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Abstract—Semiconductor wafer etching is, to a large extent, an
open-loop process with little direct feedback control. Most silicon
chip manufacturers rely on the rigorous adherence to a “recipe” for
the various etch processes, which have been built up based on con-
siderable historical experience. However, residue buildup and dif-
ficulties in achieving consistent preventative maintenance opera-
tions lead to drifts and step changes in process characteristics. This
paper examines the particular technical difficulties encountered
in achieving consistency in the etching of semiconductor wafers
and documents the range of estimation and control techniques cur-
rently available to address these difficulties. An important feature
of such an assessment is the range of measurement options avail-
able if closed-loop control is to be achieved.

Index Terms—Closed-loop control, plasma etch, run-to-run con-
trol, semiconductor wafer, state estimation, virtual metrology.

I. INTRODUCTION

W ITH the continuing drive towards smaller feature sizes
[1], there are increased pressures on tolerances in semi-

conductor wafer processing. As the unit value of wafers in-
creases with these dimension decreases, it is imperative that
better quality control be achieved if yield rates are to be main-
tained. Closed-loop control, and related technologies, are tradi-
tionally employed to reduce process variance, with the ability
to tightly regulate around process setpoints directly relating to
yield. Many of the control issues in semiconductor manufac-
turing are covered in [2]–[6].

Semiconductor manufacturing processes, such as plasma
etch, are highly complex processes, and the minute feature sizes
also make etch variable measurement difficult, with measure-
ment feedback a prerequisite for control. In addition, attempts
to perform in-situ measurement can disturb the etch process,
which is largely run according to a very specific open-loop
recipe. Optical and electrical measurement of the wafer pro-
vide downstream measurement, which, though not usable for
real-time control, could be used in a run-to-run control strategy.

In addition to measurement and control, two associated (and
related) areas that can assist in quality improvement are mathe-
matical modelling and virtual metrology. Mathematical model-
ling involves the determination of a set of mathematical equa-
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tions to describe the behavior of a process. Such mathematical
models are usually embedded in virtual metrology algorithms
and also form the basis for model-based control strategies. Vir-
tual metrology (VM) models the relationship between desired
unmeasurable variables and other measurable quantities. The
model is then employed to “reconstruct” the variables, which
are not directly measurable.

This paper is focused on the state-of-the-art in the control
and measurement sciences as applied to the semiconductor etch
process. It follows the excellent review of Edgar et al. [7] (in
2000) and the November 2007 issue of this TRANSACTIONS,
which has a Special Section on Advanced Process Control [8].
This paper attempts to present a broad picture of the possibili-
ties in etch control and estimation and presents a sample of the
recent literature for illustration. More comprehensive literature
listings are contained in [9]–[11].

II. MATHEMATICAL MODELS

The etch process is a multivariable (interacting), nonlinear,
distributed parameter process with a significant spread of dy-
namical time constants. As such, some level of simplification is
inevitable if models are to be tractable and computable. Plasma/
etch models can be considered at various levels.

• Particle-in-cell (PIC) models [12] model the spatial varia-
tion in the plasma and, in general, respect the very fastest
process dynamics. They are computationally intensive due
to the need to compute electric/magnetic fields at mesh
points in three dimensions, integration of the equations of
motion, and interpolation of the fields to the particle loca-
tions.

• Bulk plasma models, e.g., [13]–[15], ignore the spatial di-
mension and focus on the representation of the physical
process as a lumped parameter system. While these models
are computationally simpler than PIC models, they have no
ability to resolve spatial variations, but single point mod-
elled outputs usually focus on specific areas of interest,
e.g., ion flux at the wafer surface.

• Black-box models, e.g., [16] and [17], largely ignore the
underlying physical process and are parameterized from a
process behavioral point of view. Measured process inputs
and outputs are used to produce a mathematical formula
relating outputs to inputs. While black-box models can be
used to derive relationships between spatially distributed
measurements, they are normally used for bulk or single-
point measurements.

Due to an incomplete understanding of plasma physics, it is un-
likely that a complete physical plasma model will be achieved.
In addition, for some applications, such as model-based control
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and state estimation, models must have the facility to be interro-
gated in real time. For run-to-run control, computational speed
is not so crucial. In general, PIC models [18] are less useful
for control due to their computational complexity and the pro-
vision of information not crucial to the control problem. In ad-
dition, the dynamics of the kinetic reactions, which are accu-
rately modelled by the PIC models, are very fast compared to
the dominant (slow dynamics) in etch control loops, which arise
primarily from actuator (e.g., throttle valve, gas flow) and sensor
dynamics.

At the other end of the spectrum, black-box models [19], in-
cluding artificial neural networks (ANNs) [17], require the min-
imum of process knowledge but are only valid for the range of
data used to train the models and care needs to be taken in the
specification of a parsimonious model structure. Bulk plasma
models, based on physical principles, are frequently employed
in etch control and can be tuned using process data. For example,
a control-oriented plasma model is developed in [20], where a
static, multivariable nonlinearity is used to model the plasma,
with the (largely scalar) dynamics resulting from sensors and
actuators.

Equivalent circuit models are also useful in plasma/etch
modelling, particularly where virtual instrumentation relies on
impedance measurements [21], and can also be useful in pro-
viding corrections to raw radio-frequency (RF) measurements
[22].

The challenges and progress in modelling the spatial variation
in plasma etch processes are articulated well in Yang et al. [23].

III. MEASUREMENT AND VIRTUAL METROLOGY

Measurement is vital for process monitoring, diagnosis, and
control. Various measurement regimes are possible, including
real-time local measurement (e.g., Langmuir probe, optical
emission spectra (OES), plasma impedance monitor (PIM),
etc.), virtual metrology (to synthesize, in real time, important
variables that are not directly measurable), and downstream
(delayed) metrology (electrical and optical). The availability
of key process variable measurements in real time is crucial to
accurate diagnosis and control of plasma etch processes.

A. Diagnostic Measurements

Some measurement devices can provide actual measurement
of plasma or etch variables, e.g., the Langmuir probe provides
direct measurement of ion flux, while laser inferometry directly
measures etch depth. However, the in-situ use of such measure-
ment devices in a production environment can be problematic.
Other devices, such as OES and PIMs [24], provide a more in-
direct measurement of the process variables and can, at least, be
used to diagnose the “health” of the process if normal working
measurement profiles are known. However, they can also be in-
corporated in VM strategies to give an indirect measurement of
the process variables, e.g., [25].

B. Virtual Metrology

Virtual metrology attempts to provide estimates of quantities
that are not directly measurable, based on associated measure-
ments and mathematical models relating the measured and un-
measured quantities. The essential principle of VM, in a semi-

Fig. 1. Virtual metrology principle.

conductor etch setting, is shown in Fig. 1. Known in control
parlance as state estimation (dating back to the pioneering work
of Kalman [26]), VM can, for some model types (i.e., linear
state-space models), provide a predictor/corrector-type struc-
ture, as is the case for the Kalman filter [26]

Predictor (1)

Corrector (2)

where is the estimate of the state using the “open-loop”
model , is the causal input from which is derived (e.g.,
process inputs), is the error in the model prediction
of a measured variable , and is the Kalman gain.
For the linear model, can be determined using an
analytical procedure. In contrast to the Kalman filter, most es-
timation of plasma etch variables is done without a correction
term, relying exclusively on the fidelity of the “predictor” model
and therefore sensitive to modelling errors and disturbances be-
tween and .

In general, it is desirable to estimate etch variables, such as
etch rate, as regularly spaced samples in time. Endpoint detec-
tion is a somewhat special case of virtual metrology, since it
focuses more on event, rather than continuous variable, estima-
tion. By way of example, the paper by Lynn et al. [27] provides
an example of a range of both statistical and neural network
modelling paradigms applied for VM to tool variables, with the
use of stepwise regression for variable selection.

1) Statistical Analysis: This section documents tech-
niques that use some element of statistical analysis for virtual
metrology. Many of the techniques relate to data mining,
and some are based on dimensionality reduction [e.g., using
principal component analysis (PCA)] and data preprocessing,
including pattern analysis. A number of techniques also build
mathematical models relating available measurements to key
(unmeasurable) etch variables [e.g., partial least squares (PLS)].

The main techniques employed in this category are PCA and
PLS. PCA [28] is an unsupervised technique that allows an array
of measurements to be concisely described by a reduced number
of “principal components,” where an attempt is made to ex-
plain the majority of the variance in the original measurements
using the minimum number of components. The derived prin-
cipal components are mutually orthogonal and are ordered in
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terms of amount of variance explained in the original data. Typ-
ically, PCA is used to distill information distributed across a
number of (potentially correlated) measurements into a smaller
number of independent components.

An alternative to PCA, independent component analysis
(ICA) [29], can also be used to separate independent signal
streams, where the new data basis is formed by a set of inde-
pendent vectors, rather than orthogonal vectors, as in the case
of PCA. Though ICA has found considerable application in
areas such as blind source separation [30], the application to
semiconductor etch has been limited [31].

Supervised statistical techniques such as PLS and a super-
vised derivative of PCA, principal component regression (PCR),
attempt to derive concise multidimensional relationships be-
tween vectors of inputs and outputs. By directing the infor-
mation distillation activity onto a set of target outputs, PCR
and PLS can form the basis of modelling or virtual metrology
methodologies. A useful exposure of PCA, PCR, and PLS in a
semiconductor etch setting is given in [32].

A variety of measurements have been used to drive VM
models. Chen et al. [33], for example, developed chamber state
models of plasma etch using compressed OES data related to
etch variables using least squares (LS) on a reactive ion etcher
(RIE) with . Data were compressed by manual selection
of OES lines, PCA, and partial least squares (PLS) analysis,
with model outputs of etch rate uniformity and aspect ratio. In
contrast, Tsunami et al. [34] used PIM data in a dual-frequency
system to estimate etch rate using a simple linear regression
model. However, the model has no drift component and loses
accuracy over time. Lee and Spanos [35], on the other hand, use
process inputs (pressure, power gas flows, etc.) to build a model
for RIE process outputs of etch rate, uniformity, selectivity,
and anisotropy. Both PCA and PLS returned prediction errors
of 7–10%. May et al. [36] also used process inputs to estimate
etch variables, using response surface modelling. Ragnoli et
al. [37] compare VM schemes for etch rate using a variety of
techniques, including PCR, PLS, forward selection component
analysis (FSCA), and forward selection regression (FSR), based
on OES data. FSR and FSCA are found to be more effective for
feature selection in OES datasets due to the selection of fewer
OES lines to summarize key variations in the process data.

Statistical techniques find wide application in fault detection
and classification, typically using a data reduction mechanism
such as PCA, and sometimes augmented by a modelling tool
such as PLS or neural networks. For example, Shadmehr et al.
[38] found OES to be superior for residual gas analysis (using
mass spectrometry) and reported success in predicting thin-film
contamination levels. Yue et al. [39] also used PCA to detect
an etch stop condition in high-density plasma etch. Wise et al.
[40] compared PCA with other multivariate methods, including
parallel factor analysis and trilinear decomposition, for a metal
etch fault detection application. Both local and global models
were trained with a variety of sensor data, with local models
providing the best performance, using machine state signals and
RF information. ICA has, in some cases [31], been shown to
outperform PCA in fault detection and classification applica-
tions, including semiconductor etch. Using a more traditional

time-series approach, Guo et al. [41] use an ARIMA model
to filter real-time signals into identically independent and nor-
mally distributed components, followed by the application of
Hotelling’s statistic to obtain single scores. The technique
was shown to be successful in detecting internal machine varia-
tions before wafer product was affected. Forward and reflected
powers, in an electron cyclotron resonance (ECR) plasma etch
system, were used [42] to aid visualization and fault detection.
In particular, forward/reflected power ratios were found to be ef-
fective in fault detection and diagnosis. The nonstationarity of
etch processes has been directly addressed in [43], where model
mean and covariances are adapted during processing, using a
version of the exponentially weighted moving average (EWMA)
controller. This gave valid operation over six months, including
maintenance, cleaning, and new equipment interventions. Sum-
mary statistics were also adapted in [44], with a satisfactory
Q-statistic over 3000 wafers. Weighted PCA has also been eval-
uated for use in etch fault detection applications [45].

Endpoint detection is the most popular application of VM,
typically using OES measurements, where settings such as inte-
gration time can be adapted to optimize signal-to-noise (S/N)
ratio and response times [46]. Early applications [47] used a
single OES wavelength, but with decreases in open etch area
(down to 1%), multiple wavelengths are now employed, usu-
ally with PCA processing [48]. For example, Rangan et al. [49]
used PCA-reduced OES data to form a linear dynamical model,
which was shown to be capable of detecting endpoints and tran-
sition times in plasma etch. White et al. [50], also using PCA
with OES data, used the statistic as a measure of model ac-
curacy (i.e., endpoint detection) and the statistic to indicate
a need to recompute the PCA basis. Yue et al. [51] propose
methods to remove uninformative wavelengths from the PCA
model by analyzing variance and thresholding PCA loadings.
Fifty wavelengths were retained and gave good endpoint detec-
tion. More recent work on sparse PCA [52] holds further possi-
bilities for selecting key wavelengths from OES data. Goodlin’s
Ph.D. dissertation [53] provides a good overview of statistical
methods for OES in endpoint detection and devises a method
for weighting OES according to S/N ratio.

PIM data can also be useful in endpoint detection, with a
number of authors simply using change patterns to indicate the
arrival of endpoint [21], [54]. Koh et al. [55] applied PCA to
the RF harmonics and demonstrated how the loadings changed
as the endpoint is reached. Dewan et al. [25] developed a PIM
phase model, the output of which was compared to measured
phase for endpoint detection. PIM-based techniques have also
been used to optimize cleaning cycles for chemical vapor depo-
sition processes [56]. In Ragnoli et al. [57], nonnegative matrix
factorization is employed as a data reduction and variable se-
lection method, where it is applied to OES data for endpoint
detection. Results similar to those achieved with PCA were re-
ported.

Imai et al. [58] apply PLS-based VM to detect harmful
species using dc bias voltage, while a paper by Khan et al.
[59] uses PLS-based virtual metrology to estimate metrology
outputs on a run-to-run, rather then a time-series, basis. Actual
metrology values are used to update the PLS model recursively,

Authorized licensed use limited to: The Library  NUI Maynooth. Downloaded on February 5, 2010 at 10:31 from IEEE Xplore.  Restrictions apply. 



90 IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, VOL. 23, NO. 1, FEBRUARY 2010

and the VM scheme and an associated run-to-run controller are
applied to a simulated process, with good results.

Some nonlinear derivatives of linear statistical techniques,
such as PCA and PLS, have also been employed in VM for etch
processes. In [60], a PCA-based support vector machine (SVM)
algorithm, which could loosely be described as a kernel PCA
method [61], has been employed for endpoint detection, based
on OES measurement. The use of an SVM to facilitate nonlinear
PLS in a classification/fault detection setting has also been con-
sidered [62], though no applications in plasma etch have yet
been reported.

2) Neural Networks: Due to their ability to synthesize non-
linear relationships from process data, ANNs have been widely
used in virtual metrology for etch processes, finding applica-
tion in the prediction of etch variables (etch rate, selectivity,
anisotropy, etc), fault classification, and endpoint detection.

The work of Kim [17], [63], [64] is representative in demon-
strating how etch rate may be determined from manipulated in-
puts, such as gas flows, power, pressure, and bias, using ANNs.
Typically, a static (nondynamical) map between process inputs
and actual (offline) measurements is built up and them subse-
quently used in a real-time way, with typical prediction errors
of 5–7% reported [17], [63], [65], [66]. A radial basis function
network, as opposed to a multilayer perceptron (MLP), was em-
ployed by Kim and Park [67] to model etch rate, based on ma-
nipulated inputs. They reported a 40% improvement over some
statistical techniques, though Lee and Spanos [35], who com-
pare ANNs to a variety of statistical techniques (LS, PCA, and
PLS) could distinguish no improvement, using a wide variety of
training signals. Polynomial ANNs were shown by Kim et al. to
outperform MLPs for etch rate prediction, using chuck gap, RF
power, bias, and fraction as network inputs. ANNs have also
been used to produce inverse models for etch rate (i.e., etch rate

manipulated inputs), which can be used for real-time control
[68]. A paper by Su et al. [69] looks at a variety of ANN archi-
tectures against the accuracy and real-time requirements of R2R
process control. They conclude that recurrent ANNs can satisfy
requirements and show application to chemical-mechanical pol-
ishing (CMP) and etch processes. The issue of input variable
selection for ANN-based VM models is dealt with by Lin et al.
[70], who use stepwise regression for variable selection from
a range of tool variables in an etch process. A similar scheme,
using stepwise regression for variable selection with both MLP
and radial-basis ANN models, is described in [71] for a chem-
ical vapor deposition process.

ANNs have been employed with OES data, frequently using
PCA (or something similar) as a data preprocessing technique.
Hong et al. [72] compared the use of PCA and ANNs for feature
extraction from OES data, with a further ANN used to model
the reduced data. However, 226 “relevant” wavelengths are ini-
tially chosen from the 2048, prior to compression. The com-
pression ANN returned seven features while PCA returned five,
with comparable results for both, giving prediction errors as
low as 0.2%. Kim and Kim [73], however, reported a drastic
performance improvement with partial OES models (110 wave-
lengths) compared to conventional PCA-OES reduction.

Selectivity, the ability to etch one material (e.g., Si) at a dif-
ferent rate to another (e.g., photoresist), has also been modelled
by ANNs. Himmel and May [65] found ANNs to be superior
to quadratic response surfaces, which might be expected since
complexity is more limited in the quadratic case. Hong et al.
[72] compared ANNs and PCA for data reduction in selectivity
prediction, concluding that the ANN reduction was significantly
better.

Uniformity, a measure of the spatial variation in etch across
the wafer, has also been modelled using ANNs, requiring spa-
tial measurements for model building. Lee and Spanos [35] re-
ported little success in modelling uniformity using manipulated
variables (gas flows, power, pressure, and gap) as inputs, while
Kim and Kim [73] found that the addition of dc bias (as an input)
only served to reduce the accuracy and increase the complexity,
of the model. However, Kim et al. [63] reported a prediction
error of just 0.4% using pressure, gas flows, and power as inputs.
In the case where OES was used to model nonuniformity alone,
PCA was reported [72] to significantly outperform ANN-based
data reduction.

ANNs have also been employed to model surface characteris-
tics, such as anisotropy and surface roughness. Hong et al. [72]
built an ANN model that modelled anisotropy with an error of
less then 2%, with Kim et al. [63] predicting etch profile angle
with an error of less than 4 . However, anisotropy was shown
to have a high dependency on RF power. Kim and Kim [73]
achieved similar levels of accuracy for etch profile angle, using
a reduced set of OES lines, in preference to manipulated in-
puts, with PCA-OES models also performing poorly. Kim et
al. [74] successfully produced an ANN model that predicted
the discrepancy in sidewall bottom etch rate compared to center
etch rate, using genetic algorithms to optimize the spread values.
Surface roughness was modelled, using ANNs, in [75] and [67]
using generalized regression and radial basis function networks,
respectively. Reference [75] also employed GAs for ANN op-
timization, while statistical models, for the same application,
were found to be significantly inferior in [67].

The classification properties of ANNs have been well doc-
umented (e.g., [76]), and fault detection and classification for
plasma etch is a significant application area. In one of the few
applications of a dynamical ANN for semiconductor manu-
facturing applications, Hong and May [77] apply a time-series
ANN for fault identification. The ANN predicts the manipu-
lated inputs (RF power, pressure, and two gas flows) based on
the variations in seven OES lines, six atomic mass signals from
a residual gas analyzer, and the sample time index. The sample
time index gives a measure of the chamber “age” or usage
and should help to account for drift due to chamber residue
buildup. The system demonstrated a sensitivity to performance
deviations down to 10%. In a similar way, though using a
static ANN, Shadmehr et al. [38] used mass spectometry and
OES measurements to predict power and gas flows. The ANN
was also able to model thin-film contamination levels on the
chamber walls. A dynamical radial-basis function ANN was
utilized in [78] to predict manipulated inputs, given a window
of previous values. The ANN was trained to incorporate normal
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Fig. 2. Etch tool control possibilities.

drift variations and recipe changes and was able to identify
abnormal process shifts. A closely related class of paradigm to
ANNs, SVMs, which, for certain classes of kernel functions,
have a strong similarity with radial basis function neural net-
works, have also been employed for fault detection, using OES
sensor data [79], with 100% success reported for RF faults in
an RIE process.

Endpoint detection has also been addressed using ANNs
[80]. The ANN is fed with forward and reflected RF power,
matchbox capacitor positions, dc bias, wafer plate power, and
previous values of these variables, giving a dynamical context
to the classifier input. Target training data was provided by
expert (manual) indication of endpoint. Results indicated a
strong dependence on a change in the RF signals for successful
operation. Other ANN applications include the use of a poly-
nomial ANN to predict the dc bias in an etch chamber [81]
and the prediction of overetch time required to control residual
oxide thickness [82].

IV. CONTROL

The control possibilities for a plasma etch tool are outlined in
Fig. 2. From a time-domain perspective, the control structures
can be divided into the following two general classes:

1) real-time (discrete-time) control, where measurements are
immediately used to adjust the manipulated variables that
affect the controlled variable(s);

2) run-to-run control, which uses downstream measurements
to adjust setpoints for the next wafer or batch of wafers.

For an etch process, two hierarchical real-time control “loops”
are possible, as shown in Fig. 2. Plasma variables, such as ion
flux and species concentration, may be controlled using an inner
loop, where the “recipe” is specified in terms of those quanti-
ties and/or an outer loop may be employed to control etch vari-
ables (such as rate and depth) directly. Both loops however, de-
pend on measurements of the appropriate controlled variables,
which can be supplied by sensors or using virtual metrology.
The important subject of measurement is dealt with in detail in
Section III. For run-ro-run (R2R) control, the immediate pro-
vision of measurements is not so crucial, since R2R addresses
longer term disturbances, such as residue buildup, etc., and is
based on long-term statistical averages.

One must also be mindful of the possible negative impact of
the “inner” real-time control loop on the “outer” run-to-run con-
trol loop, since the statistical process control (SPC) principles of
run-to-run control are based on building up a consistent picture
of the statistical process variations. The real-time control nor-
mally operates somewhat independently of the run-to-run con-
trol, and it is often recommended not to use both approaches
simultaneously since, if there is an assignable cause that can be
eliminated using SPC, real-time control can mask its effect by
making constant adjustments to the manipulated variable. Such
masking can, in turn, lead to instability in the process. For more
information on this interaction, see [83] and [84].

A. Real-Time Control

Some of the early work on real-time control, sometimes
termed engineering process control, for etch processes looks
at control variable selection and the design of a multivariable
steady-state compensator [85], [86]. Relative gain array and
singular value decomposition methods were used to under-
stand the relationship between process variables (i.e., dc bias,
species concentration, etc.), etch variables (yield, uniformity,
anisotrophy), and manipulated variables (pressure, power, gas
flow rates). This permitted the multivariable system to be ap-
proximately decoupled using a static 2 2 compensator, with
single-input single-output (SISO) controllers used for dynamic
control. The issue of variable selection/matching has also been
considered by Patterson et al. in [87] and [88].

1) Control of Plasma Variables: In this section, the control
of plasma variables (such as ion flux and the concentration of
various plasma species) is considered, using causal inputs such
as RF power, pressure (via valve position), and gas flow rates.
In [16], [89], and [90], for example, fluorine concentration
and are controlled in real time using power and pressure as
manipulated variables. Measurement of was via OES with
actinometry, while an inductive tap was used to measure .
A 2 2 transfer function matrix for the system was identified
and a control algorithm based on linear quadratic Gaussian with
loop transfer recovery (LQG/LTR) methods employed. A Ham-
merstein model component was also added in [91] and [92] to
allow static actuator nonlinearities to be accounted for; [92] also
addresses the issue of spatial uniformity on the wafer. A control
system that regulates the ion energy (measured using a Lang-
muir probe) in a capacitively coupled RIE is reported in [93].
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was adjusted using a resistor in parallel with the blocking
capacitor. It was deliberately chosen not to use RF power and
gas concentrations as control variables, since these affect other
aspects of the etch. Two applications, selectivity enhancement
and ion-enhanced plasma cleaning, were shown to benefit from
the control, though a reduction in plasma stability was noted. A
slightly different approach is presented in [94], where ion cur-
rent and ion energy are controlled via RF power and bias power
using two SISO PI controllers. Ion current is estimated from an-
tenna impedance, while ion energy is inferred from root mean
square RF voltage. A decoupling compensator, controlling ion
flux and species concentration in a variety of
plasmas, is presented in [95]. In particular, the multivariable
interaction between the manipulated variables (RF power, gas
flows) is addressed. More recently, Lin et al. [96] describe a
scheme where RF power is manipulated to control electron den-
sity and ion energy, where a transmission line microstrip mi-
crowave inferometer is used to measure electron density. This
scheme is shown to achieve good consistency in etch character-
istics and can counteract the “first wafer” effect. A fuzzy logic
controller was shown to outperform a traditional PI controller.

Hanish et al. [97] demonstrate one of the few applications of
an asymptotic observer, an extended Kalman filter (EKF), which
is used to estimate from OES with actinometry. Two SISO
PID controllers are used to control and pressure, using the
rate constant of dissociation and “gas loss” (essentially outlet
flow plus gas loss to chamber walls) as manipulated variables. A
PID controller is also employed by Klimecky et al. [98] to con-
trol plasma density, using RF power as a manipulated variable.
One of the significant features is the claim that the controller can
compensate for transient chamber wall conditions and therefore
provide better consistency in the face of residue buildup.

2) Control of Etch Variables: In this section, the control of
etch variables, either directly or indirectly, is considered. An
interesting paper by Vincent et al. [99] employs an EKF to
measure etch rate, using dual-frequency reflectometry as a cor-
recting output. The focus is on the use of power, as a manipu-
lated variable, to control etch rate, using a PI controller, though
other control structures could be considered. The authors re-
port an 83% improvement in etch depth results compared to
a purely timed etch. A model-based feedback controller is re-
ported in [68] and [100], controlling etch rate, which is mea-
sured using laser inferometry and a profilometer. Manipulated
variables are pressure, RF power, and gas flow, and a linear
LQG/LTR controller is compared to a nonlinear adaptive con-
troller based on a neural network model. The nonlinear adap-
tive controller is shown to be superior under parameter varia-
tion and disturbance conditions. Armaou et al. [101] describe a
PI-based control scheme that manipulates gas flows to control
three spatially distributed measurements of etch rate. Results are
presented for a simulation and demonstrate a potential reduction
in etch-rate nonuniformity from 30.2% to 3.8%.

In [102], the control system is extended to include the control
of . Etch rate of GaAs, measured using spectroscopic ellip-
sometry, is also controlled in [103]. A model-based LQG con-
troller is used to manipulate pressure, where the model is deter-
mined by fitting experimental data to a first-principles structure.
This paper also presents a robust adaptive controller for a Si N

etch application based on an empirical model. The use of phase
difference between upper and lower RF signals as a manipu-
lated input acting on etch characteristics has been demonstrated
by Sung et al. [104] and could provide the basis for real-time
control.

B. Run-to-Run Control

In contrast to real-time control, R2R control works with de-
layed measurements and is driven by the availability of wafer
measurements. It therefore falls into the class of discrete-event
rather then discrete-time (as is the case of real-time control) sys-
tems. An excellent overview of the application of R2R control in
the semiconductor industry is given in the book by Moyne et al.
[105]. R2R control has its origins in SPC, which provides tools
for the detection of process faults using statistical techniques.
R2R extends these ideas to provide active control via feedback.

1) Algorithms: Since there are a small number of R2R al-
gorithms, mostly based around the EWMA controller [84], we
give the SISO double EWMA controller (which can cater for
both slow drifts and fast shocks) [106] as

(3)

(4)

(5)

(6)

where (3) defines the process model, (4) and (5) are estimators
for the model parameter and drift, respectively, with (6) calcu-
lating the manipulated value. is the controlled variable (e.g.,
etch depth), is the setpoint for , is the manipulated vari-
able, and (which is determined a priori) are model parame-
ters, and is a disturbance. The “ ” notation is used to denote
an estimate, and and are tuning parameters used to specify
the sensitivity to variations in and , respectively. The choice
of and is discussed in [84]. Note that the double EWMA
controller assumes a linear drift in the process, of the form ,
and implements a form of deadbeat control [107], which at-
tempts to regulate the process output in minimum time (sam-
ples).

Since EWMA controllers are based on statistical measures of
process behavior, their use with mixed products needs to be con-
sidered carefully. One solution to the mixed product problem
include the employment of a disturbance model for for
each product type , with the appropriate used in the dead-
beat control calculation in [108], [109]. EWMA controllers
can also be used across different tools, via the use of multiple
process models [108], by employing different and parame-
ters for each tool. Zheng et al. [108] also consider the stability
and performance implications of using multiple process and dis-
turbance models.

2) Model Identification: While (4) provides an estimate for
, Wang et al. [110] prefer a Bayesian statistic for the detec-

tion and classification of disturbances in order to obtain better
parameter estimation and illustrate its use on a film deposition
process. An additional common method for parameter estima-
tion of linear models is least squares (LS), frequently used also
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in R2R control [111]–[115] (simulated CMP process). In this
case, (3) is replaced by a recursive LS estimator for the online
estimation of the intercept , while a weighted LS algorithm
[116] allows the assignment of preference to current measure-
ments versus past measurements. Palmer et al. [117] employ
a Kalman filter to estimate both the gain and the intercept and
apply it to a photoresist deposition process. The “age-based”
double EWMA controller presented in [118] introduces a term
into the model to represent a drift due to the tools’ wearing,
which is proportional to the number of runs since the last main-
tenance operation.

3) Weight Determination: The performances of EWMA-type
controllers are strongly affected by the choice of the weights

and (also called “forgetting factors”) [84], [119]. Discus-
sion and methods concerning the optimal choice of weights can
be found in [120] (CMP application), [121], and [114], while
in [122], the choice of the weights is studied with respect to
the performance tradeoff between the short-term and long-term
responses of the system. In [123], weight optimization trades
off controlled variable regulation against manipulated variable
effort, using a heuristic algorithm. A similar strategy has been
adopted in [124], where the minimization focuses on the reg-
ulated outputs, using dynamic programming theory. In [125],
a neural network is used to map the relation between the dis-
turbance state (drift and noise) and the optimal weight of an
EWMA estimator.

4) Multivariable Models: Modifications to the basic EWMA
controller, with etch applications, include extensions to allow
multivariable models [84], nonsquare models [105], and non-
linear models [114]. With regard to nonsquare systems, there
are two possibilities:

a) more output (controlled) variables than available manip-
ulated variables (underactuated);

b) more manipulated variables than outputs (overactuated).
In the case of a), a “best compromise” solution can be achieved
using least squares type solutions (see [105]). One possibility is
also to attach a greater importance to the regulation of one or
more controlled variables, as exemplified for the chemical-me-
chanical polishing (CMP) case in [126]. In the overactuated
case, some additional freedom is available to the control de-
signer, over and above regulating the controlled variables. One
way to exploit this freedom, seen in a variety of control appli-
cations, is to minimize the energy or variance of the control ac-
tion. This is vital in some applications, such as aerospace, where
limited energy to power actuators is available, but could also en-
courage less actuator wear and material usage in semiconductor
etch. Examples of how overactuated systems are dealt with in-
clude:

• weight assignment to minimize the variance of specific ma-
nipulated variables (for a CMP process) [120];

• the use of Lagrange multipliers for new recipe calculation
(silicon epitaxy and CMP applications) [121];

• the use of a nonsquare matrix pseudoinverse (which can
be related to least squares minimization of the manipulated
variables) [119];

• the use of PLS to determine a diagonalizing (nonsquare)
precompensator, followed by application of multiple

single-loop double EWMA controllers [127] (also for a
CMP application);

• ridge regression [128], where a bound is put on manipu-
lated signal values.

The paper by Khan et al. [59] uses a multivariable EWMA
controller based on a PLS model in both wafer-to-wafer and
lot-to-lot control, where an advantage in wafer-to-wafer control
is highlighted.

Bounding the manipulated input signal, in addition to poten-
tially reducing actuator wear and energy use, also has the advan-
tage of respecting actuator constraints (both amplitude and rate),
reducing the incidence of nonlinear behavior. In addition to the
input bounding method of Rajagopal and del Castillo [128],
Boning et al. proposed the recursive bound pinning technique
[120] (demonstrated on a CMP application).

5) Nonlinear Models: Nonlinear models give the possibility
of obtaining a better description of the process, which can sub-
sequently improve the R2R control performance. Using static
(nondynamical) polynomial elements, it is possible to intro-
duce nonlinearity in the model while retaining the ability to
employ recursive LS estimation techniques, as in [115], [114],
and [111], since the model is still linear in the parameters. A
second-order polynomial is employed in [106] and [112], where
the estimation technique is based on a steady-state design of ex-
periments (DOE). A different approach has been taken in [129],
where a bounding ellipsoid algorithm is employed to estimate
parameters of a second-order polynomial model. At each iter-
ation, the algorithm returns an outer bounding ellipsoid of the
likely process parameter set. Ramaswamy et al. [130] designed a
variable gain controller for the compensation of nonlinearities,
which solves a min-max problem to find the input adjustment
that minimizes the worst case predicted error using a double
EWMA controller.

Neural networks are also widely used due to their ability
to model nonlinear systems; however, a large number of sam-
ples are generally required for training. This is not a substan-
tial issue in high-volume manufacturing, such as semiconductor
etch, since most production plants are equipped with extensive
databases for the recording of large numbers of process vari-
ables. Such data have been used in [82], [123], and [131]–[133]
to train a neural network for the mapping of etch process input/
output relationships. A neural network model, predicting etch
rate, is combined with a real-time optimizer in [131] to provide
process setpoints to alleviate long-term process drift and sensi-
tivity to PM interventions. The ANN model is trained with ex-
tensive historical process data prior to use. By comparison, in
[91] and [134], the data for the training of the neural network
are collected by performing a specific experiment using DOE
techniques.

6) Other R2R Control Structures: Though EWMA con-
trollers are among the most popular in semiconductor process
control, a number of other structures have been investigated.
Controllers based on disturbance feedforward adjust the recipe
in accordance with the outcome of upstream processes, with
etch applications reported in [135] and [136]. Another type
of “lookup” controller interrogates historical data to look
for a similar previous situation or interpolates to find the
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closest match [137]. Both of these controller types provide
more conservative options than R2R algorithms, which allow
batch-to-batch adjustment and are common in many production
environments.

Using intelligent systems methods, fuzzy logic and database
learning have been incorporated into a generic R2R etch con-
troller in [138], while genetic algorithms for recipe generation
and low variance control have been used in [139] and [140]. A
multiresolution reinforcement learning approach to R2R control
was also examined in [141].

Model predictive control, which has found widespread ap-
plication in real-time process control, has also been extended
to R2R control in [142] and [143], while Hamby et al. [144]
adopted a probabilistic approach to R2R control.

A number of other issues relating to R2R control, such as
stability, robustness, and measurement delay, are also important
and have received some attention in the published literature but
are omitted here for brevity. The interested reader is directed to
[10] for an overview.

V. CONCLUSION

Since plasma etch in semiconductor processing is such
a high-value process, it has attracted significant attention
in attempts to improve the process quality and consistency.
However, in most production environments, such processes are
effectively run in “open-loop” mode, with reliance on consis-
tency in recipe and etch chamber state. In some instances, some
schedule-based correction to the recipe is applied to account
for process drift due to residue deposition on the chamber
walls. While a number of run-to-run applications are reported,
particularly in experimental setups, there is a paucity of doc-
umented application of real-time control of process variables.
The principal reason for this is that direct measurement of
key etch variables is difficult (Langmuir probes are invasive,
while reflectometry is notoriously difficult in a production
environment), with virtual metrology providing a promising
alternative, using indirect measurements (such as OES and
PIM) as a basis. However, most current VM strategies use
only a forward model, unlike the predictor-corrector structure,
which is characteristic of linear state estimators. This could
provide a possibility for improvement of VM algorithms. With
the availability of reliable measurements, there is an enormous
range of control algorithms that could be brought to bear [145],
[146]. Predictive control, for example, has many desirable char-
acteristics and has been widely applied in industrial process
control settings [147].

One real-time control possibility is to attempt to directly
control plasma variables, such as ion flux and species density,
and to base a “recipe” on these variables, which may help to
achieve consistency in etch, in an environment experiencing
drift (residue buildup) and step changes (PM steps). Run-to-run
control for etch still has a number of important challenges,
some of which arise from the delay and others related to the
uncertainty associated with the effect of other processing steps
between actuation and measurement. The delay may result in
significant product wastage before corrective action is taken and
provides a stability challenge for the control engineer, while

the presence of intermediate process steps between actuation
and measurement creates a difficulty in relating effect to cause.
However, run-to-run control algorithms appear to have mainly
converged to variants of the EWMA type.

The selection of key variables is an important issue. Indirect
measurements, such as PIM and OES signals, are high in dimen-
sion, and appropriate dimension reduction is vital if etch vari-
ables (such as etch rate) are to be reconstructed using virtual
metrology. Likewise, selection of key manipulated variables is
important since the plasma etch process is a highly interactive
multivariable nonlinear system and care must be taken that only
the desired controlled variables will be affected by feedback
control action.
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