hardcoded-1:
2-labelling rate (see below), but of course suffers from small numbers in the statistics. copy 1 wide
scan in Figure 4.17(i) shows 15 structures with correct answer out of 23 total with 68% success rate which
is good considering the hardcoded-1: 2-labelling rate.
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Figure 4.17: bit-copy within origami results, depth 7. At the bottom, we have two views of the computing
circuit. On the left, in the green box, it is a strand view where staples and M13 scaffold are represented.
On the right, in the blue box, is the tile view (Scaffolded DNA Computer). The computation is visualised
for both as competing tiles/strands at each scaffold position. Based on the input (either 0 or 1), and the
competitive process, the sequence of computing strands is chosen. The middle of the figure is showing a
representation of expected result depending on the input. If input is 1, then 1 is to be copied by selecting
the strands modified with biotin (right). If input is 0, then 0 bit is to be copied where selected strands
are not labeled with biotin (left). On the top of the figure are the AFM results where when copying 0
there is no streptavidin label and when copying 1 streptavidin is showing bright.
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4.5.3 Control data: hardcoded-1 and hardcoded-0 labelling reference rates

The following data is reported in Figure 4.19.

Hardcoded-1: 2-labelling rate. In the hardcoded-1 control, Figure4.19(h), if we consider every
structure that has at least 2 putative streptavidins (i.e. two visible dots/blobs at valid computing region
positions) to be “reporting”, we get a count of 23 reporting structures out of 31, i.e. 74 %. In some cases,
we found that most of the structures were upside-down (flipped). If we eliminate those structures, we will
get a total of 24 structures where 19 out of them are reporting (83 %).

Hardcoded-1: 3-labelling rate. In the hardcoded-1 control, Figure4.19(h), if we consider only the
structures that show 3 dots, then there are 17 reporting structure out of 31 (55 %).

Hardcoded-0. Hardcoded-0 gave exactly what is expected, which is a biotin/streptavidin control square
showing good labelling, but not streptavidins visible on the computing region, see Figure 4.19(f) where we
have a small sample count of four structures. However, we counted other images of the same sample (data
not shown), and as expected they all showed no trace of streptavidin (except in the control square region).

On the other hand, hardcoded-1 showed biotin/streptavidin column with varying number of streptavidin
labels, Figure 4.19(h), but always ≤ 4. We note that, assuming perfect DNA strand synthesis and perfect
staple binding there should be 13 biotins present (at the 3’ and 5’ ends of 6 duplexes). However, each
streptavidin has a valency of 4 (binds up to 4 biotins), so the number of streptavidins imaged does not
precisely map to the number of biotins present (which is what we really care about). Finally streptavidin
binding is not always favoured [183], and of course the AFM tip may not “see” a streptavidin hanging at
the end of a wobbly 12bp duplex stem.

We saw 4 dots on very few structures. Seeing less than 3 dots (on hardcoded-1) denotes that streptavidin
binding, or streptavidin imaging, or strand purity (no biotin!), is certainly affecting our labelling/imaging
yield. One of our future work priorities is to refine the streptavidin imaging protocol, but more likely we
will focus on changing the design to make readout easier and have less variability.

As a streptavidin-labelling control, we will consider the hardcoded-1 control to be our guide as to the
maximum achievable labelling rate, even for a perfect computation (of say copy-1).

4.5.4 Program 2: addition (7-bit adder)

See Figure 4.18 for the 7-bit 2D Scaffolded DNA Computer addition program.

Analysis of AFM images for 7-bit addition

To analyse our data, given in Figure 4.19, we will follow the argument from Section 4.5.2 that the maximum
expected success rate for streptavidin labelling is 74 %. In Figure 4.19:

(a) shows a wide scan of the 1 + 1 = 2 computation that shows a total of 35 structures. In this case we
saw that more than 70 % of the structures were upside down (face down on the mica), and we note that
we found it quite tricky to see streptavidin on upside-down structures. We counted 9 out of 35, or 26 %,
with the correct result. But eliminating all upside-down structures, whether they answer correctly or not
gives 10 structures, with 5 of them reporting the correct answer (50 %; but smaller statistics).

(b) shows a wide scan of 1 + 7 = 8 computation that shows total of 14 structures. We see 9 structures
reporting the correct answer, i.e. 64 %. Eliminating all upside-down structures, whether they answer
correctly or not gives 6 structures, with 4 of them reporting the correct answer (67 %).
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Figure 4.18: Results for Scaffolded DNA Computer 7-bit addition program on 2D origami. For each
of (a–e) the 7-tile output of the abstract tile-level program is shown on the left hand side, read from
bottom to top (LSB on bottom). An orange dot is used to denote the bit 1, which corresponds in
turn to a biotin-streptavidin label on the DNA origami. In AFM images, white arrows point at the
biotin/streptavidin conjugation that reports bit 1. (a) addition in binary of: 1+1=2, giving 00000102
in binary. (b) addition of binary 1+7=8 (00010002). (c) addition of binary 2+7=9 (00010012).
(d) addition of binary 1+31=32 (01000002). (e) addition of binary 2+32=34 (01000102).

(c) shows a wide scan of 2+7 = 9 computation that shows total of 28 structures. 14 structure report the
correct answer, i.e. 50 %. Eliminating all upside-down structures, whether they answer correctly or not
gives 9 structures, with 7 of them reporting the correct answer (76 %; which is more than the hardcoded-1:
2-labelling rate.).

(d) shows a wide scan of 1 + 31 = 32 computation that shows total of 19 structures. We see 7 structures
reporting the correct answer, i.e. 37%. If we eliminate all of the upside-down structures either giving
correct answer or not, we should have total of 8 structures where 4 of them are giving the correct answer
(50 %).

(e) shows a wide scan of 2 + 32 = 34 computation that shows total of 11 structures. We see only 2
structures reporting the correct answer with ratio of 18%. If we eliminate all of the upside-down structures
either giving correct answer or not, there are 6 structures with 2 of them are giving the correct answer
(33 %).

Discussion. Due to streptavidin labelling problems, as already discussed, it could well be the case that
the algorithmic error rate for our system is significantly lower (better) than the streptavidin labelling
error rate we measure by AFM, which ranges widely from 18 % to 78 %; depending on the computation
and on the metric used (flipped or not), although we know from the hardcoded-1 controls that we should
not really expect more than 74 %, in the very best non-competitive/‘no computation’ case.
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Figure 4.19: Wide-scan AFM images. (a) addition in binary of 1+1=2, giving 00000102 in binary.
(b) addition of binary 1+7=8 (00010002). (c) addition of binary 2+7=9 (00010012). (d) addition of
binary 1+31=32 (01000002). (e) addition of binary 2+32=34 (01000102). (f) dardcoded-0 control
(00000002). (g) copy 0 (00000002). (h) hardcoded-1 control (11111112). (i) copy 1 (11111112).
(j) Origami without addition of streptavidin. DNA Origamis are annotated with coloured rectangles
depending on whether orientation and answer. Green boxes annotate structures with correct answers that
fell in the correct orientation. Blue boxes show structures that fell in the correct orientation but either not
showing the answer or showing an incomplete one. Yellow boxes annotate structures that fell upside-down
and showing correct answer. Red boxes annotate upside-down structures with no answer.

The main issues are: (a) One needs good imaging, and not too large of scans, in order to see the control
square clearly, and only then can one choose that image for data analysis. This takes time, skill and
patience. (b) Even with such an image, there is a lot of variability when imaging streptavidin by AFM (in
particular with our setup, as already discussed) – even on three subsequent scans of the same region a
streptavidin may appear, disappear and then appear again (this is explored in [183], SI-A). Hence, we
plan to improve our imaging protocol to get better statistics, and to investigate new reporting mechanisms
that, for example, encode more redundancy (so that multiple, e.g. 20, streptavidins are used to report a
single 1, much like in [183]), or use super-resolution fluorescence microscopy. See Section 4.6 for further
discussion.

4.6 Discussion

We report a new method for computing with DNA which features a strand displacement mechanism
(Figure 4.5) that is used in combination with a self-assembly process that occurs during a DNA origami
annealing protocol. We introduce a tile-based model, the Scaffolded DNA Computer, which allows us
to reason about and program these systems. The model is expressive, allowing for implementation of
arbitrary Boolean circuits, see Chapter 3. With the proposed model, the structure corresponding to the
correct execution of a computation is thermodynamically favoured. We leave in-depth theoretical analysis
of this model to future work.

We implement the 2-sided restriction (tiles use at most 2 sides) of the Scaffolded DNA Computer using
a synthetic 120-base scaffold (derived from M13) in 1D and a full DNA origami 2D. We can run any finite
state machine within this restricted model, see Figure 4.4 and Theorem 4.5. We implement 6 programs
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in 1D (testing 35 inputs for a total of 77 experiments excluding controls), including a functional 4-bit
adder, and 2 programs in 2D (7 executions), including a functional 7-bit adder. We estimate 91 % yield
for deterministic programs in the 1D Scaffolded DNA Computer.

We observe an overall success of our implementations which validates the soundness of the mechanism of
(Figure 4.5) and its computational applications. We report some limitations, in particular with respect to
precise results quantification, which open avenues for future improvements to the systems presented here.
In 1D:

1. We tend to observe signals farther from the baseline when the length of the computation increases,
suggesting a drop in efficiency of our mechanism with longer lengths. This observation does not
always hold, we sometimes observe similar performances at all lengths, Figure 4.11(e) is an example.
More experiments and theory about our computations are needed to understand this point better.

2. We are not able to precisely quantify the proportion of correctly executed computations from our
fluorescence curves as we lack a mechanism to “force our systems to completion” [130] and therefore
deduce the “true” signals for 0/1 outputs in each sample. Precisely evaluating the completion levels
of our samples is an important next step in this project.

3. Based on non-reported data, we also suspect that our system is energetically biased in favor of
quenching configurations, Figure 4.7(a), meaning that fluorescence curves are reporting signals lower
than they would be without this bias. In future work, we plan on evaluating this bias and potentially
compensate it (using longer toeholds for instance).

In 2D:

1. We currently rely on identifying the presence of individual streptavidin markers at precise positions
to report success. This has proven to be particularly challenging to image at the AFM, leaving us in
uncertainty when we do not see a streptavidin: (i) is the computation wrongly executed? (ii) did
no streptavidin bind yet? (iii) are the AFM parameters, and/or the long 12bp duplex attachment
levers, preventing us to seeing the streptavidin? We are actively working on reporting mechanisms
that are experimentally less challenging.

2. For an unknown reason, an outstanding proportion the origamis that we observed were flipped
(on separate imaging sessions), i.e. the origami is facing the mica (we can deduce this thanks to
the bottom-left biotin square control region). We suspect that this affects our ability to image the
streptavidins as we are imaging the origamis “from behind”. We want to read the outputs of our
future systems reliably independently of this flip.

Looking more broadly to the future, we contend that our proposal open a number of doors for many
extensions and generalisation of the work presented here. We intend to work on the following:

• in 1D, use a full-length M13 scaffold (e.g. 7,249 bases, instead of our 120-base M13-derived sequence)
which will allow us to run our programs on up to 302-bit inputs instead of the current 4-bit system.
This massive (potential) scale-up would no doubt present numerous challenges, but could also give
exciting new insights to scaffolded computation.

• Make full use of the 2D scaffold. We would remove the 2-sided constraint (only 2 side per tile, or
only 2 toeholds per staple) by implementing a mechanism to have more than 2 toeholds per staples
(e.g. with toehold-loopouts).
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• Computations where the result is a computed shape is a particularly exciting direction.

• Triggering a computation, after an origami has been annealed presents another form of computation,
perhaps more kinetically/slowly driven than the thermodynamically (“anneal it slowly”) approach
given here. In particular it could allow for our next point for shape-configuration: anneal one shape,
add a few strands to trigger a computation that gives a new shape!

As these ideas should attest, we hope the Scaffolded DNA Computer has an exciting future ahead of it.
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Appendix A

A survival guide to p-adic integers

Chapter 1 heavily relies on the notion of p-adic integers. The set of p-adic integers, denoted Zp, is the
set of p-ary strings that are infinite on their most significant side (so, infinite to the left following the
convention used in this thesis). In this appendix, while we will not go through the historical reasons why
these numbers were introduced at the end of the 19th century [126, 32], we will try to summarize some of
their brillant properties. We will intend to convince the reader that they provide a natural generalisation
of the arithmetics that we have been taught in elementary school, i.e. base-10 addition and multiplication
on finite representations. We will focus on Z2 as it is particularly relevant to Collatz due to Lagarias’
periodicity conjecture [99] (see Chapter 1, Section 1.1) but we will make clear what generalises to Zp with
p prime (or not). The ring (Z2,+,×) can be defined symbolically:

Definition-Lemma A.1 (The ring Z2). The set of binary strings that are infinite on their most significant
side is called Z2, the set of 2-adic integers. For instance, . . . 0101011101 = (01)∞1101 is an element of
Z2. Define + and × as the same elementary-school algorithms that we learnt on finite representations but
extended to these semi-infinite ones. Then, (Z2,+,×) forms a ring.

There is a lot to Definition-Lemma A.1. Let’s first explicit with examples what “extending the elementary-
school algorithms” for addition and multiplication means. Extending addition is the simplest, as it just
requires to continue adding and propagating carries for ever to the left (most significant side), with no
room for potential complications, see Figure A.1(a). However, for multiplication, at first sight, it is not
obvious that the elementary-school algorithm is well-defined for infinite representations. In fact, it turns
out that it is: the trailing zeros that are added at each addition step of the elementary-school algorithm
for multiplication (in bold in Figure A.1(b)) finitely limit the number of input bits that contribute to each
output bit. Let’s see all of this in the below examples:

We now have a good intuitive idea of what the operations + and × in Z2 are. We won’t prove the
claimed fact of Definition-Lemma A.1 that (Z2,+,×) is a ring and will take it for granted. We refer the
interested reader to [32] for more, an excellent course on the topic which is very well suited for computer
scientists72. Definition-Lemma A.1 can seamlessly be generalised to Zn for any n ∈ N (no need to be
prime for Zn and its operations to be defined).

72This course also features two other ways to construct the p-adic integers: (a) analytically, in a similar fashion to R,
by “completing” Q w.r.t to “p-adic” norm, which gives the slightly bigger set (and field) Qp and (b) algebraically, as the
“projective limit” of sets Z/pkZ, which corresponds to adding more and more base-p digits to create a full 2-adic integer.
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. . . 0 1 0 1 1 1 0 1
+ . . . 1 1 1 1 0 0 1 0
= . . . 0 1 0 0 1 1 1 1

(a) The last 8 bits of addition (01)∞1101 +
(1)∞0010 in Z2. Carries are represented by 0
and 1.

. . . 0 1 0 1 1 1 0 1
× . . . 1 1 1 1 0 0 1 0

. . . 0 0 0 0 0 0 0 0

. . . 1 0 1 1 1 0 1 0

. . . 0 0 0 0 0 0 0 0

. . . 0 0 0 0 0 0 0 0

. . . 1 1 0 1 0 0 0 0

. . . 1 0 1 0 0 0 0 0

. . . 0 1 0 0 0 0 0 0

. . . 1 0 0 0 0 0 0 0
+ . . . 0 0 0 0 0 0 0 0
= . . . 1 1 1 0 1 0 1 0

(b) The last 8 bits of multiplication (01)∞1101×(1)∞0010
in Z2. Each trailing 0s that is added at each addition
step of the elementary-school multiplication algorithm
is shown in bold. These 0s finitely limits the number of
input bits that contributes to an output bit.

Figure A.1: Computing the addition and the multiplication of 2-adic integers (01)∞1101 and (1)∞0010.

We give some fundamental facts about Z2:

1. Z2 is not countable, it has the same cardinality as R. However, Z2 and R are not isomorphic73. A
simple argument is that the number 1/2 cannot be represented in Z2. Indeed, 2× x with x ∈ Z2

necessarily ends with a 0 whereas 2× 1/2 = 1, which ends with a 1. Other fundamental differences
between Z2 and R are that there is no total order on Z2 that preserves operations74, and that the
sign of a 2-adic integer is not always defined. This point also holds for Zn with arbitrary n ∈ N: in
Zn, the number 1/pi cannot be represented, with pi prime factor of n, given a similar argument
that 1/2 6∈ Z2.

2. N = {0, 1, . . . } is isomorphic to the subset of Z2 of binary representations that start with an infinite
amount of leading 0s. For instance, 3 is the 2-adic integer (0)∞11. Same in Zn with arbitrary n ∈ N.

3. Z \ N is isomorphic to the subset of Z2 of binary representations that start with an infinite amount
of leading 1s. For instance, -1 is represented by (1)∞. This makes sense because, with our extended
addition algorithm we get that (1)∞ +1 = 0 as a carry propagates creating output bits 0s for ever75.
We also get that the number x = (1)∞0010 used in Figure A.1 is -14 since x+ (0)∞1110 = 0. Same
in Zn with arbitrary n ∈ N, but the representation of negative integers starts with prefix (n− 1)∞

where n− 1 is the biggest base-n digit.

4. Q – without fractions with even denominator – is isomorphic to the subset of Z2 with eventually
periodic representations. See a proof of this result in [43]. For instance, x = (01)∞ represents the
number −1/3. Indeed, like two combs with teeth and holes aligned, we have that 2x+x = (1)∞ = −1,
hence 3x = −1 and x = −1/3. We also get that the number x = (01)∞1101 used in Figure A.1 is
23
3 since x+ 2x = (0)∞10111, meaning 3x = 23. Same in Zn with arbitrary n ∈ N, but considering
fractions whose denominator is co-prime with n (if n is prime this means denominators that are not
multiples of n).

73Here, isomorphic means that there exists a ring isomorphism between the two rings, which is a bijection that preserves
operations + and ×. Intuitively, Z2 and R not being isomorphic means that Z2 is not R under disguise.

74Meaning, a total order < on Z2 such that a+ c < b+ c for all c if a < b and 0 < ab if 0 < a and 0 < b.
75We get a link here with the usual 2-complement representation of fixed-size signed integers in computer architectures.

The number -1 is represented by (1)k with k the size of the encoding, and the operation −1+ 1 = 0 works by overflow. More
generally, this practical representation is a finite approximation of Z2.
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5. Z2 is a ring but not a field, indeed, as seen in Point 1, the number 2 has no inverse in Z2. This
can be remediated easily by allowing for a decimal point and a finite number of decimals76. This
construction leads to Q2, the set of 2-adic numbers which is a field – i.e. all numbers have an inverse.
The inverse of 2 in Q2 is 0.1. The field Qp can be constructed in the same way if p is prime.

6. The field Q2 (see Point 5) is still not isomorphic to R, indeed Z2 ⊂ Q2 contains esoteric roots77

that are not real, such as
√
−7, i.e. a number x such that x× x = −7 = (1)∞001. Although, as in

R, there are at most two possible roots x1 and x2 and they satisfy x1 = −x2 – however, we can’t
say that one is “positive” or “negative”. The last twelve digits of one of the 2-adic roots of −7 are
...100010110101. Because

√
−7 is not a rational number, its 2-adic expression is not eventually

periodic. In Qp with p prime, we could find other examples of negative roots but not necessarily
the same as in Q2 (for instance,

√
−7 6∈ Q3, [79]). In general, it is known that there is no ring

isomorphism between Qp and Qq when p 6= q are primes [79], i.e. Qp and Qq really are different
kinds of numbers.

Remark A.2 (p-adic analysis and limn→∞ 2n = 0). Real analysis is fundamentally based on the existence
of the the norm x 7→ |x| and its associated distance d(x, y) = |x − y|. One beautiful feature of p-adic
numbers (Qp with p prime) is that one can do analysis with them pretty much like in R by considering
the p-adic norm, |x|p = p−val(x) where val(x) is the number of trailing 0s of x. This means that x and y
in Qp are close to one another, i.e. |x− y|p is close to 0, if they share a same suffix of digits. Thanks to
this metric, one can define continuity, differentiability etc... pretty much like in R and do analysis in a
similar way78 [32]. Under this metric we have limn→∞ pn = 0. In Q2 (and Z2 by restriction) we get the
odd-looking limn→∞ 2n = 0 (since each power of 2 adds one more digit 0 as suffix, one has to look farther
and farther differentiate from 0).

Let’s prove the following Lemma that is used in Chapter 1 Section 1.1, when computing the Collatz
sequence of rational numbers:

Theorem A.3 (The parity of a 2-adic rational is the parity of its numerator). Let x ∈ Q ∩ Z2, which
means that x = a/b with b odd (Point 4) and x = . . . b2b1b0 ∈ Z2. Then, b0 = a mod 2, i.e. the parity of
x (its least significant 2-adic bit) is the parity of its numerator.

Proof. Because x is rational, it has an eventually periodic 2-adic representation (Point 4 and [43]). If we
write w0 and w1 in {0, 1}∗ such that the 2-adic representation of x is (w1)

∞w0, then it is known that
x = Jw0K2 + 2|w0|Jw1K2 1

1−2|w1| [43, 32]. We want to show that the least significant bit of w0 is the least

significant bit of a in x = a/b. We have: x = Jw0K2+2|w0|Jw1K2−2|w1|Jw0K2
1−2|w1| . Note that the denominator is odd,

so no power of 2 can be removed from the numerator. Hence a ≡ Jw0K2 + 2|w0|Jw1K2 − 2|w1|Jw0K2 mod 2,
giving a ≡ Jw0K2 mod 2, giving what we want: the least significant bit of a is the least significant bit of
w0 which is the least significant bit of x.

Remark A.4 (Computing the 2-adic representation of a rational). If x ∈ Q has an odd denominator
then it has a 2-adic representation (Point 4). To get its representation, we apply the same algorithm than
we would use on natural numbers: thanks to Theorem A.3 we know that b ∈ {0, 1}, the least significant

76Allowing for a finite number of decimals only is crucial in order to preserve the soundness of the definition of + and ×.
77It is known that integer k 6= 0 admits a square root in Z2 if k = 4a(8b + 1) for some a ∈ N,

b ∈ Z. Integer -7 is given by a = 0 and b = −1. See https://math.stackexchange.com/questions/473595/
characterization-of-integers-which-has-a-2-adic-square-root. In general, there are known algorithms to compute
square roots in Q2 (when they exist) and interestingly, these methods are very similar to Newton’s method for finding the 0s
of a real function [32].

78One can even run Newton’s algorithm for finding the 0s of a function[32]!

https://math.stackexchange.com/questions/473595/characterization-of-integers-which-has-a-2-adic-square-root
https://math.stackexchange.com/questions/473595/characterization-of-integers-which-has-a-2-adic-square-root
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bit of x, is given by the parity of the numerator of x; we store b then we do x := (x− b)/2 then iterate
to get all the 2-adic digits of x. In other words, the 2-adic representation of x is its parity vector (see
Chapter 1, Section 1.3.3) under the “trivial” Collatz-like map x 7→ x/2 if x is even and x 7→ (x − 1)/2

when x is odd – this map is also known as the shift map26 and is denoted S [139]. Rationals (with odd
denominator) are exactly the numbers that reach a cycle under iteration of that map. Whether this is
also true for the Collatz map itself is Lagarias’ periodicity conjecture (Chapter 1, Section 1.1).

The other result that we have used in Chapter 1 (Remark 1.24) is the following:

Theorem A.5 (Aperiodicity in Z6). Let φ : Z2 × Z3 → Z6 be the ring isomorphism from Z2 × Z3 to Z6

(Lemma 1.23). Then, for x, y ∈ Q∩Z2 ∩Z3 we have φ(x, y) ∈ Q iff x = y. The later means that φ(x, y) is
eventually periodic if and only if x and y are eventually periodic and represent the same rational, see
Remark 1.24 for the consequence of this fact in tilings.

Proof. Having x ∈ Q ∩ Z2 ∩ Z3 means that x is a rational with denominator that is not a multiple of 2
nor a multiple of 3 (Point 4). Hence the denominator of x is not a multiple of 6 and hence we know that
x has a representation (eventually periodic) in Z6: x ∈ Z6. Assume x = y and x = a/b, b 6= 0. Then by
ring isomorphism, bφ(x, x) − a = φ(bx − a, bx − a) = φ(0, 0) = 0. Hence φ(x, x) = a/b = x ∈ Z6 and is
eventually periodic. Assume that φ(x, y) = a/b ∈ Q with b 6= 0, then, by Point 4, a/b ∈ Z6∩Q implies that
b contains no factor 3 or 2, hence a/b ∈ Q ∩ Z2 ∩ Z3. By ring isomorphism we have φ(bx− a, by − a) = 0,
hence bx− a = by − a = 0 and x = y = a/b.
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Appendix B

Tiling interpretation of Mahler’s 3/2 problem

Mahler’s 3/2 problem was stated in 1968 as follows [107]: does there exist α > 0 ∈ R such that for all
n ∈ N the fractional part of α(3/2)n is less than 1/2? Such α is called a Z-number. By writing real
numbers in base 6, the problem asks whether the first fractional digit of α(3/2)n can remain in {0, 1, 2}
for all n ∈ N or not. Mahler conjectured that there are no Z-numbers. The problem has been studied
by many authors but remains open to this day [68, 5, 62, 87, 91]. Here, (a) we reformulate the problem
using the 6 Collatz tiles introduced in Chapter 1, (b) we reformulate the link established by Mahler [107]
between the 3/2 problem and the Generalised Collatz Map defined in Z2 by M(x) = 3x/2 when x is even
and M(x) = (3x+ 1)/2 when x is odd (it’s almost Collatz!) with the result that there is no Z-number
between x and x+1 with x ∈ N if iterating M starting from x eventually gives two successive odd iterates
and (c) we give a visual, tile-based, proof that there are no Z-numbers between 0 and 1. Our tile-based
reformulation of Mahler’s 3/2 problem is very close in spirit to the cellular-automaton reformulation of
Jarkko Kari [86] and Johan Kopra [91, 87].

The results presented here were nurtured at the occasion of a research trip to Finland where I visited
Jarkko Kari and Johan Kopra. I thank them for this inspiring trip.

B.1 Tile-based reformulation

The central idea, which comes from [86] is that the tiles can encode a base-6 encoded real on a south-east
going diagonals with finitely many non-0 tiles in the north-west direction (i.e. the integer part of a real is
of finite size) and that parallel diagonals respectively multiply by 3/2 in the south-west direction and 2/3
in the north-east direction:
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In the above example, an arbitrary α > 0 ∈ R is given on the central diagonal as a base-6 represented
real (set abusively denoted R6) α = 21.252005 . . . . On the diagonal parallel below it we read 32.12001 . . .

which is the beginning of the base-6 representation of 3
2α and on the diagonal parallel above it we read

12.55320 . . . which is the beginning of the base-6 representation of 2
3α. In low opacity we have represented

intermediate tiles involved in the computation of these 3
2α and 2

3α diagonals. The placement of the
decimal point is arbitrary as long as there are only finitely non-0 tiles to the north-west of it (i.e. if we
changed the position of the decimal point in the above example the result would still hold for the new
numbers that we would read). Note that Chapter 1 does not give this result since it focuses mainly on
p-adic integers instead of reals, the result is given by [86] (and exploited in [91, 87]) which interprets the
successive base-6 reals as configurations of a cellular automaton.

Then, Mahler’s problem is all about the (anti) diagonal outlined in red, that we call “Mahler’s diagonal”
below:

Mahler’s question reformulates into whether or not there exists an α > 0 ∈ R (called Z-number) such
that all the tiles on Mahler’s diagonal are in {0, 1, 2} i.e. the north color of the tiles on Mahler’s diagonal
is always 0. Here we see that α = 21.252005 . . . is not a Z-number since there is a tile 3 on Mahler’s
diagonal.

Schematically, the following represents the constraints satisfied by a Z-number α, note that using
Corollary 1.18 we have chosen to represent the integral part of α in binary as it removes part of the tiling
that is “only” doing base-6 to base-2 conversion:
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There are two constraints for α to be a Z-number (solid traits): (a) its integral part must be a natural
number, hence starting with prefix 0∞, or equivalently, have finitely many 1s, and (b) the north color of
all tiles on Mahler’s diagonal (solid red) must be 0 (this is equivalent to asking that these tiles are in
{0, 1, 2}). Note that Mahler’s diagonal is entirely determined by the choice of α. The converse is not true:
while setting Mahler’s diagonal will uniquely determine the integral part of α, it does not uniquely map
to a fractional part because it involves using the north-west corner of the tiles that is nondeterministic
(see Figure 1.7), hence no corresponding fractional part may exist at all or potentially, several could.

With this schema we get a sense of the hardness of Mahler’s problem: a Z-number is over-constrained.
Indeed, if you lift constraint (a) of the integral part being a natural number (i.e. starting with prefix 0∞)
then, for any choice of fractional part, a unique valid tiling is determined and reconstructs an “integral
part” in Z2 such that Mahler’s diagonal is valid (all its tiles are in {0, 1, 2}). However, such numbers with
infinite integral part and infinite decimal part do not form a ring so we can hardly call them numbers.

B.2 Link with Mahler’s Collatz-like map

Here we want to convince you of the fact proven by Mahler in [107] that the sequence of integral parts
of α(3/2)n with α a Z-number is given by iterating the Collatz-like map M(x) = 3x/2 if x is even and
M(x) = (3x+ 1)/2 if x odd, on the integral part of α, i.e. bαc. Like the Collatz map, this map is defined
not only on N but on Z2 entirely, see Chapter 1 and Appendix A.

If α is a Z-number with odd integral part we are in the following situation:

The tile below the last bit of the integral part of α is constrained to have north color 1 (the integral
part is odd) and to have south color 0 (Mahler’s diagonal constraint). Only one tile can fit: tile 4 (see
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Figure 1.7) – we can also deduce that the tile directly to its right is tile 2 (low opacity above). Hence, by
Theorem 1.25, the next integral part (in blue above) is given by f(bαc) with f the function computed by
(↙, 4) which is x 7→ (3x+ 1)/2, see Chapter 1, Section 1.3.1 for more details.

If α is a Z-number with even integral part, the constraints applied to the tile just below the last bit of
the integral part are 0 on the north (even integral part) and 0 on the south (Mahler’s diagonal constraint),
which would theoretically allow for two tiles to fit, tile 0 and tile 2 (Figure 1.7). Let’s try tile 2:

The issue if using tile 2 is that the position directly to the right of it, which holds the first digit on
Mahler’s diagonal, cannot admit any tile because it has color 2 on the west and color 0 on the north and
no tiles of the Collatz tile set satisfy this constraint (Figure 1.7)! Hence we can’t use tile 2 as it violates
the hypothesis that α was a Z-number, thus with defined first digit on Mahler’s diagonal.

Hence we have to pick tile 0 and we are in the following situation – we also deduce that the tile
immediately to its right is tile 0 (low opacity):

Hence, by Theorem 1.25, the next integral part (in blue) is given by f(bαc) with f the function computed
by (↙, 0) which is x 7→ 3x/2, see Chapter 1, Section 1.3.1 for more details.

Altogether, by iterating this argument, we get that the successive integral parts of α(3/2)n of α a
Z-number are given by iterating M(x) = 3x/2 if x is even and M(x) = (3x+1)/2 if x is odd, on bαc (the
integral part of α).

Mahler proved that if the iterates of M(x), with x ∈ N, eventually produce two successive odd numbers
then there are no Z-numbers between x and x+ 1. We prove this fact with the tiles:

Theorem B.1 ((16) in [107]). Let x ∈ N, if there exists k ∈ N such that the iterates Mk(x) and Mk+1(x)

are both odd then there is no z-number between x and x+ 1.

Proof. The proof is visual. Given the points that we have made in this section, we know that two successive
odd iterates of M corresponds to the following situation:
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There are two successive tiles 2 on Mahler’s diagonal, which create the constraint of having west color
2 and north color 0 on the position marked with a red cross. There are no tiles that fit this constraint
hence there is no possible reconstruction of a fractional part for any potential Z-number between x and
x+ 1. Hence, there are no Z-number between x and x+ 1.

Iterating Mahler’s map starting from any x ∈ N+ seems to always lead to having 2 successive odd
iterates, for instance, here are the iterates of 237:
237, 356, 534, 801, 1202, 1803, 2705, 4058, 6087, 9131, 13697, 20546, . . .

We reach two successive odd iterates, 1803 and 2705 after 5 iterations: there are no Z-number between
237 and 238.

This observation leads to the following Collatz-flavored conjecture which because of Theorem B.1 (and
Section B.3 for the case x = 0), implies the non-existence of Mahler Z-numbers:

Conjecture B.2. For all x ∈ N+, there exists k ∈ N such that the iterates Mk(x) and Mk+1(x) are both
odd, with M(x) = 3x/2 when x is even, and M(x) = (3x+ 1)/2 when x is odd.

Remark B.3 (Tile-based interpretation of (11) in [107]?). Mahler also gives the following result: there is
at most one Z-number between x and x+ 1 for x ∈ N ((11) in [107]). We currently fail to interpret this
result with the tiles as it seems to involve working with the nondeterministic north-west corner of the tiles
and seems to indicate that there is at most one possible reconstruction in the nondeterministic direction,
which is surprising to us. We leave to future work to understand this point.

B.3 No Z-number between 0 and 1

Theorem B.1 cannot be used in the case x = 0 since iterating Mahler’s map M from 0 will produce only
0s, which are all... even. Note that 0, if it was not excluded of the definition of Z-numbers then it would
be a perfectly correct Z-number, and probably the result referred to in Remark B.3 that there is at most
one Z-number between x and x+ 1 for x ∈ N would still apply in this edge case giving that there can be
no other Z-number than 0 in [0, 1], but one would have to check the original paper carefully [107].

We take another route by showing that there are no Z-number between 0 and 1 with the tiles. Because
the integral part of α is 0 and because of Mahler’s constraint we know that all the tiles north-west of
Mahler’s diagonal (not including the diagonal) are tiles 0s. This implies that there cannot be any 2 on
Mahler’s diagonal because the west color of tile 2 is 1 and it would contradict that the east color of the
tile directly to its left must be a 0 since this tile is tile 0.

Hence, we can only have tile 0 or 1 on Mahler’s diagonal. Take the first time a tile 1 is place on Mahler’s
diagonal, locally, we are in the following situation:
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The next tile cannot be tile 0 because it creates the constraint of having west color 0 and north color 1
for the tile directly to its right, which doesn’t correspond to any of the Collatz tiles:

Hence, it must be tile 1:

The tile after that cannot be tile 0 for the same reason as above (a tile 0 cannot come right after a tile 1
on Mahler’s diagonal) and it also cannot be another tile 1:
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In all cases, we reached the impossibility of reconstructing a fractional part, hence there are no Z-number
between 0 and 1.

Remark B.4 (Forbidden patterns on Mahler’s diagonal). More generally we have shown that several
patterns are forbidden on Mahler’s diagonal if we are to have a Z-number: Theorem B.1 relies on the fact
that we can’t have two successive tiles 2 on Mahler’s diagonal, and above we saw that we cant have tile 0
directly after tile 1 or three successive tile 1s in a row on Mahler’s diagonal.
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Appendix C

coreli: the Collatz research library

In this Appendix, we give a tutorial on coreli v0.0.3, the Collatz research library79, which is a Python
library containing tools useful for researching on Collatz, including visualisation of the tilings presented in
Chapter 180.

This tutorial is relevant for version v0.0.3 and might unfortunately become obsolete for later versions
as the library evolves.

Installation

coreli is hosted on Github: https://github.com/tcosmo/coreli (v0.0.4 at the time of this writing).
You can install it (for instance, in a python3 virtual environment) by doing: pip install coreli. If you
have any trouble installing coreli, please open an issue on https://github.com/tcosmo/coreli/issues.
coreli has a documentation that is hosted at https://dna.hamilton.ie/tsterin/coreli/docs/.

We will now illustrate coreli’s features through code snippets.

Base conversion

When numbers are represented as strings, the least significant digit is to the right but when represented
as list we put the least significant digit at index 0.

>>> from coreli import int_to_base
>>> int_to_base(13,2)
'1101'
>>> int_to_base(13,2,9)
'000001101'
>>> int_to_base(13,2,to_str=False)
[1, 0, 1, 1]
>>> int_to_base(313,5)
'2223'
>>> int_to_base(313,5,to_str=False)
[3, 2, 2, 2]

79Any similarity with Arcangelo Corelli is purely coincidental: https://www.youtube.com/watch?v=5BPhkY6xIP8
80This library was initially released in the context of our first work on the Collatz process, [154].

https://github.com/tcosmo/coreli
https://github.com/tcosmo/coreli/issues
https://dna.hamilton.ie/tsterin/coreli/docs/
https://www.youtube.com/watch?v=5BPhkY6xIP8
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p-adic integers

Our p-adic integers (p is arbitrary, not necessarily prime) implementation consists in specifying a
digit_function that returns the value of the nth digit of the p-adic integer. That function can be
inferred automatically if the p-adic integer is constructed from an int or rational (assuming the rational
can be represented in Zp).

>>> from coreli import Padic
>>> from sympy import Rational
>>> Z2 = Padic(2)
>>> Z2.from_int(25).to_str()
'...0000011001'
>>> Z2.from_rational(Rational(-1,23)).to_str(20)
'...00101100100001011001'
>>> x = Z2(digit_function = lambda n: n\%2)
>>> x.to_str()
'...1010101010'

coreli implements rings operations on p-adic integers, addition:
>>> from coreli import Padic
>>> Z2 = Padic(2)
>>> x = Z2.from_int(25)
>>> (47 + x).to_str()
'...0001001000'
>>> z = Z2(digit_function = lambda n: n\%2)
>>> (z + z + x).to_str(20)
'...01010101010101101101'

and multiplication:
>>> from coreli import Padic
>>> Z2 = Padic(2)
>>> x = Z2.from_int(3)
>>> (2*x).to_str()
'...0000000110'
>>> (5*x).to_str()
'...0000001111'
>>> (27*x).to_str()
'...0001010001'
>>> (x*x).to_str()
'...0000001001'
>>> y = Z2(digit_function=lambda x: (x+1)%2)
>>> (3*y + 1).to_str()
'...0000000000'

coreli also implements left and right shifts operations:
>>> from coreli import Padic
>>> Z2 = Padic(2)
>>> x = Z2.from_int(3)
>>> x.to_str()
'...0000000011'
>>> (x << 3).to_str()
'...0000011000'
>>> (x >> 1).to_str()
'...0000000001'
>>> (x >> 2).to_str()
'...0000000000'
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Rational p-adic integers

Rational p-adic integers are eventually periodic (see Appendix A). coreli gives the eventually periodic
decomposition of a p-adic rational, i.e. its period and initial segment:

>>> from coreli import Padic
>>> Z2 = Padic(2)
>>> x = Z2.from_int(0)
>>> x.rational_periodic_representation()
'(0)*'

>>> x = Z2.from_int(-17)
>>> x.rational_periodic_representation()
'(1)* 01111'

>>> x = Z2.from_rational(Rational(1778,53))
>>> x.rational_periodic_representation()
'(0010000111001111101100101011011110001100000100110101)* 101010'

>>> x = Z2.from_rational(Rational(-1,23))
>>> x.rational_periodic_representation()
'(00001011001)*'

>>> Z3 = Padic(3)
>>> x = Z3.from_rational(Rational(346,86))
>>> x.rational_periodic_representation()
'(102221010010202201110120001212212020021112)* 22'

Collatz maps

coreli implements Collatz maps C and T on integers, rationals (with odd denominator), and 2-adic
integers.

Examples with T :

>>> from coreli import T, Padic
>>> from sympy import Rational
>>> T(2)
1
>>> T(3)
5

>>> T(Rational(-2,23))
-1/23
>>> T(Rational(-1,23))
10/23

>>> Z2 = Padic(2)
>>> minus_one_third = Z2(digit_function = lambda n: (n+1)%2)
>>> T(minus_one_third).to_str()
'...0000000000'

>>> from sympy.ntheory.primetest import is_square
>>> some_2_adic = Z2(digit_function = lambda n: int(is_square(n)))
>>> some_2_adic.to_str(40)
'...0001000000000010000000010000001000010011'
>>> T(some_2_adic).to_str(40)
'...0001100000000011000000011000001100011101'
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You can iterate the Collatz maps thanks to the iterate and iterates utilities:

>>> from coreli import T, iterate, iterates
>>> iterate(T,0,23)
23
>>> iterate(T,7,23)
5
>>> iterates(T,7,23)
[23, 35, 53, 80, 40, 20, 10, 5]

Parity vectors

Collatz parity vectors (see Chapter 1, Section 1.3.3) can be represented easily with coreli either from a
given parity sequence or computed from the Collatz sequence of a number (here 23):

>>> from coreli import ParityVector
>>> ParityVector([0,1,1,0,1])
[0, 1, 1, 0, 1]
>>> ParityVector.from_Collatz(23,7)
[1, 1, 1, 0, 0, 0, 0, 1]

From a parity vector, we can compute its corresponding α and β (see Chapter 1, Corollary 1.36) which
are the smallest integers in N such that β = Tn(α) with n the length of the parity vector and such that
the iterates follow the parities given by the parity vector:

>>> from coreli import ParityVector, T, iterates
>>> pv = ParityVector([0,1,1,0,1])
>>> pv.first_occurrence()
(22, 20)
>>> pv.first_occurrence(symbolic=True)
('10110', '202')
>>> iterates(T, len(pv), 22)
[22, 11, 17, 26, 13, 20]

In the above example (α, β) = (22, 20) for parity vector p = [0, 1, 1, 0, 1] of length n = 5 since 20 = Tn(22)

and iterates [22, 11, 17, 26, 13] have the parities given by p. Note that because of fences and poles
iterates(T, len(pv), 22) is of size n+ 1. If symbolic is set to True then α is given in base 2 on n
bits and β in base 3 on k bits with k the number of 1s in p.

Rational cycles

By Chapter 1, Theorem 1.58, we know that to each parity vector is associated exactly one rational that
cycles under Collatz iterations while following the parities given by the parity vector. Given a parity
vector, coreli computes this rational:

>>> from coreli import ParityVector
>>> pv = ParityVector([0,1,1,0,1])
>>> pv.cyclic_rational()
46/5

Indeed, 46/5 cycles under Collatz (we can apply Collatz on odd-denominator rationals as they are 2-adic
integers, Chapter 1, Section 1.1 and Appendix A) following [0, 1, 1, 0, 1] parities:

>>> from coreli import T, iterates
>>> from sympy import Rational
>>> iterates(T, len(pv), Rational(46,5))
[46/5, 23/5, 37/5, 58/5, 29/5, 46/5]
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Most complex tile

Chapter 1, Section 1.5 defines the “most complex tile” (MCT) of a parity vector, Definition 1.64. We can
compute MCT with coreli, using an example of Figure 1.21:

>>> from coreli import ParityVector
>>> ParityVector([1,1,0,1]*2).most_complex_tile()
2

>>> ParityVector([1,1,0,1]*2).rotate()
[1, 0, 1, 1, 1, 0, 1, 1]
>>> ParityVector([1,1,0,1]*2).rotate().most_complex_tile()
3

>>> ParityVector([1,1,0,1]*2).rotate(-1)
[1, 1, 1, 0, 1, 1, 1, 0]
>>> ParityVector([1,1,0,1]*2).rotate(-1).most_complex_tile()
5

Tilings

For this feature, we highly recommend using Jupyter Lab (it can be used directly in vscode) which we
allow for direct visualisation and even interactivity.

coreli provides helpers to construct some seed tilings: south_east_corner, south_west_corner,
north_east_corner, base6_diagonal, base32_diagonal.

Example on south_east_corner (please see the doc81 for description of the other listed helpers):

>>> from coreli.Collatz_tilings import south_east_corner
>>> t = south_east_corner("0011101", "11000201")
>>> t.draw_svg()

>>> t.all_steps()
>>> t.draw_svg()

81https://dna.hamilton.ie/tsterin/coreli/docs/

https://dna.hamilton.ie/tsterin/coreli/docs/
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Function t.all_steps performs tiling steps until no more are possible. The function t.step performs
just one step. The function t.draw_svg returns a svg that can be further saved to a svg file or png:

>>> t.draw_svg().saveSvg("tiling.svg")
>>> t.draw_svg().savePng("tiling.png")

In a Jupyter notebook a simulation can be made interactive easily:

>>> from coreli import interactive
>>> from coreli.Collatz_tilings import south_east_corner
>>> t = south_east_corner("0011101", "11000201")
>>> interactive(t)

Pressing the button Step will update the frame with one more tile, All steps will update the frame
with all tiles and Reset will reset the simulation.

Tilings from parity vectors

A parity vector can be converted into the associated tiling (see Chapter 1, Section 1.3.3):
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>>> from coreli import ParityVector
>>> pv = ParityVector([1,1,0,0,0,1])
>>> tiling = pv.to_tiling()
>>> tiling.draw_svg()

>>> tiling.all_steps()
>>> tiling.draw_svg()

Collatz ancestors regular expressions

Present in earlier versions of coreli, this feature, which explicitly constructs regular expressions for odd
predecessor sets (see Chapter 1, Section 1.6 and [154]) is currently being re-implemented and should be
available soon.
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Appendix D

bbchallenge.org

(a) Space-time diagram of bbchallenge ma-
chine #9,005,190 which prints Sierpiński tri-
angles. https://bbchallenge.org/9005190&s=
30000&ox=0.4. Found by bbchallenge collaborator
@IijiI.

(b) Space-time diagram of bbchallenge machine
#14,263,231 which simultaneously counts in base
2 (left) and 3 (right). https://bbchallenge.org/
14263231.

Figure D.1: Two out of the 88,664,064 five-state Turing machines of http://bbchallenge.org.

After having worked on busy beaver value BB(15) and having realised that it is very unlikely that
we’d ever know it as that would imply to solve a hard number-theoretical conjecture, see Chapter 2,
we were motivated to take the problem “by the other end” and to study the smallest unknown busy
beaver value: BB(5). It is conjectured that BB(5) = 47, 176, 870 because the current champion, https:
//bbchallenge.org/1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA&status=halt, has been undefeated since
the 1990s and halts after 47, 176, 870 steps [109, 1]. To settle the conjecture, based on the method given in

https://bbchallenge.org/9005190&s=30000&ox=0.4
https://bbchallenge.org/9005190&s=30000&ox=0.4
https://bbchallenge.org/14263231
https://bbchallenge.org/14263231
http://bbchallenge.org
https://bbchallenge.org/1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA&status=halt
https://bbchallenge.org/1RB1LC_1RC1RB_1RD0LE_1LA1LD_1RZ0LA&status=halt
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[109], one has to study a set of roughly 88M Turing machines and decide for each of them whether it halts or
not (from blank tape). We believe that this task, due to its magnitude, is inherently collaborative and that
its only hope of success resides in the joint efforts of many passionate people coming up with verifiable ways
to automatically decide these machines. This is why we created the platform https://bbchallenge.org
which makes the 88M machines publically available (https://bbchallenge.org/method#download) and
keeps track of these ongoing efforts. For the results of these efforts to be accepted and trusted by the
wider scientfic community our project distinguishes itself by having a rather strict “reproducibility and
verifiability statement” which is imposed on any piece of software developped for the project.

For more information, please refer to:

• https://bbchallenge.org/story

• https://bbchallenge.org/method

• https://bbchallenge.org/contribute

https://bbchallenge.org
https://bbchallenge.org/method#download
https://bbchallenge.org/story
https://bbchallenge.org/method
https://bbchallenge.org/contribute
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Appendix E

Appendix to Algorithmic DNA Origami

E.1 Background and additional theory

E.1.1 A few future work theory questions

Using the conventions of Section 4.2:

1. Are final configurations (when they exist) always reachable?
2. Are thermodynamically optimal configurations always reachable?
3. Are thermodynamically optimal configurations always final?
4. We know from Chapter 3 that it is possible to simulate Boolean circuits in the Scaffolded DNA

Computer. However, is it possible to implement any Boolean circuit in a ‘kinetic sense’ where there
is only one reachable final configuration that is thermodynamically optimal?

E.1.2 Our tile set encoding does not cheat

Our simulation of finite state machines (FSMs) with the Scaffolded DNA Computer, Figure 4.4, is unusual
for a few reasons. First, a single tile encodes both the current input symbol(s), and next input symbols(s),
whereas in 2D aTAM [125, 57] systems, these are generally de-coupled and encoded by distinct tiles.
Second, here, a single tile, and even a single tile side’s colour (glue), encodes both input (read) information,
and finite state machine state name. Third, one could imagine our 1D computations are simply a bunch
of translators [168]!

To address these questions we note that when defining a new model of computation, it is important to
very clearly set out the permitted computational power of the encoding function: a mathematical function
that maps inputs (here, bit/trit strings) and programs (FSMs) to instances of the model (a tile set). We
need the encoding to be so simple, it provably does not clandestinely perform the computation ‘under the
hood’. Here, we note that mapping a FSM and its bit-string input to a tile set is a simple task, specifically
a task that is simpler than the computation itself (except for the trivial case of bit-copy, which is barely
a computation). For brevity, we omit a full mathematical formalisation.82

82We would formalise this intuition by using the mathematical notion of uniformity from computational complexity
theory [118, 77]. Specifically, all of our input encoding schemes are AC0-uniform, and many of our computations, e.g parity,
are not. Even stronger, all of our tile sets are encodable by the more restrictive notion of uniformity called DLOGTIME-
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E.2 Sequence independent reporting mechanism

Mechanism. The reporting mechanism used to read results of the 1D Scaffolded DNA Computer is
depicted in Figure 4.7. It consists in a Iowa Black FQ quencher attached to 20-base domain Q and
ATTO-590 fluorophore attached to 20-base domain F. In order to report, for instance at position A, the
strand at position B is prefixed with domain F* to allow the fluorophore to bind. Then, strands reporting
a 0 at position A will be suffixed with domain Q* to allow the quencher to bind and trigger quenching of
the fluorophore. In order to report a 1, no domain is suffixed and quenching is not triggered. In practice,
several strands compete at the reporting position, some with domain Q* and some without, depending on
the output that they encode.

Sequence design. The following principles were used to design domains F and Q of the reporting
mechanism (also called SIRM.RQ and SIRM.RF):

• Hard constraints (i.e. non-compliant sequences are rejected):

1. 20 bases.

2. Alphabet A,T,C and at most 1 G.

3. No patterns CCCC, GGGG, AAAAA, TTTTT.

4. Watson-Crick energy (according to nearest-neighbour model [142]) be between -21.7 and -21.95
kcal/mol (-21.7 is the average Watson-Crick energy computed over 10,000 20-base strands).

5. 4 bases next to fluorophore should not be G.

• Soft constraints (i.e. sequences may not comply but are optimised to do their best):

1. Intra-domain secondary structure ≥ -0.1 kcal/mol (using pfunc from NUPACK4 [69])

2. Binding energy83 between SIRM.RF and SIRM.RQ ≥ -3 kcal/mol (in all possible 4 ways in
terms of reverse complementation)

We used sequence designer DSD84, which in turn makes extensive use of NUPACK4 [69].

Sequences. The designed sequences are:

• SIRM.RQ: CCCACCTCTCCACACTACCC/3IABkFQ/

• SIRM.RF: /5ATTO590N/ACCATCCCTTCGCATCCCAA

Controls. We would hope that our reporting mechanism gives similar signals for reporting a bit 0 (resp.
bit 1) at all positions A/B/C/D. In order to control for this we ran 15 samples reporting bit 0 and 15
samples reporting bit 1 varying the position of reporting (A,B,C,D), the strands present at non-reporting
positions and the total amount of DNA in solution. Normalised fluorescence results are reported in
Figure E.1. More precisely:

• 15 bit-0 samples (Figure E.1a):

uniform, and except for the trivial case of bit-copy, our computations are not solvable in DLOGTIME. Thus parity, and the
other non-trivial problems, are not solvable by the encoding function. Formalising all of this requires encoding tile sets as
strings, and is straightforward by known methods, if a bit tedious.

83We use the same notion of binding energy as in [183]: binding(A,B) = pfunc(A,B)-pfunc(A)-pfunc(B).
84https://github.com/UC-Davis-molecular-computing/nuad, project led by David Doty, UC Davis.

https://github.com/UC-Davis-molecular-computing/nuad
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(a) All 0 controls (15 samples) 
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(b) All 1 controls (15 samples) 
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(c) All 0/1 controls at positions other than A (15 samples) 
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(d) All 0/1 controls at position A (15 samples) 

Figure E.1: 0/1 controls for the sequence independent reporting mechanism. Each control sample was
divided into two qPCR wells: there are two curves per sample (same color). In (a) and (b) all the controls
for reporting 0/1 are displayed. What varies between control samples can be: the reporting position,
the strands present at non-reporting positions or the total amount of DNA in solution. We observe
bi-modality in the controls reporting a 1: we can distinguish two subsets of curves, one centered around
0.8 and the other centered around 0.9. In (b) and (c), we explore the bi-modality by splitting all the
controls in two: (c) controls placed that at positions other than A (i.e. B,C,D) and (d) controls placed
solely at position A. We happen to have as many controls at position A as are at positions B,C,D. In (c,d)
we see that the bi-modality in controls for 1 is only present among those at position A.

– 8 samples at position A, no variation (i.e. 8 samples with exact same mix content)

– 3 samples at position B, varying non-reporting strands and total quantity of DNA in solution
(1x and 2x)

– 2 samples at position C, varying non-reporting strands

– 2 samples at position D, varying non-reporting strands

• 15 bit-1 samples (Figure E.1b):

– 7 samples at position A, no variation (i.e. 7 samples with exact same mix content)

– 2 samples at position B, varying non-reporting strands

– 2 samples at position C, varying non-reporting strands

– 4 samples at position D, varying non-reporting strands and total quantity of DNA in solution
(1x,2x,4x)
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Figure E.2: baseline 0 and 1 values. Dashed boxes outline the data points averaged to compute the
baseline values.

Our control dataset is biased at position A in the following ways:

• We have as many controls for position A alone (Figure E.1d) as for all other positions B,C,D
(Figure E.1c).

• All the bit-1 (resp. bit-0) controls at position A follow the exact same recipe, there is no variation
in non-reporting strands (there are none of them) and the total quanity of DNA in solution is the
same (up to experimental error and precision).

Although we have performed the exact same 0/1 reporting mixes at position A, but on different days, we
observe bi-modality in the distribution of the bit-1 samples, Figure E.1(d): we can distinguish two subsets
of curves, one centered around 0.8 and the other centered around 0.9. This variance indicates sensitivity
of the reporting mechanism to experimental conditions such as pipetting volume, strand concentration,
strand synthesis purity, etc.

Baseline 0/baseline 1. We average the 6 consecutive data points at 20 ◦C after the third one (to let
the signals settle) of each bit-0 (resp. bit-1) curve in Figure E.1(a) (resp. Figure E.1(b)) in order to define
the baseline value of bit-0 (resp. bit-1). We find the values: baseline 0 = 0.053 and baseline 1 = 0.824,
Figure E.2.

E.3 DNA sequences

Full length M13 scaffolds were purchased from Tilibit, all other DNA strands were purchased from IDT.
The synthetic 120-base scaffold was PAGE purified.

E.3.1 1D Scaffolded DNA Computer

For the 1D Scaffolded DNA Computer, a total of 254 strands were designed, plus one scaffold strand
whose sequence comes from two segments of M13 including one scaffold strand. Here we give some details
on sequencing design, beyond those already given in Section 4.3.
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Synthetic 120-base scaffold. We use a 120-base synthetic scaffold whose sequence is from two
contiguous regions of M13 p7249. We divide the scaffold into 5 consecutive 24-base domains called
A,B,C,D,E where E is on the 5’ side of the scaffold:

• Domain E: ATTTTTGATTTATGGTCATTCTCG

• Domain D: TTTTCTGAACTGTTTAAAGCATTT

• Domain C: GAGGGGGATTCAATGAATATTTAT

• Domain B: GACGATTCCGCAGTATTGGACGCT

• Domain A: CTGGCAAATTAGGCTCTGGAAAGA

• Full scaffold sequence: ATTTTTGATTTATGGTCATTCTCG TTTTCTGAACTGTTTAAAGCATTTG
GAGGGGGATTCAATGAATATTTAT GACGATTCCGCAGTATTGGACGCT CTGGCAAATTAGGCTCTGGAAAGA

Toeholds. As described in Section 4.3, Figure 4.5, we sought to design 8 information encoding toeholds
(each 12-bases long) that can be attached to domains A,B,C,D in order to simulate tile colors. If we
directly used such sequences at the 5’ end, and their reverse complements at the 3’-end of strands we
would permit formation of unwanted stable hairpins on those strands that advertising the same (tile)
colour at both sides. Hence we instead designed 16 toeholds, i.e. two sets of 8 toeholds: one set at even
scaffold positions (A, C, etc.) and the other at odd scaffold positions (B, D, etc.). This principle avoids
unintentional hairpin formation when using these 16 strands. Here are the sequences of these 16 toeholds:

1. Toehold 0: CTCATCCTGACC (even), CCTCTTCTCAGC (odd)

2. Toehold 1: TCAACTCCGTTC (even), CATCTCCGATCC (odd)

3. Toehold 2: AATGCCACCATT (even), TCTTTCCAAGCC (odd)

4. Toehold 3: ACAACCCTTGTC (even), TCAATCCTTGCC (odd)

5. Toehold 4: CTGTTCCCAACA (even), CACATCCCTGTT (odd)

6. Toehold 5: CACTACCAGTCC (even), CCATGTCCCATT (odd)

7. Toehold 6: ACACACACTGTC (even), CAACCAACGTTC (odd)

8. Toehold 7: TCACTTTCGTCC (even), TCACACTTCGTC (odd)

Strands. We use the following naming conventions for naming strands: 3B4* refers to the strand at
scaffold position B, having toehold 3 on the 5’ side and toehold 4 on the 3’ side. B is considered an odd
scaffold position (A is even) hence toehold 3 will be chosen to be odd: TCAATCCTTGCC. Toehold 4 will
be even and reverse complemented: TGTTGGGAACAG. Finally, strand 3B4* uses the reverse complement
of scaffold domain B so it can bind to B. The complete sequence of strand 3B4* is: TCAATCCTTGCC
AGCGTCCAATACTGCGGAATCGTC TGTTGGGAACAG. In total there are 64 possible strands at each position B, C,
D. Position A has only 8 strands since no strand ever preceeds it, and thus no left hand side toehold is
needed. This gives a total of 8 + 64 ∗ 3 = 200 strands that are equipped with 5’ and 3’ toeholds. We also
use strands specific to reporting: strand 3B has no 3’ toehold and is used to report a 1; strand 3BQ* is
equipped with 20-base domain Q* to report a 0; strand F*C is prefixed with 20-base domain F* in order
to enable the reporting mechanism for reporting at position B (see Appendix E.2). This adds an extra
2 + 3 ∗ 8 ∗ 2 + 4 = 54 strands for a total of 254 strands in use in the 1D Scaffolded DNA Computer.
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E.3.2 2D Scaffolded DNA Computer

The 2D Scaffolded DNA Computer implementation used the same toeholds as the 1D system, as described
in Section 4.5.

E.4 Additional results
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Figure E.3: Additional multiplyBy3 results. (a) 3× 5 = 15 (1111 in binary) (b) 3× 3 + 1 = 10 (1010 in
binary) (c) 3× 1 + 2 = 5 (0101 in binary) (d) 3× 2 + 2 = 8 (1000 in binary).
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