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A B S T R A C T

Detecting a climate change signal from observed trends in river flows and hydrological extremes is challenging 
given the limited length of observations and the effects of internal climate variability. There has been an 
increasing call to better integrate historical observations with model projections, particularly given apparent 
inconsistencies between observed and projected hydroclimate trends. Here we use the UK as a case study of a 
region with apparent incongruity between past trends and future projections, such as observed summer wetting 
but broad agreement between climate models of reduced summer rainfall and river flows. Applying dynamical 
adjustment shows empirically that internal atmospheric circulation variability was a dominant factor in the 
observed positive summer rainfall trends over 1981–2010. Characterising the impacts of internal climate vari
ability is crucial to fully appraising the range of possible hydrological extremes in current and future climate. 
Hence, we use a single model initial condition large ensemble (SMILE), with RCP8.5 forcing, to drive hydro
logical models at 190 catchments to explore the wide range of past and future river flow and hydrological 
drought trends that could arise due to internal variability. The results place the observed trends in context, 
showing that large ensembles are needed to fully capture the range of variability. This includes robust drying and 
wetting trends that could have occurred, thus in part reconciling the fact that observed trends may at first seem 
inconsistent with projections. Our results further show that the timing of a robust climate change signal above 
historical variability (i.e., a Time of Emergence) in river flows may remain obscured for decades due to the range 
of hydrological variability. There are however clear hotspots, such as decreasing low flows in southwest England, 
with an imminent ToE. However, a late ToE does not negate the potential for increased risk and adaptation 
measures should be formulated before a statistically significant climate signal emerges.

1. Introduction

Hydrological droughts impact water resources and cause significant 
environmental and agricultural impacts, as highlighted by the recent 
2018–19 and 2022 UK droughts (Barker et al., 2024; Turner et al., 
2021). Successive generations of UK climate projections generally sug
gest an increase (decrease) in winter (summer) rainfall over the 21st 
century (Lowe et al., 2018). Hydrological simulations from multiple 
generations of climate change projections broadly agree on a reduction 
in summer flows and an increase in the frequency and severity of UK 
hydrological droughts (see reviews in Chan et al., 2022a; Lane and Kay, 
2023; and the latest UK climate projections 2018 (UKCP18) projections: 
Parry et al., 2024).

Inevitably, there are substantial uncertainties in future projections, 
and there is an important role for analysing historical river flow trends, 
to provide an observational baseline and constrain future projections. In 
the UK, studies have found statistically significant positive trends in 
observed winter flows in northern and western regions, consistent with 
increased winter rainfall (Hannaford et al., 2021; Harrigan et al., 2018) 
associated with recent variability in atmospheric circulation (i.e. winter 
North Atlantic Oscillation) (Hall and Hanna, 2018). In contrast, 
observed trends for other seasons are often weak for both rainfall (e.g., 
Murphy et al., 2023; Ossó et al., 2022) and river flows (Hannaford et al., 
2023a). An example of apparent incongruity between observed trends 
and climate change projections is summer UK rainfall. Positive observed 
summer rainfall trends for the UK were found over the 1951–2016 
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period (e.g., Ossó et al., 2022) and few catchments exhibit statistically 
significant summer river flow trends (Barker et al., 2024; Hannaford 
et al., 2023a). The England and Wales Precipitation (EWP) series 
stretching back to the 1766 does show a long-term trend towards drier 
summers. However, a reconstruction of the record by Murphy et al. 
(2020) with independent predictors showed no significant trend, sug
gesting that poor network density and uncertain data quality in the early 
parts of the record are further confounding factors. This is despite hy
drological projections from multiple generations of UK climate pro
jections suggesting a clear reduction in summer flows by the 2020s and 
continued reduction in the future (e.g., Arnell, 2003; Guillod et al., 
2018; Kay et al., 2021; Rudd et al., 2019). The UK therefore provides an 
interesting case study of a region with apparent discrepancy between 
past trends and model projections at the regional scale, which provides 
water managers and policymakers with a conundrum in long-term water 
resources planning – but one which is shared in many parts of the world 
and for other hydro-meteorological variables (e.g., Piniewski et al., 
2022; Shaw et al., 2024; Simpson et al., 2025).

There are a number of challenges complicating the detection of 
climate change driven trends in hydrological variables. First, studies 
have shown that trends can be highly sensitive to the period over which 
the trend is computed. For example, the presence of particularly wet or 
dry periods at the start of the record (e.g., clustering of droughts in the 
1960s–70s, when many UK river flow records began) means that the 
calculated trend may differ from the trend computed from longer re
cords (e.g., Hannaford and Buys, 2012; Slater et al., 2021). Second, in
ternal variability, the inherent randomness within the physical climate 
system, causes large daily to decadal variability (Lehner and Deser, 
2023). Internal variability can lead to record-breaking events even in the 
absence of a climate change driven trend (e.g., droughts: Chan et al., 
2023; “record-shattering” heatwaves: Fischer et al., 2021 and floods: 
Goulart et al., 2024; Thompson et al., 2017). For example, the chance 
alignment of consecutive dry seasons/years could lead to unprecedented 
multi-year events (e.g., Chan et al., 2022a; van der Wiel et al., 2022). 
Additionally, the observed trend is just one realisation out of many 
equally plausible, alternative realisations that could have happened 
given the combination of both a forced climate change trend and in
ternal variability (Simpson et al., 2025). The effects of internal vari
ability on circulation-related variables, such as rainfall are not well 
sampled (i.e. stochastic, or aleatoric uncertainty is high), and complicate 
the detection of a thermodynamic climate change signal. The response 
of atmospheric circulation to climate change also remains uncertain 
(Shepherd, 2014). Third, human influences on catchments (e.g., land 
use change and urbanisation) and river flows (e.g., abstraction and 
impoundments) are further confounding factors in trend detection as 
flow variability may not fully reflect rainfall variability (Burn et al., 
2012; Hannaford et al., 2023a; Wilby et al., 2017).

Given these challenges, trends calculated from short observed re
cords may not be representative of the long-term climate change signal 
(Wilby, 2006; Wilby et al., 2008). This represents a challenge for 
decision-makers, who are faced with a broad range of potential future 
outcomes from climate models but, at times, either a lack of robust 
trends in the observations or apparent inconsistencies between observed 
and modelled trends (e.g., Shaw et al., 2024). Several approaches have 
been proposed to discern a climate change forced trend from the ob
servations and to better characterise the effect of internal variability. 
First, the “dynamical adjustment” technique aims to estimate the effects 
of atmospheric circulation-related variability in observed trends and 
does not require climate model information (Deser et al., 2016; Guo 
et al., 2019). Lehner et al. (2018) applied the dynamical adjustment 
technique to analyse recent rainfall trends in southwest US and found 
that the observed strongly negative rainfall trend could largely be 
attributed to internal variability. Second, initialised climate predictions 
have also emerged as an approach to sample for climate extremes as they 
isolate internal variability (Kelder et al., 2022; van der Wiel et al., 2019; 
Chan et al., 2023). This includes ensemble reforecasts (e.g., Brunner and 

Slater, 2022; Chan et al., 2024; Kelder et al., 2020), decadal predictions 
(e.g., Thompson et al., 2017) and single-model-initial-condition large 
ensembles (SMILEs) (e.g., Deser et al., 2020). As shown by Deser and 
Phillips (2023) and Jain et al. (2023), SMILEs show the diversity of 
temperature and regional rainfall trends that could have occurred in the 
past 50 years, including both wetting and drying trends when looking 
across all ensemble members, bringing into question the common 
practice of using a small number of ensemble members in multi-model 
ensembles to assess models’ ability to reproduce observed trends. 
SMILEs also provide an opportunity to estimate the signal-to-noise (SN) 
ratio and the Time of Emergence (ToE). The SN ratio refers to the pro
jected change in a certain climate variable (i.e. signal) relative to the full 
range of possible variability over a baseline period (i.e. noise) and the 
Time of Emergence (ToE) is the time period when future changes ex
ceeds historical variability (Hawkins et al., 2020; Hawkins and Sutton, 
2012). This concept has the potential to inform decision-makers about 
the timing of changes over a typical planning horizon. Studies have used 
various methods to estimate ToE for rainfall and temperature using 
observations (e.g., Ossó et al., 2022). Similar techniques have been 
applied for hydrological variables such as river flows (e.g., John et al., 
2023; Muelchi et al., 2021; Müller et al., 2024) and groundwater levels 
(e.g., Ascott et al., 2022) using multi-model climate ensembles. There 
have been a number of calls to better integrate these approaches (e.g., 
Hannaford et al., 2023b; Shaw et al., 2024), leveraging the respective 
benefits of observations (events or changes that unfolded in reality 
which water managers have experience of, or which systems have been 
designed against) and climate model information (that can better 
characterise the effect of internal variability).

While there are national hydrological projections, such as the eFLaG 
projections for the UK by Hannaford et al. (2023b), studies often 
consider a relatively small number of ensemble members and national 
climate projections like the perturbed parameter ensemble (PPE) in 
UKCP18 do not systematically explore the full range of internal climate 
variability. Given the above arguments for improved reconciliation of 
observation- and model-based projections, our overall objective here is 
to use SMILEs to contextualise past trends and appraise trend detect
ability. There has been limited, but growing, use of SMILEs for hydro
logical applications, especially with the availability of dynamically 
downscaled datasets (e.g., Hydro-SMILE − Brunner et al., 2021). We 
apply this to Great Britain (GB), motivated by the noted discordancy 
between recent observations and projections – and given the evolution 
of long-term planning which has increasingly mandated the need to test 
water supply systems to droughts beyond the historical envelope (e.g., 
Counsell and Durant, 2023). However, this is a generic methodology 
that could be applied elsewhere using increasingly available SMILE 
datasets and open-access hydrological models. The specific aims of this 
study are to: 

- Apply dynamical adjustment to estimate the contribution of atmo
spheric circulation variability to observed seasonal rainfall trend;

- Investigate the effects of internal variability in past and future 
rainfall trends over Great Britain (GB) using the 50-member, CRCM5- 
LE SMILE;

- Use SMILE output to drive hydrological simulations at catchments 
across GB to explore past and future trends and variability in river 
flows and hydrological drought characteristics;

- Characterise the range of internal variability and estimate the time of 
emergence (ToE) for future changes in rainfall and river flow 
variables.

2. Methods

Fig. 1 shows a schematic of the methodological steps involved in this 
study. The methods for dynamical adjustment and hydrological 
modelling are further described below.
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2.1. ClimEx CRCM5-LE

This study uses the CRCM5-LE (Canadian Regional Climate Model 5 – 
Large Ensemble) SMILE, dynamically downscaled from the CanESM2 
(Canadian Earth System Model) global climate model (GCM) large 
ensemble using the CRCM5 regional climate model (RCM) (Fyfe et al., 
2017; Leduc et al., 2019). CRCM5-LE was chosen as it is the only pub
licly available dynamically downscaled SMILE covering the UK. CRCM5- 
LE consists of 50 ensemble members at 0.11◦ spatial resolution (12 km) 
across the European domain for the period 1955–2099. The SMILE was 
created by random atmospheric perturbations to the model’s initial 
conditions and forced with observed climate forcings across the histor
ical period until 2005 and the RCP8.5 emissions scenario until 2099. 
Model members gradually diverge due to internal climate variability 
and all 50 members are considered independent after the initial five 
years, as detailed in Fyfe et al. (2017) and Leduc et al. (2019). CRCM5- 
LE has previously been used to evaluate circulation variability (e.g., 
Mahmoudi et al., 2021; von Trentini et al., 2020; von Trentini et al., 
2019), drive hydrological models to understand floods and droughts (e. 
g., Brunner et al., 2021; Faghih and Brissette, 2023; Poschlod et al., 
2020) and to assess wildfire danger (e.g., Miller et al., 2024).

Prior to hydrological modelling, bias adjustment was performed by 

pooling modelled rainfall and temperature, to preserve the range of 
internal variability of the ensemble, and comparing them with obser
vations from 1961 to 2018. Using the power transformation approach 
from Leander and Buishand (2007) for rainfall, adjustments were made 
to match the observed coefficient of variation and monthly means and a 
simple scaling factor for temperature to match the monthly means. 
Fig. S1 shows projected change in bias corrected seasonal rainfall and 
temperature between 2050–2079 and 1981–2010 from the CRCM5-LE 
compared with other climate projections, including the selected 
models within CMIP5, the Euro-CORDEX experiment and the UKCP18 
12 km ensemble.

2.2. Hydrological modelling

The same 190 catchments within GB used within recent UK national 
hydrological projections (Hannaford et al., 2023b) were selected for this 
study. The catchments selected provide good geographic coverage and 
represent a wide range of physical catchment characteristics (selected 
catchments shown in Fig. S2). The set include 80 catchments within the 
near-natural UK Benchmark Network (UKBN) (Harrigan et al., 2018) but 
also include artificially influenced sites with good data quality and long 
data length. The extent of artificial influences for all sites are described 

Fig. 1. Schematic of the data sources and methodological steps involved in this study.
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in the “Factors Affecting Runoff” codes on the NRFA website. Further 
details of catchment selection are detailed in Hannaford et al. (2023b). 
GR6J, a conceptual, daily catchment hydrological model with six pa
rameters available for calibration, was used to simulate river flows. 
GR6J was developed from the four-parameter variant (GR4J) to improve 
simulation of low flows (Pushpalatha et al., 2011) and is increasingly 
used to assess the hydrological impacts of climate change in the UK (e.g., 
Chan et al., 2023; Hannaford et al., 2023b; Parry et al., 2024; Tanguy 
et al., 2023) and for both operational forecasting and water resources 
planning by UK water companies (e.g., Anglian Water, 2022). While 
human influences (e.g. abstraction and discharges) are not explicitly 
included in the hydrological model simulations, their net effects are 
implicitly accounted for as they are calibrated using observed river 
flows. Abstractions or discharges will also change in the future, but this 
is not accounted for in the current framework. As noted by Hannaford 
et al. (2023a), given the large uncertainty associated with future socio- 
economic changes, assuming that current human influences remain 
unchanged in the future is reasonable for most practical applications.

Daily observed rainfall was obtained from the 1 km CEH-GEAR 
dataset (Tanguy et al., 2021). Daily maximum and minimum tempera
ture were obtained from the 1 km HadUK-Grid dataset (Hollis et al., 
2019). Daily potential evapotranspiration (PET) was calculated using 
the temperature-based McGuinness-Bordne equation previously cali
brated for the UK by Tanguy et al. (2018). Catchment average rainfall 
and PET were used as input to the hydrological model and calibrated 
against observed river flows from the UK National River Flow Archive 
(NRFA) for the period 1961–2018. The multi-objective calibration 
strategy from Smith et al. (2019) was used to select the top performing 
parameter set according to six performance metrics for different aspects 
of the hydrograph (Table S1). Details of the calibration strategy are 
provided in the Supplementary Materials (Section S1.1). The top per
forming parameter set was used to simulate river flows for the observed 
period (1961–2018) and for each ensemble member of the CRCM5-LE 
(1955–2099) driven by bias-adjusted temperature and rainfall. Model 
performance for each of the evaluation metrics using the top parameter 
set is shown in Fig. S3.

2.3. Drought event extraction

Hydrological drought events were extracted using a variable 
threshold method (Van Loon, 2015), which is widely used within the UK 
(e,g, Parry et al., 2024; Tanguy et al., 2023). The 70th percentile of the 
flow duration curve (Q70) calculated from simulated river flows over 
the baseline period for each month was chosen as the threshold. A 
drought event is defined as any time period when river flows are below 
the monthly varying Q70. Total deficit was calculated for each drought 
event, defined as the sum of flow deficit (deviation from the Q70 
threshold). The Q70 indicator was chosen as it is commonly used for 
hydrological drought extraction in the UK. This follows the methodology 
set out in the latest national hydrological projections by Parry et al. 
(2024), which noted a Q70 threshold ensures that multi-year droughts 
are adequately pooled instead of being split into multiple events given a 
wet interlude. Sensitivity of the results to the drought threshold is 
examined by extracting droughts using the 90th percentile of the flow 
duration curve (Q90).

2.4. Trend detection

First, the dynamical adjustment technique is used to estimate the 
contribution of atmospheric circulation variability to observed rainfall 
trends, based on the methods outlined in Deser et al. (2016) and O’Reilly 
et al. (2017). In brief, monthly mean sea level pressure (MSLP) over the 
European domain (70◦W-30◦E, 20◦-80◦N) for the period 1836–2022 
were extracted from the NCEP 20th Century Reanalysis version 3 
(1836–2015) and the NCEP/NCAR reanalysis (2016–2022). The two 
reanalysis datasets are regridded to a common 2.5◦ and combined 

following a simple linear scaling method as outlined in Faranda et al. 
(2023). The combined MSLP is then detrended for each month and each 
grid cell. For each month of each year (e.g., January 2015), the top 80 
closest analogues of the same calendar month according to their 
Euclidean distance is selected (e.g., top 80 Januaries between 1836 and 
2022, excluding 2015, closest to January 2015). A sub-sample of 50 
analogues is then randomly selected and linearly combined using mul
tiple linear regression to reconstruct the target SLP field. Detrended 
rainfall anomalies associated with the 50 analogue months are extracted 
from the HadUK-Grid observations and the same coefficients estimated 
from multiple linear regression of the MSLP fields are used to linearly 
combine rainfall anomalies and obtain the dynamically reconstructed 
rainfall for the target month. The random subsampling is repeated 100 
times and the resulting 100 SLP and rainfall maps are averaged. The 
linear trend of the observed and dynamically reconstructed rainfall is 
calculated separately, with the difference between the two indicative of 
the role of circulation variability in the observed trend.

Second, trends for rainfall and simulated river flows are calculated 
for each ensemble member of the ClimEx large ensemble and following 
the resampling procedure outlined in Jain et al. (2023) which was 
developed from the UNprecedented Simulated Extremes using ENsem
bles. (UNSEEN) technique (Thompson et al., 2017). The UNSEEN 
approach aims to sample within initialised climate model simulations 
for rare and unprecedented extremes beyond the historical observed 
record. Resampling was applied to examine the effect of internal vari
ability on trends in rainfall and river flows over the historical period. 
Modelled rainfall and river flows were spatially averaged over England, 
Scotland and Wales and detrended by removing the ensemble mean 
trend over the historical period. Subsequently, ensemble members and 
years were randomly selected to form 10,000 sub-samples of 30-year 
length. Years were selected in consecutive three-year blocks to retain 
any interannual temporal autocorrelation that may exist for rainfall. The 
linear trend, expressed in total rainfall and mean river flows over 30 
years, were calculated for each sub-sample. The Mann-Kendall test for 
monotonic trends was applied to estimate the direction and statistical 
significance in river flow and hydrological drought trends over both the 
historical and future periods, using the Kendall R package (McLeod and 
McLeod, 2015). This follows well established methods for flow trend 
detection in the UK (e.g., Hannaford et al., 2023a; Hannaford and Buys, 
2012; Wilby, 2006). In brief, a positive MK statistic (MKZs) indicates an 
increasing trend. A two-tailed MK test was employed with statistical 
significance assessed at the 5 % significance level (i.e. |MKZs| > 1.96). 
Serial correlation is checked for each catchment and when significant 
autocorrelation is detected, a block bootstrapping approach was used to 
calculate MKZs with block resampled series, with block length of 4 and 
10,000 resamples. This was applied separately for river flows over the 
observed period (1961–2018) and for simulated flows driven by the 
CRCM5-LE for all 50 ensemble members (1955–2099). Sensitivity of 
trends to different time windows were tested by calculating the MKZs for 
15-year moving windows with all possible start and end years between 
1955 and 2099, following Hannaford et al. (2013).

2.5. Time of emergence (ToE)

We estimate ToE for each catchment following the approach in 
Faghih and Brissette (2023). The approach is based on calculating the 
signal-to-noise (SN) ratio by estimating the climate change signal and 
the range of internal variability over a 30-year historical period 
(Hawkins et al., 2020; Mahmoudi et al., 2021). The ToE was estimated 
for mean seasonal rainfall, low flows (Q95), high flows (Q5) and mean 
seasonal flows. For each variable, the mean over the baseline period 
(1981–2010) was calculated for each ensemble member. The internal 
variability component is defined as the standard deviation of the 50 
mean values over the baseline period. The mean of each variable was 
then calculated for each overlapping 30-year periods (e.g., 1981–2010, 
1982–2011 … 2068–2099) and for each ensemble member. The 
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difference between the means of each overlapping 30-year period and 
that of the baseline period was calculated and the climate change signal 
is the ensemble mean of the differences. The SN ratio is determined as 
the climate change signal over a 30-year future period divided by in
ternal variability. The ToE is the middle year of the 30-year period 
where the climate change signal exceeds ± 1 standard deviation of the 
internal variability component (i.e. |SN ratio| > 1). This indicates the 
emergence of a climate change signal relative to internal variability).

3. Results

3.1. Past trends

Fig. 2 shows an estimation of the contribution of atmospheric cir
culation variability to the observed seasonal rainfall trend via dynamical 
adjustment. A large proportion of the observed rainfall variability can be 
reconstructed from only considering atmospheric circulation variability, 
showing that the observed rainfall trend over 1981–2010 can largely be 
attributed to atmospheric circulation variability. It is notable that the 
dynamically reconstructed rainfall trend for autumn shows a greater 
drying than the observed trend, indicating a substantial influence of 
dynamical atmospheric circulation variability on autumn rainfall over 
this period.

The observed trend for 1961–1990 and 1981–2010 averaged across 
England fall within 95 % of the distribution of trends from 10,000 
subsamples of 30-year periods from the CRCM5-LE SMILE for both 
seasonal rainfall (Fig. 3a) and simulated river flows (Fig. 2b) (Fig. S5 for 
Scotland and Wales). There are also considerable differences in the 
spatial pattern of rainfall trends across the 50 ensemble members 
(Fig. S4). The resampling procedure explores a wider range of plausible 

trends, including 30-year trends that are the reversal in sign of the 
observed trend. Taking the example of summer rainfall, the observed 
wetting trend over 1981–2010 is wetter than the trend simulated by all 
ensemble members over the same period. However, when considering 
all plausible 30-year trends from the resampling procedure, the 
observed trend lies within the larger range of plausible trends. The 
modelled distribution suggests that there is around a 4 % chance of a 30- 
year summer rainfall trend that is wetter than the observed 1981–2010 
trend. Additionally, much of the observed summer wetting across 
1981–2010 for England is much reduced after dynamical adjustment (i. 
e. observed minus dynamically reconstructed trend) and are in closer 
agreement with the ensemble members over the same period (i.e. green 
dotted lines in Fig. 3a).

The simulated observed river flow trend (i.e. simulated river flows 
over the observational period) for both 1981–2010 and 1961–1990 lie 
within 95 % of the modelled distribution for all seasons. The observed 
positive summer rainfall trend between 1981–2010 is reflected in the 
positive summer river flow trend. Resampling shows that there is a 10 % 
chance of a 30-year period wetter than the observed trend. The only 
exception is the positive winter river flow trend over 1961–1990 for 
catchments in Scotland, which lies above the 97.5th percentile 
(Fig. S5b). The observed trend in spring rainfall over 1981–2010 was 
slightly negative but not as substantial as the decreasing trend found for 
observed spring river flows over 1981–2010. This suggests the role of 
antecedent winter rainfall, the groundwater recharge period for most of 
England, which was less positive in 1981–2010 relative to 1961–1990. 
The resampled distribution estimates a 7 % chance of a 30-year spring 
river flow trend drier than the 1981–2010 trend in England.

The sensitivity of trends to varying start and end years is evident for 
summer river flows (Fig. 4a) and annual total drought deficit (Figs. 4b 

Fig. 2. Observed and dynamically reconstructed rainfall trend (mm/30-yr) over the 1981–2010 period (left) and UK-averaged anomalies (mm) over the entire 
1836–2022 period (right) for each season for both the observed (black) and dynamically reconstructed (red) rainfall. The linear trend over 1981–2010 for observed 
(black) and dynamically reconstructed (red) rainfall is shown for each season. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)
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and S6 for different seasons). The observed 1981–2018 summer river 
flow trend lies within the range of the large ensemble, which includes 
ensemble members with plausible wetting and drying trends. Varying 
the start year means the observed trend for summer flows occasionally 
lie at the edge of the ensemble range, especially the large positive trend 
when calculated from the 1970s, which contained several arid summers 
(e.g., summer 1976). The large variability in the computed trend with 
varying start years shows the influence of inter-decadal variability, such 
as the increasingly positive trend for observed summer river flows when 
calculated from the 1960s to the 1980s and an increasingly negative 
trend in observed autumn river flows when calculated from the 1990s 
and early 2000s. The observed trend in annual total drought deficit is 
positive for all six selected regions when calculating from 1961, sug
gesting less severe droughts over time. As with summer river flows, the 
observed trend lies within the range of the large ensemble which in
cludes members with statistically significant worsening of droughts. 
Trends in more extreme droughts extracted using a Q90 threshold 
exhibit a similar pattern and similarly suggest less severe droughts since 
1961 with a tendency for worsening droughts when calculating from the 
2000s (Fig. S7). Additionally, hydrological drought events extracted 
over the historical period show that there is considerable scope for un
precedented events to occur with greater deficit and higher severity than 
the worst observed event (Fig. S8).

3.2. Future trends

Fig. 5a shows multi-temporal trend analysis for summer river flows 
by varying both start and end years in 15-year blocks for 1955–2099. 
The results show relative agreement and a clear climate change signal of 
decreasing summer river flows in the long term as shown by the 
ensemble mean but there are large differences between ensemble 
members in the direction of change over the near term and some dif
ferences in the magnitude of change, even for the long term. The long- 
term ensemble mean trend points towards a statistically significant 

increase in winter and spring river flows but greater disagreement over 
ensemble members for autumn flows (negative but statistically insig
nificant ensemble mean trend) (Fig. S9). Individual members show that 
the computed trend is sensitive to inter-decadal variability, and it is 
possible for individual members to exhibit trends that are opposite to the 
ensemble mean trend, even in the far future. For example, ensemble 
member 15 is one of two members projecting slight increases in long- 
term summer river flow, but the trend is influenced by a large wetting 
trend around the 2000s and becomes negative when calculated from the 
2000s. The long-term trend for total drought deficit is less clear than 
summer river flows, indicating the larger role of internal variability in 
both historical and future drought trends. The ensemble mean shows a 
weak long-term trend, but some indication of a negative trend (wors
ening drought) when calculated from the 2000s into the mid-21st cen
tury (Fig. 5b). Disagreement in the long-term trend is shown by the two 
contrasting ensemble members, suggesting the uncertainty in the year- 
to-year variability in drought deficit may be greater than the trend 
and remains dominated by internal variability in the long term.

3.3. Time of Emergence (ToE)

Fig. 6 shows the difference in low (Q95) and high flows (Q5) 
calculated over consecutive 30-year periods compared to the baseline 
period (1981–2010) over the 21st century for six example catchments. 
There is considerable spread between the ensemble members, but the 
direction of change is clear and broadly linear for most catchments. This 
is especially prevalent for Q95, as shown by the fact that the climate 
change signal exceeds the range of internal variability in the historical 
period in all six examples. In contrast, changes in Q5 suggests possible 
non-linear behaviour, such as for the Lambourn (39019) and Ayr 
(83006) which shows considerable spread in the direction of change and 
the possibility of accelerated change by the end of the 21st century 
although the long-term climate change signal remains obscured by the 
range of natural variability.

Fig. 3. Linear trend in a) mean seasonal rainfall and b) seasonal river flows over 30-year periods averaged for catchments in England. The grey shaded distribution 
represents the probability distribution of 10,000 sub-samples of 30-year length and the short solid black lines represent the linear trend of each ensemble member 
over the 1981–2010 period. The short solid black lines do not relate to values on the y-axis. The solid red and green lines represent the observed trend in rainfall and 
“simulated observed” trend for river flows over the 1961–1990 and 1981–2010 period respectively. The dashed green line represents the dynamically adjusted 
observed rainfall trend (observed minus dynamically reconstruction trend) for the 1981–2010 period. The dashed black lines represents the 2.5–97.5th percentiles, 
covering 95% of the model distribution. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 4. MK Z-statistic in a) summer river flows and b) annual total drought deficit calculated using a Q70 threshold averaged across catchments in six different 
administrative regions computed from varying the start year with a fixed end year. Positive (negative) Z statistic indicate a positive (negative) trend. The trend over 
the observational period is calculated from 1961 with 2018 as the end year and the trend for each ensemble member of the large ensemble is calculated from 1955 
with 2020 as the end year. The location of the six administrative regions is presented in Fig. S2. Serial correlation was found for 4.2% and 8.6% of the time series 
analysed across all catchments and time periods for summer river flows and total drought deficit, respectively.

W. Chan et al.                                                                                                                                                                                                                                   Journal of Hydrology 660 (2025) 133414 

7 



Fig. 7a shows the SN ratio for the far future period (2068–2098) for 
different flow variables at each catchment, indicating the climate 
change signal in the flow trend that is clear beyond the internal vari
ability. The SN ratio shows a signal of decreasing Q95 and summer flows 
along with increasing Q5 and winter flows that is spatially coherent 
across most catchments. There is a spatial contrast in the SN ratio for 
spring and autumn flows, with a positive (negative) signal across eastern 
(western) Britain in spring and a positive (negative) signal across 
northern (southern) England in autumn. Fig. 6b shows the estimated 
ToE for each river flow variable at each catchment. The ToE for Q95 is 
broadly earlier than for mean summer flows, including catchments in 
the East of England where change in Q95 emerges beyond internal 
variability by the 2070s–80s but does not emerge for mean summer 
flows within the 21st century. In contrast, the ToE for mean winter flows 
is similar to Q5, which are earlier compared to other seasons across most 
catchments. As would be expected, the direction of the climate change 
signal is broadly similar between rainfall and river flows but the climate 
change signal for rainfall is estimated to emerge earlier than that for 
river flows across all seasons (Fig. S10). The spatial pattern of ToE for 
winter rainfall is broadly similar between Q5 and mean winter flows 
with earlier emergence across western Britain. The signal for summer 
rainfall reduction is stronger than that for summer river flows and 
strongest across southern Britain, including for catchments in the 
southeast that have low SN ratios for summer river flows. The spatial 
pattern of ToE in rainfall for the different seasons is also broadly similar 
to that of seasonal river flows with the notable exception in autumn 
where the signal for rainfall is estimated to be positive across GB but the 
signal for river flows is estimated to be negative for groundwater-driven, 

slow-responding catchments in southern England.

4. Discussion

4.1. Drivers of climate and hydrological trends

Here we demonstrate that the inconsistency between trends in the 
recent past and both near and long-term future projections for UK 
rainfall and river flows may be attributed to sampling bias (i.e. the 
limited range of variability observed in the single realisation of the past). 
Dynamical adjustment show that atmospheric circulation variability 
was a dominant factor in the observed positive summer rainfall trends 
over 1981–2010. The large ensemble simulated rainfall further showed 
that robust trends that are substantially drier (or wetter) than the 
observed trend could have occurred in the historical period, associated 
with a wide range of plausible river flow outcomes, including droughts 
worse than the most severe observed event. Individual members with a 
clear summer drying trend over the historical period could have 
unfolded, and would be regarded as more consistent with climate pro
jections (e.g., early UKCIP98 projections suggest a reduction in summer 
flows by the 2020s: Arnell, 2003). This highlights the need to compare 
observations with individual realisations across ensemble members of 
large ensemble model simulations to robustly evaluate whether 
observed trends are captured by climate model simulations (Simpson 
et al., 2025). Given future warming is certain, the large variability in 
rainfall highlights the importance of future rainfall trends in deter
mining both meteorological and hydrological drought variability 
(Bevacqua et al., 2022).

Fig. 5. Ensemble mean multi-temporal trend analysis represented via the Mann-Kendell Z statistic (colors) for a) summer river flows and b) total drought deficit 
calculated using a Q70 threshold averaged over all catchments in England (ensemble mean) and the equivalent for two contrasting ensemble members with the 
maximum and minimum long-term (1955–2099) trend. Trend is calculated for every 15-year block between 1955 and 2099 with varying start (horizontal axis) and 
end years (vertical axis).
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Fig. 6. Relative change (m3/s) in a) low flows (Q95) and b) high flows (Q5) over consecutive 30-year time slices and the baseline reference period (1981–2010) for 
six selected catchments. The year on the horizontal axis represents the middle year of each 30-year time block and the shading the spread across the ensemble 
members. In each panel, the solid red line represents the ensemble mean and dashed horizontal black lines represent the range of internal variability (i.e., ± 1 
standard deviation over the reference period). The red circle denotes the Time of Emergence (ToE) when the ensemble mean difference exceeds range of historical 
variability. The location of the six selected catchments is presented in Fig. S2. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.)

W. Chan et al.                                                                                                                                                                                                                                   Journal of Hydrology 660 (2025) 133414 

9 



An observed trend towards less severe droughts since the 1960s is in 
line with analysis in the UK (Hannaford et al., 2024) and across Europe 
(Peña-Angulo et al., 2022; Vicente Serrano et al., 2021). However, the 
results adds to findings that trends are sensitive to interannual and 
interdecadal variability (e.g., Hannaford et al., 2023b; Hannaford and 
Buys, 2012; Wilby, 2006) that calls into question how ‘representative’ 
observed trends are of longer-term underlying trends. For example, the 
positive trend in winter NAO was associated with high winter rainfall in 
the 1990s (Simpson and Jones, 2014), and the warm phase of the 
Atlantic Multi-decadal Variability contributed to the string of wet 
summers between 1981–2010 (Sutton and Dong, 2012; Sutton and 
Hodson, 2005). Dong and Sutton (2021) further found that summer 
atmospheric circulation during this period was characterized by an 
equatorwards shift in the North Atlantic jet stream associated with more 
rain-bearing cyclonic systems tracking across the UK.

While the use of SMILEs yields valuable insights by enabling us to 
disentangle internal variability and the climate change signal, their 
potential also relies on their ability to adequately approximate internal 
variability (Simpson et al., 2025). As shown by von Trentini et al. 
(2020), the ClimEx ensemble used in this study provides an adequate 
estimation of variability for seasonal mean rainfall and temperature and 
represents the observed variability well at the European scale, which 
supports its use in this study. However, this may not be true for other 
variables. For example, Vautard et al. (2023) showed that even large 
ensembles fail to reproduce the observed large positive trend in summer 
daily maximum temperature across parts of western Europe. This can 
arise due to model biases like under-estimation of atmospheric circula
tion variability within model simulations, such as that found for the 
winter NAO for the GloSea5 system, where simulations show weaker 
variability compared to observations (e.g., Stringer et al., 2020). Addi
tionally, climate models tend to underestimate the persistence of at
mospheric blocking leading to dry weather over the UK compared to 
historical observations and this bias remains despite increased atmo
spheric resolution in CMIP6 (Schiemann et al., 2020; Woollings et al., 
2018). This has implications for multi-year droughts and confidence in 
their future changes remain weak as a result. The Multi-Model Large 
Ensemble Archive contains multiple SMILEs to fully assess inter-model 
uncertainty as well as internal variability, but the archived models are 

GCMs with coarse resolution (~100 km), which would require consid
erable post-processing prior to any catchment hydrological modelling 
and thus cannot be used as direct inter-comparison here. The use of 
simple rainfall-based statistical downscaling, such as Kay et al. (2023), 
has not been tested for SMILEs but is subject to future work.

4.2. Implications for hydrological droughts and water management

The estimated ToE highlights hotspots where changes have already 
exceeded natural variability or may do so imminently. Conceptually 
speaking, where there is an imminent ToE (e.g., increasing high flows for 
northern Britain and decreasing summer low flows for southwest En
gland), adaptation measures should be in place well in advance of 
emergence – although in practice this depends on the regulatory regime 
and the risk appetite of individual decision-makers from different sec
tors. Nevertheless, the approach could provide useful insights to 
decision-makers for focusing adaptation efforts – although of course this 
would be in terms of high-level screening that would need extending 
using higher-resolution, local scale information or alternative suites of 
large ensemble climate model simulations to improve robustness. River 
flows are shown to exhibit larger variability compared to rainfall and the 
estimated ToE for river flows lags that for rainfall. The earlier ToE for 
Q95 relative to mean summer river flows also suggest stronger sensi
tivity of Q95 to changes in summer temperature (as shown by Charlton 
and Arnell, 2014). The RCP8.5 emissions scenario used in this study also 
represents the higher end of those considered by the IPCC, and more 
optimistic scenarios may delay the ToE. Future changes in low flows are 
more sensitive to emission scenarios compared to high flows (Arnell 
et al., 2021; Meresa et al., 2022), suggesting stronger influence of 
enhanced evapotranspiration in more pessimistic emission scenarios.

The SN ratio and ToE varies across catchments in Great Britain. The 
results show that it may take decades for some catchments before a 
statistically detectable climate signal emerge. This is due to a combi
nation of both climatic factors (e.g., higher rainfall across western GB 
versus southeast England), and physical catchment characteristics (e.g., 
catchment size and hydrogeology) which governs the responsiveness of 
catchments to rainfall variability. For example, river flows are strongly 
linked to rainfall variability for fast-responding catchments in western 

Fig. 7. a) Signal-to-noise (S-N) ratio (2068–2098) and b) the estimated Time of Emergence (ToE) (middle year of 30-year period) for high flows (Q5), low flows 
(Q95) and mean seasonal river flows. The catchments coloured in grey are ones where the ToE is not reached by the end of the 21st century.
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Britain, hence relatively stronger SN ratios and earlier ToE whereas for 
slow-responding catchments in southeast England, river flow variability 
are less reflective of rainfall variability and the influence of antecedent 
conditions are more important, leading to generally lower SN ratios and 
later ToE. It should be noted that the CanESM5 GCM is considered warm 
and wet with the ensemble mean CanESM5-LE projecting increasing 
rainfall over the summer half-year when averaged across Europe, an 
outlier compared to other selected SMILEs (Suarez-Gutierrez et al., 
2023). Although projected changes for the UK lies within the wider 
inter-model spread (Fig. S3), the estimated ToE in this study may 
therefore be conservative estimates.

Trends can be small compared to large year-to-year variability. The 
estimation of ToE in this study relies on a clear ensemble mean trend. 
Disagreement between ensemble members leads to a late ToE or 
catchments not reaching ToE within the 21st century (e.g., for slow- 
responding, groundwater-driven catchments in southeast England). 
Given the important role of antecedent conditions in these catchments, 
the chance alignment of wet/dry seasons due to internally generated 
differences in the phasing of multiple modes of climate variability re
sults in large year-to-year variability in rainfall and a thus a large range 
of possible river flow responses. However, a late ToE does not negate the 
potential for increased risk. The long-term ensemble mean trend may be 
a minor contributor to increased risk relative to the large variability in 
future droughts and there may be significant change in risk even without 
a clear ensemble mean trend (Shepherd, 2014; Sutton, 2019). Suarez- 
Gutierrez et al. (2023) recently showed that severity of European 
meteorological droughts expected for the end of the 21st century could 
unfold much sooner given large climate variability but the implications 
of this for hydrological droughts have not yet been investigated. Hence, 
in additional to coping with the observed historical variability, adap
tation measures should also be tested with a diversity of events that 
could have occurred due to internal climate variability (Durant et al., 
2024; Mankin et al., 2020) (such as through developing counterfactual 
event storylines of past drought that could have unfolded differently and 
lead to greater impacts – e.g., Chan et al., 2022b). Additionally, a 
“bottom-up” scenario-neutral approach to evaluate system sensitivity 
against a wide range of possible climatic changes can be used to 
construct stress tests and evaluate physical plausibility of simulated 
droughts from climate models (Prudhomme et al., 2010; Wilby and 
Dessai, 2010). Lengthening the observed record through meteorological 
data rescue and historical river flow reconstructions (e.g., Barker et al., 
2019) are among additional methods that can be applied to evaluate the 
potential of unprecedented events that could arise from large climate 
and hydrological variability (Kelder et al., 2025).

Studies have long suggested that a “predict-then-act” paradigm in 
water resources planning, where adaptation decisions are made only 
when clear trends consistent with climate projections emerge from the 
observations, may be inappropriate (Dessai and Darch, 2014; Murphy 
et al., 2011; Wilby and Dessai, 2010). The ideal approach to commu
nicate the effects of internal climate variability remains an open ques
tion. A potential way to incorporate information on internal variability 
could be through a discrete set of storylines describing multiple plau
sible hypotheses, conditioned on specific trajectories of atmospheric 
circulation changes (Shepherd et al., 2018; Shaw et al., 2024). For 
example, storylines of internal variability similar to that in Harvey et al. 
(2023) can similarly be created by partitioning ensemble members 
within a SMILE to describe the range of plausible changes in rainfall, 
river flows and drought events given specific alternative, equally plau
sible states of the North Atlantic jet stream.

5. Conclusion

In this study, we investigated the effect of internal variability on 
rainfall and river flows across Great Britain using a single-model-initial- 
condition large ensemble. We find that observed trends in rainfall and 
river flows are within the spread of the large ensemble, which includes a 

wide range of wetting and drying trends that could have occurred in the 
past purely due to internal climate variability. This enables greater un
derstanding of the likelihood of the observed trend, which may at first 
seem inconsistent with future projections. Trends in river flows and 
hydrological drought are subject to larger variability compared to 
rainfall, are highly sensitive to multi-annual and multi-decadal vari
ability and are associated with the occurrence of droughts worse than 
the most severe observed event. The Time of Emergence estimates show 
relatively early emergence of a climate signal beyond natural variability 
for winter river flows across northern GB, with implications for flood 
risk, and for low flows across southwest GB, with implications for water 
resources. Nevertheless, it may take decades before a climate change 
signal can be detected, necessitating the need to adopt adaptation 
measures before hydrological variables exceed natural variability. There 
was large disagreement among ensemble members over the climate 
change signal for summer river flows at some slow-responding catch
ments in southeast England, leading to the estimation of a late ToE and 
highlights the combined influence of internal variability on rainfall and 
antecedent conditions in determining future river flow variability at 
these catchments.
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CRCM5-LE is available at (DOI: https://doi.org/10.5281/zenodo. 
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HadUK-Grid dataset (Hollis et al., 2019) and accessible via CEDA 
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8ac5/). Rainfall and temperature data for the CRCM5-LE is publicly 
available on the ClimEx website (https://www.climex-project. 
org/data-access/). Sample code for the trend detection methodology 
used in this study can be found at https://github. 
com/NERC-CEH/ROBIN_pipeline.
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Van Bueren, E., Fischer, E.M., 2025. How to stop being surprised by unprecedented 
weather. Nat Commun 16, 2382. https://doi.org/10.1038/s41467-025-57450-0.

Kelder, T., Marjoribanks, T.I., Slater, L.J., Prudhomme, C., Wilby, R.L., Wagemann, J., 
Dunstone, N., 2022. An open workflow to gain insights about low-likelihood high- 
impact weather events from initialized predictions. Meteorol. Appl. 29. https://doi. 
org/10.1002/met.2065.

Kelder, T., Müller, M., Slater, L.J., Marjoribanks, T.I., Wilby, R.L., Prudhomme, C., 
Bohlinger, P., Ferranti, L., Nipen, T., 2020. Using UNSEEN trends to detect decadal 
changes in 100-year precipitation extremes. npj Clim. Atmos. Sci. 3, 1–13. https:// 
doi.org/10.1038/s41612-020-00149-4.

W. Chan et al.                                                                                                                                                                                                                                   Journal of Hydrology 660 (2025) 133414 

12 

https://doi.org/10.1016/S0022-1694(02)00288-3
https://doi.org/10.1016/j.crm.2020.100265
https://doi.org/10.1016/j.jhydrol.2022.128107
https://doi.org/10.1016/j.jhydrol.2022.128107
https://doi.org/10.5194/hess-23-4583-2019
https://doi.org/10.5194/hess-23-4583-2019
https://doi.org/10.1038/s41558-022-01309-5
https://doi.org/10.5194/hess-26-469-2022
https://doi.org/10.5194/hess-26-469-2022
https://doi.org/10.1038/s43247-021-00248-x
https://doi.org/10.1038/s43247-021-00248-x
https://doi.org/10.1080/02626667.2012.728705
https://doi.org/10.1080/02626667.2012.728705
https://doi.org/10.1177/03091333221079201
https://doi.org/10.1177/03091333221079201
https://doi.org/10.1016/j.jhydrol.2023.130074
https://doi.org/10.1016/j.jhydrol.2023.130074
https://doi.org/10.5194/nhess-24-1065-2024
https://doi.org/10.5194/hess-26-1755-2022
https://doi.org/10.1016/j.jhydrol.2014.09.008
http://refhub.elsevier.com/S0022-1694(25)00752-8/optP9znqbug2A
http://refhub.elsevier.com/S0022-1694(25)00752-8/optP9znqbug2A
http://refhub.elsevier.com/S0022-1694(25)00752-8/optP9znqbug2A
https://doi.org/10.1038/s41558-020-0731-2
https://doi.org/10.1038/s41558-020-0731-2
https://doi.org/10.5194/npg-30-63-2023
https://doi.org/10.1175/JCLI-D-15-0304.1
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0095
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0095
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0095
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0095
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0095
https://doi.org/10.1175/JCLI-D-20-0665.1
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0105
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0105
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0105
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0105
https://doi.org/10.1016/j.jhydrol.2023.130101
https://doi.org/10.1016/j.jhydrol.2023.130101
https://doi.org/10.1088/1748-9326/acbc37
https://doi.org/10.1038/s41558-021-01092-9
https://doi.org/10.1038/s41558-021-01092-9
https://doi.org/10.1038/ncomms14996
https://doi.org/10.5194/nhess-24-29-2024
https://doi.org/10.5194/hess-22-611-2018
https://doi.org/10.1029/2018GL081316
https://doi.org/10.1029/2018GL081316
https://doi.org/10.1002/joc.5398
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0150
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0150
http://refhub.elsevier.com/S0022-1694(25)00752-8/h0150
https://doi.org/10.1016/j.jhydrol.2012.09.044
https://doi.org/10.5194/hess-17-2717-2013
https://doi.org/10.5194/essd-15-2391-2023
https://doi.org/10.5194/essd-15-2391-2023
https://doi.org/10.2166/nh.2021.156
https://doi.org/10.2166/nh.2021.156
https://doi.org/10.2166/nh.2017.058
https://doi.org/10.1002/joc.8095
https://doi.org/10.1002/joc.8095
https://doi.org/10.1029/2019GL086259
https://doi.org/10.1029/2019GL086259
https://doi.org/10.1029/2011GL050087
https://doi.org/10.1002/gdj3.78
https://doi.org/10.1002/gdj3.78
https://doi.org/10.1038/s41612-023-00389-0
https://doi.org/10.1038/s41612-023-00389-0
https://doi.org/10.1016/j.jhydrol.2023.129371
https://doi.org/10.1016/j.advwatres.2021.103909
http://refhub.elsevier.com/S0022-1694(25)00752-8/optKVi5HVS9Ch
http://refhub.elsevier.com/S0022-1694(25)00752-8/optKVi5HVS9Ch
http://refhub.elsevier.com/S0022-1694(25)00752-8/optKVi5HVS9Ch
https://doi.org/10.1038/s41467-025-57450-0
https://doi.org/10.1002/met.2065
https://doi.org/10.1002/met.2065
https://doi.org/10.1038/s41612-020-00149-4
https://doi.org/10.1038/s41612-020-00149-4


Lane, R., Kay, A., 2023. Annex C: Modelling climate change impacts on UK hydrological 
drought: A review. Review of the Research and Scientific Understanding of Drought, 
Environment Agency. 

Leander, R., Buishand, T.A., 2007. Resampling of regional climate model output for the 
simulation of extreme river flows. J. Hydrol. 332, 487–496. https://doi.org/ 
10.1016/j.jhydrol.2006.08.006.

Leduc, M., Mailhot, A., Frigon, A., Martel, J.-L., Ludwig, R., Brietzke, G.B., Giguère, M., 
Brissette, F., Turcotte, R., Braun, M., Scinocca, J., 2019. The ClimEx Project: A 50- 
Member Ensemble of Climate Change Projections at 12-km Resolution over Europe 
and Northeastern North America with the Canadian Regional Climate Model 
(CRCM5). J. Appl. Meteorol. Climatol. 58, 663–693. https://doi.org/10.1175/ 
JAMC-D-18-0021.1.

Lehner, F., Deser, C., 2023. Origin, importance, and predictive limits of internal climate 
variability. Environ. Res.: Climate 2, 023001. https://doi.org/10.1088/2752-5295/ 
accf30.

Lehner, F., Deser, C., Simpson, I.R., Terray, L., 2018. Attributing the U.S. Southwest’s 
Recent Shift Into Drier Conditions. Geophys. Res. Lett. 45, 6251–6261. https://doi. 
org/10.1029/2018GL078312.

Lowe, J.A., Bernie, D., Bett, P., Bricheno, L., Brown, S., Calvert, D., Clark, R., Eagle, K., 
Edwards, T., Fosser, G., Fung, F., Gohar, L., Good, P., Gregory, J., Harris, G., 
Howard, T., Kaye, N., Kendon, E., Krijnen, J., Maisey, P., McDonald, R., McInnes, R., 
McSweeney, C., Mitchell, J.F., Murphy, J., Palmer, M., Roberts, C., Rostron, J., 
Sexton, D., Thornton, H., Tinker, J., Tucker, S., Yamazaki, K., Belcher, S., 2018. 
UKCP18 Science Overview report, https://www.metoffice.gov.uk/pub/data/weath 
er/uk/ukcp18/science-reports/UKCP18-Overview-report.pdf (last access: 3 May 
2025).

Mahmoudi, M.H., Najafi, M.R., Singh, H., Schnorbus, M., 2021. Spatial and temporal 
changes in climate extremes over northwestern North America: the influence of 
internal climate variability and external forcing. Clim. Change 165, 14. https://doi. 
org/10.1007/s10584-021-03037-9.

Mankin, J.S., Lehner, F., Coats, S., McKinnon, K.A., 2020. The Value of Initial Condition 
Large Ensembles to Robust Adaptation Decision-Making. Earth’s. Future 8, 
e2012EF001610. https://doi.org/10.1029/2020EF001610.

McLeod, A.I., McLeod, M.A., 2015. Package ‘Kendall. R Software, London, UK. 
Meresa, H., Donegan, S., Golian, S., Murphy, C., 2022. Simulated Changes in Seasonal 

and Low Flows with Climate Change for Irish Catchments. Water 14, 1556. https:// 
doi.org/10.3390/w14101556.
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