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Abstract

The escalating demand in global energy requirements and the soaring price of tradi-
tional fossil fuels, in combination with global awareness to follow a pathway toward
decarbonisation, are fuelling research and development into novel technologies to
harness renewable energy sources. Ocean wave energy, a significant and untapped
source of renewable energy, if economically viable, can make a promising avenue for
sustainable energy generation. In the drive for the development and more efficient
operation of wave energy converters (WECs), effective control systems, which can
maximise converted energy for a given capital cost, are crucial. Model-based control
systems contribute to the majority of energy-maximising control systems of WECs,
with a need for a suitable mathematical model. Physics-based models, numerical
simulations, full-scale tests, or laboratory-scale tests can be used to develop WEC
models, each presenting distinct methodologies and challenges, yielding models
with a diverse range of accuracy. The effectiveness of model-based control relies on
the precision of the WEC model upon which the controller is based, given that WEC
controllers have shown considerable sensitivity to inaccuracies in their underlying
models. Among the distinct WEC modelling techniques, the determination of
models from data (using either physical or numerical experiments) is an effective
route to derive representative (linear and nonlinear) WEC models. In this thesis,
both numerical wave tank (NWT) and physical wave tank (PWT) experiments are
considered to estimate a range of adequate linear WEC models capable of meeting
the requirements of a control system by the employment of the proper test signals
(specific to each test setup) to cover the full operational space of the system. Many
uncertainty parameters in the data-driven models with sources differing significantly
in NWT and PWT experiments, may hinder accurate WEC model determination
for efficient (model-based) control strategies. Within this scope, the current study
considers the range of tests that can be performed, the uncertainty sources, and
the range of post-processing techniques that can be applied in NWT and PWT tests
for a point-absorber type system, with an aim to get the most realistic hydrodynamic
WEC models. Moreover, in NWT testing, a comprehensive representation of input
signal synthesis and characterisation is carried out, to provide sufficient fidelity
in Computational Fluid Dynamics (CFD)- based NWT tests and, in PWT testing,
specific focus is directed towards the quantification of uncertainty and external
disturbance, specifically tailored to the PWT under study, with the corresponding
effects are mitigated by applying effective data-processing steps.

v



vi Contents

Multi-linear hydrodynamic WEC models (obtained either from NWT or PWT
testing), serve as a starting point for model-based linear WEC controller synthesis.
Finally, with a view to robust WEC control, a (single) nominal model and uncertainty
bound are quantified from multi-linear models obtained from NWT tests, and robust
control results are provided to demonstrate the efficacy of the modelling and
control philosophy.
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2 1.1. Wave energy technology and control

The sharp energy demand of industrialised nations, compounded with human-

induced climate change, is one of the greatest challenges facing modern society.

There have been continuous investments in greenhouse gas (GHG) emissions

reduction, such as a binding target of net zero GHG emissions by 2050 based on

European Commissions [1], and to achieve that, secure and sustainable energy

systems need to be developed in an efficient way [2]. The use of renewables, is

among the most important actions needed to reduce energy-related emissions,

which would also bring other benefits, such as economical growth, sustainable

development of rural regions, and reduction of dependence on energy imports

[3]. Moreover, the shift towards sustainable and efficient energy systems in the

EU would increase the security of the energy supply [4]. Renewable energy from

seas (offshore renewable energy), has the potential for the vast increase in the

volume of renewable electricity generation, due to availability of different sources

(like wind, wave and tidal) that are abundant. The EU commission published strategy

on offshore renewable energy sets targets of installing the capacity of 60 GW of

offshore wind complemented by 1 GW of ocean energy by 2030 [5]. Ocean wave

energy, a concentrated form of energy, generated through the transformation of solar

radiation (by causing atmospheric pressure differential to generate wind and wind, in

turn, creates waves by flowing across the water surface), is a widely acknowledged

offshore renewable energy source with a potential to contribute to a sustainable

global energy mix. Several studies in the literature estimated the global wave energy

potential to be around 16000-18500 TWh/year [6, 7, 8]. The map showing global

distribution of mean wave power for the 30-year time interval (1989-2018) is shown

in Fig. 1.1 [9], which is calculated using the latest re-analysis data from European

Center for Medium-Range Weather Forecasts (ECMWF) [10]. It can be seen, from

Fig. 1.1, that between the latitudes of 40◦ and 60◦ of both northern and southern

hemispheres have the higher mean wave power.

1.1 Wave energy technology and control

Despite being a vast resource and advantageous in the sense of having high energy

density, research in wave energy conversion moves at a slow pace, due to the need

to build robust devices, high installation costs, challenges related to integration into

existing electrical grid, operation, and maintenance, and the technology has not yet

reached the commercialisation stage. Developing wave energy converter (WEC)

devices, used to harvest energy from ocean waves, is a highly cross-disciplinary
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Figure 1.1: Mean wave power over the 30-year time interval considered (1989–2018) based
on date from ECMWF [9].

task, met by a wide range of (aforementioned) challenges. Moreover, due to

existence of a thousand different designs and patterns for WEC devices, clear

technology convergence is absent in WEC technology development, and there

is attempt to identify the best designs; analogous to three-bladed design of wind

turbines. The various WEC types can be classified using different categories based

on installed location, power take-off (PTO) system type, or based on shape and

orientation with regard to the wave field [11, 12]. Among the various WEC devices,

the point absorber WEC is one of the simplest and most promising concepts. It has

been extensively investigated both theoretically and experimentally, with several

review papers discussing its development in the literature [13, 14, 15]. This concept

is also considered in the current study.

All WECs, regardless of their type, pursue a singular, fundamental goal: to

achieve energy conversion with utmost economic efficiency. This entails finding

good solutions for installation, structural robustness, and effective operation of the

WEC across wide range of sea conditions, while minimising the overall cost of

delivered energy. Optimisation of the WEC shape, maximising energy extraction

from waves, and optimising energy conversion in the PTO system through dynamic

analysis and control system technology can crucially impact many aspects of WEC

operation. Maximising captured power of WECs through the PTO system generally

involves a control problem where the load force (or torque) on the PTO system is

manipulated, with consideration of physical device constraints [16].

Model-based control systems contribute to the majority of WEC control strate-

gies, with a wide variety reported in the literature, since the early studies on reactive

and latching control by Budal and Falnes [17]. Important control strategies that have

been developed include impedance-matching-based control [18], model predictive
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control (MPC) [19], optimal reference tracking control [20], linear time invariant (LTI)

control [21], moment-matching-based control [22], and spectral/pseudospectral-

based control [23]. Since WECs are typically subjected to nonlinear dynamics,

considerable energy maximising control approaches have been also developed

based on nonlinear WEC models, such as nonlinear MPC [24, 25] and MPC-based

nonlinear optimal control [26], and nonlinear WEC control methodology based

on pseudospectral methods.

For model-based control problems, using a linear WEC model under the assump-

tion of small displacement is challenged due to the requirement for exaggerated

device oscillations to maximise power absorption [27], thus affecting the control

performance. On the other hand, nonlinear WEC control methodologies have

the drawback of high computational burden [28]. Moreover, even high fidelity

WEC models include uncertainty [29]. A robust control of WECs, based on a

linear model and an uncertainty bound, is an effective control methodology which

enhances the complexity compared to nonlinear WEC controllers, while improving

the controller performance by dealing with distinct sources of modelling uncertainty

and nonlinearity [23].

1.2 Motivation

WEC models are essential for development, power production assessment, optimisa-

tion, and model-based control design. There are diverse modelling routes; obtaining

WEC models using mathematical/physics principles, determining the models from

data by conducting numerical simulations or performing physical tests at laboratory

or full-scale setups. The various approaches yield models characterised by a range

of accuracy levels, affecting the performance of the (model-based) control strategies

[30, 31]. Under control actions, due to required exaggerated motion of the WECs,

linear WEC models (using first principles) fail to represent proper WEC behaviour,

since their validity is limited to small motions around an equilibrium point. It has

been shown that using data from high-fidelity wave tank experiments (either physical

or numerical) are effective routes to derive (representative) linear or nonlinear WEC

models. By appropriately selecting the system exciting signals and taking into

account the specific limitations of the wave tank setups, the WEC model can be

characterised to meet the dynamic requirements of the control system [29, 32].

Numerical wave tanks (NWTs) and lab-scale physical wave tanks (PWTs) are of

the most important test setups for obtaining data-driven models, which can be used

for dynamic behaviour assessment and control of WECs. In this study, frequency-

domain non-parametric multi-linear WEC models are characterised using NWT for
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robust control design, as detailed in 2, with a comprehensive assessment of the

dominant dynamics of the linearised models presented in 3. In Chapter 4, PWT

testing is employed to derive multi-linear WEC models. The range of tests that

can be performed, and the parameters that contaminate the data-driven models,

differ significantly between NWT and PWT experiments, impacting the accuracy of

WEC models. Some of the key contributions of this study is the analysis of suitable

input signals, the quantification of uncertainty in WEC hydrodynamic modelling,

and the implementation of appropriate data-processing techniques that can be

applied with an aim to get the most realistic WEC models. More specifically, a

comprehensive representation of input signal synthesis and characterisation is

provided in Chapter 2 to ensure sufficient fidelity in NWT tests, while satisfying

the passivity condition of the system by applying post-processing techniques. In

Chapter 4, more focus is given to characterise uncertainty and external disturbances

inherent to the experimental setup under study, and the application of suitable data-

processing techniques specific to the PWT setup and signal types, to attenuate the

contamination effects on the data and preserve physical properties of the system.

The multi-linear models derived from the NWT (Chapter 2) or PWT (Chapter 3) can

serve as a foundation for model-based linear WEC robust controller design, where

a single nominal model, surrounded by an uncertainty region, can be characterised

using a range of representative linear models. An application to robust WEC control

(using NWT experiments) is also presented in Chapter 2, including an analysis

of the controller conservatism and absorbed energy based on different selections

of the nominal model and uncertainty bound sizes. Non-parametric multi-linear

models, obtained from either NWT or PWT tests, can be parameterised through

system identification techniques, allowing for dynamic investigation and analysis

of the system behavior. One of the main contributions of this study, presented

in Chapter 3, includes the tracking of dominant dynamics of the WEC system at

different operating points. This is achieved by analysing the dynamics of parametric

WEC models obtained from force-input experiments in NWT setup, in addition

to comparing the observed dynamics with the dynamics of a boundary element

methods (BEM) based linear WEC model.

1.3 Overview of thesis

This section presents the detailed methodologies that form the foundation of this

thesis. It covers the multi-linear modeling of WECs, uncertainty quantification based

on both numerical and physical testing, and the robust control strategies applied

to WECs under model uncertainty.
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1.3.1 Multi-linear modelling of WECs

In this particular study, non-parametric multi-linear WEC models are referred to as

representative linearised WEC models at various operating points, characterised

in the frequency domain. Force-input experiments in a wave tank, by applying

an exciting force through the PTO system (in the absence of incoming waves),

can provide required data for WEC model characterisation. Properly selecting

test signals, that cover the system dynamic frequency and amplitude, ensures

model validity within the operational space, meeting the requirements of a control

system. Due to the dynamical nonlinearities of WECs, the linearised WEC model

parameters will vary with excitations at different input amplitude levels. Furthermore,

the presence of uncertainty will affect the accuracy of these models. In this study,

multi-linear WEC models are derived from NWT and PWT experiments, using the so-

called force-to-velocity mapping, as detailed in Chapters 2 and 4, respectively. A key

application of a multi-linear model is linear robust control of WECs. In this context,

a multi-linear model is used to determine a single nominal linear WEC model and to

quantify the uncertainty bound, which also includes model nonlinearities. Various

approaches for determining the nominal model and different type of uncertainty sets

can be explored to address the robust control problem. These choices influence

the final absorbed energy of WECs under control actions. Section 2.6.2 details

the various approaches for selecting the nominal model and specifying uncertainty.

Section 2.8.3 discusses the resulting uncertainty regions, based on different choices

of nominal models, and examines the impact of these choices on the final absorbed

energy of the WEC under study.

One of the primary applications of multilinear WEC models is to effectively

investigate the dominant dynamics of the WEC by considering the linearised models

at various input amplitude levels and comparing them with the dynamics of a WEC

system obtained using classical BEM methods. Multilinear WEC models, derived

from force-input experiments, can provide sufficiently representative models of

the overall system dynamics. As the force is applied through the PTO system,

these linear models can be utilised for linear model-based WEC control design.

A detailed analysis of the tracking of dominant dynamics in the multi-linear WEC

model, obtained from force-input experiments in NWT setting, is presented in

Chapter 3. Specifically, the resonance frequency trend and the bandwidth of the

empirical transfer function estimates (ETFEs) at different input amplitude levels are

first investigated using non-parametric frequency-domain linearised WEC models.

Subsequently, parametric models are derived from these non-parametric frequency-

domain models at different input amplitude levels using a system identification
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tool. The dominant dynamics, particularly, dominant pole locations (real and
imaginary parts) are analysed at various input amplitude levels and compared
with the results using BEM method. The same dominant dynamic analysis from
multi-linear WEC model can be done using the multilinear WEC model obtained
from PWT experiments presented in Chapter 4.

1.3.2 Quantification of hydrodynamic model uncertainty in NWT
testing

NWT testing is an important wave tank setup for characterising WEC models.
Among the various methodologies to simulate a wave tank numerically, CFD-based
NWTs are particularly effective at providing high-fidelity WEC models by capturing
complex hydrodynamic interactions [27]. This capability makes them invaluable for
model-based control approaches as well as research and development purposes.

Despite the advantages of numerical modeling, including CFD-based NWTs, a
range of uncertainty sources has been documented in the literature that can impact
accuracy and reliability [33]. One key source of uncertainty arises from the limitations
of the governing equations used to predict the behavior of WECs. Assumptions
and simplifications necessary for computational feasibility, such as the assumption
of an incompressible fluid in the Navier-Stokes equations, can restrict the model’s
ability to accurately represent the complex phenomena surrounding WECs. Another
significant source of uncertainty stems from numerical errors related to spatial and
temporal discretisation. Proper mesh and time step resolutions, which are crucial
for minimising these errors, can be determined through a convergence study [34].

It has been shown that even fully nonlinear WEC models obtained from CFD
simulations contain numerical errors and uncertainties [29, 35], which can impact
the performance of model-based controllers. One way to deal with distinct sources of
nondeterminism in the WEC model with an aim of improving the controller efficiency
is to consider an uncertainty bound around the WEC model, addressing a robust
control methodology. Additionally, to manage the complexity of nonlinear WEC
controllers, a linear WEC model can be employed, where the nonlinearities are also
included in the uncertainty bound. Given the importance of accurately modeling
both the nominal model and the uncertainty bound in CFD-based NWT (CNWT)
experiments, Chapter 2 explores a range of linear models to determine a sensible
representation of the nominal model and a minimised uncertainty region, while
also satisfying the passivity condition necessary for robust control design. The
limitations of the NWT under study has been taken into account for designing
appropriate input signals to achieve a sensible representation of the nominal model
and a minimized uncertainty region, while also satisfying the passivity condition
necessary for robust control design.
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1.3.3 Characterisation of uncertainty and external disturbance
sources in PWT testing

PWT testing is a critical methodology for evaluating the performance, validating

models, and as a basis for the (model-based) control of WECs. PWT tests offer

essential insights into the WEC behaviour in full-scale testing, however, the accuracy

of the WEC models obtained from PWT testing can be compromised by various

sources of uncertainty and external disturbances. The range of tests that can be

performed and contamination nature differ significantly in NWT and PWT tests,

necessitating a comprehensive understanding of the uncertainty associated with

PWT tests to enhance model fidelity. Additionally, the range of post-processing

techniques that can be applied may vary based on the experiment type and the

exciting signals used, requiring the proper adoption of data processing methods.

Moreover, within a specific PWT setup, contamination effects can vary under dif-

ferent operating conditions, as reported in the literature by analysing the discrepancy

between simulated and experimental results. For instance, increasing discrepancies

have been observed when moving from small to severe sea states due to heightened

nonlinear effects in the experiments, as noted by [36, 37, 38]. On the other hand,

some studies have reported significant experimental uncertainty at low levels of

excitation. For example, [39] attributed this to low signal-to-noise ratio at these

levels, and [40] identified dominant data contamination from non-hydrodynamic

experimental load measurements at low-speed velocities of a WEC.

The studies highlight the importance of identifying uncertainty and external

disturbance sources in PWT testing for accurate WEC model characterisation. It is

also crucial to determine the techniques for eliminating artifacts from the captured

data. Moreover, special attention should be given to understanding the level of

contamination effects under various operating conditions.

Within this aim, the current study considers force-input experiments in a PWT

setup (Chapter 4), and identifies the contamination sources, which are classified in

three categories of electromechanical, hydrodynamic, and structural parts, and pro-

vides quantitative measure of their effect. Considering the wave tank setup and the

exciting input signal type, proper data processing techniques are applied to exclude

the artifacts from the data and obtain the most realistic WEC characterisation.

Similar to NWT testing, multilinear model can be obtained from force-input tests

in PWT setup, with a particularly important potential application to determine a

single nominal model and quantify the uncertainty bound from the family of models

for robust control design of WECs. Using proper data-processing techniques will

be helpful to get an adequate nominal model and correct uncertainty size.
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1.3.4 Addressing and solving robust control of WECs under
model uncertainty

A key contribution of this study is the development of a robust control strategy

employed to WEC models derived from NWT testing, as detailed in Chapter 2,

which is also applicable to the multilinear WEC models obtained from PWT testing

provided in Chapter 4. The robust control addresses the solution to approach the

optimal performance of nonlinear WECs including model uncertainty by using a

linear control strategy, which is robust to linear model mismatches. The methodology,

originally developed by [23], utilises linear nominal models and uncertainty bounds,

having the advantage of less computational complexity compared to nonlinear WEC

controllers while enhancing controller efficiency (considering the overall absorbed

energy) by effectively dealing with various sources of nonlinearity and uncertainty.

Accurate characterisation of the nominal model and the determination of un-

certainty bounds are crucial factors influencing robust control performance. Conse-

quently, a comprehensive analysis of input signals and the application of appropriate

data-processing techniques are conducted to obtain the most accurate ETFEs,

providing the basis for nominal model selection. Additionally, various methods for

determining the nominal model are employed to identify the minimised uncertainty

region. The impact of different nominal models and their associated uncertainty

sizes on the final absorbed energy using robust control is detailed in Chapter 2.

1.4 WEC modelling: techniques and fidelity consid-
erations

WEC models can be developed through diverse methodologies, each presenting

distinct assumptions, complexities, fidelity, and levels of uncertainty. The accuracy

of the WEC model, and levels of uncertainty in the model has direct consequences

for (model-based) control strategies [30, 31] which should be considered carefully.

Among different methods, linear WEC models, based on first principles, are

valid only for small motions around the equilibrium point and generally fail to

accurately capture the behaviour of WECs during the exaggerated motions needed

for maximising energy extraction [27]. On the other hand, developing models

based on data from physical or numerical experiments has been demonstrated

as an effective approach for providing accurate representations of both linear and

nonlinear WEC dynamics [41, 42, 43]. The following sections detail three main

approaches for developing WEC models.
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1.4.1 WEC model development approaches

Extensive effort has been carried out to implement models describing the hydrody-

namic interaction between the fluid and the WEC [44]. To achieve an accurate wave-

to-wire representation of a WEC, it is essential to also incorporate the dynamics of

its power take-off (PTO) system, which can include linear PTOs (e.g., direct drive),

nonlinear PTOs (e.g., impulse turbine), or coulomb PTOs (e.g., hydraulic cylinder),

[45]. The physics-based modelling methods for WECs can be classified into two

main categories: those based on CFD (used to solve the Navier–Stokes equations)

and those based on potential flow theory (which solve the Laplace and Bernoulli

equations) [46]. Models based on potential flow theory, such as BEM analysis

[47], represent a simpler class of hydrodynamic WEC models, ranging from basic

linearised representations to fully nonlinear approaches, but ignore fluid viscosity.

Given the need for exaggerated WEC motion to enhance power absorption [27],

incorporating models that capture relevant hydrodynamic nonlinearities results in

more accurate WEC simulations.

The experiments to develop WEC models can be categorised in three main

categories including numerical, full-scale, and laboratory-scale testing, each method

offering specific challenges in terms of fidelity, computational demands, and prac-

tical applicability.

1. Numerical tests: Numerical methods are extensively utilised tools for mod-

elling WECs, crucial for device design, optimisation, and control. The accuracy

of these models depends heavily on the assumptions made. Numerical

wave tank testing, based on CFD, for solving the fundamental Navier-Stokes

equations whether using mesh-based methods like OpenFOAM [48] or mesh-

less approaches like smoothed particle hydrodynamics (SPH) [49], can

provide a fully nonlinear simulation. Compared to potential flow theory, CFD

methods account for fluid viscosity implicitly and inherently, providing high-

fidelity modeling results, particularly when nonlinear factors play a significant

role in the dynamics of WECs [46]. Despite the high fidelity of CFD simulations,

they come with significant computational costs. However, advancements in

modern computing resources are gradually providing more computing power.

CFD-based NWT simulations provide several important benefits [50]:

• Effective control over reflections from the ’tank’ walls.

• The ability to perform full-scale device testing, thereby eliminating the

challenges associated with scaling effects.
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• Flexibility in applying a wide range of excitation signals, including incident

waves, direct forces, and free response tests.

• Passive measurement of signals without physical sensors, preventing

interference with the device or fluid dynamics and avoiding measurement

errors.

• Elimination of the need for specialised equipment, such as a prototype

WEC device.

In the current study, a three-dimensional, mesh-based NWT using CFD as the

basis for its numerical simulations is utilised to characterise WEC models in

Chapters 2 and 3. When conducting CFD-based simulations, careful attention

must be paid to the design of the computational domain to accurately replicate

the physical environment of the WEC. This includes specifying the wave tank

and buoy geometry, boundary conditions, mesh resolution, and time steps.

2. Laboratory-scale tests: Laboratory-scale tests conducted in wave tanks

offer a controlled environment for evaluating WEC models and understanding

of the dynamic process, making them particularly valuable during the early

development stages of WECs. Relevant similarities, such as geometric,

kinematic, and dynamic similarities, must be partially or fully satisfied to ensure

the meaningful and useful scaling and modelling of scaled prototypes [51]. In

this thesis, these tests are referred to as PWT (physical wave tank) tests, and

they are crucial for assessing performance, validating models, and control

strategies. These tests are essential for verifying the accuracy of numerical

models across different wave conditions and WEC designs [52, 53, 54, 55].

Additionally, model invalidation, enabling the independent analysis of dynamic

uncertainty and external noise within experimental datasets, by comparing

simulated responses with experimental data [56] have been topics of focus for

some researchers. Chapter 4 of this study, analyses physical wave tank data

obtained from an experimental campaign (at Aalborg University) involving a

1/20 scale Wavestar prototype device [57].

PWTs come with their own challenges. Physical limitations, such as wave

reflections and boundary effects, as well as components of the experimental

setup (e.g., structure, mooring lines, and electromechanical parts), can

introduce errors into the data. Another significant issue is the challenge of

scaling results from laboratory tests to full-scale applications, which requires

careful attention to scaling laws.
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3. Full-scale tests:

Full-scale testing is a crucial phase in the development and commercialisation

of WEC technology, offering the most realistic validation of models by testing

devices in real ocean environments. These tests deliver invaluable data on the

actual performance of WECs under a wide range of sea conditions, including

extreme events that are difficult to replicate in simulations or laboratory

settings. A key advantage of full-scale testing is that it captures the realistic

fluid dynamics around the device,which is often turbulent due to the large

Reynolds number. In contrast, in PWT testing, using a very small model with

a small Reynolds number (under Froude similarity) may result in laminar flow,

which does not accurately represent real-world conditions [58].

However, full-scale tests are expensive, logistically complex, and provide

limited control over the experimental conditions. Deploying and maintaining

WECs in the ocean requires significant resources, and the data collection

process is complicated by the variability of sea states and environmental

conditions.

Experimental methods, both numerical and physical, can be employed to derive

empirical models and gather data for system identification. In this study, both

high-fidelity CFD-based NWT tests and laboratory-scale PWT tests are utilised to

develop empirical models. The WEC modeling methods are summarised in Fig.

1.2, with a focus on the approaches used in this study to derive empirical models

from NWT and PWT, which are highlighted in the figure.

WEC modelling

Numerical methods Experimental methods

Computational
fluid dynamics

Potential flow
theory

fully nonlinear potential
flow methods

Linear potential
flow methods

Mesh-based CFD
methods

Mesh-less CFD
methods

Empirical models

Physical wave
tank tests

OpenFOAM, ...
Input/output data

Physics-based methods

Figure 1.2: WEC modeling methods, with an emphasis on the approaches used in this
study to derive empirical models from NWT and PWT testing (highlighted in red).
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1.4.2 WEC system properties

In this study, where WEC models are charcterised from data with a particular

application in robust control of WECs, it is crucial to ensure that the essential physical

properties of the WEC device are met. Stability and passivity are particularly funda-

mental characteristics of physical WEC systems [59] that should be considered.

1.4.2.1 Stability

Stability, a well-established concept in dynamical systems, ensures that the system

exhibits bounded-input bounded-output behavior. For WECs, stability refers to

maintaining the structural integrity of the device when subjected to external forces

with varying frequencies and amplitudes. Several methods have been developed

to analyse and guarantee the stability of WEC systems. One such approach,

involves imposing constraints on model parameters to ensure stability [50]. Another

approach involves reconstructing the model to ensure stability by reflecting unstable

poles from the right-hand side to the left-hand side of the complex plane when

instability occurs in identified linear models [60].

The internal stability of WEC systems, particularly when modeled using the

Cummins’ equation, can be ensured by accurately defining parameters based on

the physical properties of the WEC device [61]. This highlights the importance of

accurate parameter selection in achieving and maintaining system stability.

1.4.2.2 Passivity

Passivity is a key characteristic of a physical WEC system, formalised around the

principle that any increase in system energy comes solely from external sources,

with the system itself unable to generate energy internally. In LTI systems, passivity

is equivalent to the transfer function being positive across all frequencies [62, 59], or,

equivalently, the system frequency response is confined to the right-hand side

of the Nyquist plot.

Although passivity is intrinsic to physical WEC systems, it has been demon-

strated that complete passivity cannot always be achieved. This limitation is

observed in certain cases, such as models derived from high-fidelity CNWT or PWT

experiments, as discussed in Chapters 2 and 4, respectively. One practical approach

to ensure passivity involves applying ETFE phase correction. This correction

is based on the asymptotic behavior of ETFE to align the system with passive

behaviour. This post-processing technique for passivisation is employed in the

studies detailed in Chapters 2, 3, and 4, to render a nonpassive system passive.
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Moreover, in the study in Chapter 2, where a nominal model and uncertainty

bounds are developed for robust control implementation, a critical passivity issue

is identified from the analysis and estimation of uncertainty sets in WEC systems.

To address this issue in the context of spectral-based control methodologies, a

method for eliminating spectral components that violate passivity is implemented,

as described in [29]. However, this elimination negatively impacts on the resulting

performance because the power associated with the removed spectral components

no longer contributes to the system’s output. To address this issue, a recent practical

passivisation methodology has been proposed, which considers the passivity of both

nominal linear and uncertainty models for the application of a robust spectral-based

control methodology, as outlined in [63].

By ensuring both stability and passivity, WEC systems can be effectively

modeled and controlled to operate safely and efficiently in real-world conditions.

1.4.3 Wave tank setup for system identification

Wave tank setups play a crucial role in the system identification of WECs. These

tests help in characterising the dynamic behavior of WECs by capturing their

responses to various inputs. Two primary types of system identification tests are

commonly conducted: free decay tests and force input tests.

1.4.3.1 Free-decay tests

The free-decay experiment is a methodology used to provide output data for the

system identification process. In free decay tests, no external input is required;

instead, a body is initially displaced from its equilibrium position against a restoring

force, thereby imparting potential energy. Once released, the body moves back

towards its equilibrium position. These tests can be conducted in both NWTs

and PWTs and focus on identifying parameters related to inertia, restoring forces,

and damping forces [50]. Depending on the level of damping, the body typically

oscillates around its equilibrium position until all energy is dissipated, eventually

coming to rest at equilibrium.

1.4.3.2 Force-input tests

The force-input test is a fundamental approach for identifying key dynamic parame-

ters of a WEC, as it captures the broader dynamic behaviour of the system under

various operational conditions. The models derived from force-input tests are capa-

ble of providing a sufficiently representative depiction of the total system dynamics.
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Additionally, by applying external forces to the WEC, typically through the PTO

system in the absence of waves, these tests become particularly valuable for model-

based WEC control design. Various excitation signals can be used, as documented

in [64], each with its own advantages and disadvantages, influencing the models that

can be developed and their potential applications. The input forces are designed

to cover a range of frequencies and amplitudes, allowing for a comprehensive

evaluation of the WEC’s response across its entire operational range.

For system identification to effectively capture the full dynamic behavior of the

WEC, the input signal must be designed to excite the system across the frequency

range where it exhibits significant response, while also covering the complete input

amplitude (dynamic) range, while balancing efficiency and accuracy. Analysing

the ETFE in terms of variability, resolution, and asymptotic behaviour based on

physical characteristics of the system helps determine the optimal set of excitation

signals for system identification.

In this study, force-input experiments are conducted both in NWT experiments

(Chapters 2 and 3) and PWT experiments (Chapter 4) for system identification

purposes. Specifically, a comprehensive approach to input signal synthesis and

characterisation is presented in Chapter 2 to ensure sufficient fidelity in CFD-

based NWT tests.

1.4.4 Wave tank setup for evaluation test

Evaluation tests in wave tanks are conducted to assess the performance of WECs

by replicating realistic wave conditions as closely as possible. In wave tank testing

for evaluation (either numerical or physical wave tank), the buoy is subjected to

incoming waves generated by a wave maker in the tank. The goals of these tests

include observing the WEC response to various wave states, evaluating energy

capture, stability, and control performance. To prevent wave reflections during

wave tank operations in wave flume mode, tanks are usually equipped with wave

absorbers on the opposite side of the wave maker boundaries.

In Chapter 2 of this study, a robust control case study is presented using data

from NWT experiments. This case study demonstrates the effectiveness of the

WEC modeling (and the associated uncertainty set) and the control strategy. The

wave tank setup for evaluation tests is used to extract time-domain excitation forces

from numerical simulation data, which are then utilised in MATLAB to assess the

performance of the robust controller.
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1.4.5 System identification techniques

The objective of system identification is to derive the model of the system based on

the measured input and output signals. This process can be broadly categorised

into non-parametric and parametric approaches.

1.4.5.1 Non-parametric techniques

In non-parametric modeling, the system response is directly or indirectly derived

from experimental data, either in the time domain (through impulse response) or

in the frequency domain (through frequency response).

One common non-parametric model characterisation, following standard fre-

quency domain techniques, is the so-called empirical transfer function estimate

(ETFE). By considering an input/output (time-domain) pair, which are a measurable

finite set of signals, the ETFE, representing the system frequency response, can

be formulated as the ratio of the output signal Fourier transform to the input signal

Fourier transform, under the assumption of periodic motion. An ETFE allows a

straightforward way to analyse the frequency-dependent behavior of the system.

In specific applications, the discrete-time Fourier transform (DTFT) can simplify

the calculation of the ETFE by focusing on the required frequency for spectral

analysis. For instance, with a purely sinusoidal input signal, the amplitude and phase

of the input are already known, and the DTFT of the output at that single frequency

point can be used to obtain the frequency-domain representation of the output signal.

Additionally, windowing functions, such as the Tukey window (tapered cosine

window) [65], are applied for the Fourier transform calculation to mitigate the effects

of spectral leakage, which occurs due to the finite duration of the data records. The

choice of window function is crucial, as it influences the accuracy of the frequency-

domain representation, particularly for signals with abrupt starts and stops.

1.4.5.2 Parametric techniques

In parametric modeling, the system dynamic behavior is captured using partial

or ordinary differential equations. The parametric identification results in a model

where the system dynamics are described by a set of parameters, which can be

related to physical quantities in some cases [66].

A frequency-domain system identification method specifically designed for WEC

modelling is the FOAMM toolbox [67], which generates parametric models in state-

space form through a moment-matching approach. A key feature of the toolbox

is its ability to precisely match specific frequency points between the parametric
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model and the non-parametric ETFE, including the device’s resonant frequency.

Based on finite-order hydrodynamic approximations, the FOAMM toolbox offers a

user-friendly platform for parametric system identification, whether for the radiation

convolution term or the complete force-to-motion dynamics of WECs. In Chapter 3

of this study, for analysing the dominant dynamics of WEC, the FOAMM toolbox is

utilised to derive a state-space model for the entire force-to-motion WEC dynamics

at different input amplitude levels. It has been suggested that using a 6th order

parametric model, and matching the frequency points at low- and high asymptotes,

and resonance frequency, the ETFEs can be well approximated [68].

1.5 Uncertainty sources affecting data-based WEC
models

In the development and optimisation of WECs, accurate modelling is critical to

ensuring efficient energy extraction and optimal control system performance. WECs

operate under dynamic conditions involving multiple stages of energy conversion and

complex fluid-structure interactions. Control actions can augment these dynamics,

leading to nonlinear hydrodynamic behaviour. These complexities make WEC

modeling a challenging task, particularly when designing model-based, energy-

maximising control strategies.

The methodology used to develop the WEC model can introduce various

sources of uncertainty, impacting its accuracy and reliability, with significant implica-

tions for the performance and robustness of model-based control strategies [30, 31].

Identifying these uncertainty sources and understanding their impact at different

operating points is crucial to prevent model misestimation. Neglecting uncertainties

can significantly impair control performance, underscoring the importance of effec-

tively managing these uncertainties in model-based control strategy development.

Accurate characterisation of the uncertainty bounds around the nominal model

is essential for the controller to effectively capture the full extent of the uncertainty

without becoming overly conservative due to overestimation of uncertainty size

[23, 69, 29]. By applying appropriate data-processing techniques, artifacts can be

mitigated, and the physical properties of the system can be preserved, resulting

in more precise characterisation of the WEC system.

Although uncertainty analysis is a well-established practice in maritime fields

such as ship design [70], offshore structures [33], and coastal engineering [51], it

has not been widely adopted or thoroughly explored in WEC model testing, with its

integration into wave energy studies remaining inadequate [71]. The exaggerated
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motion required for WEC power capture, along with their exposure to extreme
wave-induced forces, renders conventional uncertainty analysis techniques both
risky and insufficient. Furthermore, WEC systems present unique challenges, often
involving novel geometries, complex mooring systems, and PTO mechanisms, all of
which significantly influence their motion and further complicate uncertainty analysis.
In the field of WECs, some studies have investigated parameters contributing to
uncertainty, including environmental conditions and the inherent characteristics of
test setups. These studies explore various aspects of both numerical and exper-
imental setups, such as the physical properties of fluids, initial conditions, model
definitions, environmental influences, scaling effects, instrumentation accuracy,
and human factors [33].

Studies addressing the uncertainty of environmental conditions include [72],
which provides quantitative uncertainty bounds for different wave and environmental
conditions. This work emphasises the importance of minimising uncertainty in power
output and mooring line tension predictions. Similarly, [73] investigate uncertainty
quantification in numerical ocean wave simulations using a stochastic framework
based on generalised polynomial chaos.

The primary parameters contributing to uncertainty in the two main approaches
of WEC modeling development—NWT and PWT testing—are discussed below
and shown in Fig. 1.3.

Human factors
Scaling effects (viscose)
Electromechanical components
(performance of motor, sensor, and
control system)
Structural parts (impact of mooring
lines or gantries)
Hydrodynamic effects ( effects of
wave reflections)

Figure 1.3: Potential sources of uncertainty in NWT and PWT testing.

In numerical wave tank simulation, uncertainties primarily arise from the limi-
tations of the governing equations in accurately capturing the underlying physics,
the approximations inherent in numerical methods, and the specifics of numerical
implementation, such as the setup of the numerical wave tank model and grid
generation [33]. Additionally, wave reflections from the tank walls can contribute
to uncertainty in NWT testing.

In lab-scale wave tank tests, key sources of uncertainty include human factors,
such as calibration and experimental setup, as well as scale effects like viscosity,
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water depth truncation, and the non-similitude between Froude and Reynolds

numbers [33, 51, 71, 74, 75]. Measurement uncertainties, including those from direct

measurements and calibration, are also significant, along with electromechanical

components, which can introduce issues like motor nonlinearity, hysteresis, noise,

sensor positioning, and control system inaccuracies [33]. Additionally, tank setup

biases, such as boundary effects and facility limitations, and model-related factors,

including geometry, installation, mooring lines, and PTO systems, further contribute

to uncertainties [71]. In particular, wave reflections from the tank walls present a

major challenge in PWT testing. Furthermore, [76] identifies friction losses within

the PTO system as a significant source of uncertainty in lab-scale wave tank testing,

emphasising that these losses are neither easily scalable nor linear. To address

the lacking WEC-specific knowledge of experimental uncertainty, the International

Towing Tank Conference (ITTC) offers practical guidance on conducting formal

uncertainty analysis in experimental WEC research [77, 78].

Generally, the contamination nature and the range of tests that can be performed

differ significantly in NWT and PWT tests. In order to accurately perform model

validation or invalidation, it is of paramount importance to have knowledge of the

uncertainty associated with NWT and PWT tests. Considering different wave

conditions and WEC types,WEC model validation, focussing on the accuracy of

numerical models [52, 53, 54, 55], and model invalidation, enabling the independent

analysis of dynamic uncertainty and external noise within experimental data sets,

by comparing simulated responses with experimental data [56] have been topics

of focus for some researchers.

It is generally believed that agreement between simulation and experiments

is usually good in small to moderate sea states, as noted in studies such as

[36, 37, 38], with discrepancy increasing in severe sea states, or in wave conditions

that excite resonances (due to non-linear effects). Such discrepancies can result in

overestimation of the dynamic response, and energy absorption [36]. Nevertheless,

some studies have noted large experimental uncertainty at low levels of excitation

as in [40], where the dominant level of (non-hydrodynamic) experimental load

measurements contaminates data at low-speed foil velocity of a WEC. Similarly,

[39] identifies deviations between simulation and experimental results in absorbed

energy for a linear time-invariant controller (LiTe-Con) in small sea states, which

are attributed to low signal-to-noise ratios.

Further exploration of uncertainty in experimental tests is provided in [79], which

highlights the impact of measurement errors and filter characteristics on PTO friction

damping force and mooring line force measurements, although precise quantification

is not offered. In a recent study, [80] investigates experimental modeling uncertainty
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quantification for a prototype wave energy converter by generating a family of WEC

models using additive uncertainty. However, this study does not detail the sources

of uncertainty, nor does it attempt to reduce variability in frequency-domain force-to-

motion mapping or apply post-processing techniques to preserve the physical

properties of the system.

Across all noted studies, there is a clear understanding that the fidelity of

WEC models is critical for accurate performance evaluation, model validation, and

control of WECs. However, to the best available knowledge, no studies in NWT

testing have provided a comprehensive approach to input signal synthesis and

characterisation that ensures sufficient fidelity in CNWT tests. This is essential for

developing a reliable nominal model with minimised uncertainty while satisfying

the passivity condition necessary for robust control design. Accordingly, a key

contribution of this study (detailed in Chapter 2) is to address this gap by developing

a representative nominal model and quantifying a minimised uncertainty region.

This is achieved by selecting the optimal set of excitation signals for the NWT

setup and applying appropriate data-processing techniques, all with the aim of

supporting robust control design for WECs.

Additionally, within PWT testing, there is a lack of detailed evidence identifying

the significant sources of uncertainty and their characteristics across different

operating conditions. Additionally, techniques for eliminating artifacts from captured

data to obtain accurate WEC model characteristics are not well-defined. In this

context, the current study (detailed in Chapter 4) addresses these issues by focusing

on a PWT setup involving a point absorber WEC, utilising chirp-type force input

experiments. From these experiments, representative linearised WEC models

are derived. The study characterises uncertainty and external noise at different

operating points inherent to the experimental setup. Furthermore, tailored pre-

processing (in the time domain) and post-processing (in the frequency domain)

techniques are employed to preserve the physical characteristics of the WEC

system and extract valuable information from the multi-linear models derived from

PWT testing. Quantitative results are presented to highlight the dominance of

contamination at various operating points, providing essential insights for realistic

WEC modeling.

In this study, the term ’uncertainty’ is used broadly. In NWT testing, it en-

compasses hydrodynamic WEC model nonlinearities and numerical uncertainty,

while in PWT testing, it includes hydrodynamic WEC model nonlinearities, external

disturbances and the effects of electromechanical and structural components.



1. Introduction 21

1.6 Data pre- and post-processing techniques

To achieve realistic WEC characterisation from experimental data, the application

of appropriate data-processing techniques is critical. These techniques must be

tailored to the specific type of experiment (NWT or PWT), the wave tank setup,

the nature of the signals used, and the inherent contamination present in the data.

Proper data-processing can be applied that preserve the physical properties of the

WEC system and reduce variability in frequency-domain models, leading to more

accurate WEC models and better quantification of uncertainty regions.

In this study, data pre-processing and post-processing refer to data-processing

techniques applied before and after the calculation of the ETFE, respectively. These

processes are designed to ensure the authenticity of the ETFE results and to extract

valuable information from the experimental data, ultimately contributing to a more

precise and reliable characterisation of the WEC system.

1.6.1 Data pre-processing techniques (time-domain)

Data pre-processing refers to the application of techniques to time-domain data

aimed at mitigating the effects of contamination before calculating the ETFE. The

goal is to ensure that the signals used for system identification are as accurate and

clean as possible. One effective approach for reducing distortion of a sampled signal

is applying a discrete-time band-pass filter (BPF), which allows only frequencies

within a specified range to pass through, based on the filter’s frequency-domain

characteristics. In cases where the contamination predominantly consists of high-

frequency content, a low-pass filter can be employed to recover the underlying

signal by attenuating the unwanted high-frequency components.

In this study, a BPF is applied to data from the NWT testing (as detailed

in Chapter 2) to reduce distortion in output signals when sinusoidal and chirp-

type excitation signals are used for system identification. In contrast, the pre-

processing of PWT testing data (discussed in Chapter 4) involves a low-pass

filtering approach combined with outlier removal, tailored to address the specific

nature of contamination in that setup.

1.6.1.1 Application of a band- and low-pass filters to chirp signals

Filtering chirp-type signals presents a unique challenge due to their time-varying

frequency characteristics, requiring careful consideration of filter design parameters

to ensure effective data processing.
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1. Band-pass filtering: For chirp-type signals, a BPF can be implemented in a

frequency-varying manner, where the center frequency of the filter adapts to

the instantaneous frequency of the chirp signal. This approach helps to reduce

distortion while preserving the key signal content. However, as discussed

in Chapter 2, this method presents challenges, particularly in the correct

initialisation of the filter, which can introduce unwanted transient artifacts into

the filtered data.

2. Savitzky-Golay filtering: The Savitzky-Golay (SG) filter [81], a low-pass filter, is

widely used in signal processing applications for data smoothing. It operates

by applying a local polynomial regression to a set of input samples in a least-

squares sense. The cut-off frequency of the SG filter can be reasonably

approximated based on the frame length and polynomial order [82]. When

applying the SG filter to a linear chirp signal, a moving SG filter can be

employed, with a fixed polynomial order but a varying window length (and

corresponding cut-off frequency) to adapt to the changing frequency content

of the signal. A detailed analysis of different design approaches for a moving

SG filter, along with the optimal set of SG parameters for linear chirp-type

signals, is presented in Chapter 4.

1.6.1.2 Outlier removal

Measurement force records from load cells often contain outliers that can degrade

the quality of the data, obscuring meaningful information. It is crucial to assess the

impact of outliers, the extent of contamination, and any issues related to missing

data resulting from outlier occurrences. If necessary, outliers should be detected

and appropriate data-cleaning techniques applied. Outliers can be identified visually

or through statistical methods, such as using the standard deviation around the

mean [83] or median absolute deviation [84]. Alternatively, they can be detected by

examining their connection to the physical behavior of the test setup components,

as discussed in this study (detailed in Chapter 4).

Once outliers are identified, removing them and reconstructing the missing

portions of the signal are essential steps to preserve the integrity of the data. Static

interpolation methods [85] are commonly used to fill data gaps, though they come

with certain drawbacks, as detailed in Chapter 4. In this study, an autoregressive

(AR) bi-directional model extrapolation [86] is employed to fill in the gaps in the

recorded data, given the predominantly sinusoidal (chirp) nature of the excitation

signals contaminated by external disturbance sources. This method helps maintain

the accuracy and continuity of the data.
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1.6.2 Data post-processing techniques (frequency domain)

In this study, data post-processing refers to signal-processing techniques applied

in the frequency domain to the ETFE results. The goal is to enforce the physical

properties of the WEC, reduce variability in the ETFE outcomes, and address issues

that may arise from the mathematical implementation of ETFE calculations.

1. ETFE phase correction: To ensure passivity—a fundamental characteristic of

the WEC system discussed in Section 1.4.2.2—a phase limit restriction on

the ETFE can be enforced to maintain the correct asymptotic behavior. In this

study, phase correction of the ETFE is a crucial step in data post-processing.

For the data presented in Chapters 2 and 3, where ETFE is defined as a

velocity-to-force mapping, the phase is constrained to the range of [−90 90]◦.
However, in Chapter 4, where the ETFE is defined as a motion-to-force

mapping, the phase is restricted to [−180 0]◦ across all frequencies.

2. ETFE filtering: To reduce variations in ETFE, while preserving the signal

properties, and to facilitate the extraction of key information (such as the

exact resonance frequency), ETFE filtering is employed as a post-processing

technique. The moving average method, a commonly used statistical filter,

calculates the average of a specified number of adjacent time-domain data

points. Selecting an appropriate window size for this filter is crucial. This

technique is applied to ETFE results obtained from both NWT and PWT tests

in Chapters 2 and 4.

3. ETFE phase unwrapping: Phase unwrapping is another post-processing

technique used when phase wrapping, defined as phase jumps (modulo

2π) between consecutive frequency bins, occurs in the ETFE phase. Such

wrapping can result from specific software implementations of the fast Fourier

transform (FFT) or from significant noise or distortion in the signal. This

technique is applied to ETFE results from the PWT experiments in Chapter 4.

1.7 A thesis ’path’

This section provides an overview of how the papers included in this thesis connect

to the various topics introduced in the introduction. Together, these papers form a

cohesive narrative that examines the development of representative linear WEC

models from NWT and PWT experiments, with careful consideration of the inherent

differences between numerical and physical tests in both the range of tests and data
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processing techniques. The analysis delves into the dominant dynamics of linear

WEC models across different methodologies, effective strategies for determining

nominal models, quantifying uncertainties, and designing robust control systems

for NWT tests. These insights are also applicable to the multilinear WEC models

developed from PWT experiments.

1. Paper I: ’Uncertainty estimation in wave energy systems with application to

robust energy maximising control’:

The study begins by detailing the numerical model development process de-

scribed in Section 1.4.1, including the setup of various CFD-based numerical

wave tanks for system identification and evaluation tests, as outlined in Sections

1.4.3 and 1.4.4, respectively. To ensure accurate and efficient simulations during

NWT testing, mesh refinement is implemented.

To achieve high-fidelity simulation results while accounting for the characteristics

of the wave tank setup and the limitations of computing resources, a variety of

input signals—such as sine, multisine, and chirp signals—are synthesised for

force-input testing (Section 1.4.3.2), and data pre-processing techniques, tailored

to each signal type, are then analysed as discussed in Section 1.6.1.1. The

proper test signals are subsequently used to calculate the ETFEs, as detailed in

Section 1.4.5.1.

After applying post-processing techniques to the ETFEs (Section 1.6.2), the

nominal model is determined, and the uncertainty is quantified. The study

carefully considers the fundamental properties of WEC systems, ensuring that

the nominal model and uncertainty bounds meet the passivity criteria outlined in

Section 1.4.2. Finally, energy-maximising robust control strategies are developed

based on the nominal model and its uncertainty bounds, as discussed in Section

4.7.

2. Paper II: ’Representative linearised models for a wave energy converter using

various levels of force excitation’:

This study implements system identification through force-input CFD-based NWT

experiments (Section 1.4.3.2), utilising carefully designed sinusoidal excitation

signals to cover the full range of frequencies and amplitudes likely to be encoun-

tered during system operation, providing a representative set of linear models

for dynamic assessment and model-based control design of WECs. For ETFE

calculation, the DTFT is employed to generate a frequency-domain representa-

tion of the signals, as sinusoidal inputs correspond to specific frequency points
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(explained in Section 1.4.5.1). Additionally, a Tukey window function is applied

to reduce spectral leakage and mitigate the impact of transients in the output

signals (also detailed in Section 1.4.5.1).

The post-processing of ETFE includes phase correction to ensure the physical

principles articulated in Section 1.6.2. Parametric models of the ETFEs derived

from force-input experiments, along with a zero-input force model obtained from

WAMIT, are developed using the FOAMM toolbox (outlined in Section 1.4.5.2).

These models enable the tracking of dominant dynamics in the multilinear WEC

model, as described in Section 1.3.1. Furthermore, the study compares the

dynamic behavior obtained from this method with that derived from equivalent

free-decay NWT experiments (Section 1.4.3.1).

3. Paper III: ’Non-parametric multi-linear frequency-domain modelling of a wave

energy device from experimental data’:

The study begins by detailing the WEC model development process through

PWT testing, focusing on force-input experiments as described in Section 1.4.1

and Section 1.4.3.2. A significant contribution of this research is the identification

and characterisation of contamination sources specific to the PWT setup, within

the electromechanical, hydrodynamic, and structural components. The study

provides quantitative measures of these contamination sources and analyses

their dominance at various operating points.

Another key aspect of this research is the development of advanced preprocess-

ing techniques in the time domain, such as outlier removal from force signals

(Section 1.6.1.2) and data gap reconstruction. Additionally, the study proposes an

innovative application of the SG filter (Section 1.6.1.1) with a nonlinearly varying

window length, designed to adjust the filter’s cutoff frequency in alignment with

the linearly varying frequency of the chirp-type signals used.

Furthermore, post-processing techniques including ETFE phase correction,

ETFE filtering, and ETFE phase unwrapping (Section 1.6.2) are applied, all

aimed at achieving a realistic characterisation of the WEC.

To provide a clear overview of the research methodology and the interrelation-

ships between the different papers included in this thesis, the flowchart in Fig. 1.4

is presented. This diagram visually represents the process flow, highlighting the

key contributions of each paper and their integration within the overall research

framework. The use of color coding within the chart distinguishes between the

specific focus areas of each paper, as well as the shared methodologies and
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processes that underpin the collective findings of the thesis. The following colour

code is used:

Blue for Paper I, red for Paper II, with the purple sections indicating the method-

ologies and processes that are common to both papers, and green for Paper III.

1.8 List of publications

A list of peer-reviewed studies, that either make up the thesis core, or are the

outcome of work done during my Ph.D., is provided in this section. The studies

are arranged in chronological order. The abbreviated notation that follows indicates

the status of a publication: (P) published, and (UR) under review. Additionally, the

three paper, which make the main body of this thesis, are addressed by referencing

a specific chapter that they are included.

Journal publications:

Status Publication Chapter
(P) Farajvand, M., Grazioso, V., Garcia-Violini, D. and Ringwood, J.V.

Uncertainty estimation in wave energy systems with application to robust
energy maximising control, Renewable Energy, Vol.203, pp 194-204,
2023.

2

(P) Farajvand, M., Garcia-Violini, D. and Ringwood, J.V. Identification of
representative linearised models for a wave energy converter using
various levels of force excitation, Ocean Engineering, Vol.270, Paper
113635, pp 1-9, 2023.

3

(UR) Farajvand, M., Garcia-Violini, D. and Ringwood, J.V. Non-parametric
multi-linear frequency-domain modelling of a wave energy device from
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Nov. 2021.
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1.9 Thesis layout

This thesis is structured into five main chapters: an introduction, three papers (each

presented in a separate chapter from Chapter 2 to Chapter 4), and a concluding

chapter. The contents of each chapter are outlined as follows:

• Chapter 1 serves as the introduction to the thesis, beginning with a brief

overview of wave energy technology and control, followed by the motivation

for the research. This chapter also covers key topics such as WEC modeling

techniques, sources of uncertainty impacting WEC models, and relevant data

processing methods. Additionally, a "Thesis Path" section outlines how the

papers included in the thesis are connected to the topics discussed in the

introduction. The chapter concludes with a list of publications related to the

thesis work.

• Chapter 2 includes the paper entitled ’Uncertainty estimation in wave energy

systems with application to robust energy maximising control’, which focuses

on the accurate development of a nominal linear empirical transfer function
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model, along with a precise estimation of the uncertainty bounds within that

model, stemming from hydrodynamic uncertainties in NWT testing. A robust

control case study is presented, demonstrating the effectiveness of the control

strategy based on the nominal model estimation process and its associated

uncertainty set.

• Chapter 3 includes the paper entitled ’Representative linearised models

for a wave energy converter using various levels of force excitation’ which

focuses on investigating the dynamic behavior of a WEC system using fully

nonlinear CFD-based NWT experiments, building on the findings from Paper I.

Specifically, it utilises the optimal input signals and effective signal processing

techniques identified in the previous study. The goal is to accurately track the

dominant dynamics of the WEC across various force-input amplitude levels

in the NWT setup and compare these results with those obtained using the

classical linear BEM.

• Chapter 4 includes the paper entitled ’Non-parametric multi-linear frequency-

domain modelling of a wave energy device from experimental data’, which

focuses on developing a realistic multilinear WEC model using force-input

tests, addressing uncertainties and external disturbances in the PWT setup,

which involves a 1/20 scale Wavestar prototype. To preserve the integrity of

the physical system while managing data contamination, effective processing

steps are applied in both the time and frequency domains. The research cul-

minates in determining a single nominal model with an associated uncertainty

bound, forming a foundation for robust WEC control.

• Chapter 5 synthesises the key findings of the thesis, providing a critical

analysis of the results presented in each paper. This chapter also integrates

the insights from the individual studies to draw overarching conclusions,

highlighting the collective contributions of the research.
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Uncertainty estimation in wave energy

systems with application to robust
energy maximising control
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2.1 Abstract

Under control action, wave energy devices typically display nonlinear hydrodynamic

behaviour, making the design of energy maximising control somewhat onerous.
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One solution to approach the optimal performance for nonlinear control problem

under model mismatches is to employ a linear control strategy, which can be

robust to linear model mismatches. However, accurate characterisation of the

uncertainty in the linear model is vital, if the controller is to adequately capture the full

extent of the uncertainty, while not being overly conservative due to overestimation

of the uncertainty. This paper describes a procedure, employing CFD-based

numerical tank experiments, to accurately produce a nominal linear empirical

transfer function model, along with an accurate estimate of the uncertainty bounds

in that linear model, due to hydrodynamic uncertainty. A robust control case study is

provided, illustrating the nominal model estimation process, and its corresponding

uncertainty set, including the complete procedure, required to generate the robust

controller. Robust control results, on the fully nonlinear CFD model, are provided

to demonstrate the efficacy of the modelling and control philosophy.

2.2 Introduction

Electrification, based on renewables, is a key solution to cater for increasing energy

demand and tackle climate change. Among the renewable energy modalities, the

exploitation of energy from the ocean waves, due to their high power density and

relatively untapped potential, is key. However, economic competitiveness of wave

energy converters (WECs) needs to be improved, in which energy-maximising

control systems can play an important role.

Model-based control systems contribute to the majority of WEC control strate-

gies, where the system model has a significant influence on the control efficiency.

WECs are commonly modelled considering linearity assumptions, i.e. small displace-

ments, based on Cummin’s equation [87], with linearised hydrodynamic coefficients.

However, linear models, under the linearising assumption of small movements, are

challenged due to the requirement for exaggerated device oscillations to maximise

power absorption [27]. Thus, the WEC models capturing possible nonlinearities,

such as viscous drag, flow separation, vortex shedding [27], power take-off (PTO)

nonlinearities [88], and complex hydrodynamic interactions, should be considered

for the design and implementation of model-based control approaches. Nonlinear

hydrodynamic modeling of WECs have been reviewed in [48, 89, 90]. Among

nonlinear WEC models, computational fluid dynamics (CFD)–based numerical wave

tanks (NWTs), capturing relevant hydrodynamic non-linearities, have proven to be

of high-fidelity in research and development [27, 91].

A considerable number of energy maximising control approaches have been

developed to deal with nonlinear WEC models. Nonlinear model predictive control
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(NMPC) is a popular model-based control strategy, which obtains an optimal

control input (in theory), while handling motion and force constraints systematically

over a finite future time horizon [24, 25, 92]. Moment-based nonlinear optimal

control, subjected to nonlinear dynamics of the WECs, is another particular energy-

maximising strategy, using model order reduction theory by matching the frequency

response of the device at specific spectral components (discrete frequencies)

[22, 26]. Pseudospectral (PS)-based methods are another class of nonlinear WEC

control methodology where the continuous-time energy maximisation problem is

transcribed into a finite-dimensional optimisation problem. Application of the PS

method for a nonlinear WEC control dealing with viscous drag and PTO nonlinearity

is reviewed in [93].

Despite the development of different nonlinear control methodologies for WECs,

the computational burden of the optimisation problems is a significative aspect

[28, 24]. In addition, even fully nonlinear WEC models obtained from CFD simula-

tions include numerical errors and uncertainty [35]. To enhance the computational

complexity of nonlinear WEC controllers, while improving controller efficiency by

dealing with distinct sources of nondeterminism in the WEC model, a robust control

methodology, based on a linear nominal WEC model and uncertainty bound, has

been developed in [23]. Precise nominal models and small uncertainty bounds are

the key roles to reduce conservatism in the robust control design of WECs. Recent

efforts have been aimed at accurately characterising the nominal and uncertainty

models based on CFD simulations for the optimal robust control design of WECs [94].

However, a particularly important issue of the potential non-passive representation

of the nominal and uncertainty model arises from CFD-based NWT modelling, which

inherently discards intrinsic valuable information and degrades power absorption

[94]. In order to best support robust control objectives, there is motivation for

passivising a system by means of different approaches, most notably, feedback

passivity, practical passivity, and frequency domain passivisation methodology

[95]. A recent practical passivisation methodology, proposed by García et al. [63],

can be considered for an efficient application of the robust spectral-based control

methodology [23], when the system nominal description, or the corresponding

uncertainty bounds, violate the intrinsic physical passivity of the system.

In the field of WECs, uncertainty quantification has been addressed in different

studies. To briefly summarise, in [72] uncertainty in wave and environmental condi-

tions is quantified and parameterised with the objective of minimising uncertainty

towards the impact on power and mooring line tension prediction. Numerical

uncertainty estimation for passive control of WECs, focusing on the spatial and

temporal discretisation of CFD simulation, is studied by Wang et al. [35]. Online
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estimation of dynamic uncertainty, for robust adaptive optimal control of WECs, is

presented in [96]. Recently, a generalised polynomial chaos (gPC) methodology

has been utilised for uncertainty estimation, where the studies in [97] and [73]

address the gPC in WEC applications.

Consistent across all the noted studies is the implicit understanding that the

fidelity of nominal and uncertainty models plays a crucial role in the effective robust

control design for WECs. However, in wave energy robust control, none of the

studies to date includes a comprehensive representation of input signal synthesis

and characterisation, to give sufficient fidelity in CFD-based NWT tests, for a

sensible representation of a nominal model and minimised uncertainty region, while

satisfying the passivity condition with the goal of robust control design. Within

this context, the latter is tackled in this study, representing a novel and original

contribution to the state-of-the-art.

The layout of the remainder of this paper is as follows: First, the CFD-based

numerical wave tank setup for system identification and wave excitation force tests,

as well as CFD mesh refinement of the set-up, is presented in Section 2.3. Section

2.4 details input signal synthesis, including empirical transfer function estimate

(ETFE) definition and details on the three types of input signals considered for

system identification. Next, data post-processing, related to each input signal type

and determination of the the best input signal choice for robust model-based control

design of the WEC, is presented in Section 2.5. In Section 2.6, nominal model

determination and uncertainty quantification from ETFE with consideration of ETFE

refinement, and ETFE interpolation methodology is presented. A robust control

design procedure, with a focus on the input signal required for the control design,

is presented in Section 2.7. Section 2.8 demonstrates the application example,

working through determination of the nominal model, uncertainty region, and robust

control design for the case study. The results are presented in Section 2.8.3 and,

finally, conclusions on the overall application are drawn in Section 2.9.

2.3 CFD model construction

CFD-based numerical wave tanks (CNWTs), offering complete nonlinear hydro-

dynamic models, are important tools for analysing WECs. The interaction of the

waves and a submerged WEC can be simulated using well-established numerical

tools, such as the open-source CFD toolbox OpenFOAM [98], where the fluid

behaviour is analysed by numerically solving the Navier-Stokes equations. Under
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the assumption of incompressible fluid, Reynolds averaged Navier-Stokes (RANS)
equations, describing the conservation of mass and momentum, can be written as:

∂ρ(t, x)
∂t

+ ∇.(ρ(t, x)U(t, x)) = 0, (2.1)

∂ρ(t, x)U(t, x)
∂t

+ ∇.ρU(t, x)U(t, x) = −∇p(t, x) + ∇.(µ∇U(t, x)) + ρ fb(t, x) + fu(t, x),
(2.2)

where Equations (2.1) and (2.2) represent the conservation equations for mass
and momentum, respectively, with t and x denoting the time and spatial variables,
respectively, U(t, x) the fluid velocity field, p(t, x) the fluid pressure, ρ the fluid density,
µ the dynamic viscosity, and fb(t, x) the field of external forces, such as gravity.

2.3.1 NWT configurations

CFD–based NWTs, depending on the modelling objectives, can be designed and
equipped in different ways. In this study, two 3D NWT configurations are proposed,
based on two different experiment types, i.e. system identification and evaluation
tests. The WEC structure with a single degree of freedom, in the heave direction,
is considered in our NWT.

2.3.1.1 NWT for system identification

The three-dimensional CFD–based NWT for system identification tests is designed
in a tank with equal span in the x and y-directions, perpendicular to the tank
depth (z-direction), with the buoy located in the centre of the tank corresponding
to (x, y, z) = (0, 0, 0). The tank is equipped with a wave absorber at the left and
right boundaries (x = ±LT1/2). In the system identification tests, the WEC is driven
into motion by applying a defined input force (excitation signal) fu(t) directly to the
WEC, which are notionally applied through the PTO system ( fu(t) is the actual force
generated by the PTO). Due to symmetry in both x- and y-directions, the NWT
configuration allows the CFD simulation to be carried out on a quarter of the full
NWT, with a significant advantage in terms of computation time. The side view of
the NWT schematic for system identification tests is shown in Fig. 3.2(a), where D
and d are the tank and water depths, respectively, and LT1 is the tank length.

For the numerical experiments analysed in this study, the NWT setup is designed
in a 6m deep tank with a water depth of 3m. The NWT for system identification
spanning a length of LT1 = 14m in the x-direction and 14m in the y–direction, which
is designed to be six wavelengths of the most significant radiated waves (occurring
at peak frequency of the radiation damping of the WEC).
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2.3.1.2 NWT for evaluation tests

The three-dimensional CFD–based NWT, for evaluation tests, is designed in a tank

spanning the x (wave propagation direction) and y-directions, perpendicular to the

tank depth (z-direction), and the buoy’s location corresponding to (x, y, z) = (0, 0, 0).
The tank is equipped with a wave generation mechanism (at x = −c) and a wave

absorber at the down-wave domain boundary (at x = LT2−c) specified in [27], where

incoming waves alone induce the WEC motion. The side view of the NWT schematic

for evaluation tests is shown in Fig. 3.2 (b), where LT2 is the tank length, and c is

the buoy distance from the wave generation boundary. The NWT configuration is

symmetric in the y-direction, allowing a half of the full NWT for the CFD simulation,

which is computationally efficient.

D
atmosphere

z

x

LT2

D

atmosphere

dbottom wall

wave

dbottom wall

z

x

LT1

2

c

(a)

(b)

y

y

𝒇𝒖(𝒕) 

LT1

Figure 2.1: Schematic of the numerical wave tank for (a) system identification tests and (b)
evaluation tests: Side view

The NWT, for evaluation tests, spans a length of LT2 = 21.1m in x-direction and

15.6m in the y-directions, and the buoy location is c = 7.2m down–wave (at least

one wavelength distance) from the wave generation boundary, and LT2 − c = 13.9m

from wave absorption boundary (at least two wavelengths distance).

2.3.2 CFD mesh refinement

The spatial discretisation of the NWT is implemented via a mesh; based on the

CNWT setup presented in [27], ensuring the efficient and accurate simulations. With

the aim of reducing the potential numerical uncertainty effects, additional mesh

refinement of the NWT geometry, for system identification tests, is performed to

ensure high fidelity. The buoy displacement resulting from the smallest input force is

considered to generate the smallest mesh size around the buoy. Meshes are denser
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around the buoy boundary and gradually increase in size toward the NWT boundary.

Mesh refinement is performed on the existing mesh generated in [27] and [94] by

adding more cells and, therefore, decreasing the dimension of the cells around the

buoy. Fig. 2.2 shows a snapshot of the computational mesh of the side view of the

quarter NWT using ParaView, an open-source software utility for visualising the

data from OpenFOAM. As a result of mesh refinement, the total number of cells

Figure 2.2: Paraview snapshots of computational mesh of geometry

increases from the initial number of 1.3 million to 4.06 million, and the cell dimension

around the buoy has reduced from 0.013m to 0.0054m.

2.4 Input signal synthesis

Frequency response analysis (FRA) of systems, defined as the ratio of the Fourier

transform of the output response to the Fourier transform of the input excitation,

is a well-researched area which is used to characterise the system. In this study,

based on well-known optimal conditions for the maximisation of energy absorption

[61], the so-called force-to-velocity mapping is computed from the set of input

excitation forces (PTO force), and their corresponding outputs (velocity) to identify

the system. The specification of the system input is one important issue in system

identification. The input signal must excite the system over the frequency range

where the system has a significant frequency response, while, at the same time,

covers the full input amplitude (dynamical) range. Three input signal types and

their FRA are considered for this study: Sinusoidal signals, chirp signals, and

multisine signals. In order to effectively describe the type of calculation required

for the analysis and the use of the input signal, we begin with a definition of the

empirical transfer function estimate (ETFE).
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2.4.1 EFTE definition

The linear control design model for the current study is identified via a frequency-

domain black-box-identification methodology, aiming to characterise the force-to-

velocity mapping, i.e. the mapping f (t)→ v(t), where ( f (t), v(t)) is the input-output

pair, defined in the time-domain. By defining F( jω) and V( jω) as the Fourier

transform of the f (t) and v(t), respectively, the ETFE, H( jω), is computed as:

H( jω) =
V( jω)
F( jω)

. (2.3)

2.4.2 Sinusoidal signals

A sinusoidal input, with a single frequency, can be represented by:

x(t) = Asin(ωt + ϕ), for t ≥ 0, (2.4)

where A, ω, and ϕ are the amplitude, frequency and phase of the sinusoid, respec-

tively. To obtain a complete frequency domain characterisation of the system, for

each considered amplitude, ’sufficient’1 frequency values, ω, should be selected

for the system identification tests, as follows: Asymptotic frequency values (low

and high frequency limits), as well as the resonance frequency of the device,

are of paramount importance. Considering the high variability of the frequency

response around the resonance frequency of the system, selection of frequency

points around the resonance frequency is advantageous in terms of efficiently

capturing the main dynamical behaviour of the system in spectral domain. Using

a series of sinusoids as input signal generates a line-spectral characterisation of

the system, with a large experimentation time (with sufficient individual sinusoids)

to cover the required frequency range.

2.4.3 Chirp signals

A chirp signal is a signal with a time-varying frequency. Due to the possibility of

defining a so-called instantaneous frequency, chirp signals are of particular interest.

Assigning a specific frequency to every time point in the input signal allows for a

one-to-one mapping between time and frequency domains for linear systems.

1According to the specified target spectral discretisation.
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2.4.3.1 Linear frequency modulated chirp signal

In a linear frequency modulated (LFM) chirp signal, the instantaneous frequency

f (t) varies linearly with time:

f (t) = ct + f0 (2.5)

where f0 is the initial frequency and c is the chirp rate. A chirp signal in which the

frequency increases with time is termed ‘up-chirp’ (c > 0 for LFM up-chirp), and

a chirp signal in which the frequency decreases with time is termed ‘down-chirp’

(c < 0 for LFM down-chirp).

The corresponding time-domain function for a sinusoidal linear chirp can be

formulated as:

x(t) = Asin
(
ϕ0 + 2π

(c
2

t2 + f0t
))
, for t ≥ 0, (2.6)

where, A and ϕ0 are the amplitude and initial phase of the LFM chirp signal,

respectively. In a standard LFM chirp signal, A is a constant value while, in an

amplitude modulated LFM chirp signal, A is a function of time.

2.4.3.2 Nonlinear frequency modulation chirp

In a nonlinear frequency modulated (NLFM) chirp signal, the instantaneous fre-

quency f (t) varies nonlinearly with time. A NLFM chirp signal can be defined, for

example, by assigning equal, or balanced, permanency time to each frequency

where the instantaneous frequency f (t) is calculated as:

f (t) =
c
t
+ f0 (2.7)

2.4.4 Multisine signals

Multisine signals consist of a sum of several simultaneously generated sinusoids, de-

noted as:

x(t) =
N∑

k=1

Aksin (ωkt + ϕk) , (2.8)

where Ak is the amplitude and ϕk the phase of the k-th sinusoid, with N the number

of sinusoidal components. ωk = ω0 + (k − 1)∆ω is defined for harmonic multisine

signals, where ω0 is the initial frequency and ∆ω the constant frequency interval.

ωk, for non-harmonic multisines, is based on user selected frequency points. While

Ak and ωk are normally not chosen independently, in the case of present study we

use an open choice on the combination of Ak and ωk.
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Combining sinusoids increases the signal amplitude, which is generally undesir-

able in NWT experiments, where specific amplitude excitation is desired. In order to

produce a specific amplitude multisine, the crest factor (CF), i.e. the ratio of the peak

value of a signal to it’s root mean square level, should be minimised. A well-known

frequency-domain CF minimisation methodology, for uniformly spaced frequency

components, is Schroeder’s method [99], which optimises the ϕk to minimise the CF.

2.5 Data postprocessing

Typically, the NWT output signals show a level of distortion, adversely affecting

the system identification process. The primary source of distortion relate to issues

associated with limitations of the NWT itself. Most notably, the limitation in NWT

length causes wave reflection, and, due to the computational burden, there is also

a limitation in the time duration of the excitation signal. A level of post-processing

is therefore carried out to mitigate the resulting distortion. A sample CFD-based

input/output time domain analysis, based on an input signal with a maximum

force amplitude of 20N and signal duration of 25s is considered, to illustrate the

post-processing methodology.

2.5.1 Sinusoidal signal

Sinusoidal CFD-based NWT experiments for the system identification are pro-

cessed in the time domain data for specific frequency points in the frequency

range. Output signal distortion, corresponding to low-frequency input sinusoidal

signals, are particularly noticeable, resulting from short signal duration. A potential

methodology to reduce such distortion involves the application of a band pass

filter (BPF) which passes only frequencies within a specific (narrow) frequency

range. The transfer function of a second-order BPF is formulated from the standard

continuous-time form:

TBP(s) = Go.
(ωo

Qp
)s

s2 + (ωo
Q )s + ω2

o
(2.9)

where Go is the filter gain, ωo the centre frequency of the filter, and Q the quality

factor, determining the sharpness of the resonance in the filter frequency response.

The filter bandwidth, defined as the difference between the higher and lower 3dB

cut-off frequencies, is inversely proportional to Q. A bandpass filter, with a centre

frequency of exactly the same frequency as the sinusoidal signal, is employed. To

work with the sampled signals, a discrete-time version of the filter is obtained using
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a matched z-Transform equivalent, with zero initial conditions, and is applied to both

input and output signals. Fig. 2.3 shows sample unfiltered and filtered (using the

BPF) input/output time-domain signals from a CFD simulation. The input signal is a

single sinusoid with an amplitude of 20N and frequency of 0.2rad/s (low frequency

asymptote), and sampling period of 0.001s, over the time interval of [0, 25]s. A

direct consequence of the short signal duration is the incomplete period of the signal

in this specific case. Considering sinusoidal signals, the ETFE for three different

cases, including unfiltered input/unfiltered output, unfiltered input/filtered output, and

filtered input/filtered output is computed, with results shown in Fig. 2.4. The discrete

(in both time and frequency) ETFE is obtained using the Fast Fourier transform

(FFT), with zero-padding to bring the number of calculation points to the next 2 j ( j

an integer), as required by the FFT. Based on the phase plot in Fig. 2.4, applying

the BPF to the output signal, or input and output signals for the system identification

process, results in even more distortion as the phases diverge from the expected

(due to the passive nature of the device) value of 90◦ at the low frequency asymptote.

As a result, BPF was abandoned as a post-processing technique for input/output

time domain data using sinusoidal input force experiments.
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Figure 2.3: Time trace of unfiltered and filtered input/output signals for input sinusoidal
signal

2.5.2 Chirp signal

Chirp CNWT experiments for system identification are simulated at different am-

plitude levels. Fig. 2.5 shows the input/output time-domain signals and their

corresponding spectrograms. Based on the output spectrogram analysis in Fig. 2.5,

distortion is evident, with the presence of parasitic low-frequency components. One

possibility, to diminish this distortion, involves the application of a frequency-varying
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Figure 2.4: ETFE for sinusoidal input force

BPF, where the centre frequency of the filter varies with the instantaneous frequency

of the chirp. The transfer function of the frequency-varying second-order BPF can

be formulated as in (2.9), where ω is the time-varying frequency of the filter.
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Figure 2.5: Time trace and spectrogram of the input/output signals for input LFM up-chirp
signal (unfiltered)

Fig. 2.6 shows sample unfiltered and filtered input/output time-domain signal

from the CFD simulation using a frequency-varying BPF. The input signal is a

linear (frequency with time) up-chirp with maximum amplitude of 20N, where the

frequency is linearly varying from 0.06rad/s to 18.89rad/s over a time interval of

[0, 25]s, with a sampling period of 0.001s. The bandpass filter, with the centre

frequency coincident with the signal frequency, is again discretised using a matched

z-Transform equivalent and applied to both input and output signals. The ETFE

for three different cases, including unfiltered input/unfiltered output, unfiltered

input/filtered output, and filtered input/filtered output is computed, and results are

shown in Fig. 2.7. Based on the phase plot in the ETFE, applying the BPF to

the output signal, or input and output signals, for the system identification process,

results in even more distortion as the phases diverge from the expected value
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of 90◦ at the low-frequency asymptote. As a result, BPF was abandoned as a

post-processing technique using chirp input force experiments.
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Figure 2.6: Time trace of unfiltered and filtered input/output signals based on LFM up-chirp
input force.
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Figure 2.7: ETFEs computed from unfiltered input/unfiltered output, unfiltered input/filtered
output, and filtered input/filtered output based on LFM up-chirp input force.

2.5.3 Final choice of input signal

In this section, the potential signal types and their corresponding ETFEs will be

examined to choose the best set of input signals for system identification, leading

to the most effective control of the WEC. Smaller ETFE variance values, resulting

in a correspondingly small uncertainty bound, will lead to the less conservative

control of WEC with corresponding improvement in control performance over the full

operational space [23]. For comparison, five input signals, and their corresponding

ETFEs, are presented in Fig. 2.8 and Fig. 2.9, respectively. The time-domain

simulations are performed over the interval [0, 25]s. Fig. 2.8(a) shows a LFM up-

chirp signal, specified in Section 2.4.3.1. Fig. 2.8(b) shows an amplitude-modulated



44 2.5. Data postprocessing

LFM up-chirp signal (Section 2.4.3.1), which is obtained by multiplying the LFM up-

chirp signal in Fig. 2.8(a) by the half parabola starting from the value of 7.5 at t = 0s

and finishing with the value of 1 at resonance time t = 7.65s. The NLFM down-chirp

signal (Section 2.4.3.2), with maximum amplitude of 20N, and frequency function

according to Equation (2.7), which varies from 18.89rad/s to 0.06rad/s, is shown

in Fig. 2.8(c). A sample of a sinusoidal signal (Section 2.4.2) with an amplitude

of 20N and frequency of 5.7rad/s is shown in Fig. 2.8(d), and finally, the non-

harmonic multisine signal (Section 2.4.4), defined with flat amplitude spectra of 20N

and the frequency set of Ω = {0.2, 1, 2, 3, 4, 5, 5.5, 5.7, 6, 6.5, 7, 8, 9, 10, 18.89}rad/s

and CF optimised using Schroeder’s method [99] is presented in Fig. 2.8(e). The

ETFEs, calculated from the various input/output time-domain signals, is presented

in Fig. 2.9. The ETFEs obtained from LFM up-chirp, amplitude-modulated LFM

up-chirp, and NLFM down-chirp input signals are shown in red, yellow, and orange

lines, respectively. The individual circular and diamond markers represent the ETFE

calculated from single sinusoidal signals and the multisine signal with frequencies

contained in Ω, respectively.
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Figure 2.8: Time series of potential identification signals

Based on the ETFEs obtained for the five different input signal types (Fig. 2.9),

the following conclusions can be drawn:

• The ETFE from the LFM up-chirp input signal has high variability, both in

magnitude and phase. The main issue arises from the limitation of the

simulation time length, which is designed to avoid wave reflections from the

tank and also to reduce the computational complexity of the simulations. The
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limited-time length results in a very short effective time duration spent at each

frequency. LFM up-chirp input signals clearly result in considerable phase

values above 90◦ violating the passivity requirement [94].

• The ETFE from the amplitude modulated LFM up-chirp input signal results

in a smoother ETFE compared, with the standard linear up-chirp signal, at

frequencies up to the resonance frequency of the device, and the overall

signal-to-noise ratio is improved. However, passivity issues with this input

signal are also evident, and the ETFE shows high variability at frequencies

higher than the resonance frequency of the device.

• The ETFE from a NLFM down-chirp shows poor resolution and high variability

at the resonance frequency and at high frequency, which will result in a large

uncertainty bound. However, this experiment results in a relatively good

low-frequency asymptote, which is around 90◦.

• The ETFE from a non-harmonic multisine signal results in very large variations

in the magnitude and phase. One possibility cause may be from distortion of

the unequal amounts of time spent at each frequency by the CF optimisation

algorithm.

• The ETFE from the sinusoidal input signals is smooth and has low variance,

which is a direct result of spending more time at each frequency. This is the

best compromise between the 25s time limit from reflections and the need to

spend sufficient time at each frequency to resolve the ETFE.

In summary, the drawbacks associated with the LFM up-chirp, amplitude

modulated LFM up-chirp, NLFM down-chirp signals reduce the value of their use in

a system identification context. Ultimately, consistent amplitude sinusoidal signals at

specific frequency set plus an additional frequency point at resonance were used to

excite the system, repeated for different amplitude levels. However, some data from

other experiment types, e.g. asymptotic values, are valuable in overall calibration

of the data. As a result, these signal characteristics are considered to be a good

compromise between time domain data resolution and computational requirements.

In the following, CFD simulations with sinusoidal input types will be exclusively

adopted for ETFE calculation.



46 2.6. Uncertainty quantification using the EFTE

100 101

-135
-90
-45
0
45
90
135

-80

-60

-40

-20
Empirical Transfer Function Estimate

LFM
LFM

NLFM

Figure 2.9: Empirical transfer function estimate obtained from five different input signals:
LFM up-chirp input signal, amplitude modulated LFM up-chirp signal, NLFM down-chirp
input signal, sinusoidal input signals, and multisine input signal. Note that the multisine and
individual sinusoids are only defined at discrete frequency points.

2.6 Uncertainty quantification using the EFTE

ETFEs obtained from the CNWT experiments are now used to select both the

nominal model and quantify the uncertainty for robust control design. ETFE refine-

ment is performed prior to nominal and uncertainty model selection to ensure the

correct asymptotic nature of the ETFE and passivity of the WEC model. Ultimately,

the total uncertainty measured is a combination of nonlinearity in the (linear)

nominal model, together with some minor phenomena resulting from imperfect

simulation in the NWT.

2.6.1 EFTE refinement

ETFE refinement refers to mitigation of ETFE distortion arising from the CNWT

experimental errors. ETFE refinement is carried out based on the satisfaction of

two fundamental physical properties of the system:

2.6.1.1 Asymptotic nature of the ETFE

In order to ensure asymptotic behaviour consistent with a passive system, the

ETFE phase components are forced to 90◦ and -90◦ at the low and high-frequency

asymptotes, respectively.

2.6.1.2 Passive nature of the WEC

Considering the passive behaviour, which is formulated based on physical energy

processes of the device, a passivisation methodology, based on Bode plot shaping,
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is applied. In this study, ETFE refinement is performed by means of forcing the

phase within ±90◦ degrees for all frequencies.

2.6.2 Uncertainty quantification

The methodology for determining the nominal model and specifying uncertainty,

based on the ETFEs calculated from the NWT experimental data, is presented

in this section.

2.6.2.1 Nominal model determination

The nominal model, based on the calculated ETFEs, can be determined using

different approaches. Three possible choices are:

1. Nominal model based on average ETFE: In this methodology, the nominal

model is calculated by taking the average of all ETFEs.

2. Nominal model based on the most linear case: This approach uses the ETFE

corresponding to the smallest input force amplitude. The nominal model

based on the smallest force will result in the closest model calculated by linear

boundary element methods (BEMs) [50]. However, nominal model selection

based on a linear approach may result in a large uncertainty region, with

resulting conservative control [94].

3. Nominal model based on minimum radius circles: This method produces

a synthetically built nominal model, which is formulated to minimise the

uncertainty region. At each frequency point, the nominal model is located at

the centre of a minimum radius circle which includes the extremities of the

uncertainty region [23, 94].

2.6.2.2 Uncertainty specification

The uncertainty region, at a specific frequency point, is calculated based on the

minimum distance between the nominal model and experimental models of different

amplitude levels at that frequency. The multiplicative uncertainty, ∆m(ω), is defined :

max
1⩽i⩽n
{|∆i

m(ω)|} = max
1⩽i⩽n

{∣∣∣∣∣Hi(ω) −Go(ω)
Go(ω)

∣∣∣∣∣} (2.10)

where n is the number of experiment sets and Go is the nominal model.
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2.6.3 ETFE interpolation

Since the number of frequency points returned in the ETFE is limited by the number

of individual sinusoids used for excitation (16 points), some level of interpolation

is required to provide an adequate number of frequency points for robust control

design. This is due to the pseudospectral nature of the control design, where a

number of pseudospectral basis functions considerably in excess of 16 is required.

Such an interpolation can be carried out using two methods: (A) Interpolation of

the ETFEs based on the basis function frequency points and determination of the

nominal model and uncertainty bounds at these points OR (B) Determination of the

nominal model and uncertainty bounds from the raw ETFEs and then interpolate

the nominal model and uncertainty bound at the basis function frequency points.

Methodology (A) is adopted since, by first interpolating the sinusoidal based ETFEs,

smoother interpolation is obtained.

2.7 Robust control design

The control objective for the WEC system is to maximise the total absorbed energy,

J, defined as:

J ≡ E = −
∫ T

0
Pdt = −

∫ T

0
vT (t)u(t)dt, (2.11)

which, in spectral and pseudospectral form, can be reformulated as:

J ≈ JN =

∫ T

0
ûTΦT (t)Φ(t)v̂ = −

T
2

ûT v̂, (2.12)

In (2.11) and (2.12), E represents the absorbed power over the time interval [0 T ],
P the instantaneous power, u(t) the control force applied through the PTO system,

and v(t) the device velocity. û and v̂ are approximations of u(t) and v(t) using an

orthogonal set of basis functions Φ [23]. Substituting the approximation of the

equation of motion of the WEC, v̂ = G(û + ê), into the approximate absorbed energy

expression in (2.12), the following equality is obtained:

JN = −
T
2

ûTG(û + ê), (2.13)

which is a quadratic function in the control variable û alone. In (2.13), G is defined

as the system model and ê is an approximation of the wave excitation force. If the

concavity of Equation (2.13) can be guaranteed, there will exist a global maximum

for the optimisation problem, with optimal solution:

û⋆o = −(G +GT )−1Gê. (2.14)
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The optimal value of JN , with (2.14) is substituted into (2.12), is then

J⋆N =
T
2

û⋆T
o G(û⋆o + e). (2.15)

For application of the robust control approach, the system model, G should rep-

resent a family of models which includes the nominal plus uncertainty model, defined

as:

G = Go + ∆a, (2.16)

with Go representing the nominal model of the system and ∆a ∈ R
N×N the uncertainty

model, formulated as:

Go =

N/2⊕
k=1

[
Ro

k Io
k

−Io
k R

o
k

]
(2.17)

and

∆a =

N/2⊕
k=1

[
δRk δIk
−δIk δRk

]
,

where

Ro
k = Re{go( jωk)},Io

k = Im{go( jωk)}

and

δRk = Re{δk}, δ
I
k = Im{δk}.

Ro
k ,I

o
k ∈ R, and go( jωk) represent the nominal frequency response, while

δk ∈ C represents the uncertainty level at frequency ωk. Considering the feasibility

(passivity) condition for the real system, G must be positive real:

Rk = R
o
k + δ

R
k > 0, (2.18)

where Rk is the real part of the system model.

Using the feasibility condition and defining the best worst-case performance

(best-WCP) solution as the input that minimises the performance degradation when

the system under study is affected by a bounded uncertainty set ∆, the robust

control problem statement can be defined as:

û⋆r ← max
û∈RN

min
∆∈U

JN . (2.19)

Equation (2.19) represents a robust quadratic formulation where U indicates the

set of all possible uncertainty.
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2.8 Case study

2.8.1 System setup

The point absorber-type WEC considered for this study has an axisymmetric

cylindrical geometry and hemispherical bottom. A schematic of the structure,

including all relevant physical properties, are shown in Fig. 2.10. The radius of the

hemispherical and cylindrical sections is 0.25m, with the height of the cylindrical

section also 0.25m. The mass of the device is 43.67kg, with the centre of the mass

located at a vertical distance of 0.191m from the bottom-most point of the buoy.

0.25m
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0.25m
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3.0m2.678m

x
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Figure 2.10: Schematic of the considered WEC structure

2.8.2 ETFE evaluation

The ETFEs resulting from the complete set of sinusoidal exciting signals are shown

in Fig 2.11. ETFE determination is based on the NWT configuration presented in

Section 2.3.1.1. The sinusoidal PTO force excitation signals consist of a total of

96 experiments combining the amplitude set Ai = {20, 40, 60, 80, 100, 120}N using

a set of individual frequencies w j ∈ {0.2, 1, 2, 3, 4, 5, 5.5, 5.7, 6, 6.5, 7, 8, 9, 10, 18.89}
rad/s plus a resonance frequency specific to each amplitude set. This selection

of frequencies and amplitudes gives a smooth representation transition between

the ETFE points corresponding to discrete values of amplitude/frequency. In

particular, the amplitude range selection ranging from linear behaviour (smallest

amplitude) to amplitudes forcing the device out of the water (largest amplitude) and

intermediate values, covers a full dynamical characterisation of the nonlinear system.

Each experiment is driven by a finite set of N exciting force signals that generate

a corresponding set of velocity signals. The simulation time of the sinusoidal

experiments is the interval [0, 25]s. The ETFEs for each of the Ai amplitudes, after
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the employment of ETFE refinement as explained in Section 2.6.1, and interpolation

across frequency points using piecewise cubic Hermite interpolating polynomials

(PCHIPs), are shown in Fig. 2.11.

Figure 2.11: Empirical transfer function estimates (ETFEs) for the 6 amplitude levels, using
sinusoidal signal excitation (based on unfiltered data).

In this study, three nominal model candidates are considered for robust control

design. Fig. 2.12 shows the interpolated ETFEs, along with the three nominal

model possibilities; Ĝ(ω) is the nominal model based on the average ETFE, Glin(ω)
is the nominal model based on a linear BEM approach, and Gcirc(ω) is based on

the minimum radius uncertainty circles as detailed in Section 2.6.2.1 (1-3). The

Figure 2.12: ETFE and Nominal models based on Ĝ(ω), Glin(ω), and Gcirc(ω)

same information, including the ETFEs and the three nominal model candidates,

is shown in Fig. 2.13 on a polar (Nyquist) plot.

The uncertainty bound, based on the formulation presented in Section 2.6.2.2,

is obtained for the three nominal model candidates, with results as shown in Fig.

2.14. Comparing the uncertainty magnitude corresponding to the three different

nominal models, Ĝ(ω), Glin(ω), and Gcirc(ω), it is clear that selection of the centre of
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Figure 2.13: ETFEs and nominal models based on Ĝ(ω), Glin(ω), and Gcirc(ω) in polar
form.

the minimum radius circles as a nominal model (Gcirc(ω)) results in a significantly

smaller multiplicative uncertainty bound, |∆m|. The ETFEs, the three different

nominal models, and their corresponding uncertainty regions are also represented

in the Nyquist (polar) domain, shown in Fig. 2.15.

Figure 2.14: Uncertainty size |∆m| using multiplicative uncertainty structure for three different
nominal models Ĝ(ω), Glin(ω), and Gcirc(ω).

2.8.3 Sample robust control results

The control part of this study is based on the assumption of full knowledge of

the wave excitation force. Wave excitation force tests are simulated in a CFD

environment, as detailed in Section 2.3.1.2. The WEC structure is exposed to the

irregular incident waves of a JONSWAP spectrum with a significant wave height

of Hs = 0.1m, peak period of Tp = 1.94s, and steepness parameter γ = 3.3. This
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Uncertainty  bound

Figure 2.15: ETFEs, Nominal models based on Ĝ(ω), Glin(ω), and Gcirc(ω), and their
corresponding uncertainty, in polar form.

condition represents realistic, scaled conditions at the AMETS test site in Bellmullet,

Co. Mayo, off the West Coast of Ireland [100], which has challenging wave

conditions, consistent with the generation of nonlinear hydrodynamic fluid/device

interaction. (To retain deep water conditions of the AMETS site, the Froude scaling

with a scaling factor of 1/30th is applied [101].) The time-domain representation of

the wave excitation force, extracted from the numerical simulation data, together

with the approximated excitation force using 63 frequency components, is shown

in Fig. 2.16. A good agreement between the approximated excitation f̃ex(t) and

experimental excitation wave force fex(t) can be observed.

Figure 2.16: Experimental and approximated wave excitation force

The robust controller is designed based on the nominal models, Gcirc (the

nominal model corresponding to the smallest uncertainty size (Fig. 2.14)) and

Gtest(ω), where Gtest(ω) is a generic test model contained in the family of systems,

represented by the set of circular boundaries. In addition, two solutions for the

optimal control forces are computed:

• uo(t) is computed using the nominal approach, i.e. using the nominal model,

Gcirc(ω).
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• ur(t) is computed using the robust approach, based on experimental test

models, Hi(ω).

The sin and cos frequency component coefficients of the optimal control inputs,

uo(t) and ur(t) are shown in Fig. 2.17. Note that, in general, the components

corresponding to uo(t) have a greater amplitude than ur(t). For assessment of the

Figure 2.17: Frequency components of the optimal control inputs

control performance, the following steps are taken:

1. uo(t) is applied to Gcirc(ω) and Gtest(ω), and

2. ur(t) is applied to Gcirc(ω) and Gtest(ω).

Fig. 2.18 shows the time trace of absorbed energy when uo(t) and ur(t) are

applied to Gcirc(ω) and Gtest(ω).

Figure 2.18: Time trace of the absorbed energy, applying different control input forces to
the different nominal models.
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• The solid red line represents the absorbed energy when uo(t) is applied to the

nominal model Gcirc(ω). This case is the ideal performance, where the optimal

control input using nominal model Gcirc(ω) is applied to the same nominal

system.

• The orange dashed line represents the absorbed energy when uo(t) is applied

to the nominal model Gtest(ω). In particular, as the test model has been

specifically selected, this case is the worst performance, where the optimal

control input using the nominal model Gcirc(ω) is applied to the nominal model

Gtest(ω).

• The dark purple dashed line represents the absorbed energy when ur(t) is

applied to the nominal model Gcirc(ω). In this case, the performance of the

system has improved and absorbed energy of the system has moved closer

to the absorbed energy for ideal performance.

• The purple dashed line represents the absorbed energy when ur(t) is applied

to the nominal model Gtest(ω). This case is the best worse-case performance

for energy absorption.

Comparing the results of applying ur(t) to the two different nominal models, the

impact of the correct selection of nominal model and uncertainty bound is highlighted.

In robust control, applying ur(t), where the nominal model is based on the centre

of the minimum radius circles (Gcirc(ω)), which corresponds to a small size of

uncertainty bound, improves the control performance. Fig. 2.18 shows that the

mean generated power, using the robust approach, is always non-negative, which

is in accordance with the principle of non-consumption of power using robust

approaches. In this study, nominal control also results in a positive mean absorbed

energy, but in the general (non-robust) case, negative mean power ‘production’ can

occur, for mismatched control/system models [23].

2.9 Conclusions

This study proposes a framework for estimating uncertainty in WEC systems with

applications in robust control. With the objective of obtaining high-fidelity results

from a CFD-based NWT, mesh refinement has been applied to the NWT setup

proposed in [94], resulting in improved ETFE resolution considering the same

experiments. The main contribution of this study is the synthesis of input signal

types, and post-processing towards the aim of reducing conservatism in the WEC

uncertainty description with the following results:
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• Sinusoidal signals: Computing an ETFE with individual sinusoidal input signals

and their corresponding output signals results in a high level of fidelity in

terms of a low-variability ETFE, and satisfying the asymptotic nature of the

phase response with minor errors which are addressed by applying ETFE

refinement. It has been shown that there is no value in applying a BPF for the

experiments showing distortion in the output signal. The major drawback for

the experiments with individual sinusoidal signals is the high computational

cost (relatively long simulation time).

• Chirp signal: The ETFEs obtained from LFM up-chirp input signals, and

their corresponding output signals, show high variability, resulting in a large

uncertainty region, while distorting the passive nature of the asymptotic ETFE

properties. ETFEs obtained from input/output signals by pre-distorting the

LFM up-chirp input signal, by modulating the input amplitude, resulted in a

less variable ETFE, at low frequency. However, the resulted ETFE, computed

from amplitude modulated LFM up-chirp signal, is not as smooth as the ETFE

obtained from sinusoidal input signals. Moreover, the ETFE obtained from a

NLFM down-chirp resulted in a highly variable ETFE at resonance and at high

frequency. It has been shown that application of a BPF to the input/output

signals is problematic, due to the difficulty of correct initialization of the filter

output, resulting in unwanted additional transient behaviour artefacts.

• Multisine: ETFEs obtained from non-harmonic multisine signal show high

variability. The application of Schroder’s minimisation method to a multisine

signal, with user selected frequencies, results in a highly-variable ETFE, with

distortion of the amount of time spent at each frequency as a likely explanation.

Thus, it can be concluded that achieving a balance between minimisation of

the crest factor, and concentrating on the particular frequencies (non-harmonic

multisine), is virtually impossible.

In the NWT experiments, proper input signal selection, application of ETFE refine-

ment, and quantifying uncertainty by representative nominal model selection and

uncertainty region estimation, results in a passive system representation and small

uncertainty region, which improves robust control performance. The comparison of

the overall energy absorption from this study and [94] highlights the improvement

in the resulting controller performance.
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60 3.1. Abstract

3.1 Abstract

In guiding the progression, development, and operation of wave energy converters

(WECs) in a more efficient way, mathematical analysis and understanding of the

dynamic process is essential. Mathematical WEC models, obtained either by nu-

merical analysis or physical modelling, form the basis of most (model-based) energy

maximising control strategies available in the literature, where experiment design

and system identification methodology directly impact the resulting model. This

study, using an experimental-based WEC model (which can be used for linear control

design), investigates the dynamic behaviour of a WEC by analysing the dominant

poles of the system, generated using fully nonlinear computational fluid dynamics

(CFD)-based numerical wave tank (NWT) experiments. The aim is to effectively

track the dominant dynamics of the WEC, using different force-input amplitude levels

in the NWT setup, and perform a comparison with the classical linear boundary-

element-methods (BEM) equivalent methodology. Thus, the presented case studies

are shown to agree with previously proposed model assessment of linear WEC

models, based on a free-decay NWT setup. In addition, the representative WEC

models determined as part of this study can be used for WEC controller design,

either singly, or using a form of model/controller gain scheduling.

3.2 Introduction

Considerable modelling and testing is required for the development, optimisation,

and power production assessment of wave energy converters (WECs). It is essential

to accurately model WECs, and to measure, estimate, and monitor their dynamics

in order to design effective (model-based) energy maximising control strategies,

while preventing device damage due to undamped oscillations, or excursions

beyond physical constraints, during operation. Developing a representative WEC

model to describe body motion, wave-structure interaction, and the dynamics

of different energy conversion stages is fundamental. Commonly used WEC

models for control strategies are typically based on linear hydrodynamic models,

either obtained from linear potential flow theory or data-driven system identifica-

tion methodologies. Linear WEC models, based on boundary element methods

(BEM), result in computationally attractive models commonly used for model-based

control strategies, where the frequency-dependent hydrodynamic parameters are

obtained under the assumption of inviscid, irrotational, and incompressible flow

and small body motion (relative to the body dimension) around the equilibrium

point. However, linear models, developed under these assumptions, and small wave
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amplitude/steepness, are in conflict with the requirement of exaggerated device

oscillations, as a consequence of the optimal energy-maximisation conditions [27].

In contrast, nonlinear approaches for mathematical modelling of WECs, reviewed

in [90], point to techniques which can capture nonlinear hydrodynamic (and other)

effects, and/or provide high fidelity data. Nonlinear WEC hydrodynamic effects

can be handled using different strategies, namely, partially nonlinear methods,

based on expansion of the linear model by including some nonlinear effects [102],

weakly nonlinear methods, based on simplification of the fully nonlinear formulation

[103], and fully nonlinear models [104]. Among modelling techniques in the field

of WECs, computational fluid dynamics (CFD)-based analysis, capable of fully

capturing hydrodynamic nonlinearities (consistent with the Navier-Stokes equations),

is useful for high-fidelity modelling of WECs, but at great computational expense

[105]. Nevertheless, CFD-based numerical wave tank (NWT) models have shown

to be powerful tools, providing high-fidelity time-domain analysis of WECs, and

power production assessment [34, 48].

In order to produce computationally simpler models, while considering WEC

nonlinearity, recent efforts have aimed at the development of representative linear

models, using system identification methodologies, from nonlinear NWT experi-

ments, where the design of the NWT testing setup for data generation, and the

employed system identification techniques, impact the resulting identified WEC

model. This can be viewed as a data-based form of model reduction. For instance,

[94] developed a framework to identify a nominal linear model for application of

a robust control strategy from force-input CFD-based NWT (CNWT) experiments,

following an empirical transfer function estimate (ETFE) methodology, essentially

using a black-box identification method. Similarly, [106] proposed a solution for

parameter identification of a state-space WEC representation from a series of

(zero-input) decay tests in a CNWT setup. The study in [50] uses a linear modelling

approach for WECs, combining high-fidelity CNWT simulations, system identification,

and BEM-based modelling methods.

There is motivation to apply system identification strategies to wave energy

modelling to characterise the movement of the WECs. The study in [41] considers

system identification techniques and model validation procedures to calculate the

WEC dynamics based on data from wave tank experiments. The FOAMM toolbox

[67] provides an identification technique capable of computing parametric WEC

models, which can characterise the system dynamics. This toolbox systematically

implements a moment-matching [26] based identification strategy from nonpara-

metric frequency-domain data.
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The novelty of the present study is to model the state-space form of a WEC

system and investigate the dominant dynamics, particularly considering force-

input experiments in the CNWT setup. The FOAMM toolbox is used to implement

the frequency-domain identification through the moments (key frequencies) of

the ETFEs calculated from input/output data. Compared to similar studies in

the literature, which use system identification based free-decay experiments in

a CNWT setup [50], and basically focus only on parameters connected with inertia,

restoring, and damping forces, the current study with appropriate selection of input

force levels, covering the main range of frequencies and amplitudes of the device,

is capable of determining a sufficiently representative model of the total system

dynamics. Furthermore, as the force inputs acting on the WEC system for the

system identification process are basically applied through the power take-off (PTO)

system, the identified linear models can be used for linear model-based WEC control

design. A comparison of the dominant dynamics from the force-input experiments

with a BEM-based linear model is also performed, as a baseline. The overview

of the sequences of steps to perform the dominant dynamics assessment from

CNWT and WAMIT setups is outlined in Fig.3.1.

The NWT considered for the experiments is a modified version of the setup

presented in [94] for system identification tests. Sinusoidal input signals, covering

the most significant frequency range of the device and full input and output signal

ranges, are used to provide the data for the system identification process.

Using different levels of input amplitude forces, WEC models are identified at

each amplitude level and the dominant dynamics of the system, most notably the

resonance frequency and pole location trends, have been tracked. Finally, a com-

parison of the dynamical behaviour of the system obtained with the presented study,

using force-input NWT experiments, with equivalent free-decay NWT experiments

as presented in [50], have been drawn.

The remainder of the paper is laid out as follows. Initially, standard linear

modelling assumptions, as well as essential properties of WEC systems, are recalled

in Section 3.3. The NWT specifications, used as the experimental setup, are

provided in Section 3.4. Next, the experiment type, i.e. force-to-velocity experiments,

used to obtain data for the system identification procedure, is detailed in Section 3.5.

The system identification methodology applied to the generated data is presented

in Section 3.6. The case study, including NWT features, the input force signals,

and the results of the system identification and dominant pole analysis, follows in

Section 3.7 and, finally, overall conclusions from the study are drawn in Section 3.8.
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Figure 3.1: Overview of the sequences of steps to perform dominant dynamic assessment
from CNWT and WAMIT setups.

3.3 Linear models for wave energy systems

Mathematical WEC models, under the assumption of linearity, are commonly studied

using linear potential flow theory and the well-known Cummins’ equation [87], where

the motion of a single degree of freedom (DoF) floating structure, in the time

domain, can be expressed as:

(m + m∞)ÿ(t) = fex(t) − fu(t) − khy(t) − hr ⋆ ẏ(t), (3.1)

where y(t), ẏ(t), and ÿ(t) are the device displacement, velocity, and acceleration,

respectively, with ‘⋆’ representing convolution. fex(t) is the wave excitation force,

produced by the action of incoming waves, fr(t) is the radiation force, arising from

device motion in the fluid (hr(t) the radiation impulse response function), fu(t) is

the control input applied by means of the PTO system, and kh the hydrostatic

stiffness, related to buoyancy/gravity forces. m ∈ R+ is the mass of the device

and m∞ = limω→+∞ Ar(ω) is the added mass at infinite frequency, where Ar(ω) and

Br(ω) are the so-called radiation added-mass and damping, respectively, defined

from Ogilvie’s relations [107] as:

Ar(ω)=m∞ − 1
ω

∫ +∞
0

hr(t) sin(ωt)dt,

Br(ω)=
∫ +∞

0
hr(t) cos(ωt)dt.

(3.2)

Eq. (3.2) fully characterises the Fourier transform of hr(t), i.e.

Hr(ω) = Br(ω) + ȷω [Ar(ω) − m∞] , (3.3)
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where hr(t) and Hr(ω) denote a Fourier transform pair. Using Eq. (3.3), the model in
Eq. (3.1) can be compactly expressed [61], in the frequency domain, as follows:

V(ω) =
1

Zi(ω)
[Fex(ω) − Fu(ω)] , (3.4)

where
Zi(ω) = Br(ω) + ȷω

(
m + Ar(ω) −

kh

ω2

)
. (3.5)

Considering the force-to-velocity mapping in the Laplace domain [21]:

G(s) =
s

s2(m + m∞) + sĤr(s) + kh

∣∣∣∣∣
s= ȷω
≈

1
Zi(ω)

, (3.6)

where Hr(ω) is commonly computed using boundary-element methods, such as
WAMIT [108], and Ĥr(s) ≈ Hr(ω), for s = ȷω, with Ĥr(s) a stable linear time-
invariant (LTI) system.

Cummins’ equation can be implemented numerically directly by numerical
convolution, or by first approximating the convolution term in state-space sub-
system form and then calculating the state-space representation of Eq. (4.1),
according to the study in [50]:

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t), (3.7)

In Eq. (3.7), x(t) is the state vector and the function u(t), defined as u(t) = fex(t)− fu(t),
is the input of the system. A, B, C, and D are the state (dynamic), input, output,
and direct transmission matrices, respectively. Matrix D is a null matrix (zero
matrix), as G( ȷω) in Eq.(6) is strictly proper (for real (physical) WEC systems the
matrix D is the null matrix).

3.3.1 WEC systems essential properties

After defining the WEC model, it is crucial to consider the fundamental properties
which are key drivers for dynamic system analysis and synthesis. Fundamentally,
WECs are characterised by the properties of stability and passivity [59].

3.3.1.1 Stability

Maintaining the stability of WEC structures exposed to external loading with different
frequencies and amplitudes is one of the main priorities. Stability analysis of
WECs has been carried out using different strategies. [60] stabilises unstable
identified models by means of reflecting the unstable poles in the imaginary axis
(reflecting from the right-hand side to the left-hand side of the complex plane)
and reconstructing the model. Another methodology for guaranteeing stability is
proposed in [50] by applying constraints on the model parameters.
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3.3.1.2 Passivity

Passivity (related to stability of systems), is a particular case of ‘dissipativity’, arising

from an intuitive interpretation of system behaviour. The concept is formalised

based on the physical energy process of the system, assuming that any increase in

the system energy is purely from external sources. Passivity for LTI systems can

be guaranteed with the phase range saturated to ±90◦ degrees for the complete

spectral domain, based on Bode plot shaping, or with a positive real transfer

function for all frequencies [62, 59];

G( ȷω) +GH( ȷω) > 0, ∀ω ∈ R, (3.8)

where the symbol H denotes the self-adjoint matrix (Hermitian), and equivalently

for SISO systems:

Re (G( ȷω)) > 0, ∀ω ∈ R, (3.9)

so the entire Nyquist plot lies in the right-half plane. Then, the transfer function is

given, using the state-space representation in Eq. (3.7), as follows:

G(s) = C (sI − A)−1 B + D, (3.10)

while the passivity of the system (Eqs. (3.7) and (3.10)) is guaranteed with a passive

sub-state space representation for the radiation structure, in Eqs. (3.2) and (3.3) [59].

A recent practical passivisation methodology, considering the passivity of nominal

linear and uncertainty models for a WEC, is proposed by [63] for the application

of a robust spectral-based control methodology.

3.4 Numerical wave tank

The three-dimensional NWT setup considered for this study uses a point absorber-

type WEC. To simplify the NWT illustration, analysis, and identification test, the WEC

structure consists of a single degree of freedom, only oscillating in heave, which also

eliminates potential effects of motion coupling. For the specific application of system

identification tests, the tank is designed with equal spans in the x and y-directions

(perpendicular to the tank depth, in the z-direction), and the buoy is located in the

centre of the tank corresponding to (x, y, z) = (0, 0, 0). To avoid reflections of the

WEC-induced waves, the tank is equipped with wave absorbers, at the left and right

boundaries (x = ±L/2), consistent with the operation of the NWT in a wave flume

mode [27]. The tests are performed by applying a defined external input force ( fu(t))
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Figure 3.2: Schematic of the numerical wave tank for (a) Side view (b) Top view.

directly to the WEC to induce WEC motion. The side view and top view of the NWT

are shown in Fig. 3.2 (a) and (b), respectively, where L is the tank length in x- and

y-directions, D and d are the tank, and water, depths, respectively. The tank length

is designed to be six wavelengths of the most significant radiated waves (occurring

at peak frequency of the radiation damping of the WEC), under the assumption

of deep-water conditions. The symmetry configuration of NWT in both the x- and

y-directions allows the CFD simulation to be carried out on a quarter of the full NWT,

with a significant reduction in computation time. NWT mesh generation uses the

blockMesh utility supplied with OpenFOAM, with finer meshes around the WEC

boundary, gradually getting coarser towards the NWT boundary. NWT simulation

is implemented using the mesh-based CFD method via numerical solution of the

Navier-Stokes (NS) equations [94] in OpenFOAM.

3.5 Force-to-velocity experiments

In this study, the input/output data, for system identification and dynamical as-

sessment of the WEC structure, are taken from the CNWT, with the buoy motion

resulting from a defined external input (PTO) force, applied directly to the WEC.
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Due to the nonlinear nature of the fluid/structure interaction, the input force is

designed in a way to cover the complete range of frequencies and amplitudes

corresponding to typical scaled (Froude scaling with a scaling factor of 1/30th,

emulating the full-scale conditions at the AMETS test site in Bellmullet, Co. Mayo,

off the West Coast of Ireland [101]) operational conditions, in order to obtain a

complete hydrodynamic representation of the system. Consequently, exciting the

system by applying the input force (PTO force), fu(t), generates a corresponding

output (velocity), v(t), in the time domain, both of which are used to identify the so-

called force-to-velocity mapping. In this study, a frequency-domain representation,

from the time-domain input/output data of the NWT simulations, is obtained through

calculation of the discrete-time Fourier transform (DTFT) of input and output signals,

at the frequencies at which the spectral analysis is required.

3.6 System Identification Method

The objective of system identification is to model the system from the measured

input/output signals. The identification procedure can produce either parametric

or non-parametric models where, in the parametric case, the dynamic behaviour

of the system is described by partial, or ordinary, differential equations. In the

non-parametric case, the system response is obtained directly, or indirectly, from

experimental data, in time- (impulse response) or frequency-domain (frequency

response). A frequency-domain empirical transfer function estimate (ETFE), rep-

resenting the system frequency response, offers a non-parametric representation

of the system dynamics, computed by dividing the DTFT of the output with Fu(ω),
the known DTFT of the input, as:

ETFE(ω) =
DTFT(v[n])

Fu(ω)
(3.11)

Note that, in Eq.(3.11), the discrete-time Fourier transform is employed, since

the (sinusoidal) frequency is known, with just the amplitude and phase to be

determined. Furthermore, the DTFT of the input signal, Fu(ω), is trivial (user defined

sinusoidal input signal with known amplitude and phase), so these parameters

are substituted directly.

The DTFT calculates a frequency-domain representation of a signal at a single

frequency point. The DTFT of a sequence of N equispaced samples of a finite

discrete-time series signal v[n]1 (v[n] = v(nTs) where Ts is sampling period),

1From now on, the notation [] refers to discrete samples
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considering a sequence of N samples, where 0 ≤ n ≤ N − 1, is depicted as

V(e ȷω) with ω being the real frequency variable (0 ≤ ω ≤ 2π), defined as

V(e ȷω) =
N−1∑
n=0

v[n]w[n]e− ȷωn, (3.12)

where w[n] is a window function. Note that, in calculating a short-term Fourier

transform, it is customary to employ a non-rectangular window function to reduce

the effect of spectral leakage, caused by the abrupt start and finish of the data

record. The choice of window function is discussed further in Section 3.6.1.

Regarding parametric models, a useful classification [66], considering the

connection of the model to physical (parametric) quantities, is:

• White-box, where all the parameters of the physical system are estimated

from the data,

• Grey-box (and the sub-classes of off-white, smoke-grey, steel-grey and slate-

grey), where the generic model structure has some connection to the physical

model at various levels, and

• Black-box, where the model structure, capable of reproducing the experimental

output data, excited with the same input, cannot be physically interpreted,

which means that its states have no connection to the physical world.

In general, no hydrodynamic models are truly white-box, in that there is no direct

relationship between the physical system parameters and the hydrodynamic ‘coeffi-

cients’, which are usually provided in non-parametric frequency-, or time-domain,

as in (3.5). However, hydrodynamicists may be more comfortable with the individual

determination of the non-parametric hydrodynamic quantities corresponding to

added mass (Ar) and radiation damping (Br). For a system identified purely from

data, the models are usually limited to black- or, at best, grey-box, where some

information about the likely order of the model can be used to specify the structure

of the parametric model.

3.6.1 Window function

A non-rectangular window function is used both to alleviate the effect of spectral

leakage due to abrupt termination of the short-term data segment (at both ends),

while also minimising the effect of the leading transient in the output signal. A well-

known window function, used in conjunction with a short-term Fourier transform,

is the Tukey window (tapered cosine window) which is generated by convolving a
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cosine lobe with a rectangular window. The time-domain representation of the

Tukey window [65] is:

w[n] =

1, 0 ≤ |n| ≤ (1 − α) N
2

0.5
[
1 + cos

(
π(n−(1−α) N

2 )
α N

2

)]
, (1 − α) N

2 ≤ |n| ≤
N
2

(3.13)

where α (0 ≤ α ≤ 1) is a parameter controlling the gradual change between a

rectangular window (α = 0) and a Hanning window (α = 1). The application of

the Tukey windowing directly affects the magnitude of the signal in the spectral

domain. To compensate for the amplitude distortion due to windowing, an amplitude

correction factor is applied, based on a gain calculation by dividing the amplitude of

the known sinusoidal input signal by magnitude of the Tukey-windowed sinusoidal

signal in spectral domain.

3.6.2 Moment-based system Identification

A particular, frequency-domain, system identification strategy, specifically oriented to

WEC modelling, is the FOAMM [67] MATLAB toolbox, which identifies a parametric

model (in state-space form) for WEC dynamics, based on a moment-matching ap-

proach. A notable feature is the ability to pre-specify particular key frequency points

at which exact matching between the parametric model and the non-parametric

ETFE is achieved, which can include the device resonant frequency. In addition,

the asymptotic behaviour of the model can also be guaranteed by matching at

extreme (low/high) frequency values. The FOAMM toolbox, based on finite-order

hydrodynamic approximation by moment-matching, is a user-friendly platform

allowing parametric system identification for either the radiation convolution term

in (3.1), or the complete force-to-motion WEC dynamics in (3.5) [67]. In this study,

the FOAMM toolbox is used to identify a state-space model for the complete (force-

to-motion) WEC dynamics.

3.7 Case study

The structure considered for this study is a point absorber-type WEC with the

physical properties shown in Fig. 3.3. The buoy has an axisymmetric cylindrical

geometry, with both radius and height of 0.25m, and a hemispherical bottom with

radius 0.25m. The mass of the device is 43.67kg, and the centre of the mass is

located at a vertical distance of 0.191m from the bottom-most point of the buoy.

For CNWT simulation, the buoy is located at the centre of a 6m deep tank with

a water depth of 3m as shown in Fig. 3.2. The tank spans a length of L = 14m
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in the x- and y–directions, designed to be six wavelengths of the waves occurring

at the peak frequency of the radiation damping of the WEC (4.56 rad/s), obtained

from NEMOH [109]. The NWT setup is a modified version of that used in [94],

with further mesh refinement applied to ensure the fidelity of the NWT simulation.

The smallest buoy displacement resulting from the input force is used to design

the mesh sizes around the buoy, with a minimum cell dimension of 0.0054m (3

cells per smallest displacement, induced by the smallest force amplitude at high

frequency asymptote), giving a total number of NWT cells of 4.06 million. (For

a screen shot of the spatial discretisation and computational mesh of the NWT,

the intrested reader is referred to [29]).

0.25m

0.5m

0.25m
0.131m

0.322m

3.0m2.678m

x

z~

~

Figure 3.3: Schematic of the considered WEC structure

The input excitation force is monochromatic sinusoidal, fu(t) = Asin(ωt), where

A and ω are the amplitude and frequency of the sinusoids, respectively. Considering

the limitations of the NWT dimensions, and the simulation duration, pure sinusoidal

signals have been shown to provide high-fidelity representation of the system in

terms of ETFE (for a detailed input signal synthesis to characterise dynamical

uncertainty in WEC systems, the interested reader is referred to [29]), which is a

result of spending sufficient time at each frequency (low frequency variation ratio,

i.e. high signal spectral permanency.) However, a relatively long experimentation

time is required to cover the complete amplitude and frequency space. In this

study, the sinusoidal excitation signals comprise a total of 96 individual experiments,

combining the amplitude set Ai = {20, 40, 60, 80, 100, 120}N with frequencies Ω j ∈

{0.2, 1, 2, 3, 4, 4.5, 5, 5.5, 6, 6.5, 7, 8, 9, 10, 18.89}rad/s, plus a specific resonance fre-

quency tailored to each amplitude set. This selection of frequencies and amplitudes

gives a smooth representational transition between the ETFE points corresponding

to discrete values of amplitude/frequency. The frequency range covers the complete

dynamical range (with respect to the resonance frequency), and the amplitude
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range selection, ranging from linear behaviour (smallest amplitude) to amplitudes

almost forcing the device out of the water (largest amplitude) and intermediate

values, covers a full dynamical characterisation of the nonlinear system. Moreover,

the amplitude set Ai perfectly covers the the amplitudes corresponding to scaled

(scaling factor of 1/30th) operational conditions at the AMETS test site [101] with

the maximum excitation force amplitude of 60N [27]. Each experiment is driven

by a finite set of N time-domain samples of input signals (exciting force signals)

that generate a corresponding set of N output samples (which in this case are

heave velocities). The NWT simulation interval of the sinusoidal experiments is

[0, 25]s which guarantees enough spectral permanency time at each frequency

and avoids wave reflections [94]. By way of example, input/output time domain

analysis for two sample experiments, with an amplitude of 20N and frequencies

of 1 rad/s and 5.84 rad/s (the resonance frequency of the system corresponding

to a 20N input amplitude force), is presented in Fig. 3.4. The transient response
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Figure 3.4: Time traces of the input/output signals in the CNWT for sinusoidal input signals
with amplitude of 20N and frequencies of 1rad/s and 5.84rad/s, along with Tukey (α = 0.5)
window profile.

in the velocity time trace corresponding to a 20N input signal, at 5.84 rad/s, is

mitigated by the application of a Tukey window. Considering the longest transient

response among the output time-domain signals from the 96 experiments, a Tukey

window according to Eq. (3.13) with α = 0.5 is applied, also shown in Fig. 3.4. Each

series of experiments generates a single frequency point in the ETFE (Eq. (3.11))

of the system, obtained from the calculation of the DTFT of the output signal v(t)
and the known amplitude and phase of the sinusoidal input signal ( fu(t)). ETFEs,

covering the complete amplitude range Ai, and their corresponding frequency

ranges, with further ETFE refinement (based on the physical principles articulated
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in Section 3.3.1) are obtained based on: A) ETFE phase components are corrected

to 90◦ and -90◦ at the low and high-frequency asymptotes, respectively, and B)

The system phase is forced within ±90◦ degrees for all frequencies, respecting

the passive nature of the system.

The ETFEs, and their interpolation across frequency points using piecewise

cubic Hermite interpolating polynomials (PCHIPs), are shown in Fig. 3.5.
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Figure 3.5: ETFEs of the CNWT experiments using sinusoidal input signals with 6 amplitude
levels.
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Figure 3.6: Resonance frequency corresponding to different amplitude levels of input
signals.

Due to nonlinearity, different levels of input signal amplitude result in different

ETFEs. One major characteristic observed from the determined ETFEs is an

increasing trend of the bandwidth, and a decreasing trend of the peak frequency

response (resonance frequency), as the amplitude of the input signal increases.

It can be concluded that, as the amplitude of the input force gets larger, the

resonance frequency decreases, and the damping ratio increases. The resonance

frequency, corresponding to each amplitude level (from CNWT data), is presented

in Fig. 3.6, showing a decreasing resonance frequency trend with increasing

input signal amplitude. The results of the resonance frequencies from force-

input experiments are also compared with the resonance frequency from WAMIT
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data (effectively zero input amplitude) in Fig. 3.6. Note that the resonance

frequency obtained from WAMIT (infinitesimally small amplitude) data violates

the expected resonance frequency trend, suggesting that a WAMIT model may not

provide a representative model of the system, even at relatively low excitation

amplitudes. (However, due to extreme computational effort and higher mesh

resolution requirement, the convergence towards the 0N point is not resolved

beyond the amp( fu(t)) = 20N point.)

3.7.1 System Identification Results

State-space representations of the WEC system, at different force levels, are

obtained using the FOAMM [26] toolbox, where three ‘cardinal’ points of each

ETFE, i.e., low-frequency asymptote, resonance frequency, and high-frequency

asymptote, are selected manually as inputs to the FOAMM toolbox. The order of

the output system will be twice the number of selected frequencies (6th order in

this case) with exact frequency matching based on the selection of the desired

set of frequencies (e.g. the resonance frequency) in the manual mode. By way of

example, the state, input, and output matrices of the state-space model according

to Eq. (3.7), obtained for an 80N input level, are:

A =


−692.92 693.12 −692.92 692.92 −692.92 692.92
−640.69 640.49 −640.49 640.49 640.49 640.49
−0.51 0.51 −0.51 6.01 −0.51 0.51
−7.05 7.05 −12.55 7.05 −7.05 7.05
−19.00 19.00 −19.00 19.00 −19.0 37.89
−13.96 13.96 −13.96 13.96 −32.85 13.96

,

B =
[
692.92 640.49 0.51 7.05 19.00 13.96

]⊤,
C =

[
0.00 0.00 0.01 −0.01 0.00 0.00

]
,

respectively, with corresponding pole pairs:

Pole pairs of the 6th order system

-0.51 ± 5.50i
-12.46 ± 12.21i
-12.48 ± 12.36i

The frequency response of the obtained parametric model using the FOAMM

toolbox (solid-red), (which will be used to perform the dominant dynamical assess-

ment), along with the target frequency response (dashed-blue), and the interpolated

frequencies (green-dots), for all the input amplitude forces, are shown in Fig. 3.7.

The identified system fits well with the actual system, for low input amplitudes,

and the error between actual and identified models, calculated in terms of the
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Mean Absolute Percentage Error (MAPE), gets larger as the input amplitude

increases, recognising the increasing difficulty of fitting a linear model for greater

input amplitudes. The same identification procedure is applied to a WEC model

obtained from WAMIT (zero-input signal) in order to compare the results. The

MAPE between actual and identified models, corresponding to each input amplitude

level, is presented in Table 3.1. Note that the MAPE value, corresponding to each

input amplitude level, depends on the manual selection of the desired (matching)

frequency points chosen in the FOAMM toolbox.
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Figure 3.7: The frequency response of the obtained parametric model using FOAMM
toolbox (solid-red), along with the target frequency response (dashed-blue), and the
interpolated frequencies (green-dots) for all the input amplitude forces.

Table 3.1: The MAPE between actual and identified 6th order models corresponding to
each input amplitude level .

Input signal amplitude [N] MAPE

0 (WAMIT) 0.000895
20 0.029779
40 0.027002
60 0.075799
80 0.115651
100 0.155575
120 0.164085
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3.7.2 Dominant pole analysis

The identified systems in Section 6.2. are used to locate the least damped (slowest)

poles, which most affect the behaviour of the dynamic system. For a stable linear

system, the relative dominance of the poles is determined by the ratio of the real

parts of the poles nearest the jω axis, where the suggested value is 3−5 in [110] and

[111], and 10 in [112]. As the requirement that a ratio > 3 may not be fulfilled, the

ratio of the real parts of the poles > 5 is assigned where the pole (or complex pair)

with the smallest real part, i.e. closest to the imaginary axis, is the dominant pole (or

complex pair), and other poles may be regarded as relatively insignificant. A pole

dominancy condition for each input amplitude level (including three pairs of complex

conjugate poles for each of the 6th order identified models) is considered. Pole

dominance, for the models corresponding to each input amplitude level, is calculated

by the ratio of the real parts of the two pole pairs closest to the imaginary axis, with

results listed in Table 3.2. For the models obtained with input force amplitudes of

20N, 40N, 60N, and 120N the closest pole pairs to the imaginary axis cannot be truly

considered as dominant poles, but the pole dominancy condition is satisfied for the

models corresponding to 0N (the WAMIT model), 80N and 100N input amplitudes.

There is no clear trend of pole dominance with respect to the input signal amplitude,

which can be possibly due to the obtained identification error, computed in terms

of MAPE, between the target and identified frequency responses. In particular, for

some cases, the identification error is larger in the region around resonance while,

for other cases (higher input forces), the error is more significant at the extremes of

the frequency range, considered for error computation, as represented in Fig. 3.7.

Poles closer to the imaginary axis represent slower modes, indicating a lower

damping effect. The least damped pole pairs (closest pole to the imaginary axis),

corresponding to the identified models of all input amplitude levels, along with the

dominant pole pair obtained from the WAMIT model, are presented in Fig. 3.8.

Since the magnitude of the real part of the least damped poles of the models

show an increase as the input amplitude force increases, it can be concluded that

larger input amplitudes correspond to stronger damping (possibly due to viscous

effects). Note that a linearised viscous damping effect can be approximated using

Lorentz linearisation [113].

Note that the least damped pole locations, corresponding to the smallest input

amplitude force (close to a truly linear model), is very similar to the dominant

pole of the WAMIT model, indicating the relative accuracy of the WAMIT model

for representing the WEC model excited with very small input amplitude forces.

However, the WAMIT model fails to provide a representative model of the system
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dynamics when the device is subject to high input amplitude forces, typical of a
WEC in power production mode. However, the convergence of the CFD-derived
pole locations on the WAMIT poles, for small input amplitude provides a degree
of validation of the modelling method, and is similar to results obtained for free-
response tests [50].

In Fig. 3.8, a gentle trend in the values of the imaginary components of the least
damped poles can be observed, essentially related to the oscillatory frequency in
the response. The trend of the imaginary component of the least damped poles is
similar to the resonance frequency trend presented in Fig. 3.6, i.e. the imaginary
component of the least damped poles decreases as the input amplitude increases,
and a discrepancy of the trend is observed with the zero-input data, obtained from
the WAMIT model. In a 2nd order system, the imaginary component of the pole
corresponds to the value of ωn

√
1 − ζ2 (the damped ‘natural’ frequency), where ωn is

the natural frequency of the device, related to the resonance frequency of the system
(ωn

√
1 − 2ζ2) (depicted in Fig. 3.9 in three-dimensions), and ζ is the damping factor.

In this study, there is no clear relationship between the imaginary components of the
least damped poles and the resonance frequencies obtained from ETFEs (Fig. 3.6).
A possible explanation related to the error of approximating the system model using
the FOAMM toolbox, and the fact that the least damped poles are not truly dominant
poles for all models. Imaginary component values, for the least damped poles
corresponding to input signal amplitudes, are presented in Table 3.3.

Table 3.2: Pole dominance assessment for system models corresponding to different input
amplitude levels.

Force
amplitude [N]

Ratio of the real
parts of the poles

Pole dominance

0 (WAMIT) 12.56 ✓

20 3.92 ×

40 4.51 ×

60 2.04 ×

80 24.12 ✓

100 5.07 ✓

120 4.46 ×

One particularly significant result obtained in this study is the similarity of the
trend of the least damped poles location of the force-input CNWT experiments and
WAMIT model (Fig. 3.8) to the dominant poles location trend obtained from free-
decay CNWT experiments and a BEM presented in [50] (Fig. 14). This provides
some level of cross validation, though both sets of results are obtained using
different stimulii (forced input Vs non-zero initial condition).
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Table 3.3: Imaginary components of the dominant poles corresponding to input signal
amplitudes.

Input signal
amplitude [N]

Imaginary part of the
least damped poles

0 (WAMIT) 5.580
20 5.845
40 5.819
60 5.554
80 5.508
100 5.343
120 5.136

3.8 Conclusion

In this study, representative linearised WEC models are investigated by performing

system identification using force input (PTO force) CNWT experiments. Considering

the true complexity of real WEC models (viz the NS equations), force-input exper-

iments, with careful design of input signals to cover the full range of frequencies

and amplitudes likely to be encountered during system operation, are capable

of providing a sufficiently representative linear model set that can be used for

dynamical assessment of WECs, and for model-based control design, using either

a single representative model, or some form of gain scheduling [114], interpolating



78 3.8. Conclusion

between models/controllers. The following conclusions can be drawn regarding the

dominant dynamical assessment of the WEC system:

• Analysis of the resonance frequency of the system, from the ETFE results of

the input-force CNWT experiments and WAMIT data, shows an increasing

trend in resonance frequency as the amplitude of the input force decreases,

with a small deviation in the trend due to a less representative model obtained

from WAMIT data.

• Investigation of the least damped poles of the system sheds light on two

important dynamical behavioural aspects of the system: A) The real part

of the least damped poles gets closer to the imaginary axis, indicating a

lower damping effect, as the amplitude of the input-force decreases, and B)

The imaginary part of the least damped poles is related to the resonance

frequency, and thus shows the same trend as the resonance frequency.

• The trend obtained from the force-input CNWT experiments (and WAMIT

model), for the real part of the least damped poles of the system, is very

similar to the results obtained from the free-decay CNWT experiments (and

BEM model) reported in [50].

Finally, a dominant 2nd order WEC model has been shown to have utility in the

design of relatively simple controllers for WECs [115], while variations in real parts

of poles can be traced to implications for sensitivity and robustness [30].
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frequency-domain modelling of a wave
energy device from experimental data
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4.1 Abstract

In experimental wave tank tests of wave energy converter (WEC) devices, un-

certainty sources arising from the inherent nature of the dynamical system, or

disturbance sources due to external factors, are inevitable. It is essential to employ

proper signal processing techniques to mitigate effects due to external disturbances

to establish realistic WEC models from experimental tests. Careful estimation of a

range of representative linearised models, or determination of a nominal model and

associated uncertainty region, overcomes the limitations of a single linear model

(using first principles) by covering the complete dynamic operational space of the

device. In pursuit of this goal, the current study analyses physical wave tank data

using force-input experiments obtained from an experimental campaign (at Aalborg

University) involving a 1/20 scale Wavestar prototype device. In the frequency

79
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domain, non-parametric multi-linear hydrodynamic WEC models are characterised,

serving as a starting point for model-based linear WEC robust controller synthesis.

Specific focus is directed towards the quantification of uncertainty and external

disturbance, specifically tailored to the wave tank under study. Effective data pre-

processing steps (in the time-domain) and post-processing steps (in the frequency-

domain), adopted for chirp type signals, are applied to mitigate disturbances while

preserving the underlying physical system behaviour. Moreover, data contamination

levels at different operating conditions of the system are quantified to highlight the

contamination dominancy that can be tolerated to obtain realistic multi-linear WEC

models. Finally, as an application example of non-parametric multi-linear WEC

models obtained from this study, a single nominal model and uncertainty bound are

determined that could provide the basis for (linear) robust WEC control.

4.2 Introduction

Wave energy converter (WEC) mathematical models find diverse applications, such

as performance prediction, device optimisation, power production assessment, and

as a basis for model-based control design. WEC models can be developed through

numerical simulations, full-scale tests, or laboratory-scale tests, each presenting

distinct methodologies, complexities, and challenges. These diverse modelling

routes yield models characterised by a range of accuracy and levels of uncertainty

with consequences for (model-based) control strategies [30, 31]. Among different

methods, linear WEC models (using first principles), only being valid for small

motions around the equilibrium point, and thus violating the required exaggerated

motion for WEC energy maximisation [27], fail to represent proper WEC behaviour

under control actions. While the determination of models from data (using either

physical or numerical experiments) has been shown to be an effective route to

derive representative (linear and nonlinear) WEC models [41, 42, 43]. In wave

tank experiments, the selection of test signals determines the valid operational

space of the model [68], ensuring it meets the dynamic requirements of a control

system. Nevertheless, many parameters can cause uncertainty in the data-driven

models capturing the nonlinear dynamics of the power conversion chain (different

conversion stages) of a WEC that may hinder the lack of adequate WEC models

for efficient (model-based) control strategies. In numerical modeling, the limitations

of the governing equations in describing the physics, the level of approximation

of the numerical methods, and numerical implementation (e.g. numerical wave

tank model setup, grid generation) are the main contributors of uncertainty sources
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[33]. In physical wave tank (PWT) tests, scale effects (e.g. viscosity), measurement

uncertainty (direct measurements, calibration), tank setup biases (boundaries,

facilities), model effects (geometry, installation, mooring lines, power take-off) are

the main sources of uncertainty [116].

In the field of WECs, various studies have considered uncertainty at different

stages. To briefly summarise, in [72], quantitative uncertainty bounds in different

wave and environmental conditions are provided, resulting in a considerable impact

on minimising uncertainty in power and mooring line tension predictions. The

study in [73] quantifies the uncertainty associated with numerical ocean wave

simulations using a stochastic framework based on generalised polynomial chaos.

Inaccuracies stemming from (limitations of) linearity assumption for modelling the

motion response amplitude operator of a semisubmersible platform are taken into

account, based on the Bayesian inference method, in [38]. The influence of (phase)

control of WECs, on the numerical uncertainty (spatial discretization, temporal, and

iterative errors) in CFD simulation for passive control of WECs, is investigated by

[117]. Uncertainty of a WEC plant dynamics is investigated in [97], using generalised

polynomial chaos, for uncertainty quantification, while the study by [96] estimates

the dynamic uncertainty in an online manner, followed by computationally efficient

robust adaptive optimal control, suitably coping with modelling uncertainties. A

recent study on the determination of representative linear models, and quantification

of uncertainty region using high-fidelity numerical wave tank (NWT) experiments,

with a special focus on input signal synthesis and signal processing techniques

with the aim of reducing conservatism of the controller, is presented by [29]. It is

worth noting that canonical frameworks for uncertainty quantification can be used to

adequately address certain control studies, such asH∞-based designs. Particularly,

a multiplicative uncertainty scheme is used in [118] to quantify the uncertainty level,

relative to the magnitude of the system, in an energy maximization control problem

using the spectral methodology introduced by [23]. For a more detailed discussion,

the interested readers are referred to [118].

PWTs are one of the most important test setups undertaken for the physical

evaluation of performance, model validation, and control. Considering different wave

conditions and WEC types, WEC model validation, focussing on the accuracy of

numerical models [52, 53, 55, 54], and model invalidation, enabling the independent

analysis of dynamic uncertainty and external noise within experimental datasets,

by comparing simulated responses with experimental data [56] have been topics

of focus for some researchers. It is of paramount importance to have knowledge

of the uncertainty associated with numerical models, in order to obtain accurate

results for model validation. The contamination nature, the range of tests that can be
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performed, and the range of post-processing techniques that can be applied, differ

significantly in NWT and PWT tests. It is generally believed that agreement between

simulation and experiments is usually good in small to moderate sea states, see

[38, 36, 37], with discrepancy increasing in severe sea states, or in wave conditions

that excite resonances (due to non-linear effects). Such discrepancies can result in

overestimation of the dynamic response, and energy absorption [36]. Nevertheless,

some studies have noted large experimental uncertainty at low levels of excitation

as in [40], where the dominant level of (non-hydrodynamic) experimental load

measurements contaminates data at low-speed foil velocity of a WEC, or as in the

study [39], where deviation between simulation and experiment (absorbed energy)

results for a linear time-invariant controller (LiTe-Con) is dominant in small sea

states, which is explained by low signal-to-noise ratios. Another study, investigating

uncertainty in experimental tests can be found in [79], highlighting the essence of

uncertainty due to measurement errors and filter (applied to the measured data)

characteristics in PTO friction damping force and mooring line force measurements,

although, precise quantification is not provided.

Consistent across all the noted studies is the implicit understanding that fidelity

of the WEC models plays a crucial role in accurate performance evaluation, model

validation, and control of WECs, but there is a paucity of evidence defining which

uncertainty sources exert significant influence in PWT testing and their charac-

teristics at different operating conditions, as well as the techniques that could

be used to eliminate the artifacts from captured data toward obtaining accurate

WEC model characteristics.

Within this context, the current study considers a PWT setup with a point

absorber WEC, using chirp-type force-input experiments, which is a well-established

signal type for system identification wave tank testing [29]. Representative linearised

WEC models (referred as multi-linear WEC models in this study) are derived using

chirp signals at different amplitude levels in PWT testing. Uncertainty and external

noise are characterised at different operating points inherent to the experimental

settings, within the two-step force transmission chain (see Section 4.4). A particular

filtering technique, based on the Savitzky–Golay (SG) filter, which proved to be

suitable to smooth noisy data, without introducing phase lag [119, 120, 121], is

proposed in an innovative manner of a nonlinearly varying window length, in order

to regulate the cut-off frequency of the filter in accordance with the linearly varying

frequency of the chirp-type signals. This novel method successfully excludes

high-frequency contamination from chirp-type signals (without introducing phase

shift) and overcomes the disadvantages of previously proposed filtering methods

for chirp-based signals [29]. One of the main contributions of this study is the
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detection and removal of outliers occurring in load cell measurements and the

proposal of appropriate autoregressive (AR) bi-directional model extrapolation to

fill in the gaps in the recorded data, given the predominantly sinusoidal (chirp)

nature of the excitation signals contaminated with external disturbance sources.

Moreover, appropriate post-processing techniques (in the frequency-domain) are

applied to preserve the physical characteristics of the WEC system and to extract

useful information from the multi-linear WEC models obtained from PWT testing

under study. Additionally, frequency-domain post-processing techniques are used to

preserve the WEC system’s physical characteristics and extract useful information

from the multi-linear WEC models obtained from PWT testing. To point out the

dominancy of contamination at different operating points, quantitative results are

presented which should be considered in realistic WEC modelling. Finally, with a

view to robust WEC control, a nominal model and uncertainty bound are quantified,

emphasising the differences of the resulting nominal models before and after the

application of pre- and post-processing techniques.

The layout of the remainder of this paper is as follows: Initially, dynamic

characteristics of WECs, including modelling considerations and an overview of

the parameters that may cause uncertainty in PWT tests are presented in Section

4.3. Next, in Section 4.4, the PWT setup and experiment design for the current

study are presented. Section 4.5 details data pre-processing (in time-domain) and

data post-processing (in frequency-domain) techniques deemed appropriate for the

current experimental test. Section 4.6 covers all the steps toward the final empirical

transfer function estimate (ETFE) calculation results and reports the qualitative and

quantitative results. The potential application of the multi-linear models to a robust

WEC control strategy is covered in Section 4.7 and, finally, overall conclusions

from the study are drawn in Section 4.8.

4.3 WEC dynamic characteristics

Dynamic characteristics of WEC systems, including linear modelling fundamentals

and properties, as well as the list of general contamination sources in experimental

wave tank tests, are covered in this section.

4.3.1 Modelling considerations

The fluid-structure interactions experienced by a WEC system are typically modeled

using potential flow theory, with the WEC referenced from its still water level (SWL)

in an undisturbed wave field and immersed in an assumed infinite-depth sea.
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The dynamics of WEC structures, under the assumption of linearity, i.e. small

displacements, and linearised hydrodynamic coefficients (using linear potential

theory) are commonly modelled using an integro-differential equation proposed

by Cummins [87]:

(m + m∞)ÿ(t) = fex(t) − fu(t) − khy(t) − hr ∗ ẏ(t) (4.1)

The linear superposition of contributory forces of Cummins’ equation comprises

the inertial, radiation (with hr(t) being the radiation impulse response function),

hydrostatic (with kh being the hydrostatic stiffness), and excitation ( fex(t)), produced

by the action of incoming waves, forces. In Eq. (4.1), m ∈ R+ is the mass of the

device and m∞ is the added mass at infinite frequency. y(t), ẏ(t), and ÿ(t) are the

device displacement, velocity, and acceleration, respectively.

The properties of (internal) stability and passivity are intrinsic characteristics

of a physical WEC system [59]. The internal stability of Cummins equation is

guaranteed if the parameters are properly defined based on the physical property

of the WEC device [61]. Passivity, informally described as a characteristic of a

system that cannot produce energy, arises from an intrinsic physical property of

the system. Passivity in LTI systems is verified with a positive real transfer function

for all frequencies [62, 59].

Linear WEC models can be interpreted in the frequency domain under the

assumption of periodic motion. Considering the measurable finite set of input

signals, generating a corresponding set of output signals (which can be heave

motion, in this case), the WEC model can be characterised by following standard

frequency-domain techniques, including the so-called empirical transfer function

estimate (ETFE). By considering the mapping f (t)→ y(t) (( f (t), y(t)) as the input-

output pair, defined in the time-domain), the ETFE can be computed as:

H( jω) =
Y( jω)
F( jω)

(4.2)

where F( jω) and Y( jω) are the Fourier transforms of f (t) and y(t), respectively.

4.3.2 Uncertainty and external disturbance sources in PWT
tests

Considering the PWT experiments, we classify the uncertainty and external dis-

turbance sources into three categories: Electromechanical effects, hydrodynamic

effects, and structural effects.
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4.3.2.1 Electromechanical effects

The fidelity of signals going through/controlled by electromechanical components

is an important ingredient of the precision of the ETFE. To better identify the

data contamination sources from the electromechanical part, it is important to

consider each component and its characteristics. Some sources of uncertainty,

external disturbance, or nonlinearity associated with electromechanical components

are listed below:

• Sensors: Noise is ubiquitous in sensor readings (uncorrelated with variations in

sensor input) that can degrade the useful information of the data. The signal-

to-noise ratio (SNR) is a metric used to compare the level of the true signal

component to the level of the noise embedded in the signal. The SNR for time

domain signals can be obtained by the ratio of the root mean square (RMS) of the

signal to the RMS of the (unwanted) noise. In terms of dB, the SNR is computed

as

SNR = 20 log(RMSsignal/RMSnoise) (4.3)

The saturation limits of the sensor should also be considered as a possible source

of error, where the data exceeds the measurement limit of the sensor.

An important source of data contamination (especially from load cell readings)

are outliers or impulse spikes which can be caused by random events, including

movement of the frame that holds the sensor, possibly due to reflected waves

in the load cell [122]. Outliers generally have an impulsive characteristic, rising

sharply to a peak, with a more gradual decay, which is superimposed on the main

signal.

• Linear motor : Two major nonlinear phenomena, force ripple and friction, asso-

ciated with linear motors affect the precision of the motor output. Force ripples,

arising from the structure of the motor (i.e. cogging forces associated with discrete

magnet placement), and friction may introduce problems with position control and

tracking error, respectively [123].

4.3.2.2 Hydrodynamic effects

In PWT tests, the initial test conditions [56], such as residual waves, or reflected

waves from the side walls of the tank during the experiments, can cause contamina-

tion. Some physical properties of the water (e.g. viscosity), and nonlinearities arising

from complex hydrodynamic interactions, including drag, flow separation, and vortex

shedding [88], can contribute to hydrodynamic perturbation sources in PWT tests.
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4.3.2.3 Structural effects

One of the major uncertainty sources in PWT testing arises from the positioning

system or mooring system, depending on the WEC type. The mounting structure

(gantry) may undergo vibration when the WEC experiences high input forces [124],

resulting in additive artifacts to the measured signals. WEC systems with mooring

lines have a high level of uncertainty, which includes difficulty with scaling the elastic

and mass characteristics of prototype lines, the instrumentation (e.g. load cells) of

the mooring line, the exact location of anchor points, as detailed by [33].

4.4 Physical wave tank (PWT) and WEC

In this article, the particular WEC under investigation is a Wavestar prototype system

[57, 125], a well-established point absorber type WEC, consisting of a rotational

arm connected to a hemispherical floater, described with the PTO system, mounting

structure, motion sensors, load cell, and location of the centre of gravity of the

device (Cg) in Fig. 4.1. The considered WEC prototype is a 1/20th scale model,

with the properties and dimensions listed in Table 4.1, where the moment of inertia

and centre of gravity are labeled as MoI and Cg, respectively.

1 PTO System 2 Mounting Structure 3 Motion Sensor
4 Load Cell 5 Centre of Gravity 6 Still Water Level

WEC System Diagram

1

2

3

5

6

4

SWL

Figure 4.1: Components of the experimental WEC system (photograph of the WEC system
on the left and schematic diagram on the right)

As shown in Fig. 4.1, the floater is connected to a fixed reference frame through

two joints (joints A and B) and a mobile joint (joint C) with translational displacement

indicated by xm, while the rotational motion is indicated by the angle θ. The floater

arm stands at approximately 30◦ with respect to the horizontal reference plane in its

equilibrium position, indicated as SWL in Fig. 4.1. The WEC device is actuated with
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Table 4.1: Model dimensions, relative to the still water level (SWL), and mass properties for
the 1/20th scale Wavestar device.

Parameter Value [Unit]
Float Mass 3.075 [kg]
Float MoI (at Cg) 0.001450 [kg · m2]
Float Draft 0.11 [m]
Float Diameter (at SWL) 0.256 [m]
Arm Mass 1.157 [kg]
Arm MoI (at Cg) 0.0606 [kg · m2]

a linear motor (equipped with a corresponding driver), acting as a PTO system, a

force sensor, a position laser sensor, and an input/output data acquisition board,

manufactured by National Instruments. The linear motor and driver are capable

of producing a force of up to ±200 N, which covers the purpose of this study. The

force sensor is an S-beam Futek LSB302 300lb load cell, with an SGA analogue

strain gauge amplifier, which provides a high-fidelity force measuring system. The

position laser sensor used is a MicroEpsilon ILD-1402-600, also a high-performance

system. The position of the PTO system is measured with a (motion) laser sensor

(labeled as 3 in Fig- 4.1). It must be noted that, although the linear position of the

PTO system is measured, the angular position, as considered in the model as the

output, can be easily derived using basic trigonometric relationships.

The experimental data in this study is acquired during physical wave tank tests

in the wave basin at Aalborg University, Denmark. The tank measurements are

13 m in length and 8.4 m in width, with a water depth of 0.9 m. The wave tank is

schematically depicted in Fig. 4.3, including its main dimensions and components.

The prototype device is mounted on a supporting structure, in the form of a

bridge for commissioning and operation, spanning the full width of the tank. The

bridge can be seen in Fig. 4.1, located in the upper-left corner of the picture.

The wave tank has a wave absorption system to reduce wave reflections, while a

wave maker, generally used to generate waves, is also utilised to actively absorb

waves and reduce reflections.

To better identify the nonlinearity, uncertainty, and external noise/disturbance

sources contaminating the data in the experimental setup under study, the two-stage

force transmission chain (indicated with different shadowed areas), as illustrated

in Fig. 4.2, is considered. The perturbation signal d f , represents all the forces

considered, for the purpose of the first stage of the chain, as exogenous.
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Figure 4.2: Two-stage chain: f⋆u → fu mapping (stage 1: blue shadowed area) and fu → θ
mapping (stage 2: orange shadowed area)
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Figure 4.3: Schematic of the experimental wave tank for identification tests

1. Reference force-to-actual force mapping: This stage includes the proportional-

integral-based (PI-based) controller to track a force set point, a linear motor

containing its own internal controller for the current tracking loop (having the

current, i, as the input, and motor force, fm, as the output) which acts as the PTO

system in this study, and load cell (as illustrated in Fig. 4.2). Any contamination

from the electromechanical components influences this part of the transmission

chain.

2. Actual force-to-motion mapping: This step is the process of generating WEC

motion from the applied actual force ( fu) (Fig. 4.2)), which contains uncertainty

sources associated with hydrodynamic and structural parts.

4.4.1 Excitation signals

In the PWT setup under study, the buoy is excited using force inputs (through the

PTO system), in the absence of any incoming waves. Chirp-based signals are of

particular interest for performing identification tests in the wave tank to characterise

the dynamical behaviour of the system, since the complete frequency range of

interest can be covered (reducing the number of required experiments compared to

single-frequency sinusoidal signals). A linear frequency-modulated chirp signal has

the instantaneous frequency f (t) changing with time, as f (t) = ct+ f0 ( f0 is the initial
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frequency and c, the chirp rate), measured in Hz. The corresponding time-domain

function for a sinusoidal linear chirp can be formulated as [126]:

x(t) = Asin
(
ϕ0 + 2π

(c
2

t2 + f0t
))
, for t ≥ 0, (4.4)

with amplitude A, and initial phase ϕ0. The chirp rate (constant for linear chirp

signal) can be obtained by taking the first derivative of f (t).

4.5 Data processing

In this study, data pre-processing and post-processing refer to signal-processing

techniques applied before and after ETFE calculation, respectively, with an aim to

get authentic ETFEs and extract useful information. The pre- and post-processing

framework is shown in Fig. 4.4, and detailed in the following:

Angular velocity

Angular position

Manual selection

Abrupt derivative

sign change

Maximal points

Outlier Detection

data point
elimination

bi-directional
AR

Reconstruction

FFT

S-G filter

ETFE
Calculation

FFT

Outlier removal

outlier width

single/multiple outlier?

Post-processing

+ ETFE phase correction
+ ETFE filtering
+ ETFE Phase unwrapping

Pre-processing

S-G filter

Force signal

Figure 4.4: Framework for pre and post-processing steps.

4.5.1 Data pre-processing

Data pre-processing in this study involves signal-processing techniques applied to

time-domain data (before ETFE calculation). This helps to extract useful information

from signals often contaminated with external disturbance. Considering the nature of

the contamination typically being of high-frequency content, we propose a low-pass

filtering approach to recover the signal. Despite availability of various frequency-

domain filtering techniques, filtering chirp-type signals (considered in this study)

is challenging, due to their time-varying frequency nature. As an example, the

difficulty associated with the correct initialisation of the filter, resulting in unwanted

transient behavior effects introduced by the implementation of a moving band-

pass filter to chirp-type experiments, has been articulated in [29]. The filtering

method proposed in this study excludes the high-frequency components, without

introducing phase shift. Moreover, due to force data contamination by outliers,

introduced by the load cell, the methodology for the detection and removal of

outliers is presented as follows:
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4.5.1.1 Savitzky–Golay (S-G) filter

S-G filter [81], widely used in signal processing applications for data smoothing, is a

shift-invariant, finite-impulse-response low-pass filter, based on a local polynomial

regression to a set of input samples in a least-square sense, with each point of the

signal replaced by the value of the polynomial at that point. Given a discrete signal

for a group of 2M + 1 samples, {y[n]}Mn=−M, (M points to the left and M points to the

right of a given data point), the polynomial can be computed as:

p(x) =
N∑

k=0

akxk, (4.5)

where N is the polynomial order, and the polynomial coefficients (ak) are computed

such that the mean-squared approximation error,

ϵN =

M∑
n=−M

( N∑
k=0

akx[n]k − y[n]
)2

, (4.6)

is minimised (frame length is 2M + 1).

The frequency-domain characteristics of the SG are detailed by [82, 127],

where a reasonably acceptable approximation for the 3 dB cut-off frequency of the

SG filter in terms of the indicated range of frame length and polynomial order

can be calculated as:

fc =
N + 1

3.2M − 4.6
, M ≥ 25 and N < M. (4.7)

where fc is the normalised cut-off frequency.

Considering the particular application of the S-G filter to a linear chirp signal,

various parametric designs can be considered:

1. Standard S-G filter: A standard S-G filter, with a fixed window length and order,

has a unique cut-off frequency. For application of a standard SG filter to a chirp-

type signal, a specific parameter selection should be considered to design a filter

with a cut-off frequency above the frequency range of the signal. A disadvantage

of using a standard S-G filter for a chirp signal is the inability to properly filter

the high-frequency components, as the instantaneous frequency of the signal

changes.

2. Moving SG filter: A moving SG filter can be considered with a fixed order but

varying window length (and cut-off frequency) filter. For the linear chirp-type

signal, the following moving S-G filter designs are analysed:



4. Non-parametric multi-linear frequency-domain modelling of a wave energy
device from experimental data 91

(a) Fixed order and linearly varying cut-off frequency: For a fixed-order

filter, the varying window length can be obtained by tuning the cut-off

frequency of the filter based on the instantaneous frequency of the chirp

signal. Considering the cut-off frequency of the filter (in the frequency

domain) corresponds to the point at which the filter attenuation reaches

−3 dB relative to its maximum amplitude response, the cut-off frequency

of the filter should be selected at a value higher than the maximum signal

frequency to ensure adequate signal preservation. This method of SG filter

parameter design may result in a window length requirement exceeding the

number of signal samples.

(b) Fixed order and linearly varying window length: A varying filter can

be designed by linearly changing the window length, considering the first

and last zero-crossing points, and fitting the SG polynomial based on the

number of chirp periods. A disadvantage of this design option lies in the

fact that there is an increasing number of oscillations of the chirp signal in

a linearly varying window, introducing difficulty by considering a fixed filter

order.

(c) Fixed order and nonlinearly varying window length: Considering the

nonlinear variation of the successive zero crossing distances of a linear

chirp signal in the time domain, an appropriate design for the SG filter could

be a selection of a nonlinearly varying window length, based on the zero

crossing distance variations and selection of a proper fixed order (N in Eq.

(4.5)) for polynomial fitting. The appropriate set of SG parameters can be

calculated by analysis of the convergence of the cut-off frequency of the

moving filter and the instantaneous frequency of the chirp signal.

4.5.1.2 Outlier removal

Measurement force records from load cells frequently contain outliers which degrade

the meaningful information of the data. It is important to examine the influence

of outliers, the level of contamination on the data, and problems associated with

missing data due to outlier occurrence and, if required, detect the outliers and apply

appropriate data-cleaning approaches. Some details regarding the procedure of

outlier detection and removal and data reconstruction are presented in the following:

1. Outlier detection: The outlier characteristics (mentioned in Section 4.3.2.1) gen-

erally allow visual inspection for their detection. Nevertheless, manual selection

of outliers is not always possible or effective. Some widely used techniques for
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outlier detection are based on statistics, such as standard deviation around the

mean (when the standardised residual exceeds a specific threshold value [83])

and median absolute deviation [84]; however, these statistics can be ineffective

in the presence of a high level of data contamination. Moreover, outlier detection

techniques may fail in the presence of multiple outliers. Outliers can also have a

connection with the physical behaviour of the test setup components, for example

in [122], where the occurrence of outliers from recorded force data from a load

cell coincides with the motion of the beam attached to the load cell (possibly

caused by reflected waves in the load cell and/or relaxation of the strain gauges).

2. Outlier removal: After the detection of the nature of the outlier (single/multiple)

and the exact location of the outlier peak, data points can be removed. Due to

the diverse characteristics of the outliers (variable number of samples), and their

shape (e.g. asymmetric with respect to the peak), special care should be taken

in the proper identification of the outlier time range.

3. Reconstructing the missing points of the signal: The treatment of missing

data due to outlier removal can be handled using different principles. Static

interpolation methods, e.g. linear, nearest neighbor, and splines have been

extensively studied and shown to be effective in missing data reconstruction

for the case of oversampled signals [85]. However, their accuracy may be

acceptable for slowly varying low-frequency signals [128], and pose problems

to reconstructing missing points of a signal with larger gaps, contamination, or

rapid frequency variation. Identification of missing data for heavily disturbed

data, or a signal with low oversampling, has been addressed by [129], which

increases the complexity of dealing with missing data. Concatenating the data

records where different experiments on the same plant exist, is another way to

estimate the missing data points studied by [130]. The most efficient methods

to reconstruct the data gaps are model-based, where some prior information

on the characteristics of the signal is used to reconstruct the data. In this study,

an estimation method, based on local autoregressive (AR) modelling which is

an appropriate choice for many locally stationary signals and deals with both

noise-like and harmonic signals is utilised [86].

• Bi-directional autoregressive model: This technique replaces the gaps in a

signal by estimates extrapolated from a local autoregressive (AR) model

x[n] =
q∑

k=1

akx[n − k] + a0 + ϵ[n], (4.8)
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using the average of forward and backward prediction (available data points

on both sides of the missing data). In Eq. (4.8), x[n] is the predicted signal

sample based on previous signal samples, and ak are the parameters of the

autoregressive model of order q. ϵ[n] is white noise. A widely used criterion for

order selection of autoregressive models is Akaike information criterion (AIC)

[131], where the order resulting in a minimal final prediction error is selected,

considering a prescribed sufficiently wide range of possible orders.

4.5.2 Data post-processing

Data post-processing which, in this study, refers to signal-processing techniques

applied to ETFE computation, is applied with the aim of enforcing the physical

characteristics of the WEC system. The post-processing techniques utlised are

described as follows:

• ETFE phase correction: Passivity, a physical feature of the system must be

always satisfied (Section 4.3.1). A possible post-processing method to enforce

passivity can be applied by restricting the phase of the ETFE (in this study

motion-to-force mapping) to [−180 0]◦ for all frequencies.

• ETFE filtering: The moving average method is a widely used statistical filter in

the time domain (equivalent to a low-pass filter in the frequency domain), which

is based on the calculation of the average of a specified number of adjacent

time domain data points in a sequence. An appropriate window size should

be selected for moving the average filter to achieve a balance between artifact

reduction and signal preservation.

• Phase unwrapping of the ETFE: Phase wrapping is defined as phase jumps

(modulo 2π), between consecutive frequency bins in the phase of the ETFE

which arise from specific software implementation of the fast Fourier transform

calculation, or from significant levels of noise or distortion present in the signal. A

post-processing technique to deal with phase wrapping can be applied to remove

phase jumps, improving visualisation, by adding/subtracting 2π to the phase

calculation, at appropriate points.
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4.6 ETFE calculation results

This section provides all the pre- and post-processing steps (Fig. 4.4), specific to

the PWT setup, to the final ETFE calculation, along with qualitative and quantitative

results. Considering the diagram in Fig. 4.2, the available time-domain data are the

reference force ( f ⋆u ), measured force ( fu), measured angular motion (θ), and angular

velocity (θ̇). The time-domain experiments are performed over the interval [0 140] s

using linear up-chirp (Eq. (4.4)) input forces, in a frequency range of [0.06 75.3] rad/s

(chirp rate of 0.0856), and amplitude set Ai = {2.5, 5.0, 7.5, 10.0, 12.5, 15.0, 17.5, 20.0}
N (Newton) covering the complete dynamical characterisation of the WEC system.

4.6.1 Example qualitative results

Considering the two-stage mapping according to Fig. 4.2, the mapping f ⋆u (t)→ fu(t)
(defined as H1), and the mapping fu(t) → θ(t) (defined by H2), are calculated

using Eq. (4.9) as follows:

H1( jω) =
Fu( jω)
F⋆u ( jω)

, H2( jω) =
Θ( jω)
Fu( jω)

, (4.9)

where F⋆u ( jω), Fu( jω), and Θ( jω) represent the Fourier transforms of f ⋆u (t), fu(t),
and θ(t), respectively. Prior to ETFE calculation in Eq. (4.9), pre-processing

steps are considered.

4.6.1.1 Data pre-processing

1. Outlier removal: Analysing the time-domain data, outliers are detected to occur

(in fu) at time instances of the maximal points of θ, and abrupt derivative changes

between the maximal points of θ̇. This correlation is detailed in Fig. 4.5, showing

two time portions of θ̇, fu, and θ corresponding to the data at max( f ⋆u ) = 2.5 N.

The yellow highlights show the window where the outliers occur. In particular

cases, multiple outliers occur, as in the case of a triple outlier in the force signal

at max( f ⋆u ) = 20 N, as presented in Fig. 4.6, as well as the highlighted time

portions in the θ̇ and θ plots. It is observed that there is a correlation between

triple outlier occurrence and continuous abrupt derivative sign changes in θ̇ and

saturated behaviour of θ.

After detection of the exact location of outlier peaks using manual selection,

abrupt derivative changes in θ̇, and maximal points of θ, the outlier type (sin-

gle/multiple) is determined and, by calculating the width of the outlier range, the

appropriate data points can be removed.
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Figure 4.5: Outlier occurrence (middle plots) correlation with abrupt derivative changes
between the maximal points of θ̇ (upper plots), and maximal points of θ (lower plots).
(max( f⋆u ) = 2.5 N)

Figure 4.6: Multiple outlier occurrence at max( f⋆u ) = 20 N and its correlation with continuous
abrupt derivative sign changes of θ̇ and saturated behaviour of θ

After outlier removal, the missing data points of the signal are reconstructed. Sys-

tem identification techniques, due to complexity, and data records concatenating,

due to the limitation of having single test records for each case (detailed in Sec.

4.5.1.2 (item 3)), are not considered in this study. In Fig. 4.7, the measured

force signal (at max( f ⋆u ) = 2.5 N), as well as three methods (two interpolation

methods, and model-based bi-directional AR) for data reconstruction, are shown.

Considering the noisy nature of the signal, and the large number of missing

points, a basic linear interpolation method fails to appropriately reconstruct the

data. In particular, if the gap occurs around maximal points, linear interpolation

can lead to underestimation of the amplitude of the original signal. Piecewise
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Cubic Hermite Interpolating Polynomial (PCHIP) [129], is another method that

can be used; however, as it can be seen in Fig. 4.7, in the case of the noisy signal,

they fail to properly reconstruct the gaps, and even the estimated curvature sign

can be incorrect (right hand zoomed section). The yellow line, representing

the PCHIP interpolation, overlaps with the red line, which corresponds to the

linear interpolation, in the zoomed-in plot on the left in Fig. 4.7. Finally, the

bi-directional AR method, which has been shown to be powerful in reconstructing

large gaps, frequency-varying signals, and noisy signals, is utilised showing

proper data reconstruction method for the gaps of the signals in the current study.

For the bi-directional AR reconstruction, a maximum frame length of 20 sample

points, and an order based on minimising AIC have been utilised.

Figure 4.7: Comparison of three methods (linear interpolation, PCHIP, and bi-directional
AR) for reconstructing gaps in the data.

2. SG filtering: SG filter is utilised as a pre-processing technique, with a nonlinearly

varying window length and fixed order (Sec. 4.5.1.1.2(c)), considering the

characteristics of the chirp signal (Sec: 4.6). In order to determine appropriate

parameters for the SG filter, different combinations of the window length and

order are considered, and the resulting cut-off frequency vectors ( fcs) are

presented in Fig. 4.8, as well as the instantaneous frequency of the chirp

signal, with characteristics given in Section 4.6, as a reference. Considering

Eq. (4.7), decreasing the order, or increasing the window length, will decrease

fc. Accordingly, to decrease fc (to the frequency of the chirp signal), different

choices of the window length (considering the number of zero crossing (Zn)),

and the smallest order (N) to fit the polynomial based on the number of cycles

in the window length, are considered. Based on the results shown in Fig.
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4.8, increasing Zn, and keeping the order as small as possible, noticeably

decreases fc. However, by further increasing Zn (> 8), fc cannot decrease

further. This occurs since the interval between zero crossings varies nonlinearly,

and increasing Zn (and consequently increasing the order to fit the polynomial

order) does not have a significant effect on fc.
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Figure 4.8: SG filter cut-off frequency analysis for different combinations of order (N) and
window length (based on the number of zero crossing (Zn)) for a linear chirp signal. The
solid black line shows the instantaneous frequency of the chirp signal with characteristics
given in Sec. 4.6

For a more detailed analysis of the SG filter parameters, different combinations

of N and Zn are considered at the instantaneous frequency of the chirp signal, at

t = 70 s ( f = 37.7 rad/s) in a 3D plot in Fig. 4.9. The blue dot in Fig. 4.9, which

corresponds to an fc for N = 17 and Zn = 8, shows proximity to the instantaneous

frequency of the chirp (shown with the flat black plane), which also confirms

the results presented in Fig. 4.8. Considering that fc is obtained from the −3
dB attenuation point of the frequency response of the filter, an exact frequency

match is not ideal and fc should have a higher value than the signal frequency.

Based on parameters N = 17, and Zn = 8, Fig. 4.10 shows the resulted fc of the

SG filter, as well as the instantaneous frequency of the chirp signal (with units

on the left vertical axis). Moreover, the window length variations (independant

variable) based on the number of samples for the design parameter of Zn = 8,

are shown with units on the right vertical axis.

In this study, moving window SG filtering is applied to both fu and θ at all input

amplitude levels. For fu signals, outlier removal (4.6.1.1 (item 1)) is applied prior

to SG filtering; note the dramatic effect in Fig. 4.11 at force level of max( f ⋆u ) = 2.5
N. In the time interval [0 40] s, the pink solid line is the measured force signal ( fu),

the SG filtered force ( f S G
u ) is shown with a pink dashed line, while the force with

outliers removed ( f RO
u ) and the SG filtered force with outliers removed ( f S G,RO

u )

are shown using solid and dashed grey lines, respectively. Comparing fu and
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= 37.7 rad/s

Figure 4.9: SG filter cut-off frequency analysis for different combinations of N and Zn at an
instantaneous frequency of 37.7 rad/s (2D black plane), for a chirp signal with characteristics
given in Sec. 4.6)

Figure 4.10: Window length variation of the moving SG filter (units shown on the
right horizontal axis), and the resulting cut-off frequency of the filter compared with the
instantaneous frequency of the chirp signal (units shown on the left horizontal axis).

f S G
u in Fig. 4.11, it can be seen that SG filtering ( f S G

u ) removes high-frequency

components (e.g. noise); however, due to distortion caused by outliers, the

amplitude of f S G
u can be overestimated (e.g. see the zoomed part (a) when

outliers occur at the peaks of the signal and share the same polarity, upward at

maxima and downward at minima), the phase of f S G
u can be shifted (e.g. the

zoomed part (b) when outliers occur between the peaks of the signal), or the

amplitude of f S G
u can be underestimated (e.g. the zoomed part (c) when outliers

occur at the peaks of the signal with opposite polarity, upward at minima and

downward at maxima). Comparing f S G
u and f S G,RO

u emphasises the importance

of outlier removal before SG filtering to preserve the amplitude and phase of the

original signal ( fu).
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(a) (b) (c)

Figure 4.11: Pre-processing in the time domain at max( f⋆u ) = 2.5) N. Comparison of fu,
f RO
u , f S G

u , and f S G,RO
u .

4.6.1.2 Data post-processing

Data post-processing refers to the signal processing techniques employed after

ETFE calculation, including ETFE phase correction employed by forcing the phase

limit to the range of [−180 0]◦, phase unwrapping, and frequency-domain ETFE

filtering (using a moving average filter with six adjacent data points) as detailed in

Sec. 4.5.2 (an example of the effects of the post-processing techniques on ETFE

phase will be shown later (Fig. 4.18)).

4.6.1.3 Final ETFE results

The final ETFE results for the two-stage chain (Fig. 4.2), after applying pre- and post-

processing techniques, are presented in this section. In Fig. 4.12, the first stage

of the chain (force-to-force) mapping using f ⋆u and f S G,RO
u , for all input amplitude

levels, is shown. From the magnitude plot, it can be concluded that the actual force

fails to track the amplitude of the reference force at all input levels, showing more

amplitude drop, and variation, as the input amplitude level decreases. Moreover, the

phase plot shows the failure of the actual force to track the phase of the reference

signal, with larger phase shifts at lower input amplitude levels.
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Figure 4.12: f⋆u -to- f S G,RO
u mapping at all input amplitude forces after data pre- and post-

processing.

In Fig. 4.13, the second stage chain (motion-to-force) mapping, using f S G,RO
u

and θS G, at all input amplitude levels is shown. Due to the nonlinearity of the

WEC system, different input amplitude levels result in different ETFEs. The major

ETFE characteristics in this study are consistent with those analysed in a NWT

setup using the same experiment type (force input amplitudes) in [68], most

noticeably, increasing trend of the bandwidth, and a decreasing trend of the

resonance frequency, as the amplitude of the input signal increases. The resonance

frequency, corresponding to each amplitude level, is obtained by the peak point in

the magnitude plot, or the phase plot where it crosses −90◦. The ETFEs shown

in Fig. 4.13, can be well-approximated (for instance using FOAMM toolbox [67])

using a 6th order parametric model, and matching the frequency points at low- and

high asymptotes, and resonance frequency [68].

4.6.2 Quantitative overall results

This section provides a quantitative measure of the noise, outliers, reflections, and

structural vibration contaminating the data at different levels of input amplitude.

4.6.2.1 Noise quantification

To provide a quantitative measure of the noise corresponding to each output signal

(θ), the SNR (Eq. (4.3)) is calculated as the ratio of the normalised RMS (NRMS) of

the signal to the NRMS of the noise (NRMS=RMS/number of samples). Since it is

difficult to separate noise from the signal, the portion of the signal in the time interval

of [60 140] s from the experiment at max( fu) = 2.5 N, which includes the poorest
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Figure 4.13: ETFEs at all input amplitude forces after data pre- and post-processing.

SNR, is considered for the calculation of the NRMS of the noise at all experiments.

During this portion of the signal, the buoy motion is virtually still, since the frequency

of the excitation signal is far from the resonance frequency of the buoy, and the

amplitude of the excitation signal is small. Moreover, the artifacts, possibly from

reflection and structural vibration are minimal at the smallest input amplitude level,

and the data mostly corresponds to sensor measurement noise. The SNR, for all

input force levels, in dB is shown in Fig. 4.15 (light gray color), showing a poor

SNR at small input levels, and having a generally increasing trend with increasing

input amplitude levels; however, it can be seen that there is a certain threshold at

max( fu) = 12.5 N beyond which SNR cannot be effectively improved.

4.6.2.2 Outlier quantification

Several methods can be used to provide a quantitative measure of the outlier

amplitude/power, compared to the signal amplitude/power, to determine their level

of contamination :

• Outlier removal quantification: The ratio of the power of the signal with outliers

( fu) to the power of the signal without outliers ( f RO
u ) is a potential metric used to

quantify the effect of outlier removal. However, this method is not ideal, since

outliers can both increase and decrease signal power, depending on their location.

(A positive outlier can occur both at maxima (contribute to an increase in the

power), or minima (contribute to a decrease in the power.)

• Peak-to-peak ratio (PPR): PPR is the ratio of the NRMS of the peaks of fu − f RO
u

(signal with outliers minus the signal without outliers) to the NRMS of the peaks
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of the SG filtered signal ( f S G
u ), and is a potential metric to quantify the effect of

outliers. A block diagram, explaining the steps for PPR calculation, is shown in

Fig. 4.14.

_
+

Force signal

SG filter

outlier
removal

data
reconstruction NRMS of peaks

NRMS of peaks
PPR

Figure 4.14: Block diagram for PPR calculation steps.

PPR, provides a useful metric to quantify the effects due to outliers, as has been

shown earlier in Fig. 4.5, where the amplitude of f S G
u can be overestimated/underes-

timated when large excursions in signal amplitude occur due to outliers. Moreover,

considering the amplitude deviation of the signal due to outliers provides more

sensible quantification results than considering their additive power and, since the

outliers occur over a very short time interval, their power is much less compared to

the power of the signal and fails to provide a good understanding of their quantitative

impact. PPR results, for different input amplitude levels, are shown in Fig. 4.15

(dark grey color). It can be seen that there is a general increasing trend of PPR as

the input amplitude level increases. However, at the highest input amplitude level

(max( f ⋆u ) = 20 N), the PPR level is very low (high level of contamination by outliers),

which is due to multiple and large outliers shown in Fig. 4.6.

4.6.2.3 Reflection and structural vibration quantification

In the experiments, sinusoidal oscillations are present at time intervals when the

frequency of the input force is much higher than the resonance frequency of the

device, and no response in the output is expected. The oscillations, with frequencies

of approximately 6.5 and 73 rad/s, with more noticeable magnitude at (max( f ⋆u ) = 20
N), are most probably due to reflection (close to the resonance frequency of the

device), and vibration of the mounting structure, respectively [124]. Such effects

can be quantified, based on knowledge of their frequency contents. To this end,

the portion of the time domain output signals in the interval of [80 140] s, where

the frequency of the excitation force is beyond the dynamical range of the device

(the buoy movement is due to perturbations), is considered for all the experiments.

A spectral domain analysis of this portion of the time signals shows considerable

power at the peaks of the reflected waves (close to the resonance frequency of

the device (6.28 rad/s)), and resonance frequency of the mounting structure (at 73
rad/s) [124]. In order to quantify the power corresponding to reflection and structural

vibration, (two separate) band-pass filtering, with the centre frequencies equal to the
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reflection and resonance frequency of the mounting structure, is applied. In order to

provide quantitative results corresponding to the effects of reflection and structural

vibration, transformation from the frequency domain to the time domain is applied to

isolate the reflections, and structural vibrations, and the NRMS is calculated in Fig.

4.15, (light and dark purple color, respectively), with the units shown on the right

vertical axis. The results show an increasing trend of the reflection and structural

vibration NRMS, as the amplitude of the input force increases.

Figure 4.15: Quantitative results: SNR (dB) and PPR with the amplitudes shown on the left
vertical axis (high values are desirable), and RMS of the reflection and structural vibration
with the units shown on the right vertical axis (low levels are desirable).

To sum up the quantitative results for different operating points (Fig. 4.15),

SNR and PPR are generally dominant at small input amplitude levels, with the

contamination due to noise and outliers are mitigated in the pre-processed data.

Note (in Fig. 4.15) the increasing trend in reflection RMS with increasing input

amplitude level. Finally, data contamination from the structural components (Section

4.3.2.3), even though dominant at high input amplitude levels, contains high-

frequency components (harmonics of 73 rad/s), which does not affect the operating

frequency range of the WEC model.

4.6.2.4 Total distortion measures

In this section, the term total distortion is used in order to provide quantitative

results which captures all distortion components including intrinsic nonlinearities and

exogenous disturbance in the measured signals. Typically, total harmonic distortion

is measured using sinusoidal signals, which contain energy at only a single spectral

component (frequency), allowing any energy observed at other frequencies in the

output to be attributed to nonlinearities or time-varying behaviours in the system.

However, chirp signals, which distribute energy across multiple frequencies, have
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been considered, which complicates the task of distinguishing distortion components

from the input signal. Additionally, the experimental setting resulted in signals highly

contaminated with noise and exogenous dynamic behaviours uncorrelated with the

input signals, making the task even more challenging. Therefore, the term total

distortion has been adopted to measure the power of unwanted signal components

in relation to the fundamental signal’s power, in analogy to the approach used for

calculating total harmonic distortion plus noise (THD+N), a well-defined metric used

for sinusoidal signals [132]. More specifically, for the measured force signals, total

distortion is calculated as the ratio of the RMS value of the distortion ( f S G,RO
u − fu) to

the RMS of the fundamental ( fu) signal. Despite its drawbacks (distributed spectral

content, varying frequency, exogenous factors, etc.), as previously discussed, total

distortion analysis is presented here for the sake of completeness, offering a

comprehensive overview from all perspectives. The results of the percentage

total distortion for quantification of the distortion components in the measured force

signal are presented in Table 4.2. Based on the results, the total distortion has

a decreasing trend by increasing the input amplitude level, with a discontinuity

occurring at the input amplitude level of 20N, most possibly due to a large distortion

from outliers as per the results of PPR presented in Fig. 4.15.

Table 4.2: The total distortion of the actual signal at different levels of input amplitudes.

Input amplitude
level

2.5N 5N 7.5N 10N 12.5N 15N 17.5N 20N

Total distortion 43.5% 27.0% 19.0% 15.1% 13.1% 12.1% 11.5% 31.5%

4.6.3 ETFE Comparisons

In order to highlight the effects of the different pre- and post-processing techniques,

and their consequences on the results, some ETFE comparisons are provided

in this section.

To analyse the effect of pre-processing (including outlier removal and SG

filtering) techniques on the ETFE, the case of max( f ⋆u ) = 2.5 N is highlighted,

where the levels of noise and outliers are very dominant. In Fig. 4.16, three ETFEs,

including ( fu → θ), ( f S G
u → θS G), and ( f S G,RO

u → θS G) are shown. Comparing the

fu → θ (measured input to measured output) mapping with f S G
u → θS G (SG filtered

input to SG filtered output), the advantage of applying an SG filter can be seen by

the decrease in ETFE of magnitude and phase variance, while retaining the original
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signal phase contents. The comparison of f S G,RO
u → θS G (where the outliers are

removed prior to SG filtering) with f S G
u → θS G highlights the deleterious effect of

outliers both on magnitude and phase of the ETFE.

Figure 4.16: ETFEs comparison using measured input and output ( fu and θ), SG filtered
input and SG filtered output ( f S G

u and θS G), and SG filtered removed outliers input and SG
filtered output ( f S G,RO

u and θS G) at max( f⋆u ) = 2.5 N.

Another example to highlight the beneficial pre-processing effect on ETFEs is

shown in Fig. 4.17, where the mappings of f ⋆u → fu and f ⋆u → f S G,RO
u , at max( f ⋆u ) =

20 N, are compared, showing considerable reduction in variance of the mappings

following pre-processing, which includes removal of dominant contamination by

triple outlier occurrence. Pre-processing helps both to extract useful information

(in Fig. 4.17, magnitude at high frequencies) and reduce the uncertainty bound,

which will be discussed in Sec. 4.7.

Figure 4.17: Magnitude of force-to-force mapping: comparison of f⋆u → fu mapping and
f⋆u → f S G,RO

u (at max( f⋆u ) = 20 N).

Finally, to emphasise the effects of data post-processing techniques, ETFE

(phase) comparisons are included in Fig. 4.18. At max( f ⋆u ) = 20 N, the final ETFE

result using raw input/output signals (before pre- and post-processing) is compared

with ETFES P, where pre- and post-processing techniques have been applied. At
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frequencies around 2 and 4.3 rad/s, and high-frequency asymptote, the effect of

ETFE phase correction (to force the phase limit in the range of [−180 0]◦) can

be noticed. Moreover, in both ETFE results, phase unwrapping is applied (where

phase wrapping occurs). Finally, ETFE filtering smoothes the results over the full

frequency range; however, in Fig. 4.18, the ETFE variance is decreased due to

pre-processing, and ETFE filtering (post-processing).

Figure 4.18: Comparison of ETFE phases (max( fu) = 20 N), before and after post-
processing.

4.7 Application to robust WEC control

A particularly important potential application of the multi-linear WEC modelling is to

determine an adequate single nominal model and quantify the uncertainty bound

from the family of models for robust control design of WECs. The different techniques

for nominal model determination, with consequences on the resulting control

performance, as well as the importance of uncertainty size on the conservatism of

the controller approach, are detailed by [23], with an example case of employing

CFD-based numerical tank experiments to obtain a representative nominal model

and small uncertainty bound studied by [29].

Using the final ETFE (ETFES P) results after applying the full suite of signal

processing techniques (results shown in Fig. 4.13), the uncertainty bound using

the lower and upper limits of the ETFE ranges, and the corresponding nominal

model (GS P
N ), calculated as an average of ETFES P for different input force levels, are

presented in Fig. 4.19 which can be used for robust control design. To highlight the

effect of data pre- and post-processing techniques on the uncertainty bound and

nominal model, ETFES P and GS P
N are compared with ETFE bound calculated using

raw input and output signals, and the corresponding GN . In Fig. 4.19, it is clear

that the effect of pre- and post-processing produces a smoother (and likely more

accurate) representative GS P
N , while the bounds on ETFES P are more uniform around

GS P
N . Using raw data for nominal model calculations can impact the performance

of the model-based controller. This is because artifacts in the data may lead to
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an overestimation of the model’s magnitude, according to the results of this study.

Moreover, a high level of fluctuations in the nominal model obtained from row data

can obscure the meaningful information.

Figure 4.19: Nominal model and ETFE bounds using raw (GN and ETFE, respectively) and
processed data (GS P

N and ETFES P, respectively).

4.8 Conclusions

In this study, emphasis is given to determining the most accurate non-parametric

multi-linear frequency-domain model of a WEC using force-input experiments (chirp-

type input force from PTO), by detecting the uncertainty and external disturbance

sources in a PWT and applying appropriate data-processing techniques to exclude

such artifacts from the calculated ETFEs. First, the ETFE results highlight the effect

of pre-processing techniques, including SG filtering (of input and output signals)

and outlier removal (from input signals). These techniques decrease the variance

in ETFE magnitude and phase while retaining the original signal phase content

(as shown in Figs. 4.16 and 4.17). Subsequently, the impact of post-processing

activities has been highlighted (an example shown in Fig. 4.18), by decreasing

the high variable ETFE and preserving the physical properties of the WEC device.

The pre- and post-processing techniques return the most realistic WEC models,

which can be used as adequate models for linear control designs. Furthermore,

robust control can be implemented by the determination of a nominal model and

quantification of uncertainty bound using multi-linear models obtained from this

study. Moreover, the following conclusions are drawn from this study:

• Considering the relatively poor performance of the force tracking loop (shown in

Fig. 4.2 and the results of the force-to-force mapping in Fig. 4.12), which causes

excursions (phase and amplitude) between the reference force and actual force,

it is important to correctly select a set of appropriate input/output signals based
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on the required characteristics of the WEC model, i.e., consider Actual force-to-

motion mapping for ETFEs characterising the hydrodynamic WEC model, and

consider Reference force-to-motion mapping for ETFE characterising complete

WEC model (including PTO).

• The contamination level at the different force levels must be considered carefully

as dominancy of the contamination level (e.g. noise and outliers in small input

amplitude force level), may lead to misestimation of the WEC system model.

(Some quantitative results specific to the PWT under study are presented in Fig.

4.15).

• Regarding data contamination by outliers, special consideration should be taken

to remove the effect. In the application of WECs, the occurrence of outliers can

be due to different factors and their corresponding consequences. For example,

outliers can contaminate the significant wave height (Hs) records [134, 133],

mooring load measurements using load cells [135], or the output WEC power, as

articulated in [136].

• In a design of a moving filter for chirp-type signals, a specific consideration should

be taken for the selection of the window length, as the duration of oscillations (or

distance between zero crossing points) varies nonlinearly with time.

Several limitations should be noted in this study. Data collection was constrained

to an experimental campaign provided, limiting the ability to conduct additional

validation tests. Further experiments, could help for accurate characterisation

of contamination, for example, data recording using position laser sensors in

zero input condition tests (fixed buoy position) to ensure noise characterisation.

Moreover, the nonlinear behaviour appearing in the data, could not be definitively

attributed to specific physical behaviors. Even though backlash was considered

a candidate, it was not possible to categorise it. Extensive experimental tests for

proper characterisation of data contamination, and addressing their sources is an

important avenue for future research.
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5
Conclusions and future perspectives

The primary findings and conclusions of this thesis are summarised in Section 5.1,

while potential areas for future research are discussed in Section 5.2.

5.1 Main conclusions

This thesis contributes to developing representative linear WEC models (multilinear

WEC model), derived from nonlinear data obtained through high-fidelity CFD-

based NWT simulations and PWT experiments. These models effectively capture

potential nonlinearities and comprehensively represent the dynamics of WECs

during operation, making them suitable as the foundation for model-based control

strategies. A critical component of this work is the meticulous consideration of

uncertainty sources inherent to each type of test and the application of data

processing techniques to minimise data contamination, leading to more accurate

WEC characterisations. By reducing uncertainty in the models derived from

NWT and PWT experiments, this work provides more realistic representations

of WEC dynamics, supporting future validation studies through more reliable

comparisons between numerical and experimental models. The multilinear WEC

models developed from NWT tests are used to identify parametric models, through

which the dominant dynamic properties are analysed and their variations across

different operating conditions are examined. Furthermore, due to their significant

potential in robust WEC control applications, a nominal linear model and associated

uncertainty bounds are derived from the multilinear WEC models and synthesised for

111
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enhanced control performance. These findings are also applicable to the multilinear

WEC models developed from PWT testing.

The main conclusions drawn from this research are summarised below, high-

lighting the key findings from the three included papers and their interconnected

contributions to the field.

• Effectiveness of data-driven WEC models: The derivation of WEC models

from both physical and high-fidelity numerical experiments using force-input

tests, combined with a careful selection of input signals to cover the full

frequency and amplitude range, is an effective approach for obtaining accurate

linear WEC models suitable for dynamic assessment and control design. How-

ever, significant uncertainties inherent to each experiment type can critically

impact model accuracy and control design. This highlights the importance

of carefully identifying and mitigating these uncertainties to improve model

accuracy and minimise uncertainty, thereby enhancing the effectiveness of

robust WEC control.

• Passivity violation in WEC systems: The passivity property of WEC systems

can be compromised in both physical and high-fidelity numerical experiments.

For physical data, contamination—such as noise and outliers— can pose

a risk to passivity. In numerical experiments, the simulation processes can

introduce errors that result in non-passive system characteristics. To preserve

the physical realism of WEC models, it is crucial to address these issues.

In this study, passive conditions are ensured by applying a post-processing

technique within the valid range of ETFE phases.

• Dominant dynamics of linearised WEC models: Understanding the dynam-

ics of WEC models is crucial for guiding the progression and development

of WEC technologies. The dominant dynamics of linearised WEC models

under different operating conditions can be effectively tracked, with key

parameters such as the resonance frequency, which can be derived from

ETFE results, and the location of dominant poles, obtainable from the state-

space representation of WEC systems using parametric system identification

techniques like the FOAMM toolbox. Analysis of the dominant dynamics of

WECs from NWT testing, compared with WAMIT data, reveals a decreasing

trend in resonance frequency, indicating an increasing damping effect as the

amplitude of the input force decreases (detailed in Chapter 3). This behavior

has also been observed in previous studies analysing the dynamics of WEC

models obtained from free-decay NWT testing [50]. A similar investigation

can be conducted for ETFEs from PWT testing.
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• Contamination level prevalence across operating conditions: The level of

data contamination (for instance noise, outlier in PWT testing) at various force

levels must be carefully considered, as the dominance of contamination can be

particularly significant under specific operating conditions, potentially leading

to misestimation of the WEC system model. Chapter 4 provides quantitative

results detailing data contamination from various sources, including noise,

outliers, reflection, and structural vibration, at different operating points specific

to the PWT under study. These results reveal varying trends—both increasing

and decreasing—in contamination levels, along with their corresponding

impact on data accuracy.

• Specific considerations in processing chirp-type signals: Chirp signals

are extensively used in this study for system identification tests in both NWT

and PWT (Chapters 2 and 4) due to their ability to cover the full frequency

range, which is directly linked to the system’s frequency response. Additionally,

chirp signals facilitate the exploration of amplitude-related nonlinearities by

using multiple chirp signals at varying amplitudes, enabling the characterisa-

tion of a multi-linear WEC model—an essential step in developing a nominal

linear model with defined bounds for robust WEC control.

However, the frequency-varying nature of chirp signals requires specific

considerations in their processing. For example, implementing a moving filter

that adapts to the chirp’s instantaneous frequency is essential for effectively

mitigating artifacts within the specific window of the varying frequency of

the chirp signal. The application of a BPF to chirp signal experiments (as

detailed in Chapter 2) highlights the challenge of correctly initialising the filter

output, which can introduce unwanted transient artifacts. To address this,

Chapter 4 presents an innovative application of a moving SG filter—a low-pass

filter—designed based on the nonlinearly varying zero-crossing points of the

signal, which are directly linked to the duration of oscillations. This design,

with a fixed filter order tailored to the characteristics of chirp signals, offers a

more effective approach and should be considered in future designs of moving

filters for chirp-type signals.

• Role of data-processing in enhancing model realism: Data processing

plays a critical role in enhancing the realism of WEC models. Pre-processing

techniques focus on removing artifacts from time-domain signals, ensuring the

retention of the original signal’s phase and amplitude while reducing variance

in the resulting ETFE magnitude and phase. Post-processing, applied in the



114 5.2. Future perspectives

frequency domain, is crucial for preserving the physical properties of the WEC

device while reducing the variability in ETFE results. These techniques yield

models that are not only realistic but also well-suited for linear robust control

design, thanks to accurate nominal model characterisation and minimised

uncertainty.

• A conclusion from the thesis: The three papers included in this thesis

collectively contribute to the development of comprehensive multilinear WEC

models derived from wave tank experiments, capturing potential nonlineari-

ties during WEC operation, and providing a deeper understanding of WEC

dynamics and the application of linearised models in WEC control. Paper I

underscores the importance of high-fidelity CFD-based NWT experiments,

highlighting the need for careful input signal design and post-processing to

achieve a representative nominal model with reduced uncertainty, essential for

effective robust control. Paper II builds upon this by demonstrating the utility

of force-input experiments for system identification, illustrating how variations

in input force amplitude influence the dominant dynamics of WEC models.

Paper III addresses the practical challenges associated with physical wave

tank testing, with a particular focus on data contamination and the critical

role of pre- and post-processing techniques in achieving accurate, multi-linear

WEC models.

Collectively, these studies establish a robust framework for WEC model

development and control design, emphasising the critical balance between

model fidelity, uncertainty management, and practical considerations in both

numerical and physical testing environments. The conclusions drawn from

this research not only enhance the realism of WEC models but also provide

valuable insights for future advancements in linear WEC control implementa-

tion.

5.2 Future perspectives

The work presented in this thesis opens up several directions for further research

and investigation:

• Considering the concept of gain scheduling—a widely accepted approach for

managing nonlinear system dynamics—the multilinear WEC models devel-

oped in this study can be effectively used to create an optimal set of models.

By employing a fuzzy interpolation scheme, this approach combines the
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simplicity of linear modeling with a smooth interpolation mechanism between

different models or controllers. This results in a composite model with high

fidelity across the full operational range, making it well-suited for model-based

control through gain scheduling.

• Given the thesis’s key contribution to ETFE calculations, which relies on the

assumptions of periodic motion and linear behaviour of the WEC system, it

would be beneficial to calculate total harmonic distortion. This calculation

would help attribute any energy observed at non-harmonic frequencies in

the output to potential nonlinearities or time-varying behaviors within the

system. The use of frequency-varying chirp signals as excitation in PWT

testing in this study, where the energy is distributed across a wide range of

frequencies, complicates the differentiation of harmonic distortion components

from the input signal. To facilitate a clearer analysis of total harmonic distortion,

conducting additional experiments with purely sinusoidal signals would be

advantageous. This would allow for a more straightforward identification

and quantification of distortion, providing deeper insights into the system’s

nonlinear characteristics.

• The data collection for the study presented in Chapter 4 was constrained to an

experimental campaign at Aalborg University, limiting the scope for additional

validation tests. Conducting extensive experimental tests to accurately char-

acterise data contamination and identify its sources is a crucial area for future

research. For example, recording data with position laser sensors during

zero-input condition tests (with the buoy in a fixed position) could provide

precise noise characterisation. Moreover, the nonlinear behavior observed

in the data could not be conclusively linked to specific physical phenomena.

While backlash was considered a possible cause, it could not be definitively

identified, warranting further investigation in future experiments.

• The identification of uncertainty and external disturbances in PWT testing

(as discussed in Chapter 4) focuses on a single point-absorber WEC, where

some unknown nonlinear behaviours remain. In the case of WEC arrays, the

interactions between multiple devices introduce greater complexity, potentially

increasing the levels of contamination and uncertainty affecting the models.

This highlights the need for further research to address the unique challenges

associated with uncertainty in WEC array experiments.
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