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Abstract
Molecular robotics is challenging, so it seems best to keep it simple. We consider an abstract molecular robotics model

based on simple folding instructions that execute asynchronously. Turning Machines are a simple 1D to 2D folding model,

also easily generalisable to 2D to 3D folding. A Turning Machine starts out as a line of connected monomers in the discrete

plane, each with an associated turning number. A monomer turns relative to its neighbours, executing a unit-distance

translation that drags other monomers along with it, and through collective motion the initial set of monomers eventually

folds into a programmed shape. We provide a suite of tools for reasoning about Turning Machines by fully characterising

their ability to execute line rotations: executing an almost-full line rotation of 5p=3 radians is possible, yet a full 2p rotation

is impossible. Furthermore, line rotations up to 5p=3 are executed efficiently, in Oðlog nÞ expected time in our continuous

time Markov chain time model. We then show that such line-rotations represent a fundamental primitive in the model, by

using them to efficiently and asynchronously fold shapes. In particular, arbitrarily large zig-zag-rastered squares and zig-

zag paths are foldable, as are y-monotone shapes albeit with error (bounded by perimeter length). Finally, we give shapes

that despite having paths that traverse all their points, are in fact impossible to fold, as well as techniques for folding certain

classes of (scaled) shapes without error. Our approach relies on careful geometric-based analyses of the feats possible and

impossible by a very simple robotic system, and pushes conceptional hardness towards mathematical analysis and away

from molecular implementation.
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1 Introduction

The challenge of building molecular robots has many

moving parts, as the saying goes. These include molecular

parts that move relative to each other; units needing some

sort of memory state; the ability to transition between

states; and perhaps even the ability to use computation to

drive robotic movements. Here we consider a simple

algorithmic model of robotic reconfiguration called Turn-

ing Machines.

The main ethos behind our work is the notion of having

a reconfigurable structure where component monomers

actuate their position relative to their neighbours and

governed by simple actuation rules. Volume exclusion

applies (two monomers can not occupy the same position

in space), almost for free we get massive parallelism and

asynchronicity, and the complexity of allowable state

changes is small: unit monomers start with a natural

number and decrement step-by-step to zero. The Turning

Machine model embodies these concepts.
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On the one hand, there are a number of senses in which

molecular systems are better suited to robotic-style

reconfiguration than macro-scale robotic systems: there is

no gravity nor friction fighting against components’ actu-

ation, and should we know how to exploit them, random-

ness, freely diffusing fuel (robots need not carry all their

fuel) and large numbers of components are all readily

available as resources. On the other hand, building

nanoscale components presents a number of challenges

including implementing computational controllers at the

nanoscale, as well as designing systems that self-assemble

and interact in a regime where we can not easily send in

human mechanics to diagnose and fix problems (Fig. 1).

1.1 Turning machines

Monomers are the atomic components of a Turning

Machine and are arranged in a connected chain on the

triangular grid GM, with each monomer along the chain

pointing at the next (Fig. 2). In an initial instance, the chain

of monomers are sitting on the x-axis all pointing to the

east. Each monomer has an initial (input) integer turning

number s 2 Z, the monomer’s ultimate goal is to set that

number to 0: if s is positive, the monomer tries to simul-

taneously decrement s and turn anti-clockwise by an angle

of p=3 (Fig. 2b), if s is negative, it tries to increment and

turn clockwise by p=3.1 If s ¼ 0 the monomer has reached

its target orientation and does not turn again (Fig. 2b).

A key point is that although a monomer actuates by

rotating the direction in which it points, when it does so it

‘‘drags’’ (translates) all monomers that come after it in the

chain in the same way the rotation motion of a human arm

(around a shoulder) appears to translate a flag through the

air, or the way a cam in a combustion engine converts

rotational shaft motion to translational piston motion

(Figs. 2c and 3). Sect. 2 gives the precise model definition.

1.1.1 The main challenge: blocking

Programming the model simply requires annotating an

east-pointing line of monomers with turning numbers; an

incredibly simple programming syntax.

Locally, individual monomers exhibit a small rotation,

but globally this effects a large translation, or dragging, of

many monomers (Fig. 2c). Thus globally, the main chal-

lenge is how to effect global rotations—in other words how

to use translation to simulate rotation. In particular, how to

do this when lots of monomers are asynchronously moving

and bumping into each other, potentially blocking each

other from moving.

Blocking is illustrated in Fig. 2d and comes in two

forms. Temporary blocking where one monomer is in the

way of another, but eventually will get out of the way, and

permanent blocking where all monomers block each other

in a locked configuration that will never free itself. We say

that a target structure is foldable if all possible system

trajectories lead to that structure, i.e. permanent blocking

does not occur on any trajectory. A foldable structure may

exhibit temporary blocking on some trajectories, indeed

most of the work for our positive results in this paper

comes down to showing that for certain folding tasks, any

blockings that happen are merely temporary kinks in the

chain that are eventually worked out. We measure the

amount of blocking by considering the completion time: a

foldable structure where temporarily blocked monomers

can quickly become unblocked finishes faster than one

where blocking takes a while to sort out. Our model of time

assumes that the time to apply a turning rule to a given

unblocked monomer is an exponential random variable

with rate 1, and the system evolves as a continuous time

Markov chain with the discrete events being rules applied

asynchronously and in parallel.

Given a shape and a best-guess at an initial (input) state

sequence to fold that shape, the main challenge often lies in

showing that all trajectories lead to the desired shape, i.e.

that permanent blocking never occurs. If we succeed in

this, a second challenge is to analyse the time to

Fig. 1 Turning Machine motivation: what shapes can be made by

autonomously folding structures using simple local turning rules that

effect non-local movement? Finding suitable abstract models and

characterising their ability helps us to step back and create a vision of

where we can go

1 Having the monomer turning angle be confined to the range ð0; p=2�
seems to capture a range of interesting and important blocking

behaviours that would otherwise be missed by the model. Having the

angle be p=3, and in particular choosing the triangular grid over the

square grid, is a somewhat arbitrary choice in the model definition.
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completion—with speed of completion being a measure of

efficiency and parallelism.

1.2 Results: line rotations and shape building

After defining the Turning Machines model (Sect. 2), and

giving technical lemmas for reasoning about it (Sect. 4), in

Sect. 5 we fully characterise the line rotation capabilities of

the model, in two senses. First, we show that for each of the

angles h 2 fp=3; 2p=3; p; 4p=3; 5p=3g, and any number of

monomers n 2 N there is a Turning Machine with n

monomers that starts on the x-axis and ends rotated by h
radians. We show this is the best one can do, that is, that

rotation of h� 2p is impossible (for any n[ 7, there are

always some trajectories that are permanently blocked).

Second, line rotation is fast: Up to constant factors the

speed is optimal, completing in expected time Oðlog nÞ.
This shows that despite the fact that line rotations in the

Fig. 2 Turning Machine model. a Triangular grid conventions. A

configuration showing a single monomer on the triangular grid GM,

along with axes x, y and w. b Local movement (rotation): A monomer

in state 3 pointing to the east undergoes three turning rule applications

finishing in state 0 with no more applicable rules. Locally, the

monomer effects a rotation motion. c Global movement (translation):

Left: Example initial configuration. Middle: A movement rule applied

to a monomer in state 3 decrements the state to 2 and translates all

subsequent monomers by þw~. Right: A second state-3 monomer

moves. d Blocking: Monomers are not permitted to make movements

that would result in a self-intersecting configuration. The monomer mj

is said to be blocked because if it were to move, then mk would move

to overlap mi, but such self-intersections are not permitted

Fig. 3 Left: The Turning Machine L1n that rotates a line of n ¼ 11

monomers by p=3; illustration for Lemma 4. Four configurations are

shown. The initial configuration has all monomers in state 1 sitting on

the x-axis, in the final configuration all are in state 0 and sitting on the

p=3 line. Two intermediate configurations are shown, respectively

after 2, and then after 5, turning rules applications. Right: A

configuration of the Line rotation Turning Machine L111 with the chain

running from bottom left to top right. Lemmas 4 and 5 uses the fact

that tailðmiÞ sits on or below ‘i, headðmiÞ sits on or above ‘i, and
head!ðmiÞ sits strictly above ‘i
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range p� h� 5p=3 experience large number of blockings

along their trajectories, these blockings are all temporary,

and do not conspire to slow the system down by more than

a constant factor on average.

In Sect. 6, we go on to give results on the shape-building

abilities of Turning Machines. To do this, we build on

previous technical tools to show that so-called zig-zag

paths (paths that wind over and back parallel to the x axis)

are foldable, and in merely logarithmic expected time

(Theorem 21). We use that result to prove that n� n

squares, rastered in a zig-zag fashion, are foldable, and

time-efficiently so (Corollary 22). By allowing error in the

folding of a shape (the error is the symmetric difference

between the set of points of the shape and points in the

folding), any shape is trivially foldable, albeit with error up

to the area of the shape, by simply folding the entire

bounding box of the shape.2 This means that there are

shapes, that are not Hamiltonian but are foldable with large

error (e.g. a cross with thin arms, Fig. 9 and Theorem 25).

What shapes can be folded with small error? We show that

any shape from a wide class called y-monotone shapes is

foldable in optimal3 expected time Oðlog nÞ, and with error

no more than the perimeter of the shape and no more than

the perimeter of the folding (Theorem 24). Certain classes

of shapes can be folded with zero error: Theorem 33 shows

that there are shapes, that we call, y-monotone with a yw-

separator, that are are foldable at scale factor 2. Finally,

one can ask if every shape that has a Hamiltonian path is

foldable. The answer is no: our main negative result

(Theorem 38) gives a classes of shapes (thin spirals with a

gap between their arms) and proves that they are not

foldable.

We would argue that programming in this model is

deceptively simple: if a shape has a Hamiltonian path, it is

typically straightforward to trace that path while assigning

turning numbers to an initial configuration such that there

is some trajectory that folds the shape. However, making

the step forward to then show that all trajectories fold that

shape may involve significant and subtle argumentation, or

may be impossible. Programming in the model seems

simple, the analysis may not be. This has the benefit of

pulling hardness away from the molecular robot design and

implementation problem (which is a rather challenging

experimental problem) and instead pushing it towards a

theoretical geometric analysis problem, exactly where we’d

prefer it to be.

1.3 Related and future work

Besides finding insights at the interface of computation and

geometry, another ultimate aim of this kind of work is to

bridge the gap between what we can imagine in theory and

what we can engineer in the lab (Ramezani and Dietz

2019). Biological systems actuated at the molecular scale

provide inspiration: in the gastrulation phase of embryonic

development of the model organism Drosophila melano-

gaster, large-scale rearrangements of the embryo are

effected by thousands of (nanoscale) molecular motors

working together to rapidly push and pull the embryo into a

target shape (Dawes-Hoang et al. 2005; Martin et al.

2008).

Our Turning Machine model is a restriction of the nubot

model (Woods et al. 2013), a molecular robotic model with

many features including self-assembly capabilities, random

agitation (jiggling) of monomers, the ability to execute

cellular automata style rules, and floppy/rigid molecular

bonds. The parallel computing capabilities (Chen et al.

2014b), and construction using random agitation and self-

assembly (Chen et al. 2014a) have been studied. Dabby and

Chen consider related (experimental and theoretical) sys-

tems that use an insertion primitive to quickly grow long

(possibly floppy) linear structures (Dabby and Chen 2012),

later tightly characterised by Hescott et al. (2017); Hescott

et al. (2018) in terms of number of monomer types and

time. Hou and Chen (2019) show that the nubot model can

display exponential growth without needing to exploit state

changes. Chin et al. (2018) look at both minimising num-

bers of state changes and number of ‘2D layers’ to

assembly 1D structures. There are a number related

autonomous self-folding models, both 1D to 2D (Cheung

et al. 2011) and 2D to 3D (Connelly et al. 2010), and

reconfigurable robotic/programmable matter systems, e.g.

(Aloupis et al. 2009, 2008; Demaine et al. 2018; Geary

et al. 2016; Gmyr et al. 2019; Michail et al. 2019).

There are several avenues for future work.

• Concretely, it remains to fully characterise the classes

of shapes foldable with zero error (Open Problem 26).

For example, can our main negative result showing the

impossibility of folding spirals be generalised to give

impossibility result for wider classes of shapes? Can we

find new techniques to increase the class of shapes that

are foldable (with zero error), beyond the zig-zag

rastering techniques we heavily use in Sects. 6.1–6.3

(to fold n� n squares, and certain other y-monotone

shapes including those with a yw-separator at scale

factor 2).

• Establishing error bounds for various classes of shapes,

including trade-offs between notions of shape com-

plexity and error could be another avenue to explore. It

2 Or even just drawing a line through a shape, or even just a single

point in the shape, or even zero points in the shape!
3 We don’t state it as a result, but the folding tasks in this paper have

an expected time lower bound of Xðlog nÞ, for a length n Turning

Machine instance, since they require they require � n events to occur.
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seems interesting to consider folding where we permit a

small number of trajectories to be permanently blocked.

• In this paper, our positive results are mainly for model

instances with either positive integer states, which

define an anti-clockwise rotation-and-translation

motion about the origin, or with negative integer states

which define a clockwise motion; our negative results

hold for both directions. Does the combination of both

anti-clockwise (positive) and clockwise (negative)

turning rules strictly increase the expressivity of the

model?

• Using a variant (Woods et al. 2013; Chen et al. 2014a)

of the model with random agitation of monomers would

side-step our negative result about the impossibility of

reaching a full 2p line rotation, essentially by allowing

reversible movement out of blocked configurations

(although upon reaching the target configuration, the

Turing machine would also immediately reverse out it).

We don’t know if adding agitation to the model can

help increase the set of foldable shapes, however since

it is a somewhat natural physical notion it is worth

investigating—either with or without the notion of

locking into position when a monomer has completed

all of its movements by reaching state 0. Indeed, the

analysis of such systems would provide intellectual fruit

by mixing probability, geometry and computation.

• As indicated in Fig. 1, it is straightforward to generalise

the model to (say) 2D trees folding into 3D shapes.

• We know that certain kinds of zig-zag paths (e.g. over-

and-back parallel to x-axis, while moving monotoni-

cally either positive or negative along the y axis, see for

example Fig. 8) are efficiently foldable, and under

certain conditions mixing of two kinds of of zig-zag

paths are foldable (e.g. prooxf of Theorem 33 and

Fig. 10).

In all of these cases fully characterising the classes of

shapes that can be folded, and characterising the time to

fold such classes of structures, provides questions whose

answers would expand our understanding of the capabili-

ties of simple reconfigurable robotic systems.

2 Turning machine model definition

In this section we define the Turning Machine model.

Formally speaking, the model is a restriction of the Nubot

model (Woods et al. 2013), for simplicity we instead use a

custom formalism.

Grid. Positions are pairs in Z2 defined on a two-di-

mensional (2D) triangular grid GM using x and y axes as

shown in Fig. 2. We use the notation N2 to denote points in

the positive orthant, or positive sextant, of the 2D

triangular grid. For convenience, we define a third axis, w,

centred on the origin and running through the point

ðx; yÞ ¼ ð�1; 1Þ. We let �x~;�y~;�w~ denote the unit vectors

along the x, y and w axes.

Monomer, configuration, trajectory. A monomer is a

pair m ¼ ðsðmÞ; posðmÞ) where sðmÞ 2 Z is a state and

posðmiÞ 2 Z2 is a position. A configuration, of length

n 2 N, is a tuple of monomers c ¼ ðm0;m1; . . .;mn�1Þ
whose positions rðcÞ ¼ posðm0Þ; posðm1Þ; . . .; posðmn�1Þ
define a length n� 1 simple directed path (or non-self-

intersecting chain) in Z2 (on the grid GM) and where

posðm0Þ ¼ ð0; 0Þ.4
A configuration is a tuple of n 2 N monomers

ðm0;m1; . . .;mn�1Þ. A final configuration has all monomers

in state 0. A pair of configurations ðci; ciþ1Þ is said to be a

step if ci yields ciþ1 via a single rule application (defined

below) which we write as ci ! ciþ1. A trajectory, of length

k, is a sequence of configurations c0; c1; . . .; ck�1 where, for

each i 2 f0; 1; . . .; k � 2g the pair ðci; ciþ1Þ is a step

ci ! ciþ1. A Turning Machine initial configuration c0 is

said to compute the target configuration ct if all trajectories

that start at c0 lead to ct, and is said to compute its target

configuration if it reaches the configuration with all

monomers in state 0. A Turning Machine instance is an

initial configuration. For a monomer mi, we let s0ðmiÞ
denote its state in the initial configuration, and we let ‘i
denote the horizontal line through posðmiÞ. Given a

monomer mi in configuration c we say that for 0� i� n�
2 monomer mi points in direction d~2 f�x~;�y~;�w~g if

posðmiþ1Þ � posðmiÞ ¼ d~. By convention, monomer mn�1

does not point in any direction, and whenever we say all

monomers point in some direction d~, we mean all except

mn�1. A configuration c0 is reachable from configuration c

if there is at least one sequence of rule applications from c

to c0 (if c is not specified we mean the initial configuration

c0).

Turning rule: state decrement/increment. Let Sinit(Z be

the set of states that appear in the initial configuration. Let

smin ¼ minðSinit [ f0gÞ and smax ¼ maxðSinit [ f0gÞ, and

let S ¼ fsmin; smin þ 1; . . .; smaxg be the called the Turning

Machine state set. The turning rules of a Turning Machine

are defined by a function r such that for all states

s 2 ðS n f0gÞ:

rðsÞ ¼
s� 1 if s[ 0 ;

sþ 1 if s\0 :

�
ð1Þ

Let C be the set of all configurations. The turning rule

R : C � Z ! C is a function and R(c, i) is said to be

4 In the language of Woods et al. (2013), one can imagine that for all

i 2 f0; 1; . . .; n� 2g, there is a rigid bond between monomer mi and

monomer miþ1, and otherwise there are no bonds.
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applicable to monomer mi in configuration c if sðmiÞ 6¼ 0

and the rule is not blocked (defined below). If the rule is

applicable, we write Rðc; iÞ ¼ c0 and say that R(c, i) yields

the new configuration c0, and we say that ðc; c0Þ is a step.

Turning rule: blocking. For i 2 f0; 1; . . .; n� 1g, we

define the head and tail of monomer mi as headðmiÞ ¼
miþ1;miþ2; . . .;mn�1 and tailðmiÞ ¼ m0;m1; . . .;mi. Con-

sider the following tuple of unit vectors:

d~¼ ðx~; y~;w~;�x~;�y~;�w~Þ, and let d~k denote the kth ele-

ment of that tuple. Let d~i ¼ posðmiþ1Þ � posðmiÞ be the

direction of monomer mi, and then if sðmiÞ[ 0 let

i0 	 ðiþ 2Þmod6, or if sðmiÞ\0 let i0 	 ði� 2Þmod6. For a

vector d~ 2 Z2 we write mi þ d~ to mean the monomer mi

translated by d~. Define5 head!ðmiÞ ¼ miþ1 þ d~i0 ; miþ2 þ
d~i0 ; . . .;mn�1 þ d~i0 :If the set of positions of tailðmiÞ has a

non-empty intersection with the set of positions of

head!ðmiÞ we say that the rule is blocked, and the rule is

not applicable. If the rule is not blocked, it is applicable

and the resulting next configuration is c0 ¼ tailðmiÞ,
head!ðmiÞ ¼ m0;m1; . . .;mi;miþ1 þ d~i0 ;miþ2 þ d~i0 ; . . .;

mn�1 þ d~i0 :

A configuration c is said to be permanently blocked if (a)

not all states are 0, and (b) none of the monomers in c has

an applicable rule. A monomer m within a configuration c

is said to be temporarily blocked if (a) m is not in state 0,

and (b) there is no rule applicable to m, and (c) there is a

trajectory starting at c that reaches a configuration c0 where
there is a rule applicable to m.

Time. A Turning Machine evolves as a continuous time

Markov process. The rate for each rule application is 1. If

there are k applicable transitions for a configuration ci (i.e.

k is the sum of the number of rule applications that can be

applied to all monomers in ci), then the probability of any

given transition being applied is 1/k, and the time until the

next transition is applied is an exponential random variable

with rate k (i.e. the expected time is 1/k). The probability of

a trajectory is then the product of the probabilities of each

of the transitions along the trajectory, and the expected

time of a trajectory is the sum of the expected times of each

transition in the trajectory. Thus,
P

t2T Pr½t� � timeðtÞ is the
expected time for the system to evolve from configura-

tion ci to configuration cj, where T is the set of all tra-

jectories from ci to cj, and timeðtÞ is the expected time for

trajectory t.

Example. These concepts are illustrated in the proof of

Lemma 4 in Appendix A, and in the example in Fig. 3.

3 Introduction to line rotation turning
machines

Every Turning Machine analysed in this paper starts with

n 2 N monomers, sitting on the x-axis, pointing to the east.

We define a class of Turning Machines which we call line

rotation Turning Machines.

Definition 1 (Line rotation Turning Machine) Let n 2 N

and let Lrn be the Turning Machine with initial configura-

tion of n monomers c0 ¼ m0;m1; . . .;mn�1 all pointing to

the east, positioned on the x-axis (posðmiÞ ¼ ði; 0Þ 2 Z2),

and for 0� i� n� 2 all monomers in the same state

s0ðmiÞ ¼ r 2 Nþ and s0ðmn�1Þ ¼ 0.

Remark 2 The initial monomer state r� 0 dictates that

each monomer wishes to turn (have a rule applied) a total r
times, i.e. be rotated through an angle of rp=3.

Remark 3 (Target configuration) For intuition, if there

was no notion of blocking in the Turning Machine model,

that is, if the model permitted self-intersecting configura-

tions (which it does not), then the final configuration c of

the Turning Machine in Definition 1 is a straight line of

monomers sitting along the ray that starts at the origin and

is at an angle of r p
3
, i.e. at positions

ð0; 0Þ; ð0;�1Þ; . . .; ð0;�ðn� 1ÞÞ and all pointing to the

west. We call c the desired target configuration of the line

rotation Turning Machine Lrn . Also, if there was no notion

of blocking: expected time to completion would be fast,

Oðlog nÞ (by a generalisation of the analysis used in the

proof of Lemma 4). However, a model with no blocking

would be rather uninteresting.

Figure 3 (left) illustrates Lemma 4 and Appendix A

contains its straightforward, yet instructive, proof.

Lemma 4 For each n 2 N, the line-rotating Turning

Machine L1n computes its target configuration, and does so

in expected Oðlog nÞ time.

4 Tools for reasoning about turning
machines

The following lemma is illustrated in Fig. 3 (right).

Lemma 5 Let n 2 N and let T � 3
n be a Turning Machine

with initial states 0� sðmiÞ� 3 for all 0� i� n� 1. For

any monomer mi in a reachable configuration c of T � 3
n , the

monomers headðmiÞ are positioned on or above ‘i, and

tailðmiÞ are positioned on or below ‘i, where ‘i is a hori-

zontal line passing through mi.

5 Another way to state this is that when a monomer mi moves,

headðmiÞ translates in the direction corresponding to the current

direction of mi rotated by the angle 2p=3.
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Proof The claim follows from the fact that in any con-

figuration of L� 3
n , and for any j 2 f0; 1; . . .; n� 2g the

angle of the vector posðmjÞposðmjþ1Þ
�����������!

(from monomer mj to

miþ1) is either 0

, 60
, 120
, or 180
 (and, in particular, is

not strictly between 180
 and 360
). h

The notion of turn angle of a monomer is crucial to our

analysis and is illustrated in Fig. 4.

Definition 6 (Turn angle) Let c be the configuration of an

n-monomer Turning Machine and let 0� i\n� 1. The

turn angle ai at monomer mi is the angle between

posðmi�1ÞposðmiÞ
�����������!

and posðmiÞposðmiþ1Þ
�����������!

, and it is the

positive counterclockwise angle if the points

posðmi�1Þ; posðmiÞ; posðmiþ1Þ make a left turn,6 and the

negative clockwise angle otherwise.

For a monomer mi, the following definition gives a

measure, DsðmiÞ, of how its state sðmiÞ has progressed

since the initial configuration.

Definition 7 Let c be a reachable configuration of an n-

monomer Turning Machine, let mi be a monomer with

state sðmiÞ in c and initial state s0ðmiÞ� 0. We define

DsðmiÞ to be the number of rule applications to (or, moves

of) the monomer mi from the initial configuration to c. That

is, DsðmiÞ ¼ s0ðmiÞ � sðmiÞ.

Lemma 8 (Difference of State is � 2) Let n 2 N, and let c

be any reachable configuration of an n-monomer Turning

Machine Tn with all monomers pointing in the same

direction in its initial configuration, then

jDsðmiÞ � Dsðmiþ1Þj � 2 ;

for all 0� i\n� 1.

Proof Let mt
k, for t 2 N and k 2 f0; 1; . . .; n� 1g, denote

the kth monomer in the tth configuration ct. Initially,

Dsðm0
j Þ ¼ 0 for all monomers mj, and

thus jDsðm0
i Þ � Dsðm0

iþ1Þj ¼ 0.

Observe, that jDsðmiÞ � Dsðmiþ1Þj 6¼ 3 because other-

wise posðmiÞ ¼ posðmiþ2Þ making c a self-intersecting

(non-simple) configuration, contradicting its definition.

By Eq. (1), when a rule is applied to one of mt
i or m

t
iþ1

the absolute value of its state decreases by 1 and its Dsð�Þ
increases by 1. Then jDsðmt

iÞ � Dsðmt
iþ1Þj ¼ jDsðmt�1

i Þ�
Dsðmt�1

iþ1Þj � 1. When a rule is applied to some other

monomer mk with i 6¼ k 6¼ j, then jDsðmt
iÞ � Dsðmt

iþ1Þj ¼
jDsðmt�1

i Þ � Dsðmt�1
iþ1Þj � 0. Thus, after each rule

application the value of jDsðmiÞ � Dsðmiþ1Þj changes by

at most 1, and as it cannot be equal to 3, we have that

jDsðmiÞ � Dsðmiþ1Þj � 2. h

We can now prove the following lemma, which gives a

relation between the states of any two monomers of a

Turning Machine and the geometry of the current

configuration.

Lemma 9 Let c be any reachable configuration of an n-

monomer Turning Machine Tn, whose initial configuration

c0 has all monomers pointing in the same direction, and let

mi and mj be two monomers of c such that i\j\n� 1,

then

DsðmjÞ � DsðmiÞ ¼
3

p

Xj

k¼iþ1

ak ;

where ak is the turn angle at monomer mk.

Proof For any intermediate configuration, the turn angle

aiþ1 between monomers mi and miþ1 depends only on the

number of moves each monomer has made. Initially,

aiþ1 ¼ 0. It increases by p=3 each time monomer mi moves

anti-clockwise or monomer miþ1 moves clockwise, and it

decreases by p=3 every time monomer mi moves clockwise

or monomer miþ1 moves anti-clockwise. By Lemma 8, for

two consecutive monomers mi and miþ1, in any configu-

ration, jDsðmiÞ � Dsðmiþ1Þj � 2. Hence, for a pair of con-

secutive monomers mi and miþ1, the turn angle aiþ1 is in

the range ½�2 p
3
; 2 p

3
�, and thus aiþ1 ¼ p

3
ðDsðmiþ1Þ

�DsðmiÞÞ. Summing over all i gives the lemma

conclusion. h

The following technical lemma is used extensively for

our main results. Intuitively, it tells us that high-state

monomers are not blocked.

Lemma 10 Let T � 5
n be a Turning Machine with initial

state values 0� sðmiÞ� 5 for all 0� i\n. In any reachable

configuration c of T � 5
n no monomer mi with DsðmiÞ� 1 is

blocked (neither temporarily blocked nor permanently

blocked).

Fig. 4 Illustration of turn angle (Definition 6). The turn angles ai and
aiþ1 are positive (and to the left), and aj is negative (and to the right)

6 The notion of left or right turn along the three points

posðmi�1Þ; posðmiÞ; posðmiþ1Þ can be formalised by considering the

line ‘i running through posðmiÞ, in the direction posðmi�1ÞposðmiÞ
������������!

,

noting that ‘i cuts the plane in two, and defining the left- and right-

hand side of the plane with respect to the vector along ‘i.
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Proof Suppose, for the sake of contradiction, there is a

blocked monomer mi with DsðmiÞ� 1. Then there exist two

monomers mj 2 headðmiÞ and mk 2 tailðmiÞ such that

posðmkÞ ¼ pos0ðmjÞ, where pos0ðmjÞ is the position of mj in

head!ðmiÞ (see Fig. 5).

By definition of head and tail we know that k� i\j.

Consider the closed chain P ¼ posðmkÞ; posðmkþ1Þ; . . .;
posðmj�1Þ; posðmjÞ; posðmkÞ. Since configurations are sim-

ple, P defines a simple polygon. The turn angles of a simple

polygon sum to 2p if the polygon is traversed anticlock-

wise (interior of P is on the left-hand side while

traversing), or �2p if the polygon is traversed clockwise

(interior of P is on the right-hand side). For P, this sum is

defined as:

aP ¼
Xj�1

‘¼kþ1

a‘ þ bj þ bk ¼ �2p ;

where a‘ is the turn angle at monomer m‘, and bj and bk are
the turn angles of the polygon at vertices posðmjÞ and

posðmkÞ respectively (see Fig. 5). More precisely,

a‘ ¼ \ðposðm‘Þ
�����!

� posðm‘�1Þ
������!

; posðm‘þ1Þ
������!

� posðm‘Þ
�����!

Þ ;

bj ¼ \ðposðmjÞ
����!

� posðmj�1Þ
������!

; posðmkÞ
�����!

� posðmjÞ
����!

Þ ; and

bk ¼ \ðposðmkÞ
�����!

� posðmjÞ
����!

; posðmkþ1Þ
������!

� posðmkÞ
�����!

Þ :

Furthermore, by Lemma 9,

Dsðmj�1Þ � DsðmkÞ ¼
3

p

Xj�1

‘¼kþ1

a‘ :

Thus,

Dsðmj�1Þ ¼ DsðmkÞ þ
3

p

Xj�1

‘¼kþ1

a‘ ¼ DsðmkÞ

þ 3

p
ð�2p� bj � bkÞ

¼ DsðmkÞ � 6� 3

p
ðbj þ bkÞ :

Observe that when a monomer mi moves, its head trans-

lates in the direction corresponding to the current direction

of mi rotated by angle 2p=3. Therefore, the state of mk can

be represented as a function of the state of mi and the angle

bk, more precisely

DsðmkÞ ¼ DsðmiÞ þ 2þ 3

p
bk :

(See Fig. 5 for an example.) Therefore, by the previous two

equalities

Dsðmj�1Þ ¼ DsðmiÞ þ 2� 6� 3

p
bj :

Recall, that the angle bj 2 ½�2p=3; 2p=3�, that

0�DsðmiÞ� 1 by the assumption of the lemma, and that

Dsðmj�1Þ� s. If the polygon defined by P is traversed anti-

clockwise, then

Dsðmj�1Þ ¼ DsðmiÞ þ 8� 3

p
bj � 0þ 8� 2 ¼ 6 ;

which implies that sðmj�1Þ is out of the range of valid

states, as mj�1 must have moved more times as its initial

state. Else, if the polygon P is traversed clockwise, then

Dsðmj�1Þ ¼ DsðmiÞ � 4� 3

p
bj � 1� 4þ 2 ¼ �1 ;

which again implies that sðmj�1Þ is out of the range of valid
states, as mj�1 must have moved in the wrong direction. In

either case we contradict that the state sðmj�1Þ is in the

range of valid states, and, therefore, the monomer mi is not

blocked. h

Lemma 11 Let Lsn be a line-rotating Turning Machine with

s� 5. Let c be a reachable configuration of Lsn where each

monomer mi in c has scðmiÞ\s. Then the line-rotating

Turning Machine Ls�1
n has a reachable configuration c0

such that for every mi, sc0 ðmiÞ ¼ scðmiÞ and the geometry

(chain of positions) of c is equal to that of the rotation of c0

by p=3 around the origin.

Proof Consider the sequence qc rule applications (moves)

that brings the initial configuration of Lsn to configuration c.

We claim that qc can be converted into another sequence

qc0 , of the same length, in which the first n� 1 moves are

by monomers in state s.

First, we claim: for any two consecutive moves, where

the second move is applied to a monomer in state s,

swapping the two moves results in a valid sequence of

moves transforming the Turning Machine into the same

configuration. Let the first move be applied to monomer mi

which transitions from state s0 to s0 � 1, and the second

move be applied to monomer mj which transitions from

state s to s� 1. Suppose for the sake of contradiction that

swapping the moves results in at least one of the monomers

mi or mj being blocked. We begin by attempting to apply

the move to monomer mj, but, by Lemma 10, that move is

not blocked. Then we attempt to apply a move to monomer

mi, but that is not blocked either since the coordinates of all

monomers before and after swapping the two moves are

exactly the same; i.e. the resulting configuration is a valid

(non-self-intersecting) configuration in both cases. Hence

neither monomer is blocked.
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Thus, the original sequence of moves resulting in

configuration c, can be converted into another sequence

where the first n� 1 moves are applied to monomers in

state s. Then, after the first n� 1 moves the configuration

of Lsn is equivalent to the initial configuration of Lsn but

rotated by p=3 and with all monomers in state s� 1. Hence

equivalent to the initial configuration of Ls�1
n rotated by

p=3.
Applying the remaining moves to Ls�1

n transforms it into

configuration c0. h

5 Line rotation: 5p=3 possible and fast, 2p
impossible

5.1 Line rotation to 5p=3

In this section we show that for 1� s� 5 the line-rotation

Turning Machine Lsn computes its target configuration of a

sp=3 rotated line (Theorem 12), and does so in expected

time Oðlog nÞ (Theorem 13). In addition to those results for

any state s� 5, in Appendix A we include stand-alone

proofs for each of s ¼ 1, s ¼ 3, and s ¼ 4 which showcase

a variety of geometric techniques for analysing Turning

Machine movement, but are not needed to prove our main

results. Also, the cases of s ¼ 1 and s ¼ 3 are illustrated in

Figs. 3 and 6 .

Theorem 12 For each n 2 N and 1� s� 5, the line-ro-

tation Turning Machine Lsn computes its target

configuration.

Proof We prove by induction on 1� s� 5 that any

reachable configuration c of Lsn is not permanently blocked.

Base case s ¼ 1. In any configuration reachable by L1n,

monomers have either state s ¼ 1 or 0. Monomers in state

s ¼ 1 cannot be permanently blocked by Lemma 10. Thus,

any non-final configuration is not permanently blocked.

Assume for s� 1 the claim is true, i.e. it holds for Ls�1
n .

We will prove that for s it is also true, i.e. it holds for Lsn.

Suppose, for the sake of contradiction, there is a

permanently blocked configuration c of Lsn for some n 2
N and s� 5. If there is no monomer in c in state s, then by

Lemma 11 there exists a corresponding configuration c0 in

Ls�1
n with monomers m0

0;m
0
1; . . .;m

0
n�1, such that, for any

monomer mi in c with state si\s the corresponding

monomer m0
i in c0 has the same state si. Configurations c

and c0 form chains equal up to rotation by angle p=3.
Configuration c0 is not blocked by the induction hypothesis,
thus configuration c cannot be blocked either.

On the other hand, if there is a monomer mi in

configuration c in state s, then by Lemma 10 it is

unblocked, and configuration c, again, is not blocked.

Hence the induction hypothesis holds for s, and Lsn does

not have a reachable permanently blocked configuration. h

Theorem 13 For each n 2 N and 1� s� 5, the line-ro-

tation Turning Machine Lsn computes its target configura-

tion in expected time Oðlog nÞ.

Proof By Theorem 12, Lsn computes its target configura-

tion. For the time analysis we use a proof by induction on

u 2 f0; 1; . . .; sg, in decreasing order.

The induction hypothesis is that for a reachable

configuration cu of Lsn with maximum state value u (there

may be states \u in the configuration), the expected time

to reach a configuration cu�1 with maximum state u� 1 is

Oðlog nÞ.
For the base case we let u ¼ s and assume c is such that

all monomers are in state u. Hence c is an initial

configuration and hence, by definition, is reachable. By

Lemma 10, monomers in state s are never blocked and

hence we claim that the first configuration with maximum

state u� 1 appears after expected time Oðlog nÞ. To see

this claim, note that for each monomer mi in state sðmiÞ ¼
u the rule application that sends mi to state u� 1 occurs at

rate 1, independently of the states and positions of the other

monomers (by Lemma 10, there is no blocking of a

monomer in state u ¼ s). Since there are n monomers in

state u, the expected time for all n to transition to u� 1 is

Graham et al. (1989):

Fig. 5 Illustration for Lemma 10. Monomer mi is shown in black,

headðmiÞ is shown in blue and tailðmiÞ is shown as the green curve

plus the black monomer mi. Left: monomer mi is in its initial state

(DsðmiÞ ¼ 0), and polygon P is traversed anti-clockwise. Right:

monomer mi has moved once (DsðmiÞ ¼ 1), and polygon P is

traversed clockwise
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Xn
k¼1

1

k
¼ Oðlog nÞ : ð2Þ

We assume the inductive hypothesis is true for

0\uþ 1� s, and we will prove it holds for u. Thus, there

exists a reachable configuration cu where the maximum

state value is u� s, which is reachable from cuþ1 in

expected Oðlog nÞ time. Let there be n0 � n monomers in

state u in cu. By Lemma 11, there is a line-rotating Turning

Machine Lun that has a reachable configuration c0u such that

for every mi in cu, sc0uðmiÞ ¼ scuðmiÞ and the positioning of

cu is equal to the rotation of c0u by p=3 around the origin.

By Lemma 10 monomers in state u in Lun are never

blocked, hence monomers in state u in cu are not blocked

either. Setting n ¼ n0 in Eq. (2), and noting that

Oðlog n0Þ ¼ Oðlog nÞ, proves the inductive hypothesis for

u.

Since we need to apply the inductive argument at most

s� 5 times, by linearity of expectation, the expected

finishing time for the s processes is their sum,

5 � Oðlog nÞ ¼ Oðlog nÞ. h

5.2 Negative result: line rotation to 2p is
impossible

Theorem 14 For all n 2 N; n� 7, the line-rotating Turn-

ing Machine L6n does not compute its target configuration.

In other words, there is a permanently blocked reachable

configuration.

Proof Figure 7, looking only at the first 7 (initially blue)

monomers, shows a valid trajectory of L67 , then ends in a

permanently blocked configuration, hence the lemma holds

for n ¼ 7.

Let n[ 7, and in Fig. 7 let the red line segment denote a

straight line ‘n�7 of n� 7 monomers co-linear with the red

line segment. By inspection, it can be verified that (a) in all

25 configurations the line ‘ does not intersect any blue

monomer, and moreover (b) the transitions from configu-

rations 1 through 14, configurations 17 through 23, and

configuration 24 to 25 are all valid, meaning that the length

n� 7 line ‘n�7 does not block the transition. The transi-

tions for configurations 14 through 17 are valid by

Theorem 12 (with s ¼ 3) and the fact that the last blue

monomer (the origin of ‘n�7) is strictly above all other blue

monomers (hence the 180
 rotation of ‘n�7 proceeds

without permanent blocking by blue monomers). The

transition for configuration 23 to 24 is valid by applying

Lemma 4 (or Theorem 12, with s ¼ 1) reflected through a

horizontal line that runs through the last blue monomer,

and the fact that the last blue monomer (the origin of ‘n�7)

is strictly below all other blue monomers (hence the 60


rotation of ‘n�7 proceeds without permanent blocking).

Thus all transitions are valid and the permanently blocked

configuration is reachable, giving the lemma statement. h

6 Folding shapes

In this section we show how to fold certain kinds of shapes

with Turning Machines, and we show that other kinds of

shapes are impossible to fold, and that others are not

foldable but can be approximated.

Definition 15 (Shape) A shape is a set of points in the grid

GM such that its induced graph is connected (using unit

length edges on GM).

Definition 16 (xy-connected shape) An xy-connected

shape S is a set of points in the grid GM such that if we

remove all the edges parallel to the direction w~ from the

induced graph of S, it remains connected.

For example squares are a classic benchmark shape in

self-assembly:

Definition 17 (n� n square) For n 2 N the n� n square

is the set of points ðx; yÞ 2 N2 such that 0� x; y\n.

Fig. 6 Example trajectory of the Turning Machine L3n that rotates a

line of east-pointing monomers by an angle of p. Illustration for

Theorem 13 with s ¼ 3 (and for Lemma 40 and Theorem 41 in

Appendix A). Seven configurations are shown, the initial configura-

tion has all monomers in state 3 (blue), final in state 0 (yellow).

Darker shading indicates later in time. A red bond (edge) indicates a

blocked monomer. The proof of Lemma 40 shows that only

monomers in state 1 are ever blocked and only when they are

adjacent to a monomer in state 3, and that all such blockings are

temporary—if we wait long enough they become unblocked
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Typically, we are interested in folding a shape with a

Turning Machine, and ideally we’d like each monomer to

sit on one point of the shape, but in the non-ideal case there

are errors:

Definition 18 (Error of folding a shape) Given a shape

S and Turning Machine configuration c, the error of folding

of c with respect to S is the size of the symmetric difference

of the shape and the positions of c (i.e., the number of

positions of c that are not in S, plus the number of positions

S not in c).

6.1 Folding zig-zag paths and n· n squares

Recall that a path in Z2 is simple, connected and directed,

and its length is the number of its points. Intuitively, a zig-

zag path is a path that winds over and back parallel to the x

axis, while heading off in one direction (positive or nega-

tive) along the other two axes. For example, Fig. 8 shows a

positive zig-zag path that rasters an 8� 8 square (traced

out by a Turning Machine configuration).

In this section, we apply our techniques from previous

sections to help us prove Theorem 21, which states that

zig-zag paths (Definition 19) are foldable by Turning

Machines in expected time logarithmic in path length.

Since for any n 2 N, an n� n square can be rastered

(traced out) using a zig-zag path, we then get that they too

are efficiently foldable by Turning Machines.

Definition 19 (Zig-zag path) A positive zig-zag path, or

simply zig-zag path, is a path in Z2 composed of unit

length line segments that run along directions �x~, þy~ and

þw~. A negative zig-zag path, has unit length line segments

that run along �x~, �y~ and �w~.

The previous definition captures the intuition of a path

that zig and zags over and back (e.g. Fig. 8) but is much

more general since a positive, respectively negative, zig-

zag path is any path that is monotone in y (and hence in w),

respectively �y (and hence in �w).

The following lemma will find future use in showing

that a Turning Machine folds a positive zig-zag path.

Lemma 20 Let c be any configuration reachable by a line-

rotating Turning Machine L3n, then there is a Turning

Machine Tn that has c as its target configuration. More-

over, Tn runs in expected time Oðlog nÞ.

Proof We first define Tn as having the initial configuration

c0, of length n 2 N, where for 0� i� n� 1 monomer mi in

c0 has state 3� si;c, where si;c is the state of monomer mi in

c. By hypothesis, c is reachable in L3n, which means there is

a trajectory (sequence of rule applications) from the initial

configuration of L3n to c, thus applying the same sequence

of moves in Tn, starting with c0, also yields c. We need to

show that c is the target of Tn (meaning all trajectories from

c0 reach c).

We will define a ‘‘suppressed-L3-system’’ to be a

Turning Machine-like system7 that acts like L3n in all ways,

except that for each i, after monomer mi reaches state 3�
si;c any rule application to mi is ‘‘suppressed’’ (not

applied).8 By Lemma 10, for any i where si;c 2 f1; 2; 3g,
monomer mi in the suppressed-L3-system is never blocked

since to experience blocking a monomer needs be in the

process of transitioning from state 1 to 0, which never

happens for si;c 2 f1; 2; 3g). In other words, we only expect

blocking to affect monomers mi for which si;c ¼ 0.

Consider such a monomer mi. By applying Conclusion (i)

of Lemma 40 to mi we note that blocking only occurs if mi

is in state 1 and is adjacent to a monomer in state 3.

Fig. 7 Impossibility of 360
 line rotation (Theorem 14), by showing

that for all n 2 N, the line-rotation Turning Machine L6n has a

reachable but permanently blocked configuration. Looking at the

evolution of the first seven monomers (i.e. ignore the rotation of the

red line segment) we see one trajectory of the Turning Machine that

exhibits permanent blocking in the final (bottom-right) configuration,

which has respective states 6, 4, 3, 2, 1, 0, 0. We imagine the red line

segment as representing an arbitrary long sequence of monomers

running collinear with it, and transitions 14–16, 22–23, and 24–25,

each representing the (many step) rotation of the red line by

respective angles of 180
, 120
 and 60
. These rotations of the red

line can proceed by two applications of Theorem 12 (first with s ¼ 3,

then with s ¼ 1) and the fact that the first monomer of the red line is

strictly above, or below, the first seven monomers. Hence the final,

permanently blocked, configuration is reachable no matter what

length the red line is

7 We are using a technique here that leverages the statement of

Lemma 40 from the appendix. We could alternatively use the same

technique as Lemma 40, which more directly reasons about rule

applications and blocking, without needing to define the restricted-L3-
system.
8 This notion of ‘‘suppression’’ should not be confused with blocking,

for the sake of analysis, we are simply defining a new model where

we get to arbitrarily choose which rules are suppressed.
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However, such blocking is temporary, which follows from

the claim that that adjacent monomer mj eventually leaves

state 3: to see the claim note that: (a) L3n does not

experience permanent blocking (hence mj does not) and

(b) sj;c\3, since otherwise two monomers would occupy

the position in c which contradicts the positions of c tracing

out a path (i.e. non-self-intersecting). Therefore, since

there is no permanent blocking in the suppressed-L3-

system it always reaches c.

Both Tn and the restricted-L3-system have the same set

of trajectories because (a) suppressed rules in the

restricted-L3-system make no change to a configuration,

and (b) for any configuration c0 it has the same set of

applicable (non-suppressed) rules in the restricted-L3-

system and in Tn.

For the time analysis, we analyse the expected time for

the restricted-L3-system to reach c. To do that, we consider

two processes (two Markov chains): the process where

rules are applied/blocked and the process where rules are

suppressed. Observe that suppressed rules do not change a

configuration and do not change the rate of applications of

rules, thus from now on in our analysis, we ignore the latter

process. For the restricted-L3-system to reach c, applicable

rules are either unblocked (rate 1 per rule application) or

temporarily blocked, and the latter case only occurs when a

monomer mi in state 1 is adjacent to a monomer mj 2
fmi�1;miþ1g where mj is in state 3 and is unblocked (as

argued above). Since all such mj are unblocked, the

expected time until they are all in a state \3 is Oðlog nÞ,
after which there are no blocked monomers in the resulting

configuration. The rule application process then completes

in expected time Oðlog nÞ, giving an overall expected time

of Oðlog nÞ. h

Theorem 21 A positive, or negative, zig-zag path P, of

length n, is foldable by a Turning Machine in expected time

Oðlog nÞ.

Proof Let P be a positive zig-zag path. We begin by

defining a length-n Turning Machine Tzz whose target9

configuration c traces out the zig-zag path P. By the defi-

nition of P, each monomer in c points in one of the

directions �x~;þy~ and þw~. For any configuration c0, and
0� i� n� 1, let mi;c0 denote monomer mi in configuration

c0. In the initial configuration c0 of Tzz, for i 2
f0; 1; . . .; n� 2g we define monomer mi;c0 to have the state

sðmi;c0Þ ¼

0 if directionðmi;cÞ ¼ þx~

1 if directionðmi;cÞ ¼ þy~

2 if directionðmi;cÞ ¼ þw~

3 if directionðmi;cÞ ¼ �x~

8>>><
>>>:

ð3Þ

and sðmn�1;c0Þ ¼ 0, where directionðmiÞ ¼ posðmiþ1Þ�
posðmiÞ, i.e. the direction of mi as defined in Sect. 2. Thus

the initial configuration has all states � 3.

Let si denote the initial state of monomer mi. Consider

the line-rotating Turning Machine L3n in its initial config-

uration and consider the following trajectory. We begin by

moving sequentially along the chain of monomers from left

to right starting at m0, and for each monomer mi with

si [ 0 we apply a turning rule to mi once. After we reach

monomer mn�1, we move back along the chain and for each

monomer mi such that si [ 1 we apply a turning rule to it.

After we get back to m0, we once again move left to right

and for each mi with si [ 2 we apply a turning rule to it.

Once we reach mn�1 again we are done. At this point each

monomer mi has had si turning rules applied and thus we

Fig. 8 Left: The yellow points define an n� n zig-zag square for

n ¼ 8 (Definition 17). Corollary 22 states that, for any n, such a

square is foldable, and the proof works by showing there is a Turning

Machine Tzz that traces the positive zig-zag path shown (with

monomer m0 at the origin). Right: An intermediate configuration of

Tzz: all initially-non-0-monomers have moved. The horizontal lines

(in red) subdivide Tzz
n into n independent subchains each equivalent to

a separate line-rotating Turning Machine L3n, which gives some

intuition that the target configuration is safely reached on all

trajectories without permanent blocking (although our actual proof

proceeds by a different argument)

9 As discussed in Remark 3, a target configuration is one where all

states are 0, in other words the intended final configuration of the

Turning Machine. Note that we’ve not yet proven that such a target is

always reachable—that’s our goal in fact.
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are in a configuration which traces out the path P. Since

target configuration c of Tzz traces out the path P, c is

reachable by L3n. Thus by Lemma 20, Tzz folds P in

Oðlog nÞ expected time.

For a negative zig-zag path P, we use the same proof but

mirror-flipped around the x-axis, and using negative

(instead of positive) turning numbers. h

An example of an n� n square n 2 N (Definition 17),

with n ¼ 8 in the example, is traced out by the path in

Fig. 8 (left). Since for any n the n� n square is traced out

by a positive zig-zag path, by Theorem 21 we immediately

get the following corollary:

Corollary 22 For any n 2 N, the n� n square is foldable

with zero error and in expected time Oðlog nÞ.

6.2 Folding y-monotone shapes, but with error

If we permit error in a folding, by which we mean that

some points of the folding are not in the shape (or vice-

versa) then any shape is foldable. In particular, for any

shape S there is a (boring) Turning Machine that folds a

zig-zag traversal of the bounding rectangle of S. The error

will be bounded by the area of S. Can we do any better? In

this section, we show that, yes, the class of y-monotone

shapes are foldable with error bounded merely by the

perimeter of S, and if we allow spatial scaling for y-

monotone shapes with the yw-separator property (see

Definition 29) we have zero error.

Definition 23 We say that a shape is y-monotone if the

points along each of its y-coordinates form a line segment.

The perimeter of a shape is defined as the set of points in

the shape that are adjacent (in Z2) to point(s) not in the

shape, and the perimeter length is the number of points in

the perimeter. A traversal is a simple path in Z2. A zig-zag

traversal is a traversal that traces a positive (or negative)

zig-zag path (Definition 19) such as the 8� 8 square

shown in Fig. 8 (Left).

Theorem 24 Any y-monotone shape S can be folded with

error no more than the perimeter length of S, and no more

than the perimeter of the shape induced by the folding.

Moreover, S is folded with error in expected time Oðlog nÞ.

Proof We will give a zig-zag traversal that covers all

points of the shape, as well as possibly a number of points

outside the shape, but within the stated error bound. We

will then show that the traversal is foldable using the

techniques from Sect. 6.1.

For each y-coordinate yi in the shape, i.e.

y0\y1\ � � �\yH�1 where the shape is of height (or span)

H along the y-axis, let ri denote the set of points

along y. The set ri is a line segment by y-monotonicity

of the shape S.

We define a zig-zag traversal R that includes all points

of S: If i is an even index such that yi is a y-coordinate of S,

then let Ri include all points of ri, plus any points p to the

right of ri such that there is a point pþ ð0; 1Þ 2 riþ1, and

any points p to the left of ri such that there is

pþ ð0;�1Þ 2 ri�1. Else if i is an odd index such that yi
is a y-coordinate of S, then let Ri include all points of ri,
plus any points p to the left of ri such that there is a point

pþ ð0; 1Þ 2 riþ1, and any points p to the right of ri such
that there is p� ð0; 1Þ 2 ri�1.

In either case Ri is a line segment, this follows from the

fact that S is connected and y-monotone. For j 2
f0; 1; . . .; jRij � 1g we write RiðjÞ to mean the jth point,

where for even i we index from the left hand side (from

smallest to largest x-coordinate), and for odd i we index

from the right hand side (from largest to smallest x-

coordinate) of the line segment Ri.

We next claim that the sequence R is a path that includes

all points of S. Writing R point-by-point:

R ¼R0ð0Þ;R0ð1Þ; . . .;R0ðjR0j � 1Þ;
R1ð0Þ;R1ð1Þ; . . .;R1ðjR1j � 1Þ;

..

.

RH�1ð0Þ;RH�1ð1Þ; . . .;RH�1ðjRH�1j � 1Þ

First, R includes all points of S because for each i where yi
is a y-coordinate of S, the set of points [iRi includes all

points at y-coordinate yi of S (because [iri does and

[iri � [jRj). Second, we need to show that R is a simple

path. R is composed of H � 1 non-intersecting line seg-

ments therefore is simple. To see that R is connected it

suffices to observe that for each j� 0,

posðRjðjRjj � 1ÞÞ ¼ posðRjþ1ð0ÞÞ � ð0; 1Þ. This completes

the claim that R is a path that includes all of S.

For the error, any point in R that is not in S is adjacent to

a perimeter point of S, this follows from the definition of

Ri, i.e. points in Ri n ri are not in S but are adjacent to

points in ðri�1 [ riþ1Þ � S.

Also, there is no perimeter point p of S such that there

are � 2 points of R adjacent to p (if there were, this would

contradict R being simple, or S being connected/y-

monotone).

Since R is a zig-zag path, it is foldable in Oðlog nÞ
expected time by Theorem 21. h

Theorem 24 states that all y-monotone shapes are fold-

able, albeit with some error. One might ask: Is it possible to
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fold y-monotone shapes without error? The answer is no,

via a straightforward argument:

Theorem 25 There are y-monotone shapes that require

folding error [ 0.

Proof Let S be a cross shape with width-1 line segments

for arms, with arm length [ 1, as illustrated in Fig. 9.

Since S is y-monotone, by Theorem 24 it is foldable

(with error) by a Turning Machine, but since it is not

Hamiltonian (does not have a traversal), any folding of it

has non-zero error. h

Theorem 25 feels unsatisfactory: it is not fair to ask

Turning Machines to exactly (zero error) fold shapes that

don’t even have an error-free traversal. Later, in Theo-

rem 38, we give a much stronger result: there is a class of

shapes that are unfoldable (with zero error), even though

each shape in the class has a (zero error) traversal, and

moreover that traversal is foldable on at least one Turning

Machine trajectory.

We leave the following open problem as future work:

Open Problem 26 Characterise the class of shapes that

are foldable with 0 error.

In the next section we make some partial progress.

6.3 Folding scaled shapes with 0-error

In this section we present an approach to folding spatially

scaled shapes with 0-error. In our setting, factor-2 scaling

is sufficient. See an example in Fig. 10.

Definition 27 Given a shape S, we define its scaled version

S�k by a factor k in the following way. Each vertex ði; jÞ 2
S is replaced by a k � k square in shape S�k. That is, for

every ði; jÞ 2 S, shape S�k contains all grid-vertices

fðkiþ a; kjþ bÞ j 0� a; b\kg.

If we blindly attempt to take our approach of folding

with error, Theorem 24, and attempt to apply it directly to

fold factor-2 scaled shapes, we will fail (for example,

consider a factor-2 scaled version of the cross in Fig. 9).

However, in this section we introduce a sufficient property

of a shape S to have, such that its scaled version S�2 is

foldable by a Turning Machine (leading to Theorem 33).

Let C ¼ fc1; c2; . . .; ckg be a chain of grid-vertices in S.

That is, C is a non-self-intersecting sequence of grid-points

such that ci and ciþ1 are neighboring grid vertices, for all i.

Definition 28 We say that chain C is a yw-chain if the y-

coordinates of ci and ciþ1 differ by exactly one.

Note that in this case C is a chain of straight-line seg-

ments parallel to one of the y~ or w~ directions.

Now, let S be a y-monotone shape, let ymin be the y-

coordinate of its bottom most row, and let ymax be the y-

coordinate of its topmost row.

Definition 29 We say that chain C ¼ fc1; c2; . . .; ckg is a

yw-separator of a y-monotone shape S if (1) C is a yw-

chain, (2) ci 2 S for all i, and (3) the y-coordinates of c1
and ck are ymin and ymax, respectively.

First, we prove that a scaled version of an xy-connected

y-monotone shape with a yw-separator can be partitioned

into two pieces with ‘‘nice’’ left and right boundary,

respectively (see Fig. 10 (right)).

Definition 30 Define the left (right) boundary of a y-

monotone shape S to be the set of the leftmost (rightmost)

grid-points in every row of S.

Definition 31 Given the yw-separator C of a y-monotone

shape S. Define C�2 as the set of grid points in S�2 that

corresponds to C in S, that is, for each ci ¼ ðxi; yiÞ 2 C, we

denote the four points in C�2 corresponding to ci, as

ci;ð0;0Þ ¼ ð2xi; 2yiÞ, ci;ð1;0Þ ¼ ð2xi þ 1; 2yiÞ,
ci;ð0;1Þ ¼ ð2xi; 2yi þ 1Þ, and ci;ð1;1Þ ¼ ð2xi þ 1; 2yi þ 1Þ:

Consider the yw-separator C of S, where S is a xy-con-

nected y-monotone shape, and consider the grid-points C�2

of S�2.

We cut S�2 in between the points of C�2 in the fol-

lowing way (refer to Fig. 11). Let C0 and C00 be the

rightmost boundary of S0�2 and the leftmost boundary of

S00�2 respectively. Assign the bottommost points c1;ð0;0Þ to C
0

and c1;ð1;0Þ to C00.

For two consecutive points ci and ciþ1 on C, if ciciþ1 is

parallel to y~, then assign ci;ð0;1Þ and ciþ1;ð0;0Þ to C0, and

ci;ð1;1Þ and ciþ1;ð1;0Þ to C00.

Otherwise, if ciciþ1 is parallel to w~, then one of the

following cases holds: either the point ci � ð1; 0Þ belongs

to S, or the point ciþ1 þ ð1; 0Þ belongs to S. Indeed, as S is a
xy-connected y-monotone shape, one of the two points

must belong to S. Then, in the first case, when ci � ð1; 0Þ
belongs to S, we assign one point ciþ1;ð0;0Þ to C0, and three

points ci;ð0;1Þ, ci;ð1;1Þ, and ciþ1;ð1;0Þ to C00. In the second case,

when ciþ1 þ ð1; 0Þ belongs to S, we assign three points

ci;ð0;1Þ, ciþ1;ð0;0Þ, and ciþ1;ð1;0Þ to C0, and one point ci;ð1;1Þ to

C00.

Fig. 9 A foldable shape, but one

that requires error [ 0

I. Kostitsyna et al.

123

420



Finally, assign the topmost points ck;ð1;0Þ to C
0 and ck;ð1;1Þ

to C00.
In the following lemma we prove that the described

method indeed partitions S�2 into two simply-connected

pieces with yw-chains on the right and left boundary.

Lemma 32 Let S be an xy-connected y-monotone shape

that has a yw-separator. Then S�2 can be partitioned into

two simply-connected y-monotone pieces S0�2 and S00�2 such

that (1) every row of S�2 is partitioned into two non-empty

subsets, with the left belonging to S0�2, and the right to S00�2,

and (2) the right boundary of S0�2 and the left boundary of

S00�2 form yw-chains.

Proof We argue that by splitting S�2 between the two

chains C0 and C00 constructed above, we indeed obtain such

S0�2 and S00�2.

First, observe that C0 and C00 are both yw-chains. Indeed,

for each pair of rows in S�2 corresponding to a row in S

from ymin to ymax both C0 and C00 have grid-points assigned
to them (from the points corresponding to either grid-points

in C�2 or adjacent grid-points in direction x~ or �x~).

Furthermore, by construction, for every two consecutive

points c0j; c
0
jþ1 2 C0 (and c00j ; c

00
jþ1 2 C00) they differ in y-

coordinate by exactly 1, and they differ in x-coordinate by

0 or �1.

Furthermore, observe that C0 and C00 are both yw-

separators of S�2, as they span from the bottommost to the

topmost row of S�2.

Let S0�2 consist of C
0 and all the grid-points of S�2 to the

left of C0, and let S00�2 consist of C
00 and all the grid-points

of S�2 to the right of C00. Shapes S0�2 and S00�2 are simply-

connected, as C0 and C00 are connected, and have yw-chains

on the rightmost and the leftmost boundary respectively. h

We next define a traversal R of S�2. Consider the shapes

S0�2 and S00�2 constructed as described in the proof of the

above lemma. For each pair of rows of S�2 corresponding

to a row in S, we traverse the bottom of the two rows of S0�2

from the grid-point on C0 left to the end of the row, and

return to the grid-point on C0 along the top one of the two

rows (see Fig. 10). As the two leftmost grid-points of the

two rows in S0�2 correspond to the same grid-point of S, the

traversal from the first to the second row is valid. Similarly,

we traverse the bottom of the two rows of S00�2 from the

grid-point on C00 right to the end of the row, and return to

the grid-point on C00 along the top one of the two rows. As

C0 and C00 are yw-chains, the traversal between the two

pairs of rows in S0�2 and S00�2 is valid as well. Finally, we

connect the two parts of the traversal R across C0 and C00 in
the bottommost row of S�2.

Theorem 33 Let S be an xy-connected y-monotone shape

that has a yw-separator C, then S�2 is foldable by a

Turning Machine in expected time Oðlog nÞ.

Proof We prove that the Turning Machine TR defined as

follows folds the shape S�2, i.e. on all trajectories. Let TR

consist of n monomers m0;m1; . . .;mn�1, where n is the

number of grid-points of S�2, and the first monomer m0

corresponds to the topmost grid-point of C0 (defined

above). In the folded state, TR traverses S0�2 from top to

bottom, and then traverses S00�2 from bottom to top. Let the

initial states of the monomers forming the bottommost row

(except for the rightmost one) of S�2 be 0. Applying

Lemma 9 we derive the initial states of the remaining

monomers (refer to Fig. 10). Let monomer mj correspond

to a grid-point pj 2 S0�2. We consider the following cases:

pj is in an odd or even row of S0�2; furthermore, we con-

sider the cases when pj is the leftmost point, the rightmost

point, or an interior point of the row. Let C0 ¼
fc01; c02; . . .; c0kg and C00 ¼ fc001 ; c002; . . .; c00kg, where c01 and c001
are the bottom most grid-points, and c0k and c00k are the top

most grid-points. Let pj be in an odd row, then

– if pj ¼ c0‘ 2 C0 and ‘[ 1, then sðmjÞ ¼ �2 if c0‘�1; c‘ is

Fig. 10 Left: an xy-connected y-monotone shape S with a yw-
separator (purple). Right: S�2, a scaled version of S by a factor two,

its traversal R (black) by a chain of a Turning Machine TR, and the

cut c (purple)

Fig. 11 Left: an xy-connected y-monotone shape S containing 6

points, along with a yw-separator C (in purple). Right: grid points in

black show S�2 which is the factor-2 scaling of S and the separator C
(in purple) that separates S�2 into S0�2 (left) and S00�2 (right)
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parallel to y~, and sðmjÞ ¼ �1 if c0‘�1; c‘ is parallel to w~,

– otherwise, if pj 62 C0 or pj ¼ c01, then sðmjÞ ¼ 0.

Let pj be in an even row of S0�2, then

– if pj is the leftmost point in its row, then sðmjÞ ¼ �2,

– otherwise, sðmjÞ ¼ �3.

Similarly, for the monomers whose final positions fall in

S00�2, we specify the following initial states. Let pj be in an

even row of S00�2, then

– sðmn�1Þ ¼ 0,

– if pj ¼ c00‘ 2 C00 and ‘\k, then sðmjÞ ¼ 1 if c00‘ ; c
00
‘þ1 is

parallel to y~, and sðmjÞ ¼ 2 if c0‘; c
00
‘þ1 is parallel to w~,

– otherwise, if pj 62 C00, then sðmjÞ ¼ �3.

Let pj be in an odd row of S00�2, then

– if pj is the right point in its row, then sðmjÞ ¼ 1,

– otherwise, sðmjÞ ¼ 0.

We claim that TR indeed computes S�2 and does not enter a

permanently blocked configuration for any sequence of

transition rules (trajectory). Assume that there is a con-

figuration c that is reachable from the initial configuration

of TR that is permanently blocked. Let mi be the monomer

corresponding to the bottommost grid-point of C0, that is,
mi is the last monomer in the traversal R that is still in S0�2.

Let T 0 and T 00 be Turning Machines consisting of the

monomers fm0; . . .;mig and fmiþ1; . . .;mn�1g correspond-

ingly. Similarly to the proofs of Theorems 21 and 24 , we

can argue that T 0 and T 00 individually compute the shapes

S0�2 and S00�2, i.e., they fold without entering in a perma-

nently blocked configuration. Thus, if c0 is blocked, then

for every monomer m‘ there must be a pair of monomers mj

with j� i and mk with k[ i that are blocking the transition

of m‘.

Consider individual folding of the Turning Machine T 00.
Without loss of generality, let the monomer miþ1 be fixed

in the origin of the coordinate system, and the remaining

monomers move with respect to it. We consider the cut c
between the shapes S0�2 and S00�2 in this global coordinate

system, and extend its ends to infinity along the y~ direction

(see Fig. 12). We claim that the monomers of T 00 always
remain to the right of c. Consider how the position posðmjÞ
changes when the transition rules are applied to the

monomers of T 00. The monomers of T 00 rotate from

orientation x~ to y~, from y~ to w~, and from w~ to �x~. If a

monomer mk moves, where k� j, the position of mj does

not change. If a monomer mk moves, where k\j, the

position of mj changes by one unit distance in the

directions w~, �x~, or �y~. Suppose in an intermediate

configuration c00 some monomer mj 2 T 00 has a position to

the left of the cut c. From this moment on, the position of

mj is confined to a 120
 with its apex in posðmjÞ and the

two rays emanating in the directions w~ and �y~ . Thus,

monomer mj will never cross the cut c to the right side, and

thus T 00 does not compute S00�2.

Similarly, we argue that the monomers of T 0 always

remain to the left of the cut c. This implies that there can

never be a blocked pair mj with j� i and mk with k[ i.

Therefore, TR folds S�2 on every trajectory.

For the time analysis, we note that the target configu-

ration of T 0 is a negative zig-zag path, and the target

configuration of T 00 is a positive zig-zag path. By Theo-

rem 21, both T 0 and T 00 would each individually fold in

Oðlog nÞ expected time if they were separate Turning

Machines. In the construction in this proof, we show that

monomers in T 0 don’t block any monomers in T 00 (and

vice-versa), hence even if both T 0 and T 00 are joined, they

fold independently. Thus, TR completes in Oðlog nÞ
expected time. h

6.4 Shapes that have a traversal, yet are
not foldable: spirals

The goal of this section is to prove Theorem 38, which

gives a class of shapes that have a traversal yet are not

foldable. Specifically, the following definition of k-turn,

1-gap, spiral, defines a particular kind of spiral that makes

k anti-clockwise turns, and has its arms held at unit dis-

tance (gap 1) apart, as shown in Fig. 13.

Definition 34 (k-turn 1-gap spiral) For k 2 Nþ, define the
anti-clockwise k-turn 1-gap spiral to be

S
k0 � k Rk0 , where

Rk0 is an ‘‘almost rectangle’’ formally defined as follows

(see Fig. 13 for a pictorial definition):

Fig. 12 Folding of a Turning Machine T 00. Its monomers remain on

the right side of the cut c. If monomer mj were to the left of c, its
further position is confined to the cone shown in green
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Rk0 ¼ fðx; yÞ j y ¼ �2k0 and � 2k0 � x� 2k0 � 1g
[ fðx; yÞ j x 2 f�2k0; 2k0 � 1g and � 2k0 � y� 2k0g
[ fð2k0 � 2;�2k0 þ 2Þ; ð2k0;�2k0Þ; ð2k0 þ 1;�2k0Þg
n fð2k0 � 1;�2k0 þ 1Þg :

Remark 35 For each k, the k-turn 1-gap spiral has two

traversals—one starting at the centre, one ending at the

centre. It can also be seen that k-turn 1-gap spiral has a

Turning Machine that has a trajectory whose final config-

uration is the spiral—SM starts as a line with monomer m0

at the centre of the spiral, and with initial states being

turning numbers10 for the spiral curve. One can then

imagine a trajectory that folds each arm of the spiral one at

a time starting at the centre and working its way out (like

rolling up a piece of paper). However, despite this, in this

section we show that for each k 2 Nþ, the k-turn 1-gap

spiral is not foldable by a Turning Machine (Theorem 38).

The proof shows that any Turning Machine that attempts to

fold a spiral must fail by either having invalid/illegal states,

or else having at least one permanently blocked reachable

configuration.

The following technical definition is used in the state-

ment of Lemma 37. The notation ½a�b, means a; a; . . .; a|fflfflfflfflfflffl{zfflfflfflfflfflffl}
btimes

.

Definition 36 For k 2 Nþ, let S be a k-turn 1-gap spiral. A

sequence of inside-to-outside turning numbers for S is of

the form

Tin�to�outðt0Þ ¼½t0�1; ½t1�2; ½t2�3; ½t3�4; . . .;
½t4k�2�4k�1; ½t4k�1�4k; ½t4k�4kþ1; t4k ;

where t0 2 Z is such that t0 	 0mod6 and

ti ¼
ti�1 þ 2 if i is even,

ti�1 þ 1 if i is odd.

�
ð4Þ

A sequence of outside-to-inside turning numbers for S is

any sequence of the form

Tout�to�inðt0Þ ¼ t0; ½t0�4kþ1; ½t1�4k; ½t2�4k�1; ½t3�4k�2; . . .; ½t4k�1�2; ½t4k�1 ;

where t0 2 Z is such that t0 	 3mod6, and

ti ¼
ti�1 � 1 if i is even,

ti�1 � 2 if i is odd.

�
ð5Þ

Lemma 37 For k 2 Nþ, the k-turn 1-gap spiral Sk is

unfoldable by any Turning Machine M that has initial state

sequence s0ðm0Þ; s0ðm1Þ; . . .; s0ðmn�1Þ that is not one of the
turning number sequences Tin�to�outðs0ðm0ÞÞ or

Tout�to�inðs0ðm0ÞÞ from Definition 36.

Proof From its definition, Sk has exactly jSkj ¼ 8k2 þ
6k þ 2 points, which, by a straightforward calculation, is

the same as the length of the sequences of canonical

turning numbers in Definition 36. If M does not have

exactly n ¼ jSkj monomers, does not fold Sk (either it does

not cover all points of Sk or covers too many). Assume then

that we are given a Turning Machine M with n ¼ jSkj
monomers, but that do not have states given by

Definition 36.

The spiral has exactly two points, namely (0, 0) and

ð2k þ 1;�2kÞ, that have degree 1 (one neighbour in Sk); we
respectively call them the inside and outside start points. If

the spiral were foldable, then monomer m0 is positioned on

either the inside or outside start point. By Lemma 8,

js0ðmiÞ � s0ðmiþ1Þj � 2 for all 0� i\n� 1.

Suppose posðm0Þ is the inside start point. If any of the

remaining claims do not hold, then the Sk is unfoldable:

Monomer m0’s initial state is s0ðm0Þ 	 0 mod 6, by

directionality of m0 in the final configuration of M (if not,

we are done because either m0 finishes in state 0 but

pointing in the wrong direction and thus places posðm1Þ
outside of Sk, or else m0 never reaches state 0 meaning m0

is permanently blocked). Also, s0ðm1Þ 	 1 mod 6, for the

same reason. But Lemma 8 tell us that js0ðmiÞ �
s0ðmiþ1Þj � 2 for all 0� i\n� 1, hence

s0ðm1Þ ¼ s0ðm0Þ þ 1. (If not, we would get that M is

blocked (by violating Lemma 8), or that M does not

precisely trace the spiral (if s0ðm1Þ 6	 1 mod 6). Tracing

around Sk using the same reasoning for each point along Sk

Fig. 13 A k ¼ 3-turn, gap 1, spiral on the triangular grid GM, as

defined in Definition 34. The centre of the spiral is at (0,0), and the

arms of the spiral turn anti-clockwise while keeping at a distance

(gap) of exactly 1 from each other. The monomers framed in red are

those which reside in the ‘‘almost rectangle’’ Rk0 ¼ R2 in

Definition 34

10 Start with some integer (e.g. 0) and traverse the curve writing

down an integer at each point, but incrementing the noted value at

each turn of p=3 anti-clockwise, and decrementing at each turn of p=3
clockwise.
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gives that either Tin�to�outðs0Þ ¼
s0ðm0Þ; s0ðm1Þ; . . .; s0ðmn�1Þ or else M does not fold Sk,

giving the lemma conclusion for this case.

Else, posðm0Þ is on the outside start point of Sk. A

similar argument (to the inside case) shows that

Tout�to�inðs0Þ ¼ s0ðm0Þ; s0ðm1Þ; . . .; s0ðmn�1Þ or else

M does not fold Sk, giving the lemma conclusion for this

case. h

Theorem 38 (Shapes with a traversal, but are unfoldable)

For all k� 2 the k-turn 1-gap spiral Sk is not foldable.

Proof Suppose for the sake of contradiction that there is a

Turning Machine M that folds Sk, k� 2. By Lemma 37,

there are two cases, either, (Case 1) M has initial states

Tin�to�outðs0ðm0ÞÞ and s0ðm0Þ 	 0 mod 6, or (Case 2)

Tout�to�inðs0ðm0ÞÞ and s0ðm0Þ 	 3 mod 6.

Case 1: M has initial states Tin�to�outðs0ðm0ÞÞ for

s0ðm0Þ 	 0 mod 6 (intuitively, folding the spiral from

inside to outside).

We have posðm0Þ ¼ ð0; 0Þ (at the ‘‘centre’’ of the spiral),
otherwise if M finishes with all monomers in state 0 it

would place (many) monomers outside Sk and we get the

statement. There are three subcases: (a) all initial states are

positive, (b) all initial states are negative, or (c) there are

both strictly positive and strictly negative initial states:

– Case 1(a): all initial states are positive (s0ðmiÞ� 0 for

all 0� i\n). Here, the idea is to find a reachable

configuration cb of M that is permanently blocked, as

illustrated in Fig. 14a. First, the M carries out repeated

line rotations by p=3, until reaching a configuration

where m0 is in state 0. Then the line of monomers

m1;m2;m3; . . . rotates by p=3, which puts m1;m2 in

state 0. We next have the line of monomers

m3;m4;m5; . . . rotate by 2p=3, which puts m1;m2 in

state 0, and parallel to the x-axis, pointing the �x

direction (Fig. 14a, left). Next we apply a turning rule

application to mn�2;mn�1, and then another to mn�1

(Fig. 14a, middle). Now we repeat the previous three

steps, moving backwards along monomer indices, until

we reach the configuration shown in Fig. 14a, right: i.e.,

for each j� n� 1 (starting at j ¼ n� 1) apply one

turning rule to mj�2, one to mj�1 and then one more

turning rule to mj�2, then decrement j and repeat.

Eventually we reach a value of j for which no move is

possible, yielding the permanently blocked configura-

tion shown in Fig. 14a, right.

– Case 1(b): all initial states are negative (s0ðmiÞ� 0 for

all 0� i\n). Here, the intuition is to block M by using

the fact that 2p line rotation is impossible (k� 2), as

shown in Fig. 14b. First, by Definition 36,

t0\t1\ � � �\t4k on Tin�to�outðt0Þ. Moreover, for all

monomer states to be negative, and by applying Eq. (4),

it is case that t0 � � 6k. By the definition of

Tin�to�out(t0) and since k ¼ 2, there are � 15 monomers

with initial state � � 6. Next we apply the main idea

used to prove Theorem 14, and illustrated in Fig. 7

(there we folded in the anticlockwise direction, here it

is clockwise). Specifically, we claim that the configu-

ration shown in Fig. 14b, right, is reachable, since the

15 monomers m0;m1; . . .m14 have initial state � � 6,

hence they are able to reach the configuration shown,

and since the other monomers (orange, purple) can be

moved as shown to enable the tight inner spiral to form.

The configuration in Fig. 14b, right is not (yet)

permanently blocked, but the 7 monomers in the inner

tight spiral are permanently blocked and thus all

trajectories forward lead to permanently blocked

configurations.

– Case 1(c): there are both strictly positive and strictly

negative initial states. We know from the definition of

Tin�to�outðt0Þ, and the subcase we are in, that t0\0\t4k.

Moreover, we claim that Tin�to�outðt0Þ has a contiguous
subsequence 0; 0; . . .; 0; in other words there is an i 2
f1; 2; . . .; 4k � 1g such that the initial state sequence,

Tin�to�outðs0Þ ¼ Tin�to�outðt0Þ ¼ t0; . . .t4k, contains the

state subsequence ½ti�iþ1 ¼ ½0�iþ1
. To see the claim,

first note that by Definition 36, t0 	 0 mod 6, and by

Eq. (4) every 4th term t4j (here, 0\j\k) has the

property that t4j 	 0 mod 6. Second, since t0\0 and

0\t4k, there is some j such that t4j ¼ 0, giving the

claim. Let li denote the segment of iþ 1 monomers

with initial states 0; 0; . . .; 0 (Fig. 14c purple segment).

Then, the preceding segment li�1 has length jlij � 1 ¼ i

and monomers all in initial state �2, and all monomers

preceding that have initial state \� 2 (by Eq. (4)).

Hence the second configuration in Fig. 14c is reachable

(decrement each monomer in li�1 twice). The succeed-

ing segment liþ1 has length jlij þ 1þ iþ 1 and

monomers all in state 1, and and all monomers

succeeding that have initial state � 3 (by Eq. (4)).

Hence the third configuration in Fig. 14c is reachable

(increment each monomer in liþ1 once, and each

monomer in lj, for j[ iþ 1, three times). Figure 14c

is permanently blocked.

Case 2: M has initial states Tout�to�inðs0ðm0ÞÞ for s0ðm0Þ 	
3mod6 (intuitively, folding the spiral from outside to

inside).

We have posðm0Þ ¼ ð2k þ 1;�2kÞ (at the ‘‘outside’’ of

the spiral, bottom right corner), otherwise if M finishes

with all monomers in state 0 it would place (many)

monomers outside Sk and we get the statement. There are

three subcases: (a) all initial states are positive, (b) all

initial states are negative, or (c) there are both strictly

positive and strictly negative initial states:
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– Case 2(a): all initial states are positive (s0ðmiÞ� 0 for

all 0� i\n). this case is illustrated in Fig. 15a. The

proof here is very similar to that of Case 1(b), in

particular Fig. 15a is a reflection about the x-axis of

Fig. 14b, and the only other difference here is that to

reach a permanently blocked configuration we start

turning from the monomers that are intended to become

the shorter (rather than longer) arms of the spiral.

– Case 2(b): all initial states are negative (s0ðmiÞ� 0 for

all 0� i\n). First, by Definition 36,

t0 [ t1 [ � � � [ t4k on Tout�to�inðt0Þ. Moreover, for all

monomer states to be negative, and by applying Eq. (5),

it is case that t0 � � 3. We begin by applying jt0j
turning rule applications to all monomers, until the first

k monomers (i.e, m0;m1; . . .;m4k) have each reached

state 0. Next we apply 2 turning rules to all non-zero

monomers such that monomers with initial state t1 turn

to state zero (grey in Fig. 15b, left). Next we apply 1

turning rules to the remaining non zero monomers such

that the monomers which were initially in state t2 are

now in state zero (purple in Fig. 15b, left). Next we

apply 2 turning rule applications to monomers mi with

12k þ 2\i\n in order to reach the ‘q-shaped’ config-

uration shown in Fig. 15b, right. We claim that all

trajectories forward from this configuration reach a

permanently blocked configuration: The first three

‘‘spiral arms’’ (monomers with initial states t0; t1; t2)

have reached state 0 and thus will not rotate any further.

In order for the remaining non-0 state monomers to

attempt reach the target configuration of Sk, they can

only make clockwise turns which results in them

wrapping around the blocked inner region. Eventually

all are permanently blocked

– Case 2(c): there are both strictly positive and strictly

negative initial states. This case is similar to that of

Case 1(c). By the definition of Tout�to�in(t0), and the

subcase we are in, t0 [ 0[ t4k. Similarly to Case

1(c) we claim that the initial state sequence

Tout�to�in(s0) = Tout�to�in(t0) contains the state sequence

½ti�4kþ1�i ¼ 0 for some i 2 f1; 2; . . .; 4k � 1g. To see

this we first note that by Definition 36, t0 	 3 mod 6,

and by Eq. (5) every 4th term after the 2nd term is

congruent to 0 mod 6 (that is to say ti 	 0 mod 6 such

that i 	 2 mod 4). Thus t4jþ2 	 0 mod 6 for some j

with 0� j\k. We let li denote this segment of 4k þ
1� i monomers each with initial state 0. (Fig. 15c dark

green segment). Then the preceding segment li�1 has

length 4k � iþ 2 and has initial states 1 and the

succeeding segment liþ1 of length 4k þ 2 with initial

state �2 by Eq. (5). Hence the second configuration in

Fig. 15 is reachable. The segment liþ2 of length 4k �
i� 1 has initial state �3 by Eq. (5). Hence the third

configuration in Fig. 15c is reachable. Thus Fig. 15c is

permanently blocked. h

Fig. 14 Illustration for Case 1 of the proof of Theorem 38, showing

that a 2-turn, 1-gap, Spiral can not be folded from ‘‘inside to out’’.

Top left: initial configuration, monomers are co-linear, colours

distinguish initial states. a Initial configuration with all states

positive. First we fold the intended innermost coil/turn of the spiral,

by rotating almost the full line of monomers anti-clockwise by p,
creating a small ‘‘pocket’’ (red, green, and blue monomers). Then the

teal/grey monomers ‘‘prematurely’’ fold the configuration into the

pocket, eventually yielding a permanently blocked configuration—to

carry out the folding it suffices that the teal monomers have initial

state � 6. b Initial configuration with all states negative. The

trajectory shown folds into a permanently blocked configuration

similar to that in Fig. 7, but here uses clockwise turning (negative

states) and has an extra long tail that needs to be folded out of the way

before completing the erroneous tight spiral. The configuration in on

the right is not (yet) permanently blocked, but the 7 monomers in the

inner tight spiral are permanently blocked and thus all trajectories

forward lead to permanently blocked configurations. c Initial config-

uration with strictly positive and strictly negative states. By Case

1(c) in the proof, there is a contiguous segment of monomers in state

0, here shown in purple. Monomers to the left (negative states) fold

clockwise, and monomers to the right (positive states) fold anticlock-

wise, yielding a pincer-like permanently blocked configuration
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Appendix

Line rotation by p=3, pnd 4p=3

In this appendix we present proofs that line-rotating

Turning Machine for respective angles of p=3, p and 4p=3
terminates in expected time Oðlog nÞ. These claims are

superseded by the results in the main paper, but we include

the proofs as they give a number of techniques to analyse

the Turning Machine model.

Line rotation by p=3: L1n

The following proof of line rotation by p=3 radians is

intended to be a simple example worked out in detail. Let

L1n be the Turning Machine defined in Definition 1 with

r ¼ 1, as illustrated in Fig. 3 (left).

Lemma 39 For each n 2 N, the line-rotating Turning

Machine L1n computes its target configuration, and does so

in expected Oðlog nÞ time.

Proof The initial configuration (Fig. 3, left) of L1n is a line

of n� 1 monomers in state 1 with an additional final

monomer in state 0, i.e. at time 0 the n states are

sðm0Þsðm1Þ � � � sðmn�1Þ ¼ 1n�10. Since monomer states

only change by decrementing from 1 to 0, any configura-

tion on any trajectory of L1n has its (composite) state of the

form f0; 1gn�1
0. Consider a configuration c in a trajectory

of evolution of L1n, and the corresponding state11

x 2 f0; 1gn�1
0. Let mc

i denote the ith monomer of L1n in

configuration c. For any i 2 f0; 1; . . .; n� 2g such that

sðmc
i Þ ¼ 1, consider the unique configuration c0 where c !

c0 and sðmc0
i Þ ¼ 0 (and, by definition of next configuration

step, j 6¼ i implies sðmc0
j Þ ¼ sðmc

j Þ).
We claim that tailðmc

i Þ does not share any positions with

head!ðmc
i Þ, in other words, that c0 is a non-self-intersecting

configuration. To show this, consider a horizontal line ‘i
through monomer mc

i and observe that in c0 (and in c), the

monomers tailðmc
i Þ ¼ mc

0;m
c
1; . . .;m

c
i lie on or below ‘i

(because the path posðmc
0Þ; posðmc

1Þ; . . .; posðmc
i Þ is con-

nected and consists of unit length segments each at an

angle of either 0
 or 60
 clockwise relative to the x-axis),

but the monomers head!ðmc
i Þ ¼ mc0

iþ1;m
c0

iþ2; . . .;m
c0

n�1 lie

strictly above ‘i (because posðmc0
iþ1Þ is strictly higher than

posðmc
i Þ, and because the path

posðm0
iþ1Þ; posðm0

iþ2Þ; . . .; posðmc0

n�1Þ is connected and con-

sists of unit length segments each at an angle of 0
 or 60
 to
the x-axis). Hence there are no blocked configurations

reachable by L1n (neither permanent nor temporary

blocking).

At each reachable configuration c, starting from the

initial configuration, we can choose i independently from

the set of non-zero states. The expected time for the first

Fig. 15 Illustration for Case 2 of the proof of Theorem 38 showing

that a 2-turn, 1-gap, Spiral can not be folded from ‘‘outside to in’’.

Top left: initial configuration, monomers are co-linear, colours

distinguish initial states. a Initial configuration with all states

positive. Trajectory shown folds into a permanently blocked config-

uration similar to that in Figs. 14b and 7 . The configuration to the

right is not yet permanently blocked, but the 7 monomers in the inner

tight spiral (starting at m0) are permanently blocked and thus all

trajectories from this configuration will yield permanently blocked

configurations. b Initial configuration with all states negative. First we

fold the outer most part of the spiral by rotating almost a full line of

monomers clockwise by p creating a large ‘‘C shape’’ (dark green,

gray, purple monomers). Then the remaining arm of the spiral folds

such that it is anti-parallel to the y-axis (right). This arm of the spiral

wishes to rotate clockwise to reach the center, but to do so would

cause these monomers to intersect with the ‘‘C shape’’ outer coil of

the spiral, thus leading to a permanently blocked configuration.

c Initial configuration with both strictly positive and strictly negative

initial states. This construction is similar to that used in Fig. 14c such

that there is a contiguous segment of monomers with states 0; 0; . . .; 0,
here shown in dark green. Monomers to its left (positive states) fold

anti-clockwise, and monomers to the right (negative states) fold

clockwise, yielding a ‘‘pincer-like’’ permanently blocked

configuration

11 In fact any x 2 f0; 1gn�1
0 is the state of a reachable configuration,

but we don’t need to prove that.
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rule application is 1=ðn� 1Þ since it is the expected time of

the minimum of n� 1 independent exponential random

variables each with rate 1. The next is 1=ðn� 2Þ, and so on.
By linearity of expectation, the expected value of the total

time T is

E½T� ¼
Xn�1

k¼1

1

k
¼ Oðlog nÞ

where the sum is the ðn� 1Þth partial sum of the harmonic

series, known to have a Oðlog nÞ bound. Hence L1n com-

pletes in expected Oðlog nÞ time. h

Line rotation by p: L3n

Next, we analyse line rotation of p radians.

Lemma 40 Let L3n be a line-rotating Turning machine,

then:

(i) only monomers in state 1 adjacent to a monomer in

state 3 are blocked, and that blocking is temporary,

(ii) any reachable configuration of L3n has no more than

2n/3 blocked monomers, and

(ii) there exists a configuration of L3n that has exactly

2n/3 blocked monomers.

Proof Consider any reachable configuration c of L3n, and

let monomer mi be blocked in c. By Lemma 10, monomers

in state 2 and 3 are never blocked. By definition, monomers

in state 0 are not blocked. Thus if mi is blocked it is in state

1, i.e. sðmiÞ ¼ 1. We claim that in this case either

sðmi�1Þ ¼ 3 or sðmiþ1Þ ¼ 3 (or both). Consider the fol-

lowing two cases for sðmiþ1Þ:

1. If sðmiþ1Þ 2 f1; 2g, then by Lemma 5 all monomers of

head!ðmiÞ, except its first monomer m0
iþ1, lie strictly

above ‘i, and since tailðmiÞ lies on or below ‘i, we get

that tailðmiÞ does not intersect head!ðmiÞ, except

possibly at posðm0
iþ1Þ. Whether posðm0

iþ1Þ intersects

tailðmiÞ depends on the state of mi�1:

(a) If sðmi�1Þ 2 f1; 2g, then all monomers of

tailðmiÞ lie strictly below ‘i (except its first

monomer mi which is not at position posðm0
iþ1Þ),

hence posðm0
iþ1Þ cannot intersect tailðmiÞ. Then

mi cannot be blocked.

(b) If sðmi�1Þ ¼ 0, then m0
iþ1 does not intersect

tailðmiÞ: Indeed, posðmi�1Þ ¼ posðmiÞ þ x~¼
posðm0

iþ1Þ þ2x~ 6¼ posðm0
iþ1Þ. Furthermore, let

mj, mjþ1, ..., mi�1 be the longest consecutive

subsequence of monomers in state 0 preceding

monomer mi. Then posðmjÞ, posðmjþ1Þ, ...,

posðmiþ1Þ are all strictly to the west of

posðmiÞ. If j� 1� 0, the non-zero-state12 mono-

mer mj�1 enforces that the monomers m0, m1, ...,

mj�1 lie strictly below ‘i. Thus mi is not blocked.

Therefore, monomer mi�1 can only be in state 3.

2. If sðmiþ1Þ ¼ 0: Both head!ðmiÞ and tailðmiÞ have

monomers on ‘i, but we claim the positions of

head!ðmiÞ do not intersect those of tailðmiÞ. If

sðmi�1Þ 2 f1; 2g, then all monomers of tailðmiÞ except
mi lie strictly below ‘i, and thus head!ðmiÞ does not

intersect tailðmiÞ (and recall that head!ðmiÞ does not

intersect posðmiÞ because configurations are simple). If

sðmi�1Þ ¼ 0 then the monomers M ¼ fmi�1;mi;m
0
iþ1g

lie along ‘i (pointing west). Note that a prefix of M is a

suffix of tailðmiÞ and a (disjoint) suffix of M is a prefix

of head!ðmiÞ. Hence, in order for tailðmiÞ to intersect

head!ðmiÞ, one or both must depart from ‘i, but, by

Lemma 5, tailðmiÞ can only do so by having monomers

strictly below ‘i, and head!ðmiÞ can only do so by

having monomers strictly above ‘i. Thus, monomer

mi�1 can only be in state 3.

Therefore, if mi is blocked, then it is in state 1 and either

mi�1 or miþ1 is in state 3, and thus is temporarily blocked

which yields Conclusion (i) of the lemma. Hence, there

cannot be three monomers in a row which are blocked,

resulting in Conclusion (ii) of the lemma.

For Conclusion (iii), consider a line-rotating Turning

Machine L3n with n ¼ 3k for some k. The configuration c

with state sequence S ¼ ð131Þk�1
130 has exactly 2n/3

blocked monomers, as every monomer in state 1 is either

blocked by a preceding monomer in state 3, or by a

following monomer in state 3. h

Theorem 41 (rotate a line by p) For each n 2 N, the line-

rotating Turning Machine L3n computes its target configu-

ration, and does so in expected time Oðlog nÞ.

Proof By Lemma 40, no configuration has a permanently

blocked monomer, hence every trajectory of L3n ends in the

target configuration.

At the initial step, the rate of rule applications is n� 1

(there are n� 1 monomers in state 3). Over time, for

successive configurations along a trajectory, the rate of rule

applications may decrease for two reasons: (a) some

monomers may be temporary blocked, and (b) after a

monomer transitions to state 0 no more rules are applicable

to it. We reason about both:

(a) Lemma 40(ii) shows that a configuration with state

sequence s ¼ ð131Þn=3�1
130 has 2n/3 blocked mono-

mers, and Lemma 40(ii) states that no configuration

12 Which must be in state 1 or 2, since 3 would give a self-

intersection along the configuration.
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has more than 2n/3 blocked monomers for n divisible

by 3. Using that fact, and in order to simplify the

proof, we shall analyse a new, possibly slower,

system where for any configuration c that has n0 � n

monomers in state 6¼ 0, we ‘‘artificially’’ block 2n0=3
monomers.13 Since this assumption merely serves to

slow the system, it is sufficient to give an upper

bound on the expected time to finish.

(b) A second ‘‘slowdown’’ assumption will be applied

during the analysis and is justified as follows.

Intuitively, the number of monomers transitioning

to state 0 increases with time, and since monomers in

state 0 have no applicable rules, this causes a

decrease in the rate of rule applications. Consider a

hypothetical continuous-time Markov system M,

with 3n steps with rate decreasing by 1 every third

step, that is, with successive rates

n; n; n; n� 1; n� 1; n� 1; n� 2; . . .; 2; 1; 1; 1. By

linearity of expectation, the expected value of the

finishing time T is the sum of the expected times E½ti�
for each of the individual steps i 2 f1; 2; . . .; 3ng:

E½T � ¼
X3n
i¼1

E½ti� ¼
Xn
m¼1

3 � 1
m

¼ 3
Xn
m¼1

1

m

¼3Hn � 3ðlnðnÞ þ 1Þ ¼ Oðlog nÞ ;
ð6Þ

where Hn is the n
th partial sum of the harmonic seriesP1

m¼1
1
m with Hn � lnðnÞ þ 1 (see Graham et al.

1989). Since, in L3n, it requires at least 3 steps to send

a monomer from state 3 (the initial state) to state 0,

no trajectory sends monomers to state 0 at a faster

rate than a (hypothetical) trajectory where a transi-

tion to state 0 appears at every third configuration

(step). Hence, if there were no blocking whatsoever,

then the expected time for L3n would be no larger than

3Hn (given by Eq. (6)).

Taking the blocking ‘‘slowdown assumption’’ in (a) into

account, if the rate at step i is ri, then the slowed down rate

is 1
3
ri giving an expected time of

E½T� ¼
X3n
i¼1

E½ti� ¼
Xn
m¼1

3 � 3
1
� 1
m

¼9
Xn
m¼1

1

m
¼ 9Hn � 9ðlnðnÞ þ 1Þ ¼ Oðlog nÞ :

ð7Þ

Since our two assumptions merely serve to define a new

system that is necessarily slower than L3n, we get the

claimed expected time upper bound of Oðlog nÞ for L3n. h

Line rotation by 4p=3: L4n

Lemma 42 Let mi be a blocked monomer in some

reachable configuration c of a line rotation Turning

Machine Lsn with n 2 N and 1� s� 4, and let mj 2
headðmiÞ and mk 2 tailðmiÞ be a pair of monomers which

block the movement of mi, then in the subchain of Lsn from

mk to mj�1 the number of unblocked monomers is at least

half the number of blocked monomers.

Proof Similarly to the proof of Lemma 10, consider the

closed chain P ¼ posðmkÞ, ..., posðmjÞ, posðmkÞ. Let xðmiÞ
denote the x-coordinate of the position of monomer mi, and

yðmiÞ denote the y-coordinate of the position of monomer

mi. Note, that for any ‘,

– if sðm‘Þ ¼ s, then xðm‘þ1Þ ¼ xðm‘Þ þ 1 and

yðm‘þ1Þ ¼ yðm‘Þ,
– if sðm‘Þ ¼ s� 1, then xðm‘þ1Þ ¼ xðm‘Þ and

yðm‘þ1Þ ¼ yðm‘Þ þ 1,

– if sðm‘Þ ¼ s� 2, then xðm‘þ1Þ ¼ xðm‘Þ � 1 and

yðm‘þ1Þ ¼ yðm‘Þ þ 1,

– if sðm‘Þ ¼ s� 3, then xðm‘þ1Þ ¼ xðm‘Þ � 1 and

yðm‘þ1Þ ¼ yðm‘Þ,
– if sðm‘Þ ¼ s� 4, then xðm‘þ1Þ ¼ xðm‘Þ and

yðm‘þ1Þ ¼ yðm‘Þ � 1.

Let xðmkÞ � xðmjÞ ¼ ex and yðmkÞ � yðmjÞ ¼ ey, with

ex; ey 2 f�1; 0; 1g. The total change in x-coordinate and the
total change in y-coordinate, when traversing P, is zero,

that is,

Xj�1

‘¼k

ðxð‘þ 1Þ � xð‘ÞÞ þ ex ¼ 0 ;

Xj�1

‘¼k

ðyð‘þ 1Þ � yð‘ÞÞ þ ey ¼ 0 :

ð8Þ

Considering the first part of Eq. (8), and taking into

account that the x-coordinate increases only when

traversing monomers in state s, and the x-coordinate

decreases only when traversing monomers in state s� 2 or

s� 3, we get #ðsÞ þ ex ¼ #ðs� 2Þ þ#ðs� 3Þ, where

#ðuÞ denotes the number of monomers with state u in the

subchain from mk to mj�1. Observe, by Lemma 10,

monomers in states s and s� 1 cannot be blocked, and

since s� 4, only the monomers in states s� 2 or s� 3 can

be blocked. This implies, that within the subchain from mk

to mj�1, the number of blocked monomers is at most within

13 The monomers are not necessarily geometrically blocked, we are

merely stopping any rule from being applied to them. No configu-

ration in a trajectory of L3n witnesses a larger slowdown due to

blocking than the slowdown we have imposed on the configurations

of T 0
n.
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an additive factor 1 from the number of unblocked

monomers.

Suppose, for a given subchain from mk to mj�1, the

number of monomers in state s is strictly positive (that is,

#ðsÞ� 1). Then, #ðsÞ� 1
2
ð#ðs� 2Þ þ#ðs� 3ÞÞ, that is,

in the subchain, the number of unblocked monomers is at

least half the number of blocked monomers.

Now suppose that the number of monomers in state s in

the subchain is zero (that is, #ðsÞ ¼ 0). As the blocked

monomer mi has state either s� 2 or s� 3, the x-

coordinate decreases by 1 when traversing it. The x-

coordinate only increases when traversing monomers in

state s. Therefore, if there are no monomers in state s, ex
has to be 1, and, besides the blocked monomer mi, the

subchain from mk to mj�1 consists only of monomers in

states s� 4 and s� 1.

Furthermore, as ex ¼ 1, we have that posðmkÞ ¼
posðmjÞ � w~ (that is, mi is in state s� 3). We claim that

there is at least one monomer in state s� 1 in the subchain

from mk to mj�1. Indeed, consider the second part of Eq. 8.

Traversing the edge between monomers mk and mj changes

the y-coordinate by ey ¼ yðmjÞ � yðmkÞ ¼ yð�w~Þ ¼ �1.

Thus there has to be at least one monomer traversing which

increases the y-coordinate. This can only be a monomer in

state s� 1. Thus, in the subchain from mk to mj�1, there is

one blocked monomer mi and at least one unblocked

monomer in state s� 1, and the total number of unblocked

monomers is at least the number of blocked monomers. h

Theorem 43 For each n 2 N and 1� s� 4, the line

rotation Turning Machine Lsn computes its target configu-

ration in Oðlog nÞ steps.

Proof By Theorem 12 the Turning Machine Lsn computes

its target configuration. That it computes the target con-

figuration in Oðlog nÞ steps follows from the claim that in

any intermediate configuration c, the number of blocked

monomers is not greater than 3n/4.

To prove this claim, consider a reachable configuration c

of Lns , and consider all blocked monomers

B ¼ fmi : mi is blockedg.
Let ej;k be the edge connecting the positions of two

monomers mj and mk which block the movement of some

monomer mi 2 B (note, that mi can be blocked by more

than one pair of monomers). Let E ¼ fej;kg be the set of all

such edges for all pairs mj and mk which block some

monomer in Lns . Observe, that no two edges in E cross each

other, as they are unit segments in the triangular graph, and

for the same reason no edge in E crosses the chain Lns . Let

the chain Lns together with the set of edges E partition the

plain into plane subdivision D (refer to Fig. 16). The

bounded faces of D are formed of subchains of Lns and

edges from E. Now, remove the edges of E from D which

are not incident to the outer face, resulting in a plane

subdivision D0. In it, every bounded face is formed by a

single subchain of Lns and a single edge from E.

Observe, that all monomers of Lns which are blocked are

incident to at least one bounded face. Otherwise, there

would be two monomers mj and mk blocking the move with

the edge ej;k not in E, thus contradicting the definition of E.

For each bounded face fi in D0, by Lemma 42, we have

#iðunblockedÞ� 1
2
#iðblockedÞ; where #iðunblockedÞ

denotes the number of unblocked monomers incident to

the face fi, and #iðblockedÞ denotes the number of blocked

monomers incident to the face fi.

Note, that each unblocked monomer can be incident to

at most two bounded faces of D0, and recall that each

blocked monomer is incident to at least one bounded face

of D0. Then,

#ðunblockedÞ� 1

2

X
fi2D0

#iðunblockedÞ

� 1

2

1

2

X
fi2D0

#iðblockedÞ
 !

� 1

4
#ðblockedÞ ;

where the sums are over the bounded faces of D0, and
#ðunblockedÞ denotes the total number of unblocked

monomers in Lns , and #ðblockedÞ denotes the total number

of blocked monomers in Lns .

Since there is a constant fraction of unblocked

monomers in any configuration, the total expected time it

takes Lsn to compute its target configuration is Oðlog nÞ. h
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