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Abstract— Understanding the sensitivity of energy-maximizing
control for wave energy converters (WECs), to various model
errors, is crucial for application. Many advanced WEC
controllers, especially model predictive control (MPC)-like con-
trollers, require estimation and prediction of wave excitation
force (WEF). However, previous studies only focus on the
controller in isolation, without considering the error coupling
effects when a complete estimation–prediction loop is involved.
In this study, it is revealed through numerical analysis that
the complete MPC system has sensitivity behavior completely
different from the isolated MPC; under certain model errors,
the system can become particularly unpredictable, exhibiting
potential instability and self-locking phenomena, which cannot
be observed from the examination of control sensitivity alone.
Meanwhile, different tuning options for the WEF estimator and
predictor are examined, where the accuracy–robustness tradeoff
is shown to be critical for performance amelioration under errors.
Based on the analysis, this study challenges the widely assumed
“separation principle” of WEF estimation/prediction and WEC
control, highlights the importance of incorporating a complete
estimation–prediction loop in sensitivity examination, and draws
practical guidelines for WEC control application.

Index Terms— Model predictive control (MPC), sensitivity
analysis, wave energy.

I. INTRODUCTION

ENERGY-MAXIMIZING control technologies are recog-
nized as one of the most effective approaches to boost the

energy capture of wave energy converters (WECs), offering a
promising solution for a further reduction of the levelized cost
of wave energy (LCoE) [1]. Conventional WEC controllers
are typically designed to approach the impedance-matching
condition from a linear perspective, such as the approxi-
mate complex-conjugate (ACC) (or “reactive”) control and
approximate optimal velocity tracking (AVT) control [2].
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In the last decade, controllers based on numerical optimization,
represented by model predictive control (MPC), have seen
rapid development, primarily due to their capability of uni-
formly handling multiple system models, objectives, and
constraints [3]. In general, the majority of these controllers
fall into the category of model-based control, for which the
issue of control robustness against model errors is critical, and
that is particularly the case for WEC controllers, due to the
following factors:

1) Linear hydrodynamic models [4], widely used for WEC
control, lose their accuracy under exaggerated WEC
motion driven by energy-maximizing control [5] and
cannot consider other nonlinear effects, such as mechan-
ical friction [6].

2) The model complexity that WEC controllers can manage
is restricted: linear ACC and AVT [2] require a linear
model and, for optimization-based controllers, a linear
model remains preferable since it leads to an acceptable
online computational burden [3].

3) To achieve such control-oriented modeling [7], a sys-
tem identification process is typically required, and the
obtained linear model parameters are also subjected to
identification errors.

4) Energy-maximizing control of WECs exhibits sensitivity
behavior significantly different from conventional sta-
bilizing or tracking controllers [8]. In the latter case,
closed-loop control robustness can be enhanced through
feedback, while that is not generally true for WEC
control, due to the energy maximizing objective.

In [8], the sensitivity properties of linear ACC and AVT
are examined both analytically and numerically. However, the
target controllers are confined to the linear category, while the
MPC-like controllers, especially those taking the maximization
of energy as the objective function, have not been studied.

The implementation of WEC MPC requires the acquisition
of present and future wave information. A preferred approach
is to estimate the instantaneous wave excitation force (WEF)
as an unknown input, purely based on a model of the system
and available measurements [9], and predict future WEF using
time-series models [10]; in such a way, no additional deploy-
ment/maintenance of wave observing system is required, and
the difficulty of wave direction identification [11] is avoided.
Currently, the majority of WEC controllers are designed based
on a perfect knowledge of WEF, which implies the assumption
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of a “separation principle” of estimation/prediction and con-
trol [12]. However, as can be seen in Fig. 1, that assumption
becomes problematic under model errors, which now affect not
only the MPC solution but also WEF estimation, with the esti-
mation error propagating to WEF prediction and finally to the
MPC input; in other words, the roles of estimation, prediction,
and control are now coupled. Although previous studies [13],
[14], [15], [16] have investigated the impact of independent
wave information errors resulting from nonideal WEF estima-
tors or predictors, no study has analyzed such a coupling effect
between control model error and WEF estimation–prediction
error; for instance, the prediction error could be amplified
under estimation errors, undermining closed-loop stability.
In addition, in previous experimental studies [17], [18], a cer-
tain degree of robustness of the MPC system against multiple
model mismatch is observed; meanwhile, an artificial adjust-
ment of linear model parameters in control has been used to
cope with nonlinearities. Nevertheless, these issues are never
systematically examined and clarified.

This study aims to fill this research gap. By examining
a complete MPC loop under typical linear and nonlinear
model errors, with fundamentally different characteristics, and
by further including different WEF estimator/predictor tuning
options, it complements the previous study [8] and provides
a more comprehensive and complete understanding of WEC
control behavior. The main finding is that the sensitivity
properties of a WEC MPC controller in isolation can signifi-
cantly alter, with the addition of an estimation–prediction loop:
for system damping-related errors, the control robustness can
be slightly enhanced, whereas for mass and stiffness errors,
performance degradation can be significantly amplified. The
mechanisms underlying these phenomena are thoroughly ana-
lyzed and clarified, and two particularly worrying conditions,
an instability caused mainly by mass errors and self-locking
caused by overestimation of body stiffness, are highlighted.
Meanwhile, the tradeoffs between accuracy and robustness in
WEF estimation and prediction are investigated, which proves
crucial to retaining good control performance. Based on these
results, this study challenges the “separation principle” under-
lying most WEC control studies and highlights the importance
of examining the complete control system, rather than the
isolated controller, in the presence of model errors. This study
also offers practical guidelines for WEC control application,
including model accuracy requirements, control parameter
tuning, and the handling of some nonlinear system dynamics.

The remainder of this article is organized primarily in two
parts: the WEC model, MPC controller, and WEF estimator
and predictor tuning options are described in Section II, and a
comprehensive numerical analysis is presented in Section III.

II. WEC MODEL AND WEC CONTROL SYSTEM

A. Equation of Motion

This study is based on a heaving point absorber, which is
the most representative and widely used in control research.
The system equation can be described as

Mz̈(t) = fe(t) + fg(t) + frad(t) + fhs(t) + flin,fric(t)

+ fnl,vis(t) + fnl,coul(t) (1)

Fig. 1. Schematic of a complete MPC system with WEF estimation (FE)
and prediction (FP), and the effect of model error. Note that the calculation
of the radiation system state is included in the MPC block.

where t is the continuous time, z, ż, and z̈ are the body
displacement, velocity, and acceleration, respectively, M is the
body mass, and fe is the WEF described by

fe(t) =

∫
∞

−∞

ke(t − τ)η(τ )dτ (2)

with η the wave elevation and ke(t) the wave excitation
convolution kernel of the body, fg is the power take-off (PTO)
force, and frad, fhs, and flin,fric, respectively, are the radiation,
hydro-static, and linear friction forces described by

frad(t) = −M∞ z̈(t) −

∫ t

−∞

kr(t − τ)ż(τ )dτ (3)

fhs(t) = −K z(t) (4)

flin,fric(t) = −R0 ż(t) (5)

where M∞ is the added mass at infinite frequency, kr(t) is
the radiation convolution kernel, K is the hydro-stiffness,
and R0 is a linear friction coefficient. Using a state-space
representation of the radiation convolution

ξ̇ (t) = Ar,cξ(t) + Br,c ż(t)∫ t

−∞

kr(t − τ)ż(τ )dτ = Crξ(t) (6)

where ξ ∈ Rm is the m-dimensional radiation subsystem state,
and Ar,c, Br,c, and Cr are the associated matrices, which can
be obtained using system identification toolboxes (see [19]).

Regarding the nonlinear forces, fnl,vis is the viscous drag
force [6]

fnl,vis(t) = −0.5ρπa2Cd |ż(t)|ż(t) (7)

where ρ is the water density, a is the body radius, Cd is the
drag coefficient, and fnl,coul is the nonlinear part of mechanical
friction, which mainly contains a Coulomb force [6], also
termed the static friction force

fnl,coul(t) = −sign(ż)Fc (8)

where Fc is the magnitude of static friction force.
In this study, the WEF estimator and MPC controller are

always designed based on the linear system, i.e., (1) with
fnl,vis = 0 and fnl,coul = 0. With the state-space description of
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radiation convolution equation (6), the linear system can be
described by

ẋ(t) = Acx(t) + Bc fe(t) + Bc fg(t)

y(t) = Cx(t) (9)

where x = [ż, z, ξT
]
T

∈ Rn is the n-dimensional state, n =

m + 2, y = [ż, z]T
∈ R2 is the system output consisting of the

measurable body velocity and position, and

Ac =

−
R0

M+M∞

−
K

M+M∞

−
Cr

M+M∞

1 0 0m×1
Br,c 01×m Ar,c

, Bc =

 1
M+M∞

0
0m×1


C =

[
1 0 01×m

0 1 01×m

]
. (10)

In this study, the considered WEC is a cylinder buoy with
a radius of 2 m and a draft of 2 m; the mass is M =

25.13 × 103 kg, the stiffness is K = 123.15 kN/m, and the
linear damping coefficient is set to R0 = 2 kN/(m/s). The
hydrodynamic parameters are calculated using NEMOH [20].
The drag coefficient is assumed to be Cd = 1 [21]. The static
friction force magnitude is set to be Fc = 6 kN. The wave
condition is modeled using the Bretschneider spectrum with
a significant wave height of 1 m and a peak period of 6 s.
Note that, although the numerical case study is carried out
for a specific set of wave/WEC parameters, generic sensitivity
mechanisms can be revealed from the analysis.

B. WEF Estimation

With the system model known, the instantaneous WEF can
be regarded as an unknown state of the system and estimated
based on measurable states and the control force. There exist
a number of estimator options, among which the Kalman filter
(KF) with harmonic oscillator (KFHO) is representative and
mostly used, capable of achieving very good accuracy [9],
and thus is selected in this study. The KFHO is based on a
discretized model

x[k + 1] = Ax[k] + B fe[k] + B fg[k]

y[k] = Cx[k] (11)

where k is the discrete time step, with Ts the sampling period,
A = exp (AcTs), and B = A−1

c (A − I )Bc, obtained from
zero-order hold discretization (I denotes the identity matrix).
In the KFHO, the WEF is modeled as the sum of multiple
sinusoids, which gives the following augmented system:[

x[k + 1]

h[k + 1]

]
=

[
A BCh

02L×n Ah

][
x[k]

h[k]

]
+

[
B

02L×1

]
fg[k] +

[
ϵx

ϵh

]
y[k] = [C 02×2L ]

[
x[k]

h[k]

]
+ ϵy (12)

where h = [h1, ḣ1, . . . , hL , ḣL ]
T

∈ R2L is the vector contain-
ing L sinusoidal components: hi are the sinusoidal values, ḣi

are the derivatives, and ωi are the frequencies, so that

Ah =

L⊕
i=1

exp
(

Ts

[
0 1

−ω2
i 0

])
, Ch = 11×L

⊗
[1, 0] (13)

Fig. 2. Illustration of two WEF estimators, with sensitive and damped
parameter tuning options (FE-sens and FE-damp), respectively.

where
⊕

and
⊗

denote the direct sum of matrices and the
Kronecker product. Finally, ϵx and ϵh are the model noises, ϵy

is the measurement noise, and the associated covariance matri-
ces are 6x , 6h , and 6y , respectively (the cross-covariance
between ϵx and ϵh is zero). Classical KF algorithms (omitted
here) can be applied to obtain the estimate, ĥ, and the WEF
estimate is f̂e = Ch ĥ.

The variance of the WEF process, 6h , is the key estimator
parameter. Generally, a smaller variance represents a higher
confidence in the assumed WEF dynamics, that is, a sinusoidal
process. In this study, only one frequency component is used,
set to be the peak wave frequency. Two WEF estimator tuning
options will be examined.

1) A Sensitive WEF Estimator (FE-Sens): The KF
parameters are 6x = diag[σx,1, . . . , σx,n], 6y =

diag[σy,1, σy,2], and 6h = diag[σh,1, σh,2] (the dimen-
sion of h is 2, as only one frequency is used), and
are tuned such that, when there is no model error, the
estimated WEF tracks the exact value with a negligible
time lag, as shown in Fig. 2. This yields a relatively
large 6h ; in other words, the WEF behaves more like a
randomized input in the estimation model.

2) A Damped WEF Estimator (FE-Damp): In this case, 6x

and 6y remain the same, while the values of 6h are
reduced such that the estimator, by assuming a sinu-
soidal model on WEF, exhibits a stronger filtering (or
damping) effect and thus is less sensitive. Consequently,
the estimated WEF has a dynamical lag of 0.3–0.4 s to
the exact WEF, as shown in Fig. 2.

It is recognized that phase accuracy has a great impact on
energy performance [15], so one can expect that control based
on FE-sens performs better than FE-damp. However, it will be
shown that when model errors are included, a certain degree of
filtering effect is important for closed-loop stability; in other
words, there is a tradeoff between accuracy and robustness.

C. WEF Prediction

With the WEF estimate available, future values can be
predicted with time-series models based on past values. Linear
models, including auto-regressive (AR) models, which apply
one-step prediction recursively into the future, and direct
multistep (DMS) models, which directly use multistep predic-
tion through matrix multiplication, have been shown to give
equivalent and optimal prediction accuracy [22]. In this study,
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a DMS model obtained from the wave spectrum is considered,
due to its theoretical optimality for Gaussian waves [23];
almost the same results can be obtained if other options in [22]
are used.

Let the WEF spectral density be S f (ω), then its
auto-covariance function (ACVF), Rff, defined as

Rff(τ ) = lim
T →∞

1
2T

∫ T

−T
fe(t) fe(t + τ)dt (14)

is linked to S f (ω) by the Wiener–Khinchin theorem [24]

Rff(τ ) =

∫
∞

0
S f (ω) cos (ωτ)dω. (15)

Note that both S f (ω) and Rff(τ ) are the real and even
functions. Denote the past (from WEF estimates) and future
(forecast) WEF vectors as

f̂ e,past =
[

f̂ e[k − L p + 1] · · · f̂ e[k]
]T

f̂ e,future =
[

f̂ e[k + 1] · · · f̂ e[k + L f ]
]T (16)

with L p and L f being the historical and prediction lengths.
The optimal prediction is given by

f̂ e,future = 6fp6
−1
pp f̂ e,past (17)

where 6pp is the auto-covariance matrix of f̂ e,past, 6fp is the
cross-covariance matrix between f̂ e,past and f̂ e,future, and both
6pp and 6fp can be calculated from Rff as follows. Let ri =

Rff(iTs), assuming L f > L p, there are

6pp =

 r0 · · · rL p−1
...

. . .
...

rL p−1 · · · r0



6fp =

rL p · · · rL p+L p−1 · · · rL p+L f −1
...

. . .
... · · ·

...

r1 · · · rL p · · · rL f


T

. (18)

Note that 6pp ∈ RL p×L p and is symmetric, while 6fp ∈

RL f ×L p .
However, in practice, it may turn out that 6pp has a

relatively large condition number or is near singular [23];
as a result, the elements of the prediction matrix, 6fp6

−1
pp ,

have large magnitude. Consequently, the prediction becomes
sensitive to perturbations in its input, i.e., f̂ e,past, and that
is particularly the case in the presence of model errors,
which results in WEF estimation errors. Hence, it is always
necessary to check and control the sensitivity of the predic-
tion matrix. To achieve this, eigendecomposition of [23] is
adopted as 6pp = Q3QT, where 3 = diag[λ1, . . . , λL p ]

is the diagonal matrix containing the eigenvalues of 6pp,
and Q = [q1, . . . , qL p ] is the matrix containing the corre-
sponding eigenvectors. Eliminating all the eigenvalues with
magnitude smaller than a preset threshold, λth, yields 3∗

=

diag[λ1, . . . , λL th ] and Q∗
= [q1, . . . , qL th ], where L th is

the number of remaining eigenvalues/eigenvectors, and the
predictor as

f̂ e,future = 6fp

(
6∗

pp

)−1
f̂ e,past = 6fp Q∗

(
3∗

)−1(Q∗
)T f̂ e,past.

(19)

Fig. 3. GoF of WEF predictors with different eigenvalue thresholds λth.
The coefficient magnitude (mag) is defined as the maximal absolute element
values of the prediction matrix, 6fp(6

∗
pp)

−1.

The accuracy of the WEF predictor can be evaluated using
the goodness of fit (GoF) index, which is a function of the
forecasting step l and defined [10] as

G(l) = 1 −

√∑
k( fe[k + l] − f̂ e[k + l])2∑

k( fe[k + l])2 . (20)

The choice of λth corresponds to another tradeoff between
accuracy and robustness; a small λth gives high accuracy,
close to the theoretical optimum in (17), but generates large
magnitudes in the prediction matrix elements, as shown in
Fig. 3. In such a case, the predictor becomes sensitive to
perturbations in f̂ e,past, i.e., the sequence of the estimated
WEF. In this study, two WEF predictor tuning options are
examined.

1) A Sensitive WEF Predictor (FP-Sens): Based on a
relatively small threshold, λth = 1e-4, which gives a
coefficient magnitude over 7, as shown in Fig. 3.

2) A Damped WEF Predictor (FP-Damp): Based on a
larger threshold, λth = 1e-2, which yields a magnitude
less than 2, as shown in Fig. 3.

It will be shown later that FE-sens works well with an accurate
model, but any model error will lead to consequent errors in
WEF estimation and, in such cases, the robustness of the WEF
predictor turns out to be crucial.

D. Energy-Maximizing MPC

MPC requires full observation of the system state. The radi-
ation system state, ξ , can be easily calculated, e.g., by direct
integration of the radiation system

ξ [k] = Arξ [k − 1] + Br ż[k − 1] (21)

where Ar = exp (Ar,cTs) and Br = A−1
r,c (Ar − I )Br,c. Now,

based on the predicted WEF f̂ e[k], . . . , f̂ e[k + N − 1] over
a prediction horizon N , and the observed state x[k], the
energy-maximizing MPC calculates the optimal control force
by solving the following optimization problem:

max
f̄ g[0],..., f̄ g[N−1]

N−1∑
i=0

−
1
2

Ts f̄ g[i](x̄1[i] + x̄1[i + 1])
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s.t. x̄[i + 1] = Ax̄[i] + B f̄ e[i] + B f̄ g[i],

i = 0, . . . , N − 1
− Zm ≤ x2[i] ≤ Zm, i = 1, . . . , N

− Fm ≤ f̄ g[i] ≤ Fm, i = 0, . . . , N − 1

x̄[0] = x[k], f̄ e[i] = f̂ e[k + i],

i = 0, . . . , N − 1 (22)

where f̄ g[0], . . . , f̄ g[N − 1] are the (virtual) control forces
to be determined, x̄[1], . . . , x̄[N ] is the corresponding system
trajectory, and Zm and Fm are the displacement and force
limits, forming the system operation constraints. Note that the
energy is calculated based on zero-order-hold discretization
and the trapezoidal rule of integration. Problem (22) is a
quadratic program, typically convex, and can thus be solved
efficiently with mature algorithms in practice [17]. After
solving (22), the first control move is applied to the device,
namely, fg[k] = f̄ g[0] while, at the next step, the optimization
is repeated based on the updated information and shifted
horizon.

In the case study, simulations are based on
MATLAB-Simulink with a sampling time of 0.002 s.
Each run of simulation lasts 3 min, so a frequency grid
covering the considered wave spectrum, with an interval of
1/180 Hz, is used to generate wave signals, which gives
92 frequency components. Note that although multiple phase
realizations, or a relatively long time scale, are usually
required for accurate power assessment [25], a single-phase
realization is used in this study, for computational efficacy,
which suffices to give a representative relative control
comparison; this will be verified in Section III-B. The
sampling time for MPC is 0.2 s, and the prediction horizon
is N = 36, yielding a 7.2-s prediction time, sufficiently
long to achieve the optimal performance. Note that the
sampling time for MPC is chosen according to the tradeoff
between control performance and computation such that,
for a given prediction time, a decrease in sampling time
(with an increased optimization dimension) does not give a
higher energy performance. The MPC optimization is solved
using the MATLAB function “quadprog,” which is based on
an interior-point method [26], and the average computation
time is within 0.01 s. For the WEF prediction, there are
L f = N = 36 and L p = 30, where L p is chosen such that the
DMS model gives satisfactory prediction accuracy for control.
The constraints are set to Zm = 2 m and Fm = 150 kN, both
active under the optimal condition.

III. NUMERICAL ANALYSIS OF SENSITIVITY

A. Research Method and Preliminary Analysis

In this section, the impact of linear model errors, including
errors in the damping R0, radiation convolution kr(t), system
mass M +M∞, and stiffness K , will be examined individually.
For this case, the actual system is assumed to only have
the linear dynamics, namely, (1) with fnl,vis(t) = 0 and
fnl,coul(t) = 0. The system can be described as

Mt z̈(t) + R0 ż(t) + kr(t) ∗ ż(t) + K z(t) = fe(t) + fg(t)

(23)

where Mt = M + M∞, and ∗ denotes the convolution.
The control model, used both in WEF estimation and MPC,
is assumed to have an error in each parameter, namely, 1R0 =

eR R0, 1kr(t) = ekrkr(t), 1Mt = eM Mt , and 1K = eK K ,
with eR , ekr, eM , and eK being the associated multiplicative
errors. The considered error ranges are roughly decided based
on experience, where the damping-related errors are usually
more significant than mass/stiffness errors.

Before numerical investigation, examination of the estimator
model form can help illustrate the effect of model errors
on WEF estimation. Assume that an “ideal” estimator is
used, which has perfect knowledge of z̈, ż, and z, perfect
knowledge of all model parameters except R0, which is now
R0 + eR R0, and full confidence on the model it uses. The
estimator model is

Mt z̈(t) + (R0 + eR R0)ż(t) + kr(t) ∗ ż(t) + K z(t)

= fe(t) + fg(t) (24)

giving the following WEF estimate:

f̂ e(t) = Mt z̈(t) + (R0 + eR R0)ż(t) + kr(t) ∗ ż(t) + K z(t)

− fg(t)

= fe(t) + eR R0 ż(t). (25)

One can see that the damping error appears in the WEF
estimate, and the estimation error is exactly the corresponding
damping force error, eR R0 ż. This is not surprising: since the
estimator treats the WEF as an arbitrary unknown state, every
unmodeled force will be attributed to the WEF. A similar
analysis applies to other types of errors.

In this study, the control performance index is the “normal-
ized energy.” For a given controller, let the energy generated be
E1, and let the energy generated by the ideal controller (e.g.,
the controller with ideal WEF estimation, ideal WEF predic-
tion, and no model error) be E0; the normalized energy is then
defined as E1/E0. Only in the nonlinear case, the performance
is defined as the actual energy generation (represented by the
average power), as the “ideal” performance is generally not
available (nonlinear MPC cannot be regarded as ideal, due to
nonconvexity [27]).

B. Damping Error

Initially, different values of the (multiplicative) damping
error, eR , ranging from −0.75 to 1, are investigated. For
each eR value, simulations are conducted with different WEF
estimator and predictor tuning options, and power generation
performance is recorded; the result is shown in Fig. 4. Fig. 4(a)
shows the impact of eR on the MPC controller performance
in isolation, i.e., with ideal WEF estimation and prediction.
One can see slight performance degradation (less than 5%)
under damping errors. Before proceeding to the analysis,
the corresponding results with 16 different phase realizations
are presented in Fig. 5. It can be seen that the variation
range of performance, originally more than 10% for accurate
evaluation of energy generation, compresses to about 1% after
being normalized. This verifies that the normalized control
performance is much less affected by the phase realization, and
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Fig. 4. Impact of damping error on energy generation performance, under
different FE/FP tuning options. (a) Ideal FE and nonideal FP. (b) Nonideal
FE and nonideal FP.

Fig. 5. Mean, minimum, and maximum values of the actual energy generation
(left) and normalized energy generation (right) corresponding to the first curve
in Fig. 4(a) under 16 different phase realizations.

Fig. 6. Velocity profiles with ideal FE and ideal FP, under different damping
errors. Note the differences in velocity amplitude.

representative control comparisons can be made using a single-
phase realization. Looking at the control trajectories in Fig. 6,
it can be seen that energy performance degradation comes
from the deviations in velocity amplitude from the optimum:
the velocity curves are “in phase” with the WEF, namely,
they have the same zero-crossing and peak time, but, with
negative damping errors, the velocity is exaggerated, compared
to the optimal velocity profile, and vise versa. This can be
explained by the fact that the maximization of energy requires

Fig. 7. Estimated WEF and velocity profiles with nonideal FE (and
FP-damp), when eR = +1. Note the amplitude-error-canceling effect of
FE-sens. (a) Estimated WEF when eR = +1. (b) Controlled velocity.

the body to follow an optimal velocity trajectory. Recall that
the unconstrained optimal velocity V ∗(ω), in the frequency
domain, is described by

V ∗( jω) =
Fe( jω)

2(R0 + Ra(ω))
(26)

where Fe( jω) and Ra(ω) are the WEF amplitude and radia-
tion damping at frequency ω, respectively. Under constraints,
optimal control trajectories also exhibit behaviors similar to
the “amplitude/phase conditions” of the unconstrained opti-
mum [13]. Hence, if there is an overestimation in system
damping, the controller is likely to give a lower velocity
amplitude. In summary, for the MPC controller alone, the
velocity amplitude error resulting from the damping error is
the source of performance decrease.

Fig. 4(a) also shows the results when the WEF estimation
remains ideal while the effect of nonideal WEF prediction is
included. One can see that, in addition to eR , nonideal WEF
prediction, with inevitable WEF prediction errors, yields a
further performance decrease, as can be expected. Meanwhile,
a sensitive predictor achieves a better energy capture efficiency
than a damped one, due to its higher prediction accuracy (see
Fig. 3).

In Fig. 4(b), nonideal WEF estimation is further included,
thereby forming the complete estimation–prediction loop in
Fig. 1. Two important observations can be made: 1) a sen-
sitive WEF estimator yields better energy performance than
a damped estimator and 2) under eR , the performance with a
nonideal WEF estimator turns out to be even better than that of
the ideal case. To investigate these issues, the WEF estimates
and the velocity trajectories are plotted in Fig. 7. Fig. 7(a)
shows that a damped WEF estimator results in a phase
lag in both WEF estimation and the corresponding velocity
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Fig. 8. Impact of radiation convolution error on energy generation perfor-
mance, under different FE/FP tuning options. (a) Ideal FE and nonideal FP.
(b) Nonideal FE and nonideal FP.

trajectory, as expected in Fig. 2. It has been recognized, e.g.,
in [15], that energy capture is much more sensitive to phase
errors than amplitude errors, so a damped WEF estimator leads
to suboptimality. On the other hand, note that with a positive
damping error (eR = 1), the estimated WEF [blue line in
Fig. 7(a)] has a larger amplitude than the exact value (black
dashed line), but without a phase difference. This is because
the error force now appears in the WEF estimate, as shown
in (24), and since the velocity ż is controlled to be in phase
with the WEF, the damping error force eR R0 ż will only lead
to amplitude error in the WEF estimate, without affecting its
phase. If this error force is added back (to get the red line), one
can see that the original WEF is recovered, so (24) is verified.
Hence, now the MPC controller has not only the damping
error (overestimation) in its model, which results in a lower
velocity amplitude [red line in Fig. 7(b)], but also the WEF
error (overestimation) in its input, and the latter effect cancels
the velocity error to a certain extent [to get the blue line in
Fig. 7(b)], namely, the velocity amplitude is less erroneous.
A similar analysis applies to the case of a negative damping
error.

C. Radiation Force Convolution Error

Next, the impact of ekr ranging from −0.75 to 1 is shown
in Fig. 8. Comparing Fig. 8 with Fig. 4, one can see that the
impact characteristics of ekr and eR on energy performance
are very similar although the impact of ekr is greater. This
can also be explained by (26) since it is the time-domain
radiation convolution kernel kr(t) that contains the effects of
frequency-domain radiation damping Ra(ω), as described by
the Ogilvie’s relation

kr(t) = F−1
{Ra(ω) + jω(Ma(ω) − M∞)} (27)

where F−1 denotes the inverse Fourier transform. Hence, ekr
also results in errors in the optimal velocity, its impact is

Fig. 9. Impact of mass error on energy generation performance, under
different FE/FP tuning options. (a) Ideal FE and nonideal FP. (b) Nonideal
FE and nonideal FP.

Fig. 10. GoF of WEF prediction under mass errors.

greater because the magnitude of Ra(ω) is larger than R0 in
this case, and, as analyzed in the case of eR , the joint impact of
control and WEF estimation on energy capture under ekr also
offset to a certain extent; the mechanisms are generally the
same. In addition, it can be seen that when the magnitude of
ekr reaches a certain level, e.g., ekr = −0.75, the performance
when using a sensitive WEF predictor can degrade seriously
compared to a damped predictor. This phenomenon will be
further reflected and analyzed in the subsequent investigation
of the mass error.

D. Mass Error

The impact of mass error, described by eM and ranging from
−0.25 to 0.1, is shown in Fig. 9. It can be seen, from Fig. 9(a),
that the energy performance is rather insensitive to mass error,
and this can be explained, again, by (26), as the optimal veloc-
ity is independent of the system mass. The result of nonideal
wave forecast in Fig. 9(a) is similar to the eR and ekr cases, and
the most concerning result is in Fig. 9(b): when nonideal WEF
estimation is included, the performance becomes very sensitive
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to the mass error. Particularly, it can be observed that, for
both WEF estimator options, when a sensitive WEF predictor
is employed, the energy capture typically decreases sharply,
even becoming negative (energy consumption). To investigate
this phenomenon, the GoF of WEF prediction under different
estimator/predictor combinations is plotted in Fig. 10. When
the mass is correct, a sensitive WEF predictor is more accurate
than a damped one, as in Fig. 3. However, with a mass error
involved, the GoF of a damped predictor is less than 0.5 while,
for a sensitive predictor, the GoF becomes negative (according
to (20), a negative GoF means that the forecasting variance
exceeds the variance of the WEF itself).

Accordingly, the control signals are shown in Fig. 11.
One can see, from Fig. 11(a), that the mass error results
in errors in WEF estimation which, when input to a sen-
sitive WEF predictor, can lead to significant oscillations in
the WEF forecast, as shown in Fig. 11(b). Consequently,
the control trajectory also oscillates and can be viewed as
“unstable,” as shown in Fig. 11(c). This instability resulting
from perturbation amplification is the primary cause of the
performance degradation apparent in Fig. 9. To tackle this,
some damping effects should be introduced, particularly to the
WEF forecasting process. As shown in Fig. 11(b), a damped
WEF predictor can significantly reduce the oscillations
in WEF prediction so that some performance can be recovered
in Fig. 9(b). In addition, a damped WEF estimator can also
help offset WEF estimation errors, as shown in Fig. 11(a),
so that it can sometimes outperform, in terms of energy
capture, a sensitive WEF estimator in Fig. 9(b), but this effect
is limited.

When a damped DMS model is employed so that instability
is avoided in the WEF forecast, the decrease in control per-
formance (red and yellow solid lines in Fig. 9) is mainly due
to the phase error of WEF estimation. This will be discussed
next, together with the stiffness error case.

E. Stiffness Error

The impact of a stiffness error, eK ranging from −0.2 to
0.2, is shown in Fig. 12. From Fig. 12(a), one can see a slight
energy performance decrease due to model error. As for the
case of mass (both mass and stiffness are imaginary terms
in the system intrinsic impedance), the stiffness does not
appear in the optimal velocity expression in (26) either, so this
performance degradation is likely to be caused by the control
force limitation Fm , which restricts the control ability to track
the optimal velocity profile. To verify this, the result under
unconstrained force is further shown in Fig. 12(a), and an
insensitivity to error can now be observed.

However, with a nonideal WEF estimation–prediction loop
involved, significant performance decreases are observed
again, as shown in Fig. 12(b). The control trajectories under
a negative stiffness error are shown in Fig. 13(a). In contrast
to Fig. 11, there is no significant oscillation, so instability is
not the primary cause of the poor energy performance as in
the mass error case. Instead, it can be seen that the estimated
WEF exhibits a clear phase (leading) error, as does the corre-
sponding WEC velocity. This is because, as analyzed earlier,
the stiffness error will be reflected in the WEF estimate. Since

Fig. 11. Example of estimated WEF, predicted WEF, and control trajectory
under a mass error. Note the instability phenomenon under a sensitive WEF
predictor. (a) Estimated WEF when eM = −0.05. (b) Predicted WEF (1.6 s
ahead) under FE-sens when eM = −0.05. (c) Control trajectory under FE-sens
and FP-sens when eM = −0.05.

the buoyancy force is proportional to the body displacement,
thus 90◦ out of phase with the velocity, and is generally large
in amplitude, it has a significant impact on the WEF phase;
this explains the performance degradation on the left side of
Fig. 12(b). A similar analysis is applicable to the case of mass
error with a damped WEF predictor in Fig. 9. In addition,
oscillations in prediction occur again when eK is relatively
large (e.g., eK = −0.2), for which the use of a sensitive WEF
predictor should be avoided.

On the other hand, the results under a positive stiffness error
are shown in Fig. 13(b), and a rather interesting phenomenon
can be observed: the controller keeps applying the maximum
negative force, and the body position remains consistently neg-
ative. The explanation is as follows: due to the overestimation
of the buoyancy force, which is directed upward, the WEF
estimator believes, in order to explain the body motion, that
there exists an external force going downward, and this force
is attributed to the WEF. Consequently, the estimated WEF
has a negative bias, and if the stiffness error is relatively large
(e.g., eK = 0.1), the total WEF estimate will be negative.
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Fig. 12. Impact of stiffness error on energy generation performance, under
different FE/FP tuning options. Unc.: Unconstrained. (a) Ideal FE and nonideal
FP. (b) Nonideal FE and nonideal FP.

On the other hand, the MPC controller needs to drive the body
to move in phase with the WEF, so the WEC now needs to
further go down and, in order to do so, the force is kept at
its negative limit. This is an irrecoverable situation, with the
PTO force at its constraint or, in an unconstrained situation,
the body will be locked at its negative maximum position.
This is termed the self-locking behavior which, together with
the phase error, explains the performance degradation of the
right side of Fig. 12(b).

F. Unmodeled Nonlinear Forces

Finally, the impact of two nonlinear forces, namely,
a quadratic viscous force fnl,vis and a static friction force
fnl,coul are examined individually. For the fnl,vis case, the actual
system is assumed to have the linear dynamics plus fnl,vis only,
namely, (1) with fnl,coul = 0; similarly, for the fnl,coul case,
the actual system is (1) with fnl,vis = 0. On the other hand,
the estimator and MPC are always based on a linear model;
in this way, the MPC maintains a quadratic programming
optimization. Note that a nonlinear MPC controller based on
a nonlinear system model is computationally challenging and
suffers from nonconvexity [1] (that is particularly the case
when the discontinuous fnl,coul is involved). Hence, a practical
technique is to approximate the nonlinear effects through
scheduling of linear representative models [28]. The use of
linear MPC in nonlinear systems has been shown to be very
effective, achieving performance comparable to, or even better
than, nonlinear MPC [27]. In this study, since fnl,vis and fnl,coul
are both velocity-dependent, the tuning of the linear damping
coefficient, R0, will be investigated: the parameter R0 used in
the control model is adjusted by 1R0 = αR R0, with αR the
tuning coefficient. The results are presented in Fig. 14.

From Fig. 14(a), one can see that, under the effect of
the viscous force, MPC performs rather poorly when no
adjustment of R0 is applied. By increasing R0, the energy

Fig. 13. Control trajectories under positive and negative stiffness errors.
Note the velocity phase error in the former case and the self-locking behavior
in the latter case. Also note that some abrupt oscillations in the PTO force
profile are partly due to the constrained MPC behavior and partly due to the
near-positive-semidefiniteness of the quadratic program; these oscillations do
not affect the final energy performance. (a) Control trajectory using FE-sens
and FP-damp, when eK = −0.1. (b) Control trajectory using FE-sens and
FP-damp, when eK = +0.1.

performance is significantly improved, and there exists an
optimal value of R0, at which the nonlinear viscous force
is best represented by a linear damper. Moreover, similar to
the damping error case, the performance degradation effect
is mitigated with a complete WEF estimation–prediction
loop, and the explanation is also similar: neglecting the
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Fig. 14. Impacts of the nonlinear viscous and static friction forces on energy
generation performance, under different FE/FP tuning options and different,
artificially scheduled linear damping coefficients αR . (a) Energy performance
under nonlinear viscous force. (b) Energy performance under nonlinear static
friction.

viscous force can be viewed as an underestimation of system
damping.

From Fig. 14(b), the impact of static friction is similar to and
relatively smaller than the viscous force, and proper scheduling
of R0 also helps to improve the power capture. In addition,
it can be seen both in Fig. 14(a) and (b) that, when the
unmodeled nonlinear force is large enough, instability occurs
again for a sensitive WEF predictor. In general, these results
partly explain the observed robustness of a linear MPC system
in wave tank testing [17], [18], where the buoy is experiencing
rather large nonlinear effects: the effectiveness of damping
adjustment in control-oriented modeling, as well as the error
canceling effect of the estimation loop, both contribute to the
successful implementation [17], [18].

IV. CONCLUSION

In this study, the model error sensitivity of the complete
WEC MPC system, with WEF estimation and prediction,
is analyzed numerically. It is highlighted that, for such a
system, it is not only the MPC solution that is affected
by model errors, but also the WEF estimate, in which any
unmodeled force will be reflected, and this estimation error
will propagate through the WEF predictor and ultimately arrive
at the MPC input. Consequently, under the joint impact of
these factors, the complete MPC system shows considerably
different behavior than an isolated MPC controller.

For an MPC controller in isolation, the energy performance
is mainly affected by errors in system damping, including
linear damping, the radiation convolution kernel, and the

nonlinear viscous and static friction effects, and the degree of
impact depends on the magnitude of these error forces. On the
other hand, the energy capture generally remains insensitive to
errors in mass and stiffness (consistent with [8]). It is shown
that energy-maximizing MPC behaves somewhat like an opti-
mal velocity-tracking controller, for which overestimation of
damping results in underestimation of the optimal velocity
amplitude, and vice versa; in addition, constraints in PTO force
may affect the performance by restricting velocity tracking
capability. Regarding WEF information requirements, higher
WEF prediction accuracy achieves higher power capture effi-
ciency, as can be expected.

However, when nonideal WEF estimation is involved,
thereby closing the estimation-prediction control loop,
energy performance degradation is generally mitigated under
damping-related errors and significantly amplified under mass
or stiffness errors.

1) For damping-related errors, including errors in the linear
damping, radiation convolution, viscous force, and static
friction, errors in the WEF estimate can cancel the errors
in optimal velocity profile to a certain extent, so that
the energy performance improves compared to an MPC
controller in isolation.

2) Errors in mass and stiffness, although not affecting the
system damping, can lead to phase errors in the WEF
estimate and, consequently, the controlled body velocity,
so that the power capture efficiency is significantly
degraded.

3) In addition to 1) and 2), for mass or other errors that
result in relatively large errors in the WEF estimate,
an accurate/sensitive WEF predictor, with a large coeffi-
cient magnitude, can produce significant oscillations in
the WEF forecast, making the overall control system
unstable. In this situation, some damping (or filtering)
effects introduced, mainly by the use of a damped
WEF predictor with a smaller coefficient magnitude, can
greatly mitigate the instability effects. Note that such
damping effects in WEF prediction (lower forecasting
accuracy) are generally considered to be suboptimal
when there is no model error, but now prove vital to
the system performance.

4) In addition to 1) and 2), under a positive stiffness error,
the system can be dominated by a self-locking effect,
where the controller pushes the body in one direction
for all time.

Hence, the results show that the “separation principle”
of WEF estimation/prediction and WEC control no longer
holds in the presence of model errors. A quite robust, iso-
lated WEC controller can become overly sensitive with an
estimation–prediction loop involved; specifically, the detri-
mental instability and self-locking effects cannot be observed
from an MPC controller in isolation.

Finally, some practical guidelines can be drawn for WEC
control designers.

1) It is vital to have an accurate mass and stiffness identifi-
cation, in order to avoid significant energy performance
degradation or even device damage.
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2) Since some model errors are inevitable, it is important to
restrict the coefficient magnitude of the WEF predictor,
e.g., to be less than 2, to avoid undesirable oscillations.
Accuracy needs to be balanced with sensitivity issues.

3) Similarly, the sensitiveness of the WEF estimator is
another degree of freedom to be tuned, also related to
the accuracy–robustness tradeoff.

4) To handle nonlinear viscous and static friction effects
within a linear MPC framework, an effective approach
to improving the performance is through proper tuning
of the linear damping coefficient.

The goal of this article is to reveal some common problems
existing in WEC control systems, through a limited, yet
representative, case study. The examination is based on a
widely used linear model, i.e., Cummins’ equation [4], with a
multiplicative model error assumption, and with some nonlin-
ear extensions. Other types of modeling errors, such as errors
in black-box models (or other models with parameterizations
different from Cummins’ equation) obtained from system
testing data, as well as other nonlinear effects (e.g., nonlinear
Froude–Krylov forces), may have different impacts on control.
Meanwhile, the results are based on a typical, KFHO-based
WEF estimator, with only one frequency component. Other
estimation algorithm options and estimator parameter setting
options may exhibit different dynamic characteristics, affecting
the control performance. In addition, uncertainties in the
incident wave spectrum may have a further impact on the
WEF forecast. These aspects are worthy of further study in
the future.
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