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Abstract

Tree-based algorithms are quite popular in the machine learning area in general,
due to its many advantages: interpretability, flexibility, high prediction power, and
so on. They can be used to many different classification and regression problems,
and are in constant development. Because of that, there are many tree-based ma-
chine learning algorithms available, including both standard and Bayesian options.

In this thesis, we propose a few methodological extensions to tree-based models
including BART, which is the main Bayesian version of it. The list of methods
is: extending and generalizing the feature gain penalization idea for tree- based
algorithms; extending the BART model into HEBART, to deal with hierarchical
data, when there is a grouping variable present; lastly, extending HEBART to deal
with more complicated hierarchical data situations. The methods proposed here
aim to tackle important deficiencies of the algorithms in question, as they are very
popular and in high-demand at the moment.

The first method develops a new gain penalization idea that exhibits a general
local-global regularization for tree-based models, which is able to create much more
powerful and interpretable generalizations of the gain penalization method. One of
the main advantages of this technique is that it can be applied to all (non-Bayesian)
tree-based algorithms without loss of generality. The second method switches
topics a bit and deals with simple yet powerful extension of Bayesian Additive
Regression Trees which we name Hierarchical Embedded BART (HEBART). This
model allows for random effects to be included at the terminal node level of the set
of regression trees estimated in BART, making it a non-parametric alternative to
mixed effects models. At last, we propose yet a few more extensions to HEBART,

x



Abstract

namely, I) the Crossed Random Effects HEBART (CHEBART) which allows for
multiple grouping variables in the same model; II) the Nested Random Effects
HEBART (NHEBART) approach, which accounts for multiple nested grouping
variables, where each group level has sub-levels (or sub-groups).
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CHAPTER 1
Introduction

1.1 Motivation
Non-linear models have been extensively used for regression and classification prob-
lems. Trees are a particular case of such models, that recursively partition the
feature space, resulting in a local model for each estimated region (Breiman et al.,
1984), where the predicted value is a constant, which is numeric for regression
settings and a class for classification settings. Such models learn the partitions
directly from the training data, creating an adaptive basis function model (ABM)
(Murphy, 2012), which can be used to define all tree-based algorithms. Overall,
these methods are highly flexible, scale well as the number of samples and features
grow and have a competitive prediction power, which makes them an important
part of the toolkit of researchers and applied data scientists. Their algorithm sim-
plicity combined with a fairly easy interpretation and wide availability through
many packages for different software has made the tree-based models particularly
popular, also creating huge research interest in the topic.

There are many variations of tree-based models. We can say that the most popular
ones are the CART (Breiman et al., 1984) and Random Forests (Breiman, 2001a),
where one is derived from the other. The CART algorithm builds single decision
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1.1. Motivation

trees based on a pre-defined cost function to be minimized, in an attempt to un-
cover the underlying data generation process. Random Forests extend this method
by building many trees, where each tree is estimated with a slightly different re-
sample of the original dataset, and not all features are allowed to be examined
in each growing step. This technique works because single trees are known to
be high-variance estimators, where small changes in the training data can lead to
completely different results (Murphy, 2012). Random Forests increase the stability
of the predictions, as it uses the property that an average of many estimates has
a smaller variance than one estimate, and grow many trees from re-samples of the
data. Using bagged ensembles (Breiman, 1996a) such as Random Forests has been
proven to be extremely powerful and reliable as a machine learning prediction tool,
apart from making minimal assumptions about the data.

As tree-based models became very popular, its Bayesian approaches have also
been developed, where the first proposals (Chipman et al., 1998; Denison et al.,
1998) focus on algorithms analogous to CART. The Bayesian adaption comes from
adding a stochastic element to the fitting of the trees, meaning that all elements
of the model are assumed to have prior and posterior probability distributions.
In Bayesian analysis, it is already very common to attribute distributions to the
response variable, algorithm parameters, shrinkage factors, and so on. However,
one of the main novelties of Bayesian trees is the introduction of prior distributions
for the tree structures, which are quite complicated to define mathematically, and
also heavily data-dependent, but it is an element that makes all the difference in
the algorithm fitting.

Bagged approaches have also been created, with the most significant one being
the Bayesian Additive Regression Trees (BART), an algorithm based on the sum
of trees instead of averages. BART can be thought of as an additive model of the
form

f(x) = f1(x1) + · · ·+ f(xp), (1.1)

where each fj is a tree based on the set of features available and contributes to the
creation of the predictions for the response. This implies that the model is fitted
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1.1. Motivation

via a back-fitting algorithm, as each tree is estimated using the set of residuals from
the prediction created by the sum of all the other trees. The full algorithm is called
iterative Bayesian back-fitting Markov Chain Monte Carlo algorithm (Hastie and
Tibshirani, 2000; Brooks et al., 2011a), where all the hyperparameters are sampled
from their posterior distributions, and MCMC is applied where necessary. There
are priors for many aspects of the trees, such as the the tree structure, tree depth,
and terminal node parameters, which is one of the main reasons BART usually is
highly adaptive and has a good predictive performance.

Since it has been proposed, BART has drawn attention from many areas, especially
after so many computational resources have become widely available. There have
been plenty of applications of BART, including credit risk modelling (Zhang and
Härdle, 2010), causal inference (Hill, 2011; Green and Kern, 2012; Hill and Su,
2013), survival analysis (Bonato et al., 2011), spam-detection (Abu-Nimeh et al.,
2008), and time-series analysis (Prüser, 2019; Clark et al., 2021). BART has also
been used in many health-related areas, such as proteomic discovery (Hernández
et al., 2018), hospitals’ evaluation (Liu et al., 2015), preeclampsia and stillbirth
risk (Starling et al., 2019, 2020), and treatment effects for causal analyses (Santos
and Lopes, 2018). The many extensions to BART include a version to account
for polychotomous response (Kindo et al., 2016b), multivariate skewed responses
(Um, 2021), density regression (Orlandi et al., 2021), count/semi-continuous zero-
inflated data (Linero et al., 2020a; Murray, 2021), high-dimensional data (Linero
and Yang, 2018a; He et al., 2019), and heteroscedastic data (Pratola et al., 2020b),
as well as quantile regression (Kindo et al., 2016a), and semi-parametric models
(Zeldow et al., 2019; Tan and Roy, 2019). Varying coefficient models have also
been developed (Deshpande et al., 2020), which tend to create a more sophisticated
BART model.

This thesis presents extensions to both tree-based methods in general and specifi-
cally for BART: i) the first proposed method is for overcoming a limitation of tree
algorithms, namely its inability to automatically perform feature selection, and
ii) a few different extensions to model hierarchical data with BART, e.g. when
we have one or more grouping variables and are interested in accounting for their
effect on the process that generates the data.

3



1.2. Outline of the thesis

The first method proposed a generalization of gain penalization in tree-based mod-
els for feature selection. This generalization is made in two senses: for the penal-
ization methodology and in the algorithm type. For the algorithm, this means
that the regularization method can be applied to any tree-based algorithm, be
it either single trees such as CART, or elaborated ensembles like Bagging and
Random Forests. As for the penalization method, we generalize it by proposing a
gain penalization based on a weighting parameter combined with a certain func-
tion, usually based on some characteristic of the feature or its relationship to the
response. As it will be detailed later on, we propose a local-global form of pe-
nalization, where the equation balances how much all features should be jointly
penalized and how much will it be due to a local function that is manually set.
This formulation has inspiration from the use of priors made in Bayesian methods
since we intend to introduce prior knowledge regarding the importance of each
feature in the model.

In a second scenario, the BART extensions for hierarchical data merges the ideas
from traditional Bayesian hierarchical modeling (Gelman and Hill, 2006) and linear
mixed effects models (Pinheiro and Bates, 2000) with BART. Overall, we allow the
trees to have extra splits on each terminal node, corresponding to the specification
of the grouping variables. Thus we introduce intra-group node parameters in
BART, and we refer to these parameters as the sub-terminal node levels. The
new parameters allow us to have a group-specific prediction for each node, and the
usual overall terminal node prediction. The flexibility of this structure means that
there is no requirement for the user to specify where the random effect is included,
for example as an intercept or as a regression slope. These extensions open up a
multitude of possibilities for BART, as they can be applied to longitudinal data,
repeated measures data, multilevel data, and block designs, to cite a few.

1.2 Outline of the thesis
The remainder of this thesis is organized as follows. In Chapter 2, we provide some
background on the tree-based algorithms in general, make definitions and set the
notation used throughout the thesis. We present some terminology and how trees
are learned under the CART algorithm, discuss the Random Forests algorithm
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1.2. Outline of the thesis

and some of its specific limitations, and then move on to explaining the BART
theory. The following chapters are composed of three journal articles created for
this thesis, the first one being more general on tree-based models and the two other
ones more specific to BART. The remainder of the thesis explains our conclusions
and possible extensions to the methods proposed here.

In Chapter 3, we extend and generalize the feature gain penalization idea for tree-
based algorithms (Deng and Runger, 2013). In the first moment, we show how the
previous methods do not perform sufficient regularization and tend not to select
the best features possible. Such methods often exhibit sub-optimal out-of-sample
performance, especially when correlated features are present, which is one of the
main problems we want to tackle. Instead, we develop a new gain penalization idea
that exhibits a general local-global regularization for tree-based models, which is
able to create much more powerful and interpretable generalizations of the gain
penalization method. This new technique allows for full flexibility in the choice
of feature-specific importance weights, while also applying a global penalization
to all the features. We validate our method on both simulated and real datasets,
exploring how the hyperparameters interact with the final fit of the model. For the
implementation, we provide our method as an extension of the popular R (R Core
Team, 2018) package ranger (Wright and Ziegler, 2017), a package that is most
commonly used for random forests but that is able to run any of the tree-based
methods mentioned here.

Chapter 4 changes the topic a bit, and proposes a simple yet powerful extension
of Bayesian Additive Regression Trees which we name Hierarchical Embedded
BART (HEBART). As briefly discussed before, the proposed model allows for
random effects to be included at the terminal node level of the set of regression
trees estimated in BART. This simple addition makes HEBART a non-parametric
alternative to mixed effects models which avoids the need for the user to specify
the structure of the random effects in the model. One of the main advantages of
our model is that it is able to maintain the prediction and uncertainty calibra-
tion properties of standard BART. Using simulated and real-world examples, we
demonstrate that this new extension yields superior predictions for some of the
standard mixed effects models’ example data sets, and yet still provides consistent
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1.2. Outline of the thesis

estimates of the random effect variances. We also provide the full implementation
as an R (R Core Team, 2018) package and the code for the experiments shown
here.

Finally, Chapter 5 discusses two extensions to our own HEBART algorithm. The
first one is the Crossed Random Effects HEBART (CHEBART) which allows for
multiple grouping variables in the same model, where a proportional number of
trees uses each of such variables. The second one is the Nested Random Effects
HEBART (NHEBART) approach, that accounts for multiple nested grouping vari-
ables, where for each level of the groups have sub-levels (or sub-groups). These
two extensions are analogous to some of the more popular model structures used
in LME, which also allows for crossed and nested random effects, as those are quite
common modeling tasks. In the mentioned section, we explain the mathematical
definitions of each model and provide their corresponding proposed algorithms.
Their performance on both simulated and real data sets that are commonly used
in the traditional hierarchical modeling literature is demonstrated and it is satis-
factory for both cases. In addition, both models can better handle wrong specifi-
cations on the model structure, in comparison to standard models such as linear
mixed models, and do not easily yield estimation errors. For both algorithms, we
also provide the full implementation as R (R Core Team, 2018) packages, which
we intend to aggregate into the main HEBART package, concentrating all similar
models in only one source.
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CHAPTER 2
Tree-based algorithms

In this chapter, we will present and discuss the main features of the most common
tree-based algorithms. We first introduce decision trees under the CART recursive
partitioning algorithm, which was one of the first tree-based models created. Then
we move on to the Random Forests algorithm, one of the most common examples
of a tree-based bagged model and the main basis for the topic of the following
chapter. Finally, we explain the Bayesian version of trees and its correspondent
BART algorithm, which composes the theme of the following chapters of this
thesis.

2.1 Tree-based algorithms
Tree-based algorithms are a particular case of non-linear models with adaptive
basis functions that recursively partition the feature space, resulting in a local
model for each estimated region (Breiman et al., 1984). To better explain what
this means in practice, let us define the features set as a matrix with p columns
and n rows, where each i-th row is composed by the p-dimensional vector xi =
(xi1, xi2, . . . , xip), where i = 1, . . . , n. We also define the target variable as a vector
of length n, composed by the samples yi ∈ y.
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Now, the best approach to explaining a tree-based algorithm and its the growing
process is graphically. Consider Figure 2.2, which depicts a simple decision tree.
In panel (a) of the image, we can see that the root node of the tree captures the
rule ‘is the value of feature x1 less than a certain defined threshold t1?’. If yes,
the x1 samples that satisfy this condition will be allocated into the left child of
this node, while the other will be allocated to the right node. This creates two
new feature regions, called R1 and R2. On the next step R2 is separated into two
regions, which are based on the decision of whether x2 is less than threshold t2,
generating two nodes that define R2 and R3. For a regression case, which is our
focus on this thesis, a mean response is associated to each of the estimated regions,
resulting in a piecewise constant surface, shown in panel (b) of the same figure.
We can see what this procedure does to the feature space, breaking it into smaller
regions with their own prediction value. With this, we can more formally define a
tree-based algorithm as a function:

f(x) = E[y | x] =
R∑

r=1
wrI(x ∈ Rr) =

R∑
r=1

wrϕr(x; vr), (2.1)

where Rr is the r-th region, wr is the prediction given to this region, ϕr is the
r-th basis function that is learned from the data, and vr represents the splitting
feature chosen and the corresponding splitting value.

These rules can be estimated using a greedy procedure that computes a locally
optimal maximum likelihood estimator by finding the splits that lead to the min-
imization of a cost function. For regression, the cost function of a decision D is
frequently defined as cost(D) = ∑

i∈D(yi − ȳ)2, where ȳ = (∑i∈D yi)|D|−1 is the
mean of the observations in the specified region. The tree continues to deepen
until some stopping criterion is reached, usually if there are no more significant
changes in the cost function given by the addition of new splits.

The generalization to classification settings comes from replacing the mean re-
sponse by an empirical distribution of class labels in each terminal node. Still con-
sidering Figure 2.2, this algorithm could also be used for predicting a class target,
where the predicted value in each region would be the most common class. With
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Figure 2.1: Gini Index and Entropy functions for a 2-class scenario: both functions
are sensitive to class probabilities changes.

this, the corresponding cost function switches to cost(D) = 1 − 1
|D|
∑

i∈D I(yi=c),
where D represents the samples in each terminal node and and c is a target
class. This function is called the misclassification rate and is what we try to
minimize when fitting such an algorithm. As the classification setting has sparked
more interest in the machine learning community, there are a few more options
for cost functions, including the entropy: H(π̂) = −∑C

c=1 π̂c log(π̂c), which is a
very common function in information theory, and even the Gini index, defined as
Gini = 1 − ∑c π̂2

c . In Figure 2.1, we have an example of both functions, where
we can see that, in a 2-class scenario, the Gini Index and Entropy are sensitive to
class probabilities changes, meaning that they are more reliable is most settings.
In contrast, the error rate can easily produce very similar results for very different
fits, where one might be preferable over the other, often leading to sub-optimal
solutions.

The above approach is known as a CART model (Breiman et al., 1984). Tree-based
algorithms are very popular both in the statistics and machine learning communi-
ties due to their many advantages. The algorithms are usually not computationally
expensive and the results are logically interpretable. The binarization of decisions
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in a tree is even thought to be similar to the way humans make decisions, which
gives the trees an extra appeal. However, the simplest models also come with a few
drawbacks. For instance, CART often has lower predictive power when compared
to other popular algorithms and is usually not able to perform feature selection
very well. A more dramatic issue is its instability in relation to small changes
in the data, leading to completely different fits and interpretations of the model.
More powerful approaches to tree-based models have been proposed and are now
widely used, such as the Random Forest algorithm, which we will discuss in the
following section.

(a)

x1 <t1

R1 x2 <t2

R2 R3

(b)

Figure 2.2: An example of a decision tree and its actions in feature space. In panel
(a) of the image, we can see that the root node of the tree contains the rule ‘is the
value of feature x1 less than a certain defined threshold t1?’. If yes, the x1 samples
that satisfy this condition will be allocated into the left child of this node, while
the other will be allocated to the right node. Panel (b) shows how this procedure
splits the feature space into disjoint regions, each with its own predicted value.

2.2 Random Forests
Single CART trees are famous for being high-variance estimators. One approach
to overcome the high variance issue is to use a bagged ensemble, which combines
many different decision trees in a pre-specified way. More specifically, the Random
Forests algorithm uses the mean of the tree estimators as its final prediction, or
the majority vote of all trees estimated in a classification setting.
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Random Forests also contain other differences in comparison to CART. First,
they use a set of bootstrap resamples of the data (chosen randomly and with
replacement) instead of the original set, so each fit will be performed in datasets
slightly different from the starting one. Second, they only allow a subset m of the
features to be the candidates in each tree split, avoiding the creation of excessive
correlation between the estimated trees. The final estimator can be described by
the bagged ensemble of the form (Breiman, 1996b)

f̂(x) =
Ntree∑
n=1

1
Ntree

f̂n(x), (2.2)

where f̂n corresponds to the prediction from the n-th tree.

All these alterations are made such that the Random Forest algorithm will produce
more reliable and accurate results, which has been often seen to be true in the lit-
erature. There are many examples of the successful application of Random Forests
in the most diverse fields (e.g. Goldstein et al., 2010, 2011; Pauly, 2012; Ziegler
and König, 2014; Alexander et al., 2014; Belgiu and Drăguţ, 2016; Cano et al.,
2017), and the original paper (Breiman, 2001a) has received over 100,000 citations
in approximately 20 years, even more than the older CART paper (Breiman et al.,
1984).

There are fewer papers discussing the properties of Random Forests, such as its
calculation of feature importance values. To explain what this metric represents,
let us first define the gain of a new split in a single tree as a normalized measure
of the cost reduction, given by:

∆(i, t) = cost(D)−( |DLN(i,t) |
|D|

cost(DLN(i,t)) +
|DRN(i,t)|
|D|

cost(DRN(i,t))
)

,
(2.3)

for feature i at splitting point t, while D is related to the previously estimated
split, with LN = (left candidate node) and RN = (right candidate node). In tree
ensembles, the feature importances values are averaged over all the trees so that:
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Impi = 1
Ntree

Ntree∑
n=1

∆(i)n, (2.4)

where the global importance value for a feature i is given by accumulating the gain
∆(i) = ∑

t∈Si
∆(i, t), where Si represents all the splitting points used in a tree for

the ith feature.

The issue here is that performing feature selection and dimensionality reduction
in Random Forests becomes non-trivial, as the feature importance metric is not
always reliable. A common problem is the underdetection of noisy or correlated
features, which can badly influence the results (Strobl et al., 2008). Consider,
for example, the results depicted in Figure 2.3, which corresponds to the fit of
a random forest algorithm to the popular Iris dataset (Anderson, 1936), where
the target variable is the classification in one of the flower species (setosa, versi-
color or virginica), based on sepal length and width, and petal length and width.
For demonstrating the feature selection issue, we also added 10 repetitions of the
Sepal.Length feature to introduce multicollinearity to the data. In part (a) of
Figure 2.3, we can see that feature importance gets divided into the replicas of
Sepal.Length, when ideally the algorithm should have attributed a high impor-
tance to only one of such features, as they are exactly the same. This problem is a
natural consequence of the way Random Forests are built, as it has no strategy to
detect whether features are too similar and the algorithm will use whatever data
it has been fed. In part (b) of the same Figure, where we have as many points in
the plot as there are repetitions of the Sepal.Length variable in the model, we see
how the importances decreases for each variable when this number of repetitions
increases, making the feature importance split even more evident. If this model
were good at picking up on highly correlated features, there should only be one
repetition of Sepal.Length being used (or, in other words, having the highest im-
portance value) in the final algorithm, but that is not what happens at all. In
such a situation, if we were performing feature selection by hand having a certain
importance threshold as a reference, we would probably be selecting way too many
correlated features and bringing irrelevant information into our conclusions when
doing inference about this model.

12



2.2. Random Forests

(a) (b)

Figure 2.3: Demonstration of feature importance behavior in the presence of mul-
ticollinearity. In (a) we have the average feature importance for each feature, when
there are many repetitions of Sepal.Length in the model. There is a clear split in
the importance of the features, when ideally we should have only one of them as
the most important one. In (b), we can see how the importances decrease when
the number of Sepal.Length repetitions increase. In this case, if we were to set a
feature importance threshold to discard features, the results could be highly mis-
leading.

Naturally, the feature selection problem has already been studied and discussed
by a few authors. For example, in Deng and Runger (2012), the authors first
discuss the regularization of Random Forests by gain penalization. The Regularized
Random Forest (RRF) is a way of weighting the gains of each tree split during the
growing part of the algorithm. In this setting, the regularized gain is defined as

GainR(Xi, t) =

λ∆(i, t), i /∈ U and

∆(i, t), i ∈ U,
(2.5)

where U is the set of indices of the features previously used, Xi is the candidate
feature, and t the candidate splitting point. The λ ∈ (0, 1] hyperparameter is the
penalty coefficient that controls the amount of regularization each feature receives.
When this penalization is applied a feature gain is weighted down only if the feature
is new to the whole ensemble. The gain penalization technique has a memory of
which features were already used in the algorithm, as it tries to avoid using new
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features in deeper splits.

In the initial papers λ was treated as a constant value for all the features but this
is quite crude and might not perform optimally. In an ideal setting, there should
be a regularization parameter for each feature that represents or is connected to
the information they carry about the target. In a more recent paper (Deng and
Runger, 2013), the authors modify the gain penalization idea by introducing the
Guided RRF. This method consists of first running a Standard Random Forest
(mtry ≈ √p, number of trees = 500) and producing an importance measure for
each feature and scaling this measure, in order to find Imp

′
i = Impi

maxP
j=1Impj

where
Impi is the importance measure calculated for the i-th feature in the Random
Forest. Now, the normalized value defined as Imp

′
i becomes a component of the

penalization factor, in the form λi = (1−γ)+γImp
′
i, being now a mixed weighting

function.

The ingenuity of this new technique relies on the introduction of a feature-based
penalization that now depends on more informed values. However, the usage of a
random-forest based Imp

′
i, or the feature-based part of the penalization function,

comes with a few problems. This initial random forest will bring with it the biases
we discussed above, such as giving similar importance to highly correlated features.
In addition, the paper does explore other methodologies or extensions, such as the
influence of the Random Forests hyperparameters including the number of trees
and the number of variables to apply to each split.

This is the main motivation for the work we propose in Chapter 3. This chap-
ter explains a generalization of gain penalization in tree-based models for feature
selection, where we extensively explore the properties of our generalization.

2.3 Bayesian Additive Regression Trees
The initial Bayesian Regression Tree model was first proposed over 20 years ago
(Chipman et al., 1998), and consists of an algorithm that fits a set of CART
decision trees using Bayesian inference. Figure 2.4 shows a simple decision tree
based on a single rule x1 < t1. In Bayesian CART, instead of receiving one
single predicted value, each terminal node is assumed to have a full probability
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x1 < t1

µ1 µ2

Figure 2.4: A split in a Bayesian tree, where each node has its own probability
distribution.

distribution. In the image, the center parameters for the node distributions are
µ1 and µ2, and the scale parameters can either be varying or be the same for
all nodes. While the main idea of this model remains very similar to standard
CART, the fitting algorithm follows common Bayesian practices. All parameters,
including the tree structures, are sampled from posterior distributions, which can
be closed-form (when they are available) or sampled via Markov Chain Monte
Carlo methods (Brooks et al., 2011b).

However, in this Chapter we will focus more on the more advanced Bayesian
Additive Regression Trees (Chipman et al., 2010b) approach. This model assumes
that the generating system of a continuous random variable y = [y1, . . . , yn] can be
approximated by a sum of regression trees, which increases its prediction capacity.
In this model, the root nodes do not simply have a predicted value, but instead
are assumed to have a probability distribution (the same as BCART), as do all
the other elements of the algorithm, but the final posterior for each observation
is composed of a sum of distributions instead of a single value. Mathematically
speaking, in a standard regression setting the BART model is usually written as:

yi =
P∑

p=1
G(Xi; Tp, Θp) + ϵi, ϵi ∼ N(0, τ−1), (2.6)

for observations i = i, . . . , n, where P is the fixed number of trees, Xi represents
the set of covariates; Tp is a tree structure, and Θp represents a set of terminal node
parameters. The function G maps the tree structures into the set of covariates
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Xi and returns a terminal node prediction from Θ, by passing all the values in
the vector Xi through the tree structure Tp to get the predicted value. Note that
now we have a sum of trees instead of an average, which would be the case in the
random forests algorithm. Similar to a bagged ensemble, each tree still behaves
as a weak learner, but we are now working with a sum of probability distributions
instead of an average of any form. In a regression case, the set of node parameters
Θp consists of a of µp,l parameters for each of the l = 1, . . . , Lp terminal nodes in
tree p. These values provide the tree-level predictions, which are summed together
to create an overall predicted value. In general, the residual term ϵ is assumed to
follow a Normal distribution with residual precision τ .

We write the set of all trees and parameters as T and Θ respectively. The joint
posterior distribution of the trees and all the parameters is then given by:

P (T , Θ, τ |X, y) ∝
[

P∏
p=1

bp∏
b=1

∏
i:xi∈Dp,b

p(yi|xi, Tp, Θp, τ)
]
×
[

P∏
p=1

bp∏
b=1

p(µp,b|Tp)p(Tp)
]
p(τ),

(2.7)

where p(yi|xi, Tp, Θp, τ) is the normally distributed likelihood as defined in Equa-
tion 5.1, and D represent the regions in the features space (e.g. tree nodes) created
by each tree (as demonstrated in Figure 2.2). The term p(µp,b|Tp) is the prior dis-
tribution on the terminal node parameters across each terminal node b in each
tree p, which is usually taken to be a Normal distribution, leading to a Normal
posterior as well. In addition, p(Tp) is the prior distribution on the tree structure
(no closed-form, as the number of possible tree structures grows rapidly), and p(τ)
is the prior distribution on the residual precision, commonly taken as a Gamma
distribution.

As we have mentioned before, some of the elements of the algorithm can be quite
fiddly to understand. One example is the prior distribution on the trees proposed
by Chipman et al. (2010b), which involves applying a separate probability term
for each node in the tree. Each of those terms considers both the probability of a
split as well as the probability of a new splitting variable being chosen. With this,
for an entire tree Tp, it is common to set:
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P (Tp) ∝
∏

η∈LT

(1− PSP LIT (η))
∏

η∈LI

PSP LIT (η)
∏

η∈LI

PRULE(ρ|η), (2.8)

where LT and LI represent the sets of terminal and internal nodes, respectively,
and ρ represents a generic splitting value. The probability of a node being non-
terminal is given by PSP LIT = α(1 − dη)−β, where dη denotes the depth of the
node η. The recommended values for the hyperparameters are α ∈ (0, 1) and
β > 0, which control the depth and ’bushiness’ of the trees. For the probability of
new splits being added to the tree, we have PRULE(ρ|η, T ) = 1

padj(η)
1

nj.adj(η) , where
padj(η) represents how many predictors are still available to split on in node η,
and nj.adj(η) represents how many values in a given predictor are still available
(consequently, one value depends on the other).

The joint prior distribution for the terminal nodes and overall parameters in the
standard regression case is denoted by p(Θ, T ). This distribution is created given
a prior with a standard conjugate form:

µ1, . . . , µb|τµ, µµ, T ∼ N (µµ, τ−1
µ ),

where τ−1
µ and µµ are chosen such that a high density of this distribution is appor-

tioned to the range [ymin, ymax] interval, by setting Pµµ − k
√

P (τ−1
µ ) = ymin and

Pµµ + k
√

P (τ−1
µ ) = ymax, for some value of k. This strategy is in place due to the

idea that E[Y |X] is very likely within the [ymin, ymax] interval, so the induced prior
reflects that. In addition, the response variable y is usually standardized before
the model is run, allowing for reasonable guesses as to the hyper-parameter values
of µµ and τµ, though these too can be estimable parameters.

The residual precision prior is set as τ ∼ Gamma(ν/2, γν/2), where γ and ν

are fixed beforehand. An oft-used tactic is to set the two hyper-parameters such
that the BART residual precision has a high probability of being greater than an
equivalent precision value from a standard linear regression model applied to the
same data (quantiles such as 0.75, 0.90 and 0.99 are frequently used). The idea
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behind this prior setup is to put a high density on precision values that would at
least be better than a linear model.

Since its creation, BART has been applied in a wide variety of different application
areas. The model has been shown to be useful for credit risk modeling (Zhang and
Härdle, 2010), survival data analysis (Sparapani et al., 2016, 2020), ecology and
evolution modelling (Carlson, 2020), weather and avalanche forecasting (Blatten-
berger and Fowles, 2014), and genetics (Waldmann, 2016). A popular approach is
its use in causal inference (Hill, 2011; Hahn et al., 2020), where BART produces
accurate estimates of average treatment effects and is competitive even with the
true data generating model.

Beyond applications, many fundamental extensions to the standard BART model
have been proposed. Some of the first include adapting BART for categorical,
count, and multinomial regression (Murray, 2021; Kindo et al., 2016b) and quantile
regression (Kindo et al., 2016a). This was followed by the proposal of BART that
adapts to smoothness and sparsity (Linero and Yang, 2018b), models for high-
dimensional data and variable selection (Linero, 2018a), BART for zero-inflated
and semi-continuous responses (Linero et al., 2020b) and an extension proposed by
Hernández et al. (2018), where the authors combine BART with Bayesian Model
Averaging to obtain posterior distribution more efficiently when there is a large
number of variables available. More recently BART has been extended for use
with heterocedastic data (Pratola et al., 2020a), for the estimation of monotone
and smooth surfaces, (Starling et al., 2020), varying coefficient models (Deshpande
et al., 2020), semiparametric BART (Prado et al., 2021b), and a combination of
BART with model-trees (Prado et al., 2021a). As this is a fairly new class of
machine learning algorithm, progress on the theoretical performance of BART has
only just begun. Some of the mathematical properties of BART, including a deep
review of the BART methodology can be found in Linero (2017), and some more
general theoretical results in Ročková and van der Pas (2020); Ročková and Saha
(2019).
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2.3.1 The BART fitting algorithm
The BART model is fully estimated via a backfitting MCMC algorithm (Hastie
and Tibshirani, 2000), which holds all other trees constant while the current one
is being updated, considering that the final model is based on a sum of trees. This
involves calculating the full conditional distribution P (Tp, Θp|τ, X, y, T(p), Θ(p)),
where T(p) represents the set of all trees except for tree p (here, the definition of
Θ(p) is analogous). With this strategy, the conditional distribution depends on
(X, y, T(p), Θ(p)) only via the current state of the residuals, defined as

Ri,p = yi −
∑
t̸=p

G(Xi; Tl, Θl),

meaning these partial residuals include the sum of the predictions for all trees
except for tree p. The choice of prior distributions on the trees and terminal
nodes allows for the term P (Rp|Tp, τ) to be calculated in closed form, naturally
avoiding the need for trans-dimensional MCMC methods, which greatly simplifies
the resulting fitting algorithm.

BART identifies optimal trees in a completely different way than that of standard
decision tree models. Due to the lack of a closed-form posterior distribution, the
new trees are proposed using a Metropolis-Hastings sampler (Brooks et al., 2011b).
Each candidate tree is obtained via one of the 4 available steps: the GROW move,
where a terminal node is selected uniformly from the set of terminal nodes and split
into two, with a new split variable and split value chosen analogously (uniformly);
the PRUNE move, where a pair of terminal nodes with a common parent are
collapsed together and that node stops existing in the tree; the CHANGE move,
where a splitting rule is chosen uniformly across the tree and is changed to a new
split variable and split value; and finally, a SWAP move, where a parent-child pair
of internal nodes is chosen uniformly and swapped in the tree. Naturally, the most
common steps are GROW and PRUNE, which are usually more likely to result in
an accepted move. However, the movement choice requires probabilities for each
move, that can be equal or depend on prior beliefs about moves that should be
prioritized in the algorithm (e.g. it might not be efficient to give equal probabilities
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to all move types).

In the GROW move, the means by which the splitting variable and value are
chosen are slightly different across the implementations of BART in the literature.
For instance, instead of sampling everything uniformly, we can put a Dirichlet
hyperprior on the splitting features and rules (Linero, 2018b), such that some
features are more/less likely than others. With this, the algorithm can keep track
of which features are most useful for splits and avoid using too many variables.

In summary, the BART algorithm samples from P (Tp, Θp|τ, Rp) via two main steps:

1. Proposes a new tree through one of 4 proposal moves and calculate P (Tp|τ, Rp) ∝
P (Tp)P (Rp|Tp, τ), and

2. Sample a new set of terminal node parameters via P (Θp|Rp, Tp, τ), for the
new tree

However, the act of accepting or rejecting a tree move depends on its likelihood
in relation to the previous tree. The MCMC algorithm allows us to evaluate and
compare those probabilities, and stochastically decide on which trees to accept or
reject. The probability P (Tp|τ, Rp) is evaluated for the new and old trees, and
compared with:

α(Tp, T ⋆
p ) = min

{
1,

p(T ⋆
p |X, y)q(T ⋆

p → Tp)
p(Tp|X, y)q(Tp → T ⋆

p )

}
, (2.9)

where q(Tp → T ⋆
p ) denotes the transition probability from tree Tp (the previous

tree) to T ⋆
p , which is the proposed new tree (vice-versa for q(T ⋆

p → Tp)). More
specifically, for a GROW move we have:

q(Tp → T ⋆
p ) = P(grow)

b
,

q(T ⋆ → T ) = P(prune)
w⋆

, (2.10)
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where P(grow) is pre-defined (either as uniform between all available moves, or
given e.g. a Dirichlet prior), b is the number of terminal nodes in Tp, from which
we can grow a new node. Lastly, w⋆ and w are the numbers of internal nodes
which are parents of two terminal nodes in T ⋆

p and Tp, respectively (Kapelner and
Bleich, 2016). Analogously, for a PRUNE move, we have:

q(Tp → T ⋆
p ) = P(prune)

w
,

q(T ⋆ → T ) = P(grow)
b− 1 , (2.11)

where b and w are as defined before. In a CHANGE or SWAP moves, the transition
kernels cancel out as the ratio of the q(·) is always 1 (Chipman et al., 1998). Finally,
the full BART algorithm is described in Algorithm 1.

Algorithm 1 BART algorithm
1: Input: y, X, and number of trees P .
2: Start: {Tt}T

1 and set all hyperparameters of the prior distributions.
3: for (p = 1 to P ) do
4: Compute Rp = y−∑P

j ̸=p G (X; Tj, Θj).
5: Propose a new tree T ⋆

p via a GROW, PRUNE, CHANGE, or SWAP move.
6: Compare the current (Tp) with the proposed tree (T ⋆

p ) trees via a
Metropolis-Hastings step:

α
(
Tp, T ⋆

p

)
= min

{
1,

p(T ⋆
p | Rp,σ2)q(T ⋆

p →Tp)
p(Tp | Rp,σ2)q(Tp→T ⋆

p )

}
.

7: Sample u ∼ Uniform (0, 1):
If α

(
Tp, T ⋆

p

)
> u, set Tp = T ⋆

p .
8: Update all terminal node parameters µp,b via p(µp,b|Rp, Tp, τ), for b =

1, . . . , bp.
9: end for

10: Update τ via p(τ |T , Θ, y).
11: Update ŷ = ∑P

p=1 g (X, Tp, Θp).

Lastly, it is worth discussing BART for a classification case, where the outcome
variable (or target variable) can be either binary or multiclass (Kindo et al., 2016b;
Murray, 2021). For the binary case, the difference is that we introduce a latent

21



2.4. Conclusions

variable zi ∼ N(∑P
p=1 G(xi; Tp, Θp), 1), i = 1, · · · , n where yi = 1 if zi > 0 and

yi = 0 otherwise, since the Normal distribution is symmetric. This means that we
use the Normal latent variable as a way of mapping its continuous values to the
binary space, and with that, modelling a class feature with BART. This model is
based on the standard normal cumulative distribution function, as we can use it
to create P (yi = 1|xi) = Φ

(∑P
p=1 G (X, Tp, Θp, )

)
, and the precision parameter is

more often set to 1. In this case the cumulative distribution function works like a
link function, mapping the values estimated by G(·) to the binary support. As for
the algorithm, a few changes are required for this model to work, such as defining
priors on the center parameters µ that assign high probabilities to the interval
Φ(−3) and Φ(3), since we are using the Normal distribution. The partial residuals
become based on zi instead of yi, and are defined as Rt = z−∑P

j ̸=p G (X, Tj, Θj).

2.4 Conclusions
Tree-based machine learning algorithms provide a powerful and intuitive frame-
work for tackling complex prediction tasks, balancing interpretability and predic-
tive performance. Methods such as decision trees, random forests, and BART
the inherent flexibility of trees, enabling them to capture nonlinear relationships
and interactions within the data. Bayesian Additive Regression Trees (BART)
extend the overall concept of tree-based methods by incorporating a Bayesian
framework, offering robust uncertainty quantification and improved prediction ac-
curacy. BART combines the strengths of tree-based methods with probabilistic
modeling, making it a valuable addition to the machine learning toolkit for both
practitioners and researchers seeking to balance interpretability, accuracy, and un-
certainty estimation in predictive modeling. The remainder of this thesis explores
several extensions of BART to more complex scenarios, enabling this powerful al-
gorithm to tackle a wider range of problems. These enhancements aim to expand
BART’s applicability, making it a versatile tool for modeling and solving diverse
challenges in various domains.
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CHAPTER 3
Generalizing Gain Penalization

for Feature Selection in
Tree-based Models

3.1 Introduction
In many Machine Learning problems, features can be hard or economically expen-
sive to obtain, and some may be irrelevant or poorly linked to the target. For
these reasons, reducing the number of features is an important task when building
a model, and benefits the data visualization and model performance, whilst reduc-
ing storage and training time requirements (Guyon and Elisseeff, 2003). However,
for tree-based methods, there is no standard procedure for feature selection or
regularization in the literature, as one would find for Linear Regression and the
LASSO (Tibshirani, 1991) for example. Performing feature selection in trees can
be difficult, as they struggle to detect highly correlated features and their feature
importance measures are not fully trustworthy (Louppe, 2014). Several methods
to tackle this problem have been recently proposed, including (Diaz-Uriarte, 2007),
(Friedman and Popescu, 2008), and (Deng and Runger, 2012).

In (Friedman and Popescu, 2008), the authors treat trees as parametric models
and use procedures analogous to LASSO-type shrinkage methods, by penalizing
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the coefficients of the base learners and reducing the redundancy in each path
from the root node to a leaf node. However, their selected features can still be
redundant, since the focus is on reducing the number of rules instead of the number
of features.

On a different approach we have (Diaz-Uriarte, 2007), which focuses on gene se-
lection specifically for classification methods. The authors propose an iterative
tool that eliminates the least important features (in fractions of the number of
features, p) and updates the algorithm at each iteration. The complication is that
the method will always be either computationally expensive, if p is low, or will
eliminate too many features at once, which can exclude useful or interaction fea-
tures. Besides, the method does not generalize to other dataset contexts or tasks,
such as regression.

In the contrasting approach of (Deng and Runger, 2012) and (Deng and Runger,
2013), the authors regularize Random Forests by gain penalization. Their method
consists of letting the features only be picked by a Random Forest if their penalized
(weighted) gain is still high. They make recommendations on how to set the
penalization coefficients and present their implementation in the RRF package for
R (R Core Team, 2018). However, the authors give no further guidelines on how
to generalize their method for other tree-based models and penalization types and
do not explore the influence of hyperparameters on the algorithm.

Given that, in this work, we develop a gain penalization approach that is fully
generalizable and widely applicable, in opposition to those mentioned above. In
particular, our main contributions are:

• We provide a general gain penalization procedure for tree-based models,
which allows for a combination of local and global regularization parameters.

• We allow for the bespoke local regularization functions to be domain-specific,
which introduces a prior-like component to feature selection in tree-based
models.

• We propose different techniques for setting the regularization parameters and
discuss how they affect the final results, with real and simulated examples.
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• We generalize gain penalization to multiple tree-based methods (CART, Bag-
ging, Random Forests), for both regression and classification.

• We make available a faster implementation of the gain penalization method,
included in the very widely used ranger package.

The format of this paper is structured as follows. Section 3.2 explains the problem
setup, followed by the generalization of gain penalization in Section 3.3. In Section
3.4, we present the results for simulated and real data. Section 3.5 explains the
implementation details, and Section 3.6 has the conclusions and future work.

3.2 Problem setup
Consider a set of training target-feature pairs (Yi, xi) ∈ R×Rp, with i = 1, . . . , N

indexing the observations with p being the total number of features. In general,
we can estimate an f̂ that describes how the features xi relate to Yi and use it
for prediction or inference. However, not all features need to be involved in f̂ .
Especially for tree-based models, the occurrence of noisy or correlated features
can badly influence the results (Strobl et al., 2008). Given that, our interest here
relies on estimating f̂ such that it will only use the matrix xA, composed by the
sub-vectors of x ∈ Rp indexed by A, A ⊂ {1, . . . p}, which should contain the
optimal set of features (it produces similar or equal prediction errors as the full
set of features), that is potentially of a much smaller dimension.

3.2.1 Trees
Non-linear models have been extensively used for regression and classification prob-
lems. Trees are a particular case of such models, that recursively partition the
feature space, resulting in a local model for each estimated region (Breiman et al.,
1984). They learn the features directly from the training data, creating an adaptive
basis function model (ABM) (Murphy, 2012) of the form

f(x) = E[y | x] =
R∑

r=1
wrI(x ∈ Rr) =

R∑
r=1

wrϕr(x; vr), (3.1)
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where Rr is the r-th region, wr is the prediction given to this region and vr

represents the splitting feature chosen and the corresponding splitting value. These
algorithms are fitted using a greedy procedure, that computes a locally optimal
maximum likelihood estimator by finding the splits that lead to the minimization
of a cost function. For regression, the cost function of a decision D is frequently
defined as cost(D) = ∑

i∈D(yi − ȳ)2, where ȳ = (∑i∈D yi)|D|−1 is the mean of the
observations in the specified region, while for classification this function is replaced
by the misclassification rate, or cost(D) = |D|−1∑

i∈D I(yi ̸= ŷ).

Since trees are in general considered non-probabilistic algorithms, one way of mea-
suring the importance of each feature is to calculate and aggregate their split gains.
The gain of a new split is a normalized measure of the cost reduction, given by

∆(i, t) =cost(D)−( |DLN(i,t) |
|D|

cost(DLN(i,t)) +
|DRN(i,t)|
|D|

cost(DRN(i,t))
)

,
(3.2)

for feature i at splitting point t, while D is related to the previous estimated split,
LN = (left candidate node) and RN = (right candidate node). The global impor-
tance value is given by accumulating the gain over a feature, ∆(i) = ∑

t∈Si
∆(i, t),

where Si now represents all the splitting points used in a tree for the i−th feature.
This measure will be a key component in our developments below.

3.2.2 Tree Ensembles
Trees are known to be high variance estimators: small changes in the data can
lead to the estimation of a completely different tree (Murphy, 2012). One way to
increase stability is to use the property that an average of many estimates has a
smaller variance than one estimate, and grow many trees from re-samples of the
data. Averaging such results give us a bagged ensemble (Breiman, 1996b) of the
form

f̂(x) =
Ntree∑
n=1

1
Ntree

f̂n(x), (3.3)
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where f̂n corresponds to the n-th tree. The Random Forest (Breiman, 2001b)
algorithm, for example, is defined by allowing only a random subset m of the
features to be the candidates in each split. As for the importance values, in tree
ensembles the feature importances get averaged over all the trees, or

Impi = 1
Ntree

Ntree∑
n=1

∆(i)n, (3.4)

where i represents the feature index. Moreover, the prediction performance of the
trees in ensembles such as the Random Forest relies on the number of features tried
at each split, called mtry here, as when mtry→ 1, the larger the variance of each
tree, but the more effective will be the averaging process, and vice versa (Louppe,
2014). As we will see later, the gain penalization procedure also depends on mtry,
because when the wrong value is set for this hyperparameter, the penalization can
lead to models that are very far from the truth.

3.2.3 Regularization by gain penalization
In (Deng and Runger, 2012), the authors first discuss the regularization of Random
Forests by gain penalization. The Regularized Random Forest (RRF) proposes
weighting the gains of the splits during the greedy procedure, guiding the feature
choosing of the model. The regularized gain is defined as

GainR(Xi, t) =

λ∆(i, t), i /∈ U and

∆(i, t), i ∈ U,
(3.5)

where U is the set of indices of the features previously used, Xi is the candidate
feature, and t the candidate splitting point. The λ ∈ (0, 1] hyperparameter is
the penalty coefficient that controls the amount of regularization each feature
receives. A feature is penalized if it is new to the whole ensemble, as the method
has a memory of which features were already used. Naturally, λ can be a constant
value for all the features but ideally, there should be a regularization parameter
for each feature that best represents the information they carry about the target.
In (Deng and Runger, 2013), the authors modify this idea by introducing the
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Guided RRF. It consists of first running a Standard Random Forest (mtry ≈ √p,
number of trees = 500) and producing an importance measure for each feature
and scaling this measure, in order to find Imp

′
i = Impi

maxP
j=1Impj

where Impi is the
importance measure calculated for the i-th feature in the Random Forest. The
Imp

′
i becomes a component of the penalization factor, in the form λi = (1 −

γ) + γImp
′
i. However, this method is explicitly developed for Random Forests,

as the gain penalization itself depends on the results of a previously run Random
Forest. No other methodologies or extensions are explored, and the influence of
the Random Forests hyperparameters are not studied by the authors.

3.3 Generalizing Gain Penalization
One of our goals with this work is to propose a generalization of gain penalization in
tree-based models for feature selection. This generalization is made in two senses:
for the penalization methodology and in the algorithm type. For the algorithm, this
means that the regularization method can be applied to any tree-based algorithm,
be it either single trees such as CART, or elaborated ensembles like Bagging and
Random Forests. All these methods are available in our implementation. As for
the penalization method, we generalize it by proposing a gain penalization based
on a λi parameter, that is written as

λi = (1− γ)λ0 + γg(xi), (3.6)

where λ0 ∈ [0, 1) is interpreted as the baseline regularization, g(xi) is a function of
the i-th feature, and γ ∈ [0, 1) is their mixture parameter, with λi ∈ [0, 1). In this
fashion, we propose a local-global form of penalization, that is applied to all the
features used in the model. The equation balances how much all features should
be jointly, or globally, penalized and how much will it be due to a local g(xi), that
is manually set. When γ = 0, only a global penalization is performed, while when
γ = 1, the regularization is fully controlled by g(xi).

The g(xi) should represent relevant information about the features, based on some
characteristic of interest. It can include, for example, external information about
the relationship between xi and y, or information only about xi and its utility for
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the model. This formulation has inspiration on the use of priors made in Bayesian
methods since we intend to introduce prior knowledge regarding the importance of
each feature into the model. In the same way, the data will tell us how strong our
assumptions about the penalization are, since even if we try to penalize a truly
important feature, its gain will be high enough to overcome the penalization and
the feature will get selected by the algorithm.

3.3.1 Choosing g(xi)
In the following, we list a few g(xi) options, taking into consideration the possible
natures of the features.

Correlation: A familiar option for continuous features is just to use g(xi) as the
absolute value of the marginal correlation between xi and y, when we assume a
continuous target problem. It could be either Pearson’s, Kendall’s, Spearman’s,
or any other correlation coefficient of preference (the first is more suitable for
ordinary numeric inputs, while the others will be more convenient for ordered
inputs (Chen and Popovich, 2002)). We drop the sign because when two features
are correlated, the magnitude of the coefficient is enough to define its importance
in terms of significance, and one can use simply

g(xi) = |corr(y, xi)|. (3.7)

Entropy and Mutual Information: A different situation is when the features
are discrete. In information theory, Shannon’s entropy (Shannon, 1948) is a mea-
sure of the uncertainty of a (discrete) random feature. In a short description, if a
discrete feature X has K states, its entropy will be calculated as

H(X) = −
K∑

k=1
p(X = k) log2 p(X = k), (3.8)

where H(X) ∈ [0,∞]. Higher entropy will mean more uncertainty, so it can be
reasonable to give more weight to features with lower uncertainties. One can use
a normalized version of the entropy calculated for each xi, or
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g(xi) = 1− H(xi)
maxP

j=1H(xj)
, (3.9)

compelling the features with lower entropy to have larger penalization coefficients.
Under the same framework, a more general approach to quantify how much know-
ing about one feature tells us about the other is the Mutual Information function.
In this case, the similarity between a joint distribution p(X, Y ) and a factored
distribution p(X)p(Y ) is calculated with

MutInf(X; Y ) =
∑

x

∑
y

p(x, y) log p(x, y)
p(x)p(y) (3.10)

for two features X and Y , which is basically the Kullback-Leibler divergence be-
tween the two distributions (Murphy, 2012). Recalling Equation 3.8, it is easy to
see that the Mutual Information value is the reduction in the uncertainty about
Y when we observe X, so it can be straightforwardly used as

g(xi) = MutInf(xi, y)
maxP

j=1MutInf(xj, y) . (3.11)

Boosted: If there is no interest in differentiating continuous or discrete features,
one can use what we call a Boosted g(xi). Such functions depend on previously run
machine learning models that provide an importance value for the features. The
term Boosted is to introduce some familiarity with what the algorithm consists of
since we can arguably see it as a heterogenous Boosting (Nascimento and Coelho,
2009) applied to the features instead of the observations.

More generally, many Machine Learning algorithms can be used whenever they
allow for the calculation of an importance value. Some examples include: Gener-
alized Linear Models (Nelder and Wedderburn, 1972), where e.g. the normalized
absolute parameter coefficients can be interpreted as importance values, and Sup-
port Vector Machines (Hastie, Trevor, Tibshirani, Robert, Friedman, 2009) that
produce importance values via sensitivity analysis ((Cortez and Embrechts, 2013;
Cortez, 2016)). Each family of algorithms will have its specific characteristics and
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preferences towards the features, so it is advisable to be aware of those details
when using it in a Boosted g(xi).

Combination: Another possibility is combining two or more g(xi). Objectively
speaking, some functions will be more appropriate to one type of feature than
others. As an example, one could combine a Boosted method with the marginal
correlations between the target and each feature. This formulation can, for exam-
ple, be written as

g(xi) =

|corr(Xi, y)|, if |corr(Xi, y)| > ϵ

(Imp
′
i, if |corr(Xi, y)| ≤ ϵ

, (3.12)

where we let the absolute values of the correlations compose g(xi) if the correla-
tion is over a certain threshold ϵ, and use Imp

′
i from a previously run algorithm.

Analogously, we might want to explore the features that are not so correlated to
the target (e.g. when their relationship is very non-linear) by using a high value
for ϵ.

3.3.2 Depth parameter
Sometimes, growing very bushy trees with new features is not desirable when
we want to use the smallest set of features possible. Following (Chipman et al.,
2010a), where the authors use prior distributions for whether a new feature should
be picked in a Bayesian Regression Tree, we introduce the idea of increasing a
penalization given the current depth of the tree. Their priors take into account
the current depth of a tree, so when a tree is already deep the priors get less
concentrated in high probability regions, resulting in lesser bushier trees. In our
framework, a similar idea is applied by setting

GainR(Xi, t,T) =

λdT
i ∆(i, t), i /∈ U and

∆(i, t), i ∈ U,
(3.13)

where dT is the current depth of the T tree, T = (1, . . . , ntree), for the i-th feature.
The aim here is to reduce the gains of the features if they are to be picked in a deep
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node, preventing new features to appear at the bottom of trees unless their gains
are exceptionally high. The benefit of this comes from the fact that deep nodes
contain fewer observations than their parents, so a deep split will likely lead to a
smaller gain if any at all. In a scenario where we want to keep only the variables
that have a high importance to the model, this is undesirable and can be prevented
by using our method added with the depth penalization.

3.3.3 Details & advantages
Feature masking effect: Tree-based models often suffer from feature masking
effects (Louppe, 2014). For example, in a tree, some feature Xj might never oc-
cur in the algorithm if it leads to splits slightly worse than some other feature
Xi. So if Xi is removed, Xj can prominently occur and have a high importance
value. In theory, this problem is overcome by ensembles like Random Forests, as
selecting only m features to pick from decorrelates the trees, but if we regularize
Random Forests, the problem remains. This happens because if weak features end
up being picked (randomly) by the trees, their gains will have an unfair advan-
tage against the other features (possibly very important features), that will be
penalized. Luckily this situation is can be fixed with hyperparameter tuning for
mtry.

Correlated features: A second issue to have in mind when working with tree en-
sembles is their bias towards giving high importance to correlated features (Strobl
et al., 2008). As an example, suppose we have a subset C ⊆ X of features which
are correlated. Ideally, we would expect to have only one or just a few of these
features being selected, because if one of the correlated features is truly important
for prediction, using this one feature is enough, but the ensembles are not able to
detect and eliminate correlated features. The naive approach to tackle this prob-
lem is to calculate a full correlation matrix between all the features and filter by
only the least correlated one, but when p grows this might not be computationally
feasible, and it implies more manual work when building the model. Our gain
penalization method automatically deals with the correlated features, since when
one of the features in C gets picked, the algorithm is less likely to pick the other
correlated features as well, given that a new feature needs to reduce the prediction
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Figure 3.1: Averages of the number of features used and RMSEtest values for a
Standard Random Forest. The models use all 250 features in every run. The
lowest RMSE occurs with mtry = 45 and the highest RMSE with mtry = 15.

error more drastically to be selected.

3.4 Experiments
This section shows the results of our experiments, that evaluated the effects of
different regularization types in simulated and real datasets using the Random
Forest algorithm.

3.4.1 Simulated data
Consider now a set X = (x1, . . . , x205) of features, all sampled from a Uniform[0,
1] distribution, n = 1000. We generated a target of interest Y ∈ R as

y =0.8sin(x1x2) + 2(x3 − 0.5)2 + 1x4 + 0.7x5+
200∑
j=1

0.9(j/3)xj+5 +
45∑

j=1
0.9jx5 + ϵ, ϵ ∼ N(0, 1),

(3.14)
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inspired by the simulation equation proposed in (Friedman, 1991), totaling 250
features. This framework produces interesting relationships between the target
and the features: non-linearities (i = (1, 2, 3)), decreasing importances (i =
(6, . . . , 205)) and correlations (i = (5, 206, . . . , 250)), inducing a more compli-
cated scenario. We created 10 datasets, all randomly split into train and test
set (80%/20%). For all the algorithms we fixed the number of trees at 100, var-
ied mtry = (15, 45, 75, 105, 135, 165, 195, 225, 250) and our accuracy measure is the
RMSE calculated in the test set. We used a standardized version of y and, in
the following, the term selected feature represents any feature with importance
∆(i) > 0 in the final estimated model.

3.4.2 Standard Random Forest, RRF and GRRF
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Figure 3.2: (a) Tile plot for the average of resulting RMSEtest and (b) number
of selected features in a Regularized Random Forest and a Guided Regularized
Random Forest varying mtry, λ and γ. The number of selected features has a
clear effect in the two models. For the RRF, the region with the lowest RMSEtest
is predominantly the one with the most features, while for the GRRF this situation
improves.

As a benchmark, we run a Standard Random Forest, the RRF and GRRF models
for each of the the 10 simulated datasets and all the different values of mtry, and
the results are compared to our method. The first mtry is what would be the
default in a Standard RF, since

√
250 ≈ 15, and the last is the total of features

available.
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For the Random Forest model, the resulting number of features used for all the
models is always the maximum available (see Figure 3.1). If we consider the
correlated features issue, this means that too many features are being picked,
once we know that they become irrelevant in their joint presence. The RMSEtest

changes when mtry changes: when mtry = 45 is when we have the best results,
meaning that the default value (mtry = √p ≈ 15) is not the best option. As for the
RRF and GRRF, we used the hyperparameters λ = (0.05, 0.12, 0.18, 0.25, 0.32,
0.39, 0.45, 0.52, 0.59, 0.65, 0.72, 0.79, 0.86, 0.92, 0.99),γ = (0.05, 0.12, 0.18, 0.25,
0.32, 0.39, 0.45, 0.52, 0.59, 0.65, 0.72, 0.79, 0.86, 0.92, 0.99 (which represents the
weighting parameter of Imp

′
i in the GRRF) and tried all combinations between λ

(RRF), γ (GRRF) and mtry (both). The models were run using the RRF 1 (Deng,
2013) package for R (R Core Team, 2018).

Figure 3.2 shows the results of the average RMSEtest (left) and average number of
selected features (right) in the 10 datasets for the two types of models. We can see
a continuous transition in the number of features picked by the two models, but
they present an inverse pattern regarding the mtry and penalization parameters.
For the RRF, the region with the lowest RMSEtest is predominantly the one with
the most features, meaning that the penalization is happening but the models using
the least features do not satisfactorily predict for the test set. As for the GRRF,
mtry = 45 seems to be optimal, similarly to the Random Forest. However, the
lowest RMSEtest region happen when γ is high, which represents and improvement
but still seemingly leads to the number of selected features to not be as low as it
can be.

3.4.3 Generalized Gain Penalization in Random Forests
Now we present the experiment results using the Generalized Gain Penalization
in Random Forests. For this subsection, we vary λ0 = (0.1, 0.5, 0.9) and γ =
(0.001, 0.25, 0.5, 0.75, 0.99), use all combinations of the hyperparameters (γ × λ0),

1There is a difference on the splitting criteria of the RRF package, that calculates ∆(i, t) =(
cost(DLN(i,t) )

|DLN(i,t) | +
cost(DRN(i,t) )

|DRN(i,t) |

)
− cost(D)

|D| , when finding the best feature and threshold to split on.

At each time the cost reduces in cost(D)
|D| , making the cost measure have a smaller magnitude than

the one used by us in the ranger package.

35



3.4. Experiments

Boosted[RF],
λ0 = 0.1

Boosted[RF],
λ0 = 0.5

Boosted[RF],
λ0 = 0.9

Boosted[SVM],
λ0 = 0.1

Boosted[SVM],
λ0 = 0.5

Boosted[SVM],
λ0 = 0.9

Correlation,
λ0 = 0.1

Correlation,
λ0 = 0.5

Correlation,
λ0 = 0.9

γ
=

0
.0

0
1

γ
=

0
.2

5
γ

=
0

.5
γ

=
0

.7
5

γ
=

0
.9

9
9

3 5
1

0
2

5
5

0
1

2
5

2
5

0 3 5
1

0
2

5
5

0
1

2
5

2
5

0 3 5
1

0
2

5
5

0
1

2
5

2
5

0 3 5
1

0
2

5
5

0
1

2
5

2
5

0 3 5
1

0
2

5
5

0
1

2
5

2
5

0 3 5
1

0
2

5
5

0
1

2
5

2
5

0 3 5
1

0
2

5
5

0
1

2
5

2
5

0 3 5
1

0
2

5
5

0
1

2
5

2
5

0 3 5
1

0
2

5
5

0
1

2
5

2
5

0

0.45
0.50
0.55
0.60
0.65

0.45
0.50
0.55
0.60
0.65

0.45
0.50
0.55
0.60
0.65

0.45
0.50
0.55
0.60
0.65

0.45
0.50
0.55
0.60
0.65

Number of selected features

R
M

S
E

te
st

RMSEtest = 0.5  mtry 15
45

75
105

135
165

195
225

250

Figure 3.3: Averages of RMSEtest (with maximum and minimum intervals) and
of the log number of features using the mixture of a λ0 and a g(xi), for g(xi) =
(|corr(y, xi)|, BoostedRF , BoostedSV M). The x-axis shows the original scale, but
the values are transformed to log. The models are mainly using fewer features
than the GRRF or Standard RF, with λ0 and mtry visibly affecting the results.
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first with g(xi) = |corr(y, xi)| and later using two Boosted methods, with a Stan-
dard Random Forest and with a Support Vector Machine. In Figure 3.3 we can
see that RMSEtest values are mostly close or below the 0.5 line. In compar-
ison to Figure 3.2, our algorithm is doing better, as we can spot many cases
where the RMSEtest is low while using very few features (<25), especially when
g(xi) = BoostedSV M . Even when the RMSEtest is a little higher, 0.5 for example,
the number of features used is frequently much smaller (<10) than previously seem
in the other algorithms. When γ is low the regularization is primarily controlled
by λ0, and we spot a heavier influence of mtry on the number of selected features,
which tends to decrease as λ0 increases. When γ is high the penalization values
depend more on g(xi), and the results vary less regarding the values for λ0 and
mtry.

Table 3.1: Percentages of the most important and of correlated features selected
and RMSEtest, averaged by mtry and γ. When using g(xi) = BoostedSV M , we pick
more of the important features, less of the correlated and have lower RMSEtest.
The GRRF tends to pick many of the correlated features, leading to non-optimal
feature subsets.

g(xi) λ0 % Imp. % Corr. RMSEtest

Correlation 0.10 65.2% 18.8% 0.51
Correlation 0.50 64.6% 19.0% 0.50
Correlation 0.90 64.6% 20.0% 0.49

BoostedRF 0.10 69% 33.2% 0.52
BoostedRF 0.50 71.2% 28.2% 0.50
BoostedRF 0.90 67.6% 28.0% 0.50

BoostedSV M 0.10 71% 21.6% 0.50
BoostedSV M 0.50 69.8% 20.8% 0.49
BoostedSV M 0.90 67.6% 22.4% 0.48

GRRF
γ % Imp. % Corr. RMSEtest

≈ 0.10 63.8% 33.1% 0.48
≈ 0.50 67.6% 32.6% 0.48
≈ 0.90 82.8% 32.0% 0.48
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A more in-depth analysis of the selected features can be seen in Table 3.1. We
define the importance of features in the simulation as
V = (x1, x2, x3, x4, x5, xi

i∈[6,205]∩[0.9(i−5)/3>0.01]
). We can understand this formula as

way of decreasing the importance of the features, as when the index grows, their
importance tends to get smaller by definition. Also, we do not include the last 45
features which are correlated and we ideally want to avoid them. We then calculate
the percentage of important features that were selected by each algorithm, from the
total of features, and for the correlated ones, which percentage of those was selected
by the algorithm. So, for example, if an algorithm picked 10 features, 3 of them
being important, 5 being from the correlated group and 2 being "non-important",
we calculate the proportion of important features as 3/5 and the proportion of
correlated as 5/45.

With Table 3.1 we see that the proportion of important features is considerably
higher for our approach with g(xi) = BoostedRF and g(xi) = BoostedSV M . When
we use g(xi) = |corr(y, xi)| the algorithm picks less of the correlated features. We
also notice that the best results happened when λ0 ≤ 0.5 and g(xi) has a higher
influence in the penalization coefficients, so the introduction of prior information
in the gain penalization is really helping the feature selection. We also show the
same results for the GRRF, which picks many more of the correlated features and,
on one occasion, more of the important ones. When looking at this result, we need
to take into account that this model also tends to select more features in general,
so that is not satisfactory if too many variables were selected.

3.4.4 Real Data Classification
This part of our work now discusses the results for real gene classification micro-
array datasets, specified in detail in Table 3.2. With an average of 4787 features,
67 observations, and 3 classes, those are classical examples of "large p, small n"
datasets. Though the focus here is in gene datasets, our method generalizes to
data from any contexts or sizes and the datasets were chosen following previous
literature ((Diaz-Uriarte, 2007), (Deng and Runger, 2012)).

As the goal here is to find the best features to predict the gene classes, the ex-
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Table 3.2: Real classification datasets and its specifications. Problematic p > n
situation in all cases.

Dataset Ref. Obs. Features Classes

adenocarcinoma [(Ramaswamy et al., 2003)] 76 9869 2
brain [(Pomeroy et al., 2002)] 42 5598 5
breast 2 [(Van’t Veer et al., 2002)] 77 4870 2
breast 3 [(Van’t Veer et al., 2002)] 95 4870 3
colon [(Alon et al., 1999)] 62 2001 2
leukemia [(Golub et al., 1999)] 38 3052 2
lymphoma [(Alizadeh et al., 2000)] 62 4027 3
nci 60 [(Ross et al., 2000)] 61 5245 8
prostate [(Singh et al., 2002)] 102 6034 2
srbct [(Khan et al., 2001)] 63 2309 4

periment conducted for this section is different. We run the penalized models
and extract their selected features, that are later used in a Standard Random
Forest, with which the misclassification rates are calculated. This is to mimic
how such an approach can be used in practice, where first a discovery experi-
ment is run to identify important features, then a subsequent algorithm is run
on a new dataset using the selected features to better assess their prediction
power. We set γ = λ0 = 0.5, attributing the same weight to the baseline reg-
ularization and to g(xi). We vary mtry = (√p, 0.15p, 0.40p, 0.75p, 0.95p) and
g(xi) =

(
BoostedRF , MutInf(y,xi)

maxP
j=1MutInf(y,xj)). We also run a Standard Random Forest,

a GRRF, the LASSO (Tibshirani, 1991), and varSelRF (Diaz-Uriarte, 2007) algo-
rithms for each dataset, which are namely the biggest competitors of our method
and are quite different feature selection techniques, bringing variety to our compar-
isons. All datasets were randomly separated into 50 different train (2/3) and test
sets (1/3). We first find the average misclassification rates (MR) and the number
of features used for each of the 50 resamples, eliminating at this step the mtry
column. Out of that, we filter by the resample with the smallest misclassification
rate.

According to Table 3.3, the Standard RF uses more features, but does not always
have the lowest prediction errors. As for the generalized gain penalization, using

39



3.4. Experiments

Table 3.3: Average percentage of features used and average misclassification rates
with standard deviation for all the models. The gain penalized models used far
fewer features than a Standard Random Forest, and it frequently uses fewer vari-
ables than the other feature selection techniques. Our approach also frequently
has the lowest prediction errors, showing how it can use far fewer features whilst
maintaining competitive misclassification performance.

Percentage of features used
Dataset Std.RF GRRF BoostedRF Mut.Inf. LASSO varSelRF

adenocarcinoma 9.38 0.83 0.86 0.07 0.02 0.05
brain 25.06 1.44 1.46 0.14 0.39 0.73
breast 2 24.44 1.76 1.79 0.14 0.21 0.34
breast 3 38.58 1.95 2.00 0.28 0.67 0.28
colon 34.44 2.53 2.60 0.44 0.46 0.94
leukemia 8.07 1.26 1.25 0.05 0.28 0.09
lymphoma 13.88 1.07 1.14 0.08 0.34 0.72
nci 44.77 1.81 1.88 0.16 1.11 0.97
prostate 18.22 1.46 1.40 0.09 0.14 0.07
srbct 29.69 2.26 2.25 0.3 0.68 0.99

Misclassification rate in the test set
Dataset Std.RF GRRF BoostedRF Mut.Inf. LASSO varSelRF

adenocarcinoma 3.45 (0.0) 11.03 (12) 3.4 (0.0) 10.77 (1.7) 13.83 (6.4) 19.6 (7.7)
brain 8.00 (5.6) 15.38 (14.4) 15.00 (7) 13.33 (10.5) 27.6 (11.7) 29 (16.2)
breast 2 25.6 (5.4) 20.7 (2) 17.8 (7.2) 20.7 (7.7) 31.56 (5.19) 36.7 (9.1)
breast 3 27.6 (6.4) 30.6 (4) 28.1 (3.8) 29.3 (1.6) 29.7 (4.85) 33.9 (8.6)
colon 4.76 (0.0) 5.71 (2.1) 6.67 (0.0) 7.78 (3) 16.7 (8.6) 23.06 (8.3)
leukemia 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 10.07 (9.4) 13.2 (12)
lymphoma 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0) 1.48 (4.7) 5.86 (4.8)
nci 30.77 (9.4) 38.95 (8) 37.5 (7.6) 43.75 (0.0) 42.2 (7.5) 44.7 (12.8)
prostate 0.54 (1.2) 0.54 (1.2) 1.08 (1.5) 0.54 (1.2) 6.00 (2.8) 8.87 (1.9)
srbct 0.0 (0.0) 0.0 (0.0) 0.91 (2) 1.74 (3.9) 1.33 (2.9) 4.5 (3.6)

g(xi) =
(

MutInf(y,xi)
maxP

j=1MutInf(y)

)
is better for [brain] and [prostate], while when g(xi) =

BoostedRF , the results are good for the [adenocarcinoma], [breast 2], [breast 3]
and [nci 60]. The GRRF is strictly better for the [colon] and [srbct] datasets
considering the MR, though it uses many more features in comparison to the
other algorithms. The LASSO often presents a low percentage of features, but

40



3.5. Implementation

its misclassification rates are much above the ones for the other models shown in
the table. If we compare that to the generalized gain penalization method with
g(xi) =

(
MutInf(y,xi)

maxP
j=1MutInf(y)

)
, our approach would be much more preferable since it

uses less variables than the LASSO while mostly keeping a lower misclassification
rate in the test set, The MRs are all the same for the [leukemia] and [lymphona]
in the Standard RF, GRRF and generalized gain penalization models, but the
percentage of features is often the lowest for our method. When this happens and
such algorithms also have a low or very similar MR to a Standard RF one, we
reach an optimal situation, which happened for almost all the datasets. Looking
at the varSelRF results, we notice that this model produces the highest prediction
errors and does not beat our models in terms of the percentage of features used,
even though this algorithm is designed to work in well in this specific context.

3.5 Implementation
The implementation used here is included as an extension to the ranger package
(Wright and Ziegler, 2017) for R (R Core Team, 2018). This choice was made
given that the ranger, originally written in C++, is the fastest Random Forest
implementation available for R, so it serves us well for a general tree-based approach
and the models can scale to high-dimensional settings. Furthermore, the package
has a wide variety of other Random Forests extensions, is actively maintained
and interfaces with python. The speed and scalability discussion presented in
ranger and its comparison to the randomForest package (Liaw and Wiener, 2002)
is analogous to the one about our regularization implemented in the ranger and
the one in the RRF package (which is based on the original randomForest code)
so we will not repeat the same experiments2.

A practical example demonstrating the package extension is available at the URL
https://brunaw.com/blog/posts/2021-03-30-rf-penalization/ , where a gain-penalization
analysis is presented, complete with fully reproducible code. Additionally, the code
corresponding to the results shown in this document can be accessed on GitHub at
the repository https://github.com/brunaw/regularization-rf-paper. These resources

2All the code and data used are available for reproducing the experiments.
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provide an in-depth look at the implementation details, enabling readers to explore
and replicate the analyses discussed in this thesis.

3.6 Conclusions
Feature selection and regularization for tree-based methods is not an easy task and
is a topic of active research. In this work, we have demonstrated that one efficient
and general way of accomplishing such a task is via a generalization of feature gain
penalization for tree-based methods. Our method combines previous information
about the features with a baseline penalization λ0, in a fully flexible local-global
form of gain penalization. In general, the technique produces good results in terms
of the number of features used and prediction error trade-off, outperforming more
traditional methods. The performance and other characteristics of the method
have been demonstrated with both simulated and real data in extensive experi-
ments. Along with the methodology, we make the implementation available in the
ranger package for R, which can also be used in python.

The downside of our approach is the addition of new hyperparameters, and how
to choose them well. Future work involves finding theoretical properties of certain
gain penalization approaches, parameter optimization (using e.g. (Snoek et al.,
2012)), and comparing our approach to other methods with a similar context
((Johnson and Zhang, 2013; Nan and Saligrama, 2017; Nan et al., 2016), for ex-
ample). We would also like to explore extensions of this work to other popular and
powerful tree-based models, such as gradient boosting algorithms ((Chen et al.,
2015; Ke et al., 2017)).
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CHAPTER 4
Hierarchical Embedded Bayesian

Additive Regression Trees

4.1 Introduction
Bayesian Additive Regression Trees (BART; Chipman et al., 2010b) is a commonly-
used probabilistic machine learning approach that produces predictions based on
sums of regression trees. Like most standard machine learning approaches, how-
ever, BART is not mathematically designed to deal with hierarchical structures in
the data. For example, certain observations may share common grouping charac-
teristics e.g. repeated measures and grouped data (Gelman and Hill, 2006), where
there is an intra-group variance that needs to be accounted for when fitting the
model. There are, of course, some algorithm options that can fit statistical meth-
ods to grouped data (e.g. Bates et al., 2011), but they are often not flexible or able
to adapt to data that has been generated by a complicated underlying structure.
It might also happen that certain observations have their grouping information
missing (Vallejo et al., 2011), or predictions might be required at different levels
of the data hierarchy, which leads to even more complicated scenarios. Occasion-
ally it is of interest to estimate and/or remove the variability associated with the

2Abbreviations: BART, Bayesian Additive Regression Trees; HEBART, Hierarchical Em-
bedded Bayesian Additive Regression Trees; MH, Metropolis-Hastings; MCMC, Monte Carlo
Markov Chain; RMSE, Root Mean Squared Error; LME, Linear Mixed-Effects;
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structured component of the data. The user is often left with a difficult model
selection task, as they must choose whether the random effects go into an intercept
or a slope or an interaction. Due to the complexity of this task, the model space is
not usually well-explored. Literature has arisen on the need to explore and check
hierarchical models (see e.g. Chapter 24 of Gelman and Hill, 2006).

To address the challenges of modeling grouped structures while effectively incorpo-
rating non-linearities, Hierarchical Embedded BART (HEBART) introduces a hier-
archical component tailored for complex grouped data. Unlike traditional methods
for including random effects, HEBART models the hierarchical structure by em-
bedding it directly within Bayesian Additive Regression Trees, capturing both the
grouped dependency and the non-linear interactions within the data (see Section
7 of Chipman et al. (2010b) for comparison with earlier methods). In its sim-
plest form, the hierarchical component of HEBART is represented by a categorical
predictor variable that adjusts predictions across all terminal nodes of each tree.
This design extends the effects beyond single elements, allowing predictions to be
made at multiple hierarchical levels with greater flexibility and capturing data un-
certainties. Furthermore, HEBART does not require grouping information to be
present for predictions, enabling its use on data where group identifiers are missing
or where the associated variability should be excluded, which adds one more level
of flexibility to this model (and also of applicability). This makes HEBART par-
ticularly well-suited for real-world applications with complex data structures, and
we provide a detailed technical overview of this extension in the following section.

Our paper is structured as follows. In Section 4.2 we introduce the BART model
mathematically, and discuss the fitting algorithm and some extensions that have
already been proposed. In Section 4.3 we outline our new HEBART approach
and discuss how this extends BART into a generalized model for hierarchical data
structures, whilst retaining the attractive properties and algorithmic efficiency that
BART exhibits. In Section 4.4 we demonstrate the performance of the method on
simulated and real-world data. Finally, Section 4.5 discusses some of the potential
future research areas and drawbacks of our approach. Later on this document,
an appendix contains some of the more detailed mathematics behind the fitting
algorithm.
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4.2 Introduction to Bayesian Additive
Regression Trees

4.2.1 The BART model
The initial Bayesian Regression Tree model was first proposed over 20 years ago
(Chipman et al., 1998), and consists of an algorithm that fits CART decision trees
using Bayesian inference. The same authors extended this method to create the
Bayesian Additive Regression Tree (Chipman et al., 2010b) approach, which as-
sumes that the generating system of a continuous random variable y = [y1, . . . , yn]
can be approximated by a sum of regression trees. In a standard regression setting
the BART model is usually written as:

yi =
P∑

p=1
G(Xi; Tp, Θp) + ϵi, ϵi ∼ N(0, τ−1), (4.1)

for observations i = 1, . . . , n, and p = 1, . . . , P trees with P the total (fixed)
number of trees, Xi represents the set of covariates; Tp is a tree structure, and Θp

represents a set of terminal node parameters. The function G returns a terminal
node prediction from Θ by passing Xi through the tree Tp. Θp consists of a set of
µp,l parameters for each of the l = 1, . . . , Lp terminal nodes in tree p. These values
provide the tree-level predictions which are summed together to give an overall
predicted value. The residual term ϵ is assumed normal with residual precision τ .
Figure 5.1 (left panel) shows a standard single tree that a BART model may use.

We write the set of all trees and parameters as T and Θ respectively. The joint
posterior distribution of the trees and all the parameters is then given by:

P (T , Θ, τ |X, y) ∝
[

P∏
p=1

Lp∏
b=1

∏
i:xi∈Dp,b

p(yi|xi, Tp, Θp, τ)
]
×
[

P∏
p=1

Lp∏
b=1

p(µp,b|Tp)p(Tp)
]
p(τ),

(4.2)

where p(yi|xi, Tp, Θp, τ) is the normally distributed likelihood as defined in Equa-
tion 5.1, D represents the regions in the covariates space (e.g. tree nodes), and b
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indexes the terminal nodes in tree p. The term p(µp,b|Tp) is the prior distribution
on the terminal node parameters across each terminal node b in each tree p. p(Tp)
is the prior distribution on the tree structure, and p(τ) is the prior on the residual
precision.

The prior distribution on the trees proposed by Chipman et al. (2010b) involves
applying a separate term for each node in the tree and considering both the prob-
ability of a split as well as the probability of a new splitting variable being chosen.
For an entire tree Tp, we have:

P (Tp) ∝
∏

η∈LT

(1− PSP LIT (η))
∏

η∈LI

PSP LIT (η)
∏

η∈LI

PRULE(ρ|η).

where LT and LI represent the sets of terminal and internal nodes, respectively,
ρ represents a generic splitting value, and η represents a node in the tree. The
probability of a node being non-terminal is given by PSP LIT (η) = α(1 − dη)−β,
where dη denotes the depth of the node η. The recommended values for the
hyperparameters are α ∈ (0, 1) and β > 0, which control the depth and bushiness
of the trees. For the probability of the new splits, PRULE(ρ|η, T ) = 1

padj(η)
1

nj.adj(η)

where padj(η) represents how many predictors are still available to split on in node
η, and nj.adj(η) how many values in a given predictor are still available.

The prior distribution for the terminal node and overall parameters in the stan-
dard regression case is denoted by p(Θ, T ). This is given a prior with a standard
conjugate form:

µ1, . . . , µL|τµ, µµ, T ∼ N (µµ, τ−1
µ ),

where τ−1
µ and µµ are chosen such that a high density of this distribution is ap-

portioned to the range [ymin, ymax] interval, by setting Pµµ − k
√

P (τ−1
µ ) = ymin

and Pµµ + k
√

P (τ−1
µ ) = ymax, for some value of k. The response y is usually

standardized before the model is run which allows for reasonable guesses as to the
hyper-parameter values of µµ and τµ, though these too can be estimable parame-
ters.
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The residual precision prior is set as τ ∼ Gamma(ν/2, γν/2), where γ and ν are
fixed. An oft-used tactic is to set the two hyper-parameters such that the BART
residual precision is greater than an equivalent precision value from a standard
linear regression model applied to the same data with a high probability. We
follow the same guidance in our extension to the model as outlined below. For
more details on the full BART model and algorithm, please see Chapter 2 of this
thesis.

4.3 Hierarchical Embedded Bayesian Additive
Regression Trees (HEBART)

Our HEBART approach merges the ideas from traditional Bayesian hierarchical
modeling (Gelman and Hill, 2006) and linear mixed effects models (Pinheiro and
Bates, 2000) with BART. We allow each tree to have an extra split on each terminal
node corresponding, in the simplest version, to a random intercept for each member
of a categorical predictor variable zi which takes values j = 1, . . . , J according
to the group membership of observation i. Thus we introduce intra-group node
parameters which we write as ϕb,j as the estimate for group j in terminal node
b. We refer to these parameters as the sub-terminal node level. Here, the term
‘embedded’ is used to represent the inclusion of the grouping variable into the
BART model at the terminal node level rather than as a simple addition on the
BART mean, as was originally proposed as an extension to BART in Chipman
et al. (2010b). The new parameters allow us to have a group-specific prediction
for each node, as well as an overall terminal node prediction µ. The flexibility of
this structure means that there is no requirement for the user to specify where the
random effect is included, for example as an intercept or as a regression slope. With
HEBART we can fit Bayesian Additive Regression Trees to any kind of grouped
data where there is such a categorical predictor, such as longitudinal data, repeated
measures data, multilevel data, and block designs. In addition, having the two
levels of predictions is advantageous for scenarios where the group information is
not available for all or a subset of the new data. The Bayesian paradigm allows
for imputation of any missing groups at any of the terminal nodes. In Figure 5.1
we show a standard BART tree alongside that of our new HEBART trees.
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a) BART Trees b) HEBART Trees

ROOT ROOT

Figure 4.1: Left panel: a standard BART tree using one covariate X. Right panel:
a HEBART tree with one covariate X and a single grouping variable with four
levels. In BART, each terminal node b has only one terminal node parameter µb,
represented by µ1, µ2, and µ3. In HEBART, each terminal node b has its own
overall µb parameter, plus one ϕb,j for each of the J groups in the node (not all
groups need to have associated data in each terminal node). For example, terminal
node 2 has an overall parameter µ2, and intra-group parameters (ϕ2,1, ϕ2,2, ϕ2,3),
one for each of the possible groups.

To define the HEBART model, let P be the number of trees, J to be the total
number of groups, and Θp the set of node parameters at both the terminal node and
sub-terminal node level. More fully, we have one set µp which are terminal node
predictions for each tree, and one set ϕp,j for each group within each sub-terminal
node for tree Tp, p = 1, . . . , P . Assuming we have a continuous variable of interest,
the fundamental HEBART appears similar to the standard BART approach:

yi =
P∑

p=1
G(Xi, zi; Tp, Θp) + ϵi, (4.3)

for observation i = i, . . . , n with grouping variable zi taking values from 1 to J .
In this specification, we have that G is the tree look-up function which allows for
predictions based on covariates Xi and categorical grouping values zi; by default
G will return a sub-terminal node prediction value ϕ. If the grouping variable zi
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is not provided it will return a terminal node estimate µ, which we may write as
G̃ for clarity. In other words, G is the function that maps each estimated tree
structure to the corresponding values of the covariates Xi and finds in which ter-
minal node of the tree each observation falls into (see, e.g, Figure 5.1, right panel,
for an example). With this, the G function uses the tree structures to attribute
the correct predicted value for each observation. Similar to an LME model, the
parameters ϕ associated with the categorical grouping variable zi provide shifts
away from the overall means µ and are constrained using a normally distributed
prior. As before Tp is the tree structure, but now Θp contains both the terminal
node parameters (µ) and the sub-terminal node group parameters (ϕ) for tree p.
As with standard BART, the noise is assumed to be distributed as ϵi

iid∼ N(0, τ−1),
where τ is the overall residual precision.

The µp and ϕp,j sets contain, respectively, the overall terminal-node mean param-
eters and the intra-group sub-terminal node mean parameters. In other words,
for each tree we will have one µp,Lp set for each of their terminal nodes, and for
each group within each terminal node we will have another set ϕp,Lp,j, j = 1, . . . , J .
All parameters in Θp receive priors and have their corresponding posteriors, from
which we sample from in the fitting algorithm. In Figure 5.1 the terminal cir-
cles represent the terminal nodes, which all have their own µ parameters. In
the HEBART tree, however, we have the addition of the intra-group parameters,
represented by the hexagonal symbols at the sub-terminal node level.

In standard BART a minimum node size is usually set on the number of data points
that fall into each terminal node. We retain that restriction in our approach but
require no such restriction for the sub-terminal node levels. As shown below, the
Gibbs update for the ϕj terms is still available even when no residuals fall into
that particular group so we can still provide group-level predictions which can be
summed over trees to produce group-level predictions from every tree.

4.3.1 Prior distributions
Many of the standard BART prior distributions carry over to our situation, which
desirably means that certain parametric restrictions in our model will yield an
exact BART model. Specifically, we have as usual µ ∼ N(µµ, τ−1

µ ) for the terminal
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nodes (ignoring node index subscripts for simplicity). As in standard BART, we
standardize y so that µµ = 0 and τµ is simple to calibrate using the heuristics
outlined above. We have τ ∼ Ga(ν/2, γν/2) for the residual precision. We keep
the tree prior and its hyper-parameters α, β to control the shape and structure
of trees. For the sub-terminal node parameters, we simply set ϕj ∼ N(µ, τ−1

ϕ /P )
which forces each sub-terminal node to vary according to τϕ around the terminal
node parameter, scaled by the number of trees. Unlike τµ we treat τϕ as a parameter
to be estimated, and provide more details of this below.

For HEBART, a single sub-terminal node b in tree Tp has partial residuals:

Ripb = y
(b)
i −

∑
t̸=p

G(X(b)
i , z

(b)
i ; Tt, Θt) (4.4)

for observation i with cateogorical variable zi. Now, let R
∼ j

= {Rij, . . . , j =
1, . . . , J} represent the full set of residuals for those observations where zi = j,
where we drop the dependence on terminal node and tree for simplicity of nota-
tion, and vectorize it again so we can write R ∼ N(Mϕ, τ−1I). In this fashion,
R represents all observations in that particular terminal node for that particular
tree now across all groups, M is a binary matrix that allocates observations in
the terminal node to groups, and ϕ represents the stacked vector of terminal node
parameters for all groups in that terminal node. Marginalising first over ϕ and
then over µ, we obtain a distribution on the partial residuals as R ∼MV N(0, ΩR),
where ΩR = τ−1I + (Pτϕ)−1MMT + τ−1

µ 11T . This variance matrix is symmetric
and can be inverted quickly when required using Woodbury and related formulae.

We give the τϕ parameter, responsible for capturing the intra-group precision,
a Gamma(a, b) prior. Since the value of τϕ is analogous to that of a standard
LME model we first fit a random intercept model to the same data using the lme4
package (Bates et al., 2011) and write this estimated precision as τ̂LME

ϕ . We further
extract the variance of this estimate via the parameters package (Lüdecke et al.,
2020) which we write as σ̂2(τ̂LME

ϕ ). The given mean and variance then provide
simple point estimates of a and b using the standard method of moments, where
we find those values such that P (τϕ < τ̂LME

ϕ ) = 0.5. Our approach is analogous to
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the argument used in standard BART to set τ via the residual variance of a linear
model fit, though there the BART residual variance is expected to fall below the
linear model fit with high probability. To set our prior for τ ∼ Ga(ν/2, γν/2),
we calibrate the hyper-parameter values using the same rule as BART, but via
the residual variance of the above lme4 model fit rather than the standard linear
model. In this case, our strategy aims to yield a high probability that τ is bigger
than τ̂LME, so we find prior hyperparameters such that P (τ > τ̂LME) = 0.95.

4.3.2 Links with standard hierarchical models
Conditional on the trees, the model can be written as a standard linear mixed
effects model. We abuse the above notation slightly to write:

y|T, . . . ∼ N(S1ϕ, τ−1I) (4.5)

where y is the vector of all observations and S1 is a binary matrix that allocates
each observation to its correct tree and sub-terminal node. The number of columns
of S1 can be large when the number of trees and/or terminal nodes is large, and
changes dimension when the conditioning on the trees is removed. ϕ here is the
stacked vector of all sub-terminal node parameters sorted over all trees. This
parameter too can be marginalized over since, within each tree, all components
come from a N(µ, τ−1

ϕ /P ) distribution. This second marginalization yields:

y|T, . . . ∼ N(S2µ, Ψy) (4.6)

where now µ is the stacked terminal node values across all trees and Ψy = τ−1I +
(Pτϕ)−1S1ST

1 . S2 is a binary allocation matrix that allocates each observation to
the terminal nodes associated with its trees. With this second marginalization
there are several links with standard Bayesian mixed effects models frameworks.
The model can be seen as a Gaussian Process with kernel autocorrelation function
given by S1S

T
1 /P , or as a standard mixed effects model with y = S2µ + S1ϕ + e

with a prior on ϕ centered on zero. The standard theory of LMEs (e.g. Pinheiro and
Bates, 2000) follows directly, and in the Bayesian framework, the updates for sub-
terminal node parameters yields the usual partial pooling estimates exemplified
by Gelman and Hill (2006); see updates for ϕ below. However, the mixing over
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the trees makes any further theory considerably more complex, and we leave this
as a challenge for future research.

4.3.3 Updating parameters
We use MCMC methods to update the parameters, using direct Gibbs sampling
for updating the terminal node and residual precision parameters, and Metropolis
updates for those for which a tractable Gibbs update is unavailable. The updates
for an individual tree T arise by considering the distribution of the partial residuals
in a single terminal node, whilst integrating out the mean and variance parameters.
We use the marginalized version of R above to find an MH update for a single
terminal node in a tree (on the log scale, and summed over terminal nodes b) as:

log(π(R1, . . . , Rn)) ∝
L∑

b=1

[
−1

2 log |ΩR,b| −
1
2RT

b Ω−1
R,bRb

]

For µ, we use the non-marginalised prior for R and the prior on µ to obtain the
full conditional:

µ| . . . ∼ N
((

1T Ψ−1
R 1 + τµ

)−1
1T Ψ−1

R R,
(
1T Ψ−1

R 1 + τµ

)−1
)

,

which is used to directly sampled values for the µ parameters. In this equation,
we have that ΨR = τ−1I + (Tτϕ)−1MMT . Similarly, we also obtain a closed-form
posterior distribution for ϕ:

ϕ| . . . ∼ N
((

τMT M + TτϕI
)−1

(τMT R + Tτϕµ),
(
τMT M + TτϕI

)−1
)

After all trees are updated we can update τ . The τ update comes directly from
the non-marginalised prior for R combined with the prior on τ :

τ | . . . ∼ Ga

(
N + ν

2 ,
(y − S1ϕ)T (y − S1ϕ) + νλ

2

)

Last, we use a random-walk Metropolis-Hastings update for τϕ, which we found
to be reliable for sampling from this posterior (Brooks et al., 2011b). We use a
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standard Normal for the proposal value to create τ ∗
ϕ and decide to accept or reject it

based on the acceptance probability α(τ ∗
ϕ , τϕ) = min

{
1,

P (y|τ∗
ϕ ,Θ)P (τ∗

ϕ)Φ(τϕ)
P (y|τϕ,Θ)P (τϕ)Φ(τ∗

ϕ
)

}
, where

Φ(x) represents the CDF of the standard Normal distribution. This is used to
account for the fact that we are using a proposal distribution with full support for
a target with limited support.

Algorithm 2 HEBART Algorithm
Type: Metropolis within GIBBS for a hierarchical BART model
Require: y, X, grouping variable z
Ensure: Posterior distribution of trees T , µ, ϕ, τ and τϕ Initial values for α, β,

σϕ, τ , number of trees P, stumps T1, . . . , TP , number of observations N, number
of MCMC iterations I = burn-in+ post-burn-in, initial residual set R(1) = y
for i← 1 to I do

for p← 1 to P do
1. Grow a new tree T ∗

p tree by either growing, pruning, changing or swapping
a root node

2. Calculate α(T ∗
p , Tp) = min

{
1,

P (R(i)
p |T ∗

p ,τ)P (T ∗
p )

P (R(i)
p |Tp,τ)P (Tp)

}
;

3. Sample u ∼ U(0, 1]
4. if u < α(T ∗

p , Tp) then do Tp = T ∗
p

for b← 1 to bp do: Sample µb,p

for j ← 1 to Jbp do: sample ϕb,p,j

end for
end for
Update R(i)

p = y−∑P
t̸=p G(Xij, zi, Tt, Θt)

Update f̂ij = ∑P
p=1 G(Xij, zi, Tp, Θp)

end for
Sample τ
Sample τϕ:

Sample a value d ∼ N(0, σ2
τϕ

) and make τ ∗
ϕ = τϕ + d

Calculate α(τ ∗
ϕ , τϕ) = min

{
1,

P (y|τ∗
ϕ ,Θ)P (τ∗

ϕ)Φ(τϕ)
P (y|τϕ,Θ)P (τϕ)Φ(τ∗

ϕ
)

}
;

Sample u ∼ U(0, 1]
if u < α(τ ∗

ϕ , τϕ) then do τϕ = τ ∗
ϕ

end for
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4.4 Applications & Results
This section describes the fitting of HEBART to some example data sets as we
compare across different models, including: a Linear Mixed-Effects (LME) model,
fitted using the lme4 (Bates et al., 2011) package; in R (R Core Team, 2018) and
standard BART, fitted using the dbarts (Dorie, 2020) R package, with the default
values for the number of trees (200), number of posterior samples (1000), number
of burn-in samples (100). The main performance results presented are calculated
on out-of-sample values for a certain number of test sets. Since BART cannot
incorporate mixed effects, other than as part of the main covariate set, we partition
the results into BART including grouping information, which we expect to perform
well though it does not solve the hierarchical modeling problem, versus BART
without grouping information, which usually performs worse than our approach
since it lacks all the data.

The package created to run our HEBART algorithm is available in R (R Core Team,
2018). All functions are available at https://github.com/brunaw/hebartBase,
where the main package is stored, and https://github.com/brunaw/hebart-experiments
contains the code for replicating all the examples shown here, with their corre-
sponding auxiliary files.

4.4.1 Simulation experiments
We first experiment with HEBART on a simple simulation scenario, where the
response variable y is simulated as a sum of a tree structure and an intra-group
parameter, which here we call ϕj, j = 1, . . . , 5 and are simulated from a N(0, 52) to
create highly variant values. By splitting the simulated covariates X1, X2, and X3

at random points, we sample n = 750 values as

yij ∼N ((a I(X1 < 1)I(X2 < 0.2) + b I(X1 < 1)I(X2 >= 0.2)+

c I(X1 >= 1) + d I(X3 >= 2)) + ϕj, τ−1 = 1,
(4.7)

where we have nj = 150 for all 5 groups and (a, b, c, d) are randomly sampled
from a N(0, 32). This experiment uses 10 different train and test sets as our
cross-validation setting (Refaeilzadeh et al., 2009).
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To these simulated datasets, we apply three different algorithms (LME, Standard
BART and HEBART) to the 10 training sets and make predictions for the 10
testing sets. In Figure 4.2, we can see that HEBART produces the smallest root
mean squared errors for both the train and test sets, as its averages are the closest
to zero, followed by LME and standard BART. We also observe that HEBART has
the least varying RMSE values on the test set, implying there is less uncertainty
around the predictions for new data.

Figure 4.2: Boxplots of RMSE for testing and training sets for the 3 algorithms
fitted on simulated data based on Equation (7). HEBART is the best-performing
algorithm in either stage.

In a second simulation setting we create y with a direct HEBART structure, by
first sampling a µ value for each terminal node, along with one ϕ value for each
group within the created terminal nodes, where τµ = 3, τϕ = 3 and τ = 1. The tree
structure uses the sum of two simple trees, which are both based on two covariates
(X1, X2) ∼ Normal(0, 1), and uses the previously sampled parameters to create
the simulated response y. By splitting the simulated covariates X1, X2 at random
points, we sample n = 1000 values as

y = G(X1, Z1, T1, Θ1) + G(X2, Z2, T2, Θ2) + ϵ (4.8)

where ϵ ∼ N(0, 1). Tree T1 consists of three terminal nodes with the partitions
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I(X1 < 0, X2 < 0), I(X1 < 0, X2 >= 0), I(X1 >= 0, X2 >= 0) respectively,
having terminal node values µb1 sampled from a N(0, 3−1), and group terminal
node values sampled from a N(µb1 , (2/3)−1), b1 = 1, . . . , 3, as we have 3 terminal
nodes. For tree T2 the partitions are only I(X2 < 0.5) and I(X2 >= 0.5), having
terminal node values µb2 sampled from a N(0, 3−1), and and group terminal node
values sampled from a N(µb2 , (2/3)−1), b2 = 1, . . . , 2.

The results of this simulation are shown in Figure 4.3. Once again, we observe
HEBART to be the best-performing algorithm, as its test RMSE average is lower
than its competitors. We also include here the prior and posterior densities of τϕ

one of the runs of the HEBART model. The two densities are markedly different,
with the posterior having a distinctly larger variance (lower precision) associated
with the grouping information. This is not necessarily surprising given that the
grouping information for this simulation scenario is specified at the sub-terminal
node level rather than through an additive effect as is used in an LME.

4.4.2 Real data sets
4.4.2.1 Sleep study data

This dataset consists of the first 10 days of a sleep study (Belenky et al., 2003).
The response variable is the average reaction time per day (in milliseconds), and
the covariate is the number of days of sleep deprivation, for 18 subjects. Linear
mixed-effect models (Pinheiro and Bates, 2000) are often applied to this data
(Bates et al., 2011), so we can directly compare our results.

We create a 20-fold cross-validation and evaluate the model on the left-out data.
Our HEBART model is set to use 10 trees, has hyperparameters α = 0.95 and β

= 2, and all the other prior hyperparameters are set as described above. For the
MCMC sampling, we use 1500 iterations with 250 iterations of burn-in. We also
fit an LME (Pinheiro and Bates, 2000) and a standard BART model (Chipman
et al., 2010b) to compare our results. Our main interest is in the performance of
the predictions and the estimate of the group-level random effect standard error,
though this is not available in the BART model since it has no such parameter.
However, as described above the grouping variable is sub-optimally included as
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(a) Boxplots of RMSE for testing and training sets
for the 3 algorithms fitted on simulated data

(b) Prior and posterior densities for τϕ for one run of HEBART

Figure 4.3: (a) For RMSE, HEBART exhibits superior performance in the test
and train sets compared to its two competitors for the second simulation setting;
(b) The prior and posterior densities show how the two distributions significantly
differ in this case. It appears that the information in the data pushes the posterior
of τϕ to be lower than indicated by the prior distribution obtained from a random
intercepts model fit.

one of the covariates.

In Figure 4.4 we show the HEBART, BART and LME predictions for each group
ID, for predictions created when those observations were not included in the train-
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ing set. In other words, we are seeing the average predictions for the test sets, split
by group ID. The plot also shows the true observations as green dots for compar-
ison. We can see for almost all IDs, the HEBART predictions are the ones closest
to the true values, especially for more difficult cases, such as IDs 335, 332, 351 and
351. Overall, HEBART is able to adapt better to changes in each of the individual
group patterns. In the same Figure, we also have the RMSE table for each model,
with their corresponding empirical 95% confidence intervals, calculated using the
results from the 20 train and test sets. From this table it is clear that HEBART
produces the best results, as both the train and test RMSEs are the lowest of the
three methods, with similarly low values for the confidence intervals.

4.4.2.2 Gapminder data

Another standard dataset used to exemplify mixed effects modeling is the Gap-
minder data (Lang, 2011). For our experiment, the subset of the data consists of
the life expectancy values (in years) for 20 different countries, from 1950 to 2018.
We use life expectancy as the response and country as the grouping variable with
year as the sole covariate. We separate the dataset into 10 different training and
test sets, where the testing set is composed of all the observations for 15 sampled
years (for all countries), and the corresponding training set is composed of the
observations for the remaining data. The idea behind this is, for each resample, to
fully remove a set of years from the training set to make it harder for the model
to predict for such years, since it has no information about what happened in
the removed years. We also compare our model against LME, BART and BART
using the country as a covariate. We expect the latter to perform well since it
has all the information, but we remind the reader that this method does not have
the added advantage of HEBART in being able to predict with fully or partially
missing grouping values, as HEBART reduces to BART when that happens, which
is a fairly competitive algorithm in most scenarios.

Figure 5.4 shows the results for this experiment as an RMSE table and the depic-
tion of the predicted values in comparison to the true observations. Note that we
have 10 training and test sets, and what we show in the Figure are the average
predictions for the 10 test sets. So, when we bind all the predictions for all the 10
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test sets, we have at least one prediction for each year of all countries. As above,
the HEBART prediction is very close to the actual values due to the increase in
flexibility of the predictions from the non-parametric structure. The performance
of the BART model that uses the country as a covariate (BART+Group) is slightly
superior but as stated above, this is not unexpected since the BART+Group misses
the fundamental advantage of HEBART in separating out (and potentially remov-
ing) the country-level variability. Our model, on the other hand has the advantage
of being able to predict when grouping variable information is missing, but still
retains the prediction performance. Lastly, in Figure 4.6 we see the convergence
plots for τ , just to show that the chains are stable, even though they do not agree
for all runs of this experiment.

4.5 Conclusions
We have provided a new extension of Bayesian Additive Regression Trees that
allows for structured data to be used appropriately at the model fitting and pre-
diction stage. Where a grouping variable is present, we are able to provide pre-
dictions at both the group level and the level above it. The flexible tree structure
thus allows us to produce excellent predictions without the need to specify how
the grouping variable is included in the model structure. However, we still retain
the ability to report and remove the group-level variability by having a parameter
that represents the group-level standard deviation.

In simulation-based and real data studies we have shown that the model performs
better than other common linear and mixed effects approaches or BART itself.
Our approach is not comparable to many other standard Bayesian machine learn-
ing methods due to their inability to handle the grouping information other than
as a naïve covariate. In the real data examples of Section 4.4.2.1 and 4.4.2.2 we
have demonstrated that HEBART performs well against LME modelling strate-
gies despite these being the archetypal examples of datasets where linear mixed-
effects models would fit well. Finally, we see many potential extensions of our
approach, including: (1) extending the hierarchical data structure to multiple or
nested grouping variables; (2) explicitly modeling joint random effects using the
multivariate normal distribution and so estimating covariances between grouping
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variables; (3) including recent BART extensions, such as SOFT-BART (Linero,
2018a) and MOTR-BART (Prado et al., 2021a) which can substantially enhance
the predictive capabilities of the model;
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(a) Average predictions for the groups in the sleep study dataset

Source HEBART LME BART+Group
Test set 27.7 [8.22, 47.2] 32.4 [15.8,49] 32.3 [13.3, 51.2]
Train set 16.9 [10.1,23.7] 29.3 [28.3,30.3] 28.1 [26.6,29.6]

(b) Average train and test set RMSE values, with the corresponding
empirical 95% confidence intervals

Figure 4.4: (a) Average predictions for each patient ID in the sleep study data,
using HEBART, LME and BART with confidence/credible intervals. HEBART
produces predictions closer to the actual true data, including the most challenging
IDSs; (b) Average test RMSE values, with empirical 95% confidence intervals. The
lowest values are for HEBART.
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(a) Average out of sample predictions for selected countries in the gapminder dataset

Source HEBART LME BART BART+Group
Test set 1.33 [0.77, 1.88] 3.59 [2.84, 4.33] 7.53 [6.53, 8.52] 0.815 [0.43, 1.20]
Train set 0.793 [0.162, 1.42] 3.57 [3.38 , 3.77] 7.47 [7.20, 7.73] 0.351 [0.310, 0.391]

(b) Average training and test RMSE values, with the corresponding
empirical 95% confidence intervals

Figure 4.5: (a) Average predictions (considering the 10 test sets) for 6 selected
countries in the gapminder dataset, using HEBART, LME, BART, and BART
using group as a covariate, with confidence/credible intervals. HEBART and
BART+Group both produce predictions closer to the actual true data for all cases
shown; (b) Average test RMSE values, with empirical 95% confidence intervals for
the mean RMSE. The table confirms the lowest values for HEBART, with neither
the training value not even intersecting with the other ones, except for HEBART
and LME. 62
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Figure 4.6: Convergence plots of posterior distributions of τ for the 10 runs; all
chains seem to be stable.
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CHAPTER 5
Hierarchical Embedded Bayesian

Additive Regression Trees for
Crossed and Nested Random

Effects

Bayesian Additive Regression Trees (BART; Chipman et al., 2010b) is a now stan-
dard probabilistic machine learning approach based on sums of regression trees.
It has been widely used and extended (e.g. for categorical, count, and multino-
mial regression (Murray, 2021; Kindo et al., 2016b) and quantile regression (Kindo
et al., 2016a)). Recently, it has also been extended to produce Hierarchical Em-
bedded BART (HEBART) which allows for hierarchical data structures (Bates
et al., 2011, or ‘random effects’ in mixed model parlance;) to be used in BART,
as previous shown in this document. Whilst previous approaches to incorporating
hierarchical data in BART have been proposed (even in the original 2010 paper)
these have involved simply adding an extra term onto the additive model. By
contrast, HEBART places the random effects inside the terminal node structures
(hence the term embedded) and so provides a far richer modelling structure that
removes the need for difficult model comparison questions about where to place
the random effects in standard regression models, e.g. in intercepts or slopes.
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In general, HEBART allows for greater flexibility in the fitting of the regression
trees as it allows for predictions at multiple layers of a data hierarchy. We start
by considering the maximally simple situation of triplets (y, X, z) where y is a
response, X is a set of covariate values, and z is a categorical grouping variable with
levels 1 to J . In traditional BART, predictions are only available at the terminal
node level (i.e. using only y and X), and so each observation with the same
covariate values must be given the same predicted value. In HEBART the single
grouping variable z allows for predictions to be created at both the terminal node
level (depending on only X) and including that of the categorical grouping variable
beneath it (depending on X and z). See Section 5.1 for a complete mathematical
description of the approach. Thus if the covariate values are available but not
the grouping variables, the model can still produce predictions with quantified
uncertainties. If both covariates and grouping variable are available then the
predictions use all available information.

In this paper we extend HEBART in two ways. These are:

1. Crossed Random Effects HEBART (CHEBART) which allows for multiple
grouping variables in the same model, i.e. z1, z2, . . ..

2. Nested Random Effects HEBART (NHEBART) which accounts for multiple
nested grouping variables, i.e. zij where for each level i there are Ji sub-levels.

For (1) we allow a proportion of the HEBART trees to be used with each grouping
variable, thus allowing them to have their effect captured in the model, each with
an associated variance parameter. For the second model, we also have the presence
of more than one grouping variable, but now in a nested rather than a crossed
fashion. The trees used in this second model have further sub-terminal nodes
representing the sub-grouping of the categorical factors. We describe both of
these models and outline fitting algorithms and their performance on simulated
and real-world data sets. A schematic of the differences between the approaches,
more fully described in Section 5.3, is shown in Figure 5.1.

Our paper is structured as follows. In Section 5.1 we introduce the BART and
HEBART mathematically and discuss some extensions that have already been
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proposed. In Section 3 we outline our two HEBART extensions and explain how
they generalize HEBART and comprise an important addition to the overall BART
family of models. In Section 4 we demonstrate the performance of the two methods
on some simulated and real-world data. Finally, Section 5 discusses some of the
potential future research areas and drawbacks of our approach.

5.1 An introduction to BART and HEBART
5.1.1 The BART model
The Bayesian Additive Regression Tree (Chipman et al., 2010b) is a fairly recent
algorithm, which assumes that the generating system of a continuous random
variable y = [y1, . . . , yn] can be approximated by a sum of regression trees. In a
standard regression setting the BART model is usually written as:

yi =
P∑

p=1
G(Xi; Tp, Θp) + ϵi, ϵi ∼ N(0, τ−1), (5.1)

for observations i = i, . . . , n, where P is the fixed number of trees, Xi represents
the set of covariates; Tp is a tree structure, and Θp represents a set of terminal
node parameters. The G function maps each tree structure to the covariates space,
returning a terminal node prediction from Θ by passing the values of Xi through
the tree Tp and allocating each observation to each tree node. Θp consists of a set
of µp,l parameters for each of the l = 1, . . . , Lp terminal nodes in tree p. These
tree-level predictions are summed together across all the trees to give an overall
predicted value. The residual term ϵ is assumed normal with residual precision τ .
We write the set of all trees and parameters as T and Θ, respectively. The joint
posterior distribution of the trees and all the parameters is then given by:

P (T , Θ, τ |X, y) ∝
[

P∏
p=1

bp∏
b=1

∏
i:xi∈Dp,b

p(yi|xi, Tp, Θp, τ)
]
×
[

P∏
p=1

bp∏
b=1

p(µp,b|Tp)p(Tp)
]
p(τ),

(5.2)
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where p(yi|xi, Tp, Θp, τ) is the normally distributed likelihood as defined in Equa-
tion 5.1, and D represent the regions in the covariates space (e.g. tree nodes). The
term p(µp,b|Tp) is the prior distribution on the terminal node parameters across
each terminal node b in each tree p. In addition, p(Tp) is the prior distribution on
the tree structure, and p(τ) is the prior on the residual precision. The prior dis-
tribution on the trees proposed by Chipman et al. (2010b) is created by applying
a separate term for each node in the tree and considering both the probability of
a split as well as the probability of a new splitting variable being chosen. For an
entire tree Tp, we have:

P (Tp) ∝
∏

η∈LT

(1− PSP LIT (η))
∏

η∈LI

PSP LIT (η)
∏

η∈LI

PRULE(ρ|η).

where LT and LI represent the sets of terminal and internal nodes, and ρ is a
generic splitting value. The probability of a node being non-terminal is given by
PSP LIT = α(1−dη)−β, where dη denotes the depth of the node η. The recommended
values for the hyperparameters are α ∈ (0, 1) and β > 0, which control the depth
and bushiness of the trees. For the probability of the new splits, PRULE(ρ|η, T ) =

1
padj(η)

1
nj.adj(η) where padj(η) represents how many predictors are still available to

split on in node η, and nj.adj(η) how many values in a given predictor are still
available.

The prior distribution for the terminal node and overall parameters in the standard
regression case is denoted by p(Θ, T ), and it has a standard conjugate form:

µ1, . . . , µb|τµ, µµ, T ∼ N (µµ, τ−1
µ ),

where τ−1
µ and µµ are chosen such that a high density of this distribution is ap-

portioned to the range [ymin, ymax] interval, by setting Pµµ − k
√

P (τ−1
µ ) = ymin

and Pµµ + k
√

P (τ−1
µ ) = ymax, for some value of k. The response y is usually

standardized before the model is run which allows for reasonable guesses as to the
hyper-parameter values of µµ and τµ, though these too can be estimable parame-
ters. Finally, the residual precision prior is set as τ ∼ Gamma(ν/2, γν/2), where
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5.1. An introduction to BART and HEBART

γ and ν are fixed. An oft-used tactic is to set the two hyper-parameters such that
the BART residual precision is greater than an equivalent precision value from a
standard linear regression model applied to the same data with a high probability.
We follow the same guidance in our extension to the model as outlined below.

Since its creation, BART has been applied to a wide variety of different areas:
credit risk modeling (Zhang and Härdle, 2010), survival data analysis (Sparapani
et al., 2016, 2020), ecology and evolution modelling (Carlson, 2020), weather and
avalanche forecasting (Blattenberger and Fowles, 2014), and genetics (Waldmann,
2016). A popular approach is its use in causal inference (Hill, 2011; Hahn et al.,
2020), where BART produces accurate estimates of average treatment effects and
is competitive even with the true data generating model. Many fundamental ex-
tensions to the standard BART model have been proposed, including BART for
categorical, count, and multinomial regression (Murray, 2021; Kindo et al., 2016b)
and quantile regression (Kindo et al., 2016a). This was followed by the proposal
of BART that adapts to smoothness and sparsity (Linero and Yang, 2018b), mod-
els for high-dimensional data and variable selection (Linero, 2018a), BART for
zero-inflated and semi-continuous responses (Linero et al., 2020b) and an exten-
sion proposed by (Hernández et al., 2018), where the authors combine BART with
Bayesian Model Averaging to obtain posterior distribution more efficiently when
there is a large number of variables available. Quite a few more extensions have
also been proposed, showing how BART is becoming popular and useful in many
different settings, such as heterocedastic data (Pratola et al., 2020a), the estima-
tion of monotone and smooth surfaces, (Starling et al., 2020), varying coefficient
models (Deshpande et al., 2020), semiparametric BART (Prado et al., 2021b),
and a combination of BART with model-trees (Prado et al., 2021a). Some of the
mathematical properties of BART, including a deep review of the BART method-
ology can be found in Linero (2017), and some more general theoretical results in
Ročková and van der Pas (2020); Ročková and Saha (2019).
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5.1.2 Hierarchical Embedded Bayesian Additive
Regression Trees (HEBART)

The HEBART approach merges the ideas from traditional Bayesian hierarchical
modeling (Gelman and Hill, 2006) and linear mixed effects models (Pinheiro and
Bates, 2000) with BART, as the model allows each tree to have an extra split on
the terminal nodes, which corresponds to a random intercept for each member of
a categorical predictor variable z, taking values from 1 to J groups. Sub-terminal
node level parameters are introduced and written as ϕb,j, as the estimate for group
j in terminal node b. In relation to standard BART, the added parameters allow
for a group-specific prediction as well as an overall terminal node prediction µ.
This flexibility means that the user is not required to specify where the random
effect is included, for example, as an intercept or a regression slope. We can
thus fit Bayesian Additive Regression Trees to any grouped data where there is a
categorical predictor, such as longitudinal data, repeated measures data, multilevel
data, and block designs. Figure 5.1 (panel a) shows a standard HEBART tree,
where we have both the terminal node and sub-terminal-node parameter levels.
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5.1. An introduction to BART and HEBART

Figure 5.1: Top panel: a HEBART tree using one covariate X and a grouping
variable z with three levels. In HEBART, each terminal node b has its own overall
µb parameter, plus one ϕb,j for each of the J groups in the node (not all groups
need to have associated data in each terminal node); Middle panel: a Crossed-RE
HEBART tree, where we have an extra index for the µ and ϕ, used to represent
the grouping variable index; The T are indexed accordingly to the tree and group
index; Bottom panel: a Nested-RE HEBART tree, which has yet another node
sub-level, to represent the nested groups structure (we have sub-nodes that have
different numbers of sub-sub-nodes).
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To define the HEBART model, let P be the number of trees, J to be the total
number of groups, and Θp the set of node parameters at both the terminal node
and sub-terminal node level. We have one set µp of size bp (the number of terminal
nodes in tree p), which are terminal node predictions for each tree, and one set
ϕp,j for each group within each sub-terminal node for tree Tp, p = 1, . . . , P . In the
regression case, the fundamental HEBART function can be written as:

yi =
P∑

p=1
G(Xi, zi; Tp, Θp) + ϵi, (5.3)

for observation i = i, . . . , nj. The values of the grouping variable zi take values j =
1, . . . , J according to the group of observation i. In this specification, we have that
G is the tree look-up function which allows for predictions based on covariates Xi.
The categorical grouping variable zi provides information for the sub-terminal node
values only, and is not included in the tree splits, similar to if it were included in the
intercept of a standard random effect in a linear mixed model. The key difference
to standard BART is that Θp contains both the terminal node parameters and
the sub-terminal node group parameters for tree p, and the tree lookup function G

can provide both the terminal node and sub-terminal node predictions as required.
Similar to BART, the noise is assumed to be ϵi

iid∼ N(0, τ−1), where τ is the residual
precision.

The prediction parameter set Θp = {µp, ϕp,j} contains, respectively, the overall
terminal-node mean parameters and the group-level sub-terminal node parameters.
Thus each tree will contain a set of µp parameters of size bp where bp is the number
of terminal nodes in tree p, and a set of J × bp parameters ϕp,j for each group in
each sub-terminal node. All parameters in Θp are given prior distributions which
can be obtained in closed form using standard Gibbs sampling.

For the terminal nodes HEBART uses the standard µ ∼ N(µµ, τ−1
µ ) and τ ∼

Ga(ν/2, γν/2) for the residual precision. For the sub-terminal node parameters
ϕj ∼ N(µ, τ−1

ϕ /P ) which forces each sub-terminal node to vary according to τϕ

around the terminal node parameter, scaled by the number of trees. The tree
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5.1. An introduction to BART and HEBART

prior and its hyper-parameters α, β are the same as in BART. The remaining key
prior distribution is that of τϕ which represents the intra-group precision at the
terminal node level. In HEBART this is given a Gamma(a, b) prior. Analogous to
the setting of the τ parameter in BART, the values a and b chosen by first fitting a
simple random intercept model on the observed data to provide an estimate of τ̂LME

ϕ

and V ar(τ̂LME
ϕ ), and subsequently setting a and b so that P (τϕ < τ̂LME

ϕ ) = 0.5.

5.1.3 Fitting the HEBART model
Tree updates in both BART and HEBART are based on the calculation of partial
residuals. For the full details of how to fit the HEBART model see Wundervald
et al. (2022); however we provide a brief summary here. For HEBART in a single
terminal node b in tree p the partial residuals are:

Ribp = y
(b)
i −

∑
t̸=p

G(X(b)
i , z

(b)
i ; Tt, Θt) (5.4)

for observation i. We drop the dependence on terminal node and tree for brevity,
writing the generic set of partial residual in a terminal node as simply R, or
as Rj for those just in group j. We treat this set as a vector so we can write
R ∼ N(Mϕ, τ−1I). M here is a binary matrix that allocates each observation in
the terminal node to its associated group, and ϕ represents the stacked vector of
terminal node parameters for each groups in that terminal node. Marginalising
first over ϕ and then over µ we obtain a distribution on the partial residuals as
R ∼ MV N(0, ΩR) where ΩR = τ−1I + (Pτϕ)−1MMT + τ−1

µ 11T . This variance
matrix is symmetric and can be inverted quickly when required using Woodbury
and related formulae.

Since the above can be computed for each terminal node, the total marginal log
likelihood for each tree can be created as a sum of the MV N(0, ΩR) pdfs. Trees
can then be updated using the standard BART moves: grow, prune, change, and
swap (Chipman et al., 2010b). Once a tree is accepted the terminal node and
precision parameters can be updated using their closed-form full conditionals:
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µ| . . . ∼ N
((

1T Ψ−1
R 1 + τµ

)−1
1T Ψ−1

R R,
(
1T Ψ−1

R 1 + τµ

)−1
)

,

ϕ| . . . ∼ N
((

τMT M + PτϕI
)−1

(τMT R + Pτϕµ),
(
τMT M + PτϕI

)−1
)

,

where ΨR = τ−1I + (Pτϕ)−1MMT .

The precision parameter τϕ has to be updated using Metropolis-Hastings using a
random walk proposal. The residual precision parameter can be updated using
Gibbs:

τ | . . . ∼ Ga

(
N + ν

2 ,
(y − ŷ)T (y − ŷ) + νλ

2

)

where ŷ is the vector of predicted values at the sub-terminal node level. For given
trees, the model can be seen as a mixture of linear mixed effects models (see Section
3.2 in Wundervald et al. (2022)).

5.2 Extending the HEBART model
This section proposes and discusses two different extensions to the HEBART
model. Crossed random effects HEBART allows for the existence of more than
one non-linked grouping variable. Nested random effects HEBART allows for mul-
tiple grouping variables where one grouping variable is nested (and unique) inside
another.

5.2.1 Crossed Random Effects HEBART (CHEBART)
In this model each random effect is allocated to be used in a proportional number
of trees, meaning that P

K
trees are fit for each of the K grouping variables. Many

of the definitions from HEBART persist in CHEBART except that now we have:

• k as the index of grouping the variables,

• K as the total number of grouping variables,

• Jk as the number of levels for grouping variable k
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5.2. Extending the HEBART model

• Tp,k as the p-th tree structure for the grouping variable k,

• Pk as the number of trees for grouping variable k, initially taken as P
K

,

• zki as the value of grouping variable k for observation i.

• ϕtkbk is the sub-terminal node value for tree tk (associated with a specific
grouping variable k), terminal node b, and group k.

For a single terminal node we now have a set µpk
which are the terminal node

predictions for each tree pk, and an associated vector ϕpk
for each group within

each sub-terminal node for tree Tpk
, p = 1, . . . , Pk. Figure 5.1 (panel b) provides a

schematic for how this model works in that we have an extra index for each of the
parameters in comparison to standard HEBART. With these definitions, assum-
ing we have a continuous variable of interest, we can write the main CHEBART
equation as:

yi =
K∑

k=1

Pk∑
pk=1

G(Xi, zki; Tpk
, Θpk

) + ϵi, (5.5)

for observation i = i, . . . , n. G here provides the terminal node and sub-terminal
node predictions for each given tree, exactly as in HEBART. The only change is
that a portion of the trees use differing grouping variables.

The fitting algorithm for CHEBART differs slightly from that of HEBART. First,
instead of fitting the P trees using a single grouping variable, we create ∗ P

K
for

each grouping variable. We sample both µ and ϕ from the posterior distribution
for each of these grouping variables. The full conditionals for the µ parameters
are, for the current value of k:

µ|k, . . . ∼ N
((

1T Ψ−1
R 1 + τµ

)−1
1T Ψ−1

R R,
(
1T Ψ−1

R 1 + τµ

)−1
)

,
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where ΨR = τ−1I + (Tτϕk
)−1MkMT

k , where the Mk matrix is used to map each
observation to their corresponding k group information. At the sub-terminal node
level we have:

ϕk|k, . . . ∼ N
((

τMT
k Mk + Tτϕk

I
)−1

(τMT
k R + Tτϕk

µ),
(
τMT

k Mk + Tτϕk
I
)−1

)
,

where now τϕk
is the value of the precision parameter for each grouping variable k,

k = 1, . . . , K. The prior distributions for τϕk
∼ Ga(ak, bk) are set in a similar way

as that of HEBART, where a simple intercept-only LME model is used to find the
hyperparameter values using all grouping variables in a crossed model. We thus
estimate τ̂LME

ϕk
, extract the variance of this estimate and write it as σ̂2(τ̂LME

ϕk
). The

mean and variance are then used to provide point estimates of ak and bk for each
grouping variable using standard method of moments.

To set the prior for τ ∼ Ga(ν/2, λν/2), the overall precision parameter, we cal-
ibrate the values of ν and λ using the same rule as BART, but via the residual
variance of the above LME model that includes all grouping variables. This strat-
egy aims to yield a high probability that τ is bigger than τ̂LME, so we find prior
hyperparameters such that P (τ > τ̂LME) = 0.95. The complete steps for fitting
this model are found in Algorithm 3.

5.2.2 Nested Random Effects HEBART (NHEBART)
We next extend the HEBART model so that, for a single tree, we have both termi-
nal node predictions µj with prior µj ∼ N(0, τ−1

µ ), sub-terminal node predictions
ϕjk with ϕjk ∼ N(µ, τ−1

ϕk
/P ), and the extra sub-sub terminal node predictions γjkl

with γjkl ∼ N(ϕjk, τ−1
γ /P ), which account for nested random effects (or grouping

variables). See Figure 5.1 for a schematic as to how these are operationally used
in the model structure, where we have an example tree of this model in the panel
(c). Note that we have an extra level in each of the terminal nodes, and that
those sub-levels can have a different number of classes. The indices here represent
terminal node j = 1, . . . , b, sub-terminal node group k = 1, . . . , g, and sub-sub
terminal node group l = 1, . . . , s. In the developments below we vectorise each of
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Algorithm 3 Crossed-RE HEBART Algorithm
Type: Metropolis within GIBBS for a Crossed-RE HEBART model
Require: y, X, grouping variables zk, k = 1, . . . , K
Ensure: Posterior distribution of trees T , µ, ϕ, τ and τϕ Initial values for

α, β, σϕ, τ , total number of trees P, number of grouping variables K,
stumps T1, . . . , TP , number of observations N, number of MCMC iterations
I = burn-in+ post-burn-in, initial residual set R(1) = y
for i← 1 to I do

for k ← 1 to K do
Set Pk = ∗ P

K

for pk ← 1 to Pk do
1. Grow a new tree T ∗

pk
tree by either growing, pruning, changing or swapping

a root node
2. Calculate α(T ∗

pk
, Tpk

) = min
{

1,
P (R(i)

p |T ∗
pk

,τ)P (T ∗
pk

)

P (R(i)
pk

|Tpk
,τ)P (Tpk

)

}
;

3. Sample u ∼ U(0, 1]
4. if u < α(T ∗

pk
, Tpk

) then do Tpk
= T ∗

pk

for b← 1 to bpk
do: Sample µb,pk

for j ← 1 to Jbpk
do: Sample ϕpk,b,j

end for
end for
Update R(i)

pk
= y−∑K

k=1
∑Pk

t̸=pk
G(Xij, zk,i, Tk,t, Θt)

Update f̂ij = ∑Pk
pk=1 G(Xij, zi, Tpk

, Θpk
)

Sample τϕk
:

Sample a value d ∼ N(0, σ2
τϕ

) and make τ ∗
ϕk

= τϕk
+ d

Calculate α(τ ∗
ϕ , τϕk

) = min
{

1,
P (y|τ∗

ϕk
,Θ)P (τ∗

ϕk
)Φ(τϕk

)
P (y|τϕk

,Θ)P (τϕk
)Φ(τ∗

ϕk
)

}
;

Sample u ∼ U(0, 1]
if u < α(τ ∗

ϕk
, τϕk

) then do τϕ = τ ∗
ϕk

end for
Sample τ

end for

these terms and focus on a single terminal node (so that e.g. µ is a scalar) in a
single tree. To update the trees and the parameters we use the partial residuals
calculated as:
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R = y − S(−t)γ (5.6)

where S is a binary matrix that allocates each observation in each tree to a sub-sub
terminal node value in γ. The γ object now represents the stacked vector of all
sub-sub-terminal node parameter values across all trees. S(−t) is the sub-matrix of
S where the columns associated with the tree being updated are set to zero, such
that when the residuals are calculated in the fitting algorithm, the predictions for
the current tree are nullified and do not affect the sampling.

As with all BART models, the first step is to determine the marginal (log) likeli-
hood after integrating out the terminal node parameters. We first write

R ∼ N(M1γ, τ−1I), (5.7)

where R now represents those partial residuals in a single terminal node. M1 is
the sub-matrix of S that contains only those columns and rows for the current tree
in the current terminal node. We abuse the above notation slightly to use γ from
hereon as the vector of sub-sub terminal node values for an individual terminal
node. When combined with the prior distributions above we can obtain a full
conditional distribution to update γ (shown later) and marginalise Equation 5.7
over γ, to give:

R ∼ N(M2ϕ, τ−1I + (Pτγ)−1M1M1
T ), (5.8)

which now depends on ϕ. Further marginalisation yields:

R ∼ N(µ1, τ−1I + (Pτγ)−1M1M1
T + (Pτϕ)−1M2M2

T )), (5.9)

where now M2 is the matrix that allocates each partial residual to its sub-terminal
node grouping value. From this equation we define ∆R = τ−1I + (Pτγ)−1M1M1

T

and ΦR = τ−1I + (Pτγ)−1M1M1
T + (Pτϕ)−1M2M2

T ). Both of these provide full
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conditional distributions for all the node parameters, meaning γ, ϕ and µ, which
can be written as:

µ| . . . ∼ N((1T Φ−1
R 1 + τµ)−1(1T Φ−1

R R), (1T Φ−1
R 1 + τµ)−1), (5.10)

ϕ| . . . ∼ N((M2
T ∆−1

R M2+(Pτϕ)I)−1(M2
T ∆−1

R R+(Pτϕ)µ1), (M2
T ∆−1

R M2+(Pτϕ)I)−1),
(5.11)

γ| . . . ∼ N((τM1
T M1 +τγP I)−1(τM1R+τγPϕ1), (τM1

T M1 +τγP I)−1). (5.12)

The final marginalisation of the posterior distribution of the residuals gives us:

R ∼ N(0, τ−1I + (Pτγ)−1M1M1
T + (Pτϕ)−1M2M2

T + τµ11T ) (5.13)

which is used for updating the individual trees as in the Metropolis-Hastings ratio
part of the fitting algorithm.

For the two sub-node precision parameters τϕ and τγ, we use a random-walk up-
date that provides reliable samples from their posteriors (Brooks et al., 2011b). A
standard Normal is used to create the proposal values τ ∗

ϕ and τ ∗
γ , which are either

accepted or rejected if their likelihood is higher than the previous value. For τ ∗
ϕ , this

decision is based on the acceptance probability, α(τ ∗
ϕ , τϕ) = min

{
1,

P (y|τ∗
ϕ ,Θ)P (τ∗

ϕ)Φ(τϕ)
P (y|τϕ,Θ)P (τϕ)Φ(τ∗

ϕ
)

}
,

where Φ(x) represents the CDF of the standard Normal, and analogously for τγ

and τ ∗
γ . Since we are sampling from a distribution with limited support (positive

values only, as those are precision parameters), this sampler is used to account
and correct for that. Lastly, for updating τ we can use the main likelihood term:

y ∼ N(Sγ, τ−1I)

and combine this with the standard prior on τ ∼ Ga(a, b) to give a full closed-
form conditional update. The full algorithm for the NHEBART model is given in
Algorithm 4.
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5.3 Applications & Results
5.3.1 Crossed Random Effects HEBART
We first experiment with CHEBART on a simulated data scenario, where the
response variable y is simulated as a sum of two tree structures and two grouping
variables, so that each tree corresponds to a single grouping variable. The first
tree (grouping variable) has three different levels, with its allocation to each of
the simulated values being random, with a different set of parameters for each
simulated node in the tree. The second tree (grouping variable) has five levels
also allocated at random, and its corresponding sets of parameters for the tree
nodes. There are in total two covariates used to create the tree structures, each
simulated from a U(0, 1) distribution. By splitting the simulated covariates X1, X2

at random points, we sample n = 500 values as

y = G(X1, Z1, T1, Θ1) + G(X2, Z2, T2, Θ2) + ϵ (5.14)

where ϵ ∼ N(0, 1). Tree T1 consists of three terminal nodes with the partitions
I(X1 < 0.5), I(X1 < 0.75), I(X1 ≥ 0.75) respectively, and having terminal node
values µ1 = −5, µ2 = 10, µ3 = 0. The sub-groups of tree 1 are: ϕ1 = {−7,−5,−3},
ϕ2 = {8, 10, 12}, and ϕ3 = {−2, 0, 2}. For tree T2 the partitions are I(X2 <

0.4), I(X2 < 0.85), I(X2 ≥ 0.85) having terminal node values µ1 = 8, µ2 =
−3, µ3 = 0, and sub-groups ϕ1 = {8, 15, 7, 4,−1}, ϕ2 = {7,−2,−10, 2, 5}, and
ϕ3 = {−2, 0, 2, 20, 4}. This experiment uses 10 different train and test sets as our
cross-validation setting (Refaeilzadeh et al., 2009). To these simulated sets, we
apply our proposed algorithm and compare it to the corresponding LME model
with two random effects, always fitting the algorithms on the 10 training sets and
making predictions for the 10 testing sets.

In Figure 5.2, we can see that Crossed-RE HEBART produces the smallest root
mean squared errors for the test sets, as per the boxplot shown. The highest
RMSE value produced by Crossed-RE HEBART is smaller than the lowest RMSE
value produced by LME, showing its much more powerful prediction capacity for
this simulated data, even though our model’s RMSE varies slightly more. We also
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provide plots for the posterior samples of the σ parameters for the two grouping
variables, where we can see that the average values are very close to the true
value of 0.20. In addition, Figure 5.3 shows the convergence status for the two
parameters: no absurd convergence problems have been observed. We now move
on to fitting our model to a real data set.

(a) Test RMSE for
CHEBART and LME

(b) Sampled values from
the posterior distribu-
tions of στ1 and στ2

Figure 5.2: Simulation performance of CHEBART predictions and posterior sam-
pled values. In (a) we have the boxplots of the 10 test RMSEs for the CHEBART
and LME algorithms, with CHEBART performing better. In (b) we can see the
posterior sampled values for the σ parameters of the two grouping variables, with
their corresponding averages, which are both close to the correct 0.20 value.

For our real-world data evaluation we apply our model to the widely-used Gap-
minder data (Lang, 2011). For our experiment, the data consists of the life ex-
pectancy values (in years) for 20 different countries from 1950 to 2018. We use life
expectancy as the response. For the covariates we use: year; an indicator of the
percentage of the time passed; and the number of years passed. We use country
and a categorical version of the year variable (each 10 years/decade to account for
a decade effect) as the two grouping variables. Again we split this dataset into 10
different training and test sets, where the testing set is composed of all the ob-
servations for 15 sampled years (for all countries), and the corresponding training
set is composed of the observations for the remaining years. Fully removing a set
of years from the training set makes it harder for the model to predict for such
years, since it has no information of what happened in the removed years. We also
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compare our model against an LME with the two groups as random effects both
in the slope and in the intercept, to allow for as much flexibility as is possible for
LME, our main competitor.

Figure 5.3: Convergence plots of posterior distributions of στ1 and στ2 , indicating
good convergence but which could be improved.

Figure 5.4 shows the results for this experiment as the predictions for six different
countries using CHEBART and LME. The CHEBART predictions are very close to
the actual values due to the increase in flexibility of the predictions from the non-
parametric structure and the presence of the two grouping variables. The LME
algorithm clearly cannot adapt as well to the wiggly behavior of the observations
for some of the groups/countries, such as South Africa and Turkey. Even for
more linear situations, as for the United States, LME performs worse than our
model, which is probably a result of the higher prediction capacity of a tree-based
model in comparison to a linear equation. In addition, our model also has the
advantage of being able to predict when grouping variable information is missing,
e.g., when we have the year information but a decade is not complete yet, while still
keeping the tree-based model flexibility and prediction power. The average test
RMSEs for the two models confirm the evidence from the predictions, as there is
no intersection between the empirical confidence intervals for the RMSE averages,

81



5.3. Applications & Results

showing that we do indeed have a big advantage over LME, even when random
slopes and intercepts are allowed.

Figure 5.4: Predictions for six countries of the gapminder data, with the out-of-
sample LME predictions in red and the out-of-sample CHEBART predictions in
blue. The CHEBART predictions are closer to the actual values due to the increase
in flexibility of the predictions from the non-parametric structure and the presence
of the two grouping variables. LME does not capture well the non-linearities in
the observations.

5.3.2 Nested Random Effects HEBART
For this algorithm, we also start with a simple simulation example, though more
challenging than the CHEBART example above. In this case, the response vari-
able y is simulated as a sum of two tree structures with two nested groups with
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their respective parameters. In each terminal node of each tree the first grouping
variable has four different levels, and each group has a different number of sub-
groups (3, 2, 5, and 3 sub-groups respectively). Each group and sub-group have
their own simulated parameters, and are used to create the response variable y in
combination with the tree structures. There are also two covariates, each simu-
lated from standard Normal distribution, that are split at some certain points to
create the tree structures in the data. With this, we sample n = 500 values as:

y = G(X1, Z1, T1, Θ1) + G(X2, Z2, T2, Θ2) + ϵ (5.15)

where ϵ ∼ N(0, 1). Tree structure T1 has three terminal nodes created as I(X1 <

0, X2 < 0), I(X1 < 0, X2 ≥ 0), and I(X1 ≥ 0) respectively. Tree structure T2 has
the single split created from I(X2 < 0) vs I(X2 ≥ 0). For each terminal node in
each tree we simulate µ ∼ N(0, τ−1

µ = 3−1). For each of the 4 groups at the sub-
terminal node level we simulate ϕ ∼ N(0, τ−1

ϕ = 3−1). For each of the sub-groups
we simulate λ ∼ N(0, τ−1

λ = 2−1). Recall that the number of λ sub-terminal node
values will vary between groups.

This experiment uses 10 different train and test sets, randomly sampled in the
75%/25% proportion. We apply our Nested-RE HEBART algorithm and compare
it to the corresponding LME model, fitting the algorithms on the 10 training
sets and making predictions for the 10 testing sets for evaluating the results on
out-of-sample data.

Figure 5.5 has the resulting boxplots for the test RMSEs of both models. From
the image, we can clearly see the NHEBART model’s advantage over LME, as the
RMSEs are much lower for all simulated data sets. On the right side of the Figure,
we have the empirical distribution of the posterior sampled values of σϕ and σγ,
representing the standard deviations of the group and sub-group parameters. Both
distributions have a clear center and as per the low RMSEs, we have good evidence
that the dispersion parameters are being correctly estimated.

As a second example, we continue using the previously mentioned Gapminder data
(Lang, 2011), on a very similar fashion to what was used for the previous algo-
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(a) Test RMSE for
NHEBART and LME

(b) Sampled values from
the posterior distribu-
tions of σϕ and σγ

Figure 5.5: Simulation performance of NHEBART predictions and posterior sam-
pled values. In (a) we have the boxplots of the 10 test RMSEs for the NHEBART
and LME algorithms, with NHEBART performing much better. In (b) we can
have the posterior sampled values for the σϕ and σγ, corresponding to the group
and sub-group variables. For both grouping levels there is a clear center on the
empirical distributions.

rithm (CHEBART). For this experiment, the data consists of the life expectancy
values (in years) for 20 different countries from 1950 to 2018, where we filtered
out continents that had only one country available, as those will be our group
and sub-group variables, which present a natural nested data structure. Life ex-
pectancy continues to be the response, and we use year (time passage) and and
the number of years passed as the two covariates. We split the dataset into 10
different training and test sets, where the testing set is composed of all the obser-
vations for 15 sampled years (for all countries), and the corresponding training set
is composed of the observations for the remaining years (similar to the previous
experiment presented here). The comparison is made against LME with nested
random effects, namely the continent and country variables present in the data,
which corresponds to the model we are fitting when using Nested-RE HEBART.

Figure 5.6 shows the results for this experiment as the predictions for six different
countries using NHEBART and LME. Once again, our predictions are closer to
reality than that of LME, even with the nested random effects and varying intercept

84



5.3. Applications & Results

and slopes. NHEBART adapts to the data for most of the cases shown, while LME
fails to capture relationships that are even fairly linear, such as the data for the
United States. In addition, a few model specification issues were reached while
using LME, which did not allow two random slopes to be used because of the
colinearity between the covariates. This is something that would not happen with
HEBART, though more investigation on feature selection and avoiding the use of
correlated variables is needed. In comparison to the CHEBART results (Figure
5.4, we have a bigger RMSE for NHEBART, but those are quite different models.
Nevertheless, it is possible to infer that using the categorical year variable makes
a big difference for the predictions. A combination of the two algorithms, mixing
the nested random effects with the usage of multiple groups accounting for the
decade effect would probably be ideal for this data, which can also be included in
further work.

Lastly, in Figure 5.7 we have the predictions using only the first group-level param-
eters, meaning we make predictions for the continents without using the country
information. This represents one more advantage of our model, that we do not
need to have knowledge about both the continent and the country to make pre-
dictions. In case the second variable is missing, we can still use the continent-level
parameters to create the predicted values. In this case, we still have a better per-
formance than the corresponding LME model, as our predictions can approximate
the data in a more accurate way.

5.3.3 Code & Data Availability
The package created to run the Crossed-RE HEBART algorithm is written in the
language R (R Core Team, 2018), and available at
https://github.com/brunaw/MHEBART. The package for the Nested-RE model
is available at https://github.com/brunaw/NHEBART. To complement it, all the
experiments code & data are available in a third repository at the URL
https://github.com/brunaw/hebart-experiments. In the future, we plan to
have a single optimized R package that contemplates all HEBART options currently
available.
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Figure 5.6: Predictions for six countries of the gapminder data, with the out-of-
sample LME predictions in red and the out-of-sample NHEBART predictions in
blue. The NHEBART predictions are much closer to the actual values, and LME
struggles to properly model the observations.

5.3.4 Conclusions
The two proposed extensions to HEBART now provide a complete suite of al-
gorithms whereby many of the most common linear mixed-effects models can be
replaced with HEBART versions. We have described and outlined two important
extensions to HEBART:

• the Crossed random effects HEBART, which deals with multiple categorical
grouping variables in the same model;
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Figure 5.7: Predictions for continents (instead of countries) of the gapminder data,
with the out-of-sample LME predictions in red and the out-of-sample NHEBART
predictions in blue. On a continent level, our predictions are still better than LME,
as our model is more able to capture the complicated relationship between time
and life expectancy in years.

• the Nested random effects HEBART which accounts for situations where we
have nested multiple grouping variables

The first model is useful in situations where there are more than one grouping
variable known to be affecting the data-generating process, and that we need to
account for that when modeling the response. This algorithm uses a proportional
number of trees with each grouping variable, allowing them to have their effect
captured in the estimation. Here, we have verified through experiments using
simulated and real datasets that, in terms of producing accurate predictions, the
Crossed random effects HEBART is able to beat standard Crossed-RE algorithms,
such as the classic LME model. In addition to that, our model is also able to con-
sistently find full posterior distributions to both the grouping and terminal node
parameters, enjoying the properties of Bayesian algorithms that provide uncer-
tainty intervals for all quantities estimated.
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For the second proposed model, we also allow the presence of more than one
grouping variable, but now in a nested rather than a combined fashion. The trees
have not only one group sub-node, but a further sub-sub-node level, where the
value of the second-level groups depend on the first-level ones, thereby creating
the nested structure. Such a nesting structure is found in many hierarchical data
modeling problems (Gelman and Hill, 2006). Similar to Crossed HEBART, we also
demonstrated the nested version of HEBART to be able to beat the corresponding
LME model for both simulated and real datasets where the nested structure was
an important component of the task.

Our current implementations are based on R code and allow for only a single nested
layer in the trees. Future extensions would turn our code into a more fully featured
package based on e.g. Rcpp (Eddelbuettel and François, 2011) to speed up model
fitting. Such a package may further extend the work to include multiple nested
layers and beyond simple regression problems into generalised linear models.
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Algorithm 4 Nested-RE HEBART Algorithm
Type: Metropolis within GIBBS for a Nested-RE HEBART model
Require: y, X, nested grouping variables zk, k = 1, . . . , K
Ensure: Posterior distribution of trees T , µ, ϕ, τ and τϕ Initial values for

α, β, σϕ, τ , total number of trees P, number of grouping variables K,
stumps T1, . . . , TP , number of observations N, number of MCMC iterations
I = burn-in+ post-burn-in, initial residual set R(1) = y
for i← 1 to I do

for p← 1 to P do
1. Grow a new tree T ∗

p tree by either growing, pruning, changing or swapping
a root node

2. Calculate α(T ∗
p , Tp) = min

{
1,

P (R(i)
p |T ∗

p ,τ)P (T ∗
p )

P (R(i)
p |Tp,τ)P (Tp)

}
;

3. Sample u ∼ U(0, 1]
4. if u < α(T ∗

p , Tp) then do Tp = T ∗
p

for b← 1 to bp do: Sample µb,p

for j ← 1 to Jbp do: Sample ϕp,b,j

for k ← 1 to Kbp,j do: Sample γp,b,j,k

end for
end for

end for
Update R(i)

p = y−∑P
t̸=p G(Xij, zi, Tt, Θt)

Update f̂ij = ∑Pk
pk=1 G(Xij, zi, Tpk

, Θpk
)

Sample τϕ:
Sample a value d ∼ N(0, σ2

τϕ
) and make τ ∗

ϕk
= τϕ + d

Calculate α(τ ∗
ϕ , τϕk

) = min
{

1,
P (y|τ∗

ϕ ,Θ)P (τ∗
ϕ)Φ(τϕ)

P (y|τϕ,Θ)P (τϕk
)Φ(τ∗

ϕ
)

}
;

Sample u ∼ U(0, 1]
if u < α(τ ∗

ϕ , τϕ) then do τϕ = τ ∗
ϕ

Sample τγ:
Sample a value d ∼ N(0, σ2

τγ
) and make τ ∗

γk
= τγ + d

Calculate α(τ ∗
γ , τγk

) = min
{

1,
P (y|τ∗

γ ,Θ)P (τ∗
γ )Φ(τγ)

P (y|τγ ,Θ)P (τγk
)Φ(τ∗

γ )

}
;

Sample u ∼ U(0, 1]
if u < α(τ ∗

γ , τγ) then do τγ = τ ∗
γ

Sample τ
end for
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CHAPTER 6
Conclusions

This thesis proposes a few extensions to overcome key limitations of both Bayesian
Additive Regression Trees and standard tree-based models. Such statistical models
are, in general, highly flexible as they can deal with complex interactions between
the covariates, they are consistent, fairly easy to understand and able to create
accurate predictions for many sorts of datasets and machine learning tasks. This is
enough to justify the need for tackling and coming up with solutions to some major
bottlenecks of the tree-based models, as the lack of efficient ways to select the most
important features and proper extensions to deal with grouped data, which are
part of an important ramification of statistical methods. In this final Chapter,
we briefly discuss the presented methods and some of their main limitations and
potential future work.

The final conclusion shows the similarities across HEBART, NHEBART, and
CHEBART by focusing on their core structure as members of an “extended BART
family,” united by the common framework of embedding hierarchical or grouped
data structures into the BART model while allowing flexibility at the terminal node
level. Essentially, each variant introduces a design matrix tailored to the specific
grouping structure—be it hierarchical, nested, or crossed—which defines the par-
titioning and interaction handling within the terminal nodes. This design enables
all these models to achieve more granular and accurate predictions, accounting
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for grouped data in a non-parametric way. In addition to highlighting the shared
lineage, we note that these models address practical limitations of BART, such as
dealing with complex random effects and feature selection in hierarchical contexts.
They improve upon traditional BART by integrating grouping information seam-
lessly, allowing for context-specific predictions while retaining BART’s predictive
power and uncertainty calibration.

In this document, in Chapter 3 we first propose a method that generalizes feature
selection via gain penalization for standard tree-based models. The presented tech-
nique is based on a new gain penalization idea that exhibits a general local-global
regularization for tree models, where we create a generic penalization function
composed of a mixture of a baseline parameter and of a covariate-based function.
With this, the new method allows for full flexibility in the choice of feature-specific
importance weights, while also applying a global penalization to all of the features.
In our proposal, we discuss a few possible covariate-based functions that can be
used to create the penalization values and their main implications/consequences.
We also study and extensively explain other aspects of the method, such as the
effect of different values for each parameter and the best ways to tune these values,
as well as the best usage of the depth hyper-parameter, an extension that allows
our method also to control the penalization via the current depth of the tree being
fit. As a result, we have a flexible and scalable gain penalization method that
can best select the most important features, even in extreme cases where we have
several highly correlated or useless features. We validate our method on both sim-
ulated and real datasets with the implementation we provided as an addition to
the the popular and efficient R package ranger.

In the following, Chapter 4 changes the subject a bit and switches to an exten-
sion of the Bayesian Additive Regression Trees algorithm, which is a more specific
Bayesian tree-based model. We propose a simple yet powerful extension of BART,
named Hierarchical Embedded BART (HEBART) for its hierarchical structure
and the addition of the grouping variable as a fundamental part of the algorithm.
In other words, HEBART is to BART what an LME model is for a linear regres-
sion. Our model allows for random effects to be included at the terminal node
level of the BART regression trees, making HEBART a powerful non-parametric
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alternative to mixed effects models. One of the main advantages of our model
is that we avoid the need for the user to specify the structure of the random ef-
fects, but we also maintain the prediction and uncertainty calibration properties
of standard BART. This allows us to have a more specific prediction for situa-
tions where the grouping values are known, but also for when we do not have
such information, which keeps the famous prediction power of BART. Using a few
simulated and real-world examples, we demonstrate how this new extension yields
superior predictions for some of the standard mixed effects models’ example data
sets, and yet still provides consistent estimates of the random effect variances.
With our mathematical model, it also comes the computational implementation,
which we once again have done via the statistical language R and made it available
at https://github.com/brunaw/hebartBase, where the main package is stored,
and and https://github.com/brunaw/hebart-experiments contains the code
to replicate all the examples, with their corresponding auxiliary files.

While creating HEBART, we also identified a few possible extensions to it, which
are even mentioned in the text as the future work. This motivated the methods
proposed in Chapter 5, where we describe and exemplify two important exten-
sions to HEBART: I) the Crossed Random Effects HEBART, which deals with
multiple random effects in the same model; the II ) the Nested Random Effects
HEBART, that accounts for situations where we have more than one random ef-
fect, but they come on a nested fashion. These extensions are similar to what
LME already has, as those are common modelling situations that need to be ac-
counted for when trying to create generic models for hierarchical data. The first
model is useful in situations where there are more than one grouping variable
known to be affecting the data-generating process, and that we need to consider
when modeling the response. For this algorithm, a proportional number of trees is
used with each grouping variable used, allowing them to have their effect captured
in the estimation. As for the second model, we also have the presence of more
than one grouping variable, but now in a nested rather than a combined fashion.
The trees used in this model have not only one group subnode, but two subnode
levels, where the value of the second-level groups depend on the first-level ones,
allowing for much more flexibility and accurate predictions. We experiment with
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both models on simulated and real-world datasets, and, with this, we demonstrate
their prediction capacity and potentiality to be powerful machine learning models
for hierarchical data. The computational implementation is done via the sta-
tistical language R and it is available at https://github.com/brunaw, and and
https://github.com/brunaw/hebart-experiments has the examples shown in
the text. In the future, we intend to have one single, optimized package with all
HEBART extensions, in a fashion similar to the lme4 package interface.

To conclude, the methods proposed here cover a wide range of issues that ex-
isted for tree-based models. The methods presented are innovative and tackle
actual and practical problems, representing important extensions to tree models
in general, which will likely have a large impact on how people deal with the be-
forementioned issues, as new tools are now available to solve them. With this, it
also comes the possibility of keep extending the proposed models, in a continu-
ous attempt to achieve better results. For instance, Chapter 3 can be extended
in terms of finding theoretical properties of our gain penalization approaches, as
well as parameter optimization (with, e.g. Bayesian Optimization, Snoek et al.
(2012)), and conducting a wider comparison of approaches with a similar context
(Johnson and Zhang (2013); Nan and Saligrama (2017); Nan et al. (2016), for
example). As for HEBART, beyond our own extensions proposed in Chapter 5,
we also see potentiality in explicitly modeling joint random effects using the mul-
tivariate normal distribution and, consequently, estimating covariances between
grouping variables, as it is fair to assume that multiple grouping variables might
be correlated in some certain situations. In addition, merging our ideas to other
recent (yet, different) BART extensions such as such as SOFT-BART (Linero,
2018a) and MOTR-BART (Prado et al., 2021a) can substantially enhance the
predictive capabilities our model, helping BART achieve even more visibility and
usage as a powerful machine learning model that can be applied to many different
prediction scenarios.

In sum, these extensions collectively demonstrate the versatility and adaptability of
the BART framework when appropriately modified to handle hierarchical, nested,
and crossed data structures. This not only shows the flexibility of BART as a
machine learning model but also illustrates the power of thoughtful adaptation in
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addressing domain-specific challenges in grouped data modeling. Looking forward,
continued development and unification of these models into a single optimized
package would streamline their usability and make these advanced modeling tools
even more accessible.
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