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Abstract— This paper addresses the problems associated
with multi-step ahead prediction neural networks models.
We will see how some concepts from the statistical theory
field can be applied in various ways to improve the mod-
elling. The generalization and error autocorrelation prob-
lems will be addressed using topological and methadologi-
cal approach among which network committees, statistical
bootstrap and principal component analysis will play a key
role. These methods will be applied to the sunspot time
series.
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I. INTRODUCTION

HE determination of the optimal structure in neural

networks modelling is a critical issue can cannot be
adressed analytically. When some a priori knowledge or
understanding of the problem is available or when the com-
plexity of the function to map is low, it is possible to find
a topology which is close to optimal. When the complexity
of the problem increases, we have to use all the available
methods, including techniques from the statistical theory
field (1}, [2].

Time series modelling is a class of problem where the
goal is to approximate an hypothetical function describ-
ing the behaviour of a dynamical system on the basis of
observations. The modelling task is then complicated by
the ignorance of the optimal input space and all the model
uncertainties tend to downgrade the prediction accuracy.
Moreover, in applications such as predictive control that
require multi-step ahead predictions, and therefore the use
of past predicted values in the model, the optimality of the
topology and of the network parameters are essential to
ensur reliability.

It is well known that modelling methods are problem de-
pendant and that any modelling methodology cannot pre-
tend to be completly universal. However, it is possible to
draw some general lines on the modelling methodology in
the case of multi-step ahead prediction of time series with
neural networks. The purpose of this paper will there-
fore be to demonstrate how the use of statistical methods
can improve the performance of neural networks models
on critical times series problem. The benchmark time se-
ries expressed on Figure 1 [3} examined here will be the
sunspot series well known for its pseudochaotic dynamics
and probably non-stationary behaviour.
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The paper is organized as follows : Section II expresses
the modelling problems associated with sunspot prediction
and gives a review of the previous studies. Section III will
aim at explaining the rational of the different techniques
and methods used proposed our the modelling. The results
of our modelling and the comparisons with other studies
will be done in section IV while section V will conclude
this study.

I1. SUNSPOT SERIES FORECASTING

The sunspot series is composed of the yearly mean of an
arbitrarily defined sunspot number R; that expresses the
number of spots or group of spots on the surface of the sun
[3]. Although such phénomena have been observed since
1700, there is still no physical explanation. The resulting
time series is thought to be chaotic with a pseudoperiod
of 12 years with some dynamical system behaviour. It has
been used as a benchmark problem for various time series
prediction methods [4], [5], [6].
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Fig. 1. Sunspot Numbers Variations.

Modelling of the sunspot series must observe several con-
strains. The first is the very limited number of data with
regard to the 12 years pseudoperiod. Most of the statistical
analysis and identification methods rely on statistical co-
herence of the data set, i.e. data sets on which it is possible
to carry out generalization assessments. Another problem
associated the limited number of data and the lack of un-
derstanding of the physical phenomena is the question of
the time invariance of the sun considered as a dynamical
system. The reduced observation time scale, with regard
to astronomical time scales and the important variance of
the pseudoperiodic signals both in amplitude and frequency
(the cycle varies between 6 and 14 years), increases the un-
certainty on the nature of the system studied [7]. The small
data set leads us to consider the full set of reconstructed
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annual relative sunspot numbers and modelling methods
that take advantage of the reduced data sets [3], [8].

In order to enable comparisons with previous studies, the
data set obtained from the Sunspot Index Data Center [3]
that covers the yearly means from 1700 to 1996, was split
into three subsets expressed on Figure 1. The first one
called training set covers values from 1700 to 1920. The
test set covers the 1921-1955 period and the validation set
1956-1979. Since the number of samples available is critical
for statistical coherence, used methods that enabled to use
larger sets that will be refered as the eztended training set
covering the 1700-1955 period and the extended validation
set covering the 1956-1996 period.

The modelling performed uses a feed-forward neural net-
work that performs the mapping of the input space, the
twelve previous sunspot numbers, to the output space i.e.
the next sunspot number.

IIT. A METHODS IN MULTI-STEP NEURAL NETWORKS
PREDICTION MODELING

A. Input Space Orthogonalization and Principal Compo-
nent Analysis

The determination of the optimal topology is one of the
most critical issues in neural network modelling [2], [9].
Only a minimal structure will enable good prediction and
generalization properties. Despite attempts to estimate
the problem complexity using Vapnik-Chervonenkis dimen-
sions bounds [15], there is no theoretical result which gives
the characteristics of the optimal neural network.

The curse of dimensionality [2] expresses the problem of
an exponentially growing network as the input space grows.
The first step in the modelling is therefore to optimize the
input space. This is performed by the orthogonalization
of the input space using the principal components. In this
methodology new inputs are selected using linear systems
model selection methods [10], [11], by the normalization of
the transformed input space [12], [13] and by the selection
of appropriate neural networks topology based on heuristic
understanding of the problem [14].

Principal Component Analysis (PCA) is a multivariate
analysis method that aims at determining correlation re-
lationships between different variables [12], [13]. In neural
network time series modelling context, these variables can
be either the tapped delayed inputs or the output signals
from each network layer [14]. The PCA method can be used
to transform the data so they have maximum variations
and are orthogonal. The crosscorrelation criteria are then
used to evaluate the level of information contained within
the transformed signals (the principal components scores),
so that a dimensionality reduction can be performed. The
orthogonalized signals can be interpreted as extracted fea-
tures in multivariate data analysis, where the dimensional-
ity reduction can be called compression, for example in the
communications field [12], [13)].

The first six principal components were selected, al-
though only the first three explained 95 % of the data vari-
ance. The sunspot series and the first three components

scores are expressed on Figure 2. The choice of the prin-
cipal components is critical since the proportion of vari-
ance is not a causality criterion. We implemented linear
models using principal components as inputs and statis-
tical decision methods [11] to determine the best principal
components in respect to prediction error. The rational for
using orthogonalized inputs was to feed the network with
the minimal information, or in other words to reduce the
hypervolume of the input space and therefore the network
size. Moreover, the use of uncorrelated inputs improves the
convergence of the gradient based learning algorithms.

The orthogonalization was performed on data series
made of the past 12 sunspot numbers [5]. The three first
principal components, the main extracted features, can be
associated respectively with a two or three years delayed
signal and a nine years delayed signal, with the third com-
ponent corresponding to the so-called super-period [3] that
could also be interpreted as a signal expressing the non-
stationarity nature of the system (see Figure 2).
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Fig. 2. Sunspot Series and Principal Components.

To determine the optimal topology, one should use the
PCA on a trained network which is sufficiently large to per-
form off-line neuron pruning. Altough the term sufficiently
large can be estimated using Vapnik-Chervonenkis dimen-
sions [15], we used the results of the input space orthogonal-
ization and of a linear modelling exercice (the complexity
of the function is proportional to the number of parame-
ters required in the linear model). Initially, a 6-6-1 MLP
neural network was trained to map the transformed and
reduced input space to the output space. The output sig-
nals of the input and hidden layers were analyzed using the
principal component analysis method and possible redun-
dant neurons were detected. The process was reiterated
10 times on different training subsets in order to achieve
a good statistical inference on the topology determination
and neuron pruning. The analysis indicated that a 4-3-
1 structure would reduce correlations between layers and
make the networks close to optimally regularized.
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B. Statistical Bootstrap and Generalization Estimates

One of the problems main in neural network modelling
is the overfitting problem [9] that leads to poor generaliza-
tion. Assuming that generalization is possible, the problem
is then to determine a reliable generalization error esti-
mate that will be used for model selection and optimiza-
tion. Classical methods use single-sample statistics (AIC,
FPE, MDL criteria) [16], [11] that estimate the model per-
formance on a single set (usually the training set), or the
split-sample method that estimates the error on a test set
which is independent of the training set.

Other methods such as cross-validation and bootstrap
(17], (18], use statistical theory principles to obtain bet-
ter estimates of the error without using test sets (which is
an advantage with limited data sets problems). In k-folded
cross validation, the training set is split into k distinct equal
size sets and k-1 models are estimated using training sets
composed of k-1 subsets where the one left out each time
is different. The bootstrap method is used to decrease the
statistical dependencies within subsets. The method con-
sists to draw with replacement samples at random to form
a given size training subsets {20]. For cross validation and
bootstrap methods, the optimality hides in so called v ra-
tio problem [19] which relates to the choice of the number
of subsets and the size of the subsets. A greater number
of subsets improves the statistical inference, but may re-
sult with unacceptable small bootstrap set sizes, which do
not adequately represent the coherent characteristics of the
data. Small subsets may emphasize idiosyncrasies which
increase the variance of the estimate error. We arbitrarily
defined 36 samples (3 pseudoperiods) to be the minimal
subset size although previous studies [4], [5] used smaller
sets (23) for test and validation sets. The statistical boot-
strap will give us statistics that will be used for inference
estimation which is useful for model selection and general-
ization error estimation.

The training was performed on a 4-3-1 network using
(successively) 3 bootstraps of 120 samples (y =~ 0.5) and at
each epoch the generalization error is estimated using 15
bootstraps of 36 samples each. Because of the hazards due
to random initial conditions, the training was performed
on an ensemble of 20 networks. The backpropagation al-
gorithm was used during the first 10 epochs and was sub-
sequently replaced by the Levenberg-Marquardt algorithm
supervised by an early stop criterion.

Remedies to poor generalization are numerous and are
known as regularization methods [9]. The early stop
method, the oldest form of regularization, aims at the over-
fitting problem [20] and gives good results when good gen-
eralization estimates are available. It has been shown in
{20] that the use of statistical bootstrap estimates of the
generalization property are a viable means for implement-
ing an early stop rule.

Figure 3 shows the variations of the model response MSE
on the extended training and validation sets as well as the
bootstrap generalization estimates when the network was
trained to convergence. The early stop criterion was im-
plemented on the basis of the minima of the generalization

MSE on Training (-), Bootstrap (~—) and Validation (0) Data Sets
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Fig. 3. Generalization Estimates in Early Stop Training

error estimates. The parameters associated with the min-
imum were memorized and the training stoped as soon as
the MSE exceeded minimum value by 20 %. Such a mea-
sure is used to prevent premature cessation of training.

C. Network Committees

The concept of network committees or ensembles of net-
works [2], [22] comes from the field of statistical theory and
is a natural extension of the estimates accuracy improve-
ment through statistical data analysis. The commitees are
collections of finite numbers of neural networks trained on
different sample sets, with different initial conditions or
learning criteria. Their used is known to improve the gen-
eralization performance by decreasing the effect of spatial
and temporal dependencies.

Once trained, the network committee predictions can be
used to improve the decision making process during the
model structural determination. The predictions can also
be combined to produce a better prediction. The network
commitees were used during the network topology determi-
natjon in conjunction with the prinicpal component anal-
ysis. By enabling statistical inference, the model selection
process was made on the basis of confidence limits.

The committees were also used to perform improved pre-
diction. While the committees are usually combined using
linear combiners [22], [2], we choosed to use a neural net-
work, designated as the combining network. The overall
structure of the predictor is expressed on Figure 4 This net-
work was designed to combine the multi-step ahead predic-
tions of the committees to give a better prediction. Multi-
step ahead predictors are known to be very unstable and
very sensitive to initial errors so that a neural network must
be used to overcome the error propagation problem.

The networks were trained using different initial con-
ditions on bootstrap ensembles originated from the same
limited training set. It is important to obtain a popula-
tion of networks with spread characteristics so that the
performance analysis and the prediction combination are
improved. The need for spread characteristics is also the
rational for the use of the early stop training methods which
gives emphasis on generalization rather than structural re-
duction. A drawback of spread characteristics [22] is that a
portion of the committee downgrades the combination per-
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Fig. 4. Multi-step Prediction Neural Network Structure.

formance and so must be eliminated through a statistical
process.

The PCA method was used to determine the initial
topology of the committee of networks as well as the com-
bination network. It has been shown in [20] that the more
the networks are regularised, the better are the generaliza-
tion estimates with resulting improvements with the early
stop training method. The networks were trained, neurons
were pruned using PCA results and the weights were subse-
quently put through an elimination process. The resulting
committee of networks was regularized but with character-
tics different enough to be combined efficiently.

D. Bias/Variance Dilemma and Traejectory Learning

The Bias/Variance Dilemma [1], [2] refers to the trade
off between the prediction error bias and variance that the
training algorithm must perform to give satisfactory gener-
alization properties. This is usually expressed by the MSE
criterion that can be decomposed into bias and variance
components. The characteristics of the problem to solve
may require that control of that trade off be exercised.

When committees are used, the trained networks exhibit
different characteristics with regard to prediction error bias
and variance. It is therefore possible to use that distribu-
tion in the combination process to influence the trade off.
Moreover, it is possible to refine or to regularize further
these networks with bias or variance oriented criteria.

The trade off between prediction error bias and variance
is a critical issue when multi-step ahead forecasting is in-
volved. It is well known that when past predictions are
used to estimate the future values, the resulting predic-
tion error is autocorrelated and the predictor may become
unstable. A way to improve the predictor robustness and
which enables a longer prediction horizon to be achieved is
to emphasize the reduction of the error bias compared to
the variance. However, the determination of such a trade
off is difficult to estimate. One method of performing the
optimal trade off is to traine the combination network with
predicted inputs. The recursive nature of the learning pro-
cess requires non conventional training algorithms gathered
under the trajectory learning acronym [9].

The trajectory learning algorithm is difficult to set up
and because of the autocorrelated error is prone to insta-
bility. We propose here a new method that has the advan-
tage of performing trajectory learning but still uses classi-
cal training algorithms.

The key idea is to use multi step ahead predictions
obtained by network committees trained with single step
ahead prediction error criterion and optimize for error bias
and variance, and then to combine them so that the over-
all multi step ahead prediction is improved. The combina-
tion network which has the multi step ahead predictions
as inputs is trained using a classical learning algorithm. In
other words, we use the statistical properties of the network
commitees to improve the prediction and then increase the
reliable horizon of prediction

To be efficient, the method requires good single-step
ahead predictors so that their multi-step ahead predictions
enable an eflicient recombination. This was obtain by as-
sessing the generalization properties of the networks. The
robustness of the predictors was estimated for horizons of
prediction varying between one and five years.

The horizon of prediction is determined on the basis
of the prediction errors obtained by the committees of
networks optimized for single-step ahead prediction and
pruned in regard of the bias or variance criteria. Figure 7
expresses the prediction error obtained for horizon of pre-
diction varying from one to seven years and obtained on
the extended training data set.

When the horizon of prediction has been defined, it is
possible to implement the weight elimination process. In
order to increase the spread, i.e. the variations of the net-
work population, a simple elimination without retraining
algorithm supervised by prediction error bias and variance
is performed on the network committee. The network com-
mittee is divided in two groups composed respectively of
the networks that minimize the error bias and variance.
One by one, the weights are eliminated from the network
and the multi-step prediction is analysed with respect to
error and variance criteria. If a small increase or a decrease
of the prediction error criterion is observed, the weight is
pruned. This simple algorithm, although far from being
optimal, enables a drastic reduction of the number of pa-
rameters.

Prunsd Network (Variance)

Inputs nput Layer Hidden Layes Outgxa Layer

Fig. 5. Weight Elimination Optimized for Variance Criterion.

Figure 5 shows a network on which a weight elimination
otpimized for minimizing the error variance has been per-
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formed. The width of the weigths is proportional to their
amplitude rank between the two layers. The size of the
neurons is propotional to the rankink of the absolute sum
of weights leaveing the neurons (neurons are ranked within
layers). When color graphs are enabled, the color of the
neurons depends on the rank of the absolute sum of the
weights which fires the neurons. The use of such represen-
tations enables the visualization the network behaviour, to
gives information on the critical paths within a network, as
well as indications for supervised regularization.
The modeling procedure is outlined in Figure 9.

IV. RESULTS

Sunspot series forecasting is a benchmark problem for
nonlinear modelling [4], {16] and neural network modelling
in particular [5], [6], [7]. One difficulty is the very nature of
the problem : an astronomical phenomena for which only
a limited number of observations (or reconstructions) are
available, which is particularly small with regard to the
length pseudoperiods observed, and the lack of physical
understanding of the choatic sun behaviour.

[4] performed its modeling in 1980 and following stud-
ies [5], [7] evaluated their methods using the same limited
sets. For example, both the test and validation sets were
based on two pseudoperiods which, considering the erratic
behaviour of the series, do not guarantee the significance
of the performance estimates. With more data available
and by using methods (such as statistical bootstrap) that
enable to use larger data sets and better performance es-
timates, we performed the modelling using the data from
1700 to 1955 as the training set and 1956 to 1997 as the
validation set.

However, to enable comparisons with previous studies,
the modelling was first performed using the same data set.
The results results are gathered on Table I, with the dou-
ble figures indicating mean and standard deviation respec-
tively.

Model ‘Training Test Validation
1700-1920 | 1921-1955 | 1956-1979
Tong and Lim (4] 0.097 0.097 0.28
Weigend et al. [5] 0.082 0.086 0.35
Svarer Linear [7] 0.132 0.13 0.37
Svarer Pruned [7] 0.097-99% 1 0.082°997 0.35005
Network Committee 0.096°°°2 | 0.10470°7 | 0.169" 00
Hybrid Neural Network 0.09 0.085 0.157
TABLE I
COMPARISONS OF THE NORMALIZED ERROR FOR SINGLE-STEP AHEAD
FORECASTING.

When performed on the extended training set, the single-
step ahead predictions obtained on the extended validation
sets are more representative of the modelling performance.
The predictions and the actual sunspot numbers, along
with the 95 % confidence limits, are expressed on Figure 6.

Obtaining satisfactory single-step prediction was only
the first step of the multi-step ahead modelling process.
Using the committee, we have performed mutli-step pre-
diction with various horizon of prediction. The statistics

1980 1980

Fig. 6. One Step Ahead Forecast on the Validation Set.

of the normalized multi-step ahead prediction MSE on the
extended sets are expressed in Figure 7.
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Fig. 7. Prediction Error Statistics on Extended Sets.

Figure 7 shows that beyond four-step ahead horizon, the
prediction of the individual network committee members
are not reliable. A combination network, that aimed at
combining the four-step ahead prediction of a selected sub-
committee of networks was now trained. The subcommit-
tee members were selected in relation to their four-step
ahead prediction error bias and variance. The final com-
mittee of networks was composed of 16 networks optimal
for error variance and 8 networks optimal for error bias.

The prediction normalized MSE obtained on the ex-
tended training sets was 0.3119 while we obtained 0.3361
on the extended validation set for H=4. The four-steps
ahead prediction is shown in Figure 8.

It is difficult to assess the method based on the sunspot
series application since the non-stationarities make the
evaluation not necessarily representative on small data sets.

V. CONCLUSIONS

A general methodology for multi-step neural network
modelling has been presented with an emphasis on the var-
ious concepts and techniques related to the field of statis-
tical theory. The transformation of the input space has
been performed to optimize the neural network topology
and an early stop training method using the bootstrap en-
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Fig. 8. Four-step Ahead Forecast on the Validation Set.

sembles, has been presented. Furthermore, network com-
mittees combined with a weight elimination method were
used to deal with the bias/variance dilemma and to imple-
ment a new approach for trajectory learning. These proved
to be satisfactory for the sunspot prediction.

This modelling methodology was applied to the sunspot
series, given its benchmark status, but the very limited
data sets and the non-stationarity of the system made mod-
elling and model estimation more critical. This was partly
overcame by the statistical methods which enabled us to
use larger effective sets for both training and validation.
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