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Abstract

Theta oscillations (4–8 Hz) in humans play a role in navigation processes,

including spatial encoding, retrieval and sensorimotor integration. Increased

theta power at frontal and parietal midline regions is known to contribute to

successful navigation. However, the dynamics of cortical theta and its role in

spatial learning are not fully understood. This study aimed to investigate theta

oscillations via electroencephalogram (EEG) during spatial learning in a vir-

tual water maze. Participants were separated into a learning group (n = 25)

who learned the location of a hidden goal across 12 trials, or a time-matched

non-learning group (n = 25) who were required to simply navigate the

same arena, but without a goal. We compared all trials, at two phases of learn-

ing, the trial start and the goal approach. We also compared the first six trials

with the last six trials within-groups. The learning group showed reduced low--

frequency theta power at the frontal and parietal midline during the

start phase and largely reduced theta combined with a short increase at both

midlines during the goal-approach phase. These patterns were not found in

the non-learning group, who instead displayed extensive increases in low-

frequency oscillations at both regions during the trial start and at the

parietal midline during goal approach. Our results support the theory that

theta plays a crucial role in spatial encoding during exploration, as opposed to

sensorimotor integration. We suggest our findings provide evidence for a link

between learning and a reduction of theta oscillations in humans.
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1 | INTRODUCTION

Navigation is an essential everyday skill that allows us to
get to and from important locations. Spatial cognition
involves combining acquired knowledge of our environ-
ment and its features, to help us plan and move through

space with both ease and efficiency (Ekstrom et al., 2003;
Epstein, 2008; Epstein et al., 2017). In humans, it is
thought that theta oscillations (4–8 Hz) may support suc-
cessful spatial exploration and sensorimotor integration
during navigation (Burgess & O’Keefe, 2011;
Colgin, 2020). For example, speed of travel and path
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distance have been shown to be related to increased theta
power in both animals and humans (Bush et al., 2017;
Kennedy et al., 2022; Yassa, 2018). Furthermore, bursts
in theta power have been observed during navigational
direction-changes (Do et al., 2021). According to Ekstrom
et al. (2005), theta power changes observed in the human
hippocampus are related to movement and not to learn-
ing. However, there is also support for theta oscillations
playing an important role in learning, particularly in spa-
tial or episodic memory encoding and retrieval. This link
has been found in several intracranial electroencephalo-
gram (iEEG) and scalp EEG studies with humans
(Bohbot et al., 2017; Buzs�aki, 2005; Chrastil et al., 2022;
Ekstrom et al., 2005; Kahana et al., 1999; Lega
et al., 2012; Lin et al., 2017; Pastötter & Bäuml, 2014). For
example, Lega et al. (2012), Kerrén et al. (2018), and
Vivekananda et al. (2021) all report increases in low-
frequency theta power that are related to successful spa-
tial memory encoding (but see Bohbot et al., 2017). Most
recently, Chrastil et al. (2022) found theta power
increases relate to encoding, specifically during a
decision-making phase of active exploration.

In a recent review, Herweg et al. (2020) explored the
dynamics of these theta changes, with iEEG studies
reporting theta power reductions related to successful
memory encoding, whereas scalp EEG studies demon-
strated increases in theta power. EEG studies focusing on
navigation have also reported increased theta power
oscillations during active learning, recall and decision-
making (Chrastil et al., 2022; Lin et al., 2022;
Vivekananda et al., 2021). However, decreases in theta
power have also been noted during associative learning
and episodic recall (Greenberg et al., 2015). For example,
decreases in human hippocampal theta power have been
shown to be related to improved navigation performance
and successful spatial encoding (Cornwell et al., 2012;
Crespo-García et al., 2016). Spatial memory formation
during real-world navigation has also recently been
linked to theta power decreases in humans (Griffiths
et al., 2016).

Connectivity models suggest that low-frequency oscil-
lations from the hippocampus, retrosplenial cortex and
posterior parietal cortex contribute to spatial navigation
and may be reflected by cortical theta (Ekstrom
et al., 2003, 2017). Therefore, studies have generally
focused on theta changes in two key cortical regions, the
frontal and parietal midline (Chrastil et al., 2022; Kane
et al., 2019; Kaplan et al., 2014; Liang et al., 2018, 2021;
Lin et al., 2022; Meltzer et al., 2009). These areas are
known to display synchrony during encoding and
retrieval of information (Fell & Axmacher, 2011). There
is also supporting evidence for communication between
the two regions for spatial working memory and goal

directed attention via the frontoparietal network
(Fellrath et al., 2016; Sauseng et al., 2005). Frontal theta
increases have also been observed during recall of suc-
cessful spatial information (Kaplan et al., 2014; Roberts
et al., 2013) and on approach to decision-points during
active exploration at the frontal midline (Chrastil
et al., 2022). Chrastil et al. also found increases at the
parietal midline during spatial decision-making.

Navigation is dynamic and trying to capture sub-
second neural changes during environment exploration
and encoding is extremely difficult. As such, it is impor-
tant to break navigation into its component parts and
investigate each separately. One good place to start is
the review by Nyberg et al. (2022) that suggests evidence
for three essential phases of navigation behaviour:
(1) planning and route initiation, (2) travel and (3) goal
approach. Importantly, each phase has evidence of
related neural networks as well as behaviours that are
relatively easy to identify. With the use of this approach,
we focused on two phases, route initiation and goal
approach, in an attempt to understand the role of frontal
and parietal theta oscillations (specifically 4–8 Hz) in
spatial learning (De Araújo et al., 2002; Kunz
et al., 2019; Sosa & Giocomo, 2021) using a virtual navi-
gation task. As noted above, there is evidence of theta
changes in both encoding (e.g., associative learning, epi-
sodic memory retrieval) and searching behaviours
(e.g., speed and sensorimotor integration) during naviga-
tion. In an attempt to resolve this issue and examine
whether theta changes (across frontal and parietal sites)
are specifically related to learning, we focused on the
difference between two groups of trials—the first six
(learning) and last six (learned). In addition, we used a
time-matched non-learning (control) group that simply
had to navigate an arena without a goal present; that is,
this group was exposed to the same environment for the
same number of trials and time but did not learn a spe-
cific location. Furthermore, we controlled for speed of
movement in both learning and non-learning groups. In
addition, both groups started in the same location of the
arena for each trial in an attempt to control for direc-
tionality. Therefore, we hypothesised that if the contri-
bution of theta power is related to learning during
exploration, we should demonstrate theta power differ-
ences between the non-learning and learning groups fol-
lowing completion of the task. However, if it is related
to active sensorimotor integration, we should show no
differences between the groups. Furthermore, we
hypothesised that theta power would increase in the
learning group and not in the non-learning group at
both ROIs, based on previous findings. We hypothesised
this would occur within-groups, as the task is eventually
learned.
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2 | MATERIALS AND METHODS

2.1 | Participants

Fifty young adults (36 females, 14 males) aged between
18 and 45 (M = 21.7, SEM = ±0.637) were recruited via
Maynooth University Department of Psychology and
externally using personal connections, flyers and social
media. The required sample size was estimated using
the ‘pwr’ package available in R. On the basis of typical
sample sizes in similar EEG studies and their power, we
calculated the minimum number of participants
required with a Cohen’s d of 0.8 and a power of 80% at
an alpha level of 0.05. The sample size estimated for the
non-learning and learning groups was 25.5/group. All
participants gave informed consent prior to starting the
project and were given a full briefing of the experiment,
along with the exclusion criteria. Some participants from
Maynooth University received course credit for
participation.

Due to technical failure (2) or low recording quality
resulting in excessive noise (1), the EEG epochs of 3 par-
ticipants (learning group) were excluded from the associ-
ated analyses (trial 12 epoch only). This project and the
use of human subjects with EEG were approved by
the Maynooth University ethics committee (BSRESC-
2021-2453422). A sample of participants (n = 30) was
tested using several neuropsychological control tasks to
ensure that both learning (n = 7) and non-learning
(n = 25) groups were cognitively matched. The first task
was the National Adults Reading Test (NART; Nelson &
Willison, 1991). Responses were recorded as being correct
or incorrect, and the number of errors (out of 50) was
used to score verbal IQ. Secondly, the Trail Making Test
(TMT; Army Individual Test Battery, 1944; Reitan &
Wolfson, 1992) was used to examine visuospatial ability,
motor functioning and overall executive control (see
S�anchez-Cubillo et al., 2009). Finally, participants were
given the Montreal Cognitive Assessment (MoCA) to
examine executive functioning, memory and attention in
one short sitting (Nasreddine et al., 2005).

2.2 | Spatial navigation task

After the electrophysiological preparation (see next
section for details), participants were seated 50 cm from
the LCD computer screen on their own in a darkened,
electrically shielded and sound-attenuated testing cubicle
(150 � 180 cm) with access to a joystick for navigating.
The spatial navigation task used was NavWell (see
Commins et al., 2020 for in-depth details). In brief, the
virtual maze consisted of a medium circular environment

(taking 15.75 s to traverse the arena, calculated at
22.05 Vm). Two cues were used and were located on the
wall of the arena: a yellow square (northeast quadrant
wall) and a light of 50% luminance (Figure 1a). A square
goal was hidden in the middle of the northeast quadrant
and was 15% of the total arena size and consisted of a
bright blue square that only became visible when the par-
ticipant crossed it (northwest quadrant wall, see
Figure 1b).

All participants underwent 12 trials from pseudoran-
dom starting positions around the arena (N, S, E and W),
with a maximum of 60 s/trial to locate the goal. Partici-
pants were transported to the location of the goal if they
failed to locate it. There was a 10-s inter-trial interval
between each trial. The goal remained in the same loca-
tion throughout (centre of NE quadrant). Participants
were randomly assigned to either a learning group (who
were required to learn the location of a hidden target
across 12 trials, n = 25, 8 males and 17 females) or a
non-learning group (who were required to move around
the same arena for 12 trials, but without the presence of
a goal; each trial was time-matched to the average
latency of the learning group, n = 25, 6 males and
19 females). Latency (time taken to locate target or com-
plete trial; measured in seconds), path length (distance
travelled in virtual metres [Vm]) and percentage time
spent in goal quadrant are typical measures of water
maze performance (see Vorhees & Williams, 2014). These
were recorded for each participant during each trial by
NavWell (see also Commins et al., 2020).

2.3 | EEG recording

EEG data were acquired using a BioSemi ActiveTwo sys-
tem (BioSemi B.V., Amsterdam, Netherlands) providing
32 Ag/AgCl electrodes positioned according to the 10/20
system during NavWell. Analogue event signals were
sent manually by the researcher during three time-points
of each trial: (1) when participants began their trial,
(2) when they reached the goal and (3) when their Inter
Trial Interval (ITI) ended. BioSemi designed caps using
the 32-electrode international 10–20 layout were also
used. The recording system was stored in the same room,
and participants were seated during navigation and data
were recorded continuously. A PC running the ActiView
software (version 7.05) was positioned in the room adja-
cent to the experimental cubicle, for constant monitoring
of the EEG recording. Participants were instructed to
relax and move as little as possible. Four electrodes
(EXG1–EXG4) were positioned on the face to monitor
eye movements and blinks. Raw EEG data were sampled
at 1024 Hz but were down-sampled offline to 512 Hz.
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(a) (b)

(c)

(d)

F I GURE 1 (a) Screenshot of the NavWell environment used in this experiment, with light and square cues on the wall of the

environment. (b) NavWell goal becomes illuminated when a participant walks over it, ‘congratulations, you reached the goal platform!’
message displayed. (c) Plot of task latencies (in seconds) across the 12 trials for learning group, split by gender. The mean time for each trial

is denoted by the line along with standard error denoted by the shaded region around the line. (d) Box plots and individual data points for

each learning group participants percentage time spent searching in the target quadrant for Trials 1 and 12. Diagrams of the water maze

arena on the right side demonstrate heat maps of where participants (Learning: upper, Non-Learning: lower) spend most of their search

time, during Trials 1 and 12.
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2.4 | EEG pre-processing

Continuously recorded EEG data were analysed offline in
MATLAB R2021B using scripts within the Brainstorm
package (Tadel et al., 2011). A 1-Hz high-pass filter and a
40-Hz low-pass filter were applied. Data were visually
inspected for bad segments and bad electrodes, which
were then removed. Independent component analysis
(ICA) was performed to remove and correct artefacts,
namely, eye movements, blinks and muscle artefacts. We
used the EEGLAB infomax algorithm callable via brain-
storm using the runica function. Bad electrodes that orig-
inated from pre-defined regions of interest (ROIs) were
interpolated (1), if possible, using Brainstorm after ICA.
EEG data were then referenced to the average of the
32 electrodes.

2.5 | EEG frequency band analysis

Artefact-free data were then epoched around each ana-
logue trigger for all 12 trials for all 50 participants. For
analysis of the trial start, we used �500 ms and +2000 ms.
We then used �2000 ms before and +500 ms marker for
the goal trigger. We chose these epoch times as we believe
it was sufficient to perform a good estimation of the overall
power spectrum and avoid edge-effect estimation contami-
nations near important behaviours. Additionally, we also
used �1000 ms to -500 ms before the start of the trial as a
baseline. During this time, participants were sitting still
waiting to start their next trial. To not contaminate our
baseline with edge-effects, the full time epoched at the trial
start was �1500 ms to +2000 ms. The initial 500 ms was
to adjust for edge-effect contamination (see Gyurkovics
et al., 2021 for the importance of doing this), the baseline
was then calculated for the following 500 ms, then we
examined the remaining �500 ms before the trigger,
which was included in the analysis to allow for some
error/time-lag in the temporal accuracy for behaviours.
The same baseline was used to standardise each partici-
pant’s goal-approach epoch as well (see the Supporting
Information for further information).

Each participant starts epoch, and goal approach
epoch was extracted from all 12 trials in each condition.
This provided a total of near 600 epochs per condition,
300 per phase. We used a Morlet wavelet time-frequency
analysis, with a central frequency of 1 Hz and a full
width half maximum time resolution of 3 s alongside a
linear frequency definition from 1 to 30 Hz (1:1:30). A 1/f
normalisation was not applied here. Instead, power was
then standardised via baseline normalisation and con-
verted to dB for each individual participant. This normal-
isation is done independently for each participant and

electrode site. For statistical analysis outside of brain-
storm, we averaged the power within each frequency
band across time (using the underlying MATLAB Fast
Fourier Transform defaults available via our linear fre-
quency definition), then extracted these data for our ROIs
for each individual participant. We examined the power
at our ROIs, the frontal midline (Fz, F3, F4) and the pari-
etal midline (Pz, P3, P4) to capture activity from both the
anterior and posterior parts of the scalp. Mean theta
power for each participant was calculated by averaging
the channels across this time from each ROI, for each
subject in each group.

2.6 | Statistical analysis

Statistical analyses and visualisation of the behavioural
data were performed using a combination of JASP
(version 0.15) and R software version 4.0.2 with the tidy-
verse and ggplot2 package. Statistical exploration of the
EEG data was initially run using Brainstorm in MATLAB
2021b, mainly comprising of two-tailed independent or
paired parametric t tests with a p threshold of 0.05. We
corrected for multiple comparisons in EEG data using an
false discovery rate (FDR) correction. This was chosen as
it is more detrimental to report an effect that is not there
(type I error), as opposed to missing one that is (type II
error; see Jabès et al., 2021 for similar EEG study with
the same statistical power). However, statistics were then
performed again on mean power of the oscillatory bands
across time in JASP. For the frequency bands, theta was
defined as 4–8 Hz, based on current literature discussed
above. For statistical analysis in JASP, the power of the
time-frequency calculations was used (μV2) and normal-
ised using a dB (decibel) standardisation (10 * log10(x/μ).
Topographies and time-frequency plots are displayed as
change of dB converted magnitude (or amplitude:
√power) in this paper to provide clarity and more inter-
pretable plots when using statistical comparisons, as has
been encouraged by other researchers (Burgess, 2019).
There was no effect of reported gender nor age in our
sample, and therefore, all data were combined for EEG
analysis.

3 | RESULTS

3.1 | Behavioural results

Initially, we compared both groups’ scores on a variety of
cognitive tests to ensure that both groups were cogni-
tively matched. There were no significant differences
between the two groups on the number of NART errors (t
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(30) = 0.36, p = 0.721), total time taken to complete the
TMT (t(30) = 0.448, p = 0.657) and scores on the MOCA
(t(30) = �0.445, p = 0.659). In addition, both groups
were well matched for age (t(48) = �0.845, p = 0.402).
Gender differences were not the focus of this study, but
there are some known gender differences in both naviga-
tion performance and theta power (Astur et al., 1998; Pu
et al., 2020). Although, the NavWell software seems to
eliminate this effect (see Commins et al., 2020). However,
just to confirm this, gender was included in the below
analyses of behaviour and EEG.

We next analysed performance of the learning group
on the virtual water maze task. The task latency of partic-
ipants during the acquisition phase was analysed using a
2 (Gender) � 12 (Trials) mixed-factorial analysis of vari-
ance (ANOVA). Mauchly’s test of sphericity indicated
that the assumption of sphericity was violated (p < 0.05);
therefore, a Greenhouse–Geisser sphericity correction
was applied to the model. Latency was defined by the
amount of time it takes a participant to find the target
(with a maximum of 60 s). There was an overall signifi-
cant decrease in latency across all participants for the
12 trials (F4.15, 95.46 = 14.933, p < 0.001, ƞ2 = 0.338).
Bonferroni-corrected t tests revealed that participants
were significantly (p < 0.001) faster at locating the target
on Trial 12 (M = 7.44 s, SEM = ±0.96 s) compared with
Trial 1 (M = 36.88 s, SEM = ±3.95 s) and Trial
2 (M = 27.32 s, SEM = ±4.22 s). All participants in the
learning group successfully learned the task, reducing
their times across trials (see Figure 1c). There was no dif-
ference in latency between gender (F1, 23 = 1.78,
p = 0.195, ƞ2 = 0.007). Likewise, no trial � gender inter-
action effect (F4.15, 95.46 = 1.98, p = 0.101, ƞ2 = 0.045)
was reported. Note, latency was not analysed for the
non-learning group, as they were time matched to the
learning group in order to have comparable EEG trial
lengths.

The percentage of time spent in the goal quadrant of
the circular environment was also used as a measure
of spatial learning (Barnhart et al., 2015; Vorhees &
Williams, 2006). We investigate differences from Trial
1 to Trial 12 across groups. Trial 1 should capture search-
ing in both groups, and Trial 12 should capture goal-
directed searching in our learning group. We ran a
2 (Group) � 2 (Gender) � 2 (Trial) mixed-factorial
ANOVA to investigate this. We report a main effect of
Trial (F1, 96 = 91.205, p < 0.001, ƞ2 = 0.231). We also
report a significant between-subjects difference in per-
centage time for Group (F1, 96 = 22.254, p < 0.001,
ƞ2 = 0.067) but not Gender (F1, 96 = 0.124, p = 0.246). As
expected, we also reported an interaction effect for
Trial � Group (F1, 96 = 65.134, p < 0.001, ƞ2 = 0.165) but

no Trial � Gender effect (F1, 96 = 0.005, p = 0.943) nor a
three-way interaction effect between
Trial � Group � Gender (F1, 96 = 0.739, p = 0.392).
Independent samples t tests reveal that following
learning of the task (Trial 12), the learning group displays
significantly (t(48) = 4.95, p < 0.001) higher percentage
time searching in the goal quadrant (M = 0.792, SEM
± 0.031) compared with the non-learning group
(M = 0.381, SEM ± 0.077).

Although the non-learning group was matched to the
learning group in terms of the number of trials and
the duration of each trial, the path length may have dif-
fered between the two groups. As such, the path length
of participants during learning was analysed using a
2 (Group) � 2 (Gender) � 12 (Trials) mixed-factorial
ANOVA. Mauchly’s test of sphericity also indicated that
the assumption of sphericity was violated (p < 0.05);
therefore, a Greenhouse–Geisser sphericity correction
was applied to the model. There was significant main
effect for path length across all participants for the 12 tri-
als (F3.5, 336.1 = 148.694, p < 0.001, ƞ2 = 0.492). We also
reported a significant difference between the two groups
on path length (F1, 96 = 150.431, p < 0.001, ƞ2 = 0.093)
but not between Genders (F1, 96 = 0.418, p = 0.519).
Additionally, we report a significant Trial � Group
interaction effect (F3.5, 336.1 = 5.347, p < 0.001,
ƞ2 = 0.018) and a significant Trial � Gender interaction
effect (F3.5, 336.1 = 3.526, p = 0.011, ƞ2 = 0.012). We did
not report a significant three-way interaction effect for
Trial � Group � Gender (F3.5, 336.1 = 2.306, p = 0.067,
ƞ2 = 0.008). Tukey-corrected t tests reveal that the groups
did not differ in path length at Trial 1 (t = �1.769,
p = 0.983) but began to differ in later trials such as Trials
6, 9 and 11 (all p < 0.001; mean difference = �54.329,
�54.904 and �54.848 Vm, respectively). The non-
learning group demonstrates longer path lengths than
the learning group. Examining our Trial � Gender
interaction effect, females had shorter path lengths than
males on Trial 1 (t = �3.785, p = 0.031, mean
difference = �27.856 Vm) but then do not differ on any
other trial after that (all p > 0.199). Considering the fact
there is more females than males distributed in each
group, and that we do not find a between-subjects effect
for gender, nor a three-way interaction effect, we can
assume gender did not having any major impact on spa-
tial learning.

3.2 | EEG results

We first examined between-group effects, by averaging
across trial epochs (n = 12 per phase) and participants
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(n = 25) and comparing the differences between condi-
tions (Learning and Non-Learning). This resulted in
297 (3 bad) trials for the learning condition and 300 trials
for the non-learning condition, per navigation phase
(Trial Start/Trial End) per ROI (Frontal Midline/Parietal
Midline). We also computed dB standardised time-
frequency plots (see baseline correction used in Appendix
1) based on Morlet wavelet calculated magnitudes (1–
30 Hz) during each phase and condition, at each ROI.
The resulting time-frequency plots and group differences
can be found in Figure 2 (Route Initiation/Start Phase)
and Figure 3 (Goal Approach/End Phase). We then ran
FDR-corrected permutation t tests focusing only on mean
Theta (4–8 Hz) across the mean phase time, across all
32-channels. Furthermore, an overall 2 � 12 mixed-
factorial ANOVA was used to compare relative mean
Theta power (4–8 Hz) from each trial, across Gender,
Condition and Phase. This design was run for each ROI
and are reported below.

3.3 | Trial start (route initiation phase)

Focusing on our two ROIs and mean relative theta power
at each trial, we employed a 2 (Condition) � 2
(Gender) � 12 (Trial) mixed-factorial ANOVA to com-
pare theta between groups (Non-Learning and Learning)
across the full epoch (�500 ms before and 2000 ms after
participants started the trial) for each ROI. The data did
not violate the assumptions of homogeneity, nor did they
violate sphericity assumptions; therefore, no correction
was applied. For the frontal midline, there was no main
effect for Trial (F1, 11 = 1.005, p = 0.170, ƞ2 = 0.017).
There were no significant between-subjects effects for
group or gender (F1, 11 = 0.185, p = 0.669, F1, 11 = 0.612,
p = 0.438, respectively). However, there was a significant
Trial � Group interaction effect (F1, 11 = 2.086,
p = 0.020, ƞ2 = 0.025). There was also a significant
Trial � Gender interaction effect (F1, 11 = 2.636,
p = 0.003, ƞ2 = 0.032). Tukey corrected t tests revealed

F I GURE 2 Time-frequency plots showing oscillatory power (1–30 Hz) differences between each group at each region of interest (ROI).

Displayed as baseline-normalised dB change. The line at 0 ms marks when the trial started. The grey area after 1.5 s is removed due to edge-

effect. Average theta power (4–8 Hz) topography during both phases is shown beneath the plots, scaled to the same as the time-frequency

plots. Permutation t-test results are displayed on a topography for average theta power (4-8 Hz) across time, FDR-corrected for signal

dimensions.
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no group differences at any of the trials. However, they
did reveal that Males had significantly reduced theta
power on Trial 12 compared with Trial 1 (t = �2.001,
p = 0.015, mean difference = �0.056). For the
parietal midline, there was no significant main effect of
Trial (F1, 11 = 0.998, p = 0.447). Interestingly, there was
no significant difference in parietal midline theta
between Genders (F1, 11 = 3.890, p = 0.055) nor Groups
(F1, 11 = 2.258, p = 0.140). Additionally, there was no sig-
nificant interaction effect for Trial � Group (p = 0.457)
nor Trial � Gender (p = 0.189).

Further examination using time-frequency maps
(Figure 3) to investigate the specificity of theta power
reveals that frontal midline theta decreases observed
appear greater in the non-learning group compared with
the learning group, particularly at the lower frequencies
(Figure 3, upper). The observed burst in theta power
around the trial start (0 ms) appears weaker in the learn-
ing compared with the non-learning group. In contrast,
there is also a more notable decrease of parietal midline
theta in the learning group compared with the non-

learning group throughout this phase. This decrease
reached statistical significance at the Pz site (Figure 2).
These results suggest that a greater reduction in theta at
the parietal midline may be associated with spatial learn-
ing, with lesser reductions at the frontal midline also
important for setting off on a planned route or goal-
directed orientation.

3.4 | Trial end (goal approach phase)

We next explored the same ROI as above, the frontal (Fz,
F3, F4) and parietal (Pz, P3, P4) midlines, but for the goal
approach. A 2 � 2 � 12 mixed-factorial ANOVA was
used to compare learning between groups (Non-Learning
and Learning) across the full epoch (2000 ms before and
500 ms after participants reached the goal). The data did
not violate the assumptions of homogeneity nor spheric-
ity assumptions; therefore, no corrections were applied.
Again, at the frontal midline, there was no main effect
of Trial (F1, 11 = 1.162, p = 0.311). There were no

F I GURE 3 Time-frequency plots showing oscillatory power (1–30 Hz) differences between each group at each region of interest (ROI).

Displayed as baseline-normalised dB change. The line at 0 ms marks when the trial ended, or the goal was found. The grey area before 1.5 s

is removed due to edge-effect contamination. Average theta power (4–8 Hz) topography during both phases is shown beneath the plots,

scaled to the range of 4-8 Hz in the time-frequency plots. Permutation t-test results are displayed on a topography for average theta power

(4-8 Hz) across time, FDR-corrected for signal dimensions.
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significant between-subjects differences reported for Gen-
der (F1, 11 = 0.001, p = 0.97) nor Group (F1, 11 = 0.019,
p = 0.891). There was also no significant interaction
between Trial � Group (F1, 11 = 0.404, p = 0.954) nor
Trial � Gender (F1, 11 = 0.915, p = 0.525). However, there
was a significant Trial � Group � Gender interaction
effect (F1, 11 = 2.214, p = 0.013, ƞ2 = 0.031). However,
post hoc Tukey corrected t tests revealed no significant dif-
ferences at any measure (all p > 0.9). For the parietal
midline ROI, there was no main effect of Trial (F1,
11 = 1.794, p = 0.052, ƞ2 = 0.025). There were no signifi-
cant between-subjects differences reported for Gender (F1,
11 = 1.912, p = 0.174) or Group (F1, 11 = 0.974, p = 0.329).
Additionally, there was no Trial � Group (F1, 11 = 1.101,
p = 0.358) nor Trial � Gender (F1, 11 = 1.101, p = 0.449)
interaction effects.

However, from our time-frequency analysis
(Figure 3), we see the learning group showed sustained
decreases in both frontal and parietal midline theta as
participants approached the goal location. This is fol-
lowed by a greater burst of theta at the goal across a

range of frequencies, especially at lower frequencies
(4 Hz). This pattern is not observed for the non-learning
group, where we see a continuous increase in parietal
midline theta and also across other frequency bands such
as alpha and beta. No site reached statistical significance
across mean theta and mean epoch time.

3.5 | Learning theta: Exploratory within-
subjects analysis

Learning is a demanding and dynamic process; everyone
does not learn at the same rate, and this is particularly
true for spatial cognition and navigation tasks (Commins
et al., 2022). A second method was used, to capture learn-
ing, where we examined the within-groups differences
[(T7–12) – (T1–6)] from the first and last 6 trials. Frequency
estimation variance across time stabilises after approxi-
mately five trials on a memory task (Hanslmayr
et al., 2009). This is also half-way through our task, in
which almost all of those in the learning group, will have

F I GURE 4 (a) Topography plots

displaying within-group differences

between the last and first 6 trials at the

route initiation/trial start phase.

Differences were calculated using a

paired t-test for each group

[(T7–12) – (T1–6)]. Changes are displayed

as t values, averaged across time with an

alpha level of 0.05, FDR-corrected across

signal and frequency dimensions.

(b) Topography plots displaying within-

group differences between the last and

first 6 trials at the goal approach/trial

end phase. Differences were calculated

using a paired t test for each group

[(T7–12) – (T1–6)]. Changes are displayed

as t values, averaged across time with an

alpha level of 0.05, FDR-corrected across

signal and frequency dimensions.
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successfully learned and subsequently recalled the goal
location, albeit at different rates (see Figure 1c). This
analysis should provide an insight into the contributions
of theta oscillations throughout the process of spatial
learning. We examine the start and end phases again, this
time examining the entire frequency band in a linear fre-
quency definition from 4:1:8 with a frequency resolution
of 1 Hz. We produced an approximate total of 300 trials
per group, with approx. 150 per group, in each navigation
phase. We used an FDR-corrected paired permutation
t test with 1000 permutations to evaluate the
difference between late and early trials within each group
(Figure 4).

With the assumption that these are differences dis-
played after the task has been learned, we see that the
learning group displays significant decreases across 4 and
5 Hz, compared with the non-learning group, who dem-
onstrate significant increases at 5 Hz. These 5-Hz changes
mainly occur at one electrode site of the three in our pari-
etal ROI but can be seen across the scalp. There are sig-
nificant increases in the 7- and 8-Hz range, with no
differences displayed in the control group at these fre-
quencies. A reduction in theta power at lower frequencies
may illustrate that the task has been learned, and route
initiation or initial orientation towards the goal now
requires significantly less theta power. Theta increases as
trials progress in our non-learning group. We see signifi-
cant decreases across a range of frequencies in our learn-
ing group for the goal approach phase, particularly at our
parietal ROI (reported previously). It is possible that theta
power needed for successful goal recall and/or goal-
directed navigation reduces once the location is learned.
Theta power seemingly remains constant during search-
ing behaviour.

4 | DISCUSSION

This study aimed to examine the changes in the brain’s
electrical activity during spatial learning in a virtual envi-
ronment. We focused on two stages of learning: the route
initiation phase and the goal-approaching phase. We had
hypothesised that if theta power was related to learning,
we should see theta power differences between the non-
learning and learning groups following completion of the
task. However, if theta power was related to active senso-
rimotor integration, we would find no differences
between the groups. Having controlled for trial time,
starting position, path length and speed, we observed
changes in theta for our learning group at both start and
goal phases that were different to the non-learning group,
suggesting that theta is related to learning rather than
sensorimotor integration. The key difference between the

two groups was that one group had learnt a specific goal
location, whereas the other continued to navigate the
environment.

Contrary to our hypothesis however, the learning
group displayed significant decreases in power of both
frontal and parietal theta overall and after learning in
both navigation phases. Such decreases may indicate a
more efficient use of neural resources. Once a task has
been learned and the location is known, there may be lit-
tle need for further exploration or encoding of the envi-
ronment. As such, there may be no need to expend
further neural energy on the task—both behaviour and
neural activity have become efficient (see Commins,
2018). Alternatively, low-frequency decreases have been
associated with directed attention in both spatial memory
and non-memory related tasks (Harris et al., 2017; Park
et al., 2019). Decreases in theta power are suggested to be
responsible for the communication between areas
involved in the successful formation of memories for spa-
tial locations (Griffiths et al., 2016). As participants in the
learning group would have directed all attention to
the goal location and/or an associated stimulus
(e.g., landmarks—see Delaux et al., 2021), theta decreases
may be explained by a shift to a more direct spatial atten-
tion and memory formation process.

Embedded within the general decreases in theta, both
groups also showed a burst of increased theta, at the pari-
etal and frontal midline, at the goal location/trial end.
Interestingly, a similar rapid increase in theta (around
8 Hz) is also observed around the immediate start of the
trial for the two ROIs, with the learning group having
greater theta power early on. Such increases may be
related to the processing of stimuli (such as landmarks)
to facilitate route and goal recall (Cheng et al., 2022). For
example, Chrastil et al. (2022) reported a similar increase
in theta, approx. 300 ms prior to participants approaching
a chosen location (also see Kerrén et al., 2018). A pre-
stimulus increase in parietal theta has been demonstrated
to indicate successful encoding and successful recall
(Ekstrom et al., 2017; Guderian et al., 2009; Quintana &
Fuster, 1993). Alternatively, it may be argued this
increase could reflect rapid estimation of goal distance
and direction calculation, as has been suggested by other
researchers (Liang et al., 2021). However, we believe that
the task-related shifts in theta power support the theory
that human theta is specific to the encoding/learning,
rather than any sensorimotor integration. Thus, the
learning groups’ larger theta power may reflect a shift to
a cortically effortful recall of spatial information, possibly
in response to landmarks or route planning at the begin-
ning of trials (Jaiswal et al., 2010).

The non-learning group, which did not have a spe-
cific goal, and instead showed significantly increased
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theta within-group differences at 5–6 Hz during route
initiation. This is consistent with previous research indi-
cating that the parietal cortex, which covers the para-
hippocampal and retrosplenial regions, is involved in
the encoding of spatial information and memory
retrieval (Heimrath et al., 2012; Rodriguez, 2010;
Sestieri et al., 2017). This ongoing increase may indicate
that the non-learning group was attempting to encode
their environment or recalling and combining features
and/or previously explored places in order to develop
new search strategies, which may place greater demand
on theta rhythms (Caplan & Glaholt, 2007; Chrastil
et al., 2022; Kahana et al., 1999; Kaplan et al., 2012).
These findings align with previous research in the field
that has linked theta increases to exploratory behaviour
and suggests that theta may play a larger role in the
encoding of spatial information, rather than movement
speed or integration of sensory information, which we
controlled for here (Buzs�aki, 2005; Buzs�aki &
Moser, 2013; Goyal et al., 2020; Lega et al., 2012; Lin
et al., 2017, 2022).

It is important to note that we did not control for frus-
tration or motivation in the non-learning group, which
could be responsible for some of the EEG dynamics dur-
ing the task. However, in general, there is increased
(Figure 4a) or stabilised (Figure 4b) task-related theta in
the non-learning group, particularly in frontal regions.
The groups’ alpha power also seems relatively great
throughout the task. Therefore, the group may well have
been engaged, as increased theta and alpha power
have been shown to be related to increased cognitive load
and attention (Chattopadhyay et al., 2021;
Klimesch, 1999; Mussel et al., 2016). This needs to be fur-
ther explored, perhaps using more electrode sites and/or
frequency bands. Moreover, using 32-channel scalp EEG
does place limits on the types of analysis we can run. We
could also not perform accurate source analysis and
reconstruction to explore this possible communication or
synchrony between the parietal cortex, hippocampus, ret-
rosplenial cortex and frontal regions (Ekstrom
et al., 2017).

Most studies with humans use iEEG when examining
virtual navigation, with some demonstrating
sensorimotor-related increases in theta (Bohbot
et al., 2017; Bush et al., 2017; Cornwell et al., 2012;
Ekstrom et al., 2005; Epstein, 2008; Kunz et al., 2019;
Lega et al., 2012; Miller et al., 2018). Virtual tasks, includ-
ing NavWell, do not involve any physical traversal during
navigation. The addition of this, alongside scalp EEG,
may facilitate more accurate or ecologically valid sensori-
motor integration and should be considered in future
research investigating theta dynamics (see Bohbot
et al., 2017), and see Griffiths et al. (2016).

Focusing on only two of three phases of navigation
suggested by Nyberg et al. (2022) may have limited our
understanding of the complete dynamics of theta. How-
ever, there is a good reason for our selection, as the start
and the end phases allowed us to have a standardised
time epoch that was shared by all participants. Escape
latencies would vary between individuals during travel,
but every participant started and ended the task. Addi-
tionally, using the average trial time to time-match our
non-learning group was perhaps not the most effective
method. Instead, matching participants on an individual
level as opposed to a group level may have resulted in
more accurate understanding of the non-learning groups
searching behaviour (see Commins et al., 2022 for the
advantages of this). In line with our hypothesis-driven
task design and analysis approach, we limit our
discussion to the cortical sites and frequency ranges that
were initially hypothesised. We recognise the importance
of maintaining the integrity of our hypothesis-driven
investigation. However, it is noteworthy that our
time-frequency explorations revealed changes in other
frequency bands within our ROIs that were not initially
anticipated. Although these findings are out of the
scope of our current discussion, we briefly acknowledge
their potential significance to understanding the
broader dynamics associated with spatial learning
below.

Furthermore, the low number of trials used to esti-
mate oscillatory activity may have reduced the quality of
data used to draw some of the above conclusions. How-
ever, human spatial learning is a fast and dynamic cogni-
tive process. The attempt to capture this process and the
underlying neural correlates is a current work in progress
in the literature (see Du et al., 2023). However, averaged
time-frequency plots for each participant help improve
the signal-to-noise ratio and stability of the oscillatory
measures compared to single trial analysis (Cohen, 2014).
Morales and Bowers (2022) also claim that fewer trials
are needed for reliably estimated oscillatory effects than
would be for ERPs. As the number (and age) of partici-
pants increases, particularly for between-group analyses,
fewer trials are required to produce reliable and less vari-
able oscillatory estimates (Boudewyn et al., 2018;
Morales & Bowers, 2022). This is not the first attempt to
capture the spatial learning and navigation process using
few trials combined with EEG (e.g., 3 trials per environ-
ment in the Audiomaze: Miyakoshi et al., 2021). Never-
theless, we have taken careful consideration of our
limitations, by performing an a priori power calculation
to provide a sufficient participant number to produce sta-
tistically reliable results (which is rarely done in EEG
studies; of 100 reviewed, not a single study reported a
sample size calculation; see Larson & Carbine, 2017).
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Furthermore, we corrected for multiple comparisons
using FDR correction and utilised non-parametric per-
mutation t tests so that our data are not relying on
asymptotic assumptions of normality as well as only
reporting findings we previously hypothesised. Neverthe-
less, the results here should be interpreted carefully until
further work can investigate the fluidity of navigational
behaviour and spatial learning.

4.1 | Interactions with other frequency
bands & the default mode network (DMN)

Our time-frequency analysis from 1 to 30 Hz reveals sev-
eral intriguing dynamics in frequency bands that were
not initially hypothesised. Specifically, we observed
noticeable differences between the groups at Alpha (8–
12 Hz) and Beta (13–29 Hz). Reduced alpha activity, par-
ticularly at the goal approach, could be attributed to two
possible phenomena. Firstly, it may represent cortical
activation and/or a release of attentional inhibition
(Klimesch, 2012; Peylo et al., 2021). Alternatively, the
reduction could be observed in the mu rhythm, which
falls between alpha and beta frequencies (12–15 Hz).
Power decreases within this rhythm have been associated
with goal-directed sensorimotor integration and intention
(Harris et al., 2017; Pereira et al., 2017). Therefore, it is
possible that the substantial reduction in the 12- to 15-Hz
range could be linked to the learning group’s execution
of goal-directed sensorimotor integration and movement.
This is particularly prominent in the parietal midline as
well as the navigation phase containing a goal-approach
behaviour.

Furthermore, our results may also have implications
for the emerging literature surrounding the involvement
of the DMN in goal-directed behaviours. The observed
theta-alpha oscillatory reductions primarily focused on
the parietal midline and adjacent areas, which are known
to encompass the DMN (Smallwood et al., 2021).
Decreased oscillatory activity is associated DMN suppres-
sion (Burgess & Gruzelier, 1997; Chen et al., 2008;
Scheeringa et al., 2008; Smallwood et al., 2021). Consider-
ing that greater reductions were found in the group that
are actively navigating towards a goal, these results could
support the idea that successful learning suppresses
DMN activation. However, it is important to note that
the non-learning group was also technically performing a
goal-directed task, and although they demonstrate
greater overall activation during the same navigation
phase, there is insufficient evidence to conclude that their
DMN is engaged. Further adjustments to the experimen-
tal paradigm would be required to investigate this phe-
nomenon accurately. Additionally, our results would not

entirely align with the existing spatial memory and DMN
literature (Patai & Spiers, 2021; Pezzulo et al., 2019;
Spiers & Maguire, 2008).

5 | CONCLUSIONS

This study found that human theta oscillations (4–8 Hz)
are involved in spatial learning in a virtual environment.
The non-learning group, who navigated without a goal,
showed increased low-frequency (5–6 Hz) theta power in
the route-initiation/start phase, indicating that increased
theta oscillations play a larger role in encoding spatial
information. The learning group, who learned to navigate
to a goal location, showed decreased theta power in the
same phase, including when the goal location had been
learned. This suggests that as the task becomes more
familiar, the integration of theta power in the learning
process becomes reduced, particularly during route initia-
tion and initial orientation. Active learning, however,
leads to some task-dependent increases in theta power.
These findings give us a deeper understanding of the neu-
ral mechanisms involved in spatial learning in virtual
environments and the dynamics of theta oscillations in
this process. Our results support previous research that
suggests theta oscillations play a role in learning-related
exploration and spatial encoding. Our findings also pro-
vide preliminary evidence of a reduction in neural
resources or shift in theta activity from an encoding role
to a more direct-attention and on-demand retrieval role
when learning has taken place. However, further
research is needed to fully investigate its link to the neu-
ral efficiency hypothesis. Our interpretation of this evi-
dence during spatial learning in a virtual water maze is
novel, and future studies should be carefully controlled
to confirm our findings.
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