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Abstract: Sound synthesis using physical modeling, emulating systems of a complexity approaching and even exceeding
that of real-world acoustic musical instruments, is becoming possible, thanks to recent theoretical developments in
musical acoustics and algorithm design. Severe practical difficulties remain, both at the level of the raw computational
resources required, and at the level of user control. An approach to the first difficulty is through the use of large-scale
parallelization, and results for a variety of physical modeling systems are presented here. Any progress with regard to
the second difficulty requires, necessarily, the experience and advice of professional musicians. A basic interface to a
parallelized large-scale physical modeling synthesis system is presented here, accompanied by first-hand descriptions
of the working methods of five composers, each of whom generated complete multichannel pieces using the system.
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Sound synthesis using physical modeling is, to say
the least, a computationally costly undertaking.
Throughout the history of computer music, it has
often been the case that, during the development of
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new synthesis tools, there has been an initial phase
during which prototypes were built in specialized
hardware. Often the aim was to achieve real- or near-
real-time performance using relatively established
synthesis methods. Well-known examples are the
“Samson Box” (Samson 1980; Loy 2013a,b) at
Stanford University’s Center for Computer Research
in Music and Acoustics (CCRMA) and the 4N
series at the Institut de Recherche et Coordination
Acoustique/Musique (IRCAM), leading ultimately
to the IRCAM Music Workstation (Lindemann
et al. 1991), later known as the IRCAM Signal
Processing Workstation. The IRCAM Workstations
ran the early signal-processing version of Max via
customized DSP boards in a NeXT workstation
(Puckette 1991).

In the case of physical modeling synthesis, com-
putational costs can be many orders of magnitude
beyond those of standard abstract synthesis meth-
ods, particularly for complex systems. Thus, for the
moment, specialized hardware is again necessary.
Real-time performance was not the aim of the Next
Generation Sound Synthesis (NESS) project, but
rather “reasonable-time” performance—to get a
glimpse of what kind of sound output is possible.
Raw acceleration has thus been one of the main
goals, and a variety of approaches have been taken,
all relying on parallelization at different scales.

As part of the the NESS Project, sound-synthesis
algorithms based on physical modeling were de-
veloped for many instrument types, ranging from
emulations of existing instruments to purely virtual
constructions without a counterpart in the real
world. These algorithms are detailed in a companion
article in the pages of this issue of Computer Music
Journal (Bilbao et al. 2020). Though most do not
operate in real time, they generate sound quickly
enough to constitute a point of departure for musical
exploration, which was the second, deeper and more-
nebulous goal of NESS. New major issues emerged,
relating to usability, interfaces, and control—the
musician is faced with the large task of not only
learning to play a new musical instrument but also,
more often than not, designing it. Sound synthesis
in parallel hardware has been explored with regard
to standard, abstract synthesis techniques (Savioja,
Välimäki, and Smith 2010, 2011), as well as in the

case of physical modeling applications, particularly
on graphics processing units (GPUs, cf. Zhang, Ye,
and Pan 2005; Hsu and Sosnick-Pérez 2013) and
using field-programmable gate arrays (Pfeifle and
Bader 2015; Motuk et al. 2007). Alongside work on
synthesis, another major thrust was towards the
development of large-scale room acoustics simula-
tions on GPU—here our approach intersects with
that of work in virtual acoustics, divorced from
sound synthesis applications—see, e.g., Southern
et al. (2010); Mehra et al. (2012).

This article is a detailed account of the practi-
calities, both technical and musical, involved in
bringing physical modeling synthesis into the hands
of musicians. (For a more technical view of paral-
lel computing in physical modeling synthesis, see
Perry, Bilbao, and Torin 2016.)

Physical Modeling Synthesis: Computational
Complexity

Computational complexity for a physical modeling
synthesis algorithm is of course highly dependent on
the particular model. One very crude measure of the
complexity follows from the required state size—
i.e., the amount of memory required to sufficiently
represent the dynamics of a given instrument,
given some perceptual criterion. Interestingly,
it is possible to provide a rather simple lower
bound on such memory requirements. To this
end, consider any acoustic entity, characterized
by its material and geometry. This could be a
musical instrument, a single component of an
instrument, or perhaps even an enclosing space.
Loss is usually low in any such system, and under
linear conditions, the system may be characterized
by a number of natural frequencies or modes N ( fc)
below a chosen cutoff frequency fc. Each such
mode behaves, individually, as a harmonic oscillator
with two degrees of freedom, and thus requires
the updating of two real numbers in memory,
and thus the minimum memory requirement is
2N ( fc) real numbers (normally double-precision
floating point). A synthesis algorithm using less
than this amount of memory will necessarily be
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Figure 1. Approximate
ranges of N in various
systems in musical
acoustics. The value scales
with the amount of
memory required to
represent the dynamics of
a given physical modeling

system without discarding
potentially audible
dynamics. The systems
range from “low-cost” 1-D
systems, such as strings, to
“high-cost” 3-D
simulation.

discarding potentially audible dynamics, and one
using more is inefficient—often unavoidably so. In
synthesis, fc = 20,000 Hz is the most usual choice of
cutoff and represents a basic perceptual criterion—
the upper limit of human hearing. Although the
aforementioned bound on memory requirements
follows from an analysis in terms of modes, it
is actually quite general—any synthesis method
(modal, digital waveguide, finite difference, etc.)
must respect this.

Consider first the basic case of a vibrating string,
of fundamental frequency f0 Hz. Here, N ( fc) = fc/ f0,
which is on the order of about 10 to 500 for musical
strings, which is relatively small. At the other
extreme, consider the case of a room of volume
V m3, and where the sound speed is c m/sec.
Now, N is approximately 4V f 3

c /c3. For a medium-
sized room (V = 2,000 m3), and where the speed
of sound c = 343 m/sec, then N � 109, which is
very large indeed, but reasonable-time simulation is
still within the realm of possibility on specialized
hardware, such as GPUs. Ranges of values of N,
based on a cutoff of fc = 20,000 Hz, are given for
a variety of acoustic objects in Figure 1. Notice
in particular the large gulf between problem sizes
for 1-D and 2-D musical instrument components,
and for 3-D modeling; parallelization strategies for
3-D modeling have a different character, due to the
problem size.

Operation counts are more dependent on the
particulars of the system at hand—in most nontrivial
cases, however, the number of arithmetic operations
per second, for a system with a state size of 2N and
with a sample rate of fs will scale as at least O(Nfs).
(Of course, from sampling considerations, fs ≥ 2 fc,)
The digital waveguide is a notable exception in this
regard, requiring O(1) operations per time step—an
efficiency advantage linked specifically to wave
propagation over 1-D lossless homogeneous media,

with the ideal string and acoustic tube as examples.
As will be seen, however, actual run times are very
much dependent on the particular implementation
and the possibility of parallelization. More details
of the relevant computational structures appear in
the following section. Furthermore, such estimates
are very crude—they do not take into account more-
detailed information about auditory perception,
which could be used to further reduce computational
cost.

General Algorithm Structure and Key Operations

The majority of the time-stepping methods used
in the NESS project share many common features
across different instrument types. Although it is
impossible to describe here the complete workings
of all the physical modeling sound synthesis al-
gorithms described in this and in the companion
article (Bilbao et al. 2020), an attempt is made here
to give the reader some notion of the technical
challenges involved, particularly keeping in mind,
from the previous discussion, that in some cases
the problem size can be very large. (For a more
technical presentation of the implementation of
such time-stepping methods, see Bilbao et al. 2014.)

Representing State

As a first step towards understanding the implemen-
tation of such methods, consider the representations
of the state in typical time-stepping algorithms.
Depending on the system at hand, the state (at an
integer time step n) consists of the values represent-
ing the physical variables of the complete system.
Such values could represent, for example, the dis-
placements and velocities of a string or membrane,
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Figure 2. Spatial grids in
one, two, and three
dimensions (a).
Concatenation of a 2-D
grid into a vector (b).

defined over a grid, or pressure and velocity val-
ues within an acoustic tube, or a combination of
values representing the state of a heterogeneous
system made up of a combination of components
(see Figure 2a). For the purposes of the discussion
below (and not necessarily in practice!) it is useful
to concatenate the entire state, at a given time step
n, as a vector un (see Figure 2b).

Recursions

The main computational work across all the NESS
code modules is the update of the state at an audio
rate—usually chosen to be 44.1 kHz or 48 kHz,
although all algorithms can produce sound output
at any specified rate. At time step n, the state
vector un+1 must be computed using previously
computed values of the state. In virtually all
synthesis code modules, updates are “two-step”:
un+1 may be computed using only un and un−1. To
avoid producing an excess of computed data, once
un+1 is computed, un−1 may then be discarded (or
overwritten). Here, the state vector un, assembled by
concatenation, is assumed to be of size N × 1, where
the total state size is 2N.

Updates take on different forms, depending on
the physics of the problem at hand. In Table 1,
generic update equations of four different types,
labeled I through IV, are shown. In this simplified
representation, input and output operations are not
included.

Table 1. Generic Equations for Update Types

Type I un+1 = Bun + Cun−1

Type II Aun+1 = Bun + Cun−1

Type III A(un, un−1)un+1 = B(un, un−1)un+C(un, un−1)un−1

Type IV g(un+1, un, un−1) = 0

In the simplest case, the update step is of Type I
and requires only matrix multiplication. This
corresponds to the case of explicit finite-difference
(FD) schemes for linear and time-invariant systems.
The N × N matrices B and C may be precomputed
at the setup stage, and the internal structure of
these matrices follows directly from the physics
of the system. They are generally very sparse; the
sparsity follows from the use of FD approximations,
according to which derivatives are approximated
using neighboring values on a grid. This is the ideal
case for a parallel implementation. See Figure 3,
illustrating typical sparsity patterns, in the case of
a matrix B utilizing a basic approximation to the
Laplacian.

It is sometimes the case that the update cor-
responds to the solution of a linear system, as in
Type II, for a known constant N × N matrix A. This
corresponds to the case of implicit FD schemes for
linear and time-invariant systems. The matrix A
may be precomputed at the setup stage, but the
solution to the Type II case is generally much more
problematic than that of Type I. As the size of A
is potentially large, it is inadvisable to precompute
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Figure 3. Spatial grids in
one, two, and three
dimensions, showing the
action of an approximation
to the Laplacian at a given
location, centered at the
white point, and drawing
on values at neighboring

black points (a). Matrix
forms of the Laplacian
operator (b). The matrices
operate on a state vector
arrived at through
concatenation, as
illustrated in Figure 2.

the inverse of A—though A is usually sparse, A−1

will generally not be, and storage requirements can
quickly become unmanageable for all but the small-
est systems. Depending on the particular structure
of A, different approaches to linear solution are
available. Some, such as Jacobi iteration (Strikwerda
2004), can easily be parallelized, but require addi-
tional conditions on A (such as diagonal dominance),
which are not always satisfied. In the worst case, it
may be necessary to use standard general methods,
perhaps targeted towards sparse systems (Saad 2003).

In some cases involving nonlinearities of geomet-
ric type (such as those occurring in the case of gong
vibration, or string vibration at high amplitudes),
updates of Type III are necessary. Now the matrices
A, B, and C are dependent on the previously com-

puted state un, and thus cannot be precomputed.
This leads to extra computational cost during the
execution of the runtime loop; usually, however, A
remains sparse, and the linear system solution may
be carried out as for systems of Type II.

The most general case is that of an update of
the form of Type IV for a known nonlinear vector-
valued function g(). This arises when nonlinearities
of a more-complex form are present, as in the
case of collisions (e.g., in the string–fretboard
interaction or the mallet–membrane interaction).
In this case (with the exception of certain highly
pathological situations), iterative methods, such as
the Newton-Raphson method (Press et al. 1992), are
usually required and offer only scant opportunity for
parallelization.
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In practice, for realistic and complex designs of
musical instruments, the update is often a mixture
of the forms above. More precisely, it is often
possible to partition the state un into subvectors,
over which updates of different types are performed.
Such a partition follows naturally from the physics
of the problem under consideration. For example,
in the case of the 3-D model of the snare drum,
updating of the acoustic field is of Type I; that
of the membrane of Type II; and that of the snares
themselves of Type IV, owing to the highly nonlinear
collision mechanism.

Inputs and Outputs

Inputs and outputs to the synthesis algorithms,
obviously essential for any meaningful musical
work, have been not been described above. In phys-
ical modeling synthesis, the excitation mechanism
driving a given instrument design will generally be
nonlinearly coupled to the instrument dynamics.
This is the case, for instance, in all of the standard
playing modes (bowing, striking, plucking, or blow-
ing). The case of output is simpler: Generally, values
may be drawn from the appropriate location in the
state, as it evolves, in the manner of a pickup or mi-
crophone. In the NESS code, simultaneous multiple
inputs and outputs are possible. As a result, these
synthesis methods are geared towards multichannel
composition, and they became a large influence on
both the mode of work of the associated musicians
and the ultimate forms that their compositions
took, as will be described later.

Under greatly simplified conditions, the entire
input/output system may be viewed in a form resem-
bling a state-space form (Kailath 1980). For example,
considering the case of the simple linear form given
as Type I above, an extension to incorporate I/O may
be written as

un+1 = Bun + Cun−1 + Jiwn

yn = Joun.

Here, the subscripts i and o refer to input and output,
respectively. The vector wn is an Ni × 1 input vector
consisting of a set of Ni independent input signals

at time step n; Ji is an N × Ni matrix, each column
of which specifies the grid point or set of grid points
to which the input will be added. Similarly, yn is an
No × 1 vector of output signals, and Jo is an No × N
matrix, each row of which selects a particular set of
grid points in the physical model from which output
will be drawn (with scaling included).

Generally, the computational cost of input and
output operations is minimal compared to the
raw calculation that must be carried out over the
entirety of the computational grid. Extensions to
the time-varying case are possible as well—input
locations can be variable (as in, e.g., the case of
bowing or finger-stopping in the guitar).

Synthesis Environments

A variety of distinct environments developed over
the course of the NESS project, based around the
investigations of different instrument families
described in the companion article (Bilbao et al.
2020). Acceleration strategies depend highly on the
particular system, and are described subsequently,
but all environments have ultimately been made
available to musicians through a Web interface.

The Zero Code environment, developed in 2013,
was the first attempt at a large-scale modular
synthesis network. The basic units are plates, of
dimensions and material properties as specified
by the user. Connections between objects are
point-like, and behave as nonlinear mass–spring–
damper systems, where the nonlinearity is of cubic
type. This restriction to cubic nonlinearities eases
computational requirements considerably, as it is
possible to develop stable algorithms of Type III,
where the linear system to be solved is diagonal (thus
requiring simple scalar divisions in the run-time
loop). Input can be specified through a list of events,
each of which corresponds, roughly, to a strike at
a given location on a given object at a given time
and of a given force. Each such event is translated,
ultimately, into a short force signal fed into the
network. Other input types are a bowing gesture,
described through a breakpoint function for bow
force, velocity, and position, as well as audio input,
if the network is to be used as an effect (emulating,
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e.g., plate reverberation). Multichannel output may
be obtained by reading velocities at a set of locations
throughout the network, with the option for the
normalization of individual channels in the case
that output amplitudes are widely disparate. These
modular environments are described in Bilbao
(2009).

The Brass Code environment, developed in 2013–
2014, allows for the flexible construction of brass
and brass-like instruments, with arbitrary bore
profiles and valve configurations; control is through
mouth pressure and lip stiffness, as well as a set
of control signals representing valve positions.
Because of its rapid execution time (several times
faster than real time) it has been a very popular
choice among composers, and extensively explored.
Part of the reason for the fast execution time is
the relatively small state size (for reasonably sized
instruments and at an audio rate, N is on the order
of 100 to 400), but another is that a Type I explicit
update is used for the bulk of the calculation.
Control is of a different type from that used in
the Zero Code, in that continuous data streams
are necessary, rather than a discrete list of events.
Breakpoint functions (piecewise linear here, but
easily generalized) are used to specify such control
streams. The complete brass synthesis environment
is described by Harrison et al. (2015).

The single- and double-membrane drum code
and the gong code were developed between 2013
and 2015. They incorporate many realistic features,
including membrane–plate nonlinearity, mallet
interactions, and snares, and they are ultimately
embedded in three dimensions, allowing for spatial-
ized sound output. This was the closest approach
to fully virtual musical instruments, in that it is
possible to embed multiple instruments within a
potentially large space. The calculation is immense,
however, as it relies on updates of Types I, II, III,
and IV simultaneously; and for particularly large
state sizes it is relatively slow (taking minutes to
calculate several seconds of output), which makes
this approach more difficult to explore musically.
As in the case of the Zero Code environment, in-
put is specified through strike forces and locations
over multiple objects. In contrast, however, full
multichannel output may be drawn from the 3-D

simulation of the acoustic field. Such virtual percus-
sion instruments are described by Torin, Hamilton,
and Bilbao (2014) and by Bilbao and Webb (2013).

The Guitar Code environment was developed
from 2014 to 2015, and was perhaps the most
elaborate instrument attempted in terms of control.
The user specifies string parameters, such as tension,
length, stiffness, and T60 times for N strings. In
addition, the user supplies a common backboard
profile, against which strings will collide, as well as
the positions of an arbitrary number of frets. The
user must further specify the properties of fingers
that will interact with the instrument, in particular
their masses and stiffness. From the control point
of view, breakpoint functions are used to specify
the positions of the fingers along the length of the
string, as well as the forces exerted by the player on
each string over time. In addition, the user specifies
plucking or striking events along the string. The
guitar environment is described by Bilbao and Torin
(2015).

The last modular code developed, in 2016, was
Net1. It differs from the Zero Code in that plates are
not included, and that bar and string behavior are
both unified into a single model, and thus the model
can behave as a string or percussion instrument.
In addition, nonlinear connections are of a very
different type, allowing for intermittent loss of
contact of a type reminiscent of a rattle, and leading
to a much larger variety of timbres. Input and output
is much the same as in the case of Zero Code.
Because of the form of the nonlinearity, iterative
methods of Type IV are required, leading to much
slower run times than in the case of the Zero Code
environment.

Acceleration in Parallel Hardware

Acceleration in parallel hardware proved to be a
significant challenge, and various different methods
were combined to achieve good performance. In all
cases, prototyping was carried out in MATLAB. The
next step was to port the code to generic C++ as
a starting point for further experimentation with
parallelization techniques. All of the models were
ported into a common code framework so that
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Figure 4. GPU server
architecture, showing the
main computational and
memory components, and
the buses connecting
them.

useful generic functionality could be shared among
them.

The appropriate strategies for speeding up a given
piece of code are dependent not only on the code
itself, but also on the target hardware: Large scale
supercomputers and clusters demand a different
approach from desktop computers and smaller
servers. The optimized NESS code was targeted
primarily at multicore Intel Xeon servers with
multiple NVIDIA Tesla GPU cards, since it was
used to run the NESS service for the composers,
but it was also designed with portability in mind
and can run on most Windows, MacOS, and Linux
machines (see Figure 4).

Multicore

One form of parallelism that is almost ubiquitous in
computers of all sizes today, and that is conceptually
quite simple, is multicore processing. Modern CPUs
contain multiple cores, each of which can be running
an independent thread of program execution at the
same time. These cores share a single memory space,
so the program threads can operate on the same data,

though care must be taken to ensure synchronization
and that the threads do not interfere with each other.

This type of parallelism raises the question of
how best to divide up the program’s work between
the various threads. Two different approaches were
tested for the NESS code modules:

1. Assigning each distinct component of the
simulation to its own thread.

2. Decomposing the domain of the simulation
across multiple threads. For example, in the
case of a membrane with 1,000 elements, the
first 500 elements could be updated on one
thread while the last 500 are simultaneously
updated on another.

An example of the first approach is the Net1 Code
environment. In this environment, each string, bar,
and connection is processed on a separate thread.
In the case where the components outnumber the
available CPU cores, each thread may have to process
multiple components in sequence. An example of
the second approach would be a membrane with
1000 elements, in which the first 500 elements
could be updated on one thread while the second
set of 500 elements are simultaneously updated on
another.

The first approach was adopted as it had two major
advantages: First, it is very simple to implement
and requires minimal communication among the
threads, since each thread is working on a mostly
self-contained entity; and second, because the
component update itself is unchanged from the
serial case, it works with any algorithm.

In contrast, the second approach requires changes
within the update code, which adds complexity
and is difficult to code efficiently for implicit or
nonlinear (Types II, III, and IV) updates. The main
disadvantage of the chosen method is that it is
useless for simulations that cannot be broken down
into multiple components, but these are generally
either lightweight enough to run efficiently even
on a single core (brass instruments, for example),
or are large room simulations that are better run
exclusively on graphical processing units (as will be
discussed later in this article).

The standard for high-performance multithreaded
code is OpenMP (cf. Dagum and Menon 1998), a
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directives-based framework that allows work to be
easily shared across multiple threads in a shared-
memory environment. This proved, unfortunately,
to be unsuitable for the NESS code; OpenMP
imposes a certain overhead at each simulation time
step, and this overhead becomes problematic due
to the large number of time steps required when
working at audio rate. We created a simple threading
framework, which on Windows uses Win32 threads
and on Linux and MacOS uses the low-level thread
libraries (Butenhof 1997) provided by the operating
systems. This provided full control over the behavior
of the threads, allowing them to be kept in a state
where they could respond instantaneously when
needed.

In the best-case scenario, the performance of
multicore code scales with the number of CPU
cores available. In practice this is rarely achieved,
because of synchronization overhead and imbalances
between the work assigned to each thread. Owing to
the minimal interthread communication required,
the NESS multicore code does approach the best-case
scaling in certain cases.

Vectorization

Modern CPUs also provide opportunities for finer-
grained parallelism within each CPU core. While
a traditional machine instruction (the most basic
building block of all computer programs) performs a
single calculation, a vector instruction can perform
multiple calculations simultaneously. Figure 5 gives
a simple overview of this. As a concrete example,
the vector instructions contained in the SSE2
instruction set (Raman, Pentkovski, and Keshava
2000), present on all 64-bit CPUs produced by Intel
and Advanced Micro Devices, can perform two
double-precision or four single-precision floating-
point calculations at once, and Intel’s Advanced
Vector Extensions (AVX) instructions extend this
to four double-precision or eight single-precision
operations.

This is extremely useful for looping through an
array of numbers and applying the same operation
to all of them, a pattern that occurs frequently in
the NESS simulations (especially Type I updates,

Figure 5. Scalar and vector
addition. The vector
operation performs four
separate additions in the
same time period as the
single scalar addition.

but also when computing the matrices in Type III).
Modern compilers can sometimes vectorize such
code automatically. Vector instructions can also
be used to speed up operations that are more com-
plex, but this takes more manual effort, typically
requiring the use of compiler intrinsics (special func-
tions that translate directly into specific machine
instructions).

A four-element vector operation will be at
most four times faster than the equivalent scalar
operations, but often this upper performance bound
cannot be reached in practice, owing to memory
bandwidth or other limitations. For NESS, AVX
instructions were used extensively in the main state
update of the brass code, giving a 2.5-fold increase
in speed compared to the serial C++ code, thereby
allowing many instruments to be simulated faster
than real time. The triangular solve operation used
in the preconditioner of the linear-system solve,
used in the Type III updates, was vectorized using
SSE, again giving an approximate speed increase
over the original C++ version by a factor of 2.5. (In
this case SSE was actually faster than AVX because
of technical limitations of the AVX instruction set).

GPU Acceleration

Graphics processing units were originally designed
for rendering real-time graphics for games, but
in recent years there has been much interest in
exploiting them for other purposes, and GPU vendors
provide tools like Nvidia’s Compute Unified Device
Architecture (CUDA, cf. Nickolls et al. 2008) and the
open standard OpenCL to facilitate this. Graphics
processing units are essentially massively parallel
processors containing hundreds or even thousands
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of cores, though each individual core is primitive
and slow compared to a traditional CPU core.

Because the power of GPUs comes from their
extreme parallelism, they are best suited to algo-
rithms with large numbers of operations that can
be performed simultaneously, and much weaker for
running sequential code. In addition, they typically
have their own memory space and are separated
from the rest of the computer system by a relatively
slow bus (PCI Express); care is required to design
code modules to minimize the amount of data that
needs to be transferred between CPU and GPU.

Graphic processing units are therefore well suited
to running the NESS algorithms that perform a
relatively simple linear operation, such as a Type I
update, across a large domain—either a 3-D room
or a large 2-D plate or membrane. One-dimensional
and smaller two-dimensional entities are generally
too small to benefit from GPU acceleration, and
updates that are more complex (Types III and IV)
require too many sequential computations on a
single thread (Bilbao et al. 2013; Perry, Bilbao, and
Torin 2016).

A flexible approach was taken in the NESS
framework, allowing all simulation components
to take advantage of the GPUs if beneficial, or
to remain on the CPU if not. Additionally, GPU
versions of most of the input, output, and modular
interconnection algorithms were provided, allowing
these operations to be performed directly on the
GPU when required, instead of having to run them
on the CPU and then copy the resulting data across
the slow PCI bus.

Although the effort involved in porting code to
CUDA is relatively high, the performance gains can
be significant. For example, updating the acoustic
field surrounding the bass drum is roughly six times
faster on the GPU than it is on the CPU (Perry,
Bilbao, and Torin 2016).

Algorithm Tuning and Optimization

In addition to the parallelization methods already
described, some NESS code was sped up significantly
using other optimizations. One example was the
Newton-Raphson solver used in the guitar code

to simulate collisions between strings and other
items. In its original form this involved solving a
relatively large, sparse linear system, which can
be a time-consuming operation. In most cases this
can, however, be converted to a much smaller,
dense linear system by rank reduction. This small,
dense system (typically containing fewer than 20
unknowns) can then be solved rapidly by direct
factorization.

In addition, most of the NESS code makes
extensive use of sparse matrix and vector operations
such as multiplication and addition. In the general
case these operations can be expensive as they
need to cater to every possible type of matrix, but
they can often be sped up dramatically by using an
algorithm and a matrix storage format more suited
to the specific matrices involved. For example, the
generation of matrices in the Type III algorithm
originally used generic operations and compressed
sparse row matrix storage. This was replaced by
a custom banded-matrix format and specialized
operations, often combining multiple operations
into a single step so that intermediate results did
not have to be written to memory and later read
back again. The overall effect was to improve
performance in this part of the algorithm by a factor
of ten.

A dramatic increase in speed (by a factor of about
300) was obtained for the bowed string code by
replacing a simple linear search of a table with
a more sophisticated algorithm that performed a
binary search on a sorted version of the table, and
mapped the results back onto the original.

Acceleration Summary

As described above, the various optimization meth-
ods all have their strengths and weaknesses and are
better suited to some algorithms than others. Most
of the NESS code was optimized using one or two
of these methods. The Bass Drum Code and Gong
Code were more challenging, however, and required
a hybrid approach making use of all four methods:

1. The simulation of the surrounding acoustic
field is GPU-accelerated;

40 Computer Music Journal

D
ow

nloaded from
 http://direct.m

it.edu/com
j/article-pdf/43/2-3/31/2005643/com

j_a_00517.pdf by M
aynooth U

niversity user on 22 M
ay 2025



Table 2. Acceleration Relative to Single-Core MATLAB Implementation

Code Multicore Vectorization GPU Algorithm Tuning Speedup

Brass � 15×
Bowed String � � 300×
Guitar � � 21×
Bass Drum � � � � 60–80×
Zero Code � � 25×
Net1 � � 20×

2. The plates and membranes each run on their
own CPU core;

3. Some elements of the plate and membrane
code are vectorized with SSE2; and

4. Extensive algorithmic changes were imple-
mented to speed up generation of sparse
matrices.

The software framework developed for NESS
makes it relatively easy to combine all of these
disparate methods, and the end result were increases
in speed for typical instruments by factors of
about 60–80 compared to the the original MATLAB
versions. For example, in the case of the bass
drum, for typical choices of parameters, simply
porting the code from MATLAB to C++ improved
performance by a factor of roughly 5.9. This was then
further improved by factors of 2.4 for using a multi
coprocessor, 2.3 for CUDA, 1.8 for algorithmic
changes, and 1.2 for vectorization, leading to an
over-all acceleration by a factor of 70.3.

Table 2 shows the methods used to optimize the
code for each instrument, and the rough overall
speed improvement of the final optimized C++ code
compared to the original MATLAB implementation.

User Control

Because most of the synthesis algorithms developed
under the NESS project were slower than real time,
there were no attempts at a sophisticated graphical
interface. Rather, work on the control side was at
the lower level of determining usable parameter sets
that could be approached even by those who were not
experts. From an early stage, it was decided to adopt

the score–instrument breakdown of user-supplied
input data, which has been standard across various
iterations of “Music N” synthesis environments.

Instrument and Score Files

The NESS synthesis system accepts an instrument
file and a score file as input, and also possibly audio
input, if the synthesis algorithm is to be used as an
effect. In Figure 6, a rudimentary instrument-and-
score file pair is shown, in the case of the Zero Code
modular-plate synthesis network. The instrument
file specifies the sample rate and the parameter
sets defining a set of thin metal plates, as well as
connection elements linking two plates together (or
a plate to itself). For a tensioned rectangular plate, for
example, the parameters are the material, thickness,
tension, dimensions, as well as specifications of
60-dB decay time at DC and at 1 kHz, and an integer
value specifying the type of boundary condition (in
this case, clamped, simply supported, or free). For
a connection, the parameters are the coordinates
with respect to two different plates, one parameter
each for linear and nonlinear stiffness, and an
additional 60-dB decay time for the connection itself
(realized as a damper). Outputs are also defined,
with reference to coordinates on the plates. The
score specifies the total duration of the simulation,
and also strike events, as well as a bowing gesture.
Audio input is also an option.

Web-Based Interface

A simple Web-based user interface was created to
allow the composers to access the NESS service
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Instrument File

# zcversion 0
# set 44100Hz sampling rate
samplerate 44100

# Define two steel plates. Arguments:
# <name> <material> <thickness> <tension> <X> <Y> <T60@0Hz> <T60@1kHz> <boundarytype>
plate plat1 steel 0.001 0.0 0.4 0.7 11.0 6.0 4
plate plat2 gold 0.001 0.0 0.3 0.6 10.0 6.0 4

# Define a connection from one point on the plate to another on this or a different plate. Arguments:
# <component> <component> <X1> <Y1> <X2> <Y2> <linearstiffness> <nonlinearstiffness> <T60>
connection plat1 plat2 0.7 0.4 0.3 0.7 10000.0 10000000.0 1000000.0
connection plat1 plat1 0.2 0.3 0.5 0.5 10000.0 10000000.0 1000000.0

# Define two outputs from the two plates. Arguments:
# <component> <X> <Y> <pan>
output plat1 0.6 0.6 -1.0
output plat2 0.3 0.7 1.0

Score File

highpass off # no high-pass filter
duration 1.0 # one second simulation

# Define two strikes. Arguments:
# <starttime> <component> <X> <Y> <duration> <amplitude>
strike 0.0 plat1 0.4 0.7 0.002 400000.0
strike 0.0 plat2 0.3 0.6 0.001 100000.0

# Define a bowing action. Arguments:
# <starttime> <component> <X> <Y> <duration> <forceamp> <velocityamp> <friction> <ramptime>
bow 0.3 plat1 0.3 0.9 4.0 2.3 2.8 1.1 0.02

# Define an audio input. Arguments:
# <file> <starttime> <component> <X> <Y> <gain>
audio drumming.wav 0.1 plat1 0.2 0.4 1.0

Figure 6. Instrument and
score files for the Zero
Code modular-plate
environment.

through a standard Web browser. It consists of a
form allowing the user to upload an instrument file,
a score file, and an optional audio input file, and
then to launch the NESS code on the GPU server. A
demo mode is supported for most code modules; this
runs as simulation at a lower sample rate, giving
users an impression of how their submission will
sound, and generally completes much faster than
a full-quality run. The synthesis environment to
run is selected via a comment in the instrument
file. After the job completes, the user is able to
download the generated audio outputs (individual
mono channels as well as a stereo mix) as WAV files.

Musical Experimentation

An integral part of the NESS project was collabo-
rative work with electroacoustic composers, which

commenced approximately 18 months into the
project. All work was carried out in a 16-channel
space during intensive workshops with the NESS
team. In most cases, the musicians worked di-
rectly through the Web-based interface to the
GPU server. As described in the previous sections,
the interface itself is quite raw—there were thus
many opportunities for musicians to develop their
own approaches to instrument design, writing
sufficiently interesting and complex scores, and
handling multichannel output. Approximately ten
complete works resulted, using anything from 8 to
32 channels. In this section, a variety of composers
provide their own insights into the experience of
working with the NESS system. They are arranged
approximately chronologically, and cover the pe-
riod from 2013 to 2019. Many of the pieces can be
heard on the NESS Web site at www.ness.music.ed
.ac.uk.
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Gordon Delap: Ashes to Ashes

In Ashes to Ashes (2013), instruments were assigned
certain physical properties of uranium. Perhaps
understandably, this choice was received with some
degree of skepticism, although the assignment of
parameters relating to radioactive elements was
intended principally as a conceptual starting point.
More fundamentally, the work was conceived of as
a reflection on life and death. It was also envisaged
that the instruments would display behaviors of
real-world objects while exhibiting surreal qualities,
although the surreal aspect usually had more to
do with nontraditional topologies than material
specifications.

A vital concern was the investigation of compo-
sitional applications of the technology. It seemed
appropriate, then, to set two constraints:

1. Modification of audio output via post-
processing techniques was not permitted

2. Sound materials generated via external
means could not be used, except where such
sounds were processed by being fed through
one of the NESS project’s models.

These constraints presented challenges. First, the
generation of audio took an extremely long time
in the early stages of the NESS project. Overnight
processing for instruments with large dimensions
was not unusual, while fine-tuning of instruments
was often difficult. Second, the composition of
electroacoustic music typically allows for the
deployment of a vast and powerful armory of digital
signal processing techniques. Such techniques
have been developed and refined over decades of
experimentation and investigation. These methods
could only have been accessed, however, at the
expense of overshadowing unmanipulated output
from the models.

From the outset, there was an awareness of the
types of raw sound output that might be expected.
For instance, idiophones and membranophones were
readily obtainable. Blown, brass-type instruments
were also under development at the time. Ashes
to Ashes was especially influenced by the ritual
music of Tibet. It seemed that many aspects of
this sonic world lay within the capabilities of the

physical models under development, although the
composition is not reducible to this concern.

Learning how to play the brass instrument
models was difficult. Embouchure parameters called
for precision. Much to the credit of the model’s
accuracy, when this principle was violated, the
outcomes sounded every bit as deficient as those
produced in real life by unskilled brass players.

Trevor Wishart: Dithyramb-Kepler 63c

The work The Secret Resonance of Things (2014)
attempts to derive music from scientific data
of various kinds (the spectra of supernova, the
onset of turbulent flow, and so on). Dithyramb-
Kepler 63c, the third movement, uses the NESS
physical modeling software to conjure a musical
celebration on an earth-like planet using alien
instruments and an “unknown” musical style. I used
quasi-random sets of values as input to the NESS
models of both brass and plates, searching, initially
haphazardly, for sonically interesting results. I
wanted a rich sonic palette of brass instrument
articulations and various different percussive sounds
(e.g., wood-like, clunk-metal-like, marimba-like) to
create my alien ensemble. Having found sonorities
and articulations that I liked, I explored small
adjustments to the parameter values to uncover sets
of closely related sounds (which might conceivably
have come from the same instrument, and player).
Using the Composers’ Desktop Project tools to
adjust pitch and layer, and to otherwise expand the
sounds, I was able to compose lines of complex and
plausible instrumental music. The streams from
these various “players” were spatialized in eight-
channel surround sound to create the illusion of an
encircling ensemble. Such spatialization particularly
animates the rhythmic percussive sequences in the
piece. As often in my compositional history, I
developed the software interface (to allow brass
profiles to be drawn directly, rather than entered
numerically) only after I had completed the piece!

[Editor’s note: Dithyramb-Kepler 63c is included
in the Sound Anthology published with the Winter
2019 issue of Computer Music Journal, Vol. 42,
No. 4.]
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Gadi Sassoon: Multiverse

My investigation of the NESS environments Guitar,
Net1, and Brass revolved around their application
for music production and their integration with
analog synthesis and acoustic instruments. Through
the NESS physical models I was able to explore
a space that weaves in and out of realism and
abstraction, seeking to develop a textural bridge
between synthesizers and orchestral instruments in
pursuit of a cinematic sound that blurs the edges
between synthetic and organic.

To that end, I have explored the parameter
space’s fringe areas of operation: With some ex-
perimentation the models allow for the rendering
of instruments designed with impossible physics
(e.g., gigantic brass instruments blown with very
hot air, needle-thin fingers gently rattling against a
string’s harmonic on a fret with no loss, and lattices
of bound masses vibrating infinitely). The nonlinear-
ities of the systems provide exceptional detail and
help maintain quasi-mechanical semblance even
in otherworldly simulations. The ability to sample
some models in more than one location makes for
compelling multichannel output, allowing gestures
ranging from short bursts to complex immersive
soundscapes.

Interacting with the NESS environments has
pushed me to develop new sonic vocabulary: The
unconstrained nature of a research-oriented system
presented unique challenges, requiring creative so-
lutions, which in turn prompted previously unimag-
ined musical ideas. The result of our collaboration
over the years from 2016 to 2018 is my album Multi-
verse, comprising pieces (such as Collision Suite and
Black Hole Fanfare) made entirely from code output
and others (like Life on a Tidally-Locked Planet and
Chaos and Order) which are a combination of NESS
output, modular synthesizers and live strings. All
the pieces have both stereo and 8-channel mixes.
They have been performed at IRCAM, CCRMA,
the 2018 conference on New Interfaces for Musical
Expression in Virginia, and the 2018 Music Tech
Fest in Stockholm.

A nonlinear, interactive version of the piece
Chaos and Order was unveiled at the 2019 Sónar

festival in Barcelona. Here it was presented in
the form of an immersive installation using three
interactive sculptures, head-tracking headphones,
and the Traverse augmented reality platform.
(Traverse is developed by the studios Superbright
and Vrai Pictures in New York. See www.traverse.fm
for further details.)

Samson Young: Possible Music No. 1

I visited Edinburgh to work with NESS twice for this
research, briefly in the summer of 2017 and then
again for two and a half weeks in November of the
same year. My collaboration with the NESS project
resulted in a new commission at the Guggenheim
Museum in New York city, titled Possible Music
No. 1 (2018, featuring NESS and Shane Aspegren),
which was on view at the museum from May to
October of 2018, and has since become a part of the
Guggenheim’s collection.

Using the NESS software, I created a series of
musical compositions that are sometimes enriched
with human vocals. These arrangements are acti-
vated according to a precise schedule that references
the use of bugle calls in the military to signal orders
and events. Using old and new sounds to collapse
temporal and spatial divides, my aim was to in-
terrogate our search for truth, as well as music’s
unsung role in shaping the birth and progress of
civilization.

For this work, I first created a few dozen brass
instruments with the NESS software. I designed a
Pure Data patch to help me generate score files. In
this Pd patch I am able to draw various musical
parameters in a graphical interface, which allowed
me to work visually and intuitively with the code.
This process resulted in a large database of short
monophonic samples, with durations from 15 to
30 seconds. In a sequencer, these short samples are
combined into longer compositions that are each
one minute to a minute and a half in length. Each
composition consists of six to ten audio channels.
Finally, these compositions were spatialized using a
10.1-channel speaker array, controlled by a custom
Max patch.
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Figure 7. Diagrammatic
structure of a tablature
converter for the guitar
code.

Tom Mudd: Brass Cultures and Three Algorithms
for Hans Reichel

I have been using the NESS Brass environment since
2015 and the Guitar environment since late 2017.
The material has been used for performances at
Café Oto in London in 2017 and 2019, and at Saint
Cecilia’s Hall in Edinburgh in 2018.

The simple text-based score and instrument
format used in the NESS interface makes it rela-
tively easy to create algorithms that generate both
score and instrument files. Multiple scores and
instruments can be created by the same algorithm,
allowing different instruments to be played in a
coordinated fashion.

Each piece for the Brass Cultures album was
created with a Python script that generates scores
and instruments. Score parameters were generated
according to a variety of rules: creating lip-frequency
sequences from predefined sets, choosing breath
pressures in certain ranges and with defined en-
velopes, creating different rules for difference
sections of each piece, different rules for the timings
of each section, and so on.

As part of the work Three Algorithms for Hans
Reichel, which uses the Guitar environment, a
converter was implemented in JavaScript that takes
a plain-text representation of guitar tablature as
input and creates NESS-formatted score files as
shown in Figure 7. For physical modeling, tablature

is a more appropriate score mechanism than other
input options such as MIDI, as it denotes the specific
finger placements explicitly rather than allowing the
performer to decide how to assign individual notes
to the guitar strings. The guitar tablature displays
a row for each string and uses numbers to denote
on which fret a finger is to be placed (the finger
number is not specified). Duration is indicated using
hyphens: For example, the following 4

4 measure of
tab for one string shows the first, fourth, and fifth
notes being held for twice as long as the second
and third notes: |5−−−5−4−5−−−0−−−| (in other
words, the rhythm quarter, eighth, eighth, quarter,
quarter).

Although the tablature converter can be used to
render slightly mechanical versions of existing
pieces, it can also be used as a rapid way to
create simple structures and patterns for use with
unconventional string instruments that may or may
not yield obviously pitched results.

Concluding Remarks and Perspectives

The NESS project was intended as an opportunity
to step back from the constraints of real-time
performance, to fully come to grips with the entire
physical modeling “production chain,” from basic
algorithm design to implementation and musical
use. Indeed, given the computational demands of
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this type of physical modeling synthesis, and the
unknown territory of algorithm parallelization, it
seemed appropriate to use this “offline” research
model, which was inspired, perhaps subliminally,
by the classic working methods at Bell Labs in the
1950s and 1960s.

But the real-time challenge remains—and real-
time performance is what many musicians ulti-
mately want. A small subset of the algorithms
presented here can operate faster than real time,
in particular those of the Brass synthesis environ-
ment. In other cases, it is fairly clear that real-time
performance will not be possible for the foresee-
able future: Examples are 2-D instruments such as
gongs and drums, where the strong nonlinearity
forces a choice of algorithm design that can not
be easily parallelized, and full 3-D room acoustics
simulation, which, though algorithmically simpler,
is a problem of a vast scale. Modular designs are
inherently scalable, and are a good choice for real-
time operation. The first modular physical modeling
synthesis system based on NESS, Derailer, was
released as a plug-in in 2018 by Physical Audio
(www.physicalaudio.co.uk), and more advanced
models are in various stages of porting from the
NESS code modules.

Beyond the question of raw computation time,
instrument design and control remain difficult
problems, which is not unexpected, given the history
of musical instrument design and performance: Both
building an instrument and learning to play it have
always required an inordinate amount of patience
and labor. A relatively low-level mode of design
and control (instrument and score files) was the
point of departure in joint work with musicians—
intended to allow freedom of exploration of the
resulting soundspace, and, more importantly, not to
over-constrain it. Any instrument should probably
be difficult both to build and and to learn, if it is
ever to produce musically interesting sound—but
“difficult” within reason.

At this point, though, where creative concerns
become central, the engineer’s role must recede
into the background—and this was exactly our
approach. Each musician we have worked with
has approached the instrument design and control
issue in a distinct way, and in some cases has built

higher-level working tools to intuitively generate
instruments and scores. Ultimately, it is these
individual approaches to design and control that
give each completed piece of work its distinctive
sound, and these approaches are perhaps a further
step towards the mature use of physical modeling in
sound synthesis.
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