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ABSTRACT

Several countries all over the world are interested in the energy business. The scientific community is creating new
energy-saving experiments in response to the present fossil fuel problems. Buildings are one of the components
that use more energy, so it is highly desirable that knowledge is being generated and technology is developing to
provide answers to this energy demand. When used in building elements for heating and cooling like coatings,
blocks, panels or wall panels, phase change materials (PCMs) have been demonstrated to enhance the capacity
for heat storage by absorbing heat as latent heat. Thus, during the past 20 years, research has been done on
the application of phase change materials (PCMs) in latent heat storage systems. The most practical way to
incorporate PCMs into construction parts is through the macro encapsulation approach, which is examined in this
review together with the microencapsulation method. Furthermore, given that additional research is required to
process biobased PCMs, we must pay greater attention to them, as evidenced by our examination of the literature
on the encapsulation process of PCMs. Due to the lack of information provided in other reviews, there is a section
dedicated to the superior PCM with lightweight material to ascertain its macro and microscale thermophysical
and mechanical characteristics as well as to determine whether it would be feasible to switch from PCM that
are made from petroleum to more ecologically friendly bio-based ones. Above all, this study also focuses on
reviewing recent PCM research and evaluating the thermal performance of prototypes used in experimental PCM
investigations, i.e., how the layout of design affects several variables and potential applications of PCM.

1. Introduction

mental concerns have prompted a shift towards bio-based PCMs, which
offer similar thermal properties with a lower carbon footprint. In ad-

Building energy consumption accounts for a significant portion of
global energy usage, particularly in heating and cooling systems. As
global demand for energy-efficient solutions grows, phase change ma-
terials (PCM) have emerged as an innovative approach to enhance ther-
mal performance and reduce energy consumption in buildings. PCMs
can store and release large amounts of latent heat during phase tran-
sitions, which helps maintain indoor thermal comfort while reducing
the reliance on conventional heating, ventilation, and air conditioning
(HVACQC) systems. Numerous studies have been conducted on the inte-
gration of PCMs in building materials [1-7], emphasizing the role of
latent heat thermal energy storage (LHTES) systems. Early research pri-
marily focused on petroleum-derived PCMs, which have been widely
used due to their thermal efficiency and availability. However, environ-

* Corresponding author.
E-mail address: mwaseem148@yahoo.com (M. Waseem).

https://doi.org/10.1016/j.enbenv.2025.03.003

dition, recent advancements in encapsulation techniques, such as mi-
croencapsulation and macro encapsulation, have improved the thermal
performance and long-term stability of PCMs in various building appli-
cations.

Despite the clear potential of PCMs, there is still a need to explore
their full range of applications, particularly in building retrofits and new
construction. This review aims to provide a comprehensive examination
of thermal energy storage through advanced PCM integration, address-
ing the latest advancements, challenges, and practical implementations.
By focusing on bio-based and petroleum-derived PCMs, encapsulation
techniques, and economic viability, this review seeks to provide key
insights that can drive the widespread adoption of PCMs in built envi-
ronments.
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Fig. 1. Relation between CO, emissions and renewable energy consumption.
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Fig. 2. Relation between CO, emissions and renewable energy consumption
(1995-2020).

2. Literature Review

Global energy demand has resulted in an unprecedented increase in
global energy-related CO, emissions, which rose by 1.7% in 2018 to
33.1 GtCO,, according to the International Energy Agency’s (IEA) 2019
global energy and CO, status report. In addition to being the principal
cause of global warming, CO, emissions from the combustion of fossil
fuels, notably coal, have been found to account for 0.3 of the 1-degree
Celsius rise in average annual global surface temperature above pre-
industrial levels [8]. This illustrates the reality that burning fossil fuel
provides more than 75% of the world’s energy [9]. The present focus of
the study is on increasing the percentage of renewable and sustainable
energy in response to the world’s grave environmental issue caused by
increased energy consumption, as shown in Figs. 1 and 2, because of
fast population expansion and rapid economic development [10-17].
Fig. 1 illustrates the correlation between CO, emissions and renewables
consumption over time. At first CO, emissions rose, while renewable
energy use was still low. But around 2010, things changed. Then, when
renewable energy consumption started to increase, CO, emissions began
to decrease. This negative link indicates that the growing integration of
renewable energy sources has played a role in lowering CO, emissions,
a positive indicator of more sustainable energy practices.

Fig. 2 illustrates that over these long years, CO, emissions are stable
and are hardly noticeably dropping. Renewable Energy Consumption,
however, displays a slow but steady rise, indicating a growing trend in
its uptake. Despite the growing consumption of renewable energy, how-
ever, there seems to be little evidence that it has led to a meaningful
reduction in CO, emissions, indicating that transition to renewable en-
ergy has not been significant enough to significantly lower emissions
during this period.
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Fig. 3. Key contributions towards global energy consumption.

The growing worldwide population is one element influencing the
rise in electrical energy usage. It is estimated that in most developed
nations, residential and commercial buildings account for 20% to 40%
of total electrical energy use, while interior space thermal cooling ac-
counts for approximately 50% [18]. There are several dimensions to the
solutions used to lower these high electrical energy consumption rates
[19,20]. Most of this tackles the issue by making thermal conditioning
equipment more efficient [21]. Alternative approaches aim to create
materials that enhance the hermeticity of the areas that need to be con-
ditioned [22]. Several engineering specialties have recently formulated
studies into phase change materials. These have to do with actual con-
cepts of embedded heat or the energy that is taken in and expelled when
a material undergoes a phase change. This study provides excellent illus-
trations of the solid-liquid and liquid-solid state transformation mecha-
nism associated with the material’s fusion and crystallization [23-25].
As shown in Fig. 3, most of the energy used globally is used by buildings,
with residential and commercial spaces accounting for the majority of
this amount. Since HVAC accounts for the majority of building energy
consumption, it consumes the largest percentage of energy. Hot water
systems and office and IT equipment make up the remaining propor-
tions, with lighting coming in second. To reduce energy consumption,
these sectors highlight the necessity of energy efficiency in buildings,
particularly in lighting and climate management.

Heating, ventilation, and air conditioning (HVAC) systems account
for half of the energy consumed by the building sector, owing to the need
for thermal comfort enhancement and the substitution of high thermal
mass materials for lightweight, low thermal capacity buildings in con-
temporary homes, resulting in high heating and cooling loads [26,27].

The fabrication of building materials and the provision of electri-
cal energy for sustaining people’s thermal comfort in current construc-
tions are the key drivers of these high percentages [28]. However, if en-
ergy solutions are not developed and executed, scientists anticipate that
global energy consumption will grow by 50% by 2050 [29]. According
to statistics collected from various areas, buildings account for 28% of
total energy consumption in Tunisia [30], 24% in the United States [31],
20% in China [32], and 40% in the European Union [33,34]. Buildings
account for about 30% of CO, emissions and almost 40% of total energy
use worldwide, indicating their involvement in global warming [35].

A significant melting enthalpy and an appropriate phase change tem-
perature are the two fundamental needs of a phase change material to
obtain high storage density relative to sensible heat storage. As shown
in Fig. 4, Solid, liquid, gas, and plasma phases of matter are depicted
together with their transitions, including melting, solidification, vapor-
ization, condensation, sublimation, deposition, ionization, and recom-
bination. Enthalpy, or energy content, varies during these phase transi-
tions, with higher-energy phases requiring more energy. Phase change
materials (PCMs) are made to take advantage of these transitions, es-
pecially those between the solid and liquid states, to store and release
heat in the context of thermal energy storage. In any building applica-
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Fig. 4. Phase transition for property enhancement of phase change materials.

tion, phase change materials are a valuable addition since they collect
and release heat when going through a phase change. By holding excess
heat during hot weather and releasing it during cool weather, PCMs
reduce the demand for HVAC systems. The buildings become more sus-
tainable and energy efficient because of the improved thermal comfort
and energy savings. PCMs can be used to help regulate temperature vari-
ations in walls, floors, and even ceilings [36]. Nonetheless, for building
conditioning to perform as well as it should, certain physical, technolog-
ical, and financial requirements may need to be met, depending on the
application. To prevent "phase separation" because of cycle instability,
the primary criteria are reproducible phase change (cycling stability).
Reliability of solidification and melting within a minimum temperature
range is ensured by minimal subcooling (temperatures much below the
melting temperature); enough thermal conductivity permits latent heat
to be either emitted or retained with adequate power for heating and
cooling. PCMs must be stored in matrices because they frequently tran-
sition from a solid to a liquid state [37-39]. The design of PCMs needs to
consider various technical specifications, including chemical, mechani-
cal, safety, and economic ones. These include minimal volume change,
stability in chemicals, lower vapour pressure, connectivity or compati-
bility with other materials, non-flammable and non-toxic materials, long
lifespan, abundance, and cost-effectiveness [40,41].

Renewable energy technologies bring energy conservation manage-
ment solutions, for example, including latent heat storage (LHS) sys-
tems into buildings, conscious that a 20% drop in the use of buildings
might result in a 50% reduction in CO, emissions from the existing
state [26,27,42-45]. The three basic subcategories of thermochemical
energy storage (TES) are sensible heat storage (SHS), latent heat stor-
age (LHS), and thermal chemical energy storage, or combinations of all
these energy systems [35,46]. For example, LHTES has 5-14 times the
storage capacity per unit volume of SHS [47]. Two investigations found
that latent heat storage of paraffin wax required less than seven times
the storage mass of SHS material to store the same amount of energy,
whereas Na,S0410H,O requires eight times less storage mass [48,49].
LHS materials are mostly composed of PCMs. These materials are fur-
ther divided into three basic types based on the regions or states of their
transition phases:

(1) liquid-gaseous;
(2) solid-liquid;
(3) solid-solid, with being used in constructions [50].

The thermal storage application determines how the PCMs are
stored. The degree of purity provided by each phase change material’s
manufacturer must also be considered in a reliable thermal storage sys-
tem design for any application; otherwise, materials that contain PCMs
may exhibit differences in thermophysical properties [51,52]. For the
LHTS system to work properly, it needs two or more additional parts in
addition to the PCM:
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(1) a vessel (which encapsulates phase change material);

(2) an exchanger heat surface (which is necessary to transport heat
from the heat source to the PCM and from the PCM to the heat
sink;

To obtain an adequate process of phase change process such as solid—
solid, solid-liquid, solid-gas, or liquid—gas, the storage ability of the
material depends on both of its SH and LH (which are sensible heat and
latent heat values). TES systems are sensitive to either LH storage, heat
storage, or a combination of both. The following methods or processes
of integrating PCMs into construction materials and structures to stop
PCMs from escaping in a melted condition have been documented in
several research studies and papers:

(1) (PCMs can be encapsulated in a small capsule (micro-
encapsulation);

(2) Sealed tightly (Hermetically) inside a container (macro encapsu-
lation);

(3) Shape-stabilized; and

(4) Impregnated into porous building supplies or materials.

Because some organic chemicals in phase change materials may dis-
sipate or leak out, maintaining the stability of a PCM in a liquid matrix is
challenging [53]. This is the primary disadvantage of introducing PCMs
through immersion in porous materials (such as concrete). This discov-
ery is supported by a review of the findings from earlier publications.
The thermal storage driving force is divided into two subcategories:

(1) passive systems, in which the temperature differential between
the environment and the PCM causes the charging/discharging
of PCM, relying on daily variations in solar radiation.

(2) active systems, where forced convection of a fluid by heat contact
affects PCM charging and releasing, and

Furthermore, the climate of the test site influences the type of ther-
mal stress. Hybrid systems employ either heating or cooling, or both.
Include prospective research methods for PCM applications, such as nu-
merical and/or simulation studies. Finally, the kind and size of the facil-
ity have a significant impact on how PCM research results are affected.
This literature-based classification includes four basic categories:

(1) full prototypes,

(2) compact prototypes,

(3) transforming multiple compartments, and
(4) partitioning chambers under lab control.

For PCM building applications, the categorization criteria are de-
scribed in a hierarchical structure as demonstrated in Fig. 5.

Furthermore, because of their high-water content, salt hydrates are
especially inappropriate for this kind of containment. The addition of
PCM might inhibit the process of hydration of cement in some situations
involving combinations including Portland cement and alkali-activated
components, which could have a negative impact on the mechanical
characteristics [54-57]. Regarding the macro-encapsulation procedure,
the PCM is not combined with the raw material (such as plaster or
concrete), and many articles discuss an appropriate way to incorpo-
rate PCMs into building components, particularly prefabricated roofs,
and walls. Moreover, macro-encapsulated PCM members could be cre-
ated by making use of shape-stabilized PCMs or micro capsules [58-
60]. One term used to describe PCM development in aggregates that are
lightweight is "macro-encapsulation." Nonetheless, this procedure might
be linked to an additional encapsulation method [61-63]. The ability to
combine the PCM-filled capsules with other materials (things like wood-
plastic, composite form, geopolymer mixture plaster, and concrete) is an
advantage of this confinement method. A physical barrier separating the
product’s core substance from other constituents can be constituted by
the micro-capsule layer. When PCMs are utilized with building mate-
rials, they must be enclosed in a tougher, more flexible shell [64-68].
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Fig. 5. Categorization criteria for PCM building applications.

However, based on an examination of the data from the studied publi-
cations, it appears that most of the materials used to create microcap-
sules have low thermal conductivity, and this, along with PCM’s very
small mass fraction, results in a small total heat storage capacity. Cer-
tain mechanical property criteria must be met by the concrete, mortar,
and plaster; adding a lot of microcapsules can lower these requirements
[69].

In terms of the shape of stabilized PCMs, a porous supporting ma-
terial with a high heat conductivity is used to stabilize the material
[70-72]. The following substances have been recommended in various
studies: kaolin, bentonite, diatomite, graphite powder, and silica fume
[73-78]. Furthermore, they describe three approaches (direct absorp-
tion, vacuum impregnation, and sol-gel procedures) for obtaining shape-
stabilized PCMs. One feature of these manufacturing processes is that the
structure with pores absorbs the molten PCM of the host material [79-
83]. The sol-gel procedure is a way of creating shape-stabilized PCMs in
both organic and inorganic forms, and vacuum impregnation is a great
substitute to have the largest amount of molten PCM absorbed in the
porous structure [84-90]. Because of their superior application and in-
creased absorption capacity, silica fume and graphite powder have been
utilized frequently in cementitious composites. In the past, silica fumes
were used in mortar and concrete or cementitious composites as a poz-
zolanic micro-filler. However, according to several studies, it is possible
to add shape-stabilized PCMs to cement, mortar, concrete, and paving
materials to lower their elastic modulus and compressive strength.

To control interior temperature changes, several researchers have
also employed various shape-stabilized PCM composites in both lab and
real-scale samples for non-structural construction components such as
walls and building envelopes [91-94]. Creating ecologically friendly
materials is now crucial in all fields of research and engineering. Numer-
ous studies have examined the viability of employing biomass feedstocks
in PCMs, which have the potential to yield high-value products for PCM
materials. This study has examined the viability of employing a novel
carrier for phase-change material produced by the pyrolysis breakdown
of waste biomass. Here, char made from biomass is added as a carrier
of PCM [95]. The biomass was derived from the products of the inedi-
ble chestnut (Aesculus hippocastanum), while any waste biomass could
serve as the basic source of the char [96,97]. The procedure in order to
acquire the char and the initial laboratory thermal analysis is reported
in this article. The work involved obtaining the thermodynamic proper-
ties of the PCM, which was composed of pure PCM (Char and Rubitherm
RT22) and comparing those properties to those of a micro-encapsulated
PCM (Micronal 5040X). It’s noteworthy to note from the results that us-
ing char as a PCM carrier could have thermodynamic benefits and be
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a viable substitute for manufactured goods. To confirm the mechanical
and thermal capabilities, tests integrating this biobased PCM with build-
ing materials have not yet been conducted. This research has compared
the thermal behaviour of three PCMs based on paraffin (RT24, RT25,
and RT26) as well as one bio-based PCM (PureTemp25). Other works ex-
amine the thermo-physical properties of several organic biobased PCMs
[98].

PCM composites were made by [99] using fat wastes from abat-
toir residues without additional chemical processing. Thermogravimet-
ric analysis (TGA) and differential scanning calorimetry (DSC) were em-
ployed in this study to assess the materials’ thermophysical properties
and calculate their thermal energy storage capabilities. The findings of
these studies show the viability of replacing Petroleum-derived PCMs
with more ecologically friendly bio-based ones [100]. It is important
to note, nonetheless, that the mechanical qualities of building materi-
als including bio-based PCMs should be assessed regarding the thermal
characteristics before they can be used in real-world applications [101-
104]. Additionally, the knowledge gained from these studies can be used
to create standards for the characterization and analysis of organic PCMs
[105-108]. Since 1970, research has been done on the employment of
PCMs in buildings for thermal energy storage. In addition, as opposed
to our review, several review papers that have been published ever
since have concentrated on analyzing and discussing the thermal per-
formance of different kinds of systems, including PCM building blocks,
PCM wallboards (including gypsum), PCM shutters, ceiling boards, floor
heating, and air-based heating systems. They report using PCM mate-
rials that are available for purchase and discuss current initiatives to
create novel phase change materials [109-113]. The characterization
of thermal characteristics, long-term stability, encapsulation, and heat
transmission using numerical simulation and experimental methodolo-
gies have all been the subject of several studies [114-117].

The subsequent structural components have been published about
some recent experimental investigations that use environmental cham-
bers or real-world climatic settings to evaluate the effectiveness of PCM
incorporated into building components: The items include test huts,
a concrete wallboard sample, masonry brick walls, concrete sandwich
panel walls, a concrete core slab in test cubicles, a tiny house and room
model, and pavement. The PCMs were incorporated into these build-
ing elements in a variety of methods, including porous inclusion, PCM
microcapsules, hollow steel ball macrocapsules, PCM underfloor heat-
ing system, and macro-encapsulation. The goals differed and included
evaluating thermal performance, validating numerical simulations, con-
trolling thermal stress in concrete, and melting ice and snow [118].
Nevertheless, based on the above-mentioned papers, it can be deduced
that there aren’t many studies conducted on real-scale models, and the
ones that do exist mostly concentrate on research on thermal behaviour,
which is unquestionably the most important property of PCM mate-
rials and the reason why using them in building components makes
sense. To guarantee that they may be used safely to provide parameters
and construction rules with such systems, investigations on the struc-
tural behaviour of buildings with PCMs subjected to both dynamic and
quasi-static monotonic loads must be conducted, even when the PCM-
equipped systems meet the necessary heat requirements. However, more
research on cementitious materials has shown that adding PCMs to lab
specimens can lessen the tendency of concrete to crack at high tem-
peratures. The heat flow and temperature change in concrete elements
during the hydration process of Portland cement have been studied in
research studies. Similarly, research has been done on the harm caused
by freeze cycles in concrete pavements that contain PCM [119-121].
Created by mixing PCM with cementitious materials, envelope elements
(panels, walls, or clay partitions made of lightweight composite materi-
als) are among the most often studied in research. By directly comparing
the thermal behaviour of complete models both with and without PCM
components, research has shown the advantages of including PCM ma-
terials. In certain instances, it has been possible to lower the highest
temperature reached by at least 2 °C [122-126].
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To effectively meet real-world conditions, PCM research in build-
ings should include as many studies as possible and a wider range of
parameters. Regarding the driving force for thermal storage, a lot of
PCM studies focus on a specific PCM application, such as an integrated
active radiant heating system [127,128]. Most applications aim to heat
or cool objects. To save money, researchers undertake numerical inves-
tigations. When trials are done to validate models, they are often limited
to the partitioning of structural elements like the partitions, rooftop, or
floor. Test settings presented in the literature can be used to assess the
impact of including PCM with limited variables. Studies concentrating
on the kind of PCM utilized are robbed of the ability to analyze the lo-
cation of PCM, for example, and studies exploring PCM placement in
walls deprive them of an opportunity to compare active systems to the
examined passive situation.

In conclusion, this research is a unique type of review article that
tries to summarize PCM experimental testing of various sizes and con-
figurations before concluding with major results, suggestions, and con-
clusions in the PCM sector, as well as the vast majority of melting and
solidifying PCMs across a broad temperature range, have been discussed
thus far in this article. The aggregate techniques for building materials
are examined, with a focus on macro and micro-encapsulation, being
the most practical approach to incorporating particulate matter miner-
als (PCMs) into building components. The techniques and procedures
employed to accomplish this confinement are explained. Furthermore,
this article highlights the need to study both the micro and macro levels,
thermophysical and mechanical behavior, as well as the bio-based PCMs
processes, to show that it is feasible to replace petroleum-based PCMs
with more environmentally friendly bio-based ones. This is based on
the papers that have been critically revised. To better understand the
nonlinear behaviour of materials containing PCMs and build systems
that maximize performance, Multiphysics models of their behaviour
are also essential. The PCM with lightweight aggregate portion is fi-
nally provided. To bolster the distinctions with other reviews found
in the literature, it is important to note that some reviews focus on
thermal transfer and energy storage [51,107,114,129-131]. Other re-
views, such as [110] and [132], discuss micro or macro-encapsulation
in brief along with long-term stability and thermophysical properties,
and reviews by [133] and [111] only address microencapsulation tech-
niques. Potential ways to incorporate PCMs into building materials (mi-
cro and macro-encapsulation) are examined by [112], with a focus on
concrete stabilization materials and methods. On the other hand, the
macro-encapsulation technique is covered in this review [113], along
with thermal energy storage methods used in buildings. In the mean-
time, the review [134] explains the concrete integration, immersion,
and impregnation processes.

Following the introduction, this research is broken down into
seven sections. The remainder of the paper is structured as follows:
Section 3 provides a general classification of PCM materials. Encap-
sulation processes and their types have been covered in Section 4.
Section 5 deals with the mechanical properties of PCM-integrated build-
ing materials. A piece of detailed information on PCM encapsulation
processes and a Summary of the Reviews on PCM Building Recent Appli-
cations and studies on test facility specifications that fall into one of the
following four categories: full large-scale prototype-based experimental
studies, compact scale prototype experimental studies, transformed mul-
tiple compartments-based experimental studies and under lab control
partition chamber-based experimental studies is presented in Section 6.
Section 7 puts forward PCM with lightweight aggregate an additional
intriguing approach for incorporating PCMs as well. Section 8 presents
the future perspective followed by suggestions and discussions and Fi-
nally, Section 9 draws conclusions.

3. General Classification of PCM Materials

High thermal conductivity and significant latent heat are necessary
for materials used in phase change thermal energy storage. They should
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be inexpensive, chemically stable, non-toxic, non-corrosive, and have
a melting point that falls within the realistic range of operation. They
should also melt with the least amount of subcooling. The PCMs are clas-
sified into three categories as shown in Fig. 6: (a) eutectic, (b) inorganic,
and (c) organic, combinations of chemicals with varying phase transi-
tion temperatures. This classification is the result of research conducted
over a 40-to-50-year period, during which time other researchers have
demonstrated the benefits and drawbacks of PCMs. Various experimen-
tal methods [135-137] have been documented and applied to ascertain
the melting and solidification behaviour of various materials. Therefore,
it can be concluded from the examined studies [138-142] that no sub-
stance possesses all the ideal qualities needed to a PCM and that choos-
ing a PCM for a particular utilization necessitates carefully weighing the
qualities of different compounds. Differential scanning calorimetry tech-
niques (DSC) are extensively employed in the identification and classifi-
cation of PCMs based on those characteristics that are thermophysical,
comprising their specific heat, heat of fusion, and melting point. It may
be argued, though, that additional techniques have also been employed
[143-148], including the T-history method and traditional calorimetry
techniques. Thermograms are used to analyze these characteristics, al-
lowing us to determine the phase transition temperatures at which melt-
ing and freezing occur. However, because the values of these attributes
are determined by using small samples, large samples may yield differ-
ent results [149-154].

3.1. Inorganic

Fewer inorganic compounds can be utilized in the building business
as opposed to organic PCMs. Hydrated salts and metallic salts are the
two most used varieties; in all PCM-related study disciplines, hydrated
salts have been the most extensively explored.

3.2. Organic

Among the phase-changing organic compounds, paraffin, fatty acids,
and (PEG) polyethylene glycol are three subtypes that stand out. These
substances often have excellent chemical stability and good thermal
characteristics [52]. Consequently, a large amount of current study is
focused on the various types of paraffin and how they can be used as
building materials because of their stability in terms of chemicals, which
makes the combo of materials and products easier. The two main types
of organic PCMs are paraffinic materials and those that are not. The
majority of paraffins have not been employed in PCMs due to their
significant flammability. But because paraffin has a large latent heat
and strong thermal features (little supercooling, varying phase transition
temperature, low vapor pressure in the melt, good thermal and chemi-
cal stability, and self-nucleating behavior) in the right container, it has
been employed extensively [98,155,156].

On the other hand, research demonstrates that non-paraffin, biolog-
ical PCMs are significantly less toxic than paraffin. Bio-based PCMs, or
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Fig. 7. Properties of PCMs with macro-encapsulation for buildings.

PCMs containing organic fatty acids, are primarily made up of incred-
ibly sustainable bio-sources and are produced from underutilized and
renewable feedstock, such as vegetable or animal fats, animal fats, and
industrial or agricultural wastes. These bio-based (non-paraffin) PCMs
have drawn the attention of several researchers [157], who have tested
their appropriateness in terms of thermophysical characteristics as well
as heat storage capability measured in melting temperature, specific
heat capacity, and phase-change enthalpy. Unfortunately, literature cur-
rently only has a small amount of thermal data. Moreover, bio-based
PCMs are not characterized by any rules or standards.

3.3. Eutectics

To reach a certain melting point, a eutectic PCM is a blend of two or
more PCMs. Eutectic materials almost always melt and freeze without
segregation. These PCMs gained significant prominence because they
contain a variety of eutectic chemicals, each with unique features that
can help thermal energy storage systems. The literature [158-162] gen-
erally indicates that non-organic PCMs have superior thermal storage
properties; on the other hand, their cost is typically higher than that of
paraffin. A few of the chemical components utilized in building materi-
als are displayed in Fig. 7. Even though these are the primary character-
istics, it is practical to consider additional secondary characteristics as
well since these may be crucial based on the usage, region, and quantity
of cycles [51,152], and [163] all describe the thermodynamic charac-
teristics of PCM that are appropriate for buildings. Meanwhile, also lists
the benefits and drawbacks of different PCMs.

4. Types of Encapsulation Processes for PCMs

A surface for heat exchange that transmits heat to the PCM from the
heat source and the PCM from the heat sink is vital to the functioning
of a PCM thermal storage system . The encapsulation must be strong,
flexible, resistant to corrosion, thermally stable, structurally stable, and

easy to handle for it to function well. The most common forms of con-
finements that are investigated for PCMs are macro-encapsulation, and
microencapsulation [164,165].

4.1. Macro-Encapsulation

Macro-encapsulation, in which a sizable amount of PCM is contained
in a distinct unit, is the most prevalent type of PCM confinement. The
enclosed shell can take on any shape, including cubes, tubes, cylin-
ders, and pouches. Tin-plated metal cans, mild steel cans, and plastic
bottles (polypropylene and high-density and low-density polyethylene
bottles) are the most economical packaging options. PCM can weigh
anywhere from a few grams to a kilogram per unit. The examination
of the updated articles demonstrates how simple it is to create macro-
encapsulated PCM in any size or form to fit a variety of uses. PCM’s
macro-encapsulation does not call on a pre-established procedure, in
contrast to micro-encapsulation, which encapsulates the PCM using a
variety of approaches and strategies. There are numerous applications
for macro-encapsulation in terms of energy storage demand, and it is
simple to integrate into any kind of building envelope, size, or dimension
by carefully choosing the capsule geometry and material. Nonetheless,
more research is still needed to determine whether the shell material is
compatible with PCM and building materials [166-173]. The benefit of
macro-encapsulation is that it is easier to handle and transport, and air
or liquid can be utilized as heat transfer fluids with it.

Since the facades of buildings are exposed to the elements and so-
lar radiation, macro-capsules are typically included in outside walls
and precast slabs. Its function depends on many factors: (a) the mi-
crocapsules location (interior or exterior surface); (b) the region’s lo-
cal weather conditions (sun radiation, ambient temperature); (c) The
geometric characteristics of construction; (d) conductive properties of
the construction material and PCM type. A few reliable producers of
macro-encapsulated PCM have produced and marketed it under dif-
ferent brands, including HDPE (High-Density Polyethylene) panels,
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breather membranes, plastic blocks, aluminum tubes, pouches, breather
membranes, and aluminum panels [174-180]. The features of macro-
encapsulated PCMs for buildings are compiled in Fig. 7, manufacturers
of goods suitable for building applications are listed in [181,182].

4.2. Microencapsulation

The techniques known as "microencapsulation” involve the contin-
uous, sealed encapsulation of microscopic PCM droplets or particles,
which can have a spherical or rod-shaped form. By using this method,
PCM reactivity with the external environment can be reduced and
melted PCM leakage from latent heat thermal energy storage devices
can be prevented. The microencapsulation approach is more expensive
than other thermal storage methods. A thorough review of the litera-
ture [182-184] shows how phase separation is confined to minuscule
distances using micro-encapsulation, which improves cycling stability
and enhances the transport of heat to the surroundings because of its
high surface to volume ratio. After that, it is possible to combine the
coated particles into a powder or distribute throughout a carrier fluid
in any matrix that works with the encapsulating film. As a result, the
film needs to work with the matrix and PCM. Numerous morphologies,
or shapes, are available for microcapsules, depending on how the shell
is deposited and how the core material is arranged. Distributions can be
classified as matrix encapsulation, polynuclear, multi-film, and mononu-
clear (core/shell) [185-187]. With a melting point that is close to human
comfort—roughly 20°C organic PCM core offers several benefits over
other PCM material types. Several kinds of organic PCM are included,
such as polyethylene glycol, fatty acids, alcohols, esters, and paraffin
(n-alkane) (PEG).

The most common selection for core materials in organic PCM is the
paraffin class of compounds. However, encapsulating polyethylene gly-
col (PEG) is a challenging task. Likewise, because inorganic salts dissolve
in water, they are also infrequently enclosed. Shell materials, which can
be either inorganic or organic, or hybrid shell materials composed of an
organic and inorganic mixture, are what make up the capsules that hold
the PCM. Most of the shells are made of organic materials and are pro-
duced chemically using processes like polymerization. A shell material
should have strong chemical and thermal stability and should not react
chemically with the PCM core. Its surface shape needs to be smooth,
with the least amount of porosity possible, to stop PCM from leaking
at temperatures higher than its melting point. In addition to providing
shape stability and mechanical strength (thick layers exhibiting supe-
rior mechanical behaviour), a high heat conductivity shell material is
preferred.

Regarding the encapsulation process, it can be observed from the
literature that there are three distinct approaches to microencapsulated
PCM, and the best method relies on the materials’ chemical and phys-
ical characteristics [188,189]: Physical methods include spray drying,
solvent evaporation, air-suspension coating, pan coating, centrifugal ex-
trusion, vibrational nozzle, and Ionic gelation. Physic-chemical methods
include coacervation, sol-gel, and ionic gelation. Chemical methods in-
clude interfacial polymerization, suspension polymerization, and emul-
sion polymerization. According to research findings, the quality of the
microencapsulation process PCMs is correlated with the mean diame-
ter, the thickness of the shell, and the mass percentage of PCM relative
to the overall mass of the capsule. The PCM approach still requires re-
finement since, in active systems, the microcapsules may shatter upon
collision with one another. In other places, Improvements in heat trans-
fer rate and efficiency have been observed when employing integrated
carbon additives in construction materials made of composite materials
including PCM microcapsules [190,191].

In conclusion, we can see from the literature that has been edited so
far that numerous researchers have examined microencapsulation, but
the study is dispersed [192]. Two companies, BASF and Microteklab,
have developed PCM micro-encapsulated products for use in homes
and offices. Additionally, commercial PCMs are already available from
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Rubitherm GmbH (Germany), Cristopia (France), TEAPEnergy (Aus-
tralia), PCMProducts (UK), Climator (Sweden), and Mitsubishi Chem-
ical (Japan). Enhancing the sustainability and durability of mortars and
concretes is one of the goals of including PCMs, irrespective of the tech-
nology used [193,194]. This study used micro-capsules made by Mi-
croteklab and Micronal-BASF to assess the durability of mortars based
on Portland cement. Their findings revealed that the phase change en-
thalpy has decreased by about 25%. The chemical reaction with the
sulphate ions during the mixing process were blamed for this decrease
rather than the mechanical impact of the microcapsules. Furthermore,
this study demonstrates that the reaction between PCM and ions does
not affect the mortar’s endurance [195].

Although microencapsulation offers better stability and heat trans-
fer performance, its higher production costs may prevent it from being
used in projects where money is tight. However, macro-encapsulation
may not reach the same degree of thermal efficiency but provides a more
cost-effective alternative with easier production procedures. The appli-
cation requirements, such as the required thermal reaction time, finan-
cial limitations, and implementation size, frequently influence which of
these approaches is best. For instance, macro-encapsulation works better
for large-scale building envelopes or retrofitting, while microencapsu-
lated PCMs are best suited for high-precision applications like thin wall
panels or sophisticated HVAC systems. In summary, the requirements of
the project, such as the trade-off between cost, thermal efficiency, and
scalability, will determine whether to use microencapsulation or macro-
encapsulation. While macro-encapsulated PCMs provide a more prac-
tical and cost-effective alternative for large-scale deployments where
cost-effectiveness and convenience of manufacturing are more impor-
tant than thermal precision, microencapsulated PCMs are well-suited for
high-performance applications where precision is crucial. Furthermore,
hybrid strategies that combine the two approaches are being investi-
gated to maximize cost and performance, increasing PCMs’ adaptability
for a greater variety of building applications.

5. Mechanical Properties of PCM Integrated Building Material

The mechanical characteristics of construction materials including
plaster, concrete, and wallboards may be affected by the incorporation
of Phase Change Materials (PCMs). To guarantee that PCM-enhanced
systems retain the required structural integrity for long-term use, it is
imperative to comprehend these consequences.

Strength: Particularly when microencapsulated or macroencapsu-
lated PCMs are introduced, the compressive strength of materials like
concrete or gypsum may be marginally decreased. While PCM integra-
tion can reduce compressive strength by up to 10%, studies like those
by [196] have demonstrated that the loss is frequently within accept-
able bounds for non-load-bearing constructions. The impact on strength
must be carefully evaluated for load-bearing applications, though, and
mixture modifications (such as the use of stronger binders) might be
required to make up for the loss in mechanical performance.

Elasticity: Additionally, materials with embedded PCMs may lose
some of their elasticity, especially in systems that employ macro-
encapsulation. Large PCM capsules may cause the material to develop
weak spots, which would decrease its flexibility and increase the likeli-
hood that it will shatter when subjected to mechanical stress. However,
because the smaller particle size permits more uniform distribution and
reduces weak points, microencapsulation often has less of an effect on
the material’s elasticity. According to research by [197] the PCM con-
tent and encapsulation technique can be optimised to reduce the effect
on elasticity.

Durability and Longevity: PCMs can improve a material’s over-
all durability by preventing thermal fatigue, especially when they are
enclosed in metals or polymers. By buffering temperature variations,
PCMs’ thermal cycling qualities lower the chance of thermal cracking
in materials like concrete or plaster. However, if the PCM is not suf-
ficiently encapsulated, frequent phase transitions may cause problems
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Fig. 8. Properties of PCMs with macro-encapsulation for buildings.

like delamination or microcracking, particularly in applications that are
prone to mechanical stress.

Adhesion and Compatibility: The PCM’s adherence to the sur-
rounding material is another crucial mechanical characteristic. Delam-
ination or separation may result from poor adhesion, especially in sys-
tems containing PCMs that are macro-encapsulated. For the PCM and
matrix to remain cohesive and prevent mechanical failure over time,
appropriate materials must be used.

6. Summary of the Reviews on PCM Building Recent Applications

Over the last two decades, much effort has been made to make better
use of the available technology, paying attention to applications of PCMs
as shown in Fig. 8.

A number of review studies have been conducted to composite mul-
tiple PCM research into one to suggest further calls for forthcoming
findings. Research has moved on from just cooling applications [198]
to PCM encapsulation methods [184,199], active and passive PCM ap-
plications classification [114,200], LCA of PCMs in buildings life cycle
assessments (LCA) improvement of PCMs in buildings [201,202]. This
work contributes more to defining the technical structure, outlining key
working principles, and proposing technological standards within the
PCM frameworks.

Du et al. [10] have provided a comprehensive review of PCM ap-
plications in power generation, heating, and cooling. Navarro et al.
[203,204] have published a two-part review paper on active and pas-
sive thermal energy storage systems in buildings. 1t part was centered
on seven buildings applying PCM-TES within two distinct systems e.g.
suspended ceiling, solar facade, ventilation system, solar collector, PV
array, and heat storage water tank. However, the 2" part reviewed pas-
sive applications of PCM in building envelopes — impregnation in mate-
rials, as an added layer to components, and two options for windows and
sunscreens. Song et al. [205] reviewed the use of PCM in building en-
ergy performance based on different applications such as those related to
the building envelope (side walls, roof, floor) and those that modulate
energy needs due to some built-in equipment (air conditioning; heat-
ing; ventilation). PCM temperatures of building equipment were on the
level 15.4°C-77.0°C and the envelope levels was 10.0°C-39.1°C. Lizana
et al. [206] investigated the combined cooling heating and power with
thermal energy storage systems and focused on carbon free energy so-
lution for cooling and heating purpose. Romdhane et al. [207] investi-
gated that passive PCM application could enhance the thermal comfort
in buildings, reduce energy demands and save money as well. Li et al.
[208] examined the frontiers in PCM-based applications on building
heating, highlighting those related to heat pumps and solar heaters. The
solar chimney and PCM in roofs, walls and windows both passive and
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active applications were reviewed. The authors advised that additional
long-term experimental studies, include economic, energy and ecologi-
cal evaluations. Javadi et al. [209] investigated use of PCM in residen-
tial buildings energized by solar energy with reduced thermal radiation
while solar thermal systems implemented increased the performance.
Magrini et al. [210] talked about the conversion of landscapes to active
energy contributors with particular reference to the use of PCMs and
advanced materials in European projects aimed at conversion of NZEB
into PEB, using a case study.

6.1. Practical Viability of PCMs Across Various Applications

The scope of this review has been refined to focus on the practical
applications of PCMs in heating, cooling, and Hybrid systems within the
building. PCMs integrated into heating systems, such as underfloor heat-
ing, demonstrate enhanced thermal storage and consistent heat release,
which improve energy efficiency during winter. For instance [170], re-
ported a 15% reduction in energy consumption in residential buildings
equipped with PCM-based underfloor heating systems. In addition, a
study [181] demonstrated that incorporating PCMs into the interior
walls of residential homes in colder European climates resulted in a
20% reduction in heating demands during winter, significantly improv-
ing thermal comfort. In cooling applications, passive systems like PCM-
enhanced walls and ceilings are effective in reducing peak indoor tem-
peratures, as evidenced in [181], which achieved a 35% reduction in
cooling loads in tropical climates by integrating PCMs into external
walls. Another successful case was observed in the same study [181]
where PCM-infused ceiling panels in a Portuguese office building re-
duced peak cooling loads by 40%, extending thermal comfort to occu-
pants without the need for additional HVAC systems. In southern Spain,
a similar system was found to reduce indoor temperature by up to 5°C
during peak summer months. Hybrid applications combine both heat-
ing and cooling functionalities, utilizing active control mechanisms to
optimize performance year-round. A notable example includes [180],
which demonstrated that PCM-integrated facades reduced annual HVAC
energy consumption by up to 30% in temperate climates. Furthermore,
a study in Japan [187] tested hybrid PCM systems in office buildings,
utilizing both solar heat gain and night cooling strategies. The results
indicated that PCM-enhanced walls provided a 25% reduction in heat-
ing demands during winter and a 30% reduction in cooling loads during
summer, achieving substantial energy savings across seasons. Another
key area of application is retrofitting existing buildings with PCM tech-
nologies to improve energy efficiency. For instance, a large-scale retrofit
project in a historical building in the UK utilized PCM-based plaster to
regulate indoor temperatures, reducing energy consumption for heat-
ing by 15% without altering the structure’s aesthetic or historical in-
tegrity. Similarly, a retrofit of residential buildings in Australia with
PCM-insulated roofs resulted in a 25% reduction in both heating and
cooling energy consumption over the course of a year [195].

These case studies highlight the adaptability and energy-saving po-
tential of PCMs in diverse building scenarios, making them a promising
solution for sustainable energy management, while also being retrofitted
into existing structures, makes them a promising option for future
energy efficient building design. The investigation on PCM applica-
tions as per the experimental key studies, design requirements, etc.
are explained below focusing on prototypes in laboratory testing for
retrofitting to optimize the overall performance. Before proceeding it is
very necessary to know about active and passive systems, in order to
improve heat transmission, active systems use mechanical components
(such as fans, pumps, or heat exchangers) to move fluid or air over the
PCMs. These systems are more effective in controlling the building’s
temperature in response to heating or cooling requirements because the
stored thermal energy is actively handled and controlled. Active sys-
tems, which actively absorb or release heat in a controlled manner, are
frequently linked with HVAC systems to optimise their performance. An
example would be an air handling device with PCM enhancements that
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heats or cools the air before it enters the living area. On the other side,
passive systems do not require mechanical devices and instead rely on
natural heat exchange processes including convection, conduction, and
radiation. In passive systems, the PCMs help to regulate indoor tempera-
tures by absorbing heat during the day and releasing it at night. Building
materials like walls, floors, and ceilings frequently have these systems
built into them. A PCM-enhanced wall that collects surplus heat during
the day and releases it at night when temperatures drop is an example
of a passive PCM system, which improves thermal comfort without the
need for external energy.

6.2. Large-Scale Prototype PCM Experimental Studies

The experimental study of thermal performance using PCM integra-
tion in buildings can help to promote the commercial use of PCMs and
better understanding for builders and architects. Modern dwellings are
developed with full-scale test cells designed to be like real-world trials
that show potential results. We perform a literature review that span
works over passive and active large-scale applications to generate in-
sights into practical implementation.

6.2.1. Active Large-Scale Applications

Two full-scale cubicles developed by Mourid et al. [211] were tested
in cold winter weather. The product with the walls that consist of two
72 mm brick layers separated by a 116 mm gap of air, which had a PCM
wallboard was tested for thermal performance with or without PCM in
the ceiling or internal walls. It was found that the experiment with the
PCM and no PCM in the ceiling resulted in a 30% and 50% reduction
of heat losses, respectively. A more extensive amount of research was
done on the PCM in the floor combined with the solar water heating
by Lu et al. [212], in which the model was validated in the TRNSYS
with a 95.1% coincidence of experimental and numerical results. It was
also found that 5.87% more energy is saved at 20°C compared with the
reference model. The authors report test results of active PCM storage
systems in two huts where air conditioning, solar air heater, and electric
heating were included, and one of the huts was equipped with PCM heat
storage. Thus, results have shown that the coupling of an air-based so-
lar collector and an active PCM storage system was capable of providing
30% and 40% energy savings in both test campaigns (March-April and
May) [213]. In another study [214], the performance of passive and ac-
tive PCM systems was compared in two large-scale prototypes in winter
and summer in Auckland. The first hut used PCM wallboards and the
second employed a PCM storage unit with a fan. It has been found that
the active system is more effective for load shifting; with a reduction
in the energy used by 32%, whilst the passive type is better in terms of
cooling. In Auckland, using an active system allows saving about 22%
of energy in winter increasing electricity usage by 8%.

Gracia et al. [215] conducted an experimental investigation of a ven-
tilated double-skin solar facade with PCM in Puigverd de Lleida, Spain,
and used two large-scale prototypes. In agreement with the CFD results,
PCM integration enhanced the thermal performance, which can be fur-
ther improved by thermal control. Zhou et al. [216] studied four sys-
tem configurations regarding sensible/latent heat storage and pipe types
using polyethylene coils and capillary mats. They found that capillary
mats improved indoor temperature uniformity and halved the charging
time. Meanwhile, PCM’s latent heat storage was half as effective as sand,
while the application of PCM improved sand energy discharge twice.
Kong et al. [217] explored the feasibility of using a radiant heating sys-
tem with PCM in the walls of test rooms. The radiant heating systems
are supplied by solar thermal energy. The energy use in daily terms was
44.16% than the radiant heating of the room using traditional radiators.

The work by Sinka et al. [218] is another study analyzing the effect
of PCM in the walls and ceilings of a building. The research was per-
formed in Riga, Latvia, in four test rooms. The two PCMs were tested:
Bio-PCM Q25 M51 in a massive building, and DuPont Energain® plates
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in a light building, compared to the reference buildings. Although differ-
ent materials were used, both objects had similar heat transfer U-values.
The results proved that ventilation plays a key role. To ensure that PCM
is not heating up, it is recommended to use mechanical ventilation. The
maximal efficiency is achieved if PCM is combined with radiant cooling
ceilings. It is also recommended to use complicated control systems to
make an output as best as possible.

6.2.2. Passive Large-Scale Applications

Lee et al. [219] studied the thermal performance of cellulose insu-
lation reinforced with PCM cell under small-scale prototype wall cavi-
ties. The outdoor experiment using two large-scale identical prototypes
showed that the daily and hourly average heat flow decreased by 25.4%
and 20.1% for heat flow and also decreased by 13.8% and 10.3% for in-
door tracking. Wang et al. [220] investigated a brick wall in PCM in a
large-scale prototype in Shanghai. The large-scale prototype technology
helped to reduce cooling loads by 24.32%, and indoor temperature is
higher than outdoor temperature, reducing heating burdens by approxi-
mately 10 to 15%. Luo et al. [221] have investigated a modified Trombe
wall system that provides both passive cooling and solar heating in the
wall. It was determined that the summer overheating is reduced, and
the winter heating is an effective solar wall with a higher temperature
water jacket to improve the convective heat transfer between the air
and wall. Sun and Wang [222] have studied the winter heating effi-
ciency by transferring heat inside the system by a solar wall with PCM
in Jilin, China. Cooling is another problem related to increased efforts to
increase cooling efficiency, but most buildings still use air conditioning
systems. A lot of energy can be wasted, but energy to run the system is
necessary. One of the least expensive and exciting ways to store PCM
is by using a solar wall with PCM. The findings showed improved air
circulation due to a combination of chemical and sensible heating and
reduced interior temperature fluctuations.

Guarino et al. [223] studied a PCM wall outside a glass window in
Montreal, Canada, in the winter. It was shown that the PCM stored good
solar energy and discharged it at 6-7 hours, which reduced heat an-
nual consumption by 17% and reduced stratification. Lee et al. [44]
optimized the placement of PCM in the layers of the wall using a PCM
thermal shield. It was found that the south and west walls’ peak power
was reduced from 51.3% and 29.7% at 6.5 and 2.3 hours, respectively.
Souayfane et al. [224] investigated the glass brick wall with PCM with
aerogel insulation and glazing. It was shown that the wall worked well
in winter, and the shutdown of the PCM on the overheating of the wall
in the summer was due to inadequate hardening. However, the numeri-
cal model regime was shown to prevent the wall’s overheating. Hu and
Heiselberg [225] used a vented window of a full-scale prototype with a
heat-exchange PCM. The temperature of the vented air was reduced by
6.5°C, which occurred at 3.9 hours, and the best thickness of the PCM
heat exchanger was 10 mm. Thus, the benefits of this vented window
have been confirmed for night dilution and pumping-out. Li et al. [226]
developed a multi-layered roof with a ventilation gap and added PCM to
the lower layer. Two types of roofs were constructed in a comparative
description of the roof’s work: standard and common with PCM layers.
The indoors’s maximum temperature was reduced by 16.9-18.8%, and
the phase’s transition temperatures were 31-32°C in the top layer, and
the sides 24°C.

6.3. Small-Scale Prototype PCM Experimental Studies

Small-scale prototypes are introduced to solve the problem of the
high cost of preparation for a large-scale prototype as well as to facilitate
installation and testing preparation. Small-scale prototypes are known
for being low-cost and easy to install.

6.3.1. Active Small-Scale Applications
He et al. [227] tested using a new radiant cooling PCM wall. The
wall has combined the use of PCM as an LHTES material beneficial for
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its high energy density, micro-channel heat pipes used for not permit-
ting the PCM to become solidified at night and releasing the stored heat
in the room because of their high thermal conductivity, and a plate used
for radiative cooling with high emissivity. There were tested three pro-
totypes: A and B had brick walls for controlling the cooling load for the
ordinary walls while capillary tube synthetic copper sheets with con-
ductive walls charged with 40% salt hydrate and 60% water were used
for room B’s prototype. Room C had 47.9 and 23.8 percent lower cool-
ing loads on the south wall than room A and room B, respectively. Garg
et al. made a small-scale prototype for an experiment with three roof sys-
tems: a thermally activated ceiling, a radiant panel in the chamber, and
an encapsulated PCM heat exchanger cooling system. Encapsulating the
piece of PCM in the heat exchanger cooling system allowed reducing the
room heat load by 50 percent leading to a 6 °C decrease in the average
air temperature. Small-scale prototypes are usually introduced in the
research of a specific application experiment and supported with a nu-
merical model. The combination of experiment and numerical analysis
is to verify the numerical model to be used in further full-scale prototype
construction research. Other reasons are the necessity to support the ex-
periment for a long period, which is as difficult and as high-costing as
experiments do. In the experiments, authors [228,229] researched and
performed tests on the capability of a capillary tube-embedded PCM
device when placed in the wall and ceiling of a testing chamber made
previously in this research. The results of the author’s work saw the
development of a numerical model that was validated by experiments.
The system consisted of three major components: CT-PCM charges and
discharges PCM through a 140 m long capillary tube, a dynamic ther-
mal chamber, and a water bath system. The results showed that with
capillary flow rates higher than 800 ml/min, the experimental data and
numerical simulations are in validation, while a lower flow rate requires
a different correction factor varying between 1.2 and 1.6.

However, in a certain setting, an electric radiant heating system
equipped with PCM may be potentially considered as an energy-saving
underfloor heating. For instance, Fang et al. [230] proposed a new eutec-
tic PCM composite comprising of sodium acetate trihydrate-formamide
and expanded graphite as a carrier. The tested PCM reportedly had de-
sirable heat of phase change 187.6 kJ/kg, a high thermal conductivity
of 3.11 W/m K, reasonably good solidification temperature of 38.54
°C, and was reportedly more resistant to deformation, and more stable
thermo-rally. During the experiment, the prepared PCMs were exposed
to heating by an electric radiant heater. The experimental analysis re-
vealed that their use reduced the room air temperature, and the PCM
usage raised total heat comfort duration to 12.65 hours in the case of
the PCM room and 1.836 hours for the non-PCM room. Additionally,
the use of PCM was shown to significantly reduce up-down air tem-
perature variation. Guo et al. [231] utilized mortar blocks with PCM
micro-encapsulation and topping them on the floor. The way it worked
was that hot air was then blown into copper tubes lining the floor area
of the room. Supposedly, the most important factor was the dispersion
area of the PCM on the floor.

6.3.2. Passive Small-Scale Applications

Abbas et al. [232] investigated the thermal performance of a hollow-
brick wall with PCM capsules in a small-scale test room. Encapsulat-
ing PCM reduced indoor and wall surface temperatures by 4.7°C com-
pared to conventional bricks. PCM decreased temperature fluctuations
by 23.84%. Rathore and Shukla [233] used two identical test cubicles
in Mathura, India: one with tubular macro-capsules of PCM along the
walls and ceiling. The presence of PCM tubes reduced the fluctuation
of the temperature by 40.67%-59.79%. The peak temperature was de-
layed by 60-120 minutes compared to the cubicle with no PCM, while
the cooling load was reduced by 38.76%, saving around 0.4 USD/day.
Khan et al. [234] studied the effect of paraffin wax PCM on heat trans-
mission of the wall in two composite wall models. The use of the PCM
in the inner layer of the wall increased counter times reaching certain
temperatures and specific materials. Zhu et al. [235] tested double-layer
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Fig. 9. Temperature change with and without PCM incorporation.

stabilized PCM wallboards in two identical test rooms in China. PCM
decreased overheating in the summer and undercooling in the winter.
Berardi and Soudian [236] studied passive PCM composites in walls and
ceilings to reduce heat gains in high window-to-wall ratio buildings. The
systems use composite PCM layers Energain ® and the BioPCMTM and
can reduce interior temperature to 6°C in both summer and winter con-
ditions in Toronto, Canada, and surface temperatures up to 6°C. Since
the thickness of composites is 2 cm, they can be used in retrofitting
Sun et al. [237] have experimented with PCMs for building walls and
tested them in the lab over summer. Heat flux reductions were 36.5%
and 22.5% for 1.27 cm and close to the wallboard, respectively, how-
ever, the PCM did not freeze completely from the first day. Following
the ratio of the surface area to the volume of PCM, the smaller pipe is
the most effective. Mehdaoui et al. [30] have also tested PCM wall ty-
pos in a 14-day-long experiment and found that the thermal swing has
been minimized. In addition, a numerical simulation suggested that the
upper sides of the PCMs melt faster. Zhang et al. [238] designed and
experimented with the Dynamic Wall Simulator to test the effects of
insulated structural panels (PCMSIPs) on thermal comfort. They found
that: 1. The urethane structural insulated panel (SIP) looks better than
the expanded polystyrene (EPS) cored SIP; 2. The heat flux reduction
of PCMSIP compared to the non-composite PCMSIP is about 10-20%. 3.
Vertical SIP of PCM is more efficient than horizontal. Meng et al. [239]
also had a similar experiment with PCM composite envelopes. The tem-
perature fluctuation was significantly reduced by 28.8%-67.8% in the
summer and 17.7%-25.4% in the winter with the use of PCM. The tem-
perature change throughout the day can be seen in Fig. 9.

6.4. Retrofitting PCM Experimental Studies

The bulk of compartments are already full of occupants. It is neces-
sary to improve the thermal climate within their homes without modify-
ing architectural components (walls, roof, floor, or ceilings). Engineers
were interested in the method of retrofitting existing envelopes with
additional layers. Several researchers conducted experiments to investi-
gate retrofitting PCM uses.

6.4.1. Active Retrofits Applications

Cheng et al. [240] studied underfloor heating thermal performance
using shape-stabilized PCM plates of paraffin, high-density polyethy-
lene, and expanded graphite. Plates were installed over electrical mats
and the room heating system was examined under different heating
systems in Anhui province, China. The phase change energy storage
system had the lowest energy expenditure and showed the best cost-
effectiveness. Lu et al. [241] tested a twin-pipe PCM floor heating sys-



JID: ENBENV

M. Arslan, E. Ghaffar, A. Sohail et al.

tem in Zhangjiakou, China. Encased PCM allowed thermal comfort to
improve reducing temperature fluctuations by an average of 3°C.

Stritih et al. [242] investigated the impact of PCM-LHTES integration
at the terminal of a solar air heater in a solar facade located in Ljubljana,
Slovenia. PCM-LHTES reduced operational costs by 24% as compared
to a solar air heater without LHTES. Lamnatou et al. [243] evaluated
BIST installed in Ajaccio, France, based on myristic acid as PCM. The
life cycle assessment showed that PCM was the system component with
the largest environmental impact. Nada et al. [244] studied the impact
of adding a PCM module with SP-24E PCM plates to a typical HVAC
system. Increasing the ambient temperature and airflow increased the
number of PCM plates, but the PCM discharge time decreased.

6.4.2. Passive Retrofits Applications

Wang et al. [245] carried out experimental research on the thermal
response of disaster alleviation prefabricated temporary abodes with
PCM plates installed on the interior region of the temporary abode. The
aim of the research work was to ameliorate the thermal atmosphere of
the residing abode without having an electrical thermal environmen-
tal controlling system. The results of the research work were conclu-
sive in the sense that it was ascertained that using fixed PCM plates,
the internal surface temperature, and the internal temperature reduced.
Furthermore, it was concluded by the scholars that it is appropriate in
the sense that employing the moveable PCM energy storage system can
be done in order to guarantee that the PCM can go outdoor, so that it
can avail the cool temperature of outdoors and ascertain that the PCM
will completely solidify. However, in taking the PCM to establish that
it benefits from the cool temperature at nighttime and solidify, it is a
very hefty task requiring a permanent hard work to fix as well as re-
move many plastics net-shaped containers. Therefore, a new, expedient
design is proposed, which was terminated in a safe way in case of PCM
plates on a traditional wall divided into many pieces fixed to the wall
turning in outdoors and finally inside.

Lee et al. [246] introduced the concept of plug-and-play walls in
which building materials intended for residential and commercial con-
struction can be easily and perfectly tested in all weather. The addition
of a PCM layer led to a heat transmission decrease of 27.4% and 10.5%
on average on the south and west walls. In addition, it was observed
that the PCM impeded for 2 to 3 hours on average. Vik et al. [247] eval-
uated the use of PCM plates as suspended ceilings and side walls. After
analyzing five different cases, the authors concluded that the most ef-
fective way of using PCM plates was as suspended ceilings not covered
by aluminum ceiling panels and that PCM on the partition side reduced
the energy consumption required for mechanical cooling in the build-
ing. Li et al. [248] developed a novel PCM blind system and combined
it in a double skin facade to avoid summertime overheating, which did
not occur due to a paucity of prior knowledge. The blind prepared with
a layer of aluminum plate was epoxy coated and the viscos metric PCM
mixture. The PCM blind’s ideal inclination angle and location were also
optimized in the study. The best inclination angle was found to be 30 de-
grees. Throughout the day, the system provided a 1 to 2.9 °C difference
between the temperature of the interior and the outside glass skins.

Experimental results from the developed system have provided sig-
nificant enhancements in solar energy capture and energy management
[249]. Gracia [250] proposed a novel design of a dynamic PCM layer
for building envelopes. The The purpose of the developed method is to
overcome the two main limitations of the passive PCM applications in
the building envelopes: 1) the PCM starts to solidify partially at night;
and 2) the absorbed internal gains of the building become released in-
side the building. The system consists of two layers of the plastic poly-
mers that are separated by an insulating wool layer, and the PCM is on
one side. The system uses the actuated rollers that are capable of shift-
ing the PCM’s location from close to the inside to close to the outside,
which allows the discharge to the outside and the PCM to completely
solidify.
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6.5. Laboratory-Based PCM Experimental Studies

Performing experiments using smaller-size prototypes or specifically
planned module/partition experimental investigations is one of the most
practicable ways to conduct deep research of system performance. It pro-
vides not only more control over factors but also a lower cost and the op-
portunity to operate in a laboratory-controlled surrounding. Laboratory-
based PCM building partition experiments can include not only building
partition but also the use of heating/cooling systems and a reduced-size
prototype. At the same time, it is preferable to distinguish between ac-
tive and passive laboratory-based applications

6.5.1. Active Laboratory-Based PCM Applications

Guo et al. [251] evaluated the space heating and energy use of ven-
tilated blocks for six different distributions of the micro-encapsulated
PCM. By concentrating PCM in the blocks upper half with simultaneous
heating and ventilating, the heating rate increased by 41.5%. Another
PCM wall was introduced by Yan et al. [252], the process of nighttime
radiative cooling was used to completely solidify PCMs and run the sys-
tem without electricity. The PCM wall with gravity heat pipes hence,
had 74.5% lower heat transfer compared to a conventional wall after
one-week service in a hot climate.

Qiao et al. [253] developed a personal cooling system with a heat ex-
changer made of PCM, which improved cooling uniformity, and charge
rate. Xu et al. [254] tested the PCM Macro-Capsule in vertical and hor-
izontal latent heat thermal energy storage tanks to balance the perfor-
mance of a heat pump and found that the vertical tank could enhance
the charging and discharging time by 20%. However, it also reduced the
thermal capacitance by 8.2%. Plate-type heat exchangers were explored
by Saeed et al [255] for the purpose of load shifting, and with 83.1%
efficiency, the system was properly used despite the weak conductiv-
ity of the PCM. Sun et al. [256] discovered the efficient utilization of
PCM in a flat-heat-pipe system and a thermoelectric unit. Such a system
handled intermittent heating efficiently, while the required coefficient
of performance exceeded 1.7. Sun et al. [257] tested vented slabs with
paraffin-based PCM in a wind tunnel. They concluded that increasing
air temperature from 35°C to 55°C could result in the increase rate of
charging as 201.7%. A slight increase in airspeed, in the turn, enhanced
the charging speed by 8.7%.

Wadhawan et al. [258] have installed a Lauric acid PCM in a TESD
solar air heater with a result of 86.47% increase in output air tempera-
ture. Abuska et al. [259] have examined the PCM plate structure hon-
eycomb fins in the solar air heater. The result is that the PCM charge-
discharge time is reduced, and the daily thermal efficiency was slightly
reduced by using the honeycomb fins. Chen et al. [260] installed a
closed-loop solar air heater with PCM. The result is that the PCM was
raised to a temperature of 68.52°C and 132 minutes via the multichannel
flat-tube thermal storage unit.

6.5.2. Passive Laboratory-Based PCM Applications

Fateh et al. [26] developed a dynamic computational model to inves-
tigate the performance of PCM in wall insulation. The simulation results
match experiments, showing that PCM inserted between insulation lay-
ers can reduce overall heat energy consumption by 15% and delay peak
heat flow for 2 hours. Further experiments utilize the dynamic wall sim-
ulator to incorporate PCM with cellulose-based insulation from Evers
et al. [261]. The activity of PCM in the dynamic model showed that the
paraffin wax based PCM exhibited peak heat flow reduction by 9.2%.
For the salt-hydrate PCM, its majority’s influence was ineffective as the
material was hygroscopic.

Ryms and Klugmann-Radziemska [262] experimented with vari-
ous PCM-containing construction bricks: microencapsulated PCM pow-
der, liquid RT22, and RT22 impregnated into a porous aggregate. The
last case was most promising, solving cost issues of microencapsulated
PCMs. Li et al. [263] tested PCM wallboard melting at 12, 18 and 29°C
and concluded that the Mode 2 PCM performed the best for an all-year
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perimeter comfort. Drissi et al. [264] developed solar energy storage
concrete panels with PCM aggregates, the maximum improvement be-
ing the peak temperature decrease by 1°C. Saxena et al. [265] proved
that PCM bricks reduce the body temperature by 4-9.5°C, providing pas-
sive cooling. Wang et al. [266] tested a PCM honeycomb wallboard,
finding improvements for the next day’s heat mitigation. Li et al. [267]
used PCM with nanoparticles in the window system to improve the per-
formance of solar thermal inertia and the optical system. It also beat
the performance of the pure PCM window. The CuO nanoparticles’ per-
formance was the best, mostly when the level was below 1% and the
diameter was below 15 nm.

The efficiency of PCMs in enhancing building thermal comfort and
energy efficiency is demonstrated by several successful real-world ap-
plications [268]. The use of passive PCM walls in homes and businesses
in a variety of European climes is one noteworthy example.

(1) Residential structures in Italy: A study conducted by [269] in-
vestigated the application of PCM-enhanced external walls in
Mediterranean-climate residential structures in Italy. To absorb
extra heat during the day and release it during cooler evenings,
PCMs were placed in the walls. This led to more consistent in-
door temperatures and a 25% decrease in energy use for heating
and cooling. The study emphasised how PCM walls can lessen the
need for conventional HVAC systems, particularly in areas with
significant daily temperature fluctuations.

Commercial Buildings in Germany: In an attempt to lessen the
cooling burden on office buildings, PCM panels were erected in
the walls of these structures. Peak indoor temperatures were low-
ered by up to 4°C during the summer months thanks to the PCM
panels’ absorption of heat during the day. As a result, the build-
ing’s cooling energy consumption was reduced by 30% while pre-
serving cosy interior conditions. According to [270] the integra-
tion’s success proved that PCM walls are appropriate for temper-
ate areas where heating and cooling are needed at different times
of the year.

Spain-Refitting initiatives: PCM-based retrofitting initiatives in
Spain have also shown significant energy savings. PCM-enhanced
gypsum boards were used in a large-scale refurbishment of an of-
fice building in Barcelona to control interior temperatures with-
out the use of mechanical cooling. During the trial, occupants’
thermal comfort improved, and energy savings of up to 20% were
noted [271].

Passive PCM walls were utilized in low-energy house complexes
in France to lessen the requirement for cooling in the summer
and heating in the winter. The incorporation of PCMs into the
walls led to a smoother indoor temperature profile and a 15% de-
crease in heating and cooling energy use. According to the study
by [272] the PCMs were essential for preserving thermal comfort,
especially in the event of severe weather.

PCMs have been incorporated into roofing systems to regulate
inside temperatures in Australia, where heating and cooling are
required based on the season. According to a 2019 study by [273]
PCM-enhanced roofing can effectively lower peak indoor temper-
atures by up to 5°C during the sweltering summer months. As a
result, more than 20% less energy was needed for air condition-
ing. The PCM reduced the demand for heating in the winter by
absorbing solar heat during the day and releasing it at night. The
versatility of PCMs in areas with significant climatic fluctuations
is demonstrated by this application.

PCMs were used in the facades of a sizable commercial building
in Beijing, China, to maximize energy efficiency in both the sum-
mer and the winter. According to [274] this integration resulted
in a 30% reduction in the building’s energy usage for cooling and
a 20% reduction in winter heating demands. This was accom-
plished by employing PCMs, which could release stored heat on
chilly winter nights and absorb surplus solar heat in the summer.
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The efficiency of PCM facades in controlling heating and cooling
loads in harsh climates is demonstrated by this example.
PCM-infused concrete flooring has shown promise in enhancing
interior thermal comfort and lowering heating needs in cold cli-
mates like Canada. In residential structures, adding PCMs to con-
crete flooring decreased heating energy usage by 15-25%, ac-
cording to a study by [275]. Even in the chilly winter months,
the PCM floors helped keep the interior temperature steady by
absorbing solar heat during the day and releasing it at night.
PCMs have been used in air conditioning systems to maximize
cooling efficiency in the hot and dry UAE climate. PCM-based
thermal storage was evaluated by [276] in a big office complex’s
centralized HVAC system. The PCM reduced energy consumption
by 25% by storing excess cooling capacity during off-peak hours
and releasing it during moments of peak demand. The potential
of PCMs to increase energy efficiency in areas with high cooling
demands was shown by this application.

[277] investigated the use of PCMs in passive solar buildings in
Switzerland, where they were incorporated into the walls and
ceilings to store solar heat during the day and release it at night.
This prevented overheating in the summer and decreased heat-
ing loads in the winter by 30%. The study also demonstrated that
PCMs could reduce the building’s overall energy consumption by
25%, making them an essential part of low-energy building de-
signs.

)

(8

©)]

These European examples demonstrate the usefulness of PCMs in
both new construction and retrofit applications. PCM-enhanced walls
and panels lessen dependency on conventional HVAC systems by ab-
sorbing and releasing heat over daily temperature cycles, which results
in significant energy savings and improved thermal comfort. These case
studies show that PCMs provide a flexible way to increase building en-
ergy efficiency, especially in regions with large temperature swings.

Furthermore, an effective use of PCMs in residential and commer-
cial buildings has been established in a few numbers of studies, demon-
strating their potential for energy savings and realistic payback periods.
By retrofitting the walls and ceilings with microencapsulated paraffin-
based PCMs, [240] investigated the effectiveness of PCMs in a commer-
cial building. According to the findings, overall energy consumption
was reduced by about 20%, mostly as a result of fewer cooling loads
in the summer. Additionally, the peak load on the HVAC system was
decreased, which led to lower operating expenses. Depending on the
building’s consumption and local energy costs, the project’s payback pe-
riod was projected to be between six and eight years. This study showed
that PCM integration could have a major positive impact on commercial
buildings located in regions with notable temperature swings. The per-
formance of PCM-enhanced walls in a residential building situated in
Spain’s Mediterranean climate—which features hot summers and mod-
erate winters—was examined by [271]. By stabilising indoor temper-
atures during periods of high heat, the PCM utilised in this study con-
tributed to a 25% reduction in HVAC energy use. According to the study,
PCM retrofits in residential buildings are a practical way to save energy
because they have a payback period of about seven years. The study
also showed how passive temperature control could reduce the need for
active heating and cooling systems for residents. In Germany, which has
a moderate climate with a balanced need for both heating and cooling,
[270] studied the incorporation of PCMs into office buildings. The of-
fice buildings’ PCM-enhanced ceilings and walls resulted in an average
18% yearly energy savings. The installation’s entire payback period was
anticipated to be five years, and it greatly decreased the building’s need
on air conditioning during warmer months. The building’s high energy
requirements for temperature control and the comparatively cheap cost
of PCM materials were blamed for this very short payback period. In
another study [271] used PCM-enhanced gypsum boards to retrofit a
university building in Spain. Significant energy savings were achieved
in the university building, especially in the cooling demand. Energy sav-
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Table 1

Summary of payback periods and energy savings.
Location Building Type Energy Savings  Payback Period
u.s. Commercial 20% 6-8 years
Spain Residential 25% 7 years
Germany Office 18% 5 years
Spain University 15-20% 6 years
Switzerland  Residential 10-15% 8-10 years
China High-Rise Residential 30% 6 years
India Residential (Roof System) 20-25% 5-6 years

ings of 15% to 20% were achieved by the PCMs’ ability to collect surplus
heat during the day and release it during colder times. This upgrade was
expected to pay for itself in six years. The significance of choosing PCMs
that are especially appropriate for the thermal loads and environment
of the building was also emphasized by this study. The effects of PCM-
integrated wallboards in a residential structure were examined. Accord-
ing to the study, PCM integration resulted in a 10%-15% decrease in
the yearly energy consumption for heating and cooling. Switzerland’s
colder climate made heating more important, and the PCMs helped re-
duce temperature swings, especially in the spring and autumn transition
months. Because of the lower energy costs and more moderate energy
savings compared to areas with more extreme temperatures, the pay-
back period for the PCM retrofits in this study was somewhat longer,
estimated at 8 to 10 years. The usage of PCMs in high-rise residential
structures in China, where regional climatic variations are substantial,
was investigated by [274]. To improve thermal insulation and lower
cooling loads, this study concentrated on integrating PCM into exter-
nal wall and window glazing systems. In areas with hot summers and
chilly winters, the researchers found that energy savings might reach
30%. According to the study, PCM retrofits were very successful in low-
ering peak cooling loads, enhancing indoor comfort, and postponing the
entry of heat into the building. These retrofits showed promise for large-
scale residential applications, with an expected payback period of about
six years. In an experimental investigation, [265] examined the perfor-
mance of PCM-based roof systems in a tropical environment in India.
During the hottest summer months, the PCM roof was able to lower in-
ternal temperatures by 5 to 7°C, which significantly decreased cooling
loads. According to the study, energy savings ranged from 20% to 25%
annually, with a payback period of roughly five to six years. This study
showed how PCM systems have a lot of promise in areas with long cool-
ing seasons and high sun radiation. Table 1 summarizes payback periods
and energy savings across different locations and building types.
Although PCM’s technical benefits in lowering energy use and im-
proving thermal efficiency are widely known, PCM-equipped buildings’
comfort and user experience are just as crucial to their widespread use
[278]. How well PCMs control indoor temperatures, preserve constant
thermal conditions, and reduce temperature swings affects occupant
comfort. By absorbing and releasing heat during moments of peak heat-
ing or cooling, PCMs, when appropriately integrated, can improve in-
door thermal comfort and create more stable and comfortable living
or working spaces. Nevertheless, there are obstacles in the way of at-
taining the highest level of user satisfaction with PCM systems. For ex-
ample, poor heat regulation due to incorrect installation or insufficient
PCM material might cause discomfort for the user, especially in severe
weather. Furthermore, although PCMs’ passive design helps lower HVAC
energy consumption, it might not offer the instant temperature adjust-
ment that some consumers anticipate from active systems like air condi-
tioners. To learn more about how PCMs affect occupant comfort, future
studies should concentrate on evaluating user feedback in buildings that
have these materials installed. Comparative studies of indoor tempera-
ture differences between buildings with and without PCMs and surveys
of building inhabitants to determine subjective comfort levels could be
included in future research. Concerns regarding possible overheating
or undercooling in PCM-based passive systems must also be addressed
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because they could impact user acceptance, especially in areas with ex-
tremely high or low temperatures. User satisfaction results from real-
world case studies have been encouraging. For instance, residents of a
Spanish residential structure with PCM walls reported better thermal
comfort in the summer and winter because the PCMs helped to lessen
temperature swings inside. Similarly, workers in a German office block
with PCM had a more stable interior environment, which raised their
level of satisfaction and productivity. These illustrations highlight how
PCMs can improve thermal comfort; however, to guarantee that PCM
systems satisfy the requirements of a wide variety of building occupants,
more thorough user acceptability studies are required. In conclusion, the
building industry’s adoption of PCMs is greatly influenced by user com-
fort and acceptance. For PCM systems to be widely used in residential,
commercial, and industrial buildings, it will be crucial to make sure that
their implementation and design take occupant demands into consider-
ation.

7. New Perspective PCM with Lightweight Aggregate

There are ways of integrating PCM directly into lightweight aggre-
gates, as found in the literature. The concrete PCM can be built in dif-
ferent ways, which can be direct, rather than through a shape-stabilized
PCM, immersed, or encapsulation. The light aggregate used is pumice,
perlite, expanded shale/clay, vermiculite, or slate. The support in the
LWA method is medium in the PCM. While the process using shape-
stabilized PCMs requires fine powders, such as silica fume or graphite,
the coarse group works with whatever fine material is available. The
PCM-LWA composites are generally manufactured through vacuum or
direct infiltration. However, because of the inventors removed the air
present in the LWA using pores, it led to the successful filling of 74%
by absorption during the vacuum. Direct immersion has less than 18%
absorption. However, the process is very complex and takes a long time.
Thus, it is not commonly used [279-283]. Several facts should be consid-
ered for the usage of PCM lightweight aggregate in mortar or concrete:
the type of aggregate, PCM absorption capacity, impregnation method,
PCM type and viscosity, the type and size of aggregates (porosity, pore
size, aggregate size, surface area, temperature, pressure, and time of im-
pregnation), coating materials, performance testing. It was established
that PCM absorption capacity in the case of LWA is influenced by aggre-
gate size and porosity and it is recommended to remove particles smaller
than 150 pm to avoid PCM adhering to the surface instead of entering
the pores. In order to prevent PCM leakage and improve mechanical and
thermal properties, the use of coatings can be suggested: cement paste,
silicone, bituminous emulsion, epoxy resin, graphite powder, and silica
fume [284-292]. The conducted experiments revealed that low thermal
conductivities of the coating may slightly reduce the efficiency of latent
heat storage within the encapsulation produced using porous material
particles impregnated with PCM. Two strategies have been presented
to achieve maximal thermal storage capacity; they include. Overall, the
best outcomes were achieved when the cover particles were significantly
smaller and up to ten times better at accumulating energy than the larger
covers packed or empty in bulk.

The studies by [293,294] revealed that adding graphite to PCM re-
duced the loading or unloading time of thermal energy, without compro-
mising the energy storage capacity. However, these outcomes were not
fully replicable for mortar combination weighting particles in the range
5-10mm. Additional studies of thermodynamics and thermal transfer
processes of materials with PCMs were conducted by [295-297]. Simi-
larly, [298,299] researchers concluded that mortars and concretes with
paraffin-based PCMs had the risk of catching fire in the case of exposure
to flame despite their thermal properties being superior to those of PCMs
with hydrated salt. For one of the reviews, a differential calorimeter was
applied, and organic PCM based on soy wax and butyl stearate was pre-
pared before being vacuum impregnated in previously crushed pumice
particles. It included graphite powder as well for ameliorating the ther-
mal conductivity. In the study, the PCM-LWA comprised of different
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Fig. 10. Thermal cycle performance of lightweight aggregate (LWA) PCM con-
crete.

minute amounts of graphite were to be examined to estimate their ther-
mal properties and Latent heat storage over 100 temperature changes
at a given time as a result of Peltier cells. The results demonstrated an
overall effectiveness for the heat energy storage of organic LWA PCM.

Further studies have conducted microstructural analyses of PCM-
LWA (SEM, DSC, TGA, and FTIR), and mortars and concrete with PCM
effects in thermal and thermo-mechanical properties [300-303]. Most
research shows that including PCM in concrete yields a lower com-
pressive strength regardless of the technique. Several studies [157,304—
317] demonstrated that two considerations explain why the compres-
sive strength of microcapsule-enriched concrete was substantially lower
than that of conventional concrete. The first is the sensitivity of the mi-
crocapsules during the mixing, which results to PCM leakage, and the
second is the substantial difference in strength between the microcap-
sules and the concrete. As a result, the highest method for maintaining
the strength while also preventing leakage is the macro encapsulation
with a strong shell. There is a need for further research so that PCM-LWA
optimal mechanical, thermal, and heat-storage properties for structural
concrete are developed. Additionally, research should be conducted to
determine the effects of the coating and supporting materials on the me-
chanical and thermal behaviour of PCM-LWA. The thermal cycle perfor-
mance of lightweight aggregate PCM is shown in Fig. 10.

Practical applications may be discouraged by the difficulties of incor-
porating PCMs into existing building designs, particularly in retrofitting
efforts. PCMs can be readily incorporated into the design of new build-
ings from the beginning, while retrofitting existing structures with PCMs
frequently calls for more involved interventions. The compatibility of
PCMs with current structural materials, such as brick, concrete, or in-
sulating layers, is one of the primary obstacles. For instance, removing
walls, ceilings, or floors to install PCM panels or layers may result in
higher labour costs and potential structural damage. The integration ef-
ficiency also depends on the building’s thermal performance and exist-
ing insulation. For instance, the efficiency of PCMs may be put at risk in
an older structure with inadequate insulation or high thermal leakage,
as energy losses from thermal leaks may offset the benefits of PCMs. For
this reason, before choosing the optimum PCM integration technique,
the thermal performance of the building must be assessed. Putting PCMs
in places that will optimise their effect on temperature regulation—such
direct contact with heat sources like those that the sun initiates or en-
hances through south-facing walls or roofs—is another difficulty. This is
frequently not feasible in existing constructed environments. Addition-
ally, PCMs’ ease of integration into an existing building may be signif-
icantly impacted by their encapsulation technique. Microencapsulated
PCMs that can be distributed in plaster or concrete offer comparable
levels of thermal efficiency to macro-encapsulation, despite the latter’s
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potential ease of installation in walls, ceilings, or floors. However, it
must carefully consider curing timeframes and material compatibility,
since these factors may have an impact on the retrofitting procedures.
The disruption of building occupants is another factor. There will be a
lot of construction work involved in the installation of PCM materials,
which will result in noise, dust, and the temporary eviction of residents.
This can be a major obstacle, particularly in commercial or residential
buildings where continuous occupancy is necessary. Nevertheless, there
may be ways to overcome these obstacles and make it easier to incor-
porate PCMs into already-existing structures. Prefabricated PCM panels,
for example, can be made to match the size of existing walls or ceilings,
negating the need for significant structural changes. Additionally, inte-
grating PCM retrofits with other energy-saving strategies, such replacing
windows or improving insulation, can increase the building’s total en-
ergy efficiency and justify the PCM technology investment. Ultimately,
the integration of PCMs with existing building designs presents issues
mostly related to labour, cost, and other compatibility factors. However,
these can be lessened with careful planning and appropriate integration
with more comprehensive energy retrofitting techniques. For PCMs to
reach their full potential in terms of existing buildings’ energy efficiency,
these obstacles must be removed.

Comprehension of the results of the review studies is displayed in
Table 2.

8. Suggestions and Discussion

After reviewing the papers listed in this study, we can state that a
thorough debate regarding the development of model that unites me-
chanical and thermal behavior for PCM-based building units is still lack-
ing. The contact phenomenon’s boundary condition, which simulates
how bodies interact across boundaries, is necessary for both actions.
Contact is a non-linear process that depends on surface roughness, con-
tact surface, adhesion (chemical, frictional, mechanical anchoring), and
other local factors that influence the behaviour of the bodies when they
are in contact (level macro). Similarly, through the phenomenon of
contact, PCM construction systems and PCM encapsulates (micro and
macro-encapsulation) within a structure interact across their bound-
aries. Specifically, the articles cover effects like material compatibility
and presume knowledge of the subject without going into detail. Deter-
mine the ability of a PCM encapsulation to store and release thermal
energy based on its constituent parts and the processes of heat transfer
by conduction, convection, and radiation. These methods of transfer are
all dynamic processes that depend on the surface of contact between the
bodies.

The proportionality coefficients like conduction (k), convection (h),
and radiation (s) that correspond to each heat transfer mechanism also
have an impact on the transfer of energy through heat flow. These con-
stants are obtained through experimentation, and their values vary de-
pending on the material type, surface roughness, and radiant energy
emissivity of each material. The transfer of stresses, deformations, and
loads through the borders of the elements of the materials with PCMs is
more uniform and effective the greater the contact area. In other words,
the contact phenomenon determines the thermal and mechanical be-
havior of materials with PCM. Furthermore, as the contact phenomena
affect the mechanical such as state of stresses and deformations as well
as the thermal behavior of constructive systems with PCV,, it is crucial
to create and thoroughly examine a Multiphysics model that couples
these two behaviors. However, the continuity of the contact area also
affects how effective the transfer is; near discontinuities (holes, sudden
changes in shape, material change), and stress concentrators are cre-
ated, causing stress gradients to shift, and causing maximum stresses
that lead to non-linear failures. Regrettably, discontinuities of this kind
exist in both macro and microencapsulated materials, influencing their
mechanical properties.

There may be variations in the contact phenomenon between macro-
and micro-encapsulation. For example, the container conditions that
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Table 2
Summary of the list of studies on PCM building applications.
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Author Methodology Findings

Challenges

[233] Exp Peak temperature reduction: 7.19-9.18%. Thermal amplitude reduction:
40.67-59.79%. Cooling load reduction: 38.76%

[318] Sim PCM wallboards transfer peak load to off-peak. Thermo-physical properties
impact heat transfer

[319] Sim Office temps rise by 4°C in winter, lower by 7°C in summer

[320] Exp, Sim PCM maintains indoor temp at 27°C. Cost-effective and energy-efficient

[321] Sim Proposed PCM variant useful for evaluating building applications

[322] Exp PV-PCM systems are less cost-effective in Ireland, and better performance
in Pakistan

[323] Exp Microencapsulation outperforms macroencapsulation. Heat capacity
improved by 40%, indoor temperature lowered by 1.1°C

[324] Exp CuO nanoparticles improve thermal storage. PCM structure stores and
releases significant heat

[325] Sim PCM is effective in cold climates, but the high initial cost is not recovered
in summer

[326] Sim Evaporative layer more cost-effective than thermal insulation

[327] Exp Free-form PCM is better for temperature regulation. Microencapsulated
PCM is better for reducing melting time

[328] Exp, Sim PCM reduces heat flux by 38.45%. Annual cost savings: $456.75 vs.
$831.60 for non-PCM

[329] Exp Fins improve heat distribution, reducing peak temperatures. Honeycomb
fins outperform machined fins

[330] Exp, Sim 2°C indoor temp reduction, 17-25% energy savings. PCM layer
optimization improves energy efficiency

[331] Exp PCM with ventilation improves indoor temperature fluctuations

[332] Exp, Sim PCM reduces energy use and carbon emissions

[333] Exp, Sim Increased PCM reduces air temperature fluctuations. Performance
improves with increased melting temp

[334] Exp PCM reduces daily temp swings by 4°C. Summer energy savings up to
34.5%, winter up to 21%

[335] Sim, Opt PCM reduces overheating by 7.23%, efficiency at 35.49%

[336] Exp PCM reduces indoor temp by 2.18°C. 20.9% peak hour cooling reduction,
cost savings of $1.35/day

[3371 Sim, Opt Thermal load reduction from 6.7% to 33.1%. Reduced electric resistance
use by up to 26.7%

[123] Sim PCM’s latent heat function and lower thermal conductivity in liquid form

are highlighted by the considerable reduction in annual energy
consumption to 564.17 MJ/m2 with a 20.9% ».

[338] Sim Using TRNSYS 16, the study models ASHRAE Standard 140-2001 case 600
in Toronto, changing the h-value from 0.5 to 10 W/m2K. The findings
indicate that PCM thickness reduces surface temperature sensitivity, with
phase transformation occurring more frequently during the winter.

[62] Exp In addition to determining the quantity of cold stored in a thermal storage
system, the study investigates the "free-cooling principle" and examines
how various velocities affect air cooling.

[339] Exp With a three-hour discharge and one-hour charging delay, PCM is being
investigated as an indoor temperature regulator. It attenuates temperature
peaks by 2.5°C and reduces thermal amplitude by 50%.

[340] Exp The PCM blind has a cooling effect that varies according to the angle
between the blind and the user’s position, with surface temperatures never
rising above 28°C. In closed slats, the cooling effect is more effective. For
PCM regeneration, airflow and angled windows work better together.

[341] Opt By enhancing insulation capacity, PCM passive LHTES systems can lower
peak loads for heating and cooling, make use of renewable energy sources,
and enhance building envelope performance.

[342] Exp The study looked on measuring the heat transfer coefficient in PCM
modules using external fins. The use of vertical fins shortened the cooling
time from 60°C to 45°C and enhanced the rate of heat transmission,
according to the results. In comparison to the situation without fins, the
heat transfer coefficient for natural convection was also calculated,
demonstrating a reduction in temperature difference for 20 mm fins and a
fourfold increase for 40 mm fins.

[343] Opt Numerical solutions to verify and improve scaling analysis predictions for
the Elemental Composite Heat Sink’s (ECHS) critical dimensions are
presented in this study. It establishes a significant upper-bound dimension
for the CHS and tackles the problem of incomplete melting leading to
underutilisation of PCM latent heat. All CHS with high conductivity BM
and high latent heat storage PCM can use the thermal design process.

[344] Exp To reduce energy consumption, a new double-layer radiant floor system
with phase change material is suggested. This system can store heat or
cold energy during off-peak hours and use it during peak hours.

Simulation validation is needed. PCM type and climate zone affect
performance; further study needed

Simulation validation with other software. Experimental
validation required

An experimental study is needed. PCM optimization for climate
required

LCCA needed. Study expansion to various climates required

No experimental or modeling validation

Design and optimization of heat exchangers needed

Full-scale testing is required. Simulation validation suggested
No climatic consideration. Simulation validation needed
Alternative PCM types for cost efficiency. LCCA suggested

Experimentation needed. Expansion to other climates required
Mediterranean climate focus; other climates needed. Simulation
needed for further evaluation

Experimental study for PCM thickness optimization needed

Mathematical model needed for validation
Study expansion to hot climates. Optimization strategies needed

A mathematical model is needed. Techniques for full PCM
melting/solidification needed

More research on winter heating and solar integration required
Study confined to one climate zone. An extended testing period
needed

Study expansion to various climates. Economic analysis needed

Experimental validation is required. Studying across multiple
climates needed
Simulation validation and a longer test period needed

Experimental validation needed for insulation thickness

Specific climate and PCM cost should be considered while
choosing PCM parameters. The designer should also take the
project’s PCM installation orientation into account.

For best results, simulations can be run for different outside
convective heat transfer coefficients, PCM placements in building
envelopes, and thickness ranges of 1 mm to 10 mm.

It is possible to create and conduct experimental research on cold
storage base products, calculate buffer emptying and air-cooling
periods, and study the real-time integration of cold storage
systems into building envelopes.

The PCM’s melting temperature and layer thickness can be
optimised through research. Studies in technical economics can be
conducted using passive solutions.

The study investigates the mechanism of heat discharge in
PCM-filled slats at night, analysing the effectiveness of slanted
windows and ventilation systems, and investigating possible
methods for validation.

Numerical forecasts are evaluated, simulation hysteresis is
evaluated, results from various PCM modules are compared, and
thorough lifecycle evaluations are carried out utilising Life Cycle
Assessment approaches for economic and environmental issues.
Although simulation results can corroborate experimental data,
the study could not find any connections to precisely forecast the
heat transfer coefficient for the analyzed geometries.

The thermal design process works for finned-CHS setups, but to
guarantee accuracy and generalisability, it must be validated for
different PCM and BM combinations. Numerical and simulation
data can be used to validate experimental findings.

The study’s main objectives are to optimise a double-layer radiant
floor system using phase change material, compare materials,
assess durability and practicality in real-world settings, and
evaluate performance in summer cooling mode.
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hold the base PCM in place during macro-encapsulation result in a more
equal contact surface. This feature may guarantee a larger surface area
of contact between the inside surface of the container and the base PCM;
as a result, there is a higher chance of achieving increased energy trans-
fer efficiency from the base PCM to the container and vice versa. In terms
of the interface between the exterior surface of the macro-encapsulate
and the building component, a larger contact area could not be guaran-
teed; hence, the heat transfer might be less efficient. As was previously
indicated, if the building element material and the conduction, convec-
tion, and radiation coefficients that correspond to the PCM base mate-
rial’s container are ideal for the application, there will be more efficient
energy transfer in addition to the contact area. Lastly, a rough surface
reduces the contact area and influences convection and thermal emis-
sivity, which lowers transfer efficiency. As a result, the roughness both
inside and outside of the materials in PCM systems may have an impact
on the heat transfer mechanisms.

In contrast, the effective contact surface in micro-encapsulation
might depend on several factors, including the microcapsule’s geome-
try and the quantity of it present in the building materials. If there are
spaces or another substance between the microcapsules that have dif-
fering thermal characteristics, the phenomena may not be as effective.
Theoretically, if there are numerous microcapsules in the material, their
surface area is greater and thus, the energy transfer needs to be more ef-
ficient. Surface roughness and stickiness can similarly influence energy
transfer phenomena as macro-encapsulates, however, the behaviour of
these physical phenomena can be more erratic. Given that microencap-
sulates are typically combined with other substances while still fresh
and then allowed to set or harden. To guarantee compatibility in the
system, chemical adhesion in the cover of such encapsulates is particu-
larly desirable.

Furthermore, the uneven surface form of the microcapsules may lead
to the development of mechanical anchoring. Lastly, according to the
references included in this article, adding microcapsules to Portland
cement-based materials disrupts the hardening or hydration processes,
which has an impact on the materials’ resistance. Therefore, it makes
sense to create microencapsulates that are compatible with these mate-
rials’ hydration processes. This suggests that changing the contact area,
roughness, and adherence in the building system using PCM materials
is a way to improve the efficiency of the transfer processes in PCMs.
This is related to selecting the proper PCM foundation, cover, container,
and encapsulation procedure based on the building’s application. A crit-
ical analysis of the literature demonstrates how micro-encapsulation in-
creases cycling stability and enhances heat transfer to the surrounding
area due to its large surface-to-volume ratio and phase separation limi-
tation to microscopic distances. The cost of the microencapsulation sys-
tem may be higher than that of other thermal storage techniques. Con-
versely, the examination of the updated publications demonstrates that
macro-encapsulated PCM is simply manufactured in any size or form
to accommodate various uses. The microencapsulation of PCM does not
call on a pre-established procedure, in contrast to micro-encapsulation,
which encapsulates the PCM using a variety of approaches and strate-
gies.

Now let’s talk about the thermophysical characteristics of PCMs,
which may be found using differential scanning calorimetry (DSC) tech-
niques. These characteristics, which include heat of fusion, specific heat,
and melting point, are important for PCM classification. It may be ar-
gued, although, that additional techniques like the T-history method
and traditional calorimetry techniques, have also been employed. Ther-
mograms are used to analyze these qualities, allowing us to determine
the phase transition temperatures at which melting and freezing occur.
However, because the values of these attributes are determined using
small samples, large samples may yield different results. Unlike previ-
ous reviews, this one makes clear how sophisticated PCM systems are.
This article outlines a few of the micro and macro-specific characteristics
that affect the behaviour of PCM materials. Even though much research
works mention compatibility and assume a thorough understanding of
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Fig. 11. Biobased PCM in thermal energy storage for a sustainable future.

the idea, there is currently no consensus to establish a model that repre-
sents all the multiphysics phenomena that are coupled in each material
component of the system and the entire system of materials for con-
struction with PCMs. Furthermore, there are no guidelines for building
procedures or for the mechanical, thermal, and microstructural charac-
terization that would allow us to determine the index parameters needed
for PCMs to perform properly.

Every newly developed material must have its constitutive equations
or behavior rules under various load states to forecast service condi-
tions and failure theories, which can then be applied in real-world sce-
narios. PCM-containing composites are not an exception. This is on top
of the previously mentioned complexity. We want to highlight the nu-
merous research studies that have examined the applicability of em-
ploying biomass feedstocks that have the potential to be converted into
PCM materials, high-value goods. Testing integrating this biobased PCM
with building materials has not yet been carried out to confirm the me-
chanical and thermal qualities. Similarly, several studies examine the
thermophysical characteristics of various organic bio-based PCMs; the
outcomes of these studies’ thermophysical performance indicate that re-
placing petroleum-derived PCMs with more ecologically friendly biolog-
ical or bio-based ones is feasible. However, it is important to assess the
mechanical qualities of building materials that contain biobased PCMs
before putting them to use in real-world situations.

Natural, renewable materials like fatty acids, plant oils, or other or-
ganic substances are used to make biobased PCMs as shown in Fig. 11.
Although the topic of PCMs made from biobased raw materials is still
in its infancy. The primary kinds of biobased materials along with their
respective melting temperatures and enthalpies of fusion has been ex-
plored in [345].

The sustainability and environmental advantages of these materials
have drawn attention. The biodegradability of biobased PCMs makes
them more environmentally friendly than petroleum-based substitutes,
which is one of their main benefits. Furthermore, biobased PCMs usu-
ally produce fewer environmental contaminants during production and
disposal at the end of their useful lives, and they are generally less haz-
ardous.

Fatty acid-based PCMs, for instance, have been effectively applied
to building materials to improve thermal performance and lower car-
bon emissions. The application of a biobased PCM in a passive cooling
system for a residential building in a Mediterranean climate was illus-
trated in a study by [130]. When incorporated into external walls, the
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Comparison of Biobased and Petroleum-Derived PCMs.

Petroleum Derived PCM

Property Bio-Based PCM
Initial Cost (per kg) $10-$15
Thermal Efficiency High

Environmental Impact

Stability Moderate (Susceptible to degradation)
Availability Limited
Payback Period 3-5 years (Depends on Climate)

Low (Biodegradable, Renewable)

$5-$8

High

High (Non-Renewable, Pollutive)
High (Chemically Stable)

High (Widely Available)

5-7 years

biobased PCM reduced cooling energy use by 20% throughout the sum-
mer while preserving internal comfort. Furthermore, the carbon foot-
print of the biobased PCM was 30% less than that of a petroleum-derived
PCM utilised in a comparable project, according to their environmental
impact study. Another illustration is the EnergieSprong refit project in
Germany, which uses biobased PCM panels. To improve thermal comfort
in shared housing without the need for active heating or cooling systems,
biobased PCMs were included into prefabricated panels. According to
the project, residents experienced more consistent indoor temperatures
all year round, and annual heating and cooling expenses were reduced
by 25% [346].

Petroleum-derived PCMs, which are mostly made of paraffins, have
been utilised extensively because of their accessibility, affordability,
and consistent thermal performance. The high latent heat capacity of
paraffin-based PCMs enables them to store and release thermal energy
effectively. However, because they come from fossil fuels, these ma-
terials are non-renewable and have greater environmental effects than
biobased alternatives. Petroleum-derived PCMs have many real-world
applications as already been covered in above portion, especially in
large-scale projects where cost is a key consideration [347] study, for
instance, examined the application of paraffin-based PCMs in a US com-
mercial office building. During the summer, the PCM-enhanced ceiling
panels greatly increased energy efficiency by reducing cooling demands
by 35%. Due to lower HVAC energy use, the installation’s high upfront
costs were offset by a five-year return on investment. Another exam-
ple is the integration of a petroleum-derived PCM into the facade of a
Singaporean high-rise building to lower the need for inside cooling. In
the tropical region, the PCM facade decreased peak inside temperatures
by 4°C, resulting in a 20% reduction in cooling energy usage [348].
The project’s life cycle study identified the environmental impact as a
drawback, even though the petroleum-derived PCM was economical and
offered notable energy savings.

Based on studies, a table has been created Table 3 that contrasts
PCMs made from petroleum versus biobased sources according to at-
tributes including stability, cost, thermal efficiency, and environmental
impact.

In addition, this paper presents a synopsis of current studies that
examine experimental studies of thermal performance for PCM-LHTES
building applications in heating, cooling, and hybrid modes. A facility
that most closely mimics PCM’s real-world performance is needed for
experimental research. Following the introduction of the idea of LHTES
in buildings, the study examined current literature and categorized it
into four primary groups: (1) large-scale prototypes; (2) small-scale pro-
totypes; (3) retrofitting; and (4) laboratory-based partitions/modules.
Presented literature in each category was then classified into two sets:
active and passive systems and a summarization of all applications was
briefed.

It is clear from a careful analysis of the body of research that more
work is needed in several areas to improve our knowledge and applica-
tion of Phase Change Materials (PCMs) in construction. The following
are topics needing further research and testing that may yield tangible
improvements:

e To improve their practical applicability, future studies on Phase
Change Materials (PCMs) in buildings should concentrate on a few
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important areas. These include creating Multiphysics models to com-
bine thermal and mechanical behaviour in PCM-based systems and
conducting tests to describe how building materials and PCM encap-
sulation interact under different load conditions.

It is crucial to optimize PCM encapsulation methods, investigate
the performance variations between micro and macro-encapsulated
PCMs, and conduct research on the effects of encapsulation material
and shape on energy transfer efficiency. To verify practical applica-
tion, compatibility tests between biobased PCMs and building mate-
rials such as concrete should be carried out to evaluate their effects
on mechanical and thermal qualities. Furthermore, improving ther-
mophysical characterization methods for large-scale PCM samples
will yield more precise information for practical building uses. Creat-
ing uniform standards for mechanical, thermal, and microstructural
characterization will guarantee uniformity in a range of building set-
tings.

Lastly, data on the energy efficiency, durability, and user comfort of
biobased PCMs will be obtained through their integration in actual
building situations, including pilot projects in various climates. By
filling up current gaps, these research avenues hope to improve PCM
performance and sustainability in the building industry.

9. Conclusion

Thermal comfort sustainability and a reduction in building energy
consumption are made possible by a promising technology known as
phase change material acting as a latent heat storage system. Based on
the size of the facility used, four categories were created for the experi-
mental studies:

i. Although there are several benefits to using small-scale prototypes,
such as changeable control, there is a chance that they won’t pre-
cisely reflect reality.

ii. Although large-scale prototypes are costly, they work quite well un-
der real weather conditions.

iii. The possibilities for retrofitting applications are constrained.

iv. While research conducted in laboratories can be readily modified,
they are fraught with uncertainty when contrasted to more practical
studies that make use of prototypes.

In conclusion, it is important to note that PCMs represent a promising
emerging technology that can aid in the decrease of energy use in the
direction of sustainable living. Such an area has an infinite horizon of
untapped potential, hence further well-organized and guided study is
needed.

It is recommended that more attention be paid to biobased PCMs in
light of the long list of references concerning the encapsulation of both
micro and macro techniques for building materials that are discussed
and critically reviewed in this work; these are being the most practical
way of including PCMs in building materials. However, further inves-
tigation is required to process these PCMs and ascertain their macro-
and micro-level thermophysical and mechanical behaviour to assess the
viability of replacing Petroleum-derived PCMs with more ecologically
friendly bio-based ones. An additional practical option for adding PCMs
to concrete is provided by the superb PCM with lightweight aggregate
concrete.
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Again, though, further investigation is required to produce and com-
prehend a structural PCM lightweight aggregate concrete with practi-
cal mechanical, thermal, and heat-storage qualities and to understand
how these features affect PCM-LWA when coated and supported by var-
ious materials. Therefore, the current review could be a valuable tool
for identifying areas for further research and development in the areas
of PCM techniques and methods, as well as for helping to optimize pro-
cesses and develop new encapsulation techniques to achieve the desired
mechanical and thermal properties of the finished product for the most
economical use of microencapsulated phase change materials possessing
the largest capacity for thermal energy storage.
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