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On data-based control-oriented modelling
applications in wave energy systems

Edoardo Pasta⋆, Bruno Paduano, Giuliana Mattiazzo, Nicolás Faedo, and John V. Ringwood

Abstract—The development of effective energy-
maximising control strategies has a crucial role in the
empowerment of wave energy technology, and in its
improvement towards economic viability. Within the
state-of-the-art, most of the strategies adopted to maximise
the absorbed energy exploit a model of the wave energy
converter (WEC) to be controlled, i.e. they are model-based.
These models attempt to replicate the WEC dynamics
with a sufficient degree of fidelity, trying, at the same
time, to minimise their associated computational burden.
However, due to the presence of the hydrodynamic effects,
which inherently characterise wave energy systems,
simultaneously achieving high-fidelity and computational
efficiency is not trivial. Oversimplification of the problem
through, for example, linearity assumptions, could lead
to non-representative models and/or large uncertainty
levels. To overcome these issues, in the last decade,
several approaches based on data have been proposed in
the wave energy field. These approaches, falling under
the umbrella of system identification techniques, exploit
data coming from experimental tests or high fidelity
simulations, and build control-oriented models with a
pre-defined level of complexity. In this paper, we analyse
the different strategies that have been adopted in the
literature to build data-based control-oriented models for
WECs, highlighting the characteristics of each approach,
together with their opportunities and inherent drawbacks.
Conclusions are drawn regarding the capabilities that this
type of approach has in (at least partially) solving the
modelling issues that affect WEC control system design,
and the pitfalls that pure adoption of these strategies has
when applied on larger scales, or in the operational stage.

Index Terms—Data-based modelling, System identifica-
tion, Control-oriented modelling

I. INTRODUCTION

IN the context of a growing effort in the attempt to
push wave energy technology forward, one of the

main challenges to be overcome is the development
of effective and efficient control strategies [1, 2]. These
are responsible for the process of energy maximisation
and for the reduction of the stresses associated to the
operations in harsh environments like ocean and ma-
rine ones. A successful fulfilment of these purposes can
actively contribute to the reduction of the levelised cost
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of energy (LCoE), by increasing the absorbed energy
and reducing the operational costs.

The control problem of wave energy converters
(WECs), due to its energy-maximising nature, falls un-
der the optimal control category, where the performance
function to be maximised is a measure of the absorbed
energy [3]. Moreover, the control strategy is responsible
of maintaining the wave energy systems inside the
inherent motion and force constraints characterising
these conversion devices [4]. With the only exception of
model-free control strategies, like extremum-seeking [5, 6],
reinforcement learning [7, 8], and surrogate-optimisation-
like control [9, 10], most of the strategies employed to
solve the wave energy optimal control problem (OCP)
rely on a model of the controlled wave energy system
(i.e. are model-based). These models are the result of a
trade-off between accuracy and complexity, which is
motivated by the need of guaranteeing the feasibil-
ity of the OCP numerical solution in real-time. The
reduction of complexity of WEC models is usually
obtained through simplifications of the Navier-Stokes
equations (which precisely describe the motion of wave
energy systems inside the water). These simplifications
are often based upon linearity or small oscillations
around equilibria assumptions [11, 12]. However, these
hypotheses are usually not representative of the system
dynamics in controlled conditions, due to the tendency
of optimal control actions to emphasise the WECs
motion. These latter considerations are in constrast
with the hypotheses made in the modelling stage,
leading to a controller that inherently invalidates the
model upon which it is synthesised, and to the so-
called ‘modelling paradox’ [11]. Moreover, the process
of computation of the hydrodynamics contributions is
usually affected by uncertainties which are not easily
identifiable [13]. With the aim of solving part of these
issues, in the last decade several attempts of directly
exploiting measured data coming from (real or numer-
ical) WECs to model these latter were made. Motivated
by the above considerations, this paper attempts to
precisely analyse the studies related to the data-based
modelling approaches that have been applied to obtain
control-oriented models of wave energy systems. Con-
siderations are made on the type of approach adopted
in the modelling stage and on the type of process of
identification itself. Moreover, a further distinction is
made on the basis of the origin of the the employed
data.

The remainder of the paper is organized as follows.
In Section II, a brief introduction to WEC modelling is
presented. Section III describes the WEC OCP, high-
lighting the role of models in the control synthesis
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Fig. 1. Heaving point absorber WEC.

process. In this context, the WEC modelling paradox
is introduced together with its consequences in Sec-
tion IV. The main data-based modelling approaches
are described in Section V, where time domain and
frequency domain techniques are also faced (Section
V-A and V-B respectively). Finally, Section VI aims
at critically compare the data-based modelling appli-
cations in wave energy, while Section VII is devoted
to some conclusions and considerations are drawn re-
garding the opportunities that this type of approaches
have with respect to the problems characterising WECs
modelling.

II. WAVE ENERGY SYSTEMS MODELLING

WEC dynamics is mainly the result of the interac-
tion between a floating body (the hull), with the sur-
rounding fluid and a controlled actuation system (the
so-called power take-off, PTO). Potentially, some inner
conversion mechanism could be present [14, 15, 16].
In general, wave energy systems can be classified on
the basis of their geometries and working principles
[17] into four main classes: Point absorbers (PAs) [18],
oscillating water columns (OWCs), [19], terminators, [20,
21], and attenuators [22]. For the sake of simplicity,
we consider a single1 degree-of-freedom (DoF) WEC
device throughout this paper, based on the schematic
shown in Fig. II. The equation of motion for such class
of devices can be given by2:

mz̈ = fr + f l
hr + fex + fnl − fPTO, (1)

where z is the device heave displacement, fr is the
radiation force, f l

hr is the linear component of the
hydrostatic restoring force, fex is the wave excitation
force, fnl represents a potential source of nonlinear-
ity that depends on displacement z(t) and velocity
ż(t) (e.g. nonlinear hydrostatic effects or viscous drag
forces), and fPTO(t) is the controllable force exerted by
the PTO. Apart from fnl, the terms in Equation (1) are
normally modelled on the basis of linear potential flow
theory, which make assumptions of frictionless and
irrotational flow, linear wave theory, and amplitude of

1It must be highlighted that similar considerations can be formu-
lated for multi-DoF devices (see, for instance, [23]).

2From now on, the dependence on t is dropped when clear from
the context.

motion significantly smaller than the dimension of the
floating body. Under these assumptions, excitation and
radiation effects are numerically computed through
Boundary Element Method (BEM) solvers. Nonetheless,
these simplifying assumptions add a certain degree
of uncertainty to the employed model, which can
consequently breakdown the energy absorption per-
formances, and increase the risk of unsafe operations
[13]. Moreover, as deeper described in Section IV,
the application of energy-maximising control strate-
gies naturally lead the system to operating conditions
which are distant from those assumed by the modelling
hypotheses.

III. WEC OPTIMAL CONTROL PROBLEM

As briefly introduced in Section I, the control strate-
gies employed in wave energy field are of the energy-
maximising type. As a consequence, the synthesis of
such controllers is the result of the solution of an OCP,
whose performance function J to be maximised is a
measure of the energy absorbed by the device over
a certain time interval T = [a, b] ⊂ R+. A standard
formulation of such performance function is given by
the absorbed mechanical energy:

J (fPTO) =
1

T

∫ b

a

fPTO(τ)ż(τ)dτ, (2)

where T = b − a. Other performance metrics are also
possible, trying to take into account of the net power, or
of the energy at different levels of the conversion chain
(e.g. by exploiting wave-to-wire [24, 25] or wave-to-grid
[26, 27] models). Apart from maximising the energy
extraction, WEC control is responsible of avoiding
exceeding physical system specifications to enable safe
operations [4]. With this purpose, soft constraints can
be implemented via additional terms in J , or hard
constraints can be formulated along with Equation (2),
as: 

|z| ≤ zmax,

|ż| ≤ żmax,

|fPTO| ≤ fPTO,max,

(3)

with {zmax, żmax, fPTO,max} ⊂ R+, leading to a con-
strained optimisation problem. As a consequence, the
resulting OCP to be solved in the WEC controllers
synthesis can be written as:

f
opt
PTO = arg max

fPTO

, J (fPTO)

s.t.:
WEC dynamics (1),
Motion and input constraints (3).

(4)

Several control strategies have been employed in the
WEC control literature [28] in the attempt of solving
the OCP presented in Equation (4). Within the differ-
ent attempts, two main approaches can be identified:
optimisation-based and non-optimisation-based controllers
[29]. Optimisation-based control includes all controllers
that require the online numerical solution of the OCP
in Equation 4 for the control action to be calculated.
These include e.g. model predictive control (MPC) [3,
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Fig. 2. Typical WEC control system: Schematic representation of the control loop.

30], moment-based control [31], and spectral and pseudo-
spectral control [32]. Non-optimisation-based control in-
stead includes all controllers that try to emulate the
so-called impedance-matching condition [33, 34] trying
to maximise the energy outcome. Relevant examples
of this type of controllers are given by the Linear Time
Invariant Controller (LiTe-Con) [35, 36], and by Linear
Quadratic Gaussian (LQG) control [37, 38].

A. What role do models play in WEC control?

Most of the control solutions presented above are
model-based, i.e. they rely on a model of the controlled
WEC. This means that a control-oriented model of the
system is required to synthesise the control strategy
itself. The role of models in WEC control is related
to several aspects of the control loop, different from
the pure control synthesis. The availability of a model
enables, for example, the adoption of estimators, em-
ployed to estimate the (unmeasurable) force fex acting
on the WEC [39]. As a consequence, such information
of this disturbance (which is also the origin of the
absorbed energy) can be considered ‘available’ at each
time instant during the optimisation stage characteris-
ing the control synthesis (Equation (4)). Moreover, such
signal can also be forecasted [40], and the knowledge
of future samples employed in the optimisation. In
addition, models allow the system dynamics to be
propagated into the future, enabling the constraint
handling in hard manner in the computation of the
control action. The role of WEC models in the synthesis
process of typical controllers for wave energy systems
is shown in Figure 2. It must be highlighted that the
performances of model-based control are strictly de-
pendent on the fidelity of the model in the operational
conditions. As a consequence, if the errors injected
during the modelling stage (which could be parametric
or consequence of unmodelled dynamics) are relevant,
not only the performances are degraded, but the be-
haviour could act in an unpredictable manner, causing
problems or even jeopardising safe operations.

IV. THE WEC MODELLING PARADOX AND ITS
CONSEQUENCES

As outlined in Section I, one of the characteristics
of WEC control problem is the presence of the so-
called WEC modelling paradox. The nature of this
paradox lays in the contrast between the linear as-
sumptions (associated with small oscillations) adopted

in the models used to synthesise the control, and
the objective of the control itself. In fact, maximising
energy indirectly amplifies the amplitude of the WEC
motion, especially when reactive controls are applied
[1, 11]. As highlighted by Figure 3, adapted from the
deep analysis related to WEC modelling paradox in
[11], wave energy systems tend to operate with bigger
amplitudes whenever an energy maximising strategy is
applied. In [11] different control strategies (with grow-
ing levels of aggressiveness in terms of control action)
have been applied, in the attempt to show how an
optimal control action forces the WEC to work outside
the range of motion assumed in the modelling stage.
As a consequence, the power production estimation
can be significantly over-estimated whenever reactive
control is applied. Also, in the same study [11], one
of the conclusions that have been highlighted is that
models obtained through data-based methodologies
considering an average system dynamics over a range
of operation, are usually more representative than the
linear ones developed on BEM-based potential flow
solutions [41]. Motivated by this consideration, in the
following Sections V and VI the principles of data-
based modelling and its applications on wave energy
systems are analysed and compared.

Fig. 3. Phase space of a heaving WEC device in controlled and
uncontrolled conditions, starting from zero initial conditions and
excited by regular waves (adapted from [11]).
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V. DATA-BASED WEC MODELLING

In recent years, data-based modelling of wave en-
ergy systems has became more common [42], mainly
due to the growing popularity of system identification
[43] applications in the wave energy field. Motivated
by the issues related to WEC modelling mentioned
in the Sections II and IV above, several studies have
been presented, trying to exploit techniques from the
system identification field in the attempt of obtaining
sufficiently descriptive models, with reduced compu-
tational complexity.

In this context, the control-oriented models that can
be identified are usually used to describe the relation
that occurs between the external inputs of the system
(the wave force fex, and the control input fPTO) with
the defined output (the velocity ż or the displace-
ment z), in time or frequency domain. Different model
structures could be employed. For linear models, most
popular are the transfer functions (in continous or
discrete time domain), and linear state space repre-
sentations. To identify nonlinear models instead, poly-
nomials, and neural networks are the most employed
structures. Both the linear and nonlinear models are
usually parametrised on θ, and the modelling process
related to the identification consists in the minimisation
of a cost function, JID which depends upon θ, and
usually is formulated as a function of the square of
the L2 norm of the error between the expected model
output and the training set measurements [44]:

θID = argmin
θ

JID (θ, e(θ)) , (5)

where θID represents the model parameters identified
at the end of the identification process, while e(θ)
is the vector containing the errors between the mea-
sured output and the one estimated by the model
with θ parameterisation. The adopted approaches can
be classified in terms of the domain over which the
optimisation process in Equation (5) is carried on (i.e.
the error e is computed). The resulting methodologies
can be divided in time-domain and frequency-domain
approaches [45, 46]. These two differ mainly for the
form of JID to be minimised during the identification
process, and each one has its own advantages and
disadvantages, as deepened in Sections V-A and V-B.

A. Time-domain modelling approach

Whenever the modelling process is made consider-
ing data in time domain (i.e. the data considered to
compute the error in JID are measurements at differ-
ent time instants) the identification process is a time-
domain one. Usually, the cost function to be minimised
during the identification process in Equation (5) for this
type of approaches is formulated as a ‘least-squares’
identification3:

JID (θ) = ∥e(θ)∥22 =

Nt∑
n=1

e(θ, nTs)
2, (6)

3For the sake of simplicity, the system to be identified here is
supposed to be SISO. Similar formulations can be made for MIMO
systems.

where Nt represents the amount of data samples con-
sidered in the identification (each one sampled every
Ts sampling time), and e(θ, nTs) represents the error
between the output of the model parametrised by θ
and the measured output at t = nTs. This is the
consequence of the definition of the error in time-
domain as:

e(θ, t) = y(t)− ŷ(θ, t), (7)

where y(t) is the measured output at time t, and
ŷ(θ, t) is the estimated output of the identified model
(parameterised by θ) at the same time instant. It must
be highlighted that this definition of the error stresses
the dependence on the domain t over which the time-
domain techniques compute the error. Since the for-
mulation of the cost function to be minimised directly
takes into account discrete time measurements (the
output is sampled), the majority of the identified time-
domain models are discrete time models. Among them,
structures like autoregressive exogenous (ARX), autore-
gressive moving average exogenous (ARMAX) for linear
models, nonlinear autoregressive exogenous (NARX), and
nonlinear autoregressive moving average exogenous (NAR-
MAX) for nonlinear models, are the most employed.
The main advantage of time-domain models is their
variety, that easily enables the management of the
level of complexity, which can be straightforwardly
increased during the identification routine. This al-
lows (especially for the nonlinear identification) the
inclusion of possible known elements (e.g. whenever
a well-known nonlinearity is present) in the model.
However, the choice of the right model is a trade-
off between complexity and accuracy. This is not only
related to the goal of ‘obtaining the best model which
is the less computational demanding’, but also to avoid
the overfitting phenomenon. High complexity models
tend to attempt to model also the noise/disturbance
dynamics whenever not suitably limited.

B. Frequency-domain modelling approach
If the modelling process employs data in frequency

domain (i.e. the data considered to compute the error
in JID are considered in frequency domain, by means
for example of their Fourier transforms). In this type of
approaches, the cost function is usually parameterised
in terms of θ and of the frequency ω, as4:

JID (θ, ω) =
∥∥E(θ, ω)

∥∥2
2
=

∥∥Y (ω)

U(ω)
−G(θ, ω)

∥∥2
2

∥∥U(ω)
∥∥2
2
,

(8)
where E(θ, ω), Y (ω), and U(ω) are the Fourier trans-
forms of the output error, the output, and the input
respectively, while G(θ, ω) represents the frequency
response of the identified model. With this kind of
formulation of the cost function, the identification
process attempts to ‘fit’ the identified model to the
empirical transfer function Y (θ, ω)/U(θ, ω). Among the
main advantages of this kind of approach is the pos-
sibility of restricting the frequency range over which

4For the sake of simplicity, the system to be identifies is supposed
to be a SISO, with a transfer function formulation. Similar consider-
ations can be made for MIMO system of for other model structures.
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the identification is performed to a suitably designed
range of interest. This can be of particular interest
in application like the wave energy one, where the
system is continuously excited by the wave disturbance
which has a spectrum limited in frequency, and thus
has only a certain range of frequency over which the
modelling must be performed precisely. Moreover, this
characteristic of frequency-domain approaches, cou-
pled with the design of frequency bounded identifica-
tion signal, enables the possibility of modelling focused
tests design. Additionally, it is possible to include in a
straightforward manner (differently from time-domain
approaches) different identification tests with different
excitation amplitudes by averaging their resulting fre-
quency responses, allowing in this way an identifica-
tion that takes into account (in an average sense) of
a broader set of operating conditions (different from
a linearisation around equilibria that hypotheses small
oscillations). However, since the minimisation that is
performed during the identification process of this kind
of approaches is not considering the error signal but
its Fourier transform, standard validation indexes are
in general slightly poorer than the one obtained with
time-domain identification (which directly take into
account the error, assuming the risk of overfitting)
[47]. Finally, given the nature of the frequency-domain,
such type of modelling enables the possibility of also
continous time domain models, which are instead not
easily obtainable with time-domain modelling tech-
niques and sampled identification signals.

VI. DATA-BASED MODELLING TECHNIQUES OF WAVE
ENERGY SYSTEMS

In the wave energy field, a comprehensive study on
the application of system identification, is presented

TABLE I
SUMMARY REVIEW TABLE. SIM: DATA FROM SIMULATED

ENVIRONMENT, EX.: EXPERIMENTAL DATA, TD: TIME-DOMAIN
IDENTIFICATION, FD: FREQUENCY-DOMAIN IDENTIFICATION, ▲:

LINEAR STATE-SPACE, ▲: TRANSFER FUNCTION, ■:
NONLINEAR MODEL.

Ref. Type of data ID domain Model type WEC type

Sim. Ex. TD FD

[48] • • ▲■ PA
[49] • • ▲■ PA
[50] • • ▲ PA
[51] • • ▲ PA
[52] • • ▲ PA
[53] • • ▲ PA
[54] • • ■ PA
[55] • • ▲ PA
[56] • • ▲■ PA
[57] • • ▲■ OWC
[58] • • ▲ OWC
[59] • • ▲ OWC
[60] • • ▲ PA
[61] • • ▲ PA
[41] • • ▲ PA
[62] • • ▲ PA
[11] • • ▲ PA
[63] • • ▲ PA
[64] • • ■ PA
[65] • • ▲ Ter.

in [49] and [48], including the design of identification-
oriented tests to be performed on a point absorber in
a numerical wave tank [49], together with the conse-
quent development of control-oriented models, using
different black-box identification methods [48]. Similar
tests are employed to perform grey-box identification
in [50]. In [51], system identification is performed to
find a state-space model of a point absorber, subse-
quently employed by a predictive fuzzy logic controller
[66]. In [52], identification-oriented multisine signals
are designed to perform experimental tests on a scaled
WEC, with the resulting responses used to identify
a black-box model of the system. A scaled multi-
DoF WEC model is also identified from experimental
tests in [53], and the obtained model is adopted to
synthesise different energy-maximising control strate-
gies, subsequently experimentally assessed. In [54],
a nonlinear reduced-complexity model is determined
following a data-based moment-matching [67] approach,
on the basis of simulated data. Data obtained in a
simulated environment are also adopted in [55], where
a control-oriented WEC model, including nonlinear
Froude–Krylov effects [68], is identified and subse-
quently employed to synthesise a moment-based con-
trol solution. In [56], recorded tank test data are used
to identify nonlinear Kolmogorov-Gabor models. Ap-
plications of system identification techniques to exper-
imental data from tests on scaled OWC devices can
be found in [57] and [58], where the authors identify
the dynamical relationship between free-surface eleva-
tion and water column displacement inside the OWC
chamber. In [59], the same dataset is used to model the
OWC dynamic system describing the turbine pressure
drop between the chamber and atmosphere, driven
by the variation in free-surface elevation. In [60], a
parametric model of the dynamics of a point absorber
is obtained from wave tank tests, and used to synthe-
sise a LiTe-Con strategy, which is then experimentally
assessed. The studies in [61] investigate the process
of identifying a model from data obtained in a nu-
merical wave tank, exciting the system with different
classes of signals, evaluating the uncertainty on the
obtained models, and assessing the performance of
a corresponding robust control strategy. In [41], the
influence of the excitation amplitude in the process of
system identification is highlighted, with similar wave
tank experiments. In [62, 63], identification-oriented
signals are applied to a WEC coupled with a mooring
system (usually neglected in control-oriented models)
in a simulated environment, and the obtained linear
description of the system is used to synthesise a re-
active controller. In [11] identification focused signals
are applied on a point absorber in a numerical wave
tank, and the linear model identified from these tests
is validated in uncontrolled and controlled conditions
in the same high-fidelity numerical wave tank. In the
study [64], the authors propose a novel approach to
system identification of a point absorber (the so-called
‘green-box’ identification), which attempts to take into
account of the carbon footprint of the model identifi-
cation and simulation in the process of model choice.
Finally, in [65] system identification is employed to
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obtain a representative linear model of a flap-like de-
vice to synthetise an unknown-input estimator from
experimental data coming from an hardware-in-the-
loop system.

A. Techniques comparison
In Table I a comparison between the different data-

based modelling applications in wave energy is re-
ported. Several considerations can be made. The first
one is related to the data source. As it can be ob-
served, data-based techniques are employed with both
simulated and experimental data. Data coming from a
high-fidelity environment can be useful to be employed
(even if they are not sampled from the real device) be-
cause, coupled with system identification techniques,
can be used to get less complex (and control-oriented)
models which are more representative than the ones
based on simple linearisation around equilibria. Such
data, in this way, are employed to partially attempt to
solve the uncertainty related to standard BEM models.
Other considerations can be made instead regarding
the relation between the identification domain and the
type of model. Regarding this, it can be noticed that
whenever the identification is made in time domain,
and the target model is a linear one, the employed
structure is a transfer function. This can be explained
by the popularity of ARX models in discrete time
domain. This linear combination of present and past
values of output and inputs is equivalent to a discrete
transfer function. Moreover, all the nonlinear data-
based models are identified in time domain, since,
apart from [54] that exploits the moment-based rep-
resentation, all of them can be traced back to forms
of NARX structures. The linear state-space represen-
tation is instead employed only with frequency do-
main techniques. Finally some consideration can be
drawn regarding the choices of input and output of
the developed models. The most common choices for
the input are the wave elevation η(t) and the force
exerted at the conversion axis [33], while usually the
output is defined as the WEC motion (displacement
and velocity). However, in the cases of OWC devices,
the input/output choice is different. In [57, 58] the
developed models define the output as the undisturbed
wave elevation η(t) (i.e. the wave elevation experimen-
tally measured whenever the OWC is not installed in
the facility), while the output is the water displacement
in the chamber in the same testing condition. In [59] the
authors defined the output as the chamber pressure.

VII. CONCLUSIONS

In this paper we analyse the different data-based
modelling techniques that have been applied in the
wave energy field. In the last years, several appli-
cations have been proposed, and all fall under the
categories of time- and frequency-domain identifica-
tion approaches. We provide a comparison of the
wave energy applications, highlighting the domain
of identification and the model structure definition.
These two kind of approaches offer several opportu-
nities (variety of parameterisation for the time-domain

model structures, choice of the identification frequency
range for frequency-domain methods), but also have
some kind of limitations (risk of overfitting for the
time-domain approach, worse validation indexes for
frequency-domain methods). These approaches must
be seen as complementary approaches, not compet-
itive. The availability of previous knowledge on the
model structure or on the operational frequency range
can define which of the two approaches could fit
better than the other. In general, at the state-of-the-art,
data-based techniques have been already employed to
find linear and nonlinear control-oriented models, and
these model have been already successfully employed
to synthetise controllers and estimators. However, bet-
ter understanding of the model performances in both
uncontrolled and controlled (with exaggerated motion)
conditions must be investigated in experimental setups
[69], to understand the real capabilities of data-based
approaches. Moreover, to really unlock the true poten-
tial of these techniques, it is important to investigate
a ‘non-blind’ identification approach, which exploits
the most from the knowledge offered by physics-based
analysis, in the attempt to include in a conscious man-
ner the nonlinearities that characterise wave energy
systems.
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