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Abstract
This paper describes the application of a multi-time-scale
technique to the modelling and forecasting of short-term
electrical load. The multi-time-scale technique is based on
adjusting the underlying short sampling period forecast time
series with specific target points and possible aggregated
demand. This allows not only improvement of the short
sampling period forecast, but also focuses on weighting the
accuracy of the forecast at certain critical points e.g. the
overnight minimum and daily peaks. Various model types
may be utilised at the upper level (forecating the aggregated
consumption and target points at daily level), including
intelligent models such as neural and fuzzy models, but the
base model is currently restricted to a linear form. Results
for the Irish national electrical grid demonstrate the
effectiveness of the technique.

1  Introduction
In recent years, most of the work on short-term electrical
load forecasting had concentrated on peak demand [1],[2].
This is reflected by the importance of accurately predicting
the maximum demand over the day which determines the
maximum generating capacity required. However, the
complete daily load profile must also be forecast [3], in an
attempt to provide inputs to the unit committment
optimisation problem. Such forecasts are normally specified
on an hourly or half-hourly time base. A danger associated
with the development of an hourly (or half-hourly) time
series model is that the model may produce a good forecast
in terms of some overall indicator (e.g. Mean Square Error
[MSE] over the 24-hour period), but have unacceptably large
errors at the cardinal points e.g. midday peak, overnight
minimum, evening peak.

This paper addresses the problem of producing complete 24-
hour (and beyond) time series forecasts, while allowing
separate forecasting models to concentrate exclusively on
any required cardinal points (one model for each point). The
time series forecast is then forced to fit the cardinal points,
with the extra target of fitting to the aggregated load over
the day (supplied by a further special model) being provided
as a further option. In the current formulation, the hourly or
half-hourly time series model must be a linear state-space
model, including types such as AR, ARMA, ARIMA [4] and
structural models [5].
      One of the interesting features of the multi-time-scale
technique is that a diverse range of inputs may be employed
at the different time scales. For example, when a long term
trend such as aggregated yearly demand is being imposed on
aggregated weekly demand, inputs such as GDP and
electricity price may be more appropriate at the annual level,
while temperature inputs may be the dominant factor at the
weekly level. In this way, various exogenous inputs, which
are not available at the weekly level, can still be used to
enhance the forecast. In the current application, both the
(daily)target points and the hourly time series use the same
(principally weather) input variables, so a univariate model
is utilised at the hourly level, with the influence of the
exogenous variables being taken into account in the target
points.

2  The Multi-Time-Scale Technique

2.1  Problem Definition

Let the short time-scale model for the observations
y k k K( ), ... ... ... = 1  be a general state-space model of the
form:

x Fx G( ) ( ) ( )k k k= − + −1 1ηη  (1)

  y  ( ) ( ) ( )k k k= +Hx εε (2)



where x( )k   R
n∈  is the state vector,

F G H∈ ∈
× × ∈R R R

n n n m T n
,  and     are the system matrices

which are assumed to be constant matrices, and ηη( )k  and
εε ( )k are assumed to be zero mean independent and
identically distributed normal random variables.  Equation
(1) is the state equation and (2) is the observation equation,
together they make up the state space model for a system
with n state variables, m system inputs and a single system
output.  An l-step-ahead forecast of the series is obtained
through the following:

$( / ) $( )x F xt l t tl+ = (3)
$ $( / )y( + / ) =t l t t l tHx + (4)

where t represents the forecasting origin, l represents the
forecasting lead time and $( / )x t l t+  is the estimate of the
state vector at time t+l given the state estimate $( )x

$( )x t at forecasting origin t and back-solving
for these freed states using the end-point and sum data.
Define:

ΦΦ( )l Rl= ∈ ×F             n n (5)

The forecast from the short-time-scale model at the end-
point N of the forecast horizon is given by:

$( ) ( ) ( )y N N t= H xΦΦ (6)

Let the value of the end-point predicted by the long-time-

scale model be denoted $ ( )Y Lep .  Also, let the number of

states which are fixed in the state vector at the forecasting
origin $ ( )x t  be r, and the number of states which are freed
states be (n-r).  The state vector is reconstructed as follows:

[ ]x x x= 1 2
T T T

,   x x1 2∈ ∈  and   r (n-r)R R (7)

and with x1 contains the fixed states and x2 contains the
freed states which it is necessary to solve for using the long-
time-scale end-point specification.  The matrix ΦΦ  is
partitioned appropriately according to the above construction
of x(t) (7) as follows:

[ ]ΦΦ ΦΦ ΦΦ= 1 2  ,   ΦΦ ΦΦ1 2   and    Rn n (n-r)∈ ∈× ×R r
   (8)

then, using (6), (7) and (8),

$ ( ) ( ) ( ) ( ) ( )Y L N t N t eep − = +H x H xΦΦ ΦΦ1 1 2 2 1 (9)

where e Y L y Nep1 = −$ ( ) $( )  represents the error on the end-

point specification.

Similarly, if the forecast of the sum from the long-time-scale

model is $ ( )Y Ls  then
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l
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∑$ ( ) $( )  represents the error in the sum

specification. Equations (9) and (10) represent the end-point
and sum matching constraints imposed on the short-time-
scale prediction.

2.2  Deviation From the Original Solution

When applying the end-point and sum information it is
desirable that the prediction follows, to some degree, the
original unaltered solution.  Therefore, minimisation of the
deviation from the unmodified prediction for N-1 forecasts,
i.e., all the forecasts minus the end-point, is sought.  Let
$( )y l and  $ ( )*y l , l=1,2,.....N, be the unaltered and altered

predictions respectively.  Also, let x(t) be the original state
vector at the forecasting origin and x*( )t  be the new altered
state vector at the forecasting origin t, then it is required to

minimise $( ) $ ( )*y l y l−
2
 in

( )H x H xΦΦ ΦΦ( ) ( ) ( ) ( ) $( ) $ ( ) , ,...* *l t l t y l y l l N= + − = −      for      1 2 1

(11)

Partitioning ΦΦ and x*( )t  according to equations (7) and (8),
equation (11) can be written as:

H x H x H xΦΦ ΦΦ ΦΦ( ) ( ) ( ) ( ) ( ) ( ) , ........ ,* *l t l t l t e l Nl− = + = −1 1 2 2 1 2 1      for    

(12)

where ( )e y l y ll = −$( ) $ ( )*  represents the error on the

deviation from the original solution for the forecast at lead
time l.  Therefore, equation (12) represents the deviation
from the original unadjusted solution constraint.  The errors

( )e y l y ll = −$( ) $ ( )* , l=1,2,.....N, are referred to as the

deviation errors.



2.3 Weighted Least Squares Solution

A weighted least squares formulation (Franklin et al, 1990)
of the problem is sought which allows for selective
adjustment of the original prediction of the short sampling
period time series.  The combination of equations (9), (10)
and (12) gives:
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(13)
where

[ ]E = +e e e eN

T

1 2 3 1........

Equation (13) may be rewritten as:

b Ax E= +2  (14)

with the obvious identification of b and A from (13). A
weighted least squares solution for the freed states x2( )t
which minimises E ET W  is given by:

( )x A WA A W bT T
2

1
( )t =

−
 (15)

If the forecast of an additional point from the long-time-

scale model is denoted by $ ( )Y Ia  then the constraint at this
point is given by:

[ ]$ ( ) ( ) ( ) ( ) ( )Y I i t i t ea i− = +H x H xΦΦ ΦΦ1 1 2 2     (16)

These additional constraints are straightforwardly added to
the formulation in (13).

3 Application to Short-Term Forecasting

3.1  Long-term Models

The long term (daily) models comprise the aggregated daily
consumption (sum) and the selected cardinal points as
follows:

• Peak load of the day at 1800 hrs.
• Overnight min. At 0500hrs.
• Lunch-time peak at 1300 hrs.
• Afternoon valley at 1400 hrs.

The peak load of the day was chosen as the end-point and
the others as additional target points.
     Daily data recorded over 9 years is used to determine the
sum and cardinal point models, giving a total of 245 data
points. The daily data is seasonal, with a season length of 7,
and basic structural models (BSM) with a dummy seasonal
component [6] were used for each individual model. The
parameters of such models are determined using a
combination of the Kalman filter and maximum liklihood
optimisation [5].

3.2  Short-term models

The hourly model is also a BSM with a dummy seasonal
component [6], with the identification data used being taken
from 17 days of hourly load, giving 408 data points.
      The adequacy of both long and short-term models was
checked using the Ljung-Box statistic [7].

3.3  Multi-Time-Scale Modelling

In the multi-time-scale formulation, states 1 (level of trend
component) and states 3 to 25 were freed i.e. the x2 states in
(15) and state 2, corresponding to the slope of the trend
component, fixed. This gives sufficient freedom to adjust the
level and the shape of the time series forecast according to
the intermediate points obtained. The weighting matrix in
(15) is given as:

[ ]W diag w w w w w wep s addp t d e v hr s d e v hrs d e v hrs= _ _ _. . .1 9 0 0 2 0 0 0 1 7 0 0   

(17)

4  Results
The accuracy of the forecasts from the long-term models is
given in the table below:

Table 1:  Accuracy (%) of long-time-scale information
for 24-hour-ahead prediction

Long-Time-Scale
Forecast

% Error

Σ(1900 hrs Tues. to 1800
hrs Wed.

1.56

1800 hrs Wed 2.90
1400 hrs Wed 1.11
1300 hrs Wed 3.67
0500 hrs Wed 2.13



In order to give a basis for comparison, the unadjusted short-
term time series forecast obtained the following accuracy:

Table 2: Unadjusted 24-hour-ahead forecast
Forecast
Horizon

MAE MSE x 10-3 MAPE

1900 hrs
Tues to

1800 hrs
Wed

45.54 2.8074 2.19

where MAPE represents the Mean Absolute Percentage
Error. A number of combinations of cardinal points were
tried, with the best combination being sum (aggredated daily
consumption), end-point (peak daily load) and 0500 hrs load
(overnight minimum). The results for this case are:

Table 3: Adjusted 24-hour-ahead forecast
Type of

adjustment
MAE MSE x

10-3
MAPE

Adjusted using
actual daily

values

19.69 0.5663 1.05

Adjusted using
predicted daily

values

37.21 1.9880 1.80

Fig.1 indicates (graphically) the effect of the adjustment:

Figure 1: Actual and predicted load values

5  Conclusions

The results show a significant improvement in the hourly
forecast values when adjusted by the specific cardinal point
models. Dramatically improved results using actual cardinal
point inputs demonstrate that considerable effort should be

expended in modelling the cardinal points. This technique
has also been successfully applied to forecasting a number of
24-hour periods ahead and also the combination of
weekly/annual forecasts [8].
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