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Abstract

The transition from conventional fossil-fuel vehicles to electric vehicles (EVs) is critical
for mitigating environmental pollution. The placement of electric vehicle charging stations
(EVCS) significantly impacts the utility operator and electrical network. Inappropriately
placed EVCS lead to challenges such as increased load, unbalanced generation, power
losses, and reduced voltage stability. Incorporating distributed generation (DG) helps miti-
gate these issues by maximizing EV usage. This study focuses on optimizing EVCS and
DG placement in radial distribution networks. The methodology employs a backward
and forward sweep method for load flow analysis and utilizes the particle swarm opti-
mization (PSO) algorithm to determine optimal EVCS and DG locations and sizes. This
approach, validated on the IEEE-33 bus system, outperforms existing methods. Results
indicate a 2.5 times greater power loss reduction compared to simulated annealing (SA),
1.6 times better than artificial bee colony, and parity with genetic algorithm (GA). Overall,
the PSO algorithm demonstrates superior optimization effectiveness and computational
efficiency, showcasing 1–2.5 times better performance than other methodologies. Employ-
ing this approach yields significantly improved results, making it a promising technique for
optimizing EVCS and DG placement in distribution networks.

1 INTRODUCTION

The continual progress in transportation has increased in the
last decades, boosting the development of the automobile sec-
tor. Increasing oil prices, global pollution, sustainable qualities,
carbon dioxide (CO2) emissions, and commercial potential
have made electric vehicles (EVs) attractive in the transporta-
tion industry. Electric vehicle charging stations (EVCSs) can
lower CO2 emissions. Numerous advantages are offered by
the invention of EVs, such as improvement in air quality and
the capability to save fossil fuels. Many nations implement
battery-powered ways of travel throughout the world to reduce
pollution [1]. As a result of this reason, EVs deployed by dif-
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ferent countries reached so high, for example, 1.5% in China,
28.8% in Norway, and 6.5% in the Netherlands. Furthermore,
soon 100% use of EVs will be proposed by some countries as
the permanent mode of transportation. By the end of the year
2022, it is estimated that 35 million EVs will be on the road
throughout the world [2].

In the power system, the controller of the power distribution
system faces new obstacles in facilitating long-term charging
services for the EV users due to the increasing proliferation of
EVs. A huge number of charging infrastructure is required due
to the increased prevalence of EVs in the urban sector to charge
EVs. The automobile industry is based on the framework pro-
vided by EVCSs and the power supplied to EVs. Despite the
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reality that transportation using EVs is eco-friendly, the electri-
cal power supply is significantly affected by the charging of the
EVs [3].

The capacity of the feeder to transfer load and reserve capac-
ity of the substation is lowered by the increasing system demand
due to the charging of EVs. When refurbishing the system using
the alternative feeder, it is important to continuously trans-
fer load. Consequently, the power system is affected directly.
Along with this, the purpose of EVs has not been fulfilled if
the traditional sources of power charge EVs. On the contrary,
the benefits of EVs are increased if the EV load is charged
using wind or solar energy. The batteries of EVs are charged
by the grid. The changes in the network that is delivered to the
charging station of EVs, facilities of affiliated consumers, and
distributed generators (DGs) are provided by the distributed
system operators following European Union electricity power
rules [4].

Mostly, the production of electricity is provided by gas or
thermal-based power generation. The power demand increases
when the EVs are charging, which unbalances the power sys-
tem. The distributed generators are placed in the distribution
network (DN) to compensate for the unbalance issues. Due
to the increase in high power consumption, it is very difficult
for the planning engineer to incorporate many EVs into the
power distribution network. In the total life cycle, the loca-
tion of the EVCS is incredibly important because of which,
the operational effectiveness and level of service of EVCS
are strongly affected by the early efforts in the development
of the EVCS. Nominal voltage variations and proper place-
ment of EVs help to minimize energy loss to a minimum. The
location of EVs determines the cost of installing a charging
station.

The batteries of the EVs are charged when riding on the
road, and adopting suitable techniques is greatly affected by the
selection of the optimal location of the EVCS. The functioning
of the power system is significantly affected by the capability
and position of the EVCS. Because of the current and voltage
limit violation, the distribution network is weak, and planning is
made impossible by the unplanned deployment of EVs. Simul-
taneously the optimal location of EVCS is significantly affected
by the road networks. Because of this, the optimal allocation
of EVCS road and distribution networks should be considered
[5]. When the EVs charge their batteries at the charging station,
power loss, and bus voltage are important factors that must be
considered.

The proposed work is summarized as follows:

∙ The objective functions, that is, voltage and power loss,
are calculated using a computationally efficient load flow
method, that is, backward and forward sweep (BFS).

∙ The impact of EVCS on the distribution network is investi-
gated, and distributed generators are incorporated to mitigate
these impacts.

∙ The Particle Swarm Optimization (PSO) technique demon-
strates the performance of the distribution network, that is,
the IEEE-33 bus system, and compares the outcomes of
PSO with the other existing approaches.

The rest of the paper is organized as follows: Section 2
presents a background study on the optimal placement of
the electric vehicle charging station and distributed generators.
Section 3 presents the proposed optimization and load flow
analysis. In Section 4, outcomes are presented and discussed,
and Section 5 presents the conclusion of the proposed work.

2 RELATED WORK

The management of charging and discharging of EVs by using
optimization and control methodologies is discussed in the
study [6] to examine the effect of EVs on the distribution net-
work. However, it is lacking in real-world case studies. The
optimal location of EVCS is determined, and by using different
solution techniques, the best solution is obtained by reviewing
the problem formulation offered by different researchers in [7].
However, it lacks specific insights into results, obvious advan-
tages and drawbacks of various tactics, and applicable instances.
The impact of electric drive vehicles (EDVs) on the reliability
of the power system is examined by using different optimiza-
tion models in batteries of EDVs, such as expected energy not
served (EENS) and loss of load expectation (LOLE) in [8].
However, the absence of precise quantitative data and thorough
real-world case studies slightly weakens the study’s merits.

The authors in [9] aimed to minimize peak loads caused
by multiple EVs charging at electric vehicle supply equipment
(EVSEs) by using an EVSE selection scheme in conjunction
with a peak load management model. This is done by making
a profit from the unused stored energy in EV batteries within
the framework of time-of-use pricing (TOUP). Moreover, grid
stability and optimization cost are achieved. As demand-side
management (DSM) is a critical coordinator of the energy trans-
action in addition to the shift from fossil fuel to renewable
power sources. In [10], the implementation of several DSM
approaches in the context of modern power grids is reviewed.
Moreover, to facilitate reasoning through all research that is
taken into consideration, existing DSM techniques are outlined
and classified along with informative suggestions.

The analysis investigates the influence of EVCS load on
IEEE-33 bus test systems, such as power loss, voltage sta-
bility, and reliability indices in the study [11]. The study has
drawbacks, such as omitting factors like system dependability,
network expansion needs, and traffic congestion, which should
be investigated in further study. Whale optimization algorithm
(WOA) and grey wolf optimization (GWO) optimization strate-
gies are used for the allocation of EVs in the radial distribution
network by the division of EVCS services into three differ-
ent areas in [12]. There are several noticeable restrictions to
take into consideration though. Although the study acknowl-
edges the trade-off between client convenience and network
performance, it does not provide a definitive answer. Addition-
ally, the research lacks thorough validation, such as simulations
or real-world case studies, which might enhance the practical
applicability of the suggested technique.

The impact of plug-in hybrid electric vehicles on the
power system is demonstrated to investigate the reliability
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characteristics of the distribution network using the Monte
Carlo simulation technique [13]. The impact of optimal place-
ment of EVCS on the distribution system network is examined
with overlapping residential areas, road networks, and super-
markets. The high load is obtained on the distribution network
because of high demand, so different charging scenarios are
considered for the placement of EVCS. The 2 m point esti-
mation is used to deal with EV uncertainties. The objectives
are optimized using the Harris Hawks optimization (HHO) and
other differential evolution (DE) techniques [14].

The problem in the EVCS’s optimal location in the dis-
trict of Beijing is considered a dual objective optimization
model because of the increased and decreased cost. When the
load on the charging station increases, geographic information
system (GIS) is used to provide the extension as alternative
placement sites to reduce the power losses and cost of the
power system [15]. The impact of the allocation of charging
stations for electric vehicles on the power system in Guwa-
hati, India, is demonstrated in [16], such as power loss, voltage
stability, reliability, and accessibility of EV users. These are
taken as a multi-objective framework. These optimal placement
problems are solved using different optimization techniques,
including teaching learning-based optimization (TLBO), Pareto
dominance-based hybrid algorithm, and chicken swarm opti-
mization (CSO). The analysis is done on a 25-node road
network superimposed with an IEEE 33-bus system.

The interaction between distribution network (DN) and
electric vehicles demonstrates the bi-level of EVCS and DG
allocation. The k++ clustering algorithm develops the daily sce-
nario of photovoltaic wind load. A more advanced harmony
PSO method is utilized to resolve the bi-level programming
problems [17]. Some research work reduces the severity of
EVs. The improvement in voltage is done, and power loss of
the radial distribution network is reduced by incorporating the
DGs in a distribution network. This work uses a mixed-integer
non-linear programming technique [18].

Under the different load conditions, power loss reduction in
a distribution network is done by the optimal placement and
sizing of DGs using the genetic algorithm (GA) technique [19].
The distributed generator’s location and optimal sizing in the
distribution network are done utilizing the one-rank cuckoo
search algorithm (ORCSA) and fuzzy approach to lessen the
system’s power losses. The analysis is done on the 15, 33, and
69 bus systems [20]. In the study [21], power losses are min-
imized by incorporating the shunt capacitors and DGs in the
system in the distribution network. As the suitable position of
capacitors and DGs in the system is a major concern, the power
loss index (PLI) approach is used for finding the location of the
shunt capacitor, and the index vector method (IVM) approach
is used for finding the DG location in the system. The size of
DGs and capacitors are determined by the optimization tech-
niques, that is, Gbest guided artificial bee colony (GABC), based
on the population and a meta-heuristic approach. When many
plug-in electric vehicles charge at the charging station, the load
on the grid increases, which results in power loss, voltage insta-
bility, and overloading, so the RT-SLM (real-time smart load

management) control technique is used to reduce energy losses
and generation costs [22].

During the peak load, EVS’s impact on the voltage of the dis-
tribution network is examined. The power factor correction and
voltage regulation problem of EVCS is solved by providing the
reactive power compensator [23]. The impact of plug-in electric
vehicles (PEVs) on the distribution network is examined. So,
the optimal placement of distributed generators is performed
in the distribution network using a GA to mitigate the impact
of PEVs [24]. The impact of sizing and optimal instalment of
the plug-in electric vehicle on an unbalanced radial distribu-
tion network is examined. The impact on voltage stability and
power loss is found, and for mitigation, distributed generators
are located at different locations in the system using PSO. This
analysis is done on the 19 and 25 bus test systems [25].

In IEEE 33-bus, IEEE 69-bus, and Indian 85-bus sys-
tems, the power losses are minimized, and voltage profiles are
improved by the optimal allocation of distributed generators by
using the meta-heuristic algorithm hybrid grey wolf optimizer
[26]. The placement of EVs in the distribution network is illus-
trated using the modified primal-dual interior-point algorithm
in the IEEE 123-node test system [27]. The PSO and bac-
terial foraging optimization algorithm (BFOA) techniques are
used to place the EVs optimally in the distribution network.
The power losses are reduced, and voltage stability is maximized
by installing a photovoltaic (PV) system in the distribution net-
work [28]. The voltage stability is improved, and power losses
are decreased by the optimal placement of the distributed gen-
erator and network reconfiguration of the distributed network
using adaptive shuffled frogs leaping algorithms [29].

Overall, the studies under consideration provide important
contributions to the crucial areas of placing distributed gen-
erators in power distribution networks and improving electric
car charging infrastructure. Their ability to handle immediate
problems regarding energy efficiency, power loss reduction,
and voltage profile enhancement is only one of their many
capabilities. Many publications use tried-and-true optimization
techniques and evaluate their approaches using IEEE test sys-
tems, which lends some usefulness to their study. Some studies
also take into consideration cutting-edge elements like vehicle-
to-grid (V2G) technology, which makes their contributions
applicable to current grid concerns. There are, however, flaws
that these studies all share. Many lack rigorous comparisons
with alternative optimization techniques, which makes it diffi-
cult to evaluate their effectiveness fully. Sometimes there are
little details regarding the optimization parameters, or algo-
rithms used, which makes replication and implementation
difficult. Additionally, most articles only sometimes validate
their findings using actual case studies or data, which limits their
usefulness. Future research in this field should aim for more
thorough validation, thorough methodology explanations, and
robust comparisons with existing optimization techniques to
improve their contributions.

The proposed work is motivated by the existing research on
the optimal placement of EVCS. This work investigates the
impact of the optimal placement of the EVCS and DGS. The
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PSO technique is suggested for the placement of EVCS. To
compensate for the impact of the optimal allocation of EVCS,
that is, reduction in voltage profile and enhancement in the
power losses, distributed generators are utilized. This work is
investigated on the IEEE 33 distribution network.

3 METHODOLOGY

Throughout the world, the electrification of the transport sector
is normalized, which has increased anxiety because of the seri-
ous concern about environmental pollution and the reduction
in natural resources like fossil fuels. The most effective way to
reduce transportation pollution is to electrify the transportation
sector. As a result, it is estimated that the number of plug-in
electric vehicles in the next generation will increase significantly.
The number of charging stations increased due to the use of
EVs. So, the power grid is severely affected by EVCS. Partic-
ularly, the functioning of the power grid is greatly affected by
the location of the EVCS. That is why the optimal location of
EVCS in the distribution network is very important. Here, by
considering the optimal loads of the buses, EVCSs are installed
in a distribution network. The voltages and power losses are
obtained by the load flow analysis.

3.1 Problem formulation

3.1.1 Objective function

Power loss minimization is the objective function and is
represented by:

F = min (Ploss ) =
nb∑

j=1

I 2
j R j (1)

where F is the overall power loss of the system, nb is the number
of branches, Ij and Rj are the current and resistance of the jth
branch.

3.1.2 Operational constraints

The following constraints apply to the objective function given
in Equation (1).

Equality constraint
Equality constraint is given as follows:

a. Active and reactive power balance

The active and reactive power generation and consumption
are balanced in each bus in the distribution network.

∑
Power In −

∑
Power In = 0 (2)

Psubstation
+

Nbus∑
k=1

PDG (k) −
Nbranch∑

j=1

P
j

loss
(k, k + 1)

−

Nbus∑
k=1

PD,k − Pk
EVCS

= 0 (3)

Qsubstation
+

Nbus∑
k=1

QDG (k) −
Nbranch∑

j=1

Q
j

loss
(k, k + 1)

−

Nbus∑
k=1

QD,k = 0 (4)

where

Psubstation and Qsubstation
= Real and reactive power supply

from the substation.
PDG (k) = Real and reactive power injection at kth by DG.
P

j

loss
= jth branch Real and reactive power loss.

PD,k = kth bus real and reactive demand.
Pk

EVCS
= Electric vehicle charging station load at kth bus.

Nbus = Number of buses in the distribution network.
Nbranch = Number of branches in the distribution net-

work.

Inequality constraints
The inequality constraints are given as follows:

a. Voltage limit: Limit the lowest and maximum permissible
voltage levels (0.95–1.05 p.u.) at each bus in the network to
maintain voltage stability.

Vmin,k ≤ Vk ≤ Vmix,k k = 1, 2, 3, ……… , Nbus (5)

b. Limit of DG injection: The amount of active and reactive
power that DGs inject must stay within certain limits.

Pmin
DG ,k

≤ PDG ,k ≤ Pmax
DG ,k

(6)

Qmin
DG ,k

≤ QDG ,k ≤ Qmax
DG ,k

(7)

where

Pmin
DG ,k

= Minimum active power limit of kth DG
Pmax

DG ,k
= Maximum active power limit of kth DG

Qmin
DG ,k

= Minimum reactive power limit of kth DG
Qmax

DG ,k
= Maximum reactive power limit of kth DG

c. Line current: The maximum allowable line current shall not
be exceeded by the actual current flows in any given line.

I j ≤ I max
j j = 1, 2, 3……… , Nbranch (8)

where

I j = Actual current in jth branch
I max

j = Maximum limit of current in jth branch
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FIGURE 1 Single-line diagram of the distribution network.

The objective function is calculated by the load flow analysis.

3.2 Load flow analysis

The load flow analysis determines static performance in any dis-
tribution network. Two inputs, that is, line data and load data,
are required for load flow analysis to find the characteristics of
an electrical network. Once the voltage profile of any generator,
load, or network is determined, it is easy to find the real power
losses, reactive power losses, and branch current flowing from
each branch.

The single-line diagram of the distribution system is shown
in the Figure 1 and the power flows are determined by the two
recursive Equations (9) and (10) in load flow analysis. The load
flow analysis is utilized to determine the power losses and volt-
age profile of the IEEE 33-bus system. To find the load flow is
the objective function.

Pk+1 = Pk − PLoss,k − PLk+1 (9)

Qk+1 = Qk − QLoss,k − QLk+1 (10)

where Pk and Qk are the real and reactive power flowing out of
the bus and Pk+1 and Qk+1 are the real and reactive loads at bus
k + 1.

Ploss (k, k + 1) = Rk

P2
k
+ Q2

k

V 2
k

(11)

Qloss (k, k + 1) = Xk

P2
k
+ Q2

k

V 2
k

(12)

The buses k and k + 1 is connected by the line section and
the power loss in it is calculated by the Equations (3) and (4).
Where Ploss (k, k + 1) and Qloss (k, k + 1) are real and reactive
power losses.

PT ,loss (k, k + 1) =
∑n

k=1
Ploss (k, k + 1) (13)

QT ,loss (k, k + 1) =
∑n

k=1
Qloss (k, k + 1) (14)

Similarly, total power losses are determined by adding power
losses in all line sections as given in Equations (6) and (7), where
PT , loss (k, k + 1) and QT, loss (k, k + 1) are the total real and
reactive power losses in the line section.

The proposed work performs a load flow analysis on the
IEEE 33 bus system by the BFS method. Figure 2 shows
the flow chart of load flow analysis by the BFS method.
It is popular among network operators and engineers due
to its rapid convergence, precision, ease of implementation,
and adaptability. The BFS method’s complexity is based on
the distribution network’s topology and size. The complex-
ity of this approach is linear with respect to the number
of branches and buses. This method is reliable and compu-
tationally effective for small and medium-sized distribution
networks like the IEEE-33 bus system as discussed in this
work.

Some factors make the BFS method more effective than
the Newton-Raphson method or any other method because
of some factors. These factors involve a constant change in
the connected load, imperfection and uncertainty of network
parameters, a greater number of branches and nodes, and a high
R/X ratio. So, it is encouraged to use the BFS method for load
flow analysis because of the high convergence [30] and low com-
putational load. In this method, load flow analysis is performed
in iteration using recursive equations. Kirchhoff ’s current and
voltage laws are considered in each iteration of the BFS method
to determine the current and voltage [31]. One recursive equa-
tion is a backward sweep, and the other is a forward sweep, as
shown in Figure 3.

Backward sweep: The current and load flow solutions in each
branch are calculated by keeping the voltage constant in the
backward sweep. It begins from the end node’s branch and
moves toward the source node. Each load flow of the branch
is updated by considering the previous iteration’s voltage.

Forward sweep: The forward sweep calculates the voltage by
keeping the load and current values constant. It starts from the
branch of the source node towards the end node. Mainly the
forward sweep is used to find the voltage at the branch of
the reference node of the feeder. In this method, the voltage
of the network is set to 0.99 p.u. value at the start. The volt-
age, real, and reactive power losses are calculated using the BFS
load flow analysis. The optimal placement of EVCS and DGs is
determined by the PSO algorithm.
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FIGURE 2 Flow chart of load flow analysis by backward and forward
sweep method.

3.3 Particle swarm optimization

The PSO working principle is based on the animal’s social
behaviour, like fish schooling, birds flocking, and bee swarming.
They work in the flock and optimize their search to hunt for
the best food place. Similarly, the search for the optimal loca-
tion of the EVCS is determined by this technique. Kennedy and
Eberhart presented work on PSO at the conference on evo-
lutionary computation in 1995 [32]. The research is based on

the solutions to different optimization problems by PSO. The
particles represent the solution to the optimization problems,
and the population of solutions is known as the swarms in this
algorithm. Velocity and position are the two main properties of
the particles. Figure 4 shows the start of the search process; the
initialization of particles is done by random positions. The par-
ticles’ position changes with velocity to the new position after
each iteration [33]. They reach the new global best Gbest and per-
sonal best Pbest position. The Pbest is the best position of the
particle achieved till now, and Gbest is the overall best position
of the particle.

Based on personal and global best, Vpbest and Vgbest are the
velocities of the particles. The idea of velocity is used to express
the personal best and global best positions. The acceleration
coefficient is weighted by the random terms so that the effi-
ciency of convergence and local search to the optimum global
position is determined. By considering the different numbers of
acceleration, different Gbest and Pbest positions are obtained. The
equation below is used to determine the velocity of each agent
after each iteration.

V k+1
i

= wk
×V k+1

i
+C1 × rand1 × (Pk

Best ,i
− X k

i
+C2

× rand2 ×

(
G k

Best ,i
− X k

i

)
(15)

where

Vi = velocity of the particle i

C1nd C2 = acceleration coefficients of the particle i

rand1 and rand2 = random variables
PBest = personal best of the particle i

GBest = global best of the particle i

w = inertia weight factor of the particle i

The weight function is given by:

wk
= wmax −

(
wmax − wmin

kmax

)
× k (16)

where

wmax = maximum weight
wmin = minimum weight
k = current iteration
kmax = maximum iteration

The above equation calculates the velocity at personal best
and global best. In the searching space, the current location of
the particle is obtained by the equation given below:

X k+1
i = X k

i +V k+1
i (17)

i = 1, 2… .., n,

where

Xk = current position of the particle i

Xk+1 = New position of the particle i
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FIGURE 3 Backward and forward sweep method.

FIGURE 4 Concept of searching points by particle swarm optimization.

Vk+1 = New velocity of the particle i

n is the number of particles in the search space.

PSO is a metaheuristic optimization approach that may be
used for distribution network problems, including optimum
power flow and voltage management. Due to its capacity to
solve complex, complicated optimization problems with var-
ious objectives and constraints, PSO is well-suited for these
situations. Moreover, it is computationally efficient, making it
applicable to real-world applications. Furthermore, PSO can
locate global optimum solutions, which is essential in dis-

tribution network optimization because poor solutions can
result in major operational and financial effects [17]. The
PSO’s complexity depends on different factors like convergence
behaviour, the dimensionality of problems, implementation, and
population size. The PSO is the most efficient algorithm com-
putationally for small to moderate dimensions problems and
populations. Its effectiveness is greater than the computational
cost of finding the optimal location of electric vehicles.

PSO has many advantages over the GA, simulated annealing
(SA), ABC, and other optimization techniques. The requirement
for memory storage is less. By using this algorithm, a better solu-
tion is obtained, programming is easy, and convergence is faster
than GA.

3.3.1 Fitness Function

The fitness function, which guides the search for optimal solu-
tions, is an essential part of the PSO method. In our research,
the fitness function was created to assess how well potential
solutions performed in terms of reducing power losses and
enhancing voltage profiles within the distribution network. We
have described the formulation and integration of this fitness
function into our PSO implementation to direct the algorithm
towards identifying the best placement of DGs and EVCSs in
the IEEE 33-bus distribution network. In our work, the fitness
function is calculated by:

Fit = PL +VD

The above equation shows that the fitness function (Fit)
is calculated by the sum of the voltage variation (VD) and
power loss (PL). The PSO method aims to find the optimal
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3180 ALTAF ET AL.

FIGURE 5 Convergence plot of particle swarm optimization.

TABLE 1 Parameters of particle swarm optimization.

Parameter Description Value

Matrix Maximum number of iterations 50

n-pop Size of swarm 150

w Inertia weight 0.7298

c1 Cognitive acceleration coefficients 1.4962

c2 Social acceleration coefficients 1.4962

configuration of EV stations that results in the smallest power
loss and voltage variation by minimizing this fitness function
over several iterations.

The change in the fitness value over the number of iterations
is determined by the convergence graph as shown in Figure 5.
the x axis of the figure shows the number of iterations while
y axis shows the Best Value that is the fitness value. The plot-
ted line in the graph shows how the PSO algorithm converges
towards an optimal solution over time.

3.3.2 Parameters of particle swarm optimization

In the proposed work, the EVCS and DGs are placed opti-
mally in the IEEE 33-bus distribution network using PSO. The
parameters used in the proposed techniques are mentioned in
Table 1.

3.3.3 Procedure of particle swarm optimization

As shown in Figure 6, following steps are involved in the place-
ment of EVCS and DGs by using the PSO technique in the
IEEE 33-bus distribution network.

1. Read the bus and line data and initialize EVCS and DG
numbers.

2. Initialize the number of iterations and other parameters of
PSO along with EVCSs and DG lower and upper bound
limits.

3. Initialize the velocities and positions of the particle’s
population in the swarms.

4. Set the iteration to one.
5. The load flow analysis evaluates the best particle’s index,

velocities, position, and power losses.
6. Global best and Local best are selected.
7. By Equations (1) and (3), velocities and positions are

updated.
8. The best particle index for EVCS and DG is determined,

and the best value is evaluated.
9. Global best and local best of swarms are updated.

10. Repeat steps 6–12 with incremental iteration by 1 if
iterations reach the maximum iteration.

11. The optimal location of EVCS and distributed generators
(DG), along with capacities, voltages, and power losses, are
printed.

12. End.

4 RESULTS AND DISCUSSION

The proposed work is tested on the IEEE 33 bus radial distri-
bution system (RDS), as shown in Figure 7. The IEEE 33-bus
system has 32 branches and 33 nodes. The RDS’s operating volt-
age and base values are 12.66 KV and 100 MVA. The total real
power demand of the system is 3715 kW, and the total reactive
power demand of the system is 2300 kVar. The number of EVs
at charging stations in each region in IEEE-33 bus system has
been considered. when determining the charge criteria for that
region. A combination of DC and AC chargers has been used to
fulfil the various demands of these areas. In this case, in region
1, nine vehicles may be charged effectively without going over
the load capacity due to a combination of rapid DC charging
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ALTAF ET AL. 3181

FIGURE 6 Flow chart of particle swarm optimization with the optimal position of electric vehicle charging station (EVCS) and distributed generation sources
(DGs).

(one DC charger at 120 kW) and various AC chargers (four
AC chargers at 3.3 kW each). The charge profiles for regions
2, 3, 4, and 5 are also customized according to the regions’ par-
ticular infrastructure requirements and EV numbers. A direct
approach-based load flow analysis determines the distribution
network’s voltage and power losses. The real power loss of the
system is recorded as 206.6303 kW, and the reactive power loss
is 137.8083kVar. The minimum value of the voltage is 0.9023
p.u. at bus 18, and the maximum value of the voltage is 0.9900
p.u. at bus 1. The EVCS are optimally installed in the IEEE
33-bus radial distribution network. The installation of EVCSs
increases the power losses of the system. DGs are installed in
the system to compensate for these power losses. The opti-
mal placement of EVCSs and DGs is done using the PSO
algorithm.

The proposed approach to the impact of EVCS and DGs on
the voltage profile and power losses of the radial distribution
network is investigated in five different cases, which are given
below:

∙ Case 1: Load flow analysis of radial distribution network such
as IEEE 33-bus system with existing load

∙ Case 2: Optimal placement of three EVCSs in IEEE 33 bus
radial distribution network.

∙ Case 3: Optimal placement of five EVCSs in IEEE 33 bus
radial distribution network.

∙ Case 4: Optimal placement of one DG id IEEE 33 bus radial
distribution network.

∙ Case 5: Optimal placement of two DGs in IEEE 33 bus radial
distribution network
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FIGURE 7 Single-line diagram of IEEE-33 bus distribution networks with electric vehicle charging station (EVCS) and distributed generation sources (DGs).

4.1 Effect of EVCSs and DGs on the IEEE
33 Bus distribution network’s voltage profile

The voltage profile of the IEEE 33 bus system is highly affected
when EVCSs are installed. When EVCSs are installed at differ-
ent nodes in the system, the demand for EVs increases. The
voltage of the system decreases to a specific limit due to the
increasing demand for EVs. The placement of DGs compen-
sates for the voltage in the IEEE-33 bus system. Figure 8 shows
the voltage profile of the IEEE 33 bus distribution network
when different numbers of EVCS and DGs are placed in the
network. The impact of the optimal placement of EVCS and
distributed generators is demonstrated in the graph. The graph
shows that when the demand for EVs increases at the charg-
ing station, the bus system’s voltage profile decreases. It reduces
voltage when three EVCSs are placed at buses 2, 3, and 4. The
number of EVCS in the system increases to five, and placed at
the location of 2, 3, 4, 9, and 13 results in a further decrease in
the voltage. DGs are located along with EVCSs in the system
to deal with such disturbances. The RDS is positively affected
by the DG placement and maximizes the system’s voltage. The
voltage of the system rises when one DG is installed in the sys-
tem. As the number of DGs installed in the system increases, the
system’s voltage also increases. In any bus system, voltage always
depends on the apparent power losses, so the voltage increment
is done by reducing the power losses in the system. The allo-

FIGURE 8 33-bus distribution network’s voltage profile after electric
vehicle charging station (EVCS) and distributed generation sources (DGs)
instalment.

cation of 1 DG results in the improved voltage of 0.9247 p.u.
in the bus system at bus number 18. Locating two DGs in the
distribution system leads to a further increase in the voltage to
0.9378 p.u. The findings make it clear that improved voltage
profiles are achieved by increasing the appropriate location of
DGs in the system.
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FIGURE 9 Real power loss of IEEE 33 bus system after optimal installation of electric vehicle charging station (EVCS) and distributed generation sources
(DGs).

4.2 Impact EVCSs and DGs on the power
losses of IEEE-33 bus system

When large numbers of EVs are charged at the charging station,
the load at the charging station (CS) increases, resulting in a dis-
turbance in the distribution network. Due to this, the system’s
voltage decreases, and the power losses of the system increase.
At the time of installation of EVCS, some points should be
kept in mind. Try to locate a charging station where EV users
will easily charge their vehicles and have the least power losses.
It is clear from the proposed work that when the number of
EVCSs increases the distribution network’s power losses also
increase. In many research papers, power losses of the distribu-
tion network are lowered by the mitigation of I2R losses. But in
the proposed work, the power losses are reduced by the opti-
mal placement of distributed generators at different locations
in the system so that the voltage of the distribution network
rises with the reduction of power losses in the distribution
system.

4.2.1 Real power losses

When the fixed size of the three EVCSs is placed optimally at
2, 3, and 4 in the IEEE 33 bus distribution network, the real
power losses increase to 219 kW, as presented in Figure 9. Then
five EVCSs are installed at 2, 3, 4, 9 and 13. The real power
losses rise to 255 KW. The losses increase when the load on the
charging station increases. To reduce the losses, a single DG of
size 1310.805 kW is optimally placed at bus 30 in the distribu-
tion network, which lowers the losses to 111. 5737 KW. When
two DGs are installed, one at bus 6 with size 1310.805 kW and
the second at bus 32 with size 873.8701 kW in the distribution
system, lower the real power losses to 71.85 kW.

TABLE 2 Real and reactive power loss with location after installing EVCS
and DGS on IEEE 33 bus system using PSO.

Cases Bus number

Real power

loss (kW)

Reactive power

loss (kVar)

Base – 206.6303 137.3083

3 EVCS 2,3,4 219 169

5 EVCS 2,3,4,9,13 255 144

1 DG 30 111.5737 72.9387

2 DGS 6,32 71.85 49.6781

4.2.2 Reactive power loss

Reactive power losses in the IEEE 33 bus distribution network
grow to 144 kVar when EVCS are optimally allocated at buses 2,
3, and 4 of the bus the system depicted in Figure 10. When the
number of EVCS optimally placed in the distribution network
grows to five at locations 2, 3, 4, 9, and 13, reactive losses also
rise and become 165 kVar. Distributed generators are installed
in the distribution network to lower power losses so that EVs
consumers can easily charge their vehicles without any distur-
bance in the distribution system. One DG is installed in the bus
system at bus 30 with a capacity of 1310.805 kW. The reactive
power loss decreases to 72.9387 kVar. Two DGs with the capac-
ity of 1310.805 and 873.8701 kW are optimally located at buses
6 and 32 in IEEE 33 bus systems. The installation of two DGs
lowers the reactive power loss to 49.6781 kVar.

The real and reactive power losses after the optimal place-
ment of EVCS and DGs in the 33-bus distribution network,
along with their location, are demonstrated in Table 2. It is clear
from the table that the active power losses increase to 255 kW
and reactive losses to 144 kVar after the optimal allocation of
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3184 ALTAF ET AL.

FIGURE 10 Reactive power loss following the installation of electric vehicle charging station (EVCS) and distributed generation sources (DGs).
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FIGURE 11 Total power loss on IEEE- 33 bus distribution network after the integration of electric vehicle charging station (EVCS) and distributed generation
sources (DGs).

EVCS and decrease to 71.85 kW and 49.6781 kVar after plac-
ing the distributed generator. Figure 11 shows the variation in
power losses, and Figure 12 shows the voltage improvement
following the best arrangement of EVCS and DGs.

From the proposed methodology by the optimal placement
of one DG, power losses, including real and reactive, are less-
ened to 46.003% and 47.0253%, respectively. The reduction in
power losses due to the deployment of two DGs is 65.2278%
and 63.8201%, respectively.

Table 3 shows the comparison of the reduction in the power
losses and improvement in voltage profile using PSO with other
optimization techniques such as SA, ABC, and GA. It is clear
from the table that power loss reduction by PSO is 2.5 times
better than SA, 1.6 times better than ABC, and 1 times better
than GA. This also shows that PSO takes less computational
time and is more efficient and flexible than other optimization
techniques.

5 CONCLUSION AND FUTURE
RECOMMENDATIONS

The incorporation of electric vehicles reduces the pollution
resulting from fossil fuel transportation. The increased use of
electric vehicles led to the installation of EVCS. So, the EVCS
placement affects the power system negatively. Here, the impact
of EVCS on the power system is presented using the BFS load
flow analysis. The power losses of the system increase, and volt-
age decreases when many electric vehicles charge. Distributed
generators are placed optimally for compensation for such
losses and improvements in the voltage. Optimal placement is
demonstrated using PSO. The proposed work is validated on
the IEEE-33 bus system. Moreover, the results obtained from
this work ensure the reduction in power losses and enhance-
ment in the voltage profile. The PSO results are compared with
the other existing optimization techniques and show improved
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FIGURE 12 Voltage after the placement of electric vehicle charging station (EVCS) and distributed generation sources (DGs) in IEEE 33 bus system.

TABLE 3 Comparison of power loss reduction in IEEE 33 bus systems using particle swarm optimization (PSO) and other optimization techniques.

Techniques DG location DG size (KW)

Min. voltage

(p.u)

Active power

loss in kW

(Without DG)

Active power

loss in kW

(With DG)

Power loss

reduction (%)

Simulated annealing [34] 30,13 79.45,96 0.918 199.102 178.28 10.458

Artificial bee colony [35] 29,30 1017,628 0.928 210.97 121.89 42.22

Genetic algorithm [36] 29,8,32,16 500,500,500,500 0.932 210.61 78.920 62.52

Particle swarm optimization [Proposed] 6,32 873.8,1310.8 0.9378 206.63 71.850 65.27

results. The reduction in power loss by the suggested algorithm
is 1–2.5 times better than existing techniques. Compared to the
existing techniques, better performance with less computational
time is obtained using PSO.

In the proposed work, the consideration of a medium-sized
network, that is, an IEEE 33-bus system is the limitation. More-
over, dynamic factors like fluctuating load and output of the
variable renewable energy are not considered. This research has
multiple applications in addition to optimizing the locations of
DG and EVCS. It may be enhanced to better manage electric
car fleets across a variety of industries, connect energy storage
devices to distribution networks, and assist grid modernization
programs. Its usefulness also includes resolving cybersecurity
issues in the context of integrating EVCS and DG, demand
response programs, residential microgrid setups, and smart city
planning.

Some of the future recommendations regarding this study are
given below.

1. In this research, we focused on the optimal placement of
EVCSs and distributed generators (DGs) in distribution net-
works to reduce power losses and voltage concerns. While
our study did not get into the scheduling process of EV
charging and discharging. This dynamic scheduling diffi-
culty might be addressed in the future by applying advanced
algorithms to balance grid limits, customer preferences, and

operational efficiency. Integrating placement and schedul-
ing considerations can result in a more holistic approach
to managing distribution network operations in the face of
increasing demand for electric vehicles.

2. In our research, PSO is used for the optimal placement of
EVCS and DGs in IEEE-33 bus systems while its incor-
poration in DSM leads to critical challenges like power
system protection, fraud detection, and fault management.
So, in the future, we will work on the integration of cyber-
security security measures, anomaly detection methods, and
fault detection algorithms into the PSO–DSM framework
to improve the framework’s resilience and flexibility in the
face of problems with power system protection, faults, and
fraud.

3. When it comes to DSM strategies, especially those that
employ the PSO algorithm, it is critical to take the size of the
problem’s instance and the nature of the optimization prob-
lem into account. PSO can be computationally efficient if the
DSM problem has reasonable dimensions, but this efficiency
is dependent on other different variables like the problem’s
complexity and participant distribution. To decide if PSO or
other optimization approaches are best, it is important to
analyze the characteristics of the DSM scenario, including
the number of devices, customers, and the nature of con-
straints involved. The requirements and limitations of the
situation ultimately determine which algorithm is best.
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3186 ALTAF ET AL.

4. Investigate more test cases on the IEEE-33 bus system and
other larger distribution networks in the future.

5. The evaluation of the adaptability and robustness of the pro-
posed methodology is done on larger and more complex
distribution networks like the IEEE-69 bus system, Indian
85-bus test systems, and IEEE-118 system in the future.

6. Variations in daylight load, as well as changes in environ-
mental factors such as irradiance, temperature, and wind
speed which may impact DGs like wind turbines and solar
PV should be considered in the future. Moreover, for more
precise predictions and optimization in complex and large
distribution network settings, combine PSO with machine
learning approaches in the future.

NOMENCLATURE

ABC Ant bee colony
ASFLA Adaptive shuffled frog leaping algorithm
BFOA Bacterial foraging optimization algorithms

CO2 Carbon dioxide
CSO Chicken swarm optimization
DE Differential evolution
DG Distributed generation
DN Distributed network

DSM Demand-side management
DSO Distributed system operators
EDV Electric drive vehicles

EENS Expected energy not served
EV Electric vehicle

EVCS Electric vehicle charging stations
EVSE Electric vehicle supply equipment

GA Genetic algorithm
GIS Geographic information system

GWO Grey wolf optimization
HGWO Hybrid grey wolf optimizer

HHO Harris Hawks optimization
IVM Index vector method

LOLE Loss of load expectation
MPDIPA Modified primal-dual interior point algorithm

ORCSA One-rank cuckoo search algorithms
PEV Plugin electric vehicles
PLI Power loss index

PSO Particle swarm optimization
RT-SLM Real-time smart load management

SA Simulated annealing
TLBO Teaching learning-based optimization
TOUP Time of use pricing
WOA Whale optimization algorithm
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