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Abstract 
Weather information is an important factor in load forecasting 
models. This weather information usually takes the form of 
actual weather readings. However, online operation of load 
forecasting models requires the use of weather forecasts, with 
associated weather forecast errors. A technique is proposed to 
model weather forecast errors to reflect current accuracy. A 
load forecasting model is then proposed which combines the 
forecasts of several load forecasting models. This approach 
allows the relationship between weather and load to be 
determined without weather forecast error. The effect of the 
weather forecast error is then minimised during the 
combination stage.  

1 Introduction 
Short Term Load Forecasting (STLF) refers to forecasts of 
electricity demand (or load), on an hourly basis, from one to 
several days ahead. The amount of excess electricity 
production (or spinning reserve) required to guarantee supply, 
in the event of an underestimation, is determined by the 
accuracy of these forecasts. Conversely, overestimation of the 
load leads to sub-optimal scheduling (in terms of production 
costs) of power plants (unit commitment). In accordance with 
the Electricity Regulation Act of 1999, a deregulated market 
structure was set up in Ireland, which should lead to increased 
impetus to reducing forecast error and the associated costs. 
 
As illustrated above, STLF is an important area and this is 
reflected in the literature by the many techniques that have 
been applied, including neural networks [7], fuzzy logic [9] 
and statistical techniques [12], to mention but a few. In many 
electricity grid systems, the prevailing weather has a 
significant effect on the load and it has been found that 
including weather information can improve a load forecast 
[19,15]. However, in order to use weather information for 
future load forecasts, weather forecasts must be utilised and 
these have associated weather forecast errors. Although 
system dependent, weather forecast errors can be significant 
and have been attributed as the cause of 17% [5] to 60% [8] 
of load forecast errors.  
Load forecasting models are usually trained using actual past 
weather readings [14] as opposed to past weather forecasts. 

This is based on the assumption that to use the latter 
essentially adds forecast noise to the training data. Often 
weather forecasts are unavailable for the entire training period 
and/or can be subject to increasing accuracy of 
meteorological models, as mathematical weather models are 
constantly improved. Therefore, training load models with 
actual weather can be justified [14]. However, when weather 
forecast errors not present in the training set are presented, 
they can have a disproportionate influence on load models 
[21,4]. Changing the load model parameters to account for 
this can be impossible in many conventional models once 
training is completed. Douglas et al. [5] approached this 
problem by use of a Bayesian framework, but restricted 
analysis to the use of dynamic linear models. In spite of the 
importance of weather forecast errors with respect to load 
forecasting, the literature is sparse [11].  
 
This paper proposes combining several models (called sub-
models), or model fusion, as a technique for minimising the 
effect of weather forecast errors in load forecasting models. 
The concept of model fusion is well known in the general 
field of forecasting and was pioneered mainly in [1,17]. Fused 
forecasts are often more accurate than any of the individual 
model forecasts [13,20] as different models are often better at 
modelling different aspects of an underlying process and thus 
combining the models appropriately gives a better forecast. In 
addition, a single model incorporating all aspects of an 
underlying process may be more complex and difficult to 
train than combining individual models [13]. Model fusion 
has been applied to many fields [20, 18]. Model fusion is 
particularly suited to STLF as the sub-models may be trained 
with actual weather information and the effect of weather 
forecast errors taken into account when combining the 
models.  

2 Data set details 
The range and time-scale of the available electrical demand 
data is given in Table 1.   
 

Range 29/12/1986-31/03/2000 
Time scale  Hourly 
No. of data points 4842 Days (116208 hours) 

 
Table 1: ESB data time-scale and range. 
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Two categories of historical weather data are available from 
the Meteorological Office of Ireland (MOI): readings (or 
actual weather) and forecasts.  Both sets of data are for 
Dublin airport, the closest and most relevant weather station 
to Dublin (Table 2). The readings and forecasts are for dry 
bulb temperature, cloud cover, wind speed and wind 
direction.  

 
Type Range Time 

scale 
Weather readings  29/12/1986 – 

31/03/2000 
Hourly 

Weather forecasts 01/02/2000 – 
01/03/2000 

Hourly 

 
Table 2: Weather data time-scale and range. 
 

The data is subdivided into three sets in order to train and test 
the load forecasting models (Table 3). The training set is used 
to calculate model parameters, the validation set is used to aid 
in model structure determination and the novelty set is used to 
evaluate model performance.  

 
Set Training  Validation  Novelty 
Range 1987-1997 1998 1999-2000 

 
Table 3: Division of data set. 
 
Data between Monday and Friday in the months January to 
March is selected so as to avoid the exceptions associated 
with weekend, Christmas and changes due to the daylight 
saving hour. 

3 Modelling weather forecast errors.  
Due to the sparseness of weather forecast data (Table 2) it is 
necessary to model the weather forecast error to produce 
pseudo-weather forecasts for the entire data set. Previous 
approaches in STLF have modelled the weather forecast error 
as a Gaussian random variable [16,3]. However, as seen in 
Figure 1 this is not an accurate representation of the statistics 
of the weather forecast errors in Ireland. Rather, the forecast 
error is either above or below the actual for prolonged 
periods. Typically some form of aggregate weather variables 
are normally used in STLF models (e.g. average daily 
temperature). The error in an aggregate weather variable will  
have a non-zero mean (Figure 1) and a Gaussian 
approximation in would underestimate this. 
 
The weather in Ireland is dominated by Atlantic weather 
systems. When a weather system or front reaches Ireland 
there is a shift in the level of the temperature and other 
weather variables (Figure 1). This shift is also a factor that the 
Irish Meteorological Office must forecast. The weather 
forecast error is thus presumed to have the following 
structure: 
• Turning points (Figure 1) which represent the arrival of a 

weather front,  

• A level error, µ~ , which is the average of the weather 
forecast error between turning points,  

• A shape error, σ~ , which is the standard deviation of the 
weather forecast error between turning points, and 

• A random error, which accounts for the remaining error 
if µ~ and σ~ are removed. 
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Figure 1. Actual and forecast temperature (6th to 15th  
February 2000). 
 
The turning points were found by using a peak detection 
algorithm. Also, the distributions of µ~ ,σ~ and the random 
error are found to be approximately Gaussian for the four 
weather variables used. In addition, all the shape and level 
errors of the four weather variables are cross correlated, 
suggesting that they may be jointly distributed.  
 
In order to generate pseudo-weather forecast errors, the 
turning points in the actual weather variables are first 
identified. Then, a multivariate Gaussian pseudo-random 
number generator is used to generate µ~ ,σ~ and the random 
errors for each the weather variables jointly. Figure 2, below, 
shows the Sample Auto-Correlation Function (SACF) [2] of 
the temperature forecast errors and the pseudo-temperature 
forecast errors. As can be seen, the SACF for both are similar, 
showing that the pseudo-forecast errors has captured the auto-
correlation evident in the temperature forecast errors. A 
similar situation was found with the other weather variables.  
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Figure 2. SACF of forecast and pseudo-forecast temperature 
errors. 
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4 The fusion model  

4.1 Preliminary Auto-Regressive (AR) linear model 
 
It was previously found by these authors [6] that 
decomposing load data into 24 parallel series, one for each 
hour of the day, is advantageous as the parallel series have a 
degree of independence. The parallel series for hour j on day 
k, y(j,k), has a low frequency trend, d(j,k), which is first 
removed using a Basic Structural Model (BSM) leaving a 
residual, x(j,k), (Figure 3) which is composed of weather, 
non-linear auto-regressive and white noise components [6].  
 

BSM - +
Trend
d(j,k)

Actual
load
y(j,k)

Residual
x(j,k)

 
 
Figure 3. Preliminary AR linear model overview 
 
4.2 Sub-Models 
 
Three models were chosen which have different types of 
inputs. These are chosen so that forecast errors can be 
attributed to particular inputs. A fourth model is included 
using all the available inputs to capture any non-linear 
relationships between the inputs and the residual. The fusion 
technique combines the forecasts of the sub-models 
x1(j,k),…,x4(j,k) to give a fused forecast, xf(j,k), of the residual 
for series j on day k (Figure 4).  
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Figure 4. Data fusion model overview 
 
The sub-models all use feed forward neural networks. The 
network structure determination and input selection 
procedures are similar to those explained in detail in [6].  

 
The Temperature Model (TM) input, t(j,k), is a vector of the 
previous 72 hours of temperature from hour j on day k. 
Similarly the other Weather Model (WM) uses vectors of 
wind speed, w(j,k), cloud cover, c(j,k), and wind direction, 
q(j,k) for the previous 72 hours of weather. The Non-Linear 
Auto-Regressive model (NLAR) uses the previous 2 days of 
residual, x(j,k-1) and x(j,k-2). The Non-Linear Model (NLM) 
uses all the available inputs.  
 
4.3 Fusion algorithm 

 
The data fusion algorithm described in [10] seeks to minimize 
the variance of the fused forecast based on the covariance 
matrix of the sub-model forecasts. The cross-covariance of 
the forecasts is considered and the distribution of the forecast 
error noise is not restricted to Gaussian but merely required to 
be unbiased. A combined forecast, xf(j,k), of the load is 
created using a weighted average of the individual forecasts 
x1(j,k),…,x4(j,k)  [10]: 
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where Ai(j) is the weight applied to the forecast from sub-
model i for hour j, and is derived from the error covariance 
matrices of x1(j,k),…,x4(j,k) as:  
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derived from the error covariance of x1(j,k),…, x4(j,k): 
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where Pi,n(j) is the error covariance of sub-model i with sub-
model n for hour j. The auxiliary variables are then defined 
as: 
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The final weight A4 is determined using the constraint that 
xf(j) is unbiased:   
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Finally the fused load yf(i,j) is estimated by reintroducing the 
trend: 
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(8)                   ),(),(),( kjxkjdkjy ff +=  

5 Results 
Figure 5 below shows the Mean Absolute Percentage Error 
(MAPE)* for the sub-models and the fusion model using 
actual weather inputs in the novelty set. The fusion weights 
are calculated using the error covariance matrices of the sub-
models over the training set with actual weather inputs. As 
can be seen the fusion model performs best for each hour of 
the day.  
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Figure 5. MAPE as a function of hour of the day for fusion 
and sub-models (notes: novelty set, actual weather used) 
 
Table 4 below, summarise's the results in the training, 
validation and novelty data sets.  
 

Model Training 
Set (%) 

Validation 
Set (%) 

Novelty 
Set (%) 

NLAR 2.30 2.17 2.31 
TM 2.31 2.15 2.32 
WM 2.39 2.22 2.44 
NLM 2.21 2.08 2.20 

Fusion  2.19 2.07 2.17 
 
Table 4. The MAPE's of the models using actual weather 
inputs. 
 
Figure 6 below shows the Mean Absolute Percentage Error 
(MAPE) for the sub-models and the fusion model using 
pseudo-forecast weather inputs in the novelty set. The effect 
of weather forecast errors are now accounted for by 
calculating the error covariance matrices of the sub-models 
over the training set with pseudo-weather forecast inputs. As 
can be seen the fusion model again performs best for each 
hour of the day.  

                                                        
* The MAPE is the standard error measure in the field of 
STLF as it allows comparison between systems.  
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Figure 6. MAPE as a function of hour of the day for fusion 
and sub-models (notes: novelty set, pseudo-weather forecasts 
used) 
 

Model Training 
Set (%) 

Validation 
Set (%) 

Novelty 
Set (%) 

NLAR 2.30 2.17 2.31 
TM 2.36 2.20 2.35 
WM 2.40 2.24 2.46 
NLM 2.25 2.12 2.21 

Fusion 2.22 2.10 2.20 
 
Table 5. The MAPE's of the models using pseudo weather 
forecast inputs. 
 
Comparing Tables 4 and 5, it can be seen that the NLAR 
models are unaffected by weather forecast errors as they have 
no weather inputs. The other sub-models deteriorate with the 
inclusion of pseudo-weather forecast errors. The fusion model 
deteriorates with the inclusion of pseudo-weather forecast 
error but maintains it's position as the best model.  

6 Conclusion 
This paper examined the effect of weather forecast errors in 
load forecasting models. In Section 3, the distribution of the 
weather forecast errors was examined and it was found that a 
Gaussian distribution was not appropriate in this case. Rather, 
a structure exists which means that the weather forecast error 
will have a large effect on any aggregate weather variables.  
 
The structure of the weather forecast errors was then used to 
produce pseudo-weather forecast errors from 1986 to 2000 
which have the accuracy of current weather forecasts. This is 
important as, for example, weather forecasts from 1986 are 
less accurate than current weather forecasts and thus of no 
relevance in predicting future loads.  
 
A model fusion technique was then proposed for minimising 
the effect of weather forecast errors. In general weather 
forecast error causes approximately 1% deterioration in load 
forecasts of all models used here. This figure, though 
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important, is not as high as suggested by [5] and [8], for their 
systems. However, the fusion model was capable of adjusting 
the weighting of the sub-models to reflect that the weather 
based sub-models deteriorated relative to the AR model. 
Finally, the fusion model was shown to successfully separate 
the tasks of model training and rejecting weather forecast 
errors.  
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