
Ocean Engineering 319 (2025) 120125 

A
0

Contents lists available at ScienceDirect

Ocean Engineering

journal homepage: www.elsevier.com/locate/oceaneng

Research paper

Computationally-efficient nonlinear model predictive control of wave energy
converters with imperfect wave excitation previews
Siyuan Zhan a,c, Yutao Chen b ,∗, John V. Ringwood c

a Department of Mechanical, Manufacturing and Biomedical Engineering, Trinity College Dublin, Dublin, D02 PN40, Ireland
b School of Electrical Engineering and Automation, Fuzhou University, Fuzhou, 350025, China
c Centre for Ocean Energy Research, Maynooth University, Maynooth, W23F2H6, Co. Kildare, Ireland

A R T I C L E I N F O

Keywords:
Nonlinear model predictive control
Wave prediction
Wave energy converter
Reduced computational complexity

A B S T R A C T

Energy maximising (EM) control of wave energy converters (WECs) is a noncausal problem, where wave
prediction information can be used to increase the energy conversion rate significantly. However, current
approaches do not consider the prediction error evolution in the control formulation process, leading to
potential unpredictable performance degradation. Moreover, most existing real-time WEC control approaches
assume linear dynamics, motivated by their simplicity and mild computational cost and, thus, are not effective
for real-time control for WECs with nonlinear dynamics. Targeting imperfect wave prediction and nonlinear
WEC dynamics, this paper proposes a computationally-efficient nonlinear MPC (NMPC) scheme for WECs with
(typically) imperfect wave excitation preview. This is achieved by introducing an input move blocking scheme
when formulating and solving the online optimisation problem, i.e., defining finer discretisation grids for the
control input and wave prediction at the early stages of the prediction horizon, where the wave prediction is
more accurate, and coarser grids at the latter stages of the horizon, to reflect less inaccurate wave prediction
information. Numerical simulation results are presented, based on a conceptual nonlinear point-absorber WEC,
to verify the efficacy of the proposed NMPC method, in terms of produced energy, computational complexity,
and robustness against wave prediction inaccuracy.
1. Introduction

Wave energy has significant potential to supply renewable energy to
complement other renewable sources. However, the unit cost of current
wave energy technology is higher than other renewable (and conven-
tional) sources, and it is well-known that a reliable and efficient wave
energy converter (WEC) controller can reduce the unit cost of wave
energy (Guo and Ringwood, 2021). However, the effectiveness of early
WEC control methods, based on the impedance-matching principle, is
challenged to implement when the sea conditions include a wide range
of wave frequencies (Zhan and Li, 2019), and when actuator and other
safety constraints need to be considered.

The WEC energy maximisation (EM) problem is a non-conventional
control problem, where the control objective is to maximise the energy
conversion rate, respecting physical system constraints and power take-
off torque/force limits. Recent studies reveal that, by fully exploiting
excitation force preview, the energy conversion rate can be significantly
improved, even trebled in some sea conditions (Babarit and Clément,
2006; Zhan and Li, 2019).

∗ Corresponding author.
E-mail address: yutao.chen@fzu.edu.cn (Y. Chen).

To provide essential non-causal preview information for WEC EM
controllers, the wave elevation and wave excitation forecasting prob-
lem, within the time scale of several wave periods, has received signifi-
cant research attention over the past decade. The most popular methods
include deterministic sea wave prediction (DSWP) (Belmont et al.,
2014), which physically models wave spatial propagation, and time-
series approaches, such as autoregressive (AR) models, which exploit
the linear statistical nature of the wave at the point of interest (Fusco
and Ringwood, 2010; Pena-Sanchez et al., 2018b). While deterministic
methods can provide more accurate forecasts for a longer horizon,
autoregressive techniques can be more attractive for some applications,
since no sensors/instrumentation required (Paparella et al., 2014). An
additional complication is that, optimal non-causal controllers require
a forecast of the wave excitation force (WEF), an unmeasurable quantity,
incurring additional estimation errors (Peña-Sanchez et al., 2019),
which are further compounded by forecasting errors.

Model predictive control (MPC) provides a natural mechanism to
solve the WEC EM control problem. Most real-time MPC WEC con-
trollers assume linear dynamics, motivated by their design simplicity
https://doi.org/10.1016/j.oceaneng.2024.120125
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and the low complexity of the associated online optimisation problem.
owever, this linear assumption may be challenged for some WECs,
specially when a WEC is efficiently controlled, due to the amplified
evice motion under control (Windt et al., 2021), exaggerating nonlin-
ar hydrodynamic effects. The potential sources of those nonlinearities
nclude geometry-induced nonlinearities (Windt et al., 2021), nonlinear
roude–Krylov (FK) static and dynamic forces, nonlinear viscous drag
orce, and/or nonlinear mooring force (Penalba et al., 2017a). For
onlinear MPC (NMPC), existing approaches, including those based
n dynamic programming (Li et al., 2012), Prontragin’s minimum

principle (Zou et al., 2017), or by directly solving the associated NMPC
problem (Tom and Yeung, 2014; Richter et al., 2012; Huang et al.,
2024; Demonte Gonzalez et al., 2024), incur severe computational
problems and, therefore, are challenging to implement as a real-time

EC controller.
Inspired by the development of the real-time iteration (RTI) frame-

work (Houska et al., 2011), recent studies (Guerrero-Fernández et al.,
2022; Haider et al., 2021) have applied the RTI solver to accelerate the
computation of NMPC. However, the RTI solver introduced in Houska
t al. (2011), originally designed for tracking and regulation problems,

require a convex quadratic cost function. Consequently, the WEC NMPC
implementations using the RTI framework (Guerrero-Fernández et al.,
2022; Haider et al., 2021) must adopt a convex quadratic cost function
similar to that used in tracking and regulation problems. This poses
a significant challenge, as the energy maximisation objective inherent
to WEC NMPC, subject to persistent wave excitations, is inherently
on-trivial to represent using such a cost function.

By projecting the input and state onto a set of periodic or pseudo-
eriodic basis functions, NMPC-like approaches (Faedo et al., 2017)
uch as pseudo-spectral methods using periodic (Bacelli et al., 2015;

Mérigaud and Ringwood, 2017), and non-periodic (Genest and Ring-
wood, 2016; Li, 2017) basis functions, have been developed for WECs,

hich show good computational performance. However, a persistent
roblem is the difficulty in maintaining a convex optimisation problem
ith nonlinear WEC dynamics. Recently, a moment-matching approach
as been used to present a convex formulation for a wide range of
onlinear parameterisations (Faedo et al., 2021), arising from hydro-
ynamic (Faedo et al., 2022a) or power take-off (PTO) (Faedo et al.,

2022b) nonlinearity.
However, in general, these NMPC-like algorithms require high-

fidelity wave forecasting in the control formulation, with one notable
exception (Faedo et al., 2022c). However, this study (Faedo et al.,
2022c) assumes uniform uncertainty in the forecast and cannot exploit
information concerning the evolution in uncertainty.

Directly tackling the computational and imperfect prediction is-
ues, this paper develops a real-time implementable, computationally-

efficient, NMPC scheme, based on input move blocking (MB). Input
MB is a well-known technique, used to reduce the computational com-
plexity in solving the optimisation problem stemming from the MPC
ormulation. MB reduces the variables to be optimised by enforcing
 constant input over several discrete-time steps within the control
orizon. In linear MPC, MB is a mature technique with a broad range
f applications, including a recent application to WECs (Guerrero-
ernández et al., 2020). However, in NMPC, there are few guidelines

for developing MB strategies, especially with the unconventional WEC
ontrol objective of maximising energy capture, by exploiting incoming

WEF prediction, the accuracy of which deteriorates with the prediction
orizon length. In this paper, we propose a novel NMPC framework
or the WEC control problem, capable of addressing nonlinear dynam-

ics, unconventional EM control objectives, decreasing wave prediction
accuracies, and the computational efficiency requirements of real-time
implementation, by introducing an innovative tailored MB structure
that enhances computational efficiency while simultaneously mitigat-
ing the negative impact of increasing prediction inaccuracies on overall
performance. The contributions of this methodology are summarised as
follows:
 r

2 
1. A specific input MB scheme is designed to suit the WEC NMPC
problem, with finer discretisation grids on shorter horizons and
coarser grids on longer horizons, which aligns with the rela-
tive prediction accuracy. Compared with existing NMPC meth-
ods (Guerrero-Fernandez et al., 2023) without input MB, MB-
NMPC can achieve better energy conversion efficiency with
imperfect predictions, and has significantly less computational
complexity, due to the reduced number of decision variables.

2. Targeting the nonlinear programming (NLP) problem stemming
from the input MB NMPC, a tailored condensing strategy is em-
ployed to further reduce the computational complexity, by elimi-
nating state variables from decision variables in the optimisation
problem. This is achieved by exploiting the unique structure
(denser grid in the near future and coarser grid in the far
future) of the optimisation problem stemming from the multiple-
shooting-based input MB NMPC applied to a WEC with degraded
prediction accuracy. With the tailored condensing strategy, the
optimisation problem can be efficiently solved by an active-set
method with a ‘warm start’, i.e. using optimal solutions from the
previous sampling instant to initialise the optimisation problem
at the current sampling instant.

The remainder of the paper is organised as follows. Section 2
presents the WEC NMPC problem preliminaries, including WEC dy-
namic modelling and NMPC problem formulation. The main result,
i.e. the formulation of the novel input MB NMPC, is presented in
Section 3. Implementation issues, including the estimation of full state
information, obtaining current and future WEF estimates/predictions,
are discussed in Section 4. Demonstrative and comparative exam-
ples are given in Section 5, based on a benchmarked WEC described
y a nonlinear state-space model. Finally, the paper is concluded in
ection 6.
Notation: Let R𝑛, and R𝑎×𝑏, denote the space of all real 𝑛

dimensional vectors, and all 𝑎-by-𝑏-dimensional matrices, respectively;
N𝑎∶𝑏 and N≥𝑎 denote a set of integers from 𝑎 to 𝑏, and greater than or
equal to 𝑎, respectively. For column vectors 𝑧1 and 𝑧2, [𝑧1, 𝑧2] denotes
a column vector [𝑧⊤1 𝑧

⊤
2 ]
⊤. 𝒛𝑎∶𝑏 ∶= [𝑧𝑎, 𝑧𝑎+1,… 𝑧𝑏]. 𝐼𝑛 denotes the 𝑛-by-𝑛

dentity matrix. 0𝑎×𝑏 denotes an 𝑎-by-𝑏 matrix composed entirely of zero
ntries. For 𝐴 ∈ R𝑎×𝑏, 𝑎 > 𝑏, 𝐴+ denotes its (left) pseudo-inverse. ‘‘∗’’

denotes the convolution operator. ‘‘s.t.’’ is the abbreviation of ‘‘subject
to’’. ‘‘w.r.t.’’ is the abbreviation of ‘‘with respect to’’.

2. Preliminaries

2.1. WEC modelling

Although the proposed method is generic and can be applied to
a range of WECs with nonlinear hydrodynamics, in this paper, for
demonstration purposes, we present our study on a benchmark point
absorber system, restricted to heave motion 𝑧(𝑡) only, as shown in
Fig. 1.

From Newton’s 2nd law, the motion of the float can be described
by:

𝑀 �̇�(𝑡) = −𝑓ℎ(𝑡) − 𝑓𝑟𝑎𝑑 (𝑡) + 𝑓𝑛𝑙(𝑡) + 𝑓𝑒𝑥(𝑡) + 𝑓𝑢(𝑡), (1)

where 𝑀 is the mass of the free float, while 𝑧(𝑡) and 𝑣(𝑡) denote heave
isplacement and heave velocity of the free float w.r.t. the still water

level (SWL), respectively. 𝑓𝑒𝑥(𝑡) is the wave excitation force, treated as a
predictable disturbance input in this paper, while 𝑓𝑢 is the manipulated
PTO control force. 𝑓ℎ(𝑡) is the hydrostatic restoring force, assumed to
be linear for this case, and modelled by:

𝑓ℎ(𝑡) = 𝑘ℎ𝑧(𝑡), (2)

with stiffness 𝑘ℎ = 𝜌𝑔 𝑆𝑤, where 𝜌, 𝑔, and 𝑆𝑤 denote the water
ensity, gravitational acceleration, and cross-sectional area of the buoy,
espectively. 𝑓 (𝑡) models the linear frequency-dependent damping
𝑟𝑎𝑑
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Fig. 1. Dynamic diagram of the float (SWL: still wave level; PTO: power take-off unit).

effect of the radiated waves which, under the standard assumption
associated with linear potential theory (Falnes, 2002), is modelled by:

𝑓𝑟𝑎𝑑 (𝑡) = ℎ𝑟(𝑡) ∗ 𝑣(𝑡) + 𝑚∞�̇�(𝑡), (3)

where the radiation impulse response ℎ𝑟(𝑡), and the asymptote of added
mass at infinite frequency 𝑚∞, are calculated via a hydrodynamic
code such as NEMOH (Penalba et al., 2017b). 𝑓𝑛𝑙(𝑡) denotes the total
nonlinear effects on the free float. In this paper, we consider a nonlinear
viscous drag force for demonstration purposes:

𝑓𝑛𝑙(𝑡) = −𝑘𝑛𝑙|𝑣(𝑡)|𝑣(𝑡), (4)

where 𝑘𝑛𝑙 = 𝜌𝐶𝑑𝐴𝑑 , with drag coefficient 𝐶𝑑 and characteristic surface
area 𝐴𝑑 , which can be determined using methods presented in Giorgi
and Ringwood (2017). With (2)–(4), the dynamic equation (1) results
in a modified Cummins’ (Cummins, 1962) equation:
(𝑚 + 𝑚∞)�̇� = 𝑓𝑒𝑥(𝑡)− 𝑘ℎ𝑧(𝑡) − ℎ𝑟(𝜏) ∗ 𝑣(𝑡 − 𝜏)

− 𝑘𝑛𝑙|𝑣(𝑡)|𝑣(𝑡) + 𝑓𝑢(𝑡).
(5)

The convolution term in (5) can be approximated with a mini-
mal state-space representation by a number of methods (Peña-Sanchez
et al., 2019; Unneland, 2007):
{

�̇�𝑟(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑣(𝑡)
𝑦𝑟(𝑡) = 𝐶𝑟𝑥𝑟(𝑡) +𝐷𝑟𝑣(𝑡) ≈ ℎ𝑟(𝑡) ∗ 𝑣(𝑡)

(6)

where (𝐴𝑟, 𝐵𝑟 𝐶𝑟, 𝐷𝑟), and 𝑥𝑟 ∈ R𝑛𝑟 , are the state-space matrices, and
the associated state vector, respectively.

Defining the overall system state vector 𝑥(𝑡) ∶= [𝑧(𝑡), 𝑣(𝑡), 𝑥𝑟(𝑡)],
where 𝑧(𝑡), 𝑣(𝑡), 𝑥𝑟(𝑡) are the heave displacement, heave elevation, and
the state corresponding to radiation dynamics, respectively, the control
input (PTO force) 𝑢(𝑡) ∶= 𝑓𝑢(𝑡), and disturbance input (wave excitation
force) 𝑤(𝑡) ∶= 𝑓𝑒𝑥(𝑡), the WEC dynamics described by Cummins’
equation (5) can be modelled by the following linear time-variant (LTI)
system
̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝑤(𝑡) + 𝑢(𝑡) − 𝑘𝑛𝑙|𝑣(𝑡)|𝑣(𝑡)),
𝑧(𝑡) = 𝐶𝑧𝑥(𝑡), 𝑣(𝑡) = 𝐶𝑣𝑥(𝑡),

(7)

where

𝐴 =

⎡

⎢

⎢

⎢

⎣

0 1 01×𝑛𝑟
− 𝑘ℎ
𝑚 −𝐷𝑟

𝑚 −𝐶𝑟
𝑚

0𝑛𝑟×1 𝐵𝑟 𝐴𝑟

⎤

⎥

⎥

⎥

⎦

, 𝐵 =

⎡

⎢

⎢

⎢

⎣

0
1
𝑚

0𝑛𝑟×1

⎤

⎥

⎥

⎥

⎦

,

𝐶𝑧 =
[

1 0 01×𝑛𝑟
]

, 𝐶𝑣 =
[

0 1 01×𝑛𝑟
]

with 𝑚 ∶=𝑀 + 𝑚 .
∞
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2.2. WEC energy maximisation NMPC problem formulation

The WEC control aims to maximise the energy converted in the PTO,
∫ 𝑝(𝑡)𝑑 𝑡, where 𝑝(𝑡) is the instantaneous (electronic) power produced,
including the potential electronic losses in the generator (Kody et al.,
2019):

𝑝(𝑥(𝑡), 𝑢(𝑡)) ∶= −𝑣(𝑡)𝑢(𝑡) − 𝑟𝑢2(𝑡). (8)

In (8), the first term −𝑣(𝑡)𝑢(𝑡) is converted power (negative heave
velocity 𝑣(𝑡) multiplied by PTO force 𝑢(𝑡), while the second term −𝑟𝑢2(𝑡)
represents electronic energy (copper) losses in generator, with 𝑟 > 0 de-
noting the coefficient of the quadratic PTO loss. The energy produced,
considering energy losses in generator, for a time period from 𝑡 to 𝑡+𝑇 ,
can be expressed by:

𝐸(𝑡, 𝑇 ) ∶= −∫

𝑡+𝑇

𝑡
𝑣(𝜏)𝑢(𝜏) + 𝑟𝑢2(𝜏)𝑑 𝜏 . (9)

Therefore, minimisation of −𝐸(𝑡, 𝑇 ) in the NMPC problem leads to
maximisation of energy produced, considering losses. The WEC is also
subject to PTO control force limits:

|𝑢(𝑡)| < 𝑢max, (10a)

and constraints on heave displacement and heave velocity:

|𝑧(𝑡)| ≤ 𝑧max, |𝑣(𝑡)| ≤ 𝑣max. (10b)

The WEC NMPC problem  of maximising energy conversion con-
sidering electronic losses in the generator (9), while respecting con-
straints (10), can now be summarised as:

 ∶ min
𝑢 ∫

𝑡+𝑇

𝑡
𝑣(𝜏)𝑢(𝜏) + 𝑟𝑢2(𝜏)𝑑 𝜏 ,

s.t. �̇�(𝜏) = 𝐴𝑥(𝜏) + 𝐵[𝑤(𝜏) + 𝑢(𝜏) − 𝑘𝑛𝑙𝑣(𝜏)|𝑣(𝜏)|],
|𝑧(𝜏)| ≤ 𝑧max, |𝑣(𝜏)| ≤ 𝑣max, |𝑢(𝜏)| ≤ 𝑢max.

(11)

Solving NMPC problem  requires information on the current and
future values of WEF 𝑤(𝑡), which are non-measurable quantities. Here,
we assume imperfect prediction of 𝑤(𝑡), from the current time instant
𝑡 to 𝑡 + 𝑇 in the future, which can be obtained from wave prediction
techniques, whose prediction accuracy decreases with an increase in
horizon. For details on obtaining the WEF preview, please refer to
Section 4.

3. Main results - the novel computational approach for the WEC
NMPC problem using imperfect wave prediction

The main results of the novel NMPC computational approach are
presented in this section. Section 3.1 revisits the NLP formulation using
the existing standard uniform grid direct multiple shooting methods.
Then, to reduce computational complexity and address imperfect WEF
prediction, an input MB reformulation, specifically tailored to the WEC
NMPC problem, using a non-uniform parameterisation grid, in line with
WEF prediction accuracies, is presented in Section 3.2. In Section 3.3, a
tailored condensing strategy is developed, exploiting the unique features
of the WEC NMPC problem to further accelerate computation. The com-
putational techniques and discontinuity issues of the optimal control
input solutions are also discussed in Section 3.3.

3.1. NLP with standard uniform parameterisation grid direct multiple
shooting

The continuous-time WEC NMPC problem  , defined in (11), leads
to a computationally-intractable infinite dimensional optimisation and,
hence, must be discretised into a finite-dimensional problem that can be
solved computationally. To address this problem, the standard multiple
shooting method (Bock and Plitt, 1984) is adopted to discretise  into
a finite-dimensional NLP problem.
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Fig. 2. Illustrative diagrams for two different parameterisation strategies: (a) the state, control and wave trajectories are parameterised by 𝑁 intervals of equal size; (b) the control
and wave trajectories are parameterised by 𝑀 non-equidistant grids, where the grid discretisation becomes looser at the latter stages of the prediction horizon. (solid blue line:
𝑥; dashed black line 𝑢; dotted red line: the imperfectly predicted WEF �̂� used in WEC NMPC; dashed red line: the real WEF 𝑤 shown as a reference.).
t

𝑥

c

a

As illustrated in Fig. 2(a), a standard uniform grid is introduced
𝑮0∶𝑁−1 = [𝑡0, 𝑡1 … , 𝑡𝑁 ], partitioning the prediction horizon 𝑇 into 𝑁
hooting intervals with uniform width. Here, the initial and final values
f the grid take the value of the beginning and the ending time instants
f the prediction horizon, i.e., 𝑡0 = 𝑡 and 𝑡𝑁 = 𝑡 + 𝑇 .

Next, the continuous state and wave prediction trajectories 𝑥 and
are discretised at the 𝑁 + 1 discretisation nodes. The control input

s assumed piece-wise constant on each shooting interval. One illustra-
ive example of this standard uniform parametrisation is provided in

Fig. 2(a) (𝑥 with the solid blue line, 𝑢 with the dashed black line, and
redicted 𝑤 with the dotted red line, respectively).

With these 𝑁 equidistant partitions 𝑮0∶𝑁−1, following the standard
procedure of direct multiple shooting, the WEC NMPC problem  is
discretised into the following NLP𝑁 , which needs to be solved within
ne sampling interval, with the explicit subscript 𝑁 representing the
umber of partitions:

NLP𝑁 ∶ min
𝒙0∶𝑁 ,𝒖0∶𝑁−1

𝑁−1
∑

𝑘=0
ℎ(𝑥𝑘, 𝑢𝑘, �̂�𝑘)

𝑠.𝑡. 𝑥𝑘+1 = 𝜙(𝑥𝑘, 𝑢𝑘, �̂�𝑘), 𝑘 ∈ N0∶𝑁−1,

(−𝑧max,−𝑣max) ≤ 𝑥𝑘 ≤ (𝑧max, 𝑣max), 𝑘 ∈ N0∶𝑁 ,

− 𝑢max ≤ 𝑢𝑘 ≤ 𝑢max, 𝑘 ∈ N0∶𝑁−1.

(12)

Here, ℎ(⋅, ⋅, ⋅) is the objective function that will be calculated in (14);
𝑥 , 𝑢 , �̂� are the state, the control input, and the predicted WEF,
𝑘 𝑘 𝑘

4 
respectively, at time instant 𝑡𝑘, i.e., 𝑥𝑘 ∶= 𝑥(𝑡𝑘), 𝑢𝑘 ∶= 𝑢(𝑡𝑘), and
�̂�𝑘 ∶= �̂�(𝑡𝑘), respectively; The symbol 𝜙(., ., .) numerically integrates
he dynamics in (11), specifically

̇ (𝜏) = 𝐴𝑥(𝜏) + 𝐵[𝑤(𝜏) + 𝑢(𝜏) − 𝑘𝑛𝑙𝑣(𝜏)|𝑣(𝜏)|], (13)

within one partition, starting from time instant 𝑡𝑘 to 𝑡𝑘+1, with initial
ondition 𝑥𝑘, 𝑢𝑘, �̂�𝑘, using commonly used integration methods such as

Euler or Runge–Kutta. As a result, there are, in total, 𝑁 integrations
within the prediction horizon. Since the control 𝑢(𝜏) takes a constant
value (zero-order hold) within one shooting interval, i.e. 𝑢(𝜏) = 𝑢𝑘 for
𝑡𝑘 ≤ 𝜏 < 𝑡𝑘+1, the objective function ℎ(𝑥𝑘, 𝑢𝑘, �̂�𝑘), representing the
running cost within one shooting interval, can be described as

ℎ(𝑥𝑘, 𝑢𝑘, �̂�𝑘) = ∫

𝑡𝑘+1

𝑡𝑘

[

𝑣(𝜏)𝑢(𝜏) + 𝑟𝑢2(𝜏)] 𝑑 𝜏 = (𝑧𝑘+1 − 𝑧𝑘)𝑢𝑘 + 𝑅𝑘𝑢2𝑘,

(14)

where 𝑅𝑘 ∶= 𝑟(𝑡𝑘+1 − 𝑡𝑘), and 𝑧𝑘+1 is the predicted heave displacement
at 𝑡𝑘+1, depending on the triple (𝑥𝑘, 𝑢𝑘, �̂�𝑘).

Upper and lower bound constraints for the state and input variables,
t each node in the prediction horizon, are employed.

Note that the dimension of NLP𝑁 is characterised by the number of
partitions 𝑁 , given the fixed state and control space dimensions. On the
one hand, a larger 𝑁 would capture the dynamics (13) more accurately,
at the cost of a higher dimensional NLP, which is difficult to solve. On
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the other hand, a smaller 𝑁 would reduce the computational load for
olving the NLP, but at the cost of poor dynamics representation. In the
pecific case of WEC NMPC with imperfect WEF prediction accuracy,
t is desired to have an accurate enough capture of WEF dynamics
hen the prediction is accurate, and, a less exact representation of WEF
ynamics when the prediction is relatively inaccurate. This suggests
 novel input MB strategy to discretise problem  , as is discussed in
ection 3.2.

3.2. Design of a novel input MB strategy considering varying WEF prediction
accuracy

Efficient WEC noncausal controllers require a sufficient prediction
orizon to achieve desirable performance, at least covering more than
ne wave period. According to the discussion in Section 3.1, this

has two implications: (1) a large number of nodes 𝑁 is required,
leading to increased computational complexity; (2) wave prediction
with decreased accuracy over long horizons, when used with a uniform
confidence level over the complete prediction horizon, can lead to
erformance degradation.

To tackle those two issues, an input MB scheme (Chen et al.,
2020) is tailored to reflect imperfect (and progressively degrading)
𝑓𝑒𝑥(𝑡) prediction. The core idea is to define a non-equidistant shooting
interval for the control input and disturbance, denser at earlier points
within the control horizon with high prediction confidence and more
sparse at later points within the horizon.

Define a new shooting grid 𝑮0∶𝑀−1, with a significantly smaller
umber of nodes 𝑀 ≪ 𝑁 , but covering the same prediction horizon
imespan ∑𝑀−1

𝑖=0 (𝑡𝑖+1 − 𝑡𝑖) =
∑𝑁−1
𝑗=0 (𝑡𝑗+1 − 𝑡𝑗 ), and 𝑡0 = 𝑡0 = 𝑡, 𝑡𝑁 = 𝑡𝑀 =

𝑡+ 𝑇 . As illustrated in Fig. 2(b), the grid interval length of 𝑮0∶𝑀−1 is a
multiple of that of 𝑮0∶𝑁−1, resulting in a total of 𝑀 interval blocks in
the prediction horizon. Define 𝐼 = [𝐼0,… , 𝐼𝑀 ] as a vector of the starting
index of each block, with 𝑁𝑗 , 𝑗 ∈ N0∶𝑀−1 is the number of shooting
intervals contained in the 𝑗th block. Since the prediction horizon is not
altered, 𝐼0 = 0, 𝐼𝑗 =

∑𝑗−1
𝑘=0𝑁𝑘 for 𝑗 ∈ N1∶𝑀−1 and 𝐼𝑀 =

∑𝑀−1
𝑘=0 𝑁𝑘 = 𝑁 .

Following these definitions, the NLP, with shooting grid 𝑮0∶𝑀−1, can
be written as:

NLP𝑀 ∶ min
𝒙0∶𝑁 ,𝒖0∶𝑀−1

𝑁−1
∑

𝑘=0
ℎ(𝑥𝑘, 𝑢𝑗 , �̂�𝑗 ),

𝑠.𝑡. 𝑥𝑘+1 = 𝜙(𝑥𝑘, 𝑢𝑗 , �̂�𝑗 ), 𝑘 = N0∶𝑁−1

(−𝑧max,−𝑣max) ≤ 𝑥𝑘 ≤ (𝑧max, 𝑣max), 𝑘 ∈ N0∶𝑁 ,

− 𝑢max ≤ 𝑢𝑗 ≤ 𝑢max, 𝑘 ∈ N0∶𝑀−1,

(15)

where 𝑢𝑗 , �̂�𝑗 is applied when 𝑘 ∈ N𝐼𝑗∶𝐼𝑗+1 , 𝑗 ∈ N0∶𝑀−1. Note that the
tate variable 𝑥 is still discretised into 𝑁 intervals to accurately capture
ts dynamic behaviour within the prediction horizon.

NLP𝑀 covers the same prediction horizon timespan as NLP𝑁 , using
less control and wave prediction discretisation nodes, and hence has a
smaller dimension. In general, a NLP can be solved using interior point
(IP) methods or sequential quadratic programming (SQP). The former
is suitable for solving a large-scale NLP, but is not trivial for activating
warm-start, i.e. using optimal solutions from the previous sampling
instant to initialise the current one. As a result, multiple distant local
minima may be found from one sampling instant to another, leading to
frequent switching between local minima and chattering in the control
policy (Li, 2017). SQP methods, on the other hand, construct a sequence
of quadratic program problems (QP) that can be solved by mature
numerical solvers, with a possibility to use warm-start.
 e

5 
Using a SQP method to solve (15) gives rise to the following QP:

min
𝛥𝐱0∶𝑁 ,𝛥𝐮0∶𝑀

𝑁−1
∑

𝑘=0

(

1
2

[

𝛥𝑥𝑘
𝛥𝑢𝑗

]𝑇

𝐻𝑘

[

𝛥𝑥𝑘
𝛥𝑢𝑗

]

+ 𝑔𝑘𝑇
[

𝛥𝑥𝑘
𝛥𝑢𝑗

]

)

+ 1
2
𝛥𝑥𝑇𝑁𝐻𝑁𝛥𝑥

𝑇
𝑁 + 𝑔𝑁𝑇 𝛥𝑥𝑁 ,

𝑠.𝑡. 𝛥𝑥0 = �̂�0 − 𝑥0
𝛥𝑥𝑘+1 = 𝐴𝑘𝛥𝑥𝑘 + 𝐵𝑘𝛥𝑢𝑗 + 𝑑𝑘,

𝐶𝑘

[

𝛥𝑥𝑘
𝛥𝑢𝑗

]

+ 𝑐𝑘 ≤ 0, ∀𝑘 = 0, 1,… , 𝑁 − 1,

𝐶𝑁𝛥𝑥𝑁 + 𝑐𝑁 ≤ 0,

(16)

where 𝐻𝑘 is the approximated Hessian matrix, and 𝐴𝑘 =
𝜕 𝜙
𝜕 𝑥 (𝑥𝑘, 𝑢𝑗 , �̂�𝑗 ),

𝐵𝑘 =
𝜕 𝜙
𝜕 𝑢 (𝑥𝑘, 𝑢𝑗 , �̂�𝑗 ), 𝑑𝑘 = 𝜙(𝑥𝑘, 𝑢𝑗 , �̂�𝑗 ) −𝑥𝑘+1, 𝐶𝑘 = 𝜕 𝑟

𝜕(𝑥,𝑢) (𝑥𝑘, 𝑢𝑗 , �̂�𝑗 ), 𝐶𝑁 =
𝜕 𝑙
𝜕 𝑥 (𝑥𝑘, 𝑢𝑗 , �̂�𝑗 ). Although an input MB technique has been used, problem
(16) still contains many decision variables, and is mathematically a
sparse problem. This hinders the use of warm-start strategies that are
enerally applicable to active-set methods, a class of optimisation meth-
ds which are implementable in real-time only for low-dimensional
ense problems. This issue will be solved in Section 3.3 with the
roposed tailored condensing strategy.

3.3. Tailored condensing to further accelerate calculation

The process of converting (16) to the following dense QP is termed
condensing :

min
𝛥𝒖0∶𝑀−1

1
2
𝛥𝒖0∶𝑀−1

⊤𝐻𝑐𝛥𝒖0∶𝑀−1 + 𝑔⊤𝑐 𝛥𝒖0∶𝑀−1

𝑠.𝑡. 𝐶𝑐𝛥𝒖0∶𝑀−1 + 𝑐𝑐 ≤ 0,
(17)

where matrices 𝐻𝑐 , 𝐶𝑐 and vectors 𝑔𝑐 , 𝑐𝑐 are obtained from (16) by
exploiting the two equality constraint. Note that, for NMPC, the con-
densing step must be performed online at each sampling instant while,
or linear MPC, it is an offline computation. The condensing step has a
omplexity of (𝑁2) (Chen et al., 2020), which is costly in the case of

WEC control, especially for small scale WEC prototypes.
To address this issue, a novel tailored condensing strategy is devel-

ped to suit the input MB approach introduced in Section 3.2, based on
a recently developed condensing algorithm by the authors (Chen et al.,
2020). As illustrated in Fig. 2, in the presence of wave prediction inac-
uracies, a denser grid for shorter horizons and a coarser grid for longer

horizons is adopted, leading to reduced computational complexity of
the condensing step to (𝑁), by exploiting the unique structure of the
input MB for WEC NMPC.

Design Procedures 1. The proposed input-MB-based NMPC can be
ystematically designed by following these steps:
Step 1: Select a non-uniform grid 𝑮0∶𝑀−1 with decreasing density across

the prediction horizon, as illustrated in Fig. 2(b);
Step 2: Perform multiple shooting, based on the non-uniform grid, assum-

ing constant input and disturbance between each pair of neighbour-
ing grid points, to obtain the sparse NLP𝑀 (15);

Step 3: Implement the SQP method to obtain a series of sparse QP (16);
Step 4: Perform the tailored condensing step to obtain a dense QP (17);
Step 5: Solve the underlying dense QP using active-set methods.

4. Estimation and prediction of the state and wave excitation
force

So far, the development of the MB-based NMPC for WECs, in Sec-
tion 3, assumes the availability of full state information 𝑥(𝑡) and the
urrent and future wave excitation force 𝑤(𝑡). However, in operational
onditions, the states associated with radiation force dynamics 𝑥𝑟(𝑡),
nd wave excitation force 𝑤(𝑡) are immeasurable and, thus, have to be
stimated (Ringwood et al., 2023).
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To facilitate the implementation of the proposed MB-based NMPC,
estimation of the current 𝑥(𝑡) and 𝑤(𝑡) should first be addressed.

Assumption 1. The heave displacement 𝑧(𝑡) and heave velocity 𝑣(𝑡) of
he float w.r.t. SWL is assumed to be directly measurable with sensors.1

The joint state and WEF estimation problem has been well-studied
for WECs with linear dynamics. In Peña-Sanchez et al. (2019), a com-
prehensive benchmark study compares most of the existing WEF es-
timators, in terms of performance, computational complexity, and the
risk of delays, in a computational fluid dynamics-based numerical wave
tank. However, the estimation problem for a nonlinear WEC is more
challenging.

To simplify the design process for the observer, the following input
inear representation is introduced. An auxiliary unknown input is
efined as:

𝜓(𝑡) ∶= 𝑢(𝑡) +𝑤(𝑡) − 𝑘𝑛𝑙|𝑣(𝑡)|𝑣(𝑡), (18)

where 𝑢(𝑡) is the known control input, 𝑘𝑛𝑙|𝑣(𝑡)|𝑣(𝑡) is the nonlinear
viscosity force that can be calculated, and 𝑤(𝑡) is the unknown WEF
to be estimated. The WEC model (7) can be rearranged into
̇ (𝑡) = 𝐴𝑥(𝑡) + 𝐵 𝜓(𝑡),
𝑦(𝑡) = 𝐶 𝑥(𝑡), (19)

where 𝑦(𝑡) denotes the measured output, with 𝐶 ∶= [𝐼2, 02×𝑛𝑟 ].

Remark 1. Although the WEC dynamics are nonlinear, with an input
inear representation as in (18)–(19), the same design procedures of
inear WEF estimators, e.g., Kalman Filter with a Random Walk (KFRW)

model, linear Unknown Input Observer (UIO), with the nonlinear core
captured in 𝑤(𝑡) = 𝜓(𝑡) + 𝑘𝑛𝑙|𝑣(𝑡)|𝑣(𝑡) − 𝑢(𝑡).

In this paper, a linear UIO design procedure can be followed, as
etailed in Section II-G of Peña-Sanchez et al. (2019). Nonetheless,

alternative linear WEF observation methods, such as KFRW, can also
be employed with the linear input representation of (18)–(19).

With the designed WEF estimator, the current value of the complete
tate 𝑥(𝑡) and WEF 𝑤(𝑡) can be recovered, after a ‘warming-up’ period.

Due to their simplicity, autoregressive (AR)-based wave predictors have
been widely adopted in WEC control problems to generate noncausal
information (see Pena-Sanchez et al., 2018b,a for comprehensive re-
iews on AR-based wave predictors). Next, the 𝑤(𝑡) predictor is briefly
epresented, using a standard AR formulation, for completeness.

With a sampling period of 𝑡𝑠, the 𝑝-step ahead predicted value of
𝑤(𝑡) can be expressed, using a discrete-time index 𝑘, i.e. 𝑡 = 𝑘𝑡𝑠, as
ollows:

̂ 𝑘+𝑝 = 𝑊 −𝐻
𝑘+𝑝 𝛹 , (20)

where 𝑊 −𝐻
𝑘+𝑝 ∶= [�̂�𝑘+𝑝−1 �̂�𝑘+𝑝−2 … �̂�𝑘+𝑝−𝐻 ], 𝐻 is the order of the

model, and 𝛹 ∈ R𝐻 are the AR coefficients to be identified. In (20),
�̂�𝑘+𝑖 takes the estimated value of 𝑤((𝑘 + 𝑖)𝑡𝑠) from the WEF estimator,
when 𝑖 < 0, but is calculated recursively using an AR predictor (20),
when 𝑖 ≥ 0.

Given a set of training data of dimension 𝑁𝑡𝑟 (corresponding to
length 𝑇𝑡𝑟 = 𝑁𝑡𝑟𝑡𝑠), the AR coefficients 𝛹 can be identified by min-
mising the following one-step cost:

𝐽𝐴𝑅 =
𝑁𝑡𝑟
∑

𝑘=𝐻+1
(𝑤𝑘 −𝑊 −𝐻

𝑘 𝛹 )2, (21)

using batch, or recursive, least squares.
By recursively using (20), an N-step-ahead wave excitation force

rediction can be obtained at each time instant 𝑘 which, after inter-
olation, can be expressed using a continuous time index 𝑡 as �̂�(𝑡 + 𝑝),
or 0 < 𝑝 ≤ 𝑇 with 𝑇 ∶= 𝑁 𝑡𝑠.

1 Motion can be typically measured using an inertial measurement unit
IMU).
6 
Table 1
Simulated device specifications.

Description Notation values

Stiffness 𝑘𝑠 3866 N/m
Float mass 𝑚𝑠 242 kg
Added mass 𝑚𝑎 83.5 kg
Total mass 𝑚 325.5 kg
Nonlinear damping coefficient 𝑘𝑛𝑙 48 kg/m
Input force limit 𝑢max 3 kN
Heave displacement limit 𝑧max 2 m
Heave velocity limit 𝑣max 10 m/s
Energy loss coefficient 𝑟 0.1 m∕(kN s)

Table 2
The parameters of the sea states used to generate the wave excitation force datasets

for controller simulation and AR predictor training.
𝐻𝑠(m) 𝑇𝑝(s) 𝛾

Sea State I (test data set 1) 2 3 4
Sea State II (test data set 2) 4 3.5 4
Sea State III (AR training data set) 3 2 4

5. Numerical simulation

This section provides simulation results using known wave profiles
to verify the efficacy of the proposed method. The parameters used
here reflect the hydrodynamics of a small-scale PA-WEC, as specified
in Table 1.

The state-space model for radiation force dynamics (6) has the
following parameters

𝐴𝑟 =
⎡

⎢

⎢

⎣

0 0 −17.9
1 0 −17.7
0 1 −4.41

⎤

⎥

⎥

⎦

, 𝐵𝑟 =
⎡

⎢

⎢

⎣

38.6
379
89

⎤

⎥

⎥

⎦

, 𝐶𝑟 =
⎡

⎢

⎢

⎣

0
0
1

⎤

⎥

⎥

⎦

⊤

.

Since the model and the cost function are both nonlinear, the termi-
nal cost function ℎ𝑁 in (12), or ℎ𝑀 in (15), is not considered. The
MB-NMPC is designed following Design Procedure 1.

To estimate the WEF, with the input linear representation of (18)–
19), an UIO-based WEF estimator is designed using (25)–(26) from

Peña-Sanchez et al. (2019).
The simulations use two WEF profiles, both generated from JON-

SWAP spectra (Hasselmann et al., 1973), with the same peakedness
actor 𝛾, but with different significant wave heights 𝐻𝑠, and peak
eriods 𝑇𝑝, shown in Table 2, which are chosen considering the scaling

due to the use of a small-scale WEC, to simulate a low sea state and a
high sea state, respectively. The WEF dynamic model used to generate
the WEF profile is described by:
{

�̇�𝑒(𝑡) = 𝐴𝑒𝑥𝑒(𝑡) + 𝐵𝑒𝜂(𝑡)
𝑤(𝑡) = 𝐶𝑒𝑥𝑒(𝑡)

(22)

where the WEF dynamic coefficients 𝐴𝑒, 𝐵𝑒, 𝐶𝑒 are the same as those
pecified in Eqs. (47)–(49 of Yu and Falnes (1995); 𝑥𝑒 represents the

state of the WEF dynamics (22); 𝜂(𝑡) denotes the sea elevation derived
from the JONSWAP spectrum.

To predict the WEF, a 50th-order AR predictor is designed according
o (20) and parameterised using data collected from Sea State III

(detailed in Table 2). Here, to verify the robustness of the proposed
B-NMPC against prediction errors, a different sea state is deliberately

chosen to train the AR model, to simulate the potential mismatch of an
AR predictor due to the changing meteorological conditions.

A snapshot of a 3-s wave excitation force and the predicted value
sing the AR predictor, is shown in Fig. 3. Here, to test the robustness of

the proposed MB-NMPC, the AR predictor is deliberately designed with
 very short lookback horizon (0.5 s) to generate a wave prediction with
apidly decreasing accuracy.

As the existing MPC design principles vary case by case, in this
section, we benchmark the MB-NMPC against the following three rep-
resentative MPC settings:
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Fig. 3. An 3-s wave excitation force profile segment. The 50th-order AR predictor uses the first 0.5 s of measured data in Test data set 1 to predict 3 s of wave excitation force
ahead.
Fig. 4. A snapshot of predicted state and input trajectories, using MB-NMPC, with a 3-s control horizon.
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1. A standard NMPC with a uniform grid, using the NLP𝑁 (12)
formulation, referred to as ‘S-NMPC’, representing existing works
on NMPC such as Guerrero-Fernandez et al. (2023) and Huang
et al. (2024),

2. A linear MPC (LMPC), formed by omitting the nonlinear term
𝑓𝑛𝑙(𝑡) from (4), referred to as ‘LMPC-1’, representing existing
LMPC formulations such as Bracco et al. (2020), Zhan et al.
(2020), and

3. A LMPC, formed by using an equivalent linear damping term
to approximate the nonlinear term, i.e., 𝑓𝑛𝑙(𝑡) ≈ −41 kg/s ×
𝑣(𝑡) in (4), referred to as ‘LMPC-2’, representing existing LMPC
formulations such as Bonfanti et al. (2024).

The sampling frequency, for all controllers, is set to 100 Hz. The
-NMPC and both LMPCs utilise a uniform 𝛥𝑡 = 0.01 s as the length of
ach shooting interval, equivalent to a prediction length of 𝑇 = 𝛥𝑡×𝑁 .

In contrast, the MB-NMPC is configured to partition the prediction
horizon into three sub-windows. The first sub-window consists of 𝑁∕5
locks, each of which has a uniform 𝛥𝑡1 = 𝛥𝑡 = 0.01 s; the second and
hird sub-windows have 2𝑁∕25 blocks, with uniform 𝛥𝑡2 = 4𝛥𝑡 = 0.04
, and the block in the third sub-window has a uniform 𝛥𝑡3 = 6𝛥𝑡 = 0.06
. Fig. 4 shows a snapshot of the predicted state and input trajectories

for the MB-NMPC. Note that the input partition for the MB-NMPC is in
ine with the prediction accuracy of the WEF, as shown in Fig. 3.

The simulation is performed using MATLAB R2021a, running under
indows 11, using the real-time NMPC toolbox MATMPC (Chen et al.,

2019) as the online solver, on a PC with Intel Core i7-11700KF,
running at 3.60 GHz. The NLP problems stemming from both S-NMPC
nd MB-NMPC are solved using the same Real-time Iteration (RTI)
ethod (Diehl et al., 2002), in which a single QP problem is firstly

condensed (Algorithms 1 and 2 of Chen et al. (2020) for MB-NMPC,
 s

7 
and Algorithm 1 of Frison et al. (2016) for S-NMPC, respectively), and
then solved using existing library QPOASES (Ferreau et al., 2014), with
warm-start activated.

In Fig. 5, the force, position, and velocity trajectories of the WEC
over the 50-s time simulation are given, assuming the WEF is perfectly
nown. In this ideal scenario, S-NMPC produces 43.36 kJ of energy
ver 50 s, which can be viewed as a reference basis representing the
aximum achievable performance in those simulation settings. The
erformance of MB-NMPC, with the input MB modification, recovers
9.31% of performance, while the two LMPCs can only achieve 75.86%
nd 89.21% of the energy output, respectively. Next, to test the robust-
ess of four MPC algorithms in the presence of WEF prediction errors,
n Fig. 6, the same simulation is repeated, but assuming the WEF is
predicted imperfectly, using the AR predictor trained for a different sea
state. Fig. 3 shows a snapshot of the WEF predicted by the AR model,
where the discrepancy substantially increases beyond a 1-s horizon.

By comparing Fig. 6 with Fig. 5, it can be seen that all four MPC
algorithms suffer from performance degradation. However, MB-NMPC
an produce 41.30 kJ of energy, recovering 95.25% of the ideal perfor-
ance, while, S-NMPC produces just 39.81 kJ of energy, representing
 more significant performance degradation of 91.81% from the ideal
ase. This shows the efficacy of the proposed input MB strategy that
xplicitly considers the decreasing WEF prediction accuracy along the
orizon, proving the ‘less is more’ concept. In this case, the two LMPC
esigns produce significantly less energy, with 26.13 kJ for LMPC-1 and
2.92 kJ for LMPC-2.

Next, we conduct 20 scenarios of the simulation based on 20 seg-
ents of the WEF profile, generated using the JONSWAP spectrum
ith the same peakedness factor, 𝛾 = 4, but with a deliberately

ntroduced randomised shift of up to 5% on 𝐻𝑠 = 2 m and 𝑇𝑝 = 3
, to test the reliability of the algorithm. Four MPC algorithms, and
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Fig. 5. A 50-s comparative time simulation showing (i) S-NMPC (blue solid line); (ii) LMPC-1 (grey dashed and dotted line); (iii) MB-NMPC (red dashed line); LMPC-2 (black
dashed line), using Test data set 1: (a) control input ; (b) heave displacement; (c) heave velocity; (d) converted energy. The prediction horizon is 𝑇 = 1.5 s. For a uniform NMPC
and LMPC grid, the number of shooting intervals is 𝑁 = 100; For MB-NMPC, the number of blocks is 𝑀 = 36. The wave excitation force is assumed to be perfectly known, i.e. the
AR predictor is not used for this case, focusing exclusively on control performance.
the AR WEF predictors, adopt the same settings as in the previous
simulation. Fig. 7(a)–(b) illustrates the percentage of performance loss,
relative to the idealised NMPC case, and the average computation time
required to complete one online optimisation at each sampling instant,
respectively. It can be observed that MB-NMPC demonstrates the best
consistency among the four MPC algorithms, particularly in terms of
computation speed, which exhibits minimal variation. Furthermore,
there are no exceptional cases of instability or constraint violations.
This consistency property of MB-NMPC is crucial for real-time control
testing and implementation.

To further demonstrate the efficacy of the MB-NMPC, in dealing
with WEF prediction error, and in reducing computational load, in
Figs. 8–10, two sets of comparative simulations are presented, based on
Sea States 1–2, which result in different levels of constraint saturation.
Controllers and AR predictors adopt the same setting of in Figs. 5–6.

It can be seen, from Figs. 8–9 that when imperfect WEF prediction
is provided by the AR predictor, the MB-NMPC outperforms the SMPC,
taking into account less inaccurate wave excitation force prediction,
and hence suffering less control performance degradation. Figs. 8–9
also show that, the LMPC has inferior performance, with almost all
prediction horizon settings, both with/without the AR predictor. An
intriguing observation is that, the energy produced by both NMPC
schemes gradually decreases as the prediction horizon increases, due to
the growing prediction errors in NMPC problems with longer horizons.
For a prediction horizon of less than 1 s, the performance of all con-
trollers suffers, since the prediction horizon is inadequate to accurately
solve the noncausal control problem.
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The computation time at each sampling instant, for each controller
call, of S-NMPC, MB-NMPC and LMPC, is collected and presented in
Fig. 10. It can be seen that, when the prediction horizon increases from
𝑇 = 0.5 s to 𝑇 = 2 s, the MB-NMPC has a much shorter computational
time than SNMPC, in terms of median and maximum values. Over
a prediction horizon range of 0.5–2 s, the median runtime ratio (S-
NMPC/MB-NMPC) is maintained >2, which means MB-NMPC is more
than twice as fast as S-NMPC. The reason is two-fold: (1) MB-NMPC has
much fewer decision variables due to input MB, hence, the dimension
of its optimisation problem is smaller; (2) the tailored condensing
strategy further reduces the computational cost. On the other hand,
LMPC is the fastest among the three algorithms, since it does not
need to compute Hessian and Jacobian matrices online. However, as
the prediction horizon grows, the computation time of LMPC varies
much more heavily than MB-NMPC. This is because LMPC encounters
many more input saturation instants, as shown in Figs. 5 and 6, which
leads to more active constraints and QP iterations. This phenomenon
is validated by comparing the two sub-figures in Fig. 10, where the
computation time variation of LMPC for the Sea State 1 is smaller than
that for Sea State 2 (with higher wave height).

It is worth noting that the MB-NMPC scheme used in this simulation
can be tuned with more moving blocks to increase prediction accuracy
at the cost of more computational time, or with fewer moving blocks to
decrease prediction accuracy for less computation. This tuning process
provides flexibility of the input MB NMPC scheme, but is non-trivial
and affects the recursive feasibility and stability of the resulting NMPC
scheme. For more details on this topic, please refer to Chen et al.
(2020).
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Fig. 6. A 50-s comparative time simulation among (i) S-NMPC (blue solid line); (ii) LMPC-1 (grey dashed and dotted line); (iii) MB-NMPC (red dotted line), LMPC-2 (black dashed
line), using Test data set 1: (a) control input; (b) heave displacement; (c) heave velocity; (d) converted energy. The prediction horizon is 𝑇 = 1.5 s. For S-NMPC and LMPC, the
number of shooting intervals is 𝑁 = 100; for MB-NMPC, the number of blocks is 𝑀 = 36. The wave excitation force is predicted within each prediction horizon using a 50th-order
AR predictor.
Fig. 7. Control reliability test: (a) percentage of performance loss with respect to the NMPC using conceptual unrealistic 100% accurate WEF prediction; (b) the average
computational time of completing one optimisation at each sampling instant. The controllers and AR WEF predictor adopt the same settings as in Figs. 5–6.
Finally, we test the performance of the proposed MB-NMPC using a
segment of a 50-s WEF profile, shown in Fig. 11(a), generated using the
same excitation dynamics (22) and sea wave elevation data collected
off the English Atlantic coast. The AR predictor is retrained, based on
a JONSWAP spectrum, with a significant wave height of 3 m, a peak
9 
period of 6 s and the same peakedness factor of 4. All NMPCs adopt the
same prediction horizon of 1.5 s. Fig. 11(b) and (c) illustrate the re-
sponse of the control input 𝑢 and the accumulated energy, respectively.
The energy generated in the 50-s simulation using MB-NMPC reaches
24.88 kJ, outperforming the S-NMPC without using the non-uniform
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Fig. 8. Comparative time simulation with Test Dataset 1 among the three MPC schemes (Blue: S-NMPC; Red: MB-NMPC; Grey: LMPC-2) using reparametrised AR predictor,
ompared against a ‘‘Baseline’’ representing the ideal performance of NMPC with 100% accurate WEF prediction: (a) the 50-s WEF profile; (b) energy generated.
Fig. 9. Comparative time simulation with Test Dataset 2 among the same controllers and AR predictor as in Fig. 8: (a) the 50-s WEF profile; (b) energy generated.
o
v
i
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grid by 1.93%, and recovers 93.15% performance of the baseline NMPC
using 100% accurate wave prediction.

This result further demonstrates the advantages of MB-NMPC across
various simulation settings.

6. Conclusion

This paper develops a novel computationally-efficient nonlinear
model predictive control (NMPC) scheme for the wave energy converter
(WEC) energy maximisation control problem, using an input move
locking (MB) technique. Considering the decreased wave prediction
ccuracy, as the prediction horizon increases, MB-NMPC defines a non-
niform shooting interval, emphasising shorter horizons with a higher
onfidence level, and providing a relatively sparse solution for longer
orizons. The non-definite cost function of the WEC NMPC problem

introduces challenges to the convergence and continuity of the solution.

To resolve those problems, and to further reduce the computational

10 
load, a tailored condensing strategy is developed using a modified
active-set method, allowing a ‘warm start’, i.e., using the previous
ptimal solution as the starting search points. Numerical examples
alidate that, compared with existing NMPC formulation without using
nput MB, the novel MB-NMPC scheme achieves smoother input trajec-
ories and a better energy conversion, with an additional significant
eduction in computation. MATLAB implementation results show that
eal-time sampling rates are easily achievable. These results open the

door for real-time implementation of NMPC for WECs with nonlinear
hydrodynamics, to realise their full energy conversion potential. We
acknowledge that the accuracy of the wave predictor can vary across
different sea states, while the input-MB NMPC developed in this paper
employs a fixed meshing policy. Our future work will focus on devel-
oping adaptive MB strategies to better accommodate the varying wave

excitation force prediction accuracies in different sea states.
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Fig. 10. Median/range runtimes for each sampling instant of S-NMPC (A), MB-NMPC (B) and LMPC-2 (C) using different prediction horizons (𝑇 = 0.5, 1, 1.5, 2 s).
Fig. 11. Time simulation using (i) S-NMPC, and (ii) MB-NMPC, compared against a ‘‘Baseline’’ representing the ideal performance of NMPC with 100% accurate WEF prediction.
(a) the 50-s WEF profile generated using the excitation dynamics (22) and a 50-s segment of real sea wave elevation data; (b) control input; (c) energy generated.
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