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Abstract

In the clinical context microscopy still plays a pivotal role in analysing cells with a range of down-

stream analyses available. The choice of which is usually dependent on the information required,

such as the level of protein expression, genetic marker identification or cell population estimation.

Many cell analyses are optical in nature, but use either bulk properties that are unspecific or where

measurement is based on pre-labelling the sample. Alternatively, Raman spectro-microscopic

approaches are highly attractive for cell diagnostics as they provide a molecular fingerprint of a

cell that is very sensitive to the cell micro-environment, is label-free and can be non-destructive.

There is however common understanding that the rate of signal generation is too low for use in

high-throughput scenarios, such as for clinical screening and diagnosis. Broadband CARS (BCARS)

is a spectroscopic technique that probes the same molecular vibrations as Raman spectroscopy using

coherent excitation by employing focused ultrafast laser pulses. The resulting signal obtained can

be orders of magnitude stronger than conventional Raman scattering because it is a nonlinear effect.

In this thesis, BCARS is investigated as a tool for single cell imaging, with the ultimate goal of

label-free single-cell classification and high-throughput imaging. Exogenous fluorochromes were

not used in any of the samples studied in this thesis. In this work, single cell imaging consisted of

preparing an adequate cell sample, acquiring a hyperspectral dataset, where each point in the image

corresponds to a Broadband CARS spectrum, and finally, interpreting the molecular information. In

order to reach this capability, a highly optimised BCARS opto-electronic system was constructed,

consisting of a commercial ultrafast laser, a modified microscope and several optical elements. The

microscope was rigorously tested on non-biological samples such as pure solvents and microplastics,

which enabled the tuning of the optical parameters of the system such as its resolution. After

system optimisation much work was done on developing a sample targeting procedure and an

automated software program was developed to enable scanning of images. Finally, bespoke data

analysis procedures were developed and implemented in several single-cell image studies that were

of relevance to clinical diagnostics.

v



List of Tables
3.1 Comparison of BCARS and SRS techniques. . . . . . . . . . . . . . . . . . . . . 46

5.1 Diffraction gratings used in the BCARS spectrograph. . . . . . . . . . . . . . . . . 82

5.2 Most common laser induced damage mechanisms in biological media. . . . . . . . 90

6.1 Spectral parameters of each dataset. . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.2 NRB generation parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

7.1 BCARS training data parameters (The symbol U(x, y) denotes a uniform distribu-
tion from x to y). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

7.2 Training parameters of the VECTOR2 network. . . . . . . . . . . . . . . . . . . . 118

vi



List of Figures
3.1 Jablonski diagram of the Morse long-range potential of three electronic states, the

ground state S0, 1st excited state S1 and an excited triplet state T1. . . . . . . . . . 22

3.2 Diagram of the Rayleigh scattering, Raman Stokes scattering and Raman Anti-
Stokes scattering effects. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.3 Energy diagram of resonance Raman scattering. . . . . . . . . . . . . . . . . . . . 31

3.4 Momentum conservation condition in CARS. . . . . . . . . . . . . . . . . . . . . 38

3.5 (a) Energy diagram of the Coherent Anti-Stokes Raman Scattering effect, (b) energy
diagram of the degenerate four-wave mixing effect responsible for the NRB. (Solid
horizontal lines denote eigenstates and dashed lines indicate virtual states). . . . . . 38

3.6 Frequency components generated due to the Third-order nonlinear susceptibility. . 40

3.7 (a) Intensity of the anti-Stokes field vs. the wavevector mismatch for constant inter-
action length L. (b) Curve of anti-Stokes intensity versus L for various coherence
lengths Lc. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.8 Diagram of the real part, imaginary part and magnitude-squared of the Raman
susceptibility for a single resonance at Ω = 1000 cm-1, Γ = 10 cm-1, A = 1,
χNR = 0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.9 Diagram of the real part, imaginary part and magnitude-squared of the Raman
susceptibility for a single resonance at Ω = 1000 cm-1, Γ = 10 cm-1, A = 1,
χNR = 0.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.10 Energy diagram of stimulated Raman scattering (SRS). . . . . . . . . . . . . . . . 46

3.11 Sketch of the prism pair pulse compressor. Bold letters denote points of the rays. l is
the distance between the two prism apices and s is the face to face distance between
the prisms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.12 Diagram of an intensity autocorrelator. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.13 Diagram of a Frequency Resolved Optical Gating setup. . . . . . . . . . . . . . . 55

3.14 Diagram of a Cross-Correlation Frequency Resolved Optical Gating setup. . . . . . 55

4.1 (a) Simulated Raman spectrum (Im[χ(3)]), (b) simulated NRB spectrum (χ(3)
NR), (c)

Input and output spectra from the BCARS FWM process using Raman and NRB
information from (a) and (b). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Detection curve for spontaneous Raman scattering and CARS. . . . . . . . . . . . 63

4.3 Hyperspectral datacube illustration. . . . . . . . . . . . . . . . . . . . . . . . . . 64

vii



List of Figures

4.4 BCARS HSI preprocessing pipeline. The NRB reference is a measurement of the
BCARS intensity in a non-resonant material. The signal reference is a signal on
to which all spectra are regressed, and is typically obtained from the average of
multiple spectra in a HSI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.5 Diagrammatic representation of the object and image space in an ill-posed problem
such as phase-retrieval involving the operator A. . . . . . . . . . . . . . . . . . . 68

4.6 (a) Retrieved real and imaginary parts of susceptibility obtained from the Kramers-
Kronig method in CriKit2[1], (b) phase and phase-error of retrieved susceptibility in
(a), (c) Phase- & amplitude-corrected susceptibility, true Raman spectrum obtained
from simulation and the difference of the KK-retrieved and true spectrum. . . . . . 73

5.1 Diagram of the two-prism pulse compressor. H is the insertion of prism 2, calculated
as the distance from the relevant blue side of the Stokes dispersed beam to the apex
of the prism. R is the distance between apices. . . . . . . . . . . . . . . . . . . . . 79

5.2 Image of the BCARS microscope platform using a modified BX 51 platform. The
laser path is shown in red and enters from below. . . . . . . . . . . . . . . . . . . 81

5.3 Diagram of the BCARS Spectroscopy System. The narrowband probe beam is in red
and the broadband Stokes beam is in green. BPF: band-pass filter, SPF: short-pass
filter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 XFROG spectrogram of an uncorrected broadband pulse using an acquisition time
of 50 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.5 XFROG spectrogram of a corrected broadband pulse using an acquisition time of
50 ms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.6 Stimulation profile obtained from a measurement of BCARS in a glass coverslip. . 88

6.1 Diagram of a residual layer. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

6.2 Diagram of the general architecture of the VECTOR network. Each layer in the
encoder and decoder consists of multiple convolutional kernels of varying size
(coloured rectangles). The network input is to the left and proceeds toward the right. 96

6.3 Loss for varying network depths using both skip connections and no skip connections.100

6.4 Loss curves for VECTOR-16 and VECTOR-18. . . . . . . . . . . . . . . . . . . . 101

6.5 Retrieved spectra using VECTOR and SpecNet on an example BCARS spectrum
from each of the nine simulation datasets. True Raman spectrum is overlaid (black)
and input coherent anti-Stokes Raman scattering (CARS) spectrum (green) is plotted
with offset. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6.6 Comparison of loss between VECTOR and SpecNet across the nine simulation
datasets. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 Comparison of retrieval on two spectra with different levels of Gaussian noise. . . . 104

6.8 Experimental implementation of VECTOR on a BCARS spectrum of glycerol. The
reference NRB measurement (top, in red) was also procesed by VECTOR. Also
shown is a spontaneous Raman spectrum of glycerol in green. . . . . . . . . . . . 105

viii



List of Figures

7.1 Diagram of the VECTOR2 simulation approach. The simulation process includes
(1) estimation of the source laser profiles, (2) generation of a complex susceptibility,
(3) modelling of a BCARS response according to the physical process. . . . . . . 112

7.2 (a) probe pulse amplitude obtained from the discrete Fourier transform of the
marginal plot of the XFROG. Also shown in this figure is the result of modelling
the amplitude as a Gaussian function based on the laser specification – centre at
770 nm and FWHM 0.58 nm, (b) amplitude of excitation profile obtained using
two methods: firstly the ES and Epr obtained from XFROG are used to generate
S = ES × Ep where Ep is given by ES and Epr for the 3- and 2-colour regions,
respectively. This method also enables the phase of S to be obtained; secondly, the
amplitude of S is estimated using the square root of a glass spectrum. This method
does not permit measurement of the phase. . . . . . . . . . . . . . . . . . . . . . . 113

7.3 (a) Simulated Raman spectrum of benzonitrile; (b) randomly generated NRB using
the developed method; (c) simulated benzonitrile BCARS spectrum with β = 0.5;
(d) recorded benzonitrile spectrum using the BCARS system (inset is the chemical
structure). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.4 Average training and validation loss per epoch for the two different autoencoder
networks (both on same ordinate scale). . . . . . . . . . . . . . . . . . . . . . . . 118

7.5 Examples of two test BCARS spectra, processed using the two trained networks;
(a) simulated BCARS test spectrum of a sparse spectrum (inset zoom on 2-colour
region) and (b) retrieval of Raman spectrum using the two networks; (c) and (d) the
same results are shown for a simulated dense spectrum. As expected, the network
VECTOR-MU-dense performs better on the more complex data but surprisingly, it
performs similarly to VECTOR-MU-sparse on simulated sparse data. . . . . . . . 119

7.6 Mean absolute error (MAE) of test sets that were input to each network/KK method.
Results are separated for the fingerprint and CH-regions. Inner box and bars
represent descriptive statistics (boxplot), coloured areas are kernel density estimates
of the loss distribution. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.7 Six experimental BCARS spectra. The logarithm of the intensity is shown and the
spectra were offset vertically for clarity. The retrieved Raman spectra are shown in
the next figure. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.8 Retrieval of the six chemicals: (a) glycerol, (b) a proprietary polymer slide, (c)
PMMA, (d) polystyrene, (e) ethanol, (f) benzonitrile. The spectra retrieved from
both networks are shown, together with the corresponding intensity calibrated
spontaneous Raman spectrum. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

8.1 (a) Raw and denoised single cell BCARS spectrum prior to any further preprocessing,
(b) Raman-like spectrum obtained using KK using both the raw and SVD denoised
signals shown in (a). The raw spectrum was scaled vertically for clarity. . . . . . . 135

8.2 Flow-chart of the experimental and data analysis pipeline. . . . . . . . . . . . . . . 137

ix



List of Figures

8.3 Supervised analysis of each cell species using PCA. (a) mean intensity image of
BCARS hSI for a Jurkat sample, (b) Jurkat cell mask obtained from segmentation
model applied to (a), (c) mean and standard deviation of spectral data for the whole
Jurkat dataset, (d) mean intensity image of BCARS hSI for a Cal-1 sample, (e) Cal-1
cell mask obtained from segmentation model applied to (d), (f) mean and standard
deviation of spectral data for the whole Cal-1 dataset, (g), scree plot of explained
variance proportion versus the principal components, (h) PCA score plot of each cell
species on the first two principal components (also showing kernel density estimate),
(i), first two loadings of the PCA data. . . . . . . . . . . . . . . . . . . . . . . . . 139

8.4 Single cell retrieved BCARS spectrum from a Cal-1 sample. . . . . . . . . . . . . 141

8.5 Results of cross-validation to determine the optimum number of trees in the Random
Forest model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

8.6 (a) Cell probability maps using the RF classifier trained using the labelled cell
species data, (b) PCA scores and kernel density estimates of each segmented cell
on the principal component vectors obtained from the labelled data, (c) Single cell
Raman spectrum and variability of a Cal-1 high probability sample, (d) Single cell
Raman spectrum and variability of a Jurkat high probability sample, Single cell
Raman spectrum and variability of a low probability sample. Green arrows indicate
cells shown in (c), (d) and (e). . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

8.7 Boxplot of the cell diameter across species and experiments. An independent
sample t-test was used to determine if the difference between mean diameters was
statistically significant. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

8.8 (a) Brightfield image of the independent Cal-1 cell, (b) Jurkat cell and (c) mixture. 149

9.1 Depiction of single cell segmentation when one species is significantly smaller and
can adhere to the surface of the other cell. . . . . . . . . . . . . . . . . . . . . . . 157

9.2 PCA score images of the first four PCs of the mixed candida/BEC sample. . . . . 160

9.3 Flow chart of the experimental fungal classification procedure. . . . . . . . . . . . 162

9.4 The results of unsupervised segmentation of five epithelial cells infected with C.
albicans. The UMAP projection was clustered using spectral clustering. The mean
BCARS spectrum of the pathogen which was extracted using the cluster model is
also shown. Scale bar 10 µm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

9.5 (a) Single pixel fingerprint BCARS spectra from the clustered classes of BEC
and independent measurement from spontaneous Raman using a pure sample. (b)
Single pixel fingerprint BCARS spectra from the clustered classes of candida and
independent measurement from spontaneous Raman using a pure sample. All
spectra were shifted vertically for clarity. . . . . . . . . . . . . . . . . . . . . . . 165

9.6 (a) Cluster validation analysis using the average silhouette coefficient of each image,
(b) single pixel retrieved BCARS spectra of candida cell and buccal epithelial cell
nucleus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

10.1 Diagram of the SIP-CARS experimental setup. QWP: quarter-wave plate, HWP:
half-wave plate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

x



List of Figures

10.2 (a) Raw BCARS spectrum of S+ and S− (both corrected) and the NRB references
of each, (b) SIPCARS signal, KK-retrieved spectrum and spontaneous Raman
spectrum from the fungal spore body. . . . . . . . . . . . . . . . . . . . . . . . . 176

10.3 Flowchart for processing of the SIPCARS image . . . . . . . . . . . . . . . . . . 177

10.4 Spectral mean images of the two polarization orientations and the difference image.
The magenta ’x’ marks the location of the spectra shown in figure 10.2 . . . . . . 178

10.5 Results of principal components analysis performed on the depolarization hyper-
spectral image. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

A.1 Architecture of VECTOR-16. Each block shows the output dimension at the edge.
Skip connections are shown as arrows paired between encoder convolutional outputs
to decoder convolutional inputs. Layers proceed from left to right and depth from
top to bottom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

B.1 Retrieved Raman spectrum of glycerol, polymer and PMMA using the Kramers-
Kronig method[1] and VECTOR2. Also shown is the spontaneous Raman spectrum
for each analyte. Spectra were initially normalised using data>2500 cm-1, following
which data to the left of the dashed vertical line were scaled for clarity with scale
values shown. No post-processing or denoising was performed after phase retrieval
in any case. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

B.2 Retrieved Raman spectrum of polystyrene, ethanol and benzonitrile using the
Kramers-Kronig method and VECTOR2. Also shown is the spontaneous Raman
spectrum for each analyte. Spectra were initially normalised using data >2500
cm-1, following which data to the left of the dashed vertical line were scaled for
clarity with scale values shown. No post-processing or denoising was performed
after phase retrieval in any case. . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

xi



1. Introduction

Optical microscopy plays a crucial role in the biosciences, serving a range of functions such as

the rapid assessment of a microorganism’s confluence in culture, automated cell counting, and

comprehensive diagnostic analysis by pathologists. In its basic form, optical microscopy provides

information about a specimen’s reflectivity and transmittance, which are directly related to material

properties. When images are interpreted by a human observer, heuristics like hue, brightness,

and shape are used to infer details about the sample. These contrast mechanisms are inherently

bulk properties, and while they may vary at the microscope’s resolution scale, such variations are

often not sample-specific, limiting quantitative interpretation. Fluorescent markers (fluorochromes)

can be artificially introduced prior to microscopy in order to enhance contrast. In such a case, a

sample is pre-labelled with the marker and then viewed under excitation light, which highlights the

presence and location of the marker, indicating where binding of the marker has occurred. Through

understanding the chemical structure of the marker and its binding mechanisms, specific features

in the sample, such as the DNA-binding affinity of 4’,6-diamidino-2-phenylindole (DAPI), can

be identified, which allows nuclear regions of cells to be highlighted. Fluorescence microscopy

thus complements light microscopy by providing both qualitative and, in some cases, quantitative

characterization of samples. Fluorescence microscopy has the fundamental limitation of sample

perturbation, whereby the presence of the fluorochrome changes the biological function of the

sample. This approach to cellular analysis is therefore subject to confounding by the method itself.

If scattered or transmitted light from a sample is collected and dispersed using a spectrograph,

the potential to analyse molecular composition and conformation emerges, a process known as

spectroscopy. There are many types of spectroscopy, typically distinguished by the properties of
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the incident light used. In biological applications, light in the THz to PHz range is commonly

used, corresponding to the infrared part of the electromagnetic spectrum. This frequency range

coincides with the natural vibrational frequency of molecular bonds, and provides access to a

molecules vibrational spectrum. There are two types of vibrational spectroscopy, (i) corresponding

to absorption of the incident light, known as infrared spectroscopy, or (ii) scattering of the incident

light, called Raman spectroscopy. When incident light couples to the electrons or dipoles in an

oscillating bond, it can induce a shift in the vibrational energy of the bond and a corresponding

shift in the light frequency, called the Raman shift. Measurement of this frequency shift gives direct

access to the molecular bond oscillation frequency. In biological media, Raman spectroscopy can

report the vibrational spectrum in a purely non-invasive manner, assuming photodamage is avoided.

It therefore provides much richer contrast, as compared to light microscopy. Raman microscopy

is a specific spectroscopy technique which uses a microscope to deliver and collect the light, and

Raman images can be produced by scanning either the sample or the laser focus over an area. This

is much more informative than single point measurements, as both spatial and spectral dimensions

are measured. In a Raman image, chemical and physical properties provide the contrast. Since the

resolution of Raman imaging is limited only by diffraction, it is well suited to imaging biological

samples such as cells[2]. One of the most commonly cited downfalls of Raman imaging is the low

probability of Raman scattering, which necessitates relatively long dwell times for the acquisition

of images. This feature cannot typically be overcome by increased irradiance, because there is

a point at which photodamage will inevitably occur. This can instead be mitigated by exploiting

the nonlinear properties of matter. Through the use of high peak power lasers, coherent Raman

scattering (CRS) becomes possible. In CRS, the incident lasers drive the vibrational energy shift,

thus increasing the output light intensity by orders of magnitude compared to the linear Raman

process. Coherent-anti Stokes Raman Scattering (CARS) is one such method, and it is the broadband

version of CARS - BCARS which is the main focus of this thesis. In particular, the testing and

development of BCARS as a tool to probe single biological cells was the major focus. BCARS

provides access to the same molecular information as linear Raman spectroscopy, however, there

is high directionality of the output beams, a gain corresponding to the driving of the vibrational

transitions, and the output intensity depends on the product of three input intensities. As there is

some ambiguity in the literature, the term BCARS in this thesis is reserved for the measurement
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of the full Raman vibrational spectrum (fingerprint and high wavenumber regions) in a single shot.

Some authors for example use BCARS to describe only the fingerprint region[3].

BCARS is a powerful technique for investigating complex biological matter, as it enables the

recording of content-rich images of specimen, with scan times on the order of minutes for a 200

× 200 µm area at 0.6 µm lateral resolution[4]. Due to some of the above mentioned benefits

of BCARS, it is beginning to be increasingly applied to functional biomedical applications, such

as animal tissue imaging[5, 6] and pharmaceutical analysis[7, 8]. Previously, the application of

BCARS for imaging isolated cells was demonstrated in concept, by Parekh[9]. However, while this

work highlighted the potential for label-free cell imaging, the clinical application of the method

was not explored and it has not been demonstrated to date. In particular, the ability for BCARS to

perform a high-speed, label-free classification of eukaryotic cells of different origin has not been

performed. Notably, classification of several different eukaryotic cells using spontaneous Raman

spectroscopy has been reported[10, 11, 12], but the potential for BCARS to enable a much higher

analysis throughput due to its signal intensity improvement was still unknown at the beginning

of writing this thesis. This question was explored in chapter 8. The ability to differentiate and

quantify various cell types based solely on chemical composition variations obtained from the

Raman spectrum has the potential to eliminate the need for several analyte-specific processing

methods used in clinical applications. This concept is however not yet clinically applied using

spontaneous Raman spectroscopy due to several issues, not least of which is the speed limitation,

where dwell times of tens of seconds per cell are typical[13].

The relevance of BCARS for cell imaging and analysis is largely due to the high specificity of the

vibrational spectrum and the demonstrably high signal intensity obtained in biological media[4]. The

current requirement for specialised sample preparation routines in medical laboratory tests is largely

based on the varying sensitivity and specificity of the chemical and physical measurements used.

For example, fluorescence flow cytometry is used to quantify the frequencies and polymorphisms of

red blood group molecules and for classifying lymphocytic leukemia as originating from B or T

cells[14] and while these methods are highly specific, they critically rely on pre-labelling of the cells.

Fluorescence-free flow cytometry is also reasonably specific for distinguishing major white blood
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cells using physical scatter metrics such as size and granularity, provided that no other cell types

are present. The specificity arising from a molecular approach such as BCARS could, in theory,

be much greater, compared to purely physical and or labelling mechanisms like those mentioned

above, and the benefit of much greater imaging speeds could make redundant the numerous sample

specific analyses that are ubiquitously applied in clinical laboratories. Most importantly however, as

a purely spectroscopic technique, BCARS does not require sample-specific processing, provided

the contrast obtained in the expected specimen is suitably high. Regardless of these potential

benefits, advancement of diagnostic methods require extensive evidence of demonstrated suitability

to basic tasks, along with an improvement in some operating characteristic, such as specificity,

reliability or predictive value. In this work, the positive predictive value of the vibrational spectrum

in cell classification was known a priori based on published spontaneous Raman spectroscopy

studies[10, 11, 13, 15], but the optical engineering, data processing, and ultimate suitability of

BCARS as a cell analysis method was not previously demonstrated. The major initial task of this

thesis was to acquire spectroscopic images from eukaryotic cells using BCARS, at a level of spectral

and spatial detail similar to spontaneous Raman imaging, and at a much faster rate.

Developments of BCARS applications involving single-cell imaging have been previously slow,

especially compared to its other CRS counterpart - stimulated Raman scattering (SRS). SRS is a

non-parametric third-order optical effect that results in a gain or loss in the input photon numbers due

to vibrational transitions occurring. Due to this, signal is only present when a vibrational transition

is probed and no non-resonant background is generated. Apart from the technical complexity of

constructing the BCARS microscope, the signal from a cell is also extremely weak relative to other

clinically relevant specimen, such as tissues, and single cells are also difficult to target, meaning

the use of conventional analysis protocols designed for spontaneous Raman imaging usually do

not suffice. For example, since BCARS is a third-order process, the scattered signal intensity is

highly sensitive to the axial position of the sample, whereas for conventional Raman scattering, a

measurable signal may be obtained even when the sample is slightly misaligned with respect to the

focal plane of the laser. Secondly, as BCARS is a broadband multiphoton technique, the optimal

signal is obtained when the input beams are focussed to the smallest possible volume, requiring

considerations for optical aberrations present in the input beams. In this regard, we appear to be the
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first to implement a deformable mirror in a BCARS microscope to optimize the focussing of the

input beams. This approach is described in chapter 5.1.

BCARS is also known to have a major drawback termed the non-resonant background (NRB)

which is related to the electronic polarization in the sample. The NRB in BCARS prevents direct

analysis of the raw intensity measurement since the background corrupts the chemical dependence,

and in some cases completely obscures the signal contrast. In this work, the raw fingerprint spectrum

from a cell was largely indistinguishable from noise. To overcome this problem, many NRB

suppression or correction methods have been devised[16, 17, 18, 19, 20]. This problem is absent in

SRS, and is likely a major reason for the rapid advancement in this method over the last ten years.

The lack of an NRB has afforded pixel dwell times of hundreds of microseconds[21]. However

SRS has limitations which make BCARS the more attractive option for single-cell analysis. In

particular, the broadband single-shot acquisition in SRS is not possible, since it requires lock-in

signal measurement, thus only recording a single wavenumber at a time. Novel numerical methods

to remove the NRB in BCARS are proposed in chapters 6 and 7 and an optical method to do so is

explored in chapter 10.

Another highly applicable clinical problem of interest in this work was the rapid imaging of a

routine cell sample for pathogen detection and this is the subject of chapter 9. This is a very common

procedure performed in microbiology and pathology laboratories in hospitals, that aims to determine

the state of infection in a patient suspected with a disease. The application of BCARS in this sense

would be well suited to the task, as it can rapidly provide molecular contrast at the cellular level,

while images can resolve spatial information such as size, concentration, morphology and site of

adhesion of the pathogen within cells. This problem is somewhat less defined than the above problem

of phenotyping multiple cells, as the minimum requirement is detection of an anomalous biological

species within otherwise “normal” cell populations. While in the routine clinical diagnostic setting,

it could be envisaged that a multivariate statistical model could be devised to distinguish known

and common cell types based on the chemical contrast provided by its spectrum, in the case of

pathogen detection it is unlikely that a reference database or model could be developed or trained

to distinguish all existing pathogen likely to be encountered. Therefore, alternative approaches to
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1.1. Research questions

multivariate statistical classification were developed to apply BCARS as a rapid screening tool for

cell analysis using purely unsupervised approaches.

1.1 Research questions

To summarise the main research questions explored in this thesis;

1. Can BCARS provide cell imaging capabilities beyond that obtained using standard cell

analysis protocols, with the goal of distinguishing cell type at millisecond acquisition times?

2. To what extent can BCARS be used to provide automated high-throughput cell analysis, for

screening of cells?

3. What are the optical requirements, measurement protocol, data processing steps and sample

preparation procedures required in order to achieve the above?

4. Can the NRB be removed with sufficient accuracy to produce classifiable Raman-like spectra

from a BCARS system.

1.2 Contributions

The remaining chapters of this thesis are noted below, with my contributions stated where applicable.

• Chapter 2 is a literature review covering the major previous works that are of relevance to this

thesis.

• Chapter 3 describes the underlying physics theory of the BCARS process.

• Chapter 4 is devoted to describing the key methods both implemented and devised that were

commonly used throughout all of the results chapters. The novel contribution in this chapter is

the bespoke preprocessing pipeline developed for preparing single-cell hyperspectral BCARS

images for analysis, such that they can be analysed using conventional methods.
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1.2. Contributions

• Chapter 5 presents the engineering considerations of the experimental optical system, its

optimization and its characterisation. I was the sole student working on the BCARS platform

development, and I performed all of the optical design and optimisation work.

• Chapter 6 is the first results chapter. This chapter describes the development of a novel

deep-learning architecture for NRB removal in BCARS measurements, which was named

VECTOR. My contribution to this work was in the conceptual design of the simulation of

artificial BCARS data, which was required for training the network, and i was also involved

in analysing the networks performance on the simulated data. The results of this chapter are

published in the Journal of Raman spectroscopy[22].

• Chapter 7 is a results chapter based on an improved NRB removal approach using an identical

network architecture to the one described in chapter 6, with a much improved BCARS

simulation procedure and loss function. My contribution to these results were the development

of a novel high-fidelity BCARS simulator that uses system-specific information from the

laser spectra to mimic experimental BCARS data, such that the NRB removal could be

tailored to a particular microscope system. I also performed all data analysis, recorded

experimental BCARS spectra for evaluation, and recorded spontaneous Raman spectra to

aid in a comparison. The results of this chapter are published in the Journal Analytical

Methods[23].

• Chapter 8 is a results chapter based on multivariate statistical classification of blood cells

using label-free BCARS imaging.This was the first experimental classification of two isolated

cell lines, and a mixture of cells, using BCARS. In particular, for this chapter, I acquired the

hyperspectral images of the cells and performed all statistical analysis. This work required

significant input from collaborators in the Maynooth University Department of Biology, who

provided the cell lines for imaging. At the time of writing a paper based on the work presented

in this chapter has been accepted for publication in the Journal of Biophotonics, pending

major revisions.

• Chapter 9 is a results chapter based on fungal pathogen identification using BCARS imaging.

The results presented are the first demonstration of unsupervised pathogen detection in a cell
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1.2. Contributions

mixture using BCARS. For this work, I performed all BCARS imaging of the cell samples,

data analysis of the images and recorded spontaneous Raman spectra of the fungal samples for

verification of the method. The cells for this study were provided by the Maynooth University

Department of Chemistry. At the time of writing we are considering submitting the results

presented in this chapter to a journal, pending further experimental results.

• Chapter 10 is a results chapter based on a hybrid optical approach to NRB removal, known

as spectral interferometric polarization CARS (SIPCARS). SIPCARS is a relatively new

technique that has been previously been demonstrated for providing polarization resolved

BCARS spectra that are free from NRB interference. My contribution was the first application

of SIP-CARS to single cell imaging using a modification to the BCARS system. The samples

were provided by the Maynooth University Department of Biology. For this chapter, I per-

formed all BCARS image acquisitions, recorded spontaneous Raman spectra for comparison

of the spectra, and analysed all the data.
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2. Literature Review

2.1 Raman Scattering

The phenomenon of inelastic light scattering was first proposed by Smekal in 1923[24] and later

observed by Raman and Krishnan in 1928[25], using sunlight as a light source and a telescope as

the collector. Raman demonstrated that new light frequencies could be generated when incident

light is scattered by a material. This effect, known as Raman scattering, arises from the random

molecular vibrations of materials at temperatures above absolute zero. As a result, the scattered

radiation is relatively weak, emitted randomly in time and direction, with only about 1 in every

107 incident photons undergoing Raman scattering. After this discovery, the development of

photoelectric instruments allowed for the electronic recording of the scattered radiation, leading

to the widespread use of Raman spectroscopy for studying materials. Modern advancements have

significantly improved the efficiency of this scattering process, making Raman spectroscopy a

powerful and widely-used technique for analysing vibrational modes and studying vibrational

transitions in samples.

In 1946, Harrand and Lennuier first experimentally observed the phenomenon of Raman reso-

nance enhancement[26]. They found that the Raman signal intensity increased in a dichloronitroben-

zene solution when the excitation wavelength matched the electronic absorption band. Their findings

also showed that only a few vibrational modes were enhanced, suggesting that only those modes

coupled to the chromophoric group could experience enhancement. This discovery sparked intense

research, as it introduced the potential for greater Raman selectivity and sensitivity. Resonance
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2.1. Raman Scattering

occurs only when the excitation wavelength overlaps with an electronic absorption band[27], and

the effect became known as resonance Raman scattering (RRS).

The concept of stimulating molecular transitions was first discussed by Townes and Schawlow

in 1958[28]. This led to the demonstration of the first maser by Maiman in 1960[29], followed

by the development of the Helium-Neon laser by Javan, Bennett, and Herriott in 1961[30]. The

invention of the laser in the 1960s sparked significant interest in Raman scattering, as the laser’s

ability to focus many photons onto a small area greatly amplified the intensity of the effect. The

laser’s monochromatic nature also provided a narrow impulse response, which paved the way for

modern Raman spectroscopy, enabling the study of a material’s vibrational and rotational states.

Due to their simplicity and available frequencies, the ruby maser and He-Ne laser became popular

light sources for Raman spectroscopy. In 1961, Porto and Wood conducted the first laser-based

Raman spectroscopy experiment[31]. Today, a wide range of tunable laser sources, including

continuous-wave (CW) and pulsed dye lasers, as well as parametric oscillators, are available. These

technological advancements have allowed in-depth exploration of the Raman effect across a broad

frequency range, with increasingly powerful pulse sources.

Although lasers greatly enhanced Raman scattering, the effect remained spontaneous, as scat-

tering occurs only when random transitions take place. However, shortly after the introduction

of the laser, the phenomenon of stimulated Raman scattering (SRS) was discovered. SRS uses

two optical beams to induce Raman transitions and is sensitive to the same molecular vibrations

as spontaneous Raman scattering (SR), but with coherent scattered light due to the molecules’

synchronized polarization. Within a year of the lasers invention, the intense pulses enabled the

discovery of nonlinear optical effects, such as second-harmonic generation (SHG) in 1961[32] and

third-harmonic generation (THG) in 1962[33].

In 1962, Woodbury and Ng observed laser lines near the output of their laser that were longer

in wavelength than those produced by the ruby gain medium[34]. They attributed these new

lines to Raman scattering, specifically the symmetric stretching vibration of the NO2 group in

nitrobenzene. Nitrobenzene, which was used in the laser cavity as a Kerr cell shutter to pulse

the laser, facilitated this scattering. Recognizing the similarity to spontaneous Raman scattering
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2.2. CARS

but noting that the emission was coherent and consistent in time, they named the phenomenon

stimulated Raman scattering (SRS). The vibrational coherence in SRS significantly amplifies the

signal, making detection easier due to the coherent nature of the radiation. The development

of more efficient spectrographs, advanced detectors like Charge-Coupled Devices (CCDs) and

photomultiplier tubes (PMTs), along with more powerful lasers, spurred a renewed interest in

applying Raman spectroscopy to biochemical research during this period[35, 36].

In 1974, Fleischmann et al. observed a new type of enhanced Raman spectrum from pyridine

adsorbed on roughened silver surfaces[37]. Initially, these spectra were not recognized as distinct

from those produced by spontaneous Raman scattering. However, in 1977, Jeanmaire et al.[38]

identified this as a new phenomenon, where the Raman signal was enhanced due to the surface

structure and electronic properties of the sample. This effect was later termed surface-enhanced

Raman spectroscopy (SERS). The exact mechanism of enhancement is still debated, but the two

most widely accepted theories are the electromagnetic enhancement mechanism, which involves

the amplification of radiation through localized surface plasmon resonances (LSPR)[39], and the

charge-transfer mechanism, which arises from new coupled states between the sample and the

substrate[40]. SERS can provide up to a 106-fold increase in signal intensity compared to normal

Raman scattering[41]. SERS can be performed on colloidal solutions, but for solid samples, it

typically involves applying a layer of nanoparticles to the surface. While this surface treatment is

a limitation, the technique’s ability to detect extremely low concentrations of molecules makes it

highly valuable for applications such as biomarker detection[42] and forensic analysis.[43]

2.2 CARS

In 1965, at Ford Motor Company, Maker and Terhune provided a detailed description of a new

Raman spectroscopy technique[44]. They investigated various nonlinear optical effects using a

giant pulsed ruby laser, developing simplified models to describe an effect they termed ”frequency

mixing.” In their setup, they used a 0.1 J output pulse focused on a sample, with anti-Stokes emission

collected using a NiSO4-CoSO4 water filter to remove the source laser, and a grating monochromator
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2.2. CARS

for wavelength discrimination and detection via a photomultiplier. This technique, now known as

coherent anti-Stokes Raman spectroscopy (CARS), has become the most widely used nonlinear

Raman scattering method.[45]

CARS occurs when a “pump” photon and a “Stokes” photon induce a coherent vibration in

the sample at the frequency difference between them. A third ”probe” photon scatters off the

excited state, gaining energy equal to the vibrational mode energy of the prepared state. Unlike

spontaneous Raman scattering, CARS involves an active pump process, with the Stokes photon

inducing a Stokes transition. In 1973, Régnier and Taran proposed applying CARS to gas flow

analysis, particularly for measuring gas concentrations[46]. In 1975, Bjorklund demonstrated that

under tight focusing conditions, the phase-matching requirement for CARS could be satisfied in a

co-linear beam geometry, which would later prove crucial for CARS microscopy.[47]

A key advantage of CARS is that the measured radiation is at a higher frequency than the

excitation frequency, effectively eliminating background fluorescence. In 1974, Begley et al.

emphasized the advantages of CARS over spontaneous Raman scattering, noting its five-orders-of-

magnitude higher conversion efficiency and its suitability for studying biological compounds where

fluorescence interference is problematic[48]. In 1977, Tolles et al. published a comprehensive

review of the CARS effect, covering the fundamental theory, signal generation conditions, and

the mechanism of the non-resonant background (NRB)[49]. By the early 1980s, two separate

books detailed the numerous applications of CARS, particularly in the study of flames, jets, and

combustion engines.[50, 51]

Spontaneous and coherent Raman spectroscopy were soon coupled with microscopy with the

ability to now target microscopic regions within a sample or to create vibrational images of samples.

Coherent Raman scattering (CRS) which encompasses all Raman effects that produce a coherent

beam, are the most suited for vibrational microscopy since they exploit the nonlinear dependence

of the samples response and can generate signal at much higher intensities. In 1982, Duncan and

colleagues developed a CARS instrument that used spatial scanning for chemical imaging, the

first iteration of the CARS microscope[52]. In 1987, Bloembergen published a detailed review of

stimulated Raman scattering spectroscopy, including CARS[53] and in 1990, Puppels demonstrated
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2.2. CARS

a method of high resolution spontaneous Raman microspectroscopy of biological samples[54]. This

setup allowed the recording of a Raman spectrum from a confocally filtered region within single

cells at a resolution of ∼ 6− 7 cm-1. The exposure time per spectrum however was on the order of

minutes, resulting in an extremely slow sample speed.

A major advancement in the field of coherent Raman microscopy was made by Zumbusch et al.

in 1999 when they used a CARS microscope to create three-dimensional images of live cells[55].

Most importantly, this was the first use of CARS microscopy in the co-linear beam configuration, the

most common setup used today due to its simplicity, as opposed to the BOX-CARS configuration,

which required angle tuning of the input beams. Using two femtosecond pulses from a Ti:Sapphire

regenerative amplifier at 855 nm centre wavelength, coupled co-linearly in to an optical microscope

and focused using an oil-immersion objective, they then raster scanned the sample using a 10

ms acquisition time while collecting the anti-Stokes emission using photon counting equipment.

Zumbusch also stated the use of the near-infrared excitation has an advantage over visible laser

sources in CARS as it avoids any two-photon electronic resonance.

Once the fundamental concept was demonstrated and a reliable method of CARS spectroscopy

was established, there began some research on dealing with the non-resonant background inherent to

the process. In 2001, Cheng et al. reported on a scheme for suppressing the non-resonant background

signal using an epi-detection configuration, calling it epi-detected CARS (E-CARS), where the

anti-Stokes radiation is collected in the backwards direction rather than the conventional forward

direction.[56, 57] The E-CARS method utilizes the suppression of the solvent NRB signals in the

backward direction due to destructive interference, effectively enhancing the measured resonant

signal.

In the same year, Cheng et al. also published a technique using selective polarization to suppress

the non-resonant background, calling it Polarization CARS (P-CARS)[20]. This technique was

applied to unstained cells based on the contrast of the protein amide I band. A common name

for the standard unpolarised and forward collected CARS configuration was then noted, namely

F-CARS, to prevent confusion to the other types. In P-CARS, the difference in depolarization of the

resonant versus the non-resonant susceptibility is used to selectively block radiation that is purely
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2.3. Broadband CARS

non-resonant using linear polarisers.

In 2002, Cheng developed a laser scanning CARS microscope tailored for biological samples.

The system used a pair of galvanometer mirrors to control the scanning of the beams in the x-y

plane. The depth scanning was achieved by moving the water objective with a stepping motor. The

pump and probe pulses were both transform-limited 5 ps pulses from a Ti:Sapphire source and were

tunable in wavelength. The detection used photomultiplier tubes (PMT) and therefore could measure

only one Raman shift at a time. Cheng also gave a very detailed description of the theoretical beam

propagation of the CARS radiation based on a Green’s function method.[58]

In-vivo imaging using CARS at the video-rate was then achieved by Evans et al. in 2005[59].

Evans used the E-CARS configuration to image real time chemical diffusion in the skin of mice.

The laser used was a Neodymium Vanadate laser which produced a 7 ps Stokes pulse, and used a

portion of the Stokes beam with an OPO for the pump beam. By selectively tuning the beams to

excite the CH2 stretch mode, the imaging of lipid rich structures in the mice was possible. The use

of a 1.2 NA objective provided high resolution in the axial (1.5 µm) and lateral (0.3 µm) directions.

2.3 Broadband CARS

The phase matching condition for efficient mixing of the pump, Stokes and probe photon in a

medium is an essential requirement for CARS, without which, there is no appreciable buildup of

the anti-Stokes radiation. This is detailed in chapter 3. As stated above, the CARS microscopy

literature has been concerned with two main geometries for achieving phase matching; BOX-CARS

and tight-focussing. These two methods both give the necessary beam geometries of the input pulses

to satisfy the requirement for signal generation that is not limited by the coherence length of the

medium. The BOX-CARS geometry involves a crossed-triple-beam technique using two lenses of

equal focal distance and directing the three input beams at specific angles relative to each other. The

tight-focussing geometry is much simpler and obtains phase matching by using the fact that high

NA lenses produce a large continuum of exit rays that may mix to produce the four-wave mixing. In

modern CARS microscopy, the tight-focussing regime is ubiquitous as it can be incorporated in to
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2.3. Broadband CARS

life science microscopes with ease.

The first report of optical multiplexing in CARS microspectroscopy was in 2002 by Cheng et

al.[60] In their setup, a picosecond pump and femtosecond Stokes beam were used. The Stokes pulse

had a broad spectral width (160 cm-1), corresponding to a transform-limited pulse of 91 fs duration.

The pump was centred at 713 nm and had a spectral width of 2.9 cm-1. The excited spectral region

covered was from 2750-3050 cm-1. The multiplex nature of this setup allowed several Raman modes

to be probed by the CARS process, and was thus termed multiplex CARS (M-CARS). The tight-

focusing condition was fulfilled using a high numerical aperture objective lens in the microscope.

Their setup also utilized P-CARS for non-resonant background suppression and to determine the

depolarization ratios of Raman bands. The effect of spectral chirp was also evaluated theoretically,

since their use of an ultrashort pulse for the Stokes would have introduced chirp due to the dispersive

optics in the setup. In the same year, Cheng[61] used two transform-limited 5 ps infrared beams to

demonstrate live cell metabolism, however this setup used single-frequency tunable CARS, rather

than bCARS. The setup incorporated two galvanometer mirrors for spatial scanning and detected

both the forward and epi-CARS signals simultaneously. Since the SF-CARS does not require a

spectrometer, the signal was detected using multiple bandpass filters and a photomultiplier tube.

Thus, only a single Raman band was detected at any one time. Cheng reported an acquisition time

of 10 s for a CARS image of 512 × 512 pixels, and showed that CARS imaging can be coupled

with differential interference contrast and fluorescence microscopy for improved contrast imaging.

In 2007 Pestov et al.[62] studied methods in optimizing the shape of the input laser pulses for

multiplex CARS, with an emphasis on biological sample identification. This work demonstrated

efficient ultrafast broadband excitation using transform-limited femtosecond Stokes pulses and a

narrowband pulse that was several hundred femtoseconds long. Various samples were identified

through spectroscopic investigation of the recorded Raman bands. The samples included B. subtilis

and sodium dipicolinate powder. It was shown experimentally that the probe temporal properties

affect the NRB contribution greatly. When the probe pulse has zero delay with respect to the Stokes

pulse, the NRB to resonant signal strength was inversely proportional to the probe spectral width.

Therefore it is attractive to use ultrashort Stokes pulses to enhance the coherence generation width,
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but longer probe pulses in order to suppress the NRB. It was also noted that the NRB signal strength

is largest for zero delay, and that a combination of tailoring the temporal duration and temporal

delay of the probe pulse to the Raman linewidths of interest should yield optimal NRB suppression

overall.

2.4 BCARS for Biomedical Applications

During the development of CARS as a technique to study biological matter, the methods became

established in the field. This consisted of lasers coupled in to a conventional high numerical aperture

microscope objective (tight-focussing) to focus the beams and this was found to be more practical

than the BOX-CARS approach to phase matching. Coupled with either a miniaturised galvanometric

scanning system or digitally controlled stage which allowed imaging of biological media allowed

adoption of CARS imaging as a biological microscopy. The main advantages of CARS microscopy

over other modalities were its inherent chemical selectivity due to the Raman effect, high relative

intensities compared to spontaneous Raman scattering, depth selectivity due to it being a third

-order optical effect and its capability for fluorescence free signals. However, at this point the main

drawbacks to CARS microscopy were the NRB and its effect on the interpretability of spectra.

In 2009 a review of CARS microspectroscopy for biological imaging was published by Krafft

et al.[63]. This review was heavily focused on the application of CARS to cells and tissues and

briefly describes the key principles of the method. This review mentioned that implementations of

CARS at the time of publishing was prohibited by cost and complexity arising from the required

spatial and temporal overlap of the three input pulses for four-wave mixing to occur. These

concerns were often cited as CARS became more common, and CARS was typically compared

to spontaneous Raman spectroscopy, which was much less complex to implement. However the

benefit of drastically increased Raman signals was seen as a worthwhile cause to develop CARS for

biomedical applications.

A broadband CARS microscope was presented by Camp et al. in 2014[4] and this paper can be

considered seminal in the context of this thesis. A key part of this thesis consisted of replicating the
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performance and extending the capability of the system. In that work, chemical images of murine

liver and pancreatic tissue were created from broadband CARS spectra using a motorized sample

stage for spatial data acquisition. The BCARS system comprised of a narrowband probe at 770 nm

and a broadband Stokes which spanned from approximately 900 nm to 1350 nm. The images were

generated from false-color transformed spectra using typically one Raman band for biochemical

contrast. Remarkably, the bandwidth recorded for each spectrum was 470 cm-1 to 3,800 cm-1. In

this work, the NRB had been removed using an implementation of the Kramers-Kronig relations and

a phase correction procedure based on an assumption of a spectrally flat NRB. This seminal work

demonstrated that highly interpretable Raman spectra were obtainable from BCARS measurements

of biological tissues when spectral denoising methods were used prior to NRB removal. The

emphasis on the requirement for spectral denoising was noted, since NRB removal methods are

mathematical transforms that are highly dependent on the input noise. This is explicated in chapter

4.

Voronine et al.[64] in 2018 published a review article on surface-enhanced CARS using the

femtosecond adaptive spectroscopic technique (FAST). This review focused on biophotonics ap-

plications of this approach. FAST CARS is a technique for optimally controlling the input laser

pulses to suppress the non-resonant background in the anti-Stokes signal using probe pulses that

maximally prevent NRB generation from the temporal properties of the pulse. This approach is in

effect a temporal suppresion of the NRB, using pulse shaping rather than a pulse delay.

A critical review of coherent Raman microscopy for clinical and biological studies was published

in 2015 by Schie et al.[65] Their findings indicate most research in to biological studies with CARS

has been focused on the high-wavenumber region. This is mainly due to the relatively stronger

Raman response from these vibrations compared to the weaker fingerprint region due in part to the

much larger local concentration of CH2 vibrational modes. The biological applications of CARS

studied were mainly lipid droplet research and histopathologic tissue imaging. Lipid droplets (LD)

are a popular target for CARS since they have a high scattering cross-section and tissue imaging

benefits from the 3-D sectioning capabilities of CARS. LDs in particular are cellular organelles

that act as storage vesicles, protect cells from lipotoxicity and are a source for membrane lipid
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biosynthesis, protein storage and metabolism. CARS enables the sizing, quantification and imaging

of LDs within cells that contain them. The other main application, tissue imaging showed examples

of single-frequency CARS combined with second-harmonic generation images to visualize cells

and the extracellular matrix for disease detection.

A review of broadband coherent Raman techniques was published by Polli et al. in 2018[66].

This review focused mainly on BCARS and SRS in the context of biological imaging. This review

also collated the many novel variants of coherent Raman imaging such as time-stretch SRS, which

converts a broadband signal in to a long duration signal, such that it can be captured by a high

frequency analog to digital converter. In the review, a table summarized the main coherent Raman

imaging modalities, of which BCARS was one. Importantly, SRS was identified as a modality

that was not expected to incur revolutionary changes due to it being at the shot noise limit, but

stated it is likely to benefit from increased source bandwidth from new optical parametric oscillator

technologies. It was noted that CARS can be expected to benefit from enhanced multichannel

detectors with lower noise, providing higher speed and contrast, and that the demonstrated ability of

BCARS for tissue imaging[4] was inspiring for the future.

The demonstration of a novel imaging technique using a spectral interferometry method applied

to BCARS measurements was demonstrated by Littleton et al.[67, 68] This work used selective

polarization shaping of the input beams to probe different components of the third-order susceptibility

tensor, such that the measured signal was free from the NRB. This work, unlike previous attempts

to optically remove the NRB was stated to not have the drawback of reduced resonant intensity,

demonstrating major potential for bioimaging. This method also was almost fully optical, requiring

only a subtraction of two simultaneously recorded and orthogonal spectra. Since interference signals

such as fluorescence were common mode in each measurement direction, they cancelled in the

difference spectrum.

In this chapter we examined the key prior contributions in the development of coherent Raman

microscopy for biological imaging, with an emphasis on CARS and BCARS, which are central

to this thesis. In particular, the BCARS system proposed by Camp et al., capable of recording

Raman-like spectra from a wide band covering both the fingerprint and CH bands, is relevant to this
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work. In the next chapter, we introduce the background theory behind BCARS imaging and in the

later chapters we demonstrate the application of BCARS for single cell imaging.
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3. Theory

3.1 Incoherent Light Scattering

Light interacts with matter by absorption or scattering. Absorption requires the energy of the incident

photon to correspond to the energy gap between two states within an atom or molecule. Scattering

can occur regardless of whether the photon corresponds to an energy level gap in the matter. When

light interacts with matter, it causes electrons to polarize due to the electric field and the electrons

increase in energy. The polarized state is a “complex” between the light and electrons during which

it is typically assumed the atomic nuclei do not have time to move. The complex is typically called

a virtual state, since it is not an eigenfunction of any operator and therefore cannot be observed. The

energy of this virtual state is dependent on the incident photon energy and the amount of polarization

induced is related to the electronic properties of the atom or molecule involved[69]. Two types of

optical scattering occur at low incident electric field strengths (< 108 V/m). The most common type

is known as Rayleigh scattering and occurs when the excited state relaxes without any movement

of the atomic nuclei. This process is elastic since there is no change in energy between the initial

and final state of the atom or molecule. The other type of scattering is called Raman scattering, a

much rarer event which involves approximately one photon typically in every 106-108[70] incident

photons. Raman scattering occurs if the polarizability changes due to a vibration or rotation. Since

the nuclei are much heavier than the electrons, there will be a change in the energy of the molecule

to a higher or lower energy depending on whether the initial state is the ground state or an excited

state.
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Light may also be completely absorbed by a material. In this case, higher energy electronic

states become populated. When these states release energy in the form of non-radiative transitions,

energy is dissipated in the form of heat. In radiative transitions the light is re-emitted and called

luminescence. Luminescence can be spontaneous, meaning it occurs in the absence of incident

radiation or stimulated by radiation. Spontaneous emission in which the upper and lower spin

quantum number is unchanged is known as fluorescence, and the emission is characteristically lower

in energy than the initial absorbed light. Fluorescence occurs when an excited electron drops back

down to a lower energy state (usually the ground state) without a change in spin. This process is fast,

typically occurring within nanoseconds. Another form of emission can occur when the spin quantum

number changes, known as phosphorescence. These processes are shown diagrammatically in figure

3.1. In the figure, the potential energy curve of a molecular bond is shown for three different states.

The stationary point is the equilibrium bond length R0, which may change according to the states

energy. The form of the potential is given here as a Morse potential, which describes an anharmonic

potential and approximates real data quite well.

3.1.1 Maxwell’s equations in matter

The interaction of light and matter is described by Maxwell’s equations which are the fundamental

equations of electromagnetism. Maxwell’s equations apply to all media which are at rest with

respect to the coordinate system being used to describe them and also apply to linear and nonlinear

media. The linear equations in SI units will be described first and then expanded upon to derive the

nonlinear wave equation. As a starting point the equations for isotropic media are given as[71]

∇ ·D = ρf

∇ ·B = 0

∇×E = −∂B
∂t

∇×H =
∂D

∂t
+ Jf

(3.1)

(3.2)

(3.3)

(3.4)
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Figure 3.1: Jablonski diagram of the Morse long-range potential of three electronic states, the ground state
S0, 1st excited state S1 and an excited triplet state T1.

where D is the electric displacement, B is the magnetic flux density, H is the magnetic field, ρf is

the free charge density and Jf is the free current density. The displacement is related to the electric

field E through

D = ε0E + P (3.5)

where ε0 is the electric permittivity of free space and P is the electric polarization. Substituting this

in to equation 3.4

∇×H = ε0
∂E

∂t
+
∂P

∂t
+ Jf (3.6)

Equation 3.4 can be written in terms of B, using the fact that B = µ0(H + M), where µ0 is the

magnetic permeability and M is the magnetic polarization (magnetization) in the material. The total
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current density can be expressed as a sum of free, bound and polarization current as follows,

J = Jf + Jb + Jp = Jf +∇×M +
∂P

∂t
(3.7)

therefore,

∇×B = µ0ε0
∂E

∂t
+ µ0J (3.8)

Taking the time derivative,

∇× ∂B

∂t
= µ0ε0

∂2E

∂t2
+ µ0

∂J

∂t
(3.9)

substituting equation 3.3 for ∂B∂t ,

−∇×∇×E = µ0ε0
∂2E

∂t2
+ µ0

∂J

∂t
(3.10)

finally, the vector identity∇×∇×E = ∇ · (∇ ·E)−∇2E is used, and in a typical solid there are

no free charges, so∇ ·E = ρf = 0

∇2E = µ0ε0
∂2E

∂t2
+ µ0

∂J

∂t
(3.11)

the above is the general wave equation for electromagnetic waves. In a polarizable medium, there is

an induced polarization due to the electric field, which, under typical conditions is a linear response,

P = χε0E (3.12)

where χ is known as the electrical susceptibility. We give χ as a scalar here, denoting an isotropic

medium. However, in an anisotropic medium the value of χ depends on the components of E, and

is described as a tensor.

Using the fact that a changing polarization results in a current (equation 3.7),

∂J

∂t
= χε0

∂2E

∂t2
(3.13)
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Therefore, the wave equation can be written as

∇2E = µ0ε0(1 + χ)
∂2E

∂t2
(3.14)

the permittivity of the medium is written as

ε = ε0(1 + χ) (3.15)

and the index of refraction as

n =
√

1 + χ (3.16)

which then gives

∇2E =
n2

c2

∂2E

∂t2
(3.17)

here c = 1/
√
µ0ε0 is the speed of light.

3.1.2 Spontaneous Raman Scattering

As previously discussed, Maxwell’s equations describe how electromagnetic waves, such as light,

interact with materials, inducing currents and causing polarization in the material. This polarization

gives rise to various scattering processes, including Raman scattering, where the oscillating electric

field of light interacts with the vibrational modes of molecules. The scattered light undergoes

a frequency shift based on these vibrations, leading to either Stokes or anti-Stokes shifts in the

scattered light.

The spontaneous Raman effect involves the spontaneous change in the vibrational energy ∆Ev

within the ground electronic state of an electron in a molecule during the scattering of a photon at

frequency ω, which causes the photon to change in frequency. If the frequency is greater than the

incident light, it is termed anti-Stokes Raman scattering (ω+ ∆E
~ ), whereas if the frequency is lower,

it is termed Stokes Raman scattering (ω − ∆E
~ )[72]. All molecules possess intrinsic vibrations, and

depending on selection rules governed by the symmetry of the mode, they can undergo Raman

scattering. The difference in the frequency of the light before and after scattering is equal to the
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Figure 3.2: Diagram of the Rayleigh scattering, Raman Stokes scattering and Raman Anti-Stokes scattering
effects.

difference in frequency between the two energy levels. Stokes shifted light is decreased in frequency

and Anti-stokes shifted light is increased in frequency equal to Ω. A Raman spectrum is a histogram

that describes the intensity of the light as a function of the frequency shift between the incident

and scattered radiation. Since there is a net exchange of energy between the incident light and the

molecule, Raman scattering is an inelastic scattering process.

When the incident light is scattered and the frequency remains the same, it is termed Rayleigh

scattering. This is also a spontaneous effect as the relaxation of the molecule occurs in the absence

of a driving field. A diagram of the two spontaneous Raman effects and the Rayleigh scattering

effect is shown in figure 3.2 below. In the diagram, unbroken horizontal lines indicate discrete

eigenstates of the molecule, whereas broken horizontal lines indicate virtual quantum states. These

light scattering processes are called spontaneous because the matter fluctuations responsible for

them are due to thermal or quantum effects that are not correlated with the input photon.

When a photon is absorbed by a molecule, energy is conserved and the photon energy is

converted in to the energy required to change the quantum state of the electron. In inelastic

scattering however, such as Raman scattering, the photon field loses or gains energy to the molecule.

An upward pointing arrow in the below diagram indicates photon annihilation, while a downward

arrow indicates photon creation. The change in the quantum state is due to “stimulated transitions”

from the vacuum fluctuations which is explained by the quantum nature of radiation[73]. The

observed Raman and Rayleigh intensities are directly proportional to the irradiance of the incident

light and thus are termed linear scattering. Most molecules at rest and at room temperature are likely

to be in the ground state. Therefore the majority of Raman scattering will be Stokes scattering, since
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this is involves a net increase of energy in the atom from the ground state. The relative intensities of

Stokes to anti-Stokes scattering is dependent on the number of molecules in the ground and excited

vibrational levels respectively. These can be determined from the Boltzmann equation,

Nn

Nm
=
gn
gm

exp
[
−(En − Em)

kT

]
(3.18)

where Nn and Nm are the number of molecules in the excited (n) and ground (m) vibrational levels,

g is the degeneracy of each level, En − Em is the difference in energy between each level, k is

Boltzmann’s constant and T is the temperature.

In any molecule, the total energy consists of translational, vibrational and rotational energy.

Translational energy can be described by three orthogonal vectors and so has three degrees of

freedom. The same is true for rotational energy. In a linear molecule, such as carbon monoxide

however, there are only two rotational degrees of freedom, rotation perpendicular to the molecular

axis, since rotation around the molecular bond does not change the mass distribution. Thus all

molecules have three translational and three rotational degrees of freedom except for linear molecules

which have only two rotational degrees of freedom. N atoms requires 3N coordinates to specify

their position, however, in the molecule frame where only relative displacement is meaningful, three

of the translational coordinates are redundant. There are also two angles needed to specify the

rotation of a linear molecule in space, and three for a nonlinear molecule. Thus, the total number of

vibrations expected will be 3N−6 for all non-linear molecules and 3N−5 for linear molecules. Not

all vibrational modes are Raman active, meaning they do not all lead to a change in the molecules

polarizability. Only vibrational modes that induce a change in the polarizability of the molecule can

be observed through Raman spectroscopy.

As introduced in the section 3.1.1, the incident electromagnetic field interacts with the molecule

and induces a polarization. This is a direct consequence of the electric field perturbing the elec-

tron, resulting in an induced dipole moment. A classical description of Rayleigh scattering and

spontaneous Raman scattering in a diatomic molecule is as follows. We recall that the interaction

between the electric field and the molecule leads to the induction of a dipole moment, which results

in Rayleigh or Raman scattering. In Rayleigh scattering, the induced polarization leads to an elastic
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interaction where the frequency of the scattered light remains unchanged, while in Raman scattering,

the polarizability of the molecule changes due to vibrational motion, resulting in inelastic scattering

and a shift in frequency.

An incident electric field E(t) induces microscopic dipole moments µ(t) by perturbing the

charge density of the electrons in the medium.

µ(t) = −er(t) (3.19)

where e is the electron charge and r(t) is the separation. The macroscopic polarization due to the

µ(t) is given as,

P(t) = Nµ(t) (3.20)

where N is the total number of induced moments per unit volume. The electronic polarizability α(t)

of a diatomic molecule depends on the intra-molecular distance Q. This distance varies with time as

Q(t) = Q0cos(ΩRt) (3.21)

where Q0 is the amplitude of the vibration and ΩR is the vibrational frequency of the transition. A

Taylor expansion of α about the initial value gives[74]

α(t) = α0 +

(
∂α

∂Q

)
0

Q(t) (3.22)

An incident monochromatic plane wave is given as

E(t) = E0cos(ωt) (3.23)

which induces a macroscopic polarization in the molecule that, in the linear regime (low incident

field intensity), can be stated as[75],

P(t) = ε0χ
(1)E(t) (3.24)

where χ(1) is the linear electric susceptibility tensor, which in an isotropic medium can be represented

27



3.1. Incoherent Light Scattering

as a scalar. While the polarizability describes the molecular response to the electric field at the

microscopic level, the electric susceptibility is a macroscopic property that reflects how an entire

material responds to an applied electric field by becoming polarized.

The induced dipole moment is related to the electric field by the electronic polarizability,

µ(t) = α(t)E(t) (3.25)

Substituting equation 3.25 and equation 3.22 in to equation 3.20,

P(t) = N

[
α0 +

(
∂α

∂Q

)
0

Q0cos(ΩRt)

]
E0cos(ωt)

= Nα0E0cos(ωt)

+
N( ∂α∂Q)0E0Q0

2
cos[(ω − Ω)t]

+
N( ∂α∂Q)0E0Q0

2
cos[(ω + Ω)t]

(3.26)

The term with the elastic component including ω represents Rayleigh scattering, while the ω ± Ω

terms represent anti-Stokes and Stokes scattering respectively. The gross selection rule for a Raman

transition is the molecule must have an anisotropic polarizability. There must therefore be a change

in the shape or orientation of the electronic distribution during the transition for a particular mode to

be Raman-active. The intensity of the spontaneous Raman scattering signal is given by[70]

IRaman ∝ Klα2ω4
0 (3.27)

where K consists of constants such as the speed of light, l is the incident laser power, α is the

molecular polarizability, and ω0 is the incident laser frequency. The polarizability is calculated

using quantum mechanics according to the Kramers-Heisenberg-Dirac (KHD) expression as a sum

over all states in the molecule[76]

(αρσ)if =
1

~
∑
n

[
〈i|µρ|n|i|µρ|n〉 〈n|µσ|f |n|µσ|f〉

ω0 + ωnf + iΓn
− 〈i|µσ|n|i|µσ|n〉 〈n|µρ|f |n|µρ|f〉

ω0 − ωni − iΓn

]
(3.28)

where ρ and σ denote the Cartesian components (x, y, z) of the rank two polarizability tensor in
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the molecule frame, µ is the dipole operator, i, f and n denote the initial, final and an excited

intermediate state, and Γ is the linewidth of a state. Each integral in the numerator, 〈i|µ|n|i|µ|n〉 for

example, describes the mixing of state i with the result of operating on state n with µ. A mixture

of states describes the distorted electron configuration due to the light-matter complex. The KHD

expression gives the total polarizability by summing over all possible intermediate states that the

molecule can temporarily occupy during the scattering process. This summation accounts for the

fact that the interaction between light and matter is not limited to a single vibrational state but

involves the contribution of multiple electronic and vibrational states.

It is helpful to describe the relation between the incident intensity and scattered intensity in the

Raman effect. The Raman literature employs the following relation to describe the strength of the

Raman scattering of a material[77]

dPRaman = n · dσ · I (3.29)

where dPRaman is the rate of energy scattered into the Stokes frequency, dσ is the differential Raman

cross section of the mode and I is the incident intensity of the pump beam. The differential Raman

cross section describes the probability that a photon is scattered into a solid angle dΩ with a specific

frequency shift. This probability is proportional to the third power of the scattered frequency and

is influenced by the polarizability changes of the molecule during the Raman transition. The units

of σ are typically given in cm2. The cross section and the polarizability are finally related by the

equation[76]
dσif
dΩ

=
ω3

Sω0

c4

∣∣∣ês · αif · ê0

∣∣∣ (3.30)

where ωS is the frequency of the scattered radiation and ês and ê0 are unit vectors describing the

polarization directions of the scattered and incident radiation respectively. The dot product between

these vectors and the polarizability tensor accounts for how the molecular response to the incident

light depends on the alignment of the electric field and molecular vibrations.

An important distinction between Raman and Rayleigh scattering is that the latter is in phase

with the incident radiation whereas the former depends on the phase of the molecular oscillation
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which can be arbitrary. Because Raman scattering involves arbitrary phase shifts due to molecular

vibrations, the scattered light is incoherent. This incoherence means that the scattered light from

different molecules does not constructively interfere, leading to a much weaker overall intensity

compared to Rayleigh scattering, which is phase-coherent.

3.1.3 Resonance Raman Scattering

The field of resonance Raman scattering is concerned with the coupling of vibrational and electronic

states of the molecule, so called vibronic states. Vibronic states arise when electronic excitations

are coupled with vibrational modes. This simultaneous interaction between the electronic and

vibrational states creates resonance conditions that lead to significantly enhanced Raman scattering

intensities. In Resonance Raman scattering, the chromophore (the molecular group responsible

for absorbing light at specific wavelengths) determines the resonance condition. When the laser

wavelength matches the electronic transition of the chromophore, the interaction between the light

and the molecule is greatly amplified. In this case, the Raman intensity can be enhanced due to an

increase in the transition polarizability α. Typical enhancement factors can be on the order of 105-

106 times that compared to non-resonant Raman scattering[76]. Aside from the intensity increases

provided by Resonance Raman, there is also high selectivity in the measurement, since only the

chromophore group will be enhanced. In Resonance Raman scattering, fluorescence can sometimes

interfere with the Raman signal, as both processes involve the absorption of light. Techniques such

as time-gated detection or focusing on the anti-Stokes Raman signal can help mitigate the effects of

fluorescence interference. When ω0 ≈ ωni, the denominator of the second part of equation 3.28

reduces to −iΓ, and thus this whole term becomes large. The second part dominates the equation

and non-resonant states become relatively weak. Thus, the sum can be dropped in equation 3.28 for

resonant conditions. The energy level diagram for resonance Raman scattering is shown in figure

3.3.
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Figure 3.3: Energy diagram of resonance Raman scattering.

3.2 Nonlinear optics

3.2.1 Nonlinear polarization

The light scattering phenomena described until this point are rather weak processes. The cross

section per unit volume for Raman scattering is approximately 10-6 cm-1, resulting in 1 part per

million photons undergoing Raman scattering within 1 cm of a scattering medium. This physical

limitation however can be overcome using radiation that has extremely high peak power, such as

that from pulsed sources. Nonlinear optical processes may occur in a non-linear optical medium as

a result of multiple high-intensity incident fields on a material[50]. Under such illumination, the

nonlinear response of matter becomes important as the electrons no longer oscillate harmonically.

Nonlinear effects such as four-wave mixing (FWM) and stimulated Raman scattering (SRS) are such

examples that will be described. In these coherent scattering events, the emitted radiation has a high

directionality and therefore almost all of the generated light can be detected with high efficiency.

When high intensity fields are incident on a sample, equation 3.24 no longer holds since the

electrons may be polarized with a nonlinear dependence on E. Therefore, a nonlinear polarization is

introduced

PNL = P(2) + P(3) + P(4)... (3.31)

where P(n) is the nth-order nonlinear polarization term. The total polarization in a material can
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therefore be generalized, including the linear (PL) and nonlinear (PNL) terms. PL controls linear

optical responses such as propagation, reflection and refraction, while PNL controls multi-wave

responses. In a lossless and dispersionless medium the polarization is given as[76]

P(t) = ε0[χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...] (3.32)

= PL + P(2)
NL + P(3)

NL + ... (3.33)

The quantities χ(2), χ(3) etc. are the second and third-order etc. optical susceptibilities. The

second-order susceptibility χ(2) gives rise to phenomena like second-harmonic generation (SHG),

where two photons are combined to produce a photon at twice the frequency of the original light.

The third-order susceptibility χ(3) is responsible for effects like third-harmonic generation and the

Kerr effect, where the refractive index of the material depends on the intensity of the light. The

above expansion is valid only when it converges i.e. when successive terms monotonically decrease.

Due to the fact that the polarization can be induced in a direction different from the electric field, χn

is an n+ 1 rank tensor.

From Maxwell’s equations in matter[73], when the polarization varies in time, there is a

polarization current density.
∂P
∂t

= Jp (3.34)

resulting in a source term for electromagnetic radiation. The polarization current density describes

the movement of bound charges in response to a changing electric field. This movement effectively

acts as a source for generating electromagnetic waves in nonlinear optical processes The nonlinear

polarization is thus central to the description of nonlinear optical effects since a time-dependent

polarization may create new sources of radiation within the medium. In order to highlight this effect,

we take equation 3.11 and rearrange such that sources are on the right-hand side

∇2E− µ0ε0
∂2E

∂t2
= µ0

∂J

∂t
(3.35)
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then using equation 3.34 and substituting the speed of light for the vacuum constants

∇2E− 1

c2

∂2E

∂t2
=

1

ε0c2

∂2P

∂t2
(3.36)

This is the most general form of the wave equation in nonlinear optics, where P can have terms

that depend on E nonlinearly.

Non-linear optical effects can be categorised into parametric and non-parametric effects. In

parametric effects, such as four-wave mixing or second-harmonic generation, the materials quantum

state remains unchanged. These processes involve energy and momentum conservation within

the optical field. In contrast, non-parametric effects, such as Raman scattering, involve changes

in the material’s quantum state, often leading to the emission of new frequencies due to inelastic

scattering. For example, the second-order susceptibility leads to effects like second-harmonic

generation, where two photons are combined to form one photon with twice the frequency. Similarly,

third-order processes can result in effects such as the Kerr effect, where the refractive index of the

material becomes dependent on the light intensity. Parametric nonlinear effects are often described

as instantaneous because the material response to the optical field occurs on a timescale much

shorter than the light interaction time. However the response happens on the order of femtoseconds

to picoseconds. An important aspect of parametric processes is phase matching, where the phase

velocities of the interacting waves must align for the nonlinear process to build up coherently.

Without phase matching, the efficiency of processes like second-harmonic generation or four-wave

mixing is significantly reduced.

An illustrative example expression for the polarization will be given for second harmonic

generation (SHG) as it is the lowest order nonlinearity. If a time-varying field E(t) = Ee−iωt + c.c.

is incident on a material for which χ(2) is non-zero, a second order nonlinear polarization will be

produced, in addition to the linear polarization. The nonlinear polarization is given as

P(2)(t) = 2ε0χ
(2)EE∗ + (ε0χ

(2)E2e−i2ωt + c.c.) (3.37)

33



3.2. Nonlinear optics

In the above equation, there are two terms at differing frequencies, one at zero frequency

which produces an effect called optical rectification and a term at the frequency 2ω, responsible for

radiation at the second harmonic of the input frequencies. In SHG, two photons of frequency ω are

destroyed and a photon at frequency 2ω is created in a single process.

3.2.2 The complex susceptibility

χ is in general a complex quantity describing the response of a charge to an electromagnetic field.

According to equation 3.32, knowledge of χ allows calculation of the polarization due to incident

electric fields on a system. The harmonic approximation is typically used as a starting point to

describe the response. The harmonic approximation is used because, for small displacements,

the restoring force on the charged particle is proportional to the displacement, following Hooke’s

law. This allows us to model the system as a simple harmonic oscillator, which provides a good

approximation for many physical systems under weak-field conditions. In this approximation, a

system is composed of charged harmonic oscillators of mass m and charge q, and its equation of

motion is described as follows

mẍ = qE0e
−iωt −mΓẋ−mω2

0x (3.38)

where the three terms on the right correspond to the driving force from the electric field, the damping

force, which is proportional to the velocity of the charge ẋ, and the restoring force F = −Kx. The

natural frequency of the oscillator is given as ω0 =
√

K
m , where K is the spring constant. Γ is a

term related to the energy lost in the system, usually due to friction or resistance in the material.

Physically, it corresponds to how quickly the system returns to equilibrium after being disturbed,

and it directly influences the linewidth of the resonance.

The solution to this differential equation is a sinusoid of the form

x(t) = x0e
−i(ωt+δ) (3.39)

where x0 is the amplitude and δ is the phase difference between the oscillator and driving force.
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Substitution of x in to equation 3.38 results in

x0 =
qE0

m

1√
(ω2

0 − ω2)2 + Γ2ω2
(3.40)

tan(δ) = − Γω

ω2
0 − ω2

(3.41)

The polarization P is the dipole moment µ per unit volume

P = qx
N

V
(3.42)

where N is the number of oscillators and V is the volume. Substitution of equation 3.39 in to 3.42

leads to

P = q

(
qE0

m

e−i(ωt+δ)√
(ω2

0 − ω2)2 + Γ2ω2

)
N

V
(3.43)

Utilising equation 3.24, the susceptibility can be restated as

χ =
q2N

ε0mV

e−iδ√
(ω2

0 − ω2)2 + Γ2ω2
(3.44)

or without the trigonometric functions it can be recast as

χ = C
(ω2

0 − ω2) + iΓω

(ω2
0 − ω2)2 + Γ2ω2

(3.45)

where C = q2N
ε0mV

. A simplification can be made here by noting the denominator is the magnitude-

squared of the numerator. Whence, denoting the numerator as z,

χ = C
z

|z|2
= C

z

zz∗
= C

1

z∗
(3.46)

therefore the susceptibility can be expressed as

χ =
C

(ω2
0 − ω2)− iΓω

(3.47)
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One final simplification is made to χ. Close to a resonance, |ω − ω0| � ω0, then we have

χ =
C

(ω0 − ω)(ω0 + ω)− iΓω
(3.48)

(3.49)

≈
(
C

2ω0

)
1

ω0 − ω − iΓ/2
(3.50)

which is known as the resonance approximation. The Lorentzian shape of the susceptibility indicates

that the material’s response is strongest when the driving frequency is close to the material’s natural

resonance frequency. The full width at half maximum (FWHM) of the Lorentzian curve is related

to the damping rate Γ, determining how sharply peaked the resonance is, and how much energy is

absorbed. χ can have a real part corresponding to the in-phase component of polarization, and an

imaginary part which corresponds to a polarization that is 90°out of phase with the driving field. A

complex susceptibility implies a complex wavevector of the electric field, according to equation 3.17.

If χ has an imaginary part, then the wavevector includes an imaginary term, resulting in solutions of

the form

E = E0e
i(krealx−ωt)e(−kimagx) (3.51)

where the wavevector is

k = kreal + ikimag (3.52)

From the above equations, if a wave is propagating in a material with a non-zero imaginary part of the

susceptibility, the wave will decay. The real part of the wavevector corresponds to the propagation of

the wave, determining its wavelength and phase velocity. The imaginary part causes the amplitude of

the wave to decay exponentially as it travels through the material, which corresponds to absorption.

3.2.3 Coherent anti-Stokes Raman scattering

High intensity radiation from two laser pulses at a pump frequency ωp and Stokes frequency ωS

can drive molecular oscillations within a medium at the frequency difference ωp − ωS. As a

result of the nonlinear polarization of the medium, a coherent beam can be generated at frequency
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ωas = ωp − ωS + ωpr where ωpr is the frequency of a third probe pulse[49]. When the frequency

difference is equal to a vibrational frequency of the molecule Ω, the anti-Stokes signal is greatly

enhanced. This four-wave mixing process is known as Coherent Anti-Stokes Raman Scattering

(CARS). CARS has proven to be a useful spectroscopy that permits highly sensitive chemical

information to be obtained, as it generates a coherent signal and thus gives much greater signal

intensities compared to spontaneous Raman spectroscopy. CARS has on the order of a 104 times

greater signal intensity compared to spontaneous Raman scattering[78].

For the CARS process to occur, three photons at frequencies ωp, ωS and ωpr must all be incident

on the molecule within the coherence time of the virtual level. Dispersion of the refractive index

also places a phase-matching condition on the three photons in order for appreciable build up of the

anti-Stokes signal to occur. One way to satisfy the phase-matching condition is to use co-linear laser

beams with a high numerical aperture lens to ensure a multitude of wave-vectors are generated at

the focus. Another way to ensure phase-matching is to angle the beams relative to each other, which

ensures very small focal volumes, however the phase matching is difficult to optimize[70]. A great

advantage of CARS is the fact that it is an anti-Stokes process, which means that the signal is of a

higher frequency than the incident beam, resulting in a fluorescence-free measurement. This makes

CARS ideal for studying complex media that otherwise would have very congested spontaneous

Raman spectra due to fluorescence. There is however a major disadvantage to CARS which is an

appreciable background signal that perturbs the chemical information. There are multiple ways of

removing this background signal and they will be described in detail in chapter 4.4.2.

The conversion of the three incident photons into the anti-Stokes photon ωas in the medium is a

result of the non-linear properties of the material, specifically, the third-order non-linearity which is

described by χ(3). The third-order nonlinear polarization is given as

P(3)(ω, k) = χ(3)(ω, ωp,−ωS, ωpr)Ep(ωp, kp)E∗S(ωS, kS)Epr(ωpr, kpr) (3.53)

where kp and ωp represent the wave-vector and frequency of the pump beam, ks and ωS represent the

wave-vector and frequency of the Stokes beam, kpr and ωpr represent the wave-vector and frequency

of the probe beam. The momentum conservation is described in figure 3.4. The dual requirements
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of energy and momentum conservation are critical for optimizing the CARS signal and enhancing

the techniques effectiveness in spectroscopic applications.

Figure 3.4: Momentum conservation condition in CARS.

The spectrum of ωas contains information on the presence of the molecular vibrational modes,

the frequency of which can be found from

Ω = ωas − ωpr (3.54)

The energy diagram of the CARS process is shown in figure 3.5. Solid lines represent eigenstates of

the molecule and dashed lines represent purely virtual states of the light-matter interaction. As seen

in the energy-level diagram, the initial and final state is the ground vibrational state. This results in

no net energy transfer to the molecule, and the photon field energy is constant.

Figure 3.5: (a) Energy diagram of the Coherent Anti-Stokes Raman Scattering effect, (b) energy diagram of
the degenerate four-wave mixing effect responsible for the NRB. (Solid horizontal lines denote eigenstates
and dashed lines indicate virtual states).
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A theoretical description of the CARS signal is as follows[79]. Incident radiation at frequency

ω1 and ω2 can generate a time-varying force F (t) on a molecular vibrational mode at the difference

frequency Ω = ω1 − ω2,

F (t) = ε0

(
∂α

∂Q

)
0

[
A1A

∗
2e
−iΩt + c.c.

]
(3.55)

where An is the amplitude of field n including the propagation term,
∂α

∂q
is the second term in the

Taylor expansion of the polarizability from equation 3.22 and c.c. means complex conjugate. This

force induces an oscillation of the bond and creates a polarization of the form

P(t) = ε0N

[
α0 +

(
∂α

∂Q

)
0

Q(t)

][
E1(t) + E2(t)

]
(3.56)

Q(t) is again the intra-molecular distance. Terms proportional to a0 correspond to linear polarization

PL and terms proportional to
∂α

∂Q
correspond to nonlinear polarization PNL. Expanding the brackets,

P(t) = ε0Nα0E1(t) + ε0Nα0E2(t)︸ ︷︷ ︸
PL

+ ε0N

(
∂α

∂Q

)
0

Q(t)E1(t) + ε0N

(
∂α

∂Q

)
0

Q(t)E2(t)︸ ︷︷ ︸
PNL

(3.57)

Substituting plane wave expressions for E(t) = Ae−i(ωt) + c.c. and Q(t) = Q0(ω)e−i(Ωt) + c.c.,

PNL(t) = ε0N

(
∂α

∂Q

)
0

[
Q0(ω)A1e

−i(ω1+Ω)t +Q0(ω)A2e
−i(ω2+Ω)t+

Q0(ω)∗A1e
−i(ω1−Ω)t +Q0(ω)∗A2e

−i(ω2−Ω)t + c.c.
]

(3.58)

there is thus four terms that contribute to the nonlinear polarization. The first term oscillates at

ω1 + (ω1 − ω2) = 2ω1 − ω2 and is known as the anti-Stokes component, corresponding to coherent

anti-Stokes Raman scattering (CARS). The term oscillating at ω2− (ω1−ω2) = 2ω2−ω1 is known

as the Stokes component, corresponding to coherent Stokes Raman scattering (CSRS). The other

two terms in equation 3.58 oscillate at the input frequencies ω1 and ω2 and do not correspond to

a shift in energy of the light. These latter two terms correspond to nonlinear processes known as

stimulated Raman loss (SRL) and stimulated Raman gain (SRG) respectively. All four nonlinear
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Figure 3.6: Frequency components generated due to the Third-order nonlinear suscep-
tibility.

polarization components are shown in figure 3.6. The amplitude of the vibration as a function of

frequency Q(ω) is given by

Q(ω) =
(ε0/m)(∂α/∂q)0A1A

∗
2

ω2
0 − Ω− iΩΓ

(3.59)

The polarization at the anti-Stokes frequency is given as

P (ωas) =
Nε20
m

(
∂α

∂Q

)
0

1

ω2
0 − Ω2 − iΩΓ

A2
1A
∗
2 (3.60)

we now define the third-order nonlinear susceptibility as

χ(3)(ωas) =
(Nε0/3m)(∂α/∂Q)2

0

ω0 − (ω1 − ωas)2 − i(ω1 − ωas)Γ
(3.61)

The intensity of radiation is given as the magnitude-squared of the polarization, thus using equation

3.60, the intensity of the CARS field can be expressed as

Ias ∝
∣∣∣χ(3)

∣∣∣2 I2
1I2 (3.62)
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where In = |En|2 is the intensity of field n.

From here on we denote E1 and E2 as the pump and Stokes fields respectively, with amplitudes

Ap and AS. The spatial evolution of the anti-Stokes wave in an isotropic medium as a function of

position z is given by[80]

∂Aas(z)

∂z
=
i3ωas

2nc
χ(3)(ωas)

(3)A2
pA
∗
Se
i∆kz (3.63)

where Aas is the anti-Stokes amplitude and the wavevector mismatch ∆k is defined as

∆k = (2kp − kS − kas) · ẑ (3.64)

The Anti-Stokes field at z = l is thus given by,

Aas(L) =

∫ L

0

∂Aas

∂z
=
i3ωas

2nc
χ(ωas)L · sinc

(
∆kl

2

)
ei

∆kL
2 A2

pA
∗
S (3.65)

The anti-Stokes intensity is thus,

Ias(L) ∝ |χ(ωas)|2L2sinc2

(
∆kL

2

)
I2

p IS (3.66)

there is a restriction that effectively ∆kL � 2π must be true for Ias to be non-zero. Figure 3.7

(a) shows the intensity from the anti-Stokes field as a function of the wavevector mismatch. The

sinc function results in nodes where the intensity vanishes at integer values of ∆kL
2π , where L is the

interaction length. Figure 3.7 (b) shows the effect of the coherence length, defined as

Lc =
π

∆k
(3.67)

when L = Lc, the intensity is maximized. The total anti-Stokes field generated within the medium

is the coherent summation of the fields along the direction of incidence. Therefore, at every point

along the z direction, this field must be in phase with the induced polarization.
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Figure 3.7: (a) Intensity of the anti-Stokes field vs. the wavevector mismatch for
constant interaction length L. (b) Curve of anti-Stokes intensity versus L for various
coherence lengths Lc.

The third-order susceptibility can be separated in to two parts,

χ(3) = χ
(3)
R + χ

(3)
NR (3.68)

where χ(3)
R is the resonant part and χ(3)

NR is the non-resonant part that is due to virtual transitions. In

general, the non-resonant term is frequency independent[50] and a real number[81]. From here, the

superscript denoting the third-order of the nonlinear susceptibility will be dropped for brevity. The

CARS signal depends upon |χ|2

Ias ∝ |χ|2 = |χR + χNR|2 (3.69)

the resonant part is a complex quantity, where the real part represents the normal refractive index

and the imaginary part represents the absorption. Restating the above equation using the fact that
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the squared norm is the product of the conjugate pair,

|χ|2 = χχ̄ = (χR + χNR)(χ̄R + ¯χNR) (3.70)

|χ|2 = |χR|2 + χR ¯χNR + χNRχ̄R + |χNR|2 (3.71)

since the non-resonant component of the susceptibility is purely real,

|χ|2 = |χR|2 + |χNR|2 + χNR(χR + χ̄R) (3.72)

This can be simplified as

|χ|2 = |χR|2 + |χNR|2 + 2χNR Re[χR] (3.73)

The susceptibility for a single resonance with χ(3)
NR = 0 is shown in figure 3.8. It can be seen that

Im
(
χ(3)

)
and

∣∣χ(3)
∣∣2 exhibit a Lorentzian lineshape, while Re (χ) exhibits a dispersive lineshape

with vanishing value at resonance. The magnitude-squared value, obtained from equation 3.69 has

a maximum at resonance, and from equation 3.61 is proportional to the square of the number of

oscillators (molecules) at ω.

In figure 3.9, the same resonance is plotted as in figure 3.8, but now including a nonzero value

of χNR. Since χ(3)
NR is assumed purely real and constant, Re(χ(3)) may become nonzero everywhere,

depending on the value of χ(3)
NR. Through the cross-term in equation 3.73, the dispersive lineshape of

the real part of χ(3) is imprinted on the intensity, leading to dispersive measured lineshapes. This has

major implications for spectroscopy since the maximum of the intensity no longer coincides with

the resonance frequency. The cross-term also introduces a polynomial dependence on molecular

density

Ias ∝
∣∣∣χ(3)

∣∣∣2 ∝ N2 +Nχ
(3)
NR +

(
χ

(3)
NR

)2
(3.74)
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Figure 3.8: Diagram of the real part, imaginary part and magnitude-squared of the
Raman susceptibility for a single resonance at Ω = 1000 cm-1, Γ = 10 cm-1, A = 1,
χNR = 0.

3.2.4 Stimulated Raman Scattering

The stimulated Raman scattering (SRS) effect involves the driving of a molecular vibration into

resonance by two fields, and subsequent Raman scattering. It is thus very similar to CARS. The

main difference between SRS and CARS is that the induced nonlinear polarization PNL occurs at

the same frequency as one of the input fields. This polarization interferes with the two input fields

and causes a reduction in the pump field intensity known as stimulated Raman loss (SRL) and an

increase in the Stokes field intensity called stimulated Raman gain (SRG). The energy diagram

for SRS is shown below. In SRS the detected field is proportional to the imaginary part of the

third-order molecular susceptibility[79].

S(Ω) ∝ ±2Im[χ(3)(ω)] (3.75)
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Figure 3.9: Diagram of the real part, imaginary part and magnitude-squared of the
Raman susceptibility for a single resonance at Ω = 1000 cm-1, Γ = 10 cm-1, A = 1,
χNR = 0.1.

SRS being a nonlinear technique is advantageous over spontaneous Raman scattering for spec-

troscopy mainly because the effect is multiple orders of magnitude greater in intensity, as is also true

for CARS. It however does not have a non-resonant background since it is a non-parametric effect.

This is a great advantage over CARS, as the intensity measurement is not spectrally distorted. There

are several advantages of BCARS over SRS however, the main being that simultaneous acquisition

of the whole vibrational spectrum is only possible with BCARS. This is because SRS requires

lock-in detection to detect the signal. Thus, broadband spectroscopy where very low dwell times are

necessary is more suited to BCARS.

The main differences between BCARS and SRS are described below in table 3.1.
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Figure 3.10: Energy diagram of stimulated Raman scattering (SRS).

Feature BCARS SRS

Measurement anti-Stokes emission Stimulated loss/gain
Spectral Range Broadband Narrowband
Background Interference Non-resonant background None
Concentration scaling Variable Linear

Table 3.1: Comparison of BCARS and SRS techniques.

3.3 Dispersion

Since nonlinear spectroscopy requires high-intensity electric fields, its application requires the use

of ultrashort pulses and therefore necessitates a careful consideration of dispersion of the optical

media used. This is because the efficient propagation of ultrafast pulses is highly dependent on

dispersion. In this section, the main elements of dispersion are described.

Any linear optical element (LOE) such as a mirror, prism or grating transforms an incident field

spectrum Ein(ω) as follows[82]

E(ω) = H(ω)Ein(ω) (3.76)

where the complex optical transfer function H(Ω) is given by

H(ω) = R(ω)e−iϕ(ω) (3.77)
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R(ω) is a real amplitude response (Modulation transfer function) that essentially acts as a frequency

filter and ϕ(Ω) is a spectral phase response (Phase transfer function) which acts as a spectral phase

delay on the incoming field. The output field in the time-domain is thus given by the Fourier

transform

E(t) = F−1[H(ω)Ein(ω)] =
1

2π
R

∫ +∞

−∞
Ein(ω)e−iϕ(ω)eiωtdω (3.78)

where R(ω) is typically assumed to be constant over the spectrum and thus the phase transfer

function is typically of most interest. A Taylor expansion of ϕ(ω) about the signal carrier frequency

ωl yields

ϕ(ω) =
∞∑
n=0

bn(ω − ωl)n (3.79)

where bn are the series coefficients given by

bn =
1

n!

dnϕ

dωn

∣∣∣∣
ωl

(3.80)

The output field can thus be stated as

E(t) =
1

2π
Re−ib0eiωlt

∫ +∞

−∞
Ein(ω)× exp

(
− i

+∞∑
n=2

bn(ω − ωl)n
)
ei(ω−ωl)(t−b1)dω (3.81)

b0 is a constant phase delay and so doesn’t affect the spectral envelope. b1 is equal to

b1 =
dϕ

dΩ

∣∣∣∣
ωl

= z
dk

dω

∣∣∣∣
ωl

=
z

νg
(3.82)

which is simply a constant group delay τg which also does not change the envelope of the pulse.

Therefore only the n > 1 Taylor coefficients transform the input field spectrally. The b2 term is

equivalent to the group velocity dispersion (GVD).

b2 =
1

2

d2ϕ

dΩ2

∣∣∣∣
ωl

= z · GVD (3.83)

If the input field is described as a modulus and phaseEin(ω) = |Ein(ω)|eiΦin(ω), the output spectral
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phase from an LOE for a given input can be stated using 1.2 as

Φ(ω) = Φin(ω)−
+∞∑
n=0

bn(ω − ωl)n (3.84)

and if one is only concerned with the envelope of the phase changing i.e. observing in reference

frame with v =
(
dk
dω

)−1
, then the lower bound of summation becomes n = 2.

A series of LOEs is represented by the total optical transfer function

H(ω) =

m∏
j=1

Hj(ω) =

(
m∏
j=1

Rj(ω)

)
· exp

[
− i

m∑
j=1

ϕj(ω)

]
(3.85)

Subsequently, by a suitable choice of elements, one can reach a zero-phase response so that the action

of several LOEs manifests only in terms of the amplitude response. In particular, the quadratic

phase response of an element (e.g., dispersive glass path) leading to pulse broadening can be

compensated with an element having an equal phase response of opposite sign (e.g. a prism pair)

which automatically would recompress the pulse to its original duration. It should also be noted that

mirrors can introduce GVD in to fs optical pulses (Chirped mirrors).

3.3.1 Group velocity dispersion in prisms

A prism tilts a pulse-front such that

∆Φ = ϕ = 2π
Pl
λ

(3.86)

Where Pl is the frequency dependent optical path length. The phase transfer function for an angular

dispersive element (such as a prism) can thus be defined as follows

ϕ(ω) =
ω

c
Pl(ω) (3.87)
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From equation 3.87 it can be deduced that,

d2ϕ(ω)

dω2
=

1

c

(
2
dPl(ω)

dω
+ ω

d2Pl(ω)

dω2

)
(3.88)

Using the chain-rule for differentiation it is known that

d

dω
= − λ2

2πc

d

dλ
(3.89)

d2

dω2
=

λ2

(2πc)2

(
λ2 d

2

dλ2
+ 2λ

d

dλ

)
(3.90)

therefore,
d2ϕ

dω2
=

λ2

(2πc)2

(
λ2d

2ϕ

dλ2
+ 2λ

dϕ

dλ

)
(3.91)

In order to obtain the group delay dispersion (GDD), we consider only terms dn/dλn of order n = 2,

resulting in the following definition

GDD =
λ3

2πc2

d2Pl(ω)

dλ2
(3.92)

The sign convention typically used is that positive GDD corresponds to d2ϕ
dΩ2 > 0.

3.3.2 GVD control using prism pairs

A common setup for GVD control using two identical equilateral prisms is shown in figure 3.11.

The phase change from the pair is a combination of the phase change from the path through the

glass Lg of refractive index n (both prisms) and the path through air between the prisms from B to

C and after the second prism D to E.

ϕ =
ω

c

(
nLg +BC +DE

)
(3.93)
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Figure 3.11: Sketch of the prism pair pulse compressor. Bold letters denote points of the rays. l is the
distance between the two prism apices and s is the face to face distance between the prisms.

Where the term in brackets is dependent on wavelength. The second derivative of the phase leads to
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dω
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− nωl
c
Lg

(
dθ

dω
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ωl

)2

(3.94)

Where θ and β are the entrance refraction angle of prism 1 and prism 2 respectively. For a symmetric

beam path through the prisms and at Brewster angle incidence the equation becomes

d2ϕ

dω2

∣∣∣∣
ωl

=
Lg
c

[
2
dn

dω

∣∣∣∣
ωl

+ ωl
d2n

dω2

∣∣∣∣
ωl

]
− ω

c

(
4L+

Lg
n3

)(
dn

dω

∣∣∣∣
ωl

)2

(3.95)
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The equation can be further modified as demonstrated by Fork et al.[83]

d2ϕ

dΩ2

∣∣∣∣
ωl

=
λ3

2πc2

[
4l

{[
d2n

dλ2
+

(
2n− 1

n3

)(
dn

dλ

)2]
sinβ−2

(
dn

dλ

)2

cosβ

}
+4

(
d2n

dλ2

)(
2D1/e2

)]
(3.96)

where D1/e2 is the beam diameter at 1/e2 intensity. In a prism compressor, each ray of a plane-wave

beam experiences identical optical paths[84]. As shown in figure 3.11, prism 1 disperses the beam

and prism 2 collimates the beam so each outgoing ray is parallel again. Mirror (E) is typically used

to redirect the beam back through the two prisms so that the output beam is spatially identical to the

input. A beam-splitter or pick-off mirror at plane A can then redirect the output beam.

3.4 Ultrafast pulse characterisation

Ultrashort optical pulses that are generated using mode-locking require specialised methods to

characterise them fully because modern optical detectors are not responsive to their extremely

short durations. Ultrashort is commonly understood to mean pulses with a duration of the order

of femtoseconds. As these pulses are electromagnetic wave packets, they are fully described by

the electric field in space and time. In the area of laser spectroscopy, the space-dependent electric

field is often not determined, because most often either the temporal nature of the field is enough

to investigate the process, or the spatial dependence can be approximated by predictable functions.

In using optical pulse diagnostic methods, careful consideration must be given to the possibility

of its influence on the pulses intensity or phase and so knowledge of the exact optical transfer

function is a great advantage because applying the inverse of this function to the output of any

diagnostic result would yield the form of the pulse prior to passing through the measurement

device. A full characterisation of a transform-limited pulse would be knowledge of its duration and

electric field intensity spectrum in time. For transform-limited pulses, knowledge of the spectral

phase or temporal phase is not required because the phase is constant. If a pulse was known to

be monochromatic and predictable in its temporal shape, it could even be characterised solely

based on its duration. A more useful characterisation for general complex pulses would be the

time-frequency spectrum i.e. the electric field amplitude and phase as a function of both frequency
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3.4. Ultrafast pulse characterisation

and time. Although frequency and time functions can be converted for intensity, there exists trivial

ambiguities for phase when using the Fourier transform. Such ambiguities are the absolute phase

shift, translation shift and time-reversal[85]. There has been many published methods to determine

the time-frequency spectrum (spectrogram) or temporal intensity of ultrafast optical pulses and these

will be discussed in this section. The methods vary in their complexity and level of information

they provide about the pulse in question. A full review of ultrafast optical pulse characterisation

techniques has already been published[86], however the main methods will be discussed briefly, with

a focus on the primary method used in this work. There are three distinct types of characterisation

method; simple, referenced complete, and self-referenced complete. The simple method typically

allows one to determine the amplitude envelope of the pulse but not the electric field E(t). Either

of the two referenced methods use either a known or unknown reference pulse for electric field

reconstruction. Self-referenced methods use the unknown pulse itself as a reference.

The full description of an ultrashort pulse is given byE(x, y, z, t) where the spatial dependence is

almost always neglected. Practically, the electric field can be retrieved in either the time or frequency

domain, where the trivial ambiguities of the Fourier transform are avoided. Time-ambiguity can

be solved using intensity autocorrelation, which reveals a pulses intensity envelope over time. The

translation shift and absolute phase shift ambiguities are not important in pulse characterization,

because a they do not represent any information within the pulse itself, and they can be neglected in

measurements.

The goal of pulse characterization is to determine E(t). The four dimensional function of space

and time is typically simplified to a function of only time, where the spatial dependence is ignored.

In practical terms, the electric field of a pulse is almost always given in the following form of a

complex amplitude,

E(t) =
√
I(t) exp[−iφ(t)] (3.97)

where I(t) is the temporal intensity and φ is the temporal phase. The complex conjugate term of

this expression is required for completeness but is often omitted for simplicity. The pulse can also
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3.4. Ultrafast pulse characterisation

be described by the electric field in the frequency domain Ẽ(ω), through the Fourier transform as,

Ẽ(ω) =
√
S(ω) exp[−iϕ(ω)] (3.98)

3.4.1 Intensity autocorrelation

Intensity autocorrelation is a simple method for determining the duration of a pulse only. The

principal idea is that a test pulse is split in to two beams and then they are spatially overlapped in a

nonlinear optical medium. The two input beams can be removed from the output signal using optical

filters or a dispersive element such as a grating or prism, leaving only the signal generated from the

nonlinear optical process, which is typically second-harmonic generation (SHG) or sum-frequency

generation (SFG). The intensity of this generated light is recorded using a slowly responding detector

as a function of the relative delay between the two pulses. This is usually achieved using a simple

delay line. Since the non-linear medium emits light only when the two pulses are overlapping

in space, the intensity as a function of delay allows a measurement of the pulse duration to be

determined[87]. The pulse duration of the non-linear signal however is not exactly the duration

of the test pulse, but is slightly longer due to the interaction. The measured intensity from the

non-linear medium in a three-photon process such as SHG is given by

A(τ) =

∫ ∞
−∞

I(t)I(t− τ)dt (3.99)

A diagram of the intensity autocorrelator is shown in figure 3.12.

Figure 3.12: Diagram of an intensity autocorrelator.
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3.4.2 Spectral interferometry

Spectral interferometry allows the full electric field of a pulse to be determined so long as another

reference pulse is fully defined. The process involves first recording the spectrum of the test pulse

to be characterised. This step fully determines the spectral amplitude A(ω). Then both pulses

are combined and the resulting spectrum recorded. Superposition of the two fields will create

visible fringes in the spectrum. These fringes are a measure of the coherence and can essentially be

demodulated in to the unknown phase since the ’modulating’ reference beam is fully known. The

spectral phase ϕ(ω) can therefore also be fully determined non-iteratively.

3.4.3 Frequency-Resolved Optical Gating

Frequency-Resolved Optical Gating (FROG) is similar to intensity autocorrelation, however the

spectrum of the crossed beams is detected instead of just the intensity. In effect, it is a spectrally-

resolved autocorrelation[87]. FROG has been cited as the most reliable and practical method of

spectrogram generation for unknown ultrafast pulses[88]. In FROG, the reference beam does not

have to be known. The FROG signal is a convolution of the unknown pulse and the reference gate

pulse g(t). Conversion from the spectrogram of the FROG signal in to the electric field spectrum

of the test pulse is a common 2-D inverse problem that can be solved iteratively. The recorded

2-dimensional spectrogram S(ω, τ) is given by

S(ω, τ) ∝

∣∣∣∣∣
∫ ∞
−∞

E(t)g(t− τ)e−iωtdt

∣∣∣∣∣
2

(3.100)

Figure 3.13 shows a typical FROG setup.

3.4.4 Cross-Correlation Frequency-Resolved Optical Gating

The primary method of pulse characterisation used in this work is a variant of FROG called cross-

correlation FROG (XFROG), which uses a well characterised reference beam as the gate, instead
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3.4. Ultrafast pulse characterisation

Figure 3.13: Diagram of a Frequency Resolved Optical Gating setup.

of a copy of the test beam[89]. Since the spectrum of the output is being measured, the gate pulse

g(t) does not need to be short in time. The XFROG spectrogram can be converted to the electric

field of the test pulse using direct analytical methods. A diagram of the typical XFROG setup is

shown in figure 3.14. A non-iterative method of retrieving the amplitude and phase of an unknown

Figure 3.14: Diagram of a Cross-Correlation Frequency Resolved Optical Gating setup.

pulse using a flat-top gate pulse as the reference in an XFROG arrangement has been shown to

be an efficient pulse characterisation technique by Selm et al.[90]. This method uses a reference

gate pulse which is assumed to have a flat-top amplitude profile. The shape of the gate pulse is the

important factor, rather than its duration, and in this paper it was actually three orders of magnitude

longer than the test pulse.
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3.4. Ultrafast pulse characterisation

Selm et al.[90] characterised an ultrafast broadband super-continuum pulse spanning from 900

nm to 1800 nm. This broadband pulse was generated using a highly non-linear fiber (HNF). The gate

pulse used was a 3 ps pulse centred at 775 nm with a FWHM of 0.6 nm. The process outlined by

Selm for obtaining the XFROG spectrogram was to record the spectrum S(ω) from the output signal

after the non-linear medium, while varying the linear delay τ between the gate pulse and continuum

pulse. The 2-D spectrogram S(ω, τ) is thus generated sequentially resulting in a recorded signal

which is approximately equal to the width of the larger of the two pulses (3 ps) along the delay

dimension. The spectral width of S should be at least the width of the larger of the unknown or gate

pulse i.e. the spectral measurement should be as broadband as possible to measure the full support

of the XFROG intensity. The spectral amplitude of the test pulse as well as the group delay and thus

phase was directly calculated from the spectrogram recorded using cross-correlation along the ω

dimension of S with itself at a reference wavelength. Then using the Fourier transform, E(t) was

determined computationally.

The method described by Selm allowed for a simple extraction of the group delay as a function

of the frequency of a supercontinuum pulse. The electric field of the test pulse is then directly

reconstructed from the XFROG spectrogram. This method is ideal because it does not rely on

iterative reconstruction methods to determine the electric field from the spectrogram, which are often

difficult to error-check in both their validity and accuracy. An application of this method of pulse

characterisation to multi-photon microscopes was highlighted by the authors, due to the fact that

these setups almost always include a gate-like pulse which can be used as the known reference pulse.

In this work the XFROG retrieval method gave expected results for the shape of the broadband beam

and these are shown in section 5.2.

56



4. Background methods in BCARS

4.1 Introduction

In the previous chapter, the fundamental theoretical concepts underlying BCARS were introduced.

In this chapter, the key methods developed in practice which are relevant throughout the rest of the

thesis are described. Naturally, we begin with the measured response, in the form of the BCARS

spectrum. The response is modelled using estimates of the laser and other parameters, which will

serve as the basis for optimising the data processing workflow in subsequent sections.

4.2 Sample response

The intrinsically weak non-linear polarizability necessitates the use of pulsed laser sources to achieve

a CARS scattering signal. CARS is typically further specified as either “single-frequency” CARS

(SF-CARS) or “broadband” CARS (BCARS). The distinction being the use of a monochromatic

source for resonance selectivity (ωp−ωS) in SF-CARS or a broadband Stokes source for addressing

multiple resonances simultaneously[91] in BCARS. The basic concept of broadband CARS is to

excite multiple coherent states at several frequencies using the spectrally broad Stokes pulse. This

allows the fingerprint region of the Raman spectrum to be probed simultaneously by the probe

wave packet and thus the generation of a spectrum of anti-Stokes radiation that can be collected in

a multiplex manner. This is achieved using ultrashort pulses in the IR region and a spectrometer

capable of detecting the full anti-Stokes Raman spectrum. The use of a broadband Stokes pulse is
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4.2. Sample response

thus the major difference between BCARS and SF-CARS.

To avoid confusion, we employ different nomenclature for the labelling of the photon types

(probe, Stokes, pump) and for the laser sources, because BCARS employs two distinct photon

mixing processes. In typical BCARS setups, there are only two laser sources used, and therefore

one laser source provides two different photons for the FWM process, depending on the mixing

configuration. The two sources used will be termed the narrowband and the broadband source. In

BCARS, the use of a broadband Stokes beam permits the four-wave mixing of two different Stokes

photons to generate the coherent Raman state, with the probe photon then scattering to produce anti-

Stokes radiation. This results in two separate mechanisms of action, known as the “two-colour” and

“three-colour” mechanism[4]. The two-colour process, which is a degenerate case where ωp = ωpr,

uses the narrowband source for the pump and probe photons. The three-colour mechanism uses the

narrowband purely for probing and the pump and Stokes photons both originate from the broadband

source. The intensity spectrum of the CARS signal for the two-colour mechanism is given as a

correlation between the Stokes spectrum and the pump spectrum, convolved with the probe spectrum.

In the three-colour mechanism, the intensity spectrum is given by an auto-correlation of the Stokes

spectrum, convolved with the probe spectrum. The frequency-domain CARS signal is given in

equation 4.1,

Ias(ω) =
∣∣∣{χ(3)

[
Es(ω) ? Ep(ω)

]}
∗ Epr(ω)

∣∣∣2 (4.1)

where the ? symbol denotes the cross-correlation operator and the ∗ symbol denotes the convolution

operator. In the degenerate two-colour case where Ep = Epr, the resultant CARS signal is given as

the auto-correlation of the broadband source, convolved with the probe pulse. Since the three-colour

mechanism involves an auto-correlation of a broad spectral signal, it has the greatest spectral range.

Inspection of equation 4.1 shows that the vibrational frequency range probed is dependent only on

the product Es(ω) ? Ep(ω), which we denote as the excitation profile S(ω). The wavelength of the

anti-Stokes light however is dependent on Epr. Since the probe is convolved with the excitation

profile, the ultimate resolution obtainable is determined by the probe laser line-width. The spectral

range of the BCARS signal using simulated laser and material parameters is shown in figure 4.1.

In (a) a simulated Raman spectrum is shown, generated from a sum of Lorentzian functions (χ(3)
Res

in equation 3.68). (b) shows a simulated NRB spectrum (χ(3)
NR in equation 3.68), using a Gaussian
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4.2. Sample response

Figure 4.1: (a) Simulated Raman spectrum (Im[χ(3)]), (b) simulated NRB spectrum (χ(3)
NR), (c) Input and

output spectra from the BCARS FWM process using Raman and NRB information from (a) and (b).

function. In (c), the simulated laser spectrum from the narrowband and broadband sources used in

this work is shown, along with the output BCARS anti-Stokes spectrum, according to equation 4.1.

From figure 4.1 (c) it can be seen the anti-Stokes signal contains two regions of nonzero four-

wave mixing (FWM) signal intensity. The region centred on ωS−ωS +ωpr is the three-colour region

as mentioned above, and coincides with a Raman shift from 0 cm-1 to approximately 2000 cm-1. The

region centred on 2ωp − ωS is the two-colour region and coincides with approximately 2800 cm-1 to

4000 cm-1. There is also a region of no signal between the three and two-colour region, which, due

to the centre frequency and separation of the narrowband and broadband source, does not result in

any FWM response. This region serendipitously coincides with the so-called “silent” region of the
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Raman spectrum. The resonances in the Raman spectrum in (a) are clearly seen in (C), however they

are distorted in shape due to the NRB and reflected about the probe frequency. Also notable is the

fact that FWM generates anti-Stokes signal far from any resonance. The laser excitation spectrum is

effectively reproduced as an upper sideband channel offset from the narrowband source due to the

NRB.

4.3 Noise

In laser spectroscopy experiments, noise will be present due to a wide array of sources and it is often

a limiting factor in the scalability of a technique. The speed or throughput of a microscopy technique

is intricately liked with the ratio of the signal strength to the noise level, the signal-to-noise ratio

(SNR). The fundamental limit on the noise in a measurement involving light is due to the quantized

nature of photons. This so-called shot-noise limit can be increased by increasing the irradiance,

however there becomes a point where additional light may damage the sample of interest. There is

thus a balance between SNR and sample damage that must be reconciled for BCARS.

The SNR of the measured anti-Stokes signal in BCARS can be given as[92]

SNR ∝ nas√
σ2

shot + σ2
dark + σ2

read

(4.2)

where nas is the number of signal anti-Stokes photoelectrons generated, σshot is the standard deviation

of the signal due to shot noise, σdark is the standard deviation of the dark signal, and σread is the

standard deviation of the readout process from the detector. In addition to these sources of noise

there is also potentially background noise, due to photons arising from Rayleigh or spontaneous

scattering and other luminescence processes, however modern detection setups can provide adequate

rejection of these photons using long focal lengths and high performance spectral filters[93]. Another

potential form of noise is flicker noise due to laser variations. This however is also suppressed in

multichannel detectors. The number of useful photoelectrons detected is given as

nas = QeG(χ
(3)
signal)I

2
p Ipr (4.3)
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where χ(3)
signal is equal to equation 3.73 with the

∣∣∣χ(3)
NR

∣∣∣2 term omitted since it is considered purely

noise. Qe is the quantum efficiency of the detector and G is the gain of the detector. All terms in

equation 4.3 except for G are frequency dependent. Through substitution of equation 3.73, nas can

be given as

nas = QeG(|χR|2 + 2χNR Re[χR])I2
p IS (4.4)

The denominator in equation 4.2 will now be determined. σshot is related to the finite number of

photons from the non-resonant contribution, which is given as

σshot =

√
|χ(3)

NR|2I2
p Ipr = |χ(3)

NR|Ip
√
Ipr (4.5)

here, we assumed the shot noise of the nonresonant background is much larger than the resonant

signal, the so-called background shot-noise limited scenario[93]. The dark current standard deviation

σdark is due to the thermal generation of electrons in the photo-active material of the detector and

this is given by

σdark =
√

Φt (4.6)

where Φ is the rate of dark signal generation (in e−s-1) and t is the integration time of the acquisition.

In this work, the detector used had a Φ = 0.003 e−s-1 at maximum cooling (-100°C) and Φ =

0.1 e−s-1 while air-cooled (-80°C). The final term in the denominator of equation 4.2 is related to

read noise from the detector. σread is the standard deviation of the resulting count value of a pixel

from the conversion of electrons in that pixel. σread does not depend on the magnitude of the signal

and is in units of e−. The detector used had a typical read noise of 12 e−. Therefore, when optimal

cooling of the detector is used, such that dark noise and read noise are negligible compared to the

shot noise, the SNR can be given as

SNR ∝
QeG(|χR|2 + 2χNR Re[χR])I2

p IS

|χ(3)
NR|Ip

√
Ipr

(4.7)

A simplification can be made in the limit of dilute concentrations of the sample, i.e. when

|χR|2 � |χNR|2, and therefore |χR|2 � 2χNRRe[χR], in which case the SNR can be stated
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as

SNR ∝
QeG(2χNR Re[χR])I2

p Ipr

|χ(3)
NR|Ip

√
Ipr

∝ 2Re[χR]Ip
√
Ipr (4.8)

It is interesting to note that this form of the SNR is identical to that for SRS, in the shot-noise limited

case[94]. Thus, in theory, CARS and SRS have the same detection limit. The real part of χR is

proportional to the number of scatterers. An approach for characterising the relative detection limit

is to formulate a common equation for SNR in both SR and CARS. Here we define the Raman

absorbance[95], Λ = n σA(
ωp
ωS

), where n is the number of molecules in the focus, A is the area

irradiated σ is the cross section of the molecule and ωS and ωp are the frequencies of the Stokes and

pump photons respectively. The SNR of SR can then be stated as

SNRRaman = ηΛNP (4.9)

where η is the SR collection efficiency and NP is the incident photons passing through the sample

in the dwell time. The SNR of CARS can also be reformulated as

SNRCARS = EΛ
√
Npr (4.10)

where it is assumed η = 1, since CARS radiation is coherent and thus highly directional, and E is

the CARS enhancement factor due to the coherence of the process. If we take η = 5% for the SR

case and E = 107, the detection curves can be plotted for the case of SNR = 1. The SNR for both

SR and CARS is plotted in figure 4.2 by setting SNR= 1, or one photon generated in the dwell time.

It can be seen in figure 4.2 that there is a point at which the CARS detectability is better than SR i.e.

for a certain photon budget Np, the minimum absorbance is lower for CARS. The crossing point is

determined by the enhancement factor E and collection efficiency η. It should however be noted

that CARS is typically never operated in the shot noise limited regime since since the non-resonant

background contributes significant intensity noise.

62



4.4. Preprocessing a BCARS image for cell analysis

Figure 4.2: Detection curve for spontaneous Raman scattering and CARS.

4.4 Preprocessing a BCARS image for cell analysis

When analyzing a hyperspectral BCARS image, there are necessary steps required in order to remove

the distortion of the NRB and other non-chemical effects. As with any spectral measurement, the

spectral axis and CCD sensitivity need to be calibrated using a reference. Wavelength calibration is

virtually identical to SR, however there is no requirement for intensity calibration in BCARS by

virtue of the co-generated NRB, as will be discussed below.

A simple diagram of the main features of a hyperspectral image (HSI) are shown in figure 4.3.

In a standard HSI, two dimensions represent space and one represents frequency. In dispersive

spectroscopy measurements such as BCARS the non spatial dimension is wavelength, which may

be converted to Raman shift accordingly using knowledge of the probe laser wavelength. In ideal
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Figure 4.3: Hyperspectral datacube illustration.

circumstances, the HSI contains information about the sample only, however this may not be the

case for several reasons[2]. The main sources of this spurious signal that are not due to random

noise in BCARS are described below.

Common spurious effects in BCARS experiments

1. Physical contrast

(a) Optical path length variation

(b) Absorption coefficient variation

2. System induced contrast

(a) Laser irradiance variation
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(b) Laser central frequency variation

(c) Cosmic ray artefacts

3. Anomalous chemical contrast

(a) Photochemical interaction

(b) Photothermal interaction

(c) Competing nonlinear interaction

Physical contrast is the most common type of spurious signal in BCARS experiments since

the process is third-order in the laser intensity. Thus a variation in optical path length or the local

absorption coefficient may cause a wavelength-dependent change in received flux. This change in

flux may then cause downstream analyses to erroneously attribute the change to chemical contrast

and thus it must be removed. In SR, typically this is performed using a scatter correction procedure.

This involves regressing all data to a common reference measurement using a low-order function

such as a cubic function. The function then obtained is used to detrend each spectrum.

System induced contrast from the sources and detectors can typically be mitigated such that it is

negligible. In most commercial laser systems, the output irradiance and frequency are measured and

stated to vary within a small percentage of the nominal value over a period of time. This requires a

temperature controlled environment and stable laser which is commonplace in modern laboratories.

Cosmic ray artefacts are commonly treated in SR using specific algorithms[96, 97] that can be

applied to BCARS without modification.

In a well designed experiment, the choice of the source laser incident frequency and power

should also prevent anomalous chemical contrast arising from photochemical and photothermal

effects. However, in BCARS, since a broadband laser is required, there is often many simultaneous

dissipative and parametric nonlinear effects occurring because phase matching is satisfied for a

broadband pulse. In the experiments within this thesis, second-harmonic generation (SHG), two-

photon fluorescence (TPF) and difference-frequency mixing (DFM) can all be detected during

normal operation. SHG is the conversion of two photons in to a single photon at twice the frequency.

DFM is the conversion of two photons in to a single photon at the difference frequency of the

pair. Since SHG is a second-order nonlinear process, it may only occur in non-centrosymmetric
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media and therefore does not typically occur in single cells[80]. Using an unlabelled sample,

TPF is the simultaneous absorption of two photons to an excited state from which fluorescence

ooccurs, and requires an endogenous fluorophore within the sample for the emission occur. In single

mammalian cells, autofluorescence is a normal feature and occurs mostly in the mitochondria within

the cytoplasm[98]. Furthermore, the intensity of emission and other spectral properties changes with

cell state[99]. In this work, TPF however could only be detected in highly absorbing fluorophores

from chlorophyll in plants, where the quantum efficiency can be approximately 25%[100]. In human

cells, the BCARS signal is at such an intensity that the TPF is approximately equal to the noise

floor. Lastly, the DFM signal although present, lies within a frequency range that is outside the

biologically relevant region. Thus, DFM does not actually affect the analysis. Therefore, other

than denoising and NRB removal, scatter correction and cosmic ray removal are the other two

primary algorithms that are necessary to preprocess the HSI. The basic preprocessing procedure for

all BCARS experiments in this thesis is shown in figure 4.4. Each step in the figure will now be

described in detail in the next subsections.

4.4.1 Denoising

Denoising is an important step for obtaining good quality results from raw hyperspectral images.

In such an image, there is an abundance of both signal and noise and depending on the context,

the noise can be removed with little to no effect on the signal. In BCARS images, denoising is not

just useful to increase the SNR, it is mandatory because of the requirement for phase retrieval. It

is known that the inverse problem of phase retrieval is ill-posed, that is, it is a problem for which

any one of the requirements of existence of a solution, uniqueness of a solution, and continuity

dependence of the output on the input is not satisfied[101]. In phase-retrieval, uniqueness is not

met since information is lost through the operation of taking the magnitude of a complex number.

Continuity is more subtle and is generally described by the condition number of the problem. In

attempting to solve the phase retrieval problem, it is often the case that the solution is highly sensitive
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4.4. Preprocessing a BCARS image for cell analysis

Figure 4.4: BCARS HSI preprocessing pipeline. The NRB reference is a measurement of the BCARS
intensity in a non-resonant material. The signal reference is a signal on to which all spectra are regressed, and
is typically obtained from the average of multiple spectra in a HSI.

to the input data. The condition number is given as

κ =
‖∆y‖
‖∆x‖

(4.11)

where ∆y and ∆x represent unit changes to the output and input value respectively. In problems

with a high condition number, noise, which can be viewed as random fluctuations in the input, can

be amplified by the inversion operation, leading to meaningless results. A simple mathematical

diagram of phase retrieval is shown in figure 4.5. We denote the set of all inputs to the operator

of interest A, as the object space, and the set of all outputs of A as the image space. In the figure
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below, the distance between points indicates a measure of “proximity” of points in each space. A

takes an input from the object space to the image space and in BCARS, the operation of concern is

the magnitude-square A ≡ |x|2

Figure 4.5: Diagrammatic representation of the object and image space in
an ill-posed problem such as phase-retrieval involving the operator A.

From figure 4.5, the inverse operation A−1 takes a point, or multiple points as for a spectrum,

from the image to object space. A−1 may not have a unique solution for some value in the image

space since there is a loss of information as A is applied. The loss of information for A is due to the

non-negativity requirement of the range (assuming the image space is real). This can be viewed

in figure 4.5 as the constriction of points to a smaller region of the image space (grey regions). In

phase-retrieval algorithms, typically it is known that the domain of the operator has some properties

that reduce the set of possible solutions. This reduced domain shown as a yellow subset in the

above figure can therefore eliminate many potential solutions that, for example, do not satisfy some

conditions imposed by the system under study. Such a condition might be that the phase is non-zero

everywhere, that it has no discontinuities, or that it has a particular value within some region etc.

These constraints are linked to the physical system being studied and are termed physical constraints

of the problem. The combination of these physical constraints with the mathematical constraints of

equivalence are used in many optimisation algorithms in order to find an approximate solution of

phase-retrieval problems. The effect of denoising then should be to accurately represent the signal

without the disturbances from random variables that may cause the inverse-problem to become

unstable.
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In order to optimally reduce noise in a HSI, the truncated singular value decomposition (SVD)

is used extensively in this thesis because it allows global structure preservation of HSIs while

approximating the data in a lower dimension. The SVD of a matrix D is given as[102]

D = UΣV ∗ (4.12)

where U and V are both unitary and Σ is a diagonal matrix consisting of the r singular values

(σ1, σ2, · · ·σr) of D, where r is the rank of D. The columns of U are eigenvectors of the product

DD∗, and the columns of V ∗ are eigenvectors of D∗D. The decomposition can also be formulated

as a sum of rank-1 matrices

D =
r∑
i=1

u1σ1v
∗
1 + u2σ2v

∗
2 + · · ·+ urσrv

∗
r (4.13)

where ui and v∗i are the ith column and row of U and V ∗ respectively. The rank-k truncated SVD of

D is

Mk =
k<r∑
i=1

uiσiv
∗
i (4.14)

The utility of truncation is due to the fact that the rank-k truncated SVD of D is the closest k matrix

to D in a Frobenius norm sense. That is,

inf{||D −B||F : rankB = k} = ||D −Dk||F (4.15)

where || · ||F denotes the Frobenius norm, calculated as

||D||F =

√√√√ m∑
i

n∑
j

|dij |2 (4.16)

where D is of size m× n and dij are the matrix elements of D. For this reason, the application of

the truncated SVD to a data matrix is known as low-rank approximation. It is typically assumed

that the noise in a data matrix is additive and that the rank of the noise-free signal in the matrix

is much lower than the number of independent variables (columns) N . The measurement can be

considered an addition of an N -dimensional signal vector with an N -dimensional noise vector.
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The SVD will then partition the data in to rank-1 subspaces that are a mixture of signal and noise

components. However, since the signal rank is lower than the data rank, a truncated reconstruction

containing signal-dominant vectors should effectively remove noise in the matrix. In BCARS the

additive noise condition is not met due to the presence of shot noise, however a variance stabilisation

algorithm such as the Anscombe transform can be used to make the standard deviation of the

signal approximately constant[103]. The truncated SVD is then applied to the transformed data

and then the inverse-Anscombe transform is applied to recover the original signal characteristics.

This procedure was used extensively throughout this thesis. In performing the truncation of singular

values (SV), typically one selects the highest n values in the reconstruction, using a metric such as

the reconstruction error to guide selection. In the case of high noise levels, this may not be optimal

since the distribution of signal and noise may not monotonically decrease with the reconstruction

rank k. In order to optimally select only the signal SVs in the reconstruction a method based on the

spatial signal fraction was used[1].

This procedure begins with performing variance stabilisation. Then the SVD of the unfolded

data matrix is obtained. Unfolding consists of concatenating the two orthogonal spatial dimensions

together such that the matrix changes shape from size n×m× l to nm× l, where l is the length of

the spectral dimension. The U vector is then of size nm× nm. If U is the re-folded, one obtains

m matrices of size n×m, which we denote spatial eigen-maps of the data matrix. These can be

considered the 2-dimensional arrangement of eigenvectors that correspond to the 1-dimensional

eigenvectors in the spectral dimension. These eigen-maps are thus quasi-images that contain details

on the distribution of the energy of the corresponding rank-1 sub-matrix. Visualisation of eigen-maps

reveals details of the underlying data matrix whenever the SV chosen corresponds mainly to signal.

Conversely, when the SV is dominated by noise, the eigen-map has the appearance of a random

variable. Thus, the selection of the optimal SVs to use in the truncation can be obtained from

a measure of the spatial frequencies present in U . This was done using the 2D discrete Fourier

transform of U . The spatial signal fraction was then obtained using

SFi =
M
∑
Ui∑
Ui

(4.17)
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where M is a Boolean lowpass mask that is 1 in the region from the DC component to the cutoff

spatial frequency fcutoff, and zero everywhere else. The signal fraction is thus a normalized ratio of

the low frequency energy in the specific eigen-map. A threshold value τ was then used to detect

signal SVs based on the SFi value. This was chosen empirically based on inspection of the U and V

vectors. After determining the set of SVs that correspond to signal, they were used to generate a

modified diagnonal matrix Σsignal

Σsignal = diag{σi : SFi > τ} (4.18)

the denoised matrix was then obtained using the recomposition of U , V and the new Σ matrix,

Adenoised = UΣsignalV
∗ (4.19)

4.4.2 Removal of Non-resonant background

After denoising the dataset, the next step was to remove the NRB from each spectrum in the HSI.

The removal of the non-resonant background is crucial in BCARS because it drastically affects the

resonance lineshapes in the Raman spectrum due to the mixing of the resonant and non-resonant

components of the nonlinear susceptibility. This is seen in figure 4.1 (c). The NRB is typically

removed using a post-processing method which takes both a reference measurement of the NRB

and the resonant CARS signal as inputs. To record the reference NRB signal, typically a reference

sample of which there are no vibrational resonances in the probed spectral band is used. Glass

is one example, which is non-resonant over the 500 - 3600 cm−1 range. The recorded NRB is

ideally a smooth, slowly-varying signal over the whole frequency interval of interest that essentially

captures the laser spectral variation only. However, likely due to chemical impurities and the laser

excitation profile, the NRB may not be smooth. In this case its removal may prove problematic. At

the start of this research, there were two established methods for removing the NRB; the Kramers-

Kronig method and the maximum entropy method. As part of this thesis, a new method involving

deep-learning was developed which is one of the novel contributions in this thesis. This method is

described in chapter 6.
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Kramers-Kronig Method

The Kramers-Kronig method is one of the most popular methods for NRB removal in BCARS

due to its relatively ease of use and low computational cost. This method is based on the principle

that the amplitude and phase of any driven oscillator are related through a Kramers-Kronig (KK)

relation. The KK relations generally relate the real and imaginary parts of any complex quantity

which describes a causal system. The KK-relations are widely-accepted tools used in acquiring

knowledge of dispersive phenomena from measurements on absorptive phenomena. This has proved

useful in CARS for determining the imaginary part of the electronic susceptibility when only the

squared modulus |S ·χ3|2 is known. Liu et al.[104] show that the spectral phase of the susceptibility

can be retrieved from its modulus squared[104]

ϕ(ω) = −P
π

∫ +∞

−∞

ln|χ(3)(ω′)|
ω′ − ω

dω′ (4.20)

where P is the Cauchy principal value. Since |χ(3)| ∝
√
ICARS, applying the Hilbert transform to

the natural logarithm of the CARS intensity should retrieve the spectral phase of the susceptibility.

Since the CARS intensity is windowed by the detector instrument range, a “windowed” Hilbert

transform is used together with a phase error estimate from the non-resonant spectrum. The complex

susceptibility is then given as

χ(3)(ω) =
√
ICARS exp(iϕ(ω)) (4.21)

This method has been tailored to BCARS by Camp et al.[105] and where KK is used in this thesis,

the CriKit2 package was used. This implementation utilises detrending of the phase and unity-

scaling of the amplitude as was found to be optimal for retrieving the Raman-like spectrum from

BCARS measurements.

An example retrieval of the resonant susceptibility using the KK method developed by Camp et

al. is shown in figure 4.6. The CARS spectrum was simulated using a method developed in chapter 7

and aims to highlight the uncorrected phase-retrieval result and the importance of phase-detrending.

It can be seen in figure 4.6 (a) that the initial retrieved but uncorrected estimate of χ(3)
R is highly
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Figure 4.6: (a) Retrieved real and imaginary parts of susceptibility obtained
from the Kramers-Kronig method in CriKit2[1], (b) phase and phase-error of
retrieved susceptibility in (a), (c) Phase- & amplitude-corrected susceptibility,
true Raman spectrum obtained from simulation and the difference of the
KK-retrieved and true spectrum.

representative of an electronic susceptibility with the imaginary part having lineshapes centered

approximately at the location of the resonances. There is however two notable features of the spectra

in (a), the first being a background signal on both the real and imaginary parts of the susceptibility,

and also a dispersive lineshape in the imaginary part around 2700 cm-1. The first anomaly is mainly

due to the varying NRB and the windowing error from the use of the discrete Hilbert transform

(DHT) in the KK method. Secondly, the dispersive lineshape in the imaginary part is due to the two

distinct excitation mechanisms in BCARS and the fact that the laser spectrum is zero in the region
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between the two and three-colour regions.

In the retrieved phase of χ(3), the baseline is noticeable throughout the full bandwidth of the

spectrum. The phase-correction procedure in the KK method fits a smooth function to the phase to

detrend this baseline (here the asymmetric least-squares algorithm was used). It can be seen that

the fitting is quite good using a smoothness parameter of 1000 and asymmetry parameter of 0.001.

The anomalous dispersive lineshape around 2700 cm-1 however results in the fitting procedure

underfitting since the amplitude variation is high. The result of the phase and amplitude-corrected

KK retrieval is shown in figure 4.6 (c). The corrected retrieval has no baseline and the retrieval is

successful in regions where the resonances exist. The anomalous phase results in a retrieved signal

around 2700 cm-1, however this is in a region that is of no interest in biological systems. In (c) the

difference spectrum (Raman-retrieved) is plotted. The mean absolute error (MAE) of the retrieval is

0.07. While this is reasonably good, we have shown an idealised retrieval here, using a noise-free

CARS simulation with relatively few and non-overlapping resonances. This presents a simple case

for phase-retrieval since an isolated resonance results in a high frequency variation in the phase due

to the application of the DHT, to which a low frequency signal can be fitted to remove phase error.

However as we will see in later chapters, the introduction of noise and resonance amplitudes that

are similar to those in biological systems results in the phase-retrieval procedure becoming highly

unstable.

Maximum Entropy Method

A phase retrieval method was proposed by Vartiainen[106] utilising the maximum entropy method

(MEM). This method has an advantage over the KK retrieval method because it theoretically does

not require the determination of the intensity spectrum over an infinite frequency range, but only

over the actual measured range. The phase retrieval process in MEM involves fitting the measured

intensity spectrum R to its maximum entropy representation given by[107]

R(ν) =
|β|2

|AM (ν)|2
(4.22)
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where the MEM polynomial AM (ν) is given as,

AM (ν) = 1 +

M∑
m=1

am exp(−i2πmν) (4.23)

The polynomial is constructed from M coefficients and the frequency range is normalised to the

interval (0,1) by defining the new variable ν = (ω − ω1)/(ω3 − ω1), where ω1 and ω2 are the lower

and upper frequency limits of the recorded spectrum. The MEM coefficients are found by solving a

Toeplitz matrix of the form



C(0) C(−1) . . . C(−M)

C(1) C(0) . . . C(1−M)

...
...

. . .
...

C(M) C(M − 1) . . . C(0)





1

a1

...

aM


=



|β|2

0

...

0


(4.24)

where C(t) is the autocorrelation function defined by the Fourier transform of R(ν)

C(t) =

∫ 1

0
R(ν) exp(i2πtν) dν (4.25)

The susceptibility is then given as χ(3) =
√
R exp(iθ), where θ is the phase of the complex

susceptibility which is related to the MEM phase ψ

χ(3)(ν) =
|β| exp(iθ(ν))

|AM (ν)|
=
|β| exp(i(θ(ν)− ψ(ν)))

AM (ν) exp(−iψ(ν))
=
|β| exp(iφ(ν))

A∗M (ν)
(4.26)

where φ is an error phase term, consisting of a slowly varying background. To obtain the error

phase, a low order polynomial fit of the MEM phase was obtained and subtracted from it leaving the

high-frequency phase response due to vibrational transitions. The constant phase ϕ0 is determined

by noting that far from resonance, Im[χ(3)] = 0, therefore

ϕ0 = tan−1

(
Im(β)

Re(β)

)
(4.27)
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4.4.3 Scatter correction

Scatter correction is a routinely used procedure in conventional Raman spectroscopy in order to

retain only chemical information so its use for BCARS data is thus pertinent. Since the NRB removal

step returns a signal that is proportional to Im[χ
(3)
R ], which is proportional to the Raman spectrum of

the material, the scatter correction when applied after NRB removal has been performed should be

identical to its conventional implementation. This assumes that the NRB removal is optimal which

as we will show, is often not the case in biological cells. Nevertheless, in ideal circumstances such

as when studying highly resonant materials, NRB removal performs well and the resulting signal is

very similar to a Raman-like signal. Scatter correction is then trivial. In this thesis, the extended

multiplicative scatter correction (EMSC) algorithm was applied as needed to correct a HSI[108]. It

was found that this procedure greatly improved the contrast in univariate spectral images of cells.

EMSC was applied by obtaining a reference signal with a high SNR (typically through manual

inspection of a spectral image in the CH-band).

4.4.4 Normalization

Normalization is required for a HSI since downstream algorithms typically perform better when data

is all on a common scale. As per the processing diagram in figure 4.4, normalisation is performed

subsequent to scatter correction. Typically there are two main types of normalisation performed

on a HSI, area and max-min. In area normalization, each spectrum is normalised by the total area

under the spectrum.

Iiarea =
Ii

ΣIi∆S
(4.28)

If the spectral spacing ∆S is constant, this is identical to dividing each spectrum by the total sum of

its intensity. Max-min normalization involves taking

Iimax-min =
Ii − Imin

Imax − Imin
(4.29)
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The importance of which type of normalization to use is lessened when multivariate algorithms

are used, however it is important to note that when using max-min normalization, typically the

univariate contrast at the maximum is lost, since all values will equal unity. In this work, both types

of normalization were used depending on the analysis.

4.4.5 Signal masking

Signal masking by segmentation is the last preprocessing step used in the preparation of a HSI for

analysis. This involves removing non-signal pixels such as the background substrate within the

image in order to keep only the useful information i.e. the spectra of cells for multivariate statistical

analysis. There are a variety of methods to do this such as morphological operations, intensity

thresholding, semantic segmentation and clustering algorithms. The necessity is of paramount

importance in classification, since a HSI will often contain regions that only relate to the background

and their inclusion in statistical classifiers will greatly reduce the accuracy of the result. In this

work, intensity based thresholding and deep-learning based thresholding was used. In intensity

thresholding, the background is obtained by selecting the pixels that satisfy a rule, such as a minimum

intensity at a specific or multiple wavenumbers. The pixels that do not satisfy the condition are

set equal to zero. Deep learning based approaches are tailored to noisy images where intensity

thresholding often fails. These algorithms are typically based on convolutional networks that were

trained on noisy pairs of labelled and unlabelled data in order to segment the signal from the

background. In this thesis, the Cellpose[109, 110] model was used for cell segmentation using the

“cyto-3” pretrained model.
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5.1 Optical system

5.1.1 Laser Sources

The main component of the broadband CARS system is a mode-locked master oscillator pump

amplifier (MOPA) laser (FemtoFiber Pro NIR, Toptica). During all experimental work, custom

eye protection was used to prevent accidental exposure to the laser radiation. The oscillator diode

emits with a fundamental wavelength of 1550 nm. This source is passively mode-locked using a

semiconductor saturable absorber mirror. The seed emission is amplified using an erbium doped

fiber amplifier (EDFA) and the pulse repetition rate is 40 MHz. The seed is frequency doubled

using second harmonic generation in periodically-poled Lithium Niobate (PPLN). This results in a

flat-top pulse at approximately 770 nm with an approximate duration of 3.4 ps. This source acts as

the narrowband probe beam. The amplified seed is also split and coupled using an optical fiber in

to a separate module (FemtoFiber UCP) consisting of a highly nonlinear fiber (HNF). The pulse

emerging from the HNF spans from approximately 1000-1400 nm with a duration of ≈ 50 fs. This

pulse passes through an SF10 prism compressor and then exits the module. This pulse acts as the

broadband beam. Both laser arms include separate EDFA stages for additional gain.

It was determined that the internal SF10 compressor within the UCP module did not sufficiently

reduce the group velocity dispersion in the broadband beam. This was based on initial tests of the

four-wave mixing in glass. Thus, the internal pulse compressor was bypassed and an external 6
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Figure 5.1: Diagram of the two-prism pulse compressor. H is the insertion
of prism 2, calculated as the distance from the relevant blue side of the Stokes
dispersed beam to the apex of the prism. R is the distance between apices.

cm SF10 prism pair (Laser Components (UK) Ltd) compressor was constructed with a motorized

stage for fine tuning of the dispersion. These prisms were significantly larger in base height than

the internal prisms, allowing for finer dispersion control. The prisms were equilateral in shape and

the optimal distance (from each apex) was found to be 60 cm after several iterations. A diagram of

the setup of a typical compressor is shown in figure 5.1, however the geometry used had a further

optimized design including two anti-parallel mirrors for a reduced footprint. In order to find the

level of prism insertion that corrected the group velocity dispersion, pulse shaping of the broadband

Stokes source was performed using a non-iterative procedure described below. In order to control

the spectral width of the broadband beam, a NIR spectrometer was placed after the compressor,

and two knife-edge filters were placed in the Fourier plane of the compressor. These provided fine

control of the spectral bandwidth of the Stokes pulse. The probe laser was filtered using a 766

band-pass filter (BPF) that acted as a long-pass filter, preventing the transmission of the fundamental

1550 nm source. A 2× beam expander was also used to overfill the microscope objective with the

probe beam (2.4 mm diameter) for optimal focussing. This was not detrimental to the average laser

power at the focus, since there was attenuation of the narrowband beam required in order to prevent

sample photodamage. The Stokes beam was 4 mm in diameter.

The separate sources were combined using a dichroic mirror (DMSP950, Thorlabs) and then
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coupled in to a light transmission microscope system (BX51, Olympus). This microscope is not a

laser microscope and is typically used for material inspection in quality control environments. Thus,

significant novel modifications were required to convert it into a BCARS microscope. Although

the BX51 operates in transmission mode, it is designed for white light/fluorescence imaging. In

order to allow enough room for a focussing objective beneath the sample, the lower condenser lens

was removed and the manual positioning stage was also removed. This allowed the placement of a

laser objective and two motorized stages in the focal plane for image scanning. The coarse stage

was an ASI MS-2000 XYZ stage that had a range of 120 mm by 110 mm. This was a DC servo

stage and thus the repeatability of movement was < 700 nm. This stage was used for targeting

samples using the imaging camera. The second stage was a P-545.xR8S PInano XYZ stage that had

a range of 200 by 200 µm and repeatability of 1 nm. Both stages were controlled in software using

a custom script developed in MATLAB. The focussing objective was an UPlanSApo 60x/1.2 NA

(Olympus) and was custom mounted to the prior sample stage. This had a coarse and fine translation

wheel for vertical axis movement. The focussing lens also had a high transmission over the NIR

range. The collection objective was varied depending on experiment but typically a 20x/0.46 NA

UmPlanFl (Olympus) was used. It should be noted that contrary to spontaneous Raman imaging, a

higher NA collection objective serves limited advantage for BCARS because the anti-Stokes beam

is highly directional. Thus, typically a longer working distance can be achieved with little loss of

collection efficiency. After the collection objective, light is typically directed to the eyepiece or

to the CCD module of the BX51. In order to get access to the transmitted beam for spectroscopy

a custom mirror was mounted within the rotating turret that directed the transmitted beam to the

side of the microscope. A hole was drilled in the side to allow the light to exit the microscope. A

diagram of the adapted platform is shown in figure 5.2. The output from the microscope is then

coupled into an Andor Shamrock 500i (Czerny-Turner) spectrograph using an achromatic doublet

lens (AC080-020-B-ML, Thorlabs). The spectrograph contains a rotating turret containing three

diffraction gratings at 300 l/mm, 600, l/mm and 1000 l/mm. The specifications for each grating are

shown in table 5.1.

A delay line consisting of two mirrors on a motorised stage provides fine control of the narrow-

band pulse delay relative to the broadband pulse. A diagram of the optical system is shown in figure

80



5.1. Optical system

Figure 5.2: Image of the BCARS microscope platform
using a modified BX 51 platform. The laser path is
shown in red and enters from below.

5.3. Prior to entering the microscope there are also two additional components used to optimize the

beam parameters of the collinear beams. First, there is a Cassegrain beam expander used to expand

both beams by 2x[111]. This allowed optimal expansion of the broadband beam in order to match

the aperture of the focussing microscope objective without introducing dispersion. The design of

the expander also minimizes astigmatism at a particular tilt angle which is required for microscopy.

The second element after the expander is a piezoelectric deformable mirror (DMP40/M-P01). This

mirror can control the Zernike polynomials Z1 to Z14 (ANSI index) using software. Thus, the mirror

can correct any residual astigmatism aberration in the beam due to the Cassegrain telescope. The

Cassegrain could also precompensate for spherical aberration due to varying thickness of samples.
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Grating (l/mm) Blazed optimized
wavelength (nm) Bandwidth (nm)

300 760 177.3

600 750 89.11

1000 900 52.83

Table 5.1: Diffraction gratings used in the BCARS spectrograph.

In order to measure the astigmatism in the beams, a BCARS intensity scan was measured in glass

as the depth was varied. The astigmatism would result in a bimodal maximum of the integrated

spectrum due to the two foci. To correct for this, the weight of the Z5 polynomial was varied using

a grid search and the intensity profile measured. A diagram of the optical system is shown in figure

5.3.

Figure 5.3: Diagram of the BCARS Spectroscopy System. The narrowband probe
beam is in red and the broadband Stokes beam is in green. BPF: band-pass filter, SPF:
short-pass filter.
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5.1.2 Optical resolution

When performing nonlinear microspectroscopy the intensity profile in each dimension of the focal

volume, referred to as the point spread function (PSF) is exponentiated to the order N of the

nonlinearity[112]. Thus, using the the Rayleigh criterion, the spatial resolution is given as

d(N) =
1√
N

0.61λ

NA
(5.1)

where λ is the wavelength of the focused light and NA is the numerical aperture of the focussing

lens. The depth of focus is also given as

z(N) =
1√
N

2nλ

NA2 (5.2)

where n is the refractive index of the medium. At a wavelength of the probe pulse in this work (770

nm) and NA of 1.2, the CARS (N = 3) focal radius is 0.225 µm and the depth of focus in air is

0.617 µm. The lateral area of the focal spot is then 0.159 µm2. Single biological cells vary in size

from 5 µm for red blood cells to 1 m for neurons[113]. However in this thesis, the application is

oriented towards obtaining chemical information from the primary cells studied in cytopathology;

epithelial cells[114]. Across 15 different epithelial cells, Devany et al.[115] reported the average

cell volume using measurements from over 50 cells. The mean cell volume across all cell types

was 629 µm2. Assuming a spherical shape, this results in a diameter of approximately 10.6 µm.

However, the shape of many epithelial cells are squamous or cuboidal and arrange in flat sheets.

This results in an actual diameter of roughly 10-20 µm. When such cells are grown on glass in

culture, the size also varies according to the osmolarity of the culture medium. Nevertheless, in

BCARS microscopy, the focal area as calculated above, is typically much smaller than the cell size,

allowing for the imaging of sub-cellular components such as nucleoli, lipid droplets and the golgi

apparatus within cells.
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5.2 Optical Pulse Characterisation of the Sources

Characterisation of the input beams is crucial when optimising a four-wave mixing process such as

that used in CARS scattering experiments, since the spectral output intensity (ICARS) of the CARS

signal is proportional to the product of the electric fields of the three input pulses. The accurate

measurement of the Stokes (broadband) beam electric field ES(ω) was the most difficult task, since

this pulse is generated in the nonlinear fiber using multiple non-linear processes, which alter the

time-frequency profile of the pulse greatly. Thus, the Stokes pulse is not transform limited in nature

and the temporal complexity prevents simple methods such as intensity autocorrelation from being

used to characterise it.

In this work, the Stokes pulse was characterised using the Cross-Correlation Frequency Resolved

Optical Gating (XFROG) technique with the four-wave mixing interation used as the nonlinear

process. It is thus termed FWM-XFROG. As described in section 3.4.4 XFROG uses a reference

pulse to measure an ultrashort pulse and in this case, the reference pulse was the narrowband

beam. Although not technically fully characterised, the narrowband pulse spectrum was assumed

to be known. The spectral phase was also assumed to be flat since the pulse duration was in the

picosecond range. The narrowband and broadband beams were coaxially focused on to a glass slide.

Two-dimensional time-frequency spectrograms were constructed by spectrally recording the output

four-wave mixing signal as a function of the time-delay between the probe and Stokes Beams by

using the optical delay line on the probe beam.

In this implementation of FWM-XFROG, the probe delay, τ , is scanned over the full temporal

envelope of the unknown pulse and the BCARS signal in a non-resonant sample (such as a glass

coverslip) at each delay IXFROG(ω, τ) is measured. Only the 2-colour interaction was recorded since

the two regions do not overlap spectrally. The recorded signal is given by[90]:

IXFROG(ω, τ) =

∣∣∣∣ ∫ ∞
−∞

ẼS(t) · Ẽ2
pr(t− τ)e−iωtdt

∣∣∣∣2 (5.3)

where ẼS and Ẽpr are Fourier transform pairs of ES and Epr. According to equation 5.3, in the

two-colour interaction, the time-marginal of the spectrogram is equivalent to the Stokes spectral
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5.2. Optical Pulse Characterisation of the Sources

amplitude due to the linear relation between the recorded signal and the Stokes pulse intensity for

each delay

IS(ω) =

∫
IXFROG(ω) dτ (5.4)

The conversion from the XFROG wavelength to the Stokes Wavelength is given by

[λS ] =
( 2

λp
− 1

λCARS

)−1
(5.5)

which is given from the energy conservation law for the four-wave mixing relation.

ωCARS = ωp + ωpr − ωS = 2ωp − ωS (5.6)

To obtain the spectral phase of the Stokes pulse ϕ(ω), the group delay as a function of frequency

tgd(ω) is first determined. A cross-correlation of each frequency in the spectrogram with a particular

reference frequency yields another 2D matrix denoted C(τ, ω), with the location of the maximum

of each frequency describing the relative temporal delay of the pulse with respect to the reference

frequency.

C(τ, ω) = S(τ, ω) ? S(τ, ω = ωref)C(τ, ω) (5.7)

thus, the relative group delay is given as

tgd-rel(ω) = argmax
τ

[C(τ, ω)] (5.8)

The relative group delay was then shifted such that the reference frequency used ωref corresponded

to zero relative delay. Once tgd(ω) is known, the spectral phase can be determined, since

tgd(ω) =

(
dϕ

dω

)
ω

− tgd(ωref) (5.9)

From the group delay, the relative spectral phase of the Stokes pulse is found directly

ϕ(ω) =

∫ ω

ω0

tgd dω (5.10)
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5.2. Optical Pulse Characterisation of the Sources

The Stokes pulse is then reconstructed

ES(ω) =
√
IS(ω)eiϕ(ω) (5.11)

The probe pulse intensity can also be obtained from the spectrogram, since for each frequency, the

XFROG intensity is proportional to the square of the probe intensity. The electric field of the probe

can then be found as follows:

Ẽpr(t) = 4
√
IXFROG(t)eωlt (5.12)

where ωl is the probe carrier frequency obtained from a spectrometer measurement. Epr(ω) can

be obtained from this function via a Fourier transform. The result of the pulse characterisation

procedure on the uncorrected broadband pulse is shown in figure 5.4. In (a) the spectrogram is

shown. A linear chirp can be observed due to group velocity dispersion. This is the strongest phase

distortion in the pulse. There is also however noticeable third-order dispersion (TOD) that causes a

nonlinear variation of instantaneous chirp. In (b), the probe temporal intensity is shown, as obtianed

from the frequency marginal at a wavelength of 594 nm. In (c), the retrieved Stokes electric field is

shown and the quadratic phase profile across the spectrum is evident. (d) shows the Stokes pulse

in time and the amplitude is seen to have a complex structure due to the chirp, TOD and possibly

higher order dispersion.

In figure 5.5 (a), the spectrogram of the Stokes pulse after pulse compression optimization

is shown. Here, the pulse energy is confined to a minimum duration and there is no apparent

variation of the mean optical intensity over the frequency range of the pulse. It is also observed

that the spectral width changed drastically. This is due to a modification of the knife-edge filter

and pre-HNLF prism insertion that affects the spectral output of the Stokes pulse from the laser.

During this optimization, the narrowband spectral width was also changed by varying the BPF filter

incidence angle manually, this changed the duration of the probe pulse as can be seen in (b). In (c),

the retrieved Stokes electric field is shown and the phase is almost flat everywhere except for the

region from 900-990 nm and 1240-1350 nm. Although not ideal, the phase variation is still very low

over the support of the pulse and thus these do not drastically affect the pusle length. It is likely that

these are due to high order dispersion that emerges from the supercontinuum after the fiber. The
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5.2. Optical Pulse Characterisation of the Sources

Figure 5.4: XFROG spectrogram of an uncorrected broadband pulse using an acquisi-
tion time of 50 ms.

pulse temporal amplitude and phase are shown in (d) and the achieved full width at half maximum

was ≈ 20 fs.

5.2.1 Adjusting chirp for increased fingerprint bandwidth

The above pulse characterisation and optimization procedure describes an optimal way to obtain

the shortest pulse (through minimizing GVD only) using a prism compressor. The obtained pulse

does not correspond to a transform-limited pulse, since only GVD can be corrected, and cubic

and higher phase variations will almost always exist. However, in this work, it was found that

while the GVD-corrected pulse provided a useful stimulation profile (region over which vibrational

resonances are amplified and can be measured), adding a slight insertion of the second prism

provided a better bandwidth for the stimulation in the upper part of the fingerprint region (> 1500
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Figure 5.5: XFROG spectrogram of a corrected broadband pulse using an acquisition
time of 50 ms.

Figure 5.6: Stimulation profile obtained from a measurement of BCARS in a glass
coverslip.
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cm-1). This insertion corresponded to a positive GVD being introduced and did reduce the intensity

of the stimulation profile in the region from 0-600 cm-1, but since this is already the maximum

intensity of the profile (assuming a transform limited pulse), a slight loss of amplitude did not

impact spectroscopic results. The reason for such an improvement in the BCARS bandwidth is

likely because of both the increased TOD present from the glass that causes a skew in the Stokes

spectrum and also an increase in the upper wavelength range of the Stokes pulse as it intercepted the

second prism. The upper part of the fingerprint region contains several vibrational resonances in

biological cells that otherwise would go undetected since the stimulation profile approached the

noise floor in the GVD-corrected case. A measurement of the four-wave mixing signal in glass is

shown in figure 5.6. It can be seen that there are two distinct regions of finite spectral intensity, in

the fingerprint region (500-1800 cm-1) and in the CH region (2800-3000 cm-1) which correspond to

the simulated BCARS spectra in figure 4.1. Notable is the slight increase in intensity around 2000

cm-1 due to the increased prism insertion.

5.3 Photodamage management in biological cells

In this thesis, all cell samples were fixed using a conventional formalin washing procedure before

imaging. When imaging any material with focussed lasers, it is paramount that the potential for

laser induced damage on the sample is managed in order to obtain repeatable results and prevent

sample destruction. The average power of the probe beam on-sample in a typical microspectroscopy

experiment was 10 mW. Thus the average irradiance is approximately 62 kW/m2, using the focus

area calculated in section 5.1.2. The peak power of the probe pulse at 40 MHz repetition rate and

pulse duration of 3.4 ps was 73 W and the pulse energy was 0.25 nJ. The average power of the

broadband (Stokes) pulse was 6mW on-sample. The peak power of the broadband pulse at 40 MHz

repetition rate and pulse duration of 25 fs was 6 kW and the pulse energy was 0.15 nJ.

In order to prevent damage due to the lasers, it is useful to determine the most likely form of

damage. There are three main types of laser induced damage, photothermal absorption, photochemi-

cal effects and photoionization. These are described in table 5.2. Photothermal absorption is the
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5.3. Photodamage management in biological cells

Damage Type Description Relevance in Biological Media

Photothermal Heat production Single-photon absorption unlikely in NIR

Photochemical Creation of new species Can damage live cells

Photoionization Formation of plasma Damage can occur at 0.1-30 nJ/pulse

Table 5.2: Most common laser induced damage mechanisms in biological media.

production of heat from photon absorption. However, since biological media are weakly absorbing

in the NIR, one-photon absorption is unlikely to cause damage. Multiphoton absorption is however

possible in BCARS since broadband sources are used and in order to prevent this, continuous

movement of the sample was used during imaging. This resulted in a very short time of laser

exposure in one area of the sample. Photochemical effects can induce the production of new species

in the cell due to the breaking of chemical bonds, since the laser light can supply the bond activation

energy. In living cells, this can result in the creation of reactive species that can damage the cell.

However, in fixed cells, the specimen does not contain active biochemical reactions that would be

susceptible to such reactive species. The third kind of damage can be caused when an ultrashort

pulse causes highly localised plasma formation in the material. The rapid expansion of the plasma

can create a localized micro-explosion and pressure wave. This interaction can happen even at

energies where the photon would not be absorbed. The threshold for biological damage due to

photoionization using 100 fs pulses is 0.1-30 nJ/pulse[116]. Thus for this work, at the above used

pulse powers of 10mW for the narrowband beam and 6 mW for the broadband beam on-sample, no

laser-induced photodamage was expected. The optical system described in this chapter underpins

all of the results presented in this thesis. The scripts developed for scanning provided a very quick

turn-around time for analyzing a study. Alignment of the BCARS microscope took approximately

30 minutes, including time for the lasers to warm up and become stable. After alignment, a sample

of interest was placed on the stage and a region of interest was centered over the laser using the

reflection imaging capability. Hyperspectral images could be then obtained by running the necessary

script. In the next chapter, the main results of the application of the BCARS opto-electronic system

will be presented.
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6. Convolutional Autoencoders for blind NRB

removal: VECTOR

This chapter is based on the published article entitled “VECTOR: Very deep convo-

lutional autoencoders for non-resonant background removal in broadband coherent

anti-Stokes Raman scattering” published in the Journal of Raman Spectroscopy[22].

This chapter was the first project of my thesis. My contributions to the results presented

in this chapter were as follows; conceptual design of the simulation of BCARS spectra

for training a deep neural network, applying the theory of conventional phase retrieval

for analysis of the performance of the approach taken to NRB removal and data analysis

of the results of the neural network on simulated spectra.

As mentioned in section 4.4, obtaining physically meaningful data in a BCARS experiment is

tantamount to solving an ill-posed problem with considerable amounts of noise present in the data. In

imaging applications, it is simply not possible to increase the acquisition time to remove noise since

high-speed imaging requires low pixel dwell times. Furthermore, even if noise could be entirely

removed, the NRB would remain a difficult problem to overcome, since it interfered with the resonant

signal in a complex manner. The coherent interference between the non-resonant background (NRB)

and the vibrationally resonant response leads to asymmetric lineshapes in BCARS signal intensity,

which can obscure the relative concentration of different species. This characteristic of BCARS

is a well-known limitation, for which various experimental and mathematical methods have been

developed to address it, and for this reason stimulated Raman scattering is often preferred to CARS

for imaging because it does not have an NRB. Experimental approaches to NRB removal in BCARS
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include techniques such as adjusting the excitation and detection polarization angle (P-CARS)[20],

frequency-modulation CARS (FM-CARS)[117], and time-resolved CARS (T-CARS)[118]. While

these methods are effective, they increase the complexity of the measurement and, in some cases,

may reduce the resonant contribution during the process.

As mentioned in section 4.4, the conventional methods for recovering the resonant susceptibility

involve using BCARS intensity data and the mathematical relationships between the phase and

intensity of the BCARS signal. One such technique leverages the fact that susceptibility adheres to

causality, allowing the Kramers–Kronig relations to be used in a BCARS measurement to determine

the phase of χ(3), as shown by Liu et al.[104]. In practice, this approach requires pre-processing

the spectra, either through singular value decomposition for denoising and spectral encoding, as

demonstrated by Masia et al.[119], or through baseline correction of the retrieved phase to account

for errors arising from the finite frequency range of actual measurements and the use of surrogate

NRB[1].

The other common post-processing NRB removal approach, the maximum entropy method

(MEM)[120, 121] also requires prior knowledge of at least two points in the spectrum where the

phase is known for accurate retrieval, as well as an NRB measurement. Since baseline correction

is a supervised process and the MEM requires prior information, both the KK and MEM methods

must be supervised for Raman signal extraction. Therefore, current mathematical approaches are

not suitable for bulk phase retrieval of unknown BCARS spectra. Furthermore, the application

of the conventional phase retrieval methods to experimental data such as single cell data requires

manual tuning of algorithm hyperparameters which reduces the applicability of imaging to instances

where expert knowledge of the algorithm is available. The second and possibly greater drawback of

current conventional methods is the requirement for a measurement of the NRB signal, typically

obtained from a microscope slide or coverslip that ideally has no vibrational resonances within the

measurement window. However, these materials contain vibrational and other electronic resonances

outside the window, and even far from tuning they can perturb the measurement of the NRB. The

reference NRB measurement serves to remove the effect of the laser excitation profile S which may

vary over the whole spectrum and in conventional methods, the effect of the convolution with the
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6.1. Convolutional Autoencoder Architecture

probe pulse Epr is typically ignored.

In BCARS, the two main problems that are required to be overcome are phase retrieval and mix-

ing with an unknown excitation profile. These two tasks are suited to deep learning (DL), especially

in the presence of noise. DL approaches to NRB removal using a network comprised of convo-

lutional and fully-connected layers has been previously published and shown good promise[122].

This approach was tested on simulated and experimental measurements of different solvents. The

main problem with this approach was when the resonant to non-resonant amplitude ratio approached

that typical for biological samples i.e when χ(3)
Res/χ

(3)
NRB � 1. In this case the retrieved spectrum

significantly differed from the underlying Raman spectrum. During the time of writing this section,

there were further developments in deep learning for NRB removal in BCARS data. Long short-term

memory (LSTM) networks were also applied to this task[123], with their performance evaluated on

real spectra. Saghi et al.[124] later demonstrated enhanced retrieval by training on semi-synthetic

data and fine-tuning a pre-trained network. They also compared this methods performance to the

MEM approach. The semi-synthetic data were generated from actual Raman spectra recordings,

with the NRB simulated using sigmoid functions. The approach taken in this work was to use fully

convolutional layers in a specific architecture known as an autoencoder, to perform the NRB removal

using the BCARS spectrum only.

6.1 Convolutional Autoencoder Architecture

Convolutional neural networks (CNN) have shown great promise for blind deconvolution because of

their ability to learn patterns in specific signal domains[125]. The accuracy of CNNs in denoising,

classification, object detection and image generation is unparalleled[126]. Thus, it was hypothesized

that an approximate signal that was free from the NRB could be obtained by training a deep CNN

without the need for a reference NRB measurement. A CNN is comprised of convolutional layers,

which are followed by fully connected layers and have been shown to be particularly useful in

identifying patterns within images with spatial invariance. A convolutional layer represents a

sequence of element-wise convolutions using kernels (filters) w of size Fq ×Gq × dq applied to the
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6.1. Convolutional Autoencoder Architecture

input data. The convolution operation h from the qth layer to the q + 1th layer can be stated as[127]

hq+1
ijp =

Fq∑
r=1

Gq∑
s=1

dq∑
k=1

w
(p,q)
rsk h

(q)
i+r−1,j+s−1,k (6.1)

where i and j denote the spatial positions and p denotes the filter depth. It can be seen from equation

6.1 that the result of applying a convolutional layer is to dot product the input with a filter over the

entire filter volume. In the application of a CNN to spectra, the spatial size of the input is governed

by the spectral axis. For a spectrum with 1024 individual pixels, Fq = 1024 and Gq = 1. Thus,

the filters are applied 1-dimensionally. The dimension dq is typically referred to as the depth of a

layer, and corresponds to dq independent filters being applied. In order to train a CNN, a signal is

propagated through the network, at each layer convolution and possibly other operations are applied.

After each propagation, a loss is calculated, which is related to the goal of the training, and by

changing the filters in a structured way so as to minimize this loss, the CNN “learns” the problem.

In this work, a specific type of CNN was used known as an autoencoder (AE), which was named

VECTOR, named for Very deep convolutional autoencoders for non-resonant background removal

in broadband coherent anti-Stokes Raman scattering. An AE is a neural network with three main

components; (1) an encoder, (2) a bottleneck and (3) a decoder. The main goal of an autoencoder

is to take an input and encode it in to an efficient representation, from which the input is then

reconstructed. An efficient representation is a type of compression of the data which is as close to

the original input as possible. The 1-D spectrum is propagated through nencoder convolutional layers

to a representation of reduced spectral dimension known as the latent space. This representation is

then decoded using transposed deconvolution through ndecoder layers. This is the typical structure

of an autoencoder. Since the output should be the same size as the input, nencoder = ndecoder and

layers of equal depth are paired in size. Batch normalization[128, 129] and ReLU[130] are added to

each convolutional layer and transposed convolutional layer except for the last layer in the decoder

which is the same size as the output. After this layer, a sigmoid function is applied which restricts

the range of the output to [0, 1].

The loss function of an autoencoder is traditionally a vector p-norm of the difference between

the input and output of the network. This would result in the network trying to approximate the input
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using an efficient representation. However, in our application, we intended to use an autoencoder to

apply a transform to the data to retrieve the NRB-free spectrum from a BCARS spectrum. Thus, the

mean absolute error (MAE), also known as the L1 norm, between CARS spectra and the Raman

spectrum was used as the loss to train the network in an end-to-end manner. Equation 6.2 describes

the loss function used

L1 =
1

N

N∑
i

|f (Xi; θ)−Yi|2 (6.2)

where Xi is CARS input spectrum, Yi is the Raman spectrum, f is the network, and θ represents the

network parameters, which have been optimized by the training process with no a priori knowledge.

Skip connections were also implemented between all convolutional layers to their paired transposed-

convolutional layer, where output feature maps are passed and summed to the corresponding input.

Skip connections are used to mitigate the vanishing gradient descent to bottom layers[131]. The

vanishing gradient problem is well known in deep learning. A brief summary of the issue is as

follows. During the training stage of the network, backpropagation computes the gradient of the loss

with respect to the parameters using the chain rule, which results in multiplying n small numbers to

compute the gradients of early layers in an n-layer network. Skip connections allow information

to bypass early layers which can reduce the effect of vanishing gradients. An example of a skip

connection in a residual block from the architecture known as ResNet[132] is shown in figure 6.1.

In addition to the vanishing gradient problem, increasing the depth of the autoencoder archi-

tecture may result in the loss of crucial input information, making it unrecoverable through the

Figure 6.1: Diagram of a residual layer[132].
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encoding and decoding processes. Skip connections facilitate the recovery of such information. As

mentioned above, the VECTOR network was designed symmetrically, pairing each convolutional

layer in the encoder with a corresponding transposed convolutional layer in the decoder. This ar-

rangement allows for connections that bypass one convolutional layer to reach its paired transposed

convolutional layer. An added advantage of this symmetrical skip connection is that it eliminates

the need for padding. In this study, the number of skip connections matches the number of layers

in both the encoder and decoder. The basic layout of VECTOR is shown in figure 6.2 VECTOR

Latent Space

Skip Connection

Encoder Decoder

Convolution Transposed Convolution

Figure 6.2: Diagram of the general architecture of the VECTOR network. Each layer in the encoder and
decoder consists of multiple convolutional kernels of varying size (coloured rectangles). The network input is
to the left and proceeds toward the right.

is an architecture, and in this work we built several distinct networks of varying complexity using

the architecture described. The individual networks were different in the number of convolutional

layers used e.g. VECTOR-16 had 16 convolutional layers. In this work, one of the main goals was

to determine the optimal depth (number of layers) for NRB removal.

6.2 Generating training data

VECTOR was trained using a dataset of simulated CARS spectra, as it enabled us to generate

pairs of ground truth Raman and BCARS data. The algorithm’s effectiveness was evaluated by

training it on several different datasets with varying complexities. These datasets differed in terms

of the number of Raman peaks per spectrum and the variations in the full-width half-maximum

(FWHM) of the peaks. This distinction is particularly relevant due to the diverse types of Raman

spectra encountered in various applications. For instance, chemical and pharmaceutical samples
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typically exhibit sharper peaks that can be clearly identified, whereas biological samples, such as

cellular spectra, tend to show broader peaks that create a more complex mixture of wide and narrow

features[133, 36].

The resonant susceptibility was generated according to equation 6.3 and was represented as a

sum of Lorentzian functions.

χ
(3)
Res =

Npeaks∑
n=0

An
Ωn − ω − iΓn

(6.3)

where Ωn is the vibrational frequency, An is the amplitude, Γn is the half-width and ω is the

independent frequency. The axis over which the resonances were generated was defined as a linear

function of wavenumber over 0.1 to 2000 cm-1. For each Lorentzian function, the peak amplitude is

a uniformly random value between 0 and 1, with resonant peaks located between 300 and 1700 cm-1

and a FWHM of 2 cm-1.

Nine datasets were created, varying in peak widths and the number of peaks per spectrum,

labeled (i–ix). Each spectrum consists of 1000 datapoints spanning 2000 cm-1. The FWHM ranges

from low (2–10 cm-1) in datasets (i–iii), to moderate (2–25 cm-1) in (iv–vi), and high (2–75 cm-1)

in (vii–ix). The datasets are further categorized by the number of spectra: datasets (i, iv, and vii)

contain between 1 and 15 peaks per spectrum, (ii, v, and viii) have between 15 and 30 peaks, and

(iii, vi, and ix) consist of 30 to 50 peaks. The simulation datasets are summarised in table 6.1.

Table 6.1: Spectral parameters of each dataset.

Dataset Γmin (cm−1) Γmax (cm−1) nmin nmax

i 2 10 1 15

ii 2 10 15 30

iii 2 10 30 50

iv 2 25 1 15

v 2 25 15 30

vi 2 25 30 50

vii 2 75 1 15

viii 2 75 15 30

ix 2 75 30 50
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The non-resonant susceptibility is generally described as an arbitrary, slowly varying function.

In this instance, it was modeled as the product of two randomized, opposing sigmoid functions, as

stated in equation 6.4.

χ
(3)
NR = S1(ω) · S2(ω) (6.4)

where S(ω) was a sigmoid function given as

S(ω) =
1

1 + exp[−b(ω + c)]
(6.5)

where the parameters b and c were shape parameters of the sigmoids and were generated randomly

as

c = N (a1ωmax, a2ωmax) (6.6)

b = N (10ω−1
max, 5ω

−1
max) (6.7)

whereN (µ, σ) denotes a normal distribution with mean µ and standard deviation σ. The parameters

a1 and a2 are given in table 6.2.

Sigmoid a1 a2

S1 0.2 0.3

S2 0.7 0.3

Table 6.2: NRB generation parameters.

After generating both χ(3)
Res and χ(3)

NR, the total third-order susceptibility was then generated as

χ(3) = α
χ

(3)
Res

max(|χ(3)
Res|)

+ χ
(3)
NR (6.8)

where α is a scaling parameter that determined the resonant to non-resonant amplitude. The

parameter α was given as

α = U(kmin, kmax) (6.9)

where U(x, y) denotes a uniform distribution from kmin = 0.3 to kmax = 1. The BCARS intensity
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spectrum was then calculated as the magnitude square of the total third-order susceptibility, with

additive Gaussian noise ε.

ICARS =
|χ(3)|2

2
+ ε (6.10)

where the factor 2 scales the maximum possible value of ICARS (without noise) to 1. The noise term

was generated as

ε = βN (0, 1) (6.11)

β = N (ρ1, ρ2) (6.12)

where ρ1 = 0.0005 and ρ2 = 0.003. The corresponding Raman spectrum was calculated as

IRaman = Im(χ
(3)
Res) (6.13)

6.3 Training

The training set consisted of 200,000 spectra and the validation set consisted of 30,000 spectra.

Experiments were conducted on nine synthetic datasets using the formulation described in Section

6.2. A comparison with a previous NRB removal study was also performed in order to interpret the

accuracy of the developed network. For these evaluations VECTOR-16 was chosen as the default

option, balancing computation time and performance. The full architecture diagram of VECTOR-16

is shown in appendix A. The models were trained using a TITAN Xp GPU, employing stochastic

gradient descent (SGD) as the optimizer with a momentum of 0.9 and weight decay. The training

batch size was set to 256. The initial learning rate was 0.1, which was decreased by a factor of 10 at

the 25th, 50th, and 75th epochs, with training concluding at 100 epochs. The code was implemented

in the Pytorch library and is available for free on GitHub1.

Figure 6.3 illustrates the performance of six VECTOR architectures with varying depths,

highlighting those with (red) and without (blue) skip connections. The Mean Absolute Error
1https://github.com/villawang/VECTOR-CARS
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Figure 6.3: Loss for varying network depths using both skip connections and no skip connections.

(MAE) between the true Raman spectrum and the recovered Raman spectrum derived from the

corresponding CARS spectrum in the validation datasets served as the performance metric for this

study. Notably, architectures without skip connections demonstrate comparable performance for

lower layer configurations, specifically VECTOR-8, VECTOR-10, and VECTOR-12. However,

beginning with VECTOR-14, the performance of the architectures lacking skip connections levels

off, suggesting that critical information from the lower layers is not effectively transmitted to the

transposed convolutional layers. For VECTOR-18, the performance declines further compared to

VECTOR-14 and VECTOR-16, indicating that the vanishing gradient problem may be affecting

the bottom layers, resulting in minimal gradient updates for those weights and preventing full

optimization.

Adding more layers to VECTOR will lengthen computation times, offering only marginal

improvements in performance. Therefore, VECTOR-16 was found to be the most effective for our

needs. Figure 6.4 illustrates the training loss for both VECTOR-16 and VECTOR-18, with and

without skip connections. It is evident that skip connections significantly speed up the training

process, particularly during the first 25 epochs. This effect is most noticeable in VECTOR-18,

where the skip connection architecture consistently delivers superior performance across all training

epochs.
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Figure 6.4: Loss curves for VECTOR-16 and VECTOR-18.

6.4 Testing

Nine distinct networks (all using VECTOR-16) were trained in total utilizing the nine different

training and validation datasets outlined in section 6.2. These networks were subsequently tested

with nine test datasets, each consisting of 4096 spectra. For each network, the test dataset aligned

with the parameters of the corresponding training and validation datasets, specifically in terms of

peak number and width. The SpecNet network was also trained and validated using the same nine

datasets and was subjected to the same test datasets. Visual representations of the spectra recovered

by VECTOR-16 and the SpecNet network are displayed in figure 6.5, while figure 6.6 presents the

average mean absolute error (MAE) for both networks across each dataset, demonstrating that the

VECTOR network significantly outperforms SpecNet in all nine cases.

For both networks, the mean absolute error (MAE) rises proportionally with the number of

peaks. Datasets (i, iv, and vii) feature between 1 and 15 peaks, datasets (ii, v, and viii) contain 15 to

30 peaks, and datasets (iii, vi, and ix) range from 30 to 50 peaks per spectrum, corresponding to the

left, center, and right columns in figure 6.5. Additionally, as the range of peak widths increases, so

does the MAE. Datasets (i–iii) include narrow peak widths from 2 to 10, expanding to a range of 2 to

25 for datasets (iv–vi), and reaching the widest range of 2 to 75 for datasets (vii–ix), corresponding
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Figure 6.5: Retrieved spectra using VECTOR and SpecNet on an example BCARS spectrum from each of
the nine simulation datasets. True Raman spectrum is overlaid (black) and input coherent anti-Stokes Raman
scattering (CARS) spectrum (green) is plotted with offset.

to the top, middle, and bottom rows in figure 6.5. The MAE increases most significantly for the

more complex datasets with the broadest peak ranges. Overall, the relative change in MAE remains

consistent across datasets for both networks, with VECTOR consistently outperforming SpecNet.

Figures 6.5 and 6.6 illustrate that the VECTOR-16 network can recover high-quality spectra

across all nine datasets. For datasets (i–iii), both SpecNet and our individual networks perform well

in retrieving peak positions and shapes. However, a closer examination of the peak values indicates

that VECTOR is more effective at recovering peak heights and reducing baseline noise. In contrast,

for datasets (vii–ix), SpecNet generates incorrect values at the edges of the spectrum.

We also emphasize the VECTOR networks ability to mitigate noise in CARS intensity. Figure
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Figure 6.6: Comparison of loss between VECTOR and SpecNet across the nine simulation datasets.

6.7 illustrates the results of applying VECTOR-16 (trained on dataset ix) for two test cases from

the same dataset. On the left, the outcome for a high SNR CARS spectrum is shown, which yields

high-quality results as anticipated. Conversely, the right side shows the processing of a lower SNR

signal, where random noise fluctuations are evident in the input spectrum. Despite this, the recovered

Raman spectrum remains high quality and generally free from such noise. However, the inset in the

figure indicates that small spectral features, comparable in amplitude to the noise, have been lost.

These findings demonstrate that while the VECTOR network effectively handles low SNR inputs, it

may lose spectral features that are close to the noise floor. Addressing very low SNR signals would

necessitate additional training with datasets of similar quality.

In order to test the accuracy of VECTOR in experimental situations, a BCARS spectrum of

glycerol was recorded with the microscope detailed in section 5.1. Neat glycerol was placed in

a 120 µm thick imaging spacer between a microscope slide and a coverslip. A spectrum of the

coverslip served as an NRB reference. The glycerol spectrum was processed using VECTOR-16,

which was trained on datasets (iii), (vi), and (ix). The recovered spectrum and a corresponding

spontaneous Raman (SR) measurement is presented in figure 6.8. The SR spectrum was obtained

using a commercial Raman micro-spectrometer (Horiba Jobin Yvon LabRAM HR, 300 lines/mm

grating, 532 nm excitation). The reference compound 4-acetamidophenol (Sigma) was used for
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Figure 6.7: Comparison of retrieval on two spectra with different levels of Gaussian noise.

wavenumber alignment and a NIST-calibrated White-Light source (Ocean-Optics) was used for

intensity calibration. The Kramers-Kronig (KK) retrieval procedure was also applied to the spectrum

using the reference NRB. It can be seen that VECTOR recovers the Raman spectrum quite well

in this case, with considerable qualitatively better performance than the KK method when using

dataset vi. In particular the plateau region of the glycerol spectrum from 1250 cm-1-1400 cm-1 is

consistently erroneously retrieved for both VECTOR and the KK method. In the KK method, this

is likely due to the unusual characteristic of this region, whereby it approximates a flat response

over hundreds of wavenumbers. In such cases, the phase detrending procedure may erroneously

be detrending real phase variations because they are much lower frequency than typical in this

region. This may be corrected in the KK algorithm by tuning the hyperparameters of the detrending,

but this is tedious and difficult to generalize to any spectrum. The results of VECTOR are quite

remarkable because considerably less information was used to perform the retrieval, compared to

the conventional methods. In the implementation, half the data is required (1 spectrum instead of

two for the KK method) per retrieval. However, the methods are also quite different in terms of the
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total resources required since VECTOR requires on the order of tens of hours to train a useful model,

whereas KK is analytic in nature and requires no training. Another interesting feature of VECTORs

result is the apparent lack of any residual laser excitation profile in the retrieved spectrum. As no

information on the laser was given to the network in training or implementation, it is clear that the

network is still somewhat invariant to multiplicative slowly-varying signals.

Figure 6.8: Experimental implementation of VECTOR on a BCARS spectrum of glycerol. The reference
NRB measurement (top, in red) was also procesed by VECTOR. Also shown is a spontaneous Raman
spectrum of glycerol in green.
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The NRB observed in an Er-Fibre CARS system such as the one used here cannot be accurately

represented accurately using the countervailing sigmoids used here, which are more suitable for

conventional two-color B-CARS platforms. The interplay between two-color and three-color

excitation leads to a complex NRB signal that is heavily influenced by laser characteristics, including

the spectral envelope and phase delay. This presents challenges for an NRB-agnostic system like

VECTOR, especially when compared to KK or MEM methods that integrate an NRB reference.

Consequently, the significant variability in NRB intensity results in lower peak heights for the C–H

band in glycerol than expected, as seen with KK. Thus, elements of the NRB profile are interpreted

by the network as resonant features, leading to attempts to construct peaks, particularly evident

in datasets (vi) and (ix), which are trained on broader peak width ranges. In contrast, VECTOR

minimizes many artifacts associated with the KK method, especially in low-intensity regions, such

as the Raman silent zone, where small value quotients can create noisy results. VECTOR also

smooths the extracted Raman-like output. Interestingly, the spectrum obtained from the various

VECTOR configurations shows greater consistency in the relative intensities of peaks at higher

wavenumbers.

In this work, we have demonstrated that VECTOR outperforms the previous CNN approach[122]

across all nine datasets. Our network was trained on various configurations of simulated spectra,

highlighting the importance of tailoring the training process to the specific types of spectra it

is intended to analyze. While the model developed previously by others[122] showed strong

performance on datasets similar to or less complex than its training set (i–iv), its qualitative

and quantitative results declined when faced with more intricate datasets. Despite VECTORs

effectiveness with synthetic spectra used in training, further development is needed for application

with real-world experimental data. Training on experimental spectra poses challenges due to the

extensive volume of data required, necessitating enhancements to the training set to more accurately

reflect the spectra obtained from the CARS platform. Additionally, it is inherently difficult to acquire

a definitive ground truth Raman spectrum for a given CARS spectrum; any retrieval algorithm will

only yield an approximation, which could introduce additional errors to the retrieval network. To

address this, we aim to refine the peak shapes, heights, and frequencies to better align with those

seen in the fingerprint and C–H stretching regions of the spectrum. This will involve a broader range
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of peak amplitudes, varying signal-to-noise ratios, and generating taller, sharper peaks in the C–H

region alongside smaller, denser peaks in the fingerprint region.
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7. Physical modelling for improved NRB removal:

VECTOR2

This section is based on the published article entitled “Removing non-resonant back-

ground from broadband CARS using a physics-informed neural network” published

in Analytical Methods[23]. For this chapter, I developed the BCARS simulation gen-

erator, trained the neural network, obtained spectra from our BCARS system and a

high-resolution spontaneous Raman microscope in the FOCAS institute at TU Dublin.

I also analysed the result of the network on simulated and experimental data.

In the previous chapter, a deep convolutional autoencoder named VECTOR was designed and

trained on paired CARS intensity data and corresponding Raman intensity, with the CARS spectra

simulated under the assumption of a spectrally flat excitation. This assumption is approximately

satisfied in the two-colour BCARS mechanism, because the excitation profile here is a symmetric

copy of the Stokes pulse, and each vibrational resonance is located within this profile (for the specific

laser wavelengths used). However, in the three colour mechanism, the excitation profile resembles

the one-sided autocorrelation of the Stokes pulse, which rapidly varies across the whole band of

vibrational resonances in the fingerprint region. This is exemplified in figure 4.1 of section 4.2.

Thus, modelling the actual laser system to include the real laser profile S should provide VECTOR

with higher fidelity training samples from which it can perform the retrieval with greater accuracy.

In the updated simulation model, the effect of probe convolution was also implemented, such that

the retrieved spectrum should identically match Im
(
χ

(3)
Res

)
.
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In order to completely model the physical process of BCARS, all variables in the definition of

the intensity were required. This equation is repeated here for completeness

Ias(ω) =
∣∣∣{χ(3)

[
Es(ω) ? Ep(ω)

]}
∗ Epr(ω)

∣∣∣2 (7.1)

In theory, all laser parameters ES, Ep and Epr could be measured and it was assumed that they were

stationary. The Stokes electric field ES was fully defined using the procedure outlined in section

5.2. The probe electric field was obtained from a measurement of the spectrum of the probe laser

with the shortpass filter removed. Since this pulse was narrowband and thus assumed to have a flat

spectral phase, the electric field was fully determined by the intensity spectrum. The sample specific

parameter, namely χ(3), was determined as before, using a sum of Lorentzian functions, however an

inclusion of a discrete CH and OH band was added.

7.1 Simulating the susceptibility

Raman spectra were first produced by generating independent spectra in three distinct frequency

regions: the fingerprint, the CH-stretch, and the OH-stretch regions. The fingerprint region was

characterised by resonances that spanned from 600–1800 cm-1. The CH-stretch region contained

resonances that spanned from 2900– 3500 cm-1, and had fewer peaks than the fingerprint region but

each with significantly higher amplitudes, as per realistic measurements. Finally, the OH-stretch

region was simulated as a single resonance that spanned from approximately 3200–3400 cm-1.

The resonant susceptibility for each region was generated as a sum of individual complex

Lorentzians as follows:

χ
(3)
Res(ω) =

Npeaks∑
n=0

An
Ωn − ω − iΓn

(7.2)

where An, Ωn and Γn are the amplitude, frequency and half width of the nth resonance, respectively.

ω is the independent frequency. In BCARS, this is the difference frequency of the pump and Stokes

sources; a resonance occurs when ωp − ωS = Ωn. The choice of n values of a, Ω and Γ defined

the Raman spectrum of each training sample. The specific parameters chosen for simulating the
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susceptibility are described in table 7.1. Two different datasets were generated, relating to either a

chemical sample which often contains sparse and narrow resonances or a biological sample, which

is typically more complex due to the much larger number of resonances present. The networks were

named sparse and dense to signify a chemical or biological spectrum respectively.

The form of equation 7.2 is the resonance approximation for the susceptibility, as mentioned

in section 3.2.2. This simplifies the simulation and is often used to simulate Raman spectra. Its

impact on the resulting spectra was tested by calculating the difference between the approximated

susceptibility and the full form of the susceptibility[80]. It was found that the approximation resulted

in a maximum error of 3 % for both the Raman and CARS intensity. The resonance approximation

was chosen as valid for this approach.

In chapter 6, the NRB was modelled as a product of sigmoids, which has a characteristic ramp

shape. The non-resonant susceptibility in this chapter was generated using a Gaussian function, as it

was assumed that the sigmoid shape may have been unrealistic due to its flat tailedness at the edges

of the curve. The NRB was assumed to vary continuously over the whole frequency range and may

not be zero.

χ
(3)
NR = e

−(ω−ωNRB)2

2σ2 , (7.3)

where ωNR and σ denote the centre frequency and width of the Gaussian. The parameters of the

Gaussian were chosen such that the NRB was a slowly-varying function of frequency over the

frequency band of the susceptibility. This form more accurately resembles the NRB in reality[134].

Both χ(3)
Res and χ(3)

NR were normalized using the maximum of their absolute values over the

measurement window. After normalization, the resonant susceptibility was scaled by a factor β

and the non-resonant susceptibility by 1− β. The β parameter was designed to control the relative

amplitude of the two components of the susceptibility, and was randomly chosen from a uniform

distribution in the range of 0.3 to 0.5. The total susceptibility was then generated according to

equation 3.68. The Raman spectrum, IRaman used in the loss function of the neural network was

defined as the imaginary part of χ(3)
Res:

IRaman = Im
[
χ

(3)
Res

]
(7.4)
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7.2. Including the system-specific excitation profile

Dataset

Component symbol Name Unit
VECTOR-MU

-Sparse
VECTOR-MU

-Dense

NRB
ωNRB NRB centre frequency THz U(600, 800)
σNRB NRB width THz U(400, 500)
β NRB amplitude - U(0.3, 0.5)

Noise
SNR SNR (Poisson) - U(200, 1000)
σread Gaussian noise - U(0.00001, 0.0001)

Distortion
A Ripple amplitude - U(0, 0.02)
T Ripple frequency pixels U(50, 1000)
φ Ripple phase - U(0, π)

Fingerprint

a Amplitude - U(0, 0.1)
N Number of peaks - U(1, 15) ∈ Z U(1, 50) ∈ Z
Γ Half-width cm-1 U(2, 10) U(2, 75)
Ω Resonant frequency cm-1 U(600, 1800)

CH-region

a Amplitude - U(0, 1)
N Number of peaks - U(0, 3) ∈ Z
Γ Half-width cm-1 U(2, 30)
Ω Resonant frequency cm-1 U(2900, 3500)

Table 7.1: BCARS training data parameters (The symbol U(x, y) denotes a uniform distribution from x to
y).

The simulation and training procedure is shown in figure 7.1.

7.2 Including the system-specific excitation profile

After the susceptibility is generated for each training sample, it is multiplied by the laser excitation

profile, S, and the result is convolved with the probe pulse Epr as described in equation 7.1. In order

to calculate S, two methods were identified, each with its own advantages and disadvantages. The

first method involves the cross-correlation frequency-resolved optical gating (XFROG), as described

in section 5.2, which provides the electric fields ES and Epr, from which S can be calculated

precisely. The second method involves approximating S using a measurement of the BCARS signal

in a non-resonant material such as glass. Such a measurement results in χ(3) ≈ χ
(3)
NR and is real

valued. It follows that
√
ICARS ≈ χ

(3)
NR|S ∗ Epr|. If the NRB is assumed to be approximately

spectrally flat, ES is assumed to have an approximately flat phase, and Epr is sufficiently narrow,
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7.2. Including the system-specific excitation profile

Figure 7.1: Diagram of the VECTOR2 simulation approach. The simulation process includes (1) estimation
of the source laser profiles, (2) generation of a complex susceptibility, (3) modelling of a BCARS response
according to the physical process.

then it follows that S ≈
√
Iglass. The result of this approach is shown in Fig. 7.2 (b) in which

it can be seen there is good agreement with the XFROG method. The probe pulse could also

be approximated by a standard spectral profile such as a Gaussian or sinc function using known

parameters. The simulated and measured probe spectrum as obtained from XFROG is shown in

figure 7.2 (a).

Both of the methods described above provide values for S and Epr. The XFROG method has

the advantage of providing the phase of S; however, if this phase is flat then this advantage may be

overlooked. The approximation method has the advantage of being much simpler, requiring only

a single non-resonant spectrum. This method also has the very significant advantage of including

the same sensitivity response of the spectrograph with respect to the BCARS spectra. This is not

true for the XFROG method, which involves recording spectra in a different band of wavelengths

centered on the two-colour region. The difference in the estimates for S between the methods could

be attributed to this difference.

In this work, the use of S obtained directly from glass was preferable as this provided self-
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Figure 7.2: (a) probe pulse amplitude obtained from the discrete Fourier transform of the marginal plot of
the XFROG. Also shown in this figure is the result of modelling the amplitude as a Gaussian function based
on the laser specification – centre at 770 nm and FWHM 0.58 nm, (b) amplitude of excitation profile obtained
using two methods: firstly the ES and Epr obtained from XFROG are used to generate S = ES × Ep where
Ep is given by ES and Epr for the 3- and 2-colour regions, respectively. This method also enables the phase
of S to be obtained; secondly, the amplitude of S is estimated using the square root of a glass spectrum. This
method does not permit measurement of the phase.

referencing for intensity calibration of BCARS spectra. This method was employed for estimating

S in subsequent sections. Once the susceptibility was generated, and S and Epr were obtained, the

BCARS spectrum was calculated according to equation 7.1. This involves multiplication of the

susceptibility with S, followed by convolution with Epr. The resultant function ICARS was then

normalised between 0 and 1. Normalization was necessary because the subsequent processing,

including noise modelling required a consistent SNR.

7.3 Simulating system-specific noise

Excluding the NRB, three separate noise sources were incorporated into the simulation to more

accurately reflect the experimental conditions. These include: shot noise, arising from the quantum

nature of light; additive Gaussian noise, representing sources such as camera read noise; and a

weak, slowly varying distortion of the overall intensity in the form of a randomly fluctuating ripple,

intended to account for experimental variability. For a given irradiance I , shot noise is due to

fluctuations in the number of photons arriving over a unit time and follows a Poisson distribution,

where the variance equals I . This can be directly related to the well-known signal-to-noise ratio

through this relationship.
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Given the linear relationship between intensity and irradiance, the SNR of a given BCARS

spectrum can be approximated as proportional to the square root of the BCARS intensity. To

simulate an appropriate BCARS intensity, a desired SNR value was chosen for the maximum signal

intensity. This value was randomly selected from a uniform distribution ranging from 200 to 1000,

reflecting observed experimental conditions. It was then multiplied by the normalized BCARS

intensity. Each individual sample in the spectrum ICARS,m was scaled by the square of the SNR, and

this result was used as the mean of a Poisson distribution P . A value was then randomly sampled

from this distribution, and then scaled by SNR squared to ensure normalization, as required by the

VECTOR2 architecture. This process is summarised as

I ′CARS,m = SNR−2P (SNR2 · ICARS,m) (7.5)

The shot noise can be modelled for any SNR and the output is limited to the range [0,1]. The dark

current of the detector can be trivially included by increasing the mean of the Poisson distribution

by a relative amount, however this was omitted due to the extremely low value observed in the setup

used. The effect of read noise was also modelled using an additive zero-mean Gaussian function.

This was applied to the normalised data from equation 7.5. The Gaussian noise had a standard

deviation that was sampled from a uniform distribution between 1× 10−5-1× 10−4. The resultant

intensity was given by

I ′′CARS,m = I ′CARS,m +N (0,U(0.00001, 0.0001)) (7.6)

where N (µ, σ) denotes a normal distribution with mean µ and standard deviation σ, and U(x, y)

denotes a uniform distribution between x and y.

Finally, the third noise term was a multiplicative, low amplitude and low frequency variation

(ripple) that was used to emulate all other signals not due to the sample chemistry. These variations

appeared to be sample dependent and could be related to chromatic aberration. Inclusion of this

noise term prevented over-training of the network on one possible excitation profile, which in fact

varies slightly over time. If it were not included, any deviation in a test spectrum excitation profile

would erroneously recover resonances where they did not exist. Early attempts to train the network
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without this term resulted in poor generalisation performance using experimental spectra. The ripple

was defined as a multiplicative sinusoidal signal which was added to the normalised intensity,

I ′′′CARSm = I ′′CARSm

[
1 +A sin

(
2πm

T
+ φ

)]
(7.7)

where T is the period of the ripple, in units of pixels, A is the amplitude, and φ is the phase shift.

The ripple varied in amplitude, frequency, and phase for each sample spectrum. The parameters

in equation 7.7 were sampled from a uniform distribution as follows: A = U(0, 0.02), T =

U(50, 1000) and φ = U(0, π). The intensity was then normalised again to account for changes in

the range due to the Gaussian and ripple terms. The Raman spectrum for each sample was obtained

from equation 7.4 and normalised but no noise was added.

In order to demonstrate the result of the simulation, a simulated BCARS spectrum of the

compound benzonitrile was compared with an experimental recording of the compound using the

system described in section 5.1. The vibrational spectrum was simulated using the information in

ASTM E1840-96(2014)[135]. From this, the resonant susceptibility wavenumbers and amplitudes

were obtained. The linewidths were all set equal to 1 cm-1. The imaginary part of the resonant

susceptibility is shown in figure 7.3 (a). The randomly generated NRB is shown in 7.3 (b) and

in (c) the simulated BCARS spectrum of benzonitrile is shown (β = 0.5). For comparison, the

experimentally measured BCARS spectrum of neat benzonitrile is shown in figure 7.3 (d). It can be

seen from (c) and (d) that there is very close agreement between the simulated and recorded spectra.

The small differences can be accounted for by the unknown value of the true β and the true NRB

shape.
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Figure 7.3: (a) Simulated Raman spectrum of benzonitrile; (b) randomly generated NRB using the developed
method; (c) simulated benzonitrile BCARS spectrum with β = 0.5; (d) recorded benzonitrile spectrum using
the BCARS system (inset is the chemical structure).

7.4 Training and testing the network

7.5 Custom loss function

In order to test the whole deep-learning approach, two test datasets with features corresponding to

sparse and dense samples were created. The goal was to train two separate networks, each optimized

for these different types of spectra. These parameters of these datasets are presented in Table 7.1.

In both datasets, resonances were randomly chosen for the fingerprint CH- and OH- regions, but

the amplitudes in the CH region were designed to be 10 times stronger than those in the fingerprint

region in order to match spectra in reality. This necessitated the use of a custom loss function in

order to balance the loss between the scaled regions. The custom loss function was given as

` =
∑ ζ|f(X)−Y|

N
(7.8)
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where f(X) is the network output for a given input BCARS spectrum X. Y is the Raman spectrum

of the input Im
[
χ

(3)
Res

]
and ζ was the normalisation factor used to ensure the fingerprint and CH loss

were of similar magnitude. ζ was defined as,

ζ =


1, Ω < 2272 cm-1

0.1, Ω ≥ 2272 cm-1
(7.9)

Thus, the objective of the network is to retrieve the Raman spectrum directly from the noisy and

realistic BCARS input. In contrast, the original VECTOR network was designed to recover the

Raman spectrum from purely theoretical BCARS spectra that did not contain the imbalance of

excitation in the two and three colour regions due to the lasers. Here, we fully account for this effect.

7.6 Training

Two networks were trained, with the only difference being the training set used (sparse or dense).

The trained networks were named after the original network architecture (VECTOR), the experi-

mental system used for modelling (Maynooth University-MU) and the specific training set used

(sparse/dense). Thus, the networks were named VECTOR-MU-sparse and VECTOR-MU-dense.

The two networks were trained on a single TITAN Xp GPU. The stochastic gradient descent (SGD)

optimizer was used in computing the weights and the learning rate was reduced by a factor of 10

every 25 epochs. All other training parameters are shown in table 7.2. The results of training are

shown in figure 7.4. As shown in figure 7.4, the training loss has sharp discontinuities where the

learning rate drops by a factor of 10. The approach for varying the learning rate using discrete

changes every 25 epochs was built upon the results from the previous network described in section

6.2. The lower loss values for the sparse dataset can be explained by the lower complexity in the

training set.
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Parameter Value

Training set size 1,000,000
Validation set size 10,000
Testing set size 10,000
Epochs 100
Batch size 256
Weight decay 5× 10−4

Momentum 0.9
Initial learning rate 0.1

Table 7.2: Training parameters of the VECTOR2 network.

Figure 7.4: Average training and validation loss per epoch for the two different autoen-
coder networks (both on same ordinate scale).

7.7 Testing

The results of the network’s retrieval on two simulated spectra from the sparse and dense datasets

are shown in figure 7.5. 7.5 (a) illustrates a simulated BCARS spectrum from the sparse test set.

The noise level is relatively low in this example, and the characteristic CARS lineshape is present

118



7.7. Testing

Figure 7.5: Examples of two test BCARS spectra, processed using the two trained networks; (a)
simulated BCARS test spectrum of a sparse spectrum (inset zoom on 2-colour region) and (b)
retrieval of Raman spectrum using the two networks; (c) and (d) the same results are shown for a
simulated dense spectrum. As expected, the network VECTOR-MU-dense performs better on the
more complex data but surprisingly, it performs similarly to VECTOR-MU-sparse on simulated
sparse data.

where vibrational resonances exist. In regions without resonances, the BCARS intensity closely

resembles the excitation profile. 7.5 (b) displays the retrieval results of the sparse Raman spectrum

in (a) for both networks, which show comparable performance on sparse spectra. The equivalent

performance between VECTOR2-MU-sparse and VECTOR2-MU-dense is likely because the sparse

dataset is a subset of the dense dataset, and the more complex network (VECTOR2-MU-dense) may

essentially subsume the less complex network. Also shown in (b) is the result of applying the phase
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and amplitude corrected Kramers-Kronig method[1] using CRIKit21 to the BCARS spectrum in

(a). Default parameters for the KK method were used, except for the phase-detrending smoothness

parameter which was set to 1000. This value relates to the smoothness of the function used to

detrend the phase. The level of smoothing is approximately logarithmic in this parameter. The NRB

reference was also required for the KK implementation, which was obtained from the simulation by

setting χ(3)
Res to zero. Notably, the KK method retrieves the fingerprint resonances quite well in this

example, but there is an apparent broadening of the retrieved lineshape, since the KK method does

not deconvolve the probe laser from the spectrum. This is evident in the inset zoomed region of 7.5

(b). While in a highly resonant material such as a pure solvent, this is quite straight forward to do,

as will be shown, the combined phase-retrieval and deconvolution is not trivial for complex samples

such as biological cells. In the CH-region the KK method also fails to recover the true lineshape of

the strongest resonance, as the dispersive lineshape persists. The windowing effect of the discrete

Hilbert transform is also very evident at the highest wavenumbers with an unphysical amplitude

increase here. The other major difference between the proposed method and the KK method is the

perceived noise level in the retrieved spectrum. The KK result has noise that is actually greater than

the noise in the input. This is due to the KK being ill-conditioned when applied to real spectra, or in

this case, simulated spectra that are highly realistic.

The phase retrieval problem is simpler when the number of resonances n is small and the

asymmetric lineshape features are clear in the BCARS spectrum (β � 0). Figure 7.5 (c) shows the

BCARS spectrum from the dense test set, which looks very different from the spectrum in (a). This

difference is due to the large number of vibrational resonances in the fingerprint region, resulting in

a Raman spectrum that has a nonzero baseline almost everywhere in this region. The overlap of

resonances causes the characteristic lineshapes to become distorted, making it harder to retrieve the

resonant component accurately. This is the main reason for the difficulty in applying conventional

phase-retrieval methods to biological spectra such as cells. The nonzero baseline in dense spectra,

caused by the high number of resonances, is the reason for the lower efficiency in training the

VECTOR-MU-dense model compared to VECTOR-MU-sparse. In (d), the resulting retrieval on

the dense test spectrum is shown. The sparse network retrieves the CH region resonance accurately
1https://github.com/CCampJr/CRIkit2
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but performs poorly for the whole fingerprint region. The simplified training data used means that

such data is not encountered in minimizing the loss, and as expected the network does not provide a

good result. However the dense network accurately retrieves the full broadband spectrum. The two

VECTOR results are also significantly denoised compared to the input, showing the power of the

approach. The KK result notably has the windowing effect and high amounts of noise present. In

the inset zoom, the retrieval of the two resonances is erroneous, likely because in this region, the

excitation profile approaches the noise floor as it is at the width of the Stokes autocorrelation. The

dense network shown very accurate retrieval in this region.

For a quantitative comparison, two test sets were created. These were not used to train any

network. Each set contained 10,000 simulated spectra using the parameters from table 7.2. Both

test sets were input into both networks, and the mean absolute error (MAE) of the output spectra

was calculated using the true Raman spectrum. The results are presented in Figure 7.6 as a violin

plot on a logarithmic scale. VECTOR-MU-dense showed slightly better performance to VECTOR-

MU-sparse when tested on sparse spectra, possibly due to the greater training complexity. The

performance in the CH-region was similar for both networks, which was expected since both training

sets used the same parameters for this region. For the dense test set, VECTOR-MU-dense performed

significantly better, which was also expected because the VECTOR-MU-sparse network was trained

on simpler spectra. Also shown is the resulting loss for the KK method, which, for both test datasets,

showed significantly higher loss values in both the fingerprint and CH regions.

7.8 Experimental results on real spectra

The performance on experimental spectra obtained with the BCARS microscope described in section

5.1 was then tested. The samples used were benzonitrile, ethanol, polystyrene, PMMA, a proprietary

polymer from a flow channel (µ Slide I Luer, Ibidi GmbH, Munich, Germany), and glycerol. The

polymer slide, is designed with a flow channel for imaging adherent cells during flow, as well as in

3D culture. The base of the polymer slide, which was targeted for Raman spectroscopy, is made from

a transparent polymer with a thickness similar to that of a coverslip. This polymer has beneficial
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7.8. Experimental results on real spectra

Figure 7.6: Mean absolute error (MAE) of test sets that were input to
each network/KK method. Results are separated for the fingerprint and
CH-regions. Inner box and bars represent descriptive statistics (boxplot),
coloured areas are kernel density estimates of the loss distribution.

imaging properties, including a refractive index that matches glass. Its specific chemical structure

is proprietary and not disclosed by the manufacturer. This polymer was chosen because it has a

diverse spectral profile with various resonances and linewidths in the fingerprint and CH-stretching

regions, resembling the spectra of complex materials like biological samples.

All chemicals, except the polymer slide, were sourced from Sigma-Aldrich in Ireland. Liquid

chemicals such as benzonitrile, glycerol, and ethanol were pipetted onto a glass coverslip. The

PMMA and polystyrene were in the form of 10 µm diameter beads and were mixed with distilled

water, applied to the coverslip, and then air-dried. All spectra were recorded using the system

described in 5.1, with a 1-second exposure time for each recording. The average of five exposures

was taken and the dark current subtracted from each. Cosmic rays were eliminated using a published

algorithm[96]. The resulting raw BCARS spectra are displayed in figure 7.7. The full sized spectra

are also shown in appendix B. No effort was made to apply intensity calibration to the BCARS

spectra shown in figure 7.7, relating to the sensitivity response of the system. This step would

have been superfluous because the excitation profile that was used to train the network (obtained
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7.8. Experimental results on real spectra

Figure 7.7: Six experimental BCARS spectra. The logarithm of the intensity is shown and the spectra were
offset vertically for clarity. The retrieved Raman spectra are shown in the next figure.

from a glass spectrum) was modulated by the same sensitivity response. Therefore, all retrieved

Raman spectra were inherently corrected for the system sensitivity. This point is also true for spectra

retrieved using the KK method, which also makes use of a reference NRB spectrum.

To compare a Raman spectrum obtained using VECTOR-MU with a corresponding spontaneous

Raman spectrum, each sample was also analyzed with a high-resolution commercial Raman spec-

trometer. The setup included an Horiba Jobin Yvon LabRAM HR Raman micro-spectroscopy system

equipped with a 660 nm excitation laser and an 1800 L/mm grating, using an MPlan 10×/0.25 NA

(Olympus) objective. The system employed an automated routine to record spectra from 400 to 4500

cm-1, achieving an approximate theoretical resolution of 0.4 cm-1, which resulted in 25,232 spectral

pixels. The acquisition time for each spectral band was 10 seconds, and the average of five separate

measurements was taken. The Raman spectra were processed by subtracting the dark current and

calibrating the intensity using a NIST-calibrated white light source[136]. For benzonitrile, a 532

nm laser excitation was used to prevent a broad spectral peak at 800 cm-1 that appears with 660 nm

excitation, likely due to fluorescence. The Raman data was filtered using a Savitzky-Golay filter

with a window size of 9 and an order of 3. The Raman spectra were high-resolution and background

free, allowing for a qualitative estimate of the performance of VECTOR2 on real data. The result of
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the retrieval on the six chemicals is shown in figure 7.8. The KK method was also applied, using

identical parameters to the simulated spectra.

In the case of glycerol, both VECTOR-MU networks aligned well with the relative peak heights

and positions observed in the spontaneous Raman spectrum for both the fingerprint and CH regions.

However, VECTOR-MU-sparse struggled to reconstruct the slowly varying peaks from 1200 to 1500

cm-1, which was expected since no training examples of this kind were included. Both networks

failed to capture the relative strength between the three- and two-color regions (hence the scaling

factors applied in the fingerprint region). The reason for this may be due to a drastically different

excitation profile between the one used in simulation and the one measured at the sample. Another

potential reason is the choice of two separate Raman amplitudes for the two spectral regions, which

may have caused ambiguity in the relative height between the regions that the network could not

resolve. In each region, the relative amplitudes are well resolved and true to the spontaneous Raman

spectrum, meaning that both the fingerprint and CH regions are well retrieved independently. This

issue was consistent across all tested spectra and will be discussed further later. For the polymer

sample, both networks performed well in the fingerprint region, but VECTOR-MU-dense excelled in

retrieving relative peak heights. In the CH region, VECTOR-MU-sparse displayed a significant error

in the height of the peak at 2900 cm-1; this could be attributed to random sampling effects during

training, as both networks shared the same CH region parameters, and therefore while the underlying

probability distributions were identical, they used different training spectra. In the PMMA sample,

which has a sparse Raman spectrum with only a few strong resonances, the sparse network performed

better than the dense network. Both networks retrieved results in the CH-stretch region that closely

matched the actual Raman spectrum. For polystyrene, the Raman spectrum features a strong

resonance around 1000 cm-1, which VECTOR-MU-sparse failed to retrieve accurately compared

to neighboring peaks. Additionally, the dense network incorrectly generated baselines at 780 cm-1

and 1550 cm-1, indicating it can struggle with baseline corrections when handling sparse, narrow

resonances. The ethanol sample was also particularly sparse, containing about ten resonances in its

Raman spectrum. In this case, VECTOR-MU-sparse outperformed VECTOR-MU-dense, which

again inserted an incorrect baseline upwards of 1500 cm-1. Both networks successfully identified

the hydroxide bond in the CH region at approximately 3200–3400 cm-1. Finally, for the benzonitrile
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spectrum, both networks accurately recovered the positions and amplitudes of nearly all of the

fingerprint peaks, although the ratio between the peaks at 1150 and 1600 cm-1, as well as the peak

at 1000 cm-1, were noticeably incorrect. Once more, VECTOR-MU-sparse demonstrated superior

performance.

In all samples the KK method had visibly worse results for the specific parameters used,

compared to the two networks. For example, in Glycerol, the region around 1400-1500 cm-1 was

severely distorted. The CH band in this spectrum also had the two main peak amplitudes inverted.

This also occurs for ethanol and the polymer sample. It was clear that VECTOR2 outperformed

KK for all the samples tested. The findings of this work show that deep learning can effectively

perform phase retrieval and denoising simultaneously in one forward pass through a fully trained

neural network, as demonstrated by VECTOR2. However, importantly, when combining KK with

statistical denoising methods like singular value decomposition (SVD), the phase retrieval results

may reach levels similar to those of VECTOR2, provided the phase-retrieval parameters are tuned

to the spectrum of interest. Conversely, using single-spectrum denoisers is unlikely to greatly

enhance the performance of KK-based phase-retrieval beyond what VECTOR offers. Even when

applied on denoised datasets, since KK cannot be tuned per spectrum, batch error can occur in the

results as a result of the NRB varying during the recording. Additionally, SVD-based statistical

denoising necessitates a large dataset of similarly noisy and shaped spectra, such as those found in

hyperspectral imaging, without which, statistical denoising is impossible. It should be emphasized

that SVD denoising would benefit both conventional methods of phase-retrieval and VECTOR2, so

it is likely to narrow the performance gap between the two methods. This paper, however, solely

addresses single spectrum processing and demonstrates that VECTOR2 outperforms KK in terms of

noise reduction, phase retrieval accuracy, and spectral resolution.

The current version of VECTOR2 takes longer to run, particularly during training, compared

to MEM or KK. However, once trained, it can process new data very quickly ( 1 ms), and its

speed could be improved further using more efficient coding practices. Once optimized as part of a

laser alignment procedure, the laser excitation profile of a BCARS microscope typically remains

relatively stable for hours to possibly days in a temperature and vibration controlled laboratory,
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7.8. Experimental results on real spectra

Figure 7.8: Retrieval of the six chemicals: (a) glycerol, (b) a proprietary polymer slide, (c) PMMA, (d)
polystyrene, (e) ethanol, (f) benzonitrile. The spectra retrieved from both networks are shown, together with
the corresponding intensity calibrated spontaneous Raman spectrum.

allowing the trained network to be reused during this period without retraining. New experimental

results generated by an updated system with a new laser excitation profile could also be used to

update the current network through ”transfer learning,” eliminating the need to retrain from scratch.

VECTOR2 has significant potential to enhance Raman signal extraction from raw BCARS

spectra, particularly those in large batches. The KK and MEM methods can produce artifacts that
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VECTOR2 can avoid due to the large heterogeneity in the samples on which it was trained. In the

KK implementation, the discrete Hilbert transform (DHT), which is the main operator used, is not

fully equivalent to the continuous Hilbert transform, resulting in baseline errors that the detrending

procedure is required to correct. This issue is also observed in MEM methods, necessitating padding

schemes for both KK and MEM, especially for peaks near the edge of the window.

Another advantage of VECTOR2 over KK is its higher accuracy in noisy environments. The

approach developed here effectively removes noise from the retrieved Raman signal and extracts

the signal itself more accurately from within a noisy background, as demonstrated in figure 7.7.

Additionally, errors in phase-retrieval methods like MEM and KK depend on detrending methods

for corrections, as shown by Camp et al.[1] However, these detrending methods may not accurately

retrieve the baseline in low SNR spectra, or where the excitation profile amplitude approaches zero

(as in the Amide I band in the system developed here). Higher-order polynomial detrending is

commonly used for detrending the Raman spectrum, but it assumes the baseline is a polynomial,

which lacks theoretical justification. Asymmetric least-squares (ALS) methods offer more flexibility

when the signal contains dispersive peaks, yet they are constrained by two hyperparameters that may

be ineffective for complex spectra. In contrast, deep learning methods like VECTOR2 can be trained

using purely synthetic data or a mix of synthetic and experimental data. Moreover, VECTOR2

could be trained with data generated using KK or MEM to convert raw BCARS spectra, integrating

other physics-based approaches into the deep learning model. Unlike deep learning methods, it is

impossible to ”train” a polynomial detrending or ALS method to improve their performance.

VECTOR2, being a neural network, necessitates normalization for effective generation of

simulated spectra. In this context, both the input spectra and the simulated Raman spectra were

normalized to their minimum and maximum values. Consequently, absolute concentration infor-

mation cannot be retrieved with VECTOR2 in its current form. However, it does preserve relative

species concentrations, which can be obtained from the ratio of two or more detected peaks. Al-

though we did not evaluate the capacity for concentration measurements in this study, this area

may warrant exploration in future research. Additionally, KK-retrieved spectra have demonstrated a

linear relationship with concentration[4]. In summary, while MEM and KK provide robust methods
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for extracting Raman features, they also require supplementary tools to enhance their extraction

capabilities, such as phase-error correction, scale-error correction, and denoising. Moreover, these

techniques may face limitations when dealing with samples that exhibit low NRB-to-resonant ratios

or low SNR. In this work, VECTOR2 is introduced, an enhancement of VECTOR that incorporates

the excitation profile of a specific laser system, resulting in significantly improved accuracy for

practical experiments. The training method enables a network to learn the relationship between

Raman spectra and experimental BCARS spectra. No specific assumptions were imposed on the

form of the non-resonant background, except that it should be a slowly varying function of frequency.

It is crucial to note that this training approach is highly tailored to the specific laser system

used in the BCARS setup and this specificity allows any BCARS system to simply record a glass

spectrum and incorporate it into the training process, creating a network customized for that system.

Additionally, including this information during training provides an inherent intensity calibration

to adjust for the system’s sensitivity response. However, a significant drawback is the extensive

time required to train VECTOR2, necessitating retraining if the excitation profile changes. In our

study, the network required over 48 hours to train, with a per-spectrum runtime of approximately

1 ms. That said, it may be possible to significantly reduce the retraining time as described in the

previous section. VECTOR2 could be improved upon in two primary ways: by improving the

network architecture and by expanding the physical model underlying the training sets. For the first

improvement, experimenting with deeper and higher-dimensional layers could enhance VECTOR2’s

performance on more complex spectra. Other architectures could also be explored, such as generative

adversarial networks, transformers, or diffusion networks. For the second improvement, the physical

model could be broadened to include electronic resonances for relevant samples, by appropriately

modelling one-photon absorption.

Two networks were trained using distinct Raman datasets. VECTOR-MU-sparse was designed to

represent pure chemical spectra (for example, simple compounds like benzonitrile), while VECTOR-

MU-dense dealt with more complex spectra, such as biological samples. The sparse dataset was

a subset of the dense dataset, leading to the argument that the sparse network may be redundant.

However, utilizing the sparse network on sparse data offers two key advantages: (i) it requires
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less training time, as shown by the quicker convergence of the loss functions in figure 7.4, and (ii)

it achieves higher accuracy than the dense network when applied to sparse data, as indicated in

figure 7.8 (c). It was observed that both VECTOR-MU networks struggled to recover the relative

strengths between the 3-color and 2-color regions for all chemical spectra. This issue may have

arisen from the low intensity of the 2-color region, resulting from the weak excitation profile of the

specific system. This in turn leads to a limited dynamic range for BCARS intensity in that region,

causing a wide range of values for the resonant susceptibility in the 2-color regions to be mapped to

a narrow range of values in the BCARS spectrum. Consequently, this could have made it difficult

for VECTOR2 to accurately determine the correct scale in the retrieved spectrum. As mentioned

previously, this could have also been due to the simulation parameters used in the underlying Raman

spectrum, such as the choice of amplification coefficient for the two-colour region, although this

value was consistent with reality. Nevertheless, the retrieval in each independent spectral region

was superb compared to the current state of the art. While both networks performed well on sparse

test sets, VECTOR-MU-sparse underperformed on dense test sets, which was anticipated. It was

demonstrated that both networks excelled at retrieving Raman spectra from experimental chemical

measurements taken with the BCARS microscope developed, showing good agreement with the

corresponding spontaneous Raman spectra. Another important feature of the network is its potential

for deconvolution concerning the probe laser, as illustrated in figure 7.5. Since the simulated data

used for training includes convolution with the probe, the network learns to deconvolve, potentially

yielding higher-resolution retrieved spectra compared to those obtained using the KK and MEM

methods. This could be further improved by incorporating a second convolution to model the

spectrometer impulse response function, although this was not explored in this study.
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8. Immune cell phenotyping using BCARS hy-

perspectral imaging

In the previous chapters we have introduced BCARS both in terms of its experimental

implementation, and also in terms of the NRB removal methods that must be applied in

order to render a recorded spectrum useful for subsequent analysis. In this chapter we

begin to apply BCARS to cellular classification of eukaryotic cells. This work was a

collaboration with the Maynooth University Department of Biology, who provided sam-

ples for imaging. My contribution was in the acquisition of the BCARS hyperspectral

images of cells, development of a novel classification procedure, and application of the

classifier on a mixture dataset. At the time of writing a paper based on the results in

this chapter has been accepted for publication pending major revisions in the Journal

of Biophotonics.

At the time of writing, BCARS had not been applied to single-cell label-free classification. There

have been some applications of multiplex CARS to single cell imaging[119, 9], however, the re-

trieved Raman spectra were not used for any cell classification. In this chapter, the first demonstration

of a two-species cell classification is described, using the custom microscope and methods devel-

oped in chapter 4.4. The substantially higher signal intensity of BCARS compared to spontaneous

Raman (SR) scattering allows the recording of Raman hyperspectral images (HSI). Since BCARS is

free from fluorescence, the application toward adherent cells on glass is attractive. Furthermore,

the excellent depth selectivity, due to the nonlinear nature of the effect, provides axial resolution

comparable to that of a confocal Raman spectroscopy system. In a confocal setup, pinholes at the
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illumination and detection plane filter out-of-focus light from reaching the detector[137]. However

confocal Raman scattering is slow, with pixel acquisition rates on the order of tens of seconds[138].

Since BCARS gives access to the Raman spectrum, with a nonlinear dependence on the input

intensity, it should, in theory, provide HSIs comparable to confocal Raman imaging, at faster rates.

It is well established that SR alone can differentiate between various cellular pathologies[15,

139, 140]. Advancements in automating SR point measurements and implementing statistical

denoising[11, 10] has also reduced acquisition times to around 1 second per cell in cytology,

although the throughput and complexity of these systems is still too low for widespread use.

In confocal Raman, it is mainly a throughput issue, since data rates are limited by the laser

damage threshold and spontaneous Raman cross-section. A practical enhancement for any Raman

cytology experiment would be to increase the data acquisition rate, as this would enable higher

throughput analysis and offer numerous other advantages, such as the potential for live feedback

in surgical environments. Consequently, due to the benefits described above, BCARS has the

potential to achieve the acquisition speeds that have previously limited the use of spontaneous

Raman spectroscopy as a high-throughput technique for cytology.

BCARS spectroscopy of single cells has faced several challenges, preventing it from achieving

the same success as SR has had in this area. The key issue is that, despite BCARS being confocal

by nature due to its nonlinear electric field dependence, the amplitude of the anti-Stokes signal

is influenced by the ratio of resonant to non-resonant susceptibility at each given frequency[6].

In the fingerprint region, the resonant susceptibility χ(3)
Res is much smaller than the non-resonant

susceptibility χ(3)
NR due to low molecular concentrations and small scattering cross-sections. This

results in a weak resonant signal. Theoretically, the minimum concentration needed in order

for the CARS signal to surpass that of spontaneous Raman was reported to be in the millimolar

range[141]. Therefore, research has focused on samples with either a high localized density of

scattering species or a high Raman cross-section, both of which increase the resonant susceptibility.

Lipids are a prime example, as they meet these criteria and can be effectively imaged using

CARS[78, 142, 61, 143, 144].

BCARS has been more commonly applied to tissue imaging than to single cells, as the diverse
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chemical content of biological tissue provides sufficient contrast among various structures, such

as collagen, myosin, and nucleic acids, which can be analyzed using univariate methods. In

contrast, single-cell imaging is more challenging due to the cells’ thin morphology and high spectral

similarity within and between species, as many cells contain similar organelles and biomolecules.

Nevertheless, CARS hyperspectral imaging has shown the potential to distinguish cellular organelles

like the nucleus, nucleolus, endoplasmic reticulum, and lipid droplets using the high-wavenumber

region[145].

This study aimed to use BCARS to produce high-speed chemical images of multiple cells

with as little sample preparation as possible, ultimately for automated high-speed classification of

microscope slides. The cells chosen for this study were two distinct immune cells. These cells

were chosen due to the relatively thick morphology of immune cells and because the main clinical

diagnostic method used for blood analysis is high-throughput flow cytometry. The cell types used

were plasmacytoid dendritic cells (PDC) and Jurkat cells. The PDC is a type of dendritic cell

that resembles a plasma B cell in morphology. Jurkat cells are a type of T lymphocyte which is

mononuclear and has a large nucleus to cytoplasm ratio. Both PDCs and Jurkat cells are peripheral

blood mononuclear cells (PBMC) originating from haematopoietic stem cells. These cell types

can become cancerous and diagnostic tests typically involve cytochemical staining for confirming

the presence of cell neoplasia and immunophenotyping or cytogenetic testing for confirmation of

specific cancer subtype. Thus, the classification of these cells in a label-free measurement could

provide another approach for cancer screening or phenotyping in the clinical environment. In this

thesis, the cells used were obtained from isolated culture and ethical approval was not required for

their use.

Chemical images offer both molecular and morphological information at each sample point,

which can improve diagnostic accuracy but was not used here. A pre-trained cell segmentation

algorithm was employed to identify the cell area and integrate all retrieved Raman spectra within

the cell boundary. This generated a single representative spectrum for each cell with higher signal-

to-noise ratio (SNR). This approach provides a robust measurement of the cell’s chemical profile

and avoids biases inherent to point measurements due to the differing molecular composition of
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cellular organelles[146].

8.1 Sample preparation and BCARS imaging

Suspended blood cells of each type (Jurkat T and Cal-1 PDC) were resuspended in 5 mL of cRPMI.

Cell counting was performed by diluting 50 µL in 200 µL of cRPMI. Next, a total volume of 1

mL containing 105 cells was prepared in phosphate-buffered saline (PBS) in centrifuge tubes. The

samples were centrifuged at 500×g for 5 minutes at 4°C, and the supernatant was decanted. The

resulting pellet was then resuspended in 1 mL of PBS. From each cell suspension, 500 µL was

transferred to a new tube to create a 1:1 mixture. Both the mixture and the individual samples were

again centrifuged as before, followed by decantation. The individual samples were resuspended in

500 µL of 10% formalin (filtered through 0.2 µm) and incubated for 10 minutes at room temperature.

The mixture was resuspended in 1 mL of formalin and fixed and incubated as the individual

samples. The three samples were then centrifuged under the same above conditions, after which

the supernatant was decanted, and the samples were resuspended in 1 mL of PBS. The individual

samples were again centrifuged, and the supernatant was discarded before being resuspended in

150 µL of molecular grade water. The mixture underwent centrifugation, the supernatant was

removed, and it was then added to 300 µL of molecular grade water. From each cell suspension

(both individual and mixed), 50 µL was pipetted on to separate glass coverslips and allowed to dry

at room temperature for two days.

BCARS hyperspectral images (HSI) of each blood cell type were captured (10 images each)

using the system described in chapter 5.1. The pixel acquisition time was set to 5 ms with constant

velocity raster scanning. During the slow axis movement, the full vertical binning (FVB) data was

collected from the detector. The probe’s temporal delay was approximately 0.5 ps relative to the

SC. Astigmatism compensation of the deformable mirror was optimized by measuring the resonant

CARS signal in the cytoplasm of a cell. The hyperspectral images measured 200 × 200 µm with a 1

µm step size, covering the biological vibrational spectrum from 500 to 4554 cm-1. A dark current

spectrum was also recorded. This entire procedure was repeated for the mixture samples, capturing
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12 images each.

8.2 Spectral processing

All HSIs were processed individually using the steps mentioned in 4.4. Specifically, cosmic rays

were identified by thresholding the mean spectral intensity of the raw hyperspectral images (HSI).

Under the experimental conditions, a cosmic ray event resulted in an average of less than one

corrupted pixel per image. The corrupted pixels consistently exhibited a mean count exceeding ten

times the average signal intensity, leading to the selection of this value as the detection threshold for

each pixel. Any remaining cosmic rays would have been captured by the denoising process, which

did not reveal any additional detections. The de-spiking was conducted using mean replacement

based on the four nearest pixels, with no edge pixels showing corruption. The average replacement

method was chosen since it operates on a single-pixel basis, whereas other techniques, like PCA,

may introduce spectral bias in pixels that remain unaffected. Denoising was performed using

truncated singular value decomposition (SVD), with the specific singular values retained in the

reconstruction being guided by the custom algorithm that utilized the 2D Fourier transform of the

right singular vectors, as detailed in section 4.4.1. The effect of the denoising method used is shown

in figure 8.1 (a).

All hyperspectral images presented in this section were processed using the phase and amplitude-

corrected Kramers-Kronig (KK) method[1]. The choice of method for NRB removal was based

on the fact that the study was completely novel, and the various aspects that could aid in any

classification, including all preprocessing and statistical methods should be based on standard

methods as a first attempt. This would allow a determination of the quality of the underlying spectra,

and whether the results are generally applicable to wider sample types using BCARS.

The average signal from the segmented background region of each image served as the reference

non-resonant background measurement. The segmented image could be obtained using the raw

BCARS image or the Raman-retrieved image. The smoothing parameter for phase retrieval was set

to 100, while the asymmetry parameter was configured to 0.0001 for the high-wavenumber region
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Figure 8.1: (a) Raw and denoised single cell BCARS spectrum prior to any further preprocessing, (b)
Raman-like spectrum obtained using KK using both the raw and SVD denoised signals shown in (a). The raw
spectrum was scaled vertically for clarity.

(2745 cm-1 - 4554 cm-1), 0.001 for the fingerprint region (500 cm-1 - 1708 cm-1), and 0.01 for the

silent region (1708 cm-1 - 2745 cm-1). Each cell’s spectrum was then averaged to produce a single

cell spectrum. To eliminate residual inter-sample variance caused by scatter, the EMSC algorithm

was applied using a 5th-order polynomial and a mean reference BCARS spectrum. Finally, each

spectrum was cropped to a range of 500 cm-1 - 3142 cm-1 and normalized to its minimum and

maximum values. In figure 8.1 (b), the effect of the NRB removal is shown for an undenoised cell

spectrum and denoised spectrum.

8.3 Methodology for BCARS hyperspectral single-cell classification

(HSCC)

Hyperspectral BCARS images of two distinct isolated leukemic blood cell types—Jurkat T-lymphocytes

and Cal-1 plasmacytoid dendritic cells (PDCs)—were obtained as described earlier. These hyper-

spectral images capture the full spatial extent of the cells, eliminating the need for cell targeting, as

is typically required in Raman spectroscopy. In brief, preprocessing involved SVD denoising and

KK-based NRB removal. Additionally, a pre-trained deep learning method was used to segment the

cell regions from the total BCARS intensity image. The spectra within each segmented region were

integrated to generate a single spectrum representing each individual cell. This process provided

labeled single-cell spectral datasets, which were then used to train a Random Forest classification
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model to identify distinguishing features between the two cell types. Finally, hyperspectral images

of a mixed sample containing both cell lines at a 1:1 concentration were obtained to simulate a

clinically relevant scenario with multiple unknown cell types in a single specimen. The processing

workflow for this experiment is detailed in figure 8.2. Further details on the steps are provided

below.

8.3.1 Step 1: Preprocessing

BCARS HSIs were preprocessed using SVD denoising as per section 4.4.1 followed by NRB removal

using the KK method using the parameters described in 8.2. The next step involved integrating

the resulting 3D dataset over the wavenumber dimension to generate a 2D image of the cells. This

total intensity image was then processed using the Cellpose 3 segmentation algorithm[109, 110]

to isolate individual cell regions. To obtain the NRB reference for KK, the raw denoised BCARS

intensity image was integrated, and the largest area mask was averaged to extract the spectrum of the

coverslip. Cellpose is a deep-learning, cell-agnostic segmentation algorithm that does not require

any retraining or parameter adjustments. Traditional segmentation methods like the watershed

algorithm often fail to separate closely positioned cells due to overlapping regions, which was also

observed in this experiment. However, the Cellpose model accurately identified cell boundaries,

even when cells were in contact. The Cellpose ”cyto-3” model was used, which includes an image

restoration step aimed at improving segmentation accuracy. After identifying cell boundaries, the

spectra for each cell were averaged based on the mean spectrum within the boundaries.

Noisy cell spectra from the labeled dataset were detected using Pearson correlation analysis,

comparing each cell sample with a high-SNR reference that was obtained empirically. Samples with

a Pearson correlation coefficient ρ < 0.995 were excluded from the dataset, leaving 346 cells in

total, with a 1:1.7 split between Jurkat and Cal-1 cells. EMSC normalization was then applied, and

the data was normalized to the minimum and maximum values for each cell.

For an initial evaluation of the single-cell spectra, principal components analysis (PCA) was

conducted on the labelled dataset to visualize spectral variance. PCA revealed the differences
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Figure 8.2: Flow-chart of the experimental and data analysis pipeline.

between the spectra of the different cell types. It is important to note that PCA was used solely for

data evaluation and not for the multivariate classification model in Step 2.

8.3.2 Step 2: Training a multivariate classifier

The dataset of independently prepared cell samples is termed the labelled dataset, since any cell

in each batch was known. A random forest (RF) classifier was trained on the full labelled dataset

using 40 decision trees and balanced class weights to address the bias from the uneven sample
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distributions. An RF is an ensemble method for supervised classification. It uses bootstrapping to

create a training set, which is then split through a series of binary decision trees. At each node, a

sample is classified based on a randomly selected feature, with the model learning by maximizing the

impurity decrease as it moves from one node to the next. This same method was used in Reference

11 to classify leukocytes. Hyperparameter tuning was applied only to optimize the number of trees,

using 10-fold cross-validation. The RF model was built with the SciKit-learn package in Python,

using default settings except for those specified. The out-of-bag training score for the RF model was

97%. The importance of each spectral feature was determined by calculating the mean decrease in

Gini impurity within each tree.

8.3.3 Step 3: Testing on a mixture

The mixed HSIs were preprocessed using the method described in Step 1. The resultant dataset

was input to the trained RF model in order to predict the class probability of each detected cell in

the mixed dataset. The class probabilities were then used to classify each cell using a threshold

of 0.5. Separately, as a form of validation, the predicted cell spectra were projected on to the

principal components obtained from the labelled dataset in Step 1. Labels were applied based on the

RF prediction. The resultant scatter plot of the PC scores was investigated for similarities to the

corresponding result for the labelled dataset.

8.4 Experimental Results

8.4.1 Labelled cell analysis

In figure 8.3, the mean BCARS image and the corresponding cell segmentation mask are displayed

for two example HSIs of each labeled cell species. Each color in the mask represents the boundaries

of an individual cell. The segmented mask images demonstrate that the segmentation was precise

even when cells were close in proximity, which typically causes errors in the watershed algorithm.

No misclassified cell boundaries were observed across the entire dataset. Additionally, the average

138



8.4. Experimental Results

Figure 8.3: Supervised analysis of each cell species using PCA. (a) mean intensity image of BCARS hSI
for a Jurkat sample, (b) Jurkat cell mask obtained from segmentation model applied to (a), (c) mean and
standard deviation of spectral data for the whole Jurkat dataset, (d) mean intensity image of BCARS hSI for a
Cal-1 sample, (e) Cal-1 cell mask obtained from segmentation model applied to (d), (f) mean and standard
deviation of spectral data for the whole Cal-1 dataset, (g), scree plot of explained variance proportion versus
the principal components, (h) PCA score plot of each cell species on the first two principal components (also
showing kernel density estimate), (i), first two loadings of the PCA data.

spectrum retrieved for each cell species was consistent with a spontaneous Raman spectrum of a

blood cell[147]. The relative intensity between the high-wavenumber and fingerprint regions also

matched the expected ratio, reflecting the relative abundance and cross-sections of the vibrational

modes in each region. As expected, the signal-to-noise ratio was visibly higher in the high-

wavenumber region due to the greater signal intensity and lower relative NRB strength in this region.

A PCA scree plot is also provided, showing the percentage of variance explained by each principal

component. The first two principal components accounted for 55.4% of the variance in the data.
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The PC scores for each cell are also shown, with moderate overlap between the two species on the

first two PCs.

The supervised analysis of the labeled data revealed distinct features in the Raman spectra,

which are commonly associated with known vibrational modes in eukaryotic cells. As illustrated in

figure 8.3 (h), the two species show moderate separation along the first two principal components

(PCs). However, no distinct clusters were observed on these PCs. Examination of the first PC

indicates that most of the variation originated from the high wavenumber region at 2934 cm-1 and

3054 cm-1. On PC2, several peaks within the fingerprint region contributed to the data’s variability,

including the CH2 scissoring mode at 1440 cm-1, the phenylalanine ring breathing mode at 1003

cm-1, markers for adenine and guanine at 1575 cm-1, vibrational modes from uracil, cytosine, and

thymine ring breathing, the O-P-O symmetric stretch at 784 cm-1, and the PO2 stretching mode at

1095 cm-1.

8.4.2 Supervised classifier performance

A representative broadband CARS spectrum obtained from a Cal-1 cell is displayed in figure 8.4.

The spectrum closely resembles a spontaneous Raman spectrum from a blood cell, featuring distinct

peaks and characteristics in both the fingerprint region (nucleic acids, lipids, proteins) and the

high-wavenumber region (symmetric and asymmetric stretching of CH2 and CH3 ). The major

bands in the cell measurement are labelled in the figure. Given that the high-wavenumber region

of a cell’s vibrational spectrum contains only a limited number of broadly overlapping features

(primarily from alkyl groups), it is likely to provide less diagnostic information compared to the

fingerprint region. The feature importance analysis from the supervised RF classifier highlights the

specific wavenumbers contributing to the classification. A built-in algorithm was used to calculate

the feature importance (FI) based on the normalized decrease in impurity, which measures the

randomness of a node when a specific feature is applied. FI is a non-negative value, with higher

numbers indicating greater importance. Since the full BCARS spectrum was employed to train the

RF model, examining the FI after training is a valuable way to analyse spectral features that are

relevant in the classification. The spectral FI of the trained model is displayed in 8.4. High FI values
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Figure 8.4: Single cell retrieved BCARS spectrum from a Cal-1 sample. Vibrational peaks were assigned
based on references [148] & [149]. Also shown is the normalised feature importance from the RF classifier.

aligning with vibrational resonances suggest their likely contribution to classification. The highest FI

was observed in the fingerprint region, corresponding to the 669 cm-1 band, which is associated with

the nucleobases thymine and guanine. Another prominent feature was the 723-728 cm-1 band, linked

to adenine. Relatively high FI values were additionally noted in the high-wavenumber region, spread

across multiple wavenumbers rather than concentrated in a single band. The specific bands with

high FI in this experiment give an indication of systematic differences in molecular concentration of

each band in the two cell types studied. As the mean cell spectrum over the entire cell area was used,

these molecular differences are likely due to variations in the concentrations and types of expressed

proteins and micro-molecules within the cytoplasm and could also be due to differences in nuclear

organelles. The supervised classification accuracy was assessed using 10-fold cross-validation,

yielding a mean balanced accuracy of 99.4% for the test set and 100% for the training set. The RF

model, trained on the full dataset, had an out-of-bag error of 3%. Cross-validation results are shown

in figure 8.5

8.4.3 Unlabelled sample testing

The classification results using the RF model on the unlabelled dataset are presented for nine

different hyperspectral images in figure 8.6 (a). The color of each detected cell region represents

the class probability for one specific class (Cal-1). Cells with a probability greater than 0.5 were
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Figure 8.5: Results of cross-validation to determine the optimum number of trees in the Random Forest
model.

classified as Cal-1, and those with lower probabilities were classified as jurkat cells. The class

probability essentially reflects the likelihood, based on the data and model, that the cell belongs

to that class. Some regions exhibit a class probability around 0.5, indicating low confidence in

assigning the cell to either class, likely due to a low signal-to-noise ratio (SNR). This issue is further

discussed later.

Figure 8.6 (b) shows the projection of the classified mixed samples onto the principal components

from the labelled study, along with a kernel density estimate of the distribution. The separation

of data is notably similar to the PCA score plot in figure 8.3 (h). The centroids of each species

distribution are nearly identical between the labelled and unlabelled data, indicating that the spectra

have similar weightings along the first two principal components. While this PCA analysis does

not validate the classification of unlabelled cells, it suggests that the classified unlabelled spectra

share similar spectral characteristics with the labelled datasets of the same species. To further

evaluate the classification results, the expected proportion of cells classified was compared with the

actual proportion observed in the mixture. Using a Chi-square test, a null hypothesis was formed;

there was no difference between the expected and observed cell frequencies. The test produced a

p-value of 0.979, meaning the null hypothesis was not rejected using this test. Additionally, the

relative size distribution could be obtained from the segmentation process for both labelled and
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Figure 8.6: (a) Cell probability maps using the RF classifier trained using the labelled cell species data, (b)
PCA scores and kernel density estimates of each segmented cell on the principal component vectors obtained
from the labelled data, (c) Single cell Raman spectrum and variability of a Cal-1 high probability sample, (d)
Single cell Raman spectrum and variability of a Jurkat high probability sample, Single cell Raman spectrum
and variability of a low probability sample. Green arrows indicate cells shown in (c), (d) and (e).

unlabelled data and this was used to confirm whether the expected cell size distributions matched

the known distribution. Assuming a circular cell area, the distribution of the diameters for each

cell type and both experiments (labelled and unlabelled) is shown in Fig. 8.7 for cells that had a

prediction probability of being a Cal-1 of 0.7 < p < 0.3. Thus, only cells with a high confidence

of classification were used in this analysis. It was observed that the labelled data had a significant

difference in average cell diameter between cell types. Jurkat cells had a median diameter of 17.3

µm, while Cal-1 cells had a median diameter of 11.9 µm. Across experiments, the cell diameter

was not statistically different between the Jurkat cells, however it was for the Cal-1 cells. This may

be due to some actual Cal-1 cells being classified as Jurkat cells.

To better clarify why certain cells were not classified with high probability, the individual “pixel”
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Figure 8.7: Boxplot of the cell diameter across species and experiments. An independent sample t-test was
used to determine if the difference between mean diameters was statistically significant.

spectra within a specific cell area for three distinct cases was examined: a cell exhibiting a high

prediction score for each cell line, and a cell showing a low prediction score. The locations of each

cell are indicated with a green arrow in figure 8.6 (a). For all three scenarios, the mean and standard

deviation spectra of the intra-cell data is plotted. The results for the high-probability Cal-1 and

Jurkat cells are displayed in figure 8.6 (c) and (d), while the low-probability cell is represented in (e).

These spectra revealed substantial intra-cell variability, even among the high-probability samples.

This variability may stem from the natural macromolecular distribution of Raman scatterers within

the cells, underscoring one advantage of HSI classification: the ability to identify sub-cellular

features that might significantly differentiate species. Notably, the CH-stretching signals exhibited

considerable variation across all cases, likely due to scattering effects from the varying thickness

of the cells (since these data were not scatter-corrected). It is important to highlight the difference

between the mean spectrum of the low-probability cell in (e) and those of the two high-probability

cells. The fingerprint region in this spectrum showed a significantly lower signal-to-noise ratio

(SNR), potentially attributable to an incorrect focal depth due to an abnormal cell morphology on

the coverslip. Additionally, there was greater variability in the spectrum below 1000 cm-1 and in the
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PO2-stretching band. Increased variability within a cell may indicate the presence of a single outlier

pixel or more systematic differences in noise levels within that cell.

8.5 Discussion

The results above demonstrate a fully automated high-speed cell classification method for label-free

analysis. The Raman spectra obtained in this study were comparable in signal content to spontaneous

Raman spectra of leukocytes. Achieving a high signal-to-noise ratio (SNR) for BCARS cell spectra

used in classification is challenging and denoising was found to be critical in achieving the result.

While the nonlinear BCARS process can yield high signal intensity, the single-pixel SNR in the

fingerprint region still remains quite low due to the scan times required for imaging, making singular

value decomposition (SVD) crucial for enhancing the signal-to-noise ratio to a practical level. The

combination of SVD and cell averaging yielded relatively high-quality Raman spectra with clearly

identifiable vibrational features within the biologically relevant range of 600 cm-1 to 3200 cm-1.

Using SVD for signal denoising effectively increases the exposure time during experiments since

the optimal low-rank truncation is learned from the data itself. Essentially, the strength of SVD lies

in the extensive distribution of similar signals within the input data. While this data is abundant in

hyperspectral imaging (HSI), classification of individual cells without HSI would require alternative

denoising methods unless extensive datasets were collected.

In the mixed sample, notable clustering of similarly labelled cells was observed on the coverslip.

Although the data was pseudo-labelled based on prediction scores, and no ground truth was available,

such clustering was unexpected in a homogenous mixture. It was suspected that this clustering

resulted from differing transport properties of each cell species, potentially creating a spatial gradient

of cell types from the center (where the drop was pipetted) to the edge of the coverslip. This is

supported by the visible difference in average cell diameter from the center to the edge as shown in

figure 8.8. In figure 8.8 (a) and (b), a brightfield image is shown for each independent cell species,

while in (c), an image of the mixture is shown. Upon inspection, there was a clear grouping of cells

by size and thus, since there was a significant difference observed between cell sizes, the cells may
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have separated based on their size.

Effectively removing the non-resonant background (NRB) is critically important in any BCARS

bio-classification experiment. Laser characteristics, including spectrum, power, and pulse duration,

significantly influence NRB generation; however, fiber lasers such as the one used here offer

remarkable stability over time. To minimize potential confounding from the laser system, all

imaging measurements were conducted on the same day with minimal time between acquisitions.

Nevertheless, the NRB can vary from one point to another. In the context of full automation,

the NRB removal step was the only supervised aspect of preprocessing, as the phase detrending

parameters must correspond to NRB strength to avoid overfitting or underfitting to the resonant

susceptibility phase. It was noted that once optimization was performed on a representative spectrum

for either cell class, the Kramers-Kronig (KK) procedure yielded consistent results throughout the

experiment.

In a classification study, it is also essential to ensure that spectral classification results stem

from resonant differences in the spectra rather than variations introduced by the experiment itself.

Differences in spectral datasets, as quantified by principal component analysis (PCA), appear at

characteristic Raman shifts corresponding to prevalent biomolecules, which is typically used to

confirm that chemical features can discriminate the cells. The results here indicate that BCARS

can extract high-content chemical information from cells at approximately 5 ms per pixel. At

the imaging resolution of 1 µm, this leads to a total scan time of about 300 seconds (with an

additional 0.5 seconds of dwell time between each fast-axis scan). This performance is promising

for single-cell analysis, as an area of 1 mm2 could be scanned in about 1.38 hours, provided data

can be transferred post-scan. The primary advantage of this method over spontaneous Raman (SR)

imaging is its ability to rapidly record hyperspectral images of microscopic areas. It is expected

that the pixel exposure time could be reduced to around 1 ms, with approximately equal quality

results. In addition to yielding a better average spectrum compared to SR, which typically uses point

scanning, this method also avoids fluorescence interference and allows for the use of low numerical

aperture (NA) collection optics. This is particularly beneficial for imaging glass slides or through

flow apparatus.
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Our approach to cell classification can also be compared with stimulated Raman scattering

(SRS) imaging for similar information acquisition. SRS studies have been restricted to narrow

bandwidths like the high-wavenumber region, as broadband detection is impractical. Nevertheless,

this information allows for label-free cell imaging. While the chemical information might be less

comprehensive than full fingerprint analyses, the absence of interfering NRB in SRS means it

typically requires less processing to achieve sub-cellular imaging. To obtain the full biological

frequency band for a cell using SRS would necessitate wavelength tuning across 3500 cm-1, which

can be time-consuming. Although SRS benefits from lacking an NRB, instantaneous SRS methods

require complex systems with parallelized lock-in amplifiers and are generally limited to higher

wavenumbers. It has yet to be demonstrated that this band can provide for cellular classification

studies similarly to the Raman fingerprint region.

A central aspect of this study was the confidence in classifying unlabelled data. While supervised

testing showed high balanced accuracy on a test set, quantifying accuracy on unlabelled data was

challenging. Two semi-quantitative methods, PCA and size analysis, were employed to assess the

likelihood of successful implementation on unlabelled data. The projection of unlabelled data onto

the principal components derived from labelled data showed strong agreement between cell types,

suggesting that the pseudo-labelled data varied similarly to known labels. To further understand

the results, size analysis revealed a statistically significant difference in cell diameter between the

two labelled cell types. The average cell diameter was compared between labelled and unlabelled

data, showing no significant difference for Jurkat cells, but a significant difference for Cal-1 cells

across experiments. This may be attributed to some misclassifications. However, both labelled and

unlabelled data exhibited the same signed significant difference in cell diameters, providing further

evidence for successful classification.

A key feature of this work is the spectral averaging of the entire BCARS spectrum for each

cell. Since chemical information is generally more informative than morphological information,

chemical averaging was deemed appropriate. However, morphological information, which is always

present in hyperspectral images, could also enhance the classification accuracy. Some features could

be computed from the image and appended to the spectrum as additional variables, such as cell
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diameter, ellipticity, or convexity. A higher resolution could enable a deeper model that utilizes the

full cell hypercube for classification rather than relying on a single spectrum; this would, however,

necessitate a custom deep-learning architecture. The single-cell spectrum was derived using the

mean over the entire cell extent, which is the most common method for obtaining a representative

spectrum. However, several potential improvements could be explored in future iterations of this

work. For example, removing outliers before calculating the average using statistical metrics could

prevent atypical pixels from skewing the results. Such outliers may arise from abnormal cell

morphologies or errors in segmentation or NRB removal. Another approach could involve using the

median Raman spectrum as the representative spectrum to further mitigate the impact of outliers.

Nonetheless, the single-cell classification method demonstrated here has its limitations, and there

remain experimental improvements to be made. First, manual intervention may be needed for NRB

when the resonant-to-non-resonant susceptibility ratio changes, as previously discussed. This issue

could potentially be addressed through deep learning methods. Additionally, certain cells may pose

challenges, particularly those with thin morphologies (e.g. epithelial cells), resulting in low SNR

even with denoising and cell averaging. One possible improvement in this regard might involve

implementing dynamic focusing techniques using real-time deformable mirrors. Finally, a flow

cytometry approach could outperform the HSI method for spectral classification; however, this would

necessitate careful consideration of how to achieve sufficient SNR for subsequent classification from

a single high-speed spectral recording, possibly achieved through optical averaging over a line scan

of the passing cell. While SVD could be applied to the total dataset if many thousands of cells are

analysed, the advantage of spectral averaging across the cell area would be compromised.
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Figure 8.8: (a) Brightfield image of the independent Cal-1 cell, (b) Jurkat cell and (c) mixture.
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9. Fungal pathogen identification using BCARS

hyperspectral imaging

In this chapter, the development of BCARS toward unsupervised label-free epithelial

cell imaging is explicated. This work is the culmination of several iterations to the

BCARS acquisition procedure described in 8.1. A bespoke analysis pipeline was also

developed, without which, efficient identification was not possible. The factors in

obtaining label-free epithelial cell images will be discussed and the importance of

enhancements will be qualified. The Maynooth University Department of Chemistry

generously supported this work by providing valuable expertise on the nature of the

samples used and for preparing samples for imaging. The Department of Biology

provided expertise on the clinical aspect of the pathogen used. In this chapter, I was

responsible for designing the experiment, acquiring the BCARS images and analysing

the results. At the time of writing we are considering submitting the results of this

chapter to a journal, pending improved experimental results.

9.1 Introduction - BCARS as an alternative to diagnostic cytology

Fungal infections are already a global threat causing approximately 1.7 million deaths per year[150].

This is mainly due to the higher load of immunocompromised patients suffering from diseases

which reduce the immune systems efficacy of infection mitigation. The increasing prevalence

of anti-fungal resistant strains is also of concern, such as Candida Auris, which is now listed
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as an urgent antimicrobial resistant (AMR) threat by the CDC[151]. Optical microscopy is the

cornerstone analysis technique still used in cytology for the diagnosis of disease at the cellular

level[152]. The diagnosis is thus based on morphological changes present within cells that may be

due to an infection, cancer or immune response. The diagnosis of invasive pathogen is typically

confirmed by specimen collection from the suspected site by swab, sterile sample, venipuncture or

other method, and subsequent staining to improve visual contrast. Calcofluor white is a stain that

can aid in the identification of all fungi through highlighting the chitin within the cell wall[153].

Such methods however, are cumbersome as they require a wet laboratory for sample preparation and

interpretation is always performed by an expert pathologist. As a consequence of this, diagnosing

fungal infections is time and resource intensive, with the possibility for false-negatives due to

background fluorescence.

Other common methods for fungal detection are immunologic methods which focus on the

detection of pathogen-specific antibodies, antigens or other biochemical markers. Methods incor-

porating these markers are peptide nucleic acid (PNA)–fluorescence in situ hybridization (FISH)

and matrix-assisted laser desorption ionization–time of flight (MALDI-TOF) mass spectrometry

(MS) [154]. These methods are highly specific, allowing positive fungal species detection, however

they require correct selection of the marker prior to analysis (PNA-FISH) and are only suitable for

confirmation of species, not initial screening. MALDI-TOF also requires a pure culture and so can-

not be performed on clinical samples. The field of mycology has seen recent advances in molecular

diagnostic techniques for fungal detection[155], such as polymerase chain reaction (PCR)[156],

T2 magnetic resonance (T2MR) analysis[157] and genetic sequencing[158]. The advantage of

molecular methods over traditional detection using immunofluorescence and direct examination

are the high specificity to the pathogen and ability for automation, since an expert analyst is not

required. These methods also have their drawbacks however, such as extensive sample preparation

and analysis times, and a priori molecular target selection requirements.

Optical spectroscopy is another method that has become popular for cytology studies due to its

high sensitivity. The Raman spectrum of a cell encodes information on the biochemicals present

within the focal volume, which results in a specific cell fingerprint that can be used to distinguish
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cell types and states of the cell cycle[159]. The benefits of Raman spectroscopy for cytology are the

high spatial resolution (∼ 300 nm) and ability to acquire molecular information without introducing

exogenous fluorophores to the sample[160]. One of the major drawbacks to Raman spectroscopy is

the time required for a single measurement, which is largely the reason precluding its use in chemical

imaging studies or flow analyses in the clinical context. Due to its aforementioned enhancements,

as highlighted in previous chapters, BCARS is a highly attractive modality for the detection of

invasive pathogens, since it allows for rapid chemical imaging of a sample without the need for

labelling. Furthermore, being a spectroscopic technique, BCARS is also non-destructive, allowing

for samples to be re-analysed using the same or even a different technique. In the context of cytology

specimens, this is a significant benefit, since sample volumes can be extremely low, especially from

immunocompromised patients. In light of this, BCARS imaging could be used as the first diagnostic

test, performed on an unprocessed sample, with confirmatory analysis being done by an expert. In

this way, label-free high-throughput analysis of infectious pathogen could be realized.

In this chapter, the ability for BCARS hyperspectral imaging to perform an unsupervised

classification of a fungal pathogen (Candida albicans), an opportunistic fungal pathogen, within

human buccal epithelial cells (BEC) is demonstrated. The classification is performed using the

information within each pixels Raman spectrum. This approach does not require sample labelling

or sample ground truth spectra and in theory can be used in a flow cytometry setup. The spatial

dimension in the HSI provides spatially relevant information for subsequent analysis e.g. membrane

binding, pseudohyphae formation and fungal cluster size. The classification performance is verified

using common clustering metrics and a comparison between detected spectra from the pathogen

and known spectra of the pure pathogen is performed. For completeness, a comparison between

the BCARS spectra with the spontaneous Raman spectra obtained with a conventional Raman

microspectroscopy system is also shown.
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9.2 Conventional cytology of invasive fungal pathogen

Yeast of the genus Candida forms part of the normal flora of humans, where it can be found in the

alimentary tract, female genitalia and skin[161]. Candidiasis is an infection caused by Candida

spp. that may occur in healthy people, but in other people is typically due to an immunologic

impairment[162]. Mucosal infections from candida are the most common form of fungal infection

encountered clinically. Clinical signs and symptoms are not specific for fungal infections and diagno-

sis of the disease combines clinical suspicion combined with physical examination and procurement

of an appropriate specimen for laboratory analysis[153]. The principal diagnostic technique used

for identifying the presence of the pathogen within clinical specimen is direct examination using

brightfield microscopy with complementary fluorescent staining. Fungal pathogen are distinguished

in to two groups, those that infect the skin, nails and hair, so called dermatophytes, and those that

infect the mucosa[162]. Direct examination of a wet mounted (unstained) sample can provide

characteristic morphological information for preliminary identification or definitive identification in

some cases, provided the sampling is adequate. Increased detection speeds and higher specificity

of identification can be obtained by fluorescent staining using Calcofluor white[153]. Another

common method of detection, more sensitive than direct examination is culturing a clinical sample

and observation of the growth of colonies using microscopy. Isolation of candida from a normally

sterile site is indicative of candidiasis. The positive detection can be aided using a germ-tube test,

whereby a small volume of the colony is placed into a tube with human serum and incubated for

2.5-3 hours. Microscopic examination and germ tube production in the form of hyphal structures

emerging from cells confirms the presence of C. albicans. The quantity of germ tube production

may vary between different strains of C. albicans. It should be clear that due to the necessity for

incubation, culturing cannot provide rapid diagnostic information.

9.3 Raman spectroscopic fungal detection

The information provided by Raman spectroscopic measurements are indicative of the biomolecular

constituents of the sample in the form of vibrational frequencies, and each spectrum could be
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analyzed based on the presence of known vibrational frequencies (mode assignment) or used in

a spectral matching procedure that provides an indication of the similarity between the unknown

spectrum and a known spectrum from a material database. It was previously shown that eleven

different species of Candida could be classified based on the spontaneous Raman spectrum (using

point measurements) of the cells with an average accuracy of 80 %[163]. Therefore, there is

strong evidence that BCARS can potentially provide a label-free imaging capability for candida

identification. The use of Broadband CARS imaging for fungal pathogen detection would require

the same sample preparation as direct examination using transmission microscopy, since it is a

label-free technique. BCARS can provide either a full chemical image of the sample, sub-sampled

measurements over a spatial grid or single point measurements. Prior to analysis, the ideal clinical

sample would be either filtered or centrifuged depending on the specimen collection method, in

order to increase the concentration of the solute, however, if time or resource constraints prevent

this, analysis of a raw specimen would also be possible, however, at risk of a potential decrease in

detection sensitivity. Due to these properties, BCARS imaging is highly compatible with cytological

diagnostics using virtually any sample preparation technique, such as slide smears, liquid-based

cytology or scrapings. In the next section, the sample preparation of a clinically relevant specimen

is described, with the ultimate goal of performing a label-free identification of candidiasis.

9.4 Sample preparation

9.4.1 Fungal strain

C. albicans was maintained on sabouraud dextrose agar and cultures were grown to the stationary

phase (1-2 x 108/ml) overnight in yeast extract peptone dextrose (YEPD) broth (1% (w/v) yeast

extract, 2% (w/v) bacteriological peptone, 2% (w/v) glucose) at 30 °C and 200 rpm. Stationary

phase yeast cells were harvested, washed with PBS, and resuspended at a density of 1.5 x 108/mL in

PBS.
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9.4.2 Buccal Epithelial Cells

Buccal epithelial cells (BECs) were harvested from healthy volunteers by gently scraping the inside

of the cheek with a sterile tongue depressor. Cells were then washed in phosphate-buffered saline

(PBS) and resuspended at a density of 2.5 x 105 /ml.

9.4.3 Adherence assay

The yeast cells were suspended in the desired concentration of compound solutions and PBS, then

left to pre-label for 1 hour. Yeast cells were mixed with BECs in a ratio of 50:1 and PBS to give

a final volume of 2 mL and incubated at 37 °C and 200 rpm for 1.5 hours. The BEC/pre-labelled

yeast cell mixture was harvested by passing through a poly-carbonate membrane containing 30 mm

pores which allowed yeast cells to pass through whilst retaining the BECs on the membrane surface.

The membrane was washed twice with 5 mL of water to remove the excess unbound yeast. The

remaining cells on the membrane were collected in water and placed on glass coverslips (2 slides

per compound) which were left to air dry overnight. The cells were heat fixed and the coverslips

were rinsed using cold water to remove any impurities, and then left to air dry for 30 minutes.

9.5 Procedure

The identification of the presence of a specific species of a cell in a HSI requires a significant spectral

difference between the pathogen of interest and the “normal” cells for univariate or multivariate

methods to be successful. In particular, univariate methods require at least one spectral band to

be significantly different in intensity between the species, which may be obscured due to noise

or overlapping vibrational modes. In biological samples, while the number of Raman modes can

be high (> 40)[164], the resultant spectral fingerprint can be similar even among different cells.

There are also variations in the molecular constituents depending on the spatial location, due to the

heterogeneity of a cells structure, resulting in biologically-induced noise within the results. These

variations are exacerbated when only a single measurement per cell is obtained. In genetically
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identical cells, there are also Raman-relevant biochemical differences due to cell-maturity[165]

and random biological noise[166]. A whole cell averaging approach as performed in the previous

experiment on blood would mitigate the location dependence of spectra. However, in the particular

case of a diagnostic test where the presence of a small invasive pathogen is to be determined, the

cell averaging procedure is not appropriate. This is because such a method requires highly robust

segmentation of individual cells, which can be difficult to achieve for pathogen that are invasive

to a larger cell. In this experiment, the buccal epithelial cells were artificially infected with a

pathogen that naturally adhered to the membrane during incubation, as is typical for the species.

In fact, the ability for candida to adhere to tissues and other material is suspected to contribute

to its pathogenicity[153]. The adherence of the pathogen is due to ligand-receptor and Van der

Waals interactions and is considered one of its most important virulence factors[167]. In a typical

clinical sample from a patient positive for candidiasis, it is foreseen that the pathogen would be

adhered to the host cell membrane. In these samples, the close proximity and potential for apical

adherence would preclude segmentation as a processing step, since it would merge the overlapping

cell boundaries. This problem is depicted in figure 9.1. It can be seen that due to the size of the

smaller pathogen, cell boundaries could erroneously be merged in to one region. This is likely to

happen regardless of the segmentation algorithm chosen, as current deep-learning models assume a

single species is present. Regardless, as can be seen in the figure, when the pathogen is bound to the

apical surface of the membrane of the normal cell, a two dimensional mask will inevitably merge

the two overlapping cell boundaries. The effect of merging will be to generate a single cell spectrum

containing an average of the mixture of the two cell species, and this will not be an informative

sample for classification, whether supervised or unsupervised. Thus, a single pixel classification is

the preferred approach to this type of problem, and this was explored in this thesis.

The acquisition of a hyperspectral image of the BECs was non-trivial, as the sample is extremely

thin and has a relatively low number density of molecules, especially in the cytoplasm. This required

an explorative approach to determine the optimal vertical position of the sample stage for imaging.

At the exposure time and laser power used for high-speed imaging, the indication of on-sample

resonance was barely noticeable in the spectrum. Thus, the initial step for acquisition was to increase

the exposure time or laser power to a level that allowed visual feedback of the state of resonances
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Figure 9.1: Depiction of single cell segmentation when one species is significantly smaller and can adhere to
the surface of the other cell.

in the two-colour region. In the fingerprint region, even at greatly increased exposure times, the

presence of vibrational resonances were not noticeable in the raw spectrum. Thus, the CH-region

provided the only indication of correct sample height positioning. Once the sample height was

found, a hyperspectral image scan could be performed.

Hyperspectral images (HSI) of the prepared samples were obtained using the system described

in Section 5.1. Deionized water was used as the objective immersion medium. For optimal spectral

resolution, the probe pulse was positively delayed with respect to the Stokes pulse such that the

maximum coherence was obtained (maximum intensity at 0 cm−1). Images of size 200 by 200 µm

were obtained at a pixel exposure time of 5 ms. The lateral pixel resolution was 0.5 µm. One HSI

was acquired in 16 mins. The confluence of buccal cells on the coverslip was approximately 50

%, and it was observed that cell flattening had occurred since the epithelial cells were on average

larger than expected. This is typical of dry mounted epithelial cells and it caused two unintentional

consequences; (1), it made 2D imaging using high NA objectives more difficult to obtain, since

there was a possibility of missing the sample plane as the sample is scanned over the focus, due to

tilt. (2) The flattened cells rendered more detail in the 2D chemical image because structures are

spread over a larger area and are not obscured by other features in the foreground.

157



9.6. Spontaneous Raman measurements

9.6 Spontaneous Raman measurements

Since BCARS measurements are always obscured by the NRB, the spontaneous Raman spectrum of

the pure fungal pathogen and pure host (BEC) were obtained. This would give an indication of the

quality of the NRB removal process through comparison between the retrieved Raman spectrum

from BCARS and an independent spontaneous Raman spectrum. Raman spectra from the samples

were recorded at 10 s exposure time using a custom built Raman micro-spectroscopy system. This

system employs a 150 mW laser with a wavelength of 532 nm and a coherence length of ≥100 m

(Torus, Laser Quantum), which is driven by a computer-controlled power supply unit (mpc3000,

Laser Quantum). The system also employs a spectrograph (Kaiser, Holospec f/1.8i), operating with

a 25 µ m slit and a holographic grating (HSG-532 LF). The spectrum is recorded using a low-noise

CCD camera (DU920P BEX2-DD, Andor, Belfast, Northern Ireland) with 1024× 256 pixels, of size

26× 26 µm cooled to -80◦C and operating in full vertical binning mode. The camera was controlled

using the Micro-Manager Andor device adapter. The spectrograph and CCD provided a bandwidth

of -34-2517 cm-1 and an average resolution of 5.48 cm-1. Included in the spectrograph housing

was a holographic notch filter (Kaiser; HSPF 532.0), providing an optical density of 6 at the laser

wavelength and a spectral bandwidth of 350 cm-1. The laser and spectrograph were coupled into a

fully automated inverted microscope (IX81, Olympus, Tokyo, Japan). The microscope included a

closed-loop high precision stepper motor translation stage (XY, 96S108-O3-LE, Ludl, Hawthorne,

NY, USA) with a linear encoder, which provides repeatability of 0.25 µ m and a resolution of

100 nm. The stage was driven by a control system (MAC 5000, Ludl), which could be controlled

using an RS-232 cable, using the Micro-Manager Ludl device adapter. A 40x microscope objective,

with numerical aperture of 0.75 (UMPlanFl, Olympus), was used to image the spectral irradiance

to a 100 µm confocal aperture (CA, P100D, Thorlabs, Newton, NJ, USA). A long pass filter (F,

LP03-532RU-25, Semrock) and a dichroic beamsplitter (DB1, LPD-01-532RS, Semrock, NY, USA)

were also used to filter the laser wavelength from reaching the spectrograph, while transmitting the

Raman scattered light. A dichroic short pass filter (DB1, 69-202, Edmund Optic, Barrington, NJ,

USA) permitted imaging of the sample to a digital camera (CMOS, MU300, AmScope, Irvine, CA,

USA). All spectra were recorded using the Andor Solis software plugin for Micro-Manager. The

system was wave-number calibrated, using benzonitrile. Intensity calibration was performed using a
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NIST calibrated white light lamp.

9.7 Data analysis

In this study, HSIs of dimension 400 by 400 by 1024 were denoised using the truncated singular

value decomposition (SVD) as described in section 4.4.1. The data was then scatter corrected

using EMSC with a reference spectrum based on the glass spectrum used to train the VECTOR2

autoencoder. This approach was critical to removing the effect of laser and NRB variations in the

retrieved spectrum. The resulting data was then processed using the pre-trained neural network

VECTOR2-MU-Dense[23] in order to remove the NRB. VECTOR2 processed each spectrum of the

hyperspectral image independently. After NRB removal data was area normalized per pixel and then

processed in order to remove the background pixels by using principal component (PC) thresholding.

PC thresholding is a common method for hyperspectral segmentation based on dimensionality

reduction to a more informative basis[168]. Use of the deep-learning based cell segmentation

method used in the blood analysis experiment of section 8.3 was not possible in this experiment

because that method assumes a single cell species is present. This assumption is utilized because

the network estimates the mean cell diameter prior to feed-forward propagation of an image sample.

Since the candida cells were much smaller in size compared to the buccal cells, this causes erroneous

segmentation results. In the principal components thresholding method, the weight of the first PC

(W1) of each pixel xi was calculated using the full dataset and the decision to assign each pixel to a

class C was given as

xi =


Cbg

Csignal

if (−1)nW1,i < t

if (−1)nW1,i ≥ t
(9.1)

where Cbg and Csignal are the background and signal classes respectively, and n and t are directionality

and threshold parameters respectively, which were determined empirically. n can be either 0 or

1 and simply inverts the signs of the inequalities, while t is usually 0 but may vary due to noise

present in the image. Other methods such as k-means clustering could also prove efficient for

segmentation of cells, however use of the first PC proves reliable when applied to the BCARS raw
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Figure 9.2: PCA score images of the first four PCs of the mixed candida/BEC sample.

or NRB-removed intensity, due to variations in the NRB and high-wavenumber regions in cell and

non-cell regions. The PCA score for each pixel in the image for the first four PCs is shown in figure

9.2. The subsequent analysis was then performed on pixels in the Csignal class.

Once the background pixels were removed from the image, the potential for using PCA as a tool

for identification of the pathogen was investigated. In HSIs, PCA can be used for blind unmixing

and has been applied to cell images obtained from stimulated Raman scattering (SRS)[169]. The

applicability however is dependent on the separability of the underlying data. In this experiment, the

first two PCs appeared to account for variations due to the cell and background, and the BEC nucleus

and pathogen respectively as seen in figure 9.2. The next two PCs corresponded mainly to noise,

with some minor variance due to the pathogen and BEC. The use of PCA as a species clustering
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method would require a consistent variation in the PC score between the species of interest, which

was not the case for the data. Therefore, a more advanced approach to label-free identification was

explored and the PCA based approach was abandoned.

It was decided to perform clustering analysis based on a low-dimensional projection of the

data. Each cell extent was first cropped manually and was reduced in dimension using the uniform

manifold approximation and projection (UMAP). UMAP is a stochastic algorithm that seeks to

approximate input data as a Riemannian manifold while preserving its topology in a low-dimensional

representation[170]. Since UMAP and clustering are generally intensive algorithms, each spatial

image dimension was downsampled by 70 % using linear spline interpolation prior to further

analysis, resulting in an image area approximately half the size of the original. Using UMAP, the

data of size npixels× 1024 was reduced to npixels× 2 (i.e. 2 channels), where npixels is the number of

image pixels in the HSI. Projection of this data in two dimensions provides a visualisation of the

whole hyperspectral image, where points closer together in the low dimensional embedding space

are ideally similar in the full dimensional data space. Since there was no ground truth data available

within each HSI experiment, the UMAP projection requires interpretation and further analysis to

understand its output. The UMAP projection was used to classify groups within the data with the

aim of identifying pixels containing the pathogen and buccal cells. The spectral clustering algorithm

was used to perform unsupervised clustering on the results of the dimensionality reduction[171].

Spectral clustering first calculates an affinity matrix characterising the similarity between all n2

pairs of datapoints. Then, given an input number of clusters k, the algorithm calculates the first k

eigenvectors of the un-normalized graph Laplacian L and constructs a matrix U ∈ Rn×k from the

set of eigenvectors of L. Finally, k-means clustering is performed on the n rows of U . The choice of

k was initially based on visual inspection of the UMAP projection in 2D. k was then refined using

cluster validation based on the average silhouette coefficient for each HSI. The silhouette coefficient

is typically used in k-means clustering and is a measure of the ratio of within-group similarity and

between group similarity for each sample, and therefore the average value for all samples is an

indication of the overall clustering quality. It should be noted that clustering only assigns samples

to classes, but does not identify the classes. Therefore, the output of clustering should enable an

inference that samples in different classes are distinct. The experimental workflow is shown in
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Figure 9.3: Flow chart of the experimental fungal classification procedure.

figure 9.3.

9.8 Results of unsupervised clustering

The results of the clustering procedure on five cells from the mixture sample are shown in Figure

9.4. The mean intensity of the Raman shift corresponding to 1003 cm-1 is shown in the first column

and gives an indication of the relative concentration of phenylalanine in the image. The intensity

image is over all pixels, both from Cbg and Csignal. It was observed that subcellular features were

resolved such as the nucleus in the BECs and small features that resembled the candida. At the

Raman shift of 1000 cm-1, the regions suspected of containing candida had a larger intensity relative

to any other region in the cell. These images also showed that there was still a noticeable amount

of noise present throughout the images. The UMAP projection is also shown with the results of

the spectral clustering displayed as coloured points for each distinct cluster, where the optimal

number of clusters k varied from 3-4, depending on the image. The cluster labels were assigned to

groups using visual inspection of the BCARS mean intensity image. The pixel class labels were
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Figure 9.4: The results of unsupervised segmentation of five epithelial cells infected with C. albicans. The
UMAP projection was clustered using spectral clustering. The mean BCARS spectrum of the pathogen which
was extracted using the cluster model is also shown. Scale bar 10 µm.

also reshaped to the original image dimensions to give a labeled “clustering image” of the cells.

Finally the average BCARS spectrum for the identified candida class is shown for each image. In

the UMAP projection, for all cells there was distinct clustering that corresponded generally to the

BEC cytoplasm, BEC nucleus, whole candida pathogen, and BEC membrane. It was suspected

that the BEC membrane cluster was distinct because the pixels here were a mixture of sub-pixels
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containing both pure substrate and cell-specific Raman features from the edge of a cell. It can be

seen in the UMAP image that the suspected candida pixels (coloured in red) were all contained

within a convex cluster that was highly separated from any other class. This was clear evidence

for the distinct fingerprint spectrum of the pathogen, compared to the BEC. It can be seen in the

clustering image of cell 3 that there was two distinctly classed clustered that both corresponded

to BEC cytoplasm. It was suspected that this occurred because the two cells in the image were at

different depths relative to the laser focus. This may have caused some vibrational bands in one

of the cells to possibly fall below the noise floor and cause enough variation in the spectra in this

region to separate from the in-focus pixels in the UMAP projection. It is still apparent however that

candida pixels were positively identified in the two regions within cell 3.

The spectral quality of the retrieved Raman spectra obtained from VECTOR2 was also high

as can be seen in the last column of figure 9.4. The CH-band was consistently greater in intensity

as expected, and the fingerprint spectrum was approximately similar across the cell images. One

exception was in cell 3, where there was an unusually high intensity for two peaks in the 620-700

cm-1 region. These peaks were not present in independent measurements of a pure candida sample,

however they do correspond to previously reported bands due to the steroid ergostane at 624 and

657 cm-1 in the candida species[172].

In Figure 9.5 single pixel fingerprint spectra of the epithelial cell and candida class are shown

together with Raman spectra obtained from the system described in Section 9.6. The Raman

measurements represent single point spectra of the known species, from a pure sample. For the

BEC, the nucleus was targeted, and the centre of the yeast body was targetted for the candida

sample. The BCARS spectrum of the BEC in blue shows very close agreement with the spontaneous

Raman measurement in red. Notable peaks corresponding to the Amide I, phenylalanine and lipids

are present at Raman shifts of 1560 cm-1, 1002 cm-1 and 1440 cm-1 respectively. Similarly, for

the BCARS and SR measurements of the yeast, the spectra were similar in their general features.

Notably, a peak at approximately 1120 cm-1 from glycosidic bonds[173] is present in the SR

spectrum and has a high intensity, while it is very low in intensity in the BCARS spectrum. These

bonds may be from the presence of β-glucans, the most abundant polysaccharide in the candida
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Figure 9.5: (a) Single pixel fingerprint BCARS spectra from the clustered classes of BEC and independent
measurement from spontaneous Raman using a pure sample. (b) Single pixel fingerprint BCARS spectra
from the clustered classes of candida and independent measurement from spontaneous Raman using a pure
sample. All spectra were shifted vertically for clarity.

species[174]. Although this is a highly characteristic peak of the pathogen, the difference in the two

measurements could be due to the cell heterogeneity resulting in a high intra-cell variance of this

peak as has been previously observed[163].

The quality of the clustering was analysed using the silhouette coefficient as described in Section

9.7. The coefficient was calculated for each sample, and the mean value is shown in Figure 9.6 (a)

for each cell image. The value of the silhouette coefficient varies from −1 to 1 and is higher for

more dense and well-separated clusters. The approach taken here was to classify individual pixels in

a hyperspectral image into distinct clusters based on the retrieved BCARS spectrum with the goal of

an unlabelled screening for a pathogen. Other methods of single-cell clustering typically perform an

initial cell masking step whereby each cell entity is identified using image analysis techniques such

as watershed segmentation, topological methods, or as shown in this work, using a pre-trained deep

learning model. Cell masking was not applicable here however since the pathogen can bind to the

apical surface of the epithelial cell membrane resulting in overlapping species in the HSI. These

single-cell analysis methods are thus only applicable when the cell sample is moderately confluent

and each cell is not overlapping within the image. It was demonstrated that clustering processed

BCARS spectra resulted in distinct groups of pixels being identified. The BCARS intensity image

in Figure 9.4 shows contrast with respect to the background in areas where the cell and fungus were
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Figure 9.6: (a) Cluster validation analysis using the average silhouette coefficient of each image, (b) single
pixel retrieved BCARS spectra of candida cell and buccal epithelial cell nucleus.

present, likely due to the high abundance of nucleic acids in the buccal cell nucleus and within the

whole yeast body. The dimensionality reduction using UMAP produced visually distinct clusters that

corresponded to the cell extent, cytoplasm/nucleus, and pathogen. Each cluster was labeled based on

analysis of the mean and single pixel spectra of the known samples. The cell extent was spectrally

distinct from the cell cytosol most likely because the high lateral sampling resolution resulted in

cell edge pixels being a mixture of the BCARS response from both the cell and the coverslip. The

segmented clusters were either fully separated in their feature space or connected only by sparse

points which resulted in a good overall clustering quality as measured by the validation approach.

The mean silhouette coefficient for all but one image (cell 2) was greater than 0.7, representing a

high quality of clustering.

9.9 Conclusions

In this chapter, we have shown promising results for a label-free identification of a pathogen in a

mixture of buccal epithelial cells. This work contrasts with a hyperspectral imaging segmentation

approach, where it can be assumed that multiple species are distributed in a sample and have

approximately equal size such that their boundaries can be distinguished prior to multivariate

analysis. In this work, instead of segmenting each cell, a simple approach to foreground and

background detection was implemented using PCA. This then allowed the processing of all sample
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pixels and their dimensionality reduction using UMAP. It was assumed that the spectra of each pixel

in the UMAP projection would be separated based on spectral differences due to the composition

of the sample. Inspection of the mean cluster spectra and corresponding chemical images showed

that the candida could be positively identified within the samples. This work contributes to the

application of BCARS in the field of cytology, with the potential for rapid pathogen detection in a

clinical sample. In future work, it would be fruitful to test a wider array of pathogen common to

cytologic examination, such as other fungal species, parasites and bacteria.

In this work, while we have shown that clustering based on the BCARS single pixel spectrum

alone is providing an indication of contrast for the candida pathogen among BECs, the accuracy

was not quantitatively measured. An expected next step in this work that could aid in such a

quantitation would be to perform a concurrent fluorescence imaging study on multiple samples.

This would consist of a mixed sample including the target cell and pathogen first being imaged

using BCARS. The sample would then be labelled using a pathogen specific stain such as calcofluor

white. A fluorescence image of the sample would then be obtained. Evidence of chitin binding by

observed fluorescence in areas of the BCARS HSI that were segmented and or further classified

as the pathogen using a pattern recognition algorithm, would strongly suggest predictive accuracy.

A numerical estimate of accuracy could be obtained using an image based algorithm to detect the

approximate number of pathogenic cells in the fluorescence and clustered BCARS images, thus

assuming the fluorescence image provides a ground truth for positive identification.

As the method proposed here is an unsupervised approach, and clusters points based on the

spectrum, not using any spatial information, the possibility of using the identified clusters as training

samples for a multivariate classifier could be explored. In effect, the whole imaging and processing

procedure could in theory be used to pseudo-label a dataset of multiple unknown or known species.

The ability of the classifier to then distinguish and classify single observations with high accuracy

would remove the burden of having to acquire images of independent labelled datasets for training,

which can be cumbersome. Ultimately, to better validate the clustering approach, more samples

within the should be studied. A logical next step would be to prepare a sample with other species of

candida, and investigate the identification quality. This would require a more specific approach to

167



9.9. Conclusions

obtain the ground truth species data, since many of the species appear identical in morphology. It is

envisaged that genetic techniques such as immunolabelling of species-specific surface proteins or

spontaneous Raman acquisitions of detected points in the image be recorded in order to acquire this

information, which would require further experimental consideration.
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10. Spectral interferometric polarization imag-

ing using broadband CARS

This chapter is based on a conference paper submitted to SPIE Optics in Health Care

and Biomedical Optics XIII, entitled: Spectral interferometric polarization imaging

using broadband CARS[175]. This work was a collaboration between the Maynooth

University department of Biology, who provided the samples, and my group. In this

chapter, I conducted all imaging experiments, including measurements of spontaneous

Raman spectra and conducted data analysis of all results.

BCARS has been shown to be capable of producing high-speed images of biological cells using the

vibrational contrast present in the molecular bonds. As shown in previous chapters, the NRB must

be removed in order for a meaningful analysis of the contrast to be performed. While all approaches

thus far have used post-processing techniques such as the conventional KK or novel DL methods,

there have also been several published experimental techniques that can suppress the NRB signal

generation at the source, or which filter the signal before detection such as time-resolved CARS (T-

CARS)[118], polarization CARS (P-CARS)[20] and frequency-modulated CARS (FM-CARS)[117].

These methods have shown the ability to provide NRB suppression, removing the presence of the

off-resonant signal. Experimental suppression however usually reduces the measured CARS signal

intensity, due to the reduced coherence in T-CARS and the rejection of non-depolarized bands in

P-CARS. In FM-CARS, this is not the case, however amplitude modulation and lock-in detection is

required, which is not suited to simultaneous broadband detection.
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In this chapter, a form of Broadband CARS is performed using an interferometric detection

of different components of the material response χ(3), using two separate measurements of the

BCARS signal. It was shown by Littleton et al.[67], that this detection scheme, named spectral

interferometric polarization CARS (SIP-CARS) permits full recovery of the NRB-free BCARS

spectrum from isotropic media. Furthermore, there is the benefit of the preservation of the NRB

heterodyne amplification in this detection scheme, which is often suppressed in conventional P-

CARS. This method is effectively a hybrid NRB removal approach, as it requires experimental

modification to the optical setup, as well as post-processing of the spectra. In this work, the SIP-

CARS theory and method was extended to the hyperspectral imaging of single cells, namely fungal

spores. The application of SIP-CARS to biological cells is the primary novel aspect of this work.

10.1 Theory of SIP

SIP-CARS is an interferometric detection applied to CARS measurements. The theory of BCARS

was described in section 3.2.3. Again, the measured BCARS intensity in the frequency domain is

given as

ICARS(ω) ∝
∣∣∣{[Ep(ω) ? ES(ω)

]
χ(3)(ω)

}
∗ Epr(ω)

∣∣∣2 (10.1)

where Ep, ES and Epr are the pump, Stokes and probe electric fields, and ? and ∗ are the cross-

correlation and convolution operators respectively. The correlation Ep ? ES is typically called

the stimulation or excitation profile and serves to generate the vibrational coherence within the

frequency range given by ωp − ωS. When the pump photon is provided by a narrowband source, it

is termed two-colour CARS. The broadband Stokes beam itself can provide the pump photon at a

range of different frequencies, thus also generating a coherence within the frequency range ωS − ωS,

known as the 3-colour mechanism. If a vibrational resonance exists at ωp − ωS, then the coherence

is amplified. A probe photon at a frequency ωpr may scatter from the coherence, generating light at

the anti-Stokes frequency ωas = ωp − ωS + ωpr. The anti-Stokes field thus provides information on

χ(3).

It is typically assumed that the lasers used are far below the electronic resonant frequencies
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of the sample, and thus the non-resonant susceptibility is essentially lossless (purely real). The

NRB contributes an additional phase on the resonant signal which results in interference effects

in the overall signal intensity; notably, the dispersive lineshapes. However, considering a lossless

response, for elliptically polarized input fields, it was shown[67, 68] that the NRB interference signal

is common when measured along two orthogonal anti-Stokes orientations. This result, coupled

with the fact that Raman modes can depolarize the input fields, allows for the subtraction of two

orthogonal BCARS intensities with the effect of removing the NRB contribution. The remaining

signal then consists of the resonant contribution only.

10.1.1 Removing the NRB using spectral interferometric polarization

Spectral interferometric polarization CARS (SIP-CARS) is based on the premise that the non-

resonant tensor components of the third-order susceptibility are equal regardless of field permutation

and that all components are lossless. This is due to the Kleinman condition being satisfied for the

non-resonant susceptibility[80]. Assuming a right-hand elliptically polarized narrowband beam and

linearly polarized broadband beam along the x-axis, a description of their Jones vectors is given.

The Jones vector for an arbitrary elliptical field of unit intensity is given as[176]

|Eφ,ψ〉 ,

cos(ψ) − sin(ψ)

sin(ψ) cos(ψ)


 cos(φ)

i sin(φ)

 (10.2)

where φ is the ellipticity angle (−π
4 ≤ φ ≤

π
4 ), being negative for right-handed elliptical states, and

ψ is the azimuth of the ellipse (0 ≤ ψ ≤ π) describing the angle between the semi-major axis and

the positive x-axis. The ellipticity angle is related to the eccentricity e through e =
√

1− tan2(φ).

The right-hand matrix of equation. 10.2 describes an elliptically polarized field with ψ = 0, whereas

the left-hand matrix describes a clockwise rotation by the angle ψ. The Jones vector for a linear

horizontally polarized field is

|ELHP〉 ,

1

0

 (10.3)
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Thus, for ψ = 0, the polarisation along the two Cartesian axes is given as,

Px = cos(φ)χ
(3)
1111EpEprE

∗
S (10.4)

Py = i sin(φ)χ
(3)
2121EpEprE

∗
S (10.5)

It is also known that for an isotropic medium χ
(3)
2121 = χ

(3)
1212 = χ

(3)
1122. Therefore, equation 10.4 can

be stated as

Px = cos(φ)χ
(3)
1111EpEprE

∗
S (10.6)

Py = i sin(φ)χ
(3)
1122EpEprE

∗
S (10.7)

where χ(3)
ijkl describes the susceptibility tensor component with indices describing the direction of

the anti-Stokes, pump, probe and Stokes pulse wavevectors respectively. For clarity, the superscript

denoting the order of the nonlinearity will be dropped. The SIP-CARS signal, defined as the

difference between the polarization components at +45°(S+) and -45°(S−) relative to the Stokes

polarization ∆S is then given as

∆S = (S+ − S−) (10.8)

∆S = PxP
∗
y + P ∗xPy (10.9)

∆S = i cos(φ) sin(φ)
(
χ∗1111χ1122 − χ1111χ

∗
1122

)
(10.10)

If the substitution is made χ∗1111χ1122 = z = a+ ib, then,

i cos(φ) sin(φ)(z − z∗) = i cos(φ) sin(φ)((a+ ib)− (a− ib)) (10.11)

= i cos(φ) sin(φ)(2ib) (10.12)

= cos(φ) sin(φ)(2i2b) (10.13)

= − cos(φ) sin(φ)(2b) (10.14)
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Using the relations χ1111 = χ1212 +χ1122 +χ1221 and χ1212 = χ1122, the SIP-CARS intensity can

be restated as

∆S ∝ −2 cos(φ) sin(φ) Im{χ∗1111χ1221} (10.15)

Expanding,

∆S ∝ A Im
{
χR

1111χ
R
1221
∗

+ χR
1111χ

NR
1221
∗

+ χNR
1111χ

R
1221
∗

+ χNR
1111χ

NR
1221
∗}

(10.16)

where A , 2 cos(φ) sin(φ) = sin(2φ). The last term is zero since it is purely real. This also results

in χNRχR∗ = −(χNRχR∗)
∗, therefore

∆S ∝ A Im
{
χR

1111χ
R
1221
∗

+ χR
1111χ

NR
1221
∗ − χNR

1111χ
R
1221

}
(10.17)

The first term is purely real since it is a product of two complex numbers with opposite magnitudes

of their imaginary parts (other than their real amplitudes), therefore

∆S ∝ A Im
{
χR

1111χ
NR
1221 − χNR

1111χ
R
1221

}
(10.18)

making use of the Kleinman relation χNR = χNR
1111,

∆S ∝ sin(2φ)(1− 3ρ)χNR Im
{
χR

1111

}
(10.19)

where ρ =
χR
1221

χR
1111

is the Raman depolarisation ratio. The difference signal in SIP-CARS is pro-

portional to the imaginary part, Im
{
χR

1111

}
, which correlates with the conventional linear Raman

signal [51]. Ideally, χNR would be a real, constant value that amplifies the signal. However, it is

known to vary spectrally due to its finite coherence time, and the local intensity of the NRB is also

influenced by the local oscillator number density. In conventional BCARS measurements, χNR

acts as a noise signal that degrades the signal. In SIP-CARS, when applied to isotropic materials,

χNR simply scales the resulting intensity, allowing any local variations in the NRB to be corrected

through standard scatter correction procedures.

Since the SIP-CARS signal is also scaled by 1− 3ρ, the resulting spectrum carries the imprint of
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the Raman depolarization spectrum. Therefore, careful analysis of the SIP-CARS signal is essential,

as assumptions like signal non-negativity and linear proportionality to sample concentration are

not applicable. The SIP-CARS signal is best approached as a distinct type of signal, using general

methods that extract contrast (e.g., PCA). Alternatively, when ρ is known, the imaginary part of

χ1111 can be determined exactly.

10.2 Procedure

10.2.1 BCARS system modifications

Hyperspectral BCARS images of Glomeromycotina - Arbuscular Mycorrhizal Fungi (AMF) were

acquired using the custom BCARS microscope and broadband laser system described in section 5.1,

with some modifications. A diagram of the microscope is shown in figure 10.1. In this experiment,

the Stokes and Pump photons are derived from a broadband source, while the probe photon comes

from a narrowband source. The pump beam, initially linearly polarized in the horizontal direction,

was transformed into circular polarization using a half-wave plate with its fast axis set at 22.5° and

a quarter-wave plate with its fast axis aligned at 0° to the horizontal. The circular polarization

was confirmed with a linear polariser. Just before the anti-Stokes shortpass filter, a linear polariser

was positioned at 45° to the horizontal to collect the first polarization signal (n+). A BCARS

hyperspectral image of the sample was then recorded, denoted as S+. The acquisition time for each

pixel in the BCARS image was 1 ms. A second hyperspectral image was captured with the polariser

rotated to -45° relative to the horizontal (n−), and this image was labelled as S−.

10.2.2 NRB acquisition

An estimate of the non-resonant background signal was required in this experiment to remove the

influence of the lasers in the SIP-CARS result. This signal was obtained using a single acquisition

from the glass coverslip at both polarizer orientations n+ and n−, designated B+ and B−. The

experimental parameters were identical to the sample images.
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10.2. Procedure

Figure 10.1: Diagram of the SIP-CARS experimental setup. QWP: quarter-wave plate, HWP: half-wave
plate.

10.2.3 Signal processing

Both hyperspectral images were denoised using the truncated singular value decomposition and the

method presented in section 4.4.1. After denoising, the images were then corrected for scatter using

a multiplicative scatter correction (MSC) procedure. After MSC, each spectrum was detrended

using the NRB as a reference spectrum, and a Butterworth filter. Each spectrum was then divided by

the NRB to remove the effect of the lasers. The filtering procedure effectively removed a slowly

varying baseline from each pixel due to local differences in the NRB.

The normalised SIP-CARS signal Snorm was calculated by

Snorm =
Scorrected

B
(10.20)

where the corrected spectrum is given as

Scorrected = S −H{S −B} (10.21)
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10.2. Procedure

Figure 10.2: (a) Raw BCARS spectrum of S+ and S− (both corrected) and the NRB references of each, (b)
SIPCARS signal, KK-retrieved spectrum and spontaneous Raman spectrum from the fungal spore body.

where H is a lowpass Butterworth filter operation using a cutoff frequency of 0.08 nm−1, which

was chosen by visual inspection of the residual S −B. In figure. 10.2 (a), the SIP-CARS spectra

(corrected) are shown along with the NRB signal obtained from the coverslip, for both polarization

orientations. It is apparent that after the filtering procedure both the signal and NRB spectra are

highly similar, other than where vibrational resonances exist. Shown in figure. 10.2 (b) is the

resulting NRB corrected difference signal S+

B+
− S−

B−
. The signal obtained from the Kramers-Kronig

method applied to the sum signal ΣS = S+ + S− is also shown, since for isotropic samples ΣS is

equivalent to the conventional BCARS signal. Finally, a Raman measurement of the same region of

the sample is shown, taken using the system described in section 9.6.
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10.3. Results

The flowchart describing the process of obtaining the SIPCARS difference image is shown in

figure 10.3.

Figure 10.3: Flowchart for processing of the SIPCARS image

10.3 Results

In figure 10.2 (b), the KK and Raman spectra show similar resonances at 1020 cm-1, 1415 cm-1,

1625 cm-1, 820 cm-1, 831 cm-1. There is some discrepancies however between the two spectra,

notably the broad band from 1000-1100 cm-1 in the Raman spectrum that is not in the KK spectrum.

This appears to be fluorescence, however experimentally, it was not indicative of such a signal as it

largely correlated with Raman mode intensity. The SIPCARS signal has a very different structure,

as it is centered on zero and has fluctuations corresponding to (1−3ρ). Therefore, for an intensity of
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Figure 10.4: Spectral mean images of the two polarization orientations and the difference image. The
magenta ’x’ marks the location of the spectra shown in figure 10.2

zero, ρ = 1/3, or is non-resonant. It can be concluded that there is significant resonant structure in

the SIPCARS specctrum corresponding to depolarization in the Raman spectrum. Several bands in

both the KK and Raman spectra are present, although sign inversions accompany many of the peaks.

Strong associated bands were observed at 1020 cm-1, 1415 cm-1 and 1625 cm-1. Mode assignment

was not performed here, as this study was focussed on the information similarity between the

SIPCARS image and the conventional KK-retrieved image.

The SIP-CARS spectral average image for both polarization orientations is shown in figure 10.4.

Also shown is the average difference image, the “SIP-CARS image”. It can be seen from the figures

that the independent acquisitions are both coincident on the same region of the sample, with two

spore bodies fully visible as high contrast circular features.

The next step in the analysis was to obtain an estimate of the uncoupled depolarization ratio

image based on the SIPCARS image and knowledge of Im
{
χR

1111

}
from the sum image S+ + S−.

Using KK, the imaginary susceptibility was retrieved using the sum image, and then the SIPCARS

image was divided by this image. This provided a hyperspectral image of 1 − 3ρ. Principal

components analysis was then performed to reduce the dimensionality of the resulting image. The

results of PCA are shown in figure 10.5. It can be seen in the figure that the principal component

score images drastically increase the contrast present in the SIPCARS difference image, compared to
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10.3. Results

Figure 10.5: Results of principal components analysis performed on the depolarization hyperspectral image.

that which is still coupled to the resonant Raman intensity in figure 10.4. Uncoupling also presents

a way to analyse only the depolarization properties of the sample, given that the image depends

only on ρ. In particular, specific values of rho were seen for the fungal body and the hyphae across

the image, and which varied spectrally. This may be due to the structural differences in these two

features of the spore. In the single picel spectra, it can also be seen that the uncoupled depolarization

ratio no longer resembles a spectrum with the typical Voigtian lineshapes. This is expected, as the

depolarization ratio only exists where a resonance exists, and such more closely resembles Dirac

functions of Raman shift.
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10.4. Discussion

10.4 Discussion

The ability for SIP-CARS to resolve a broadband Raman spectrum and the depolarization spectrum

is apparent in Fig. 10.2 (b). The SIP-CARS difference spectrum shows characteristic vibrational

resonances as narrow lineshapes with a signal mean of zero. The presence of negative signal results

from vibrational resonances where ρ > 1
3 . The Kramers-Kronig (KK) retrieved signal based on the

SIP-CARS sum signal shows resonances in locations where the difference signal is rapidly varying

such as at 1020 cm−1 and 1415 cm−1. Due to the depolarization spectrum being mixed with the

Raman spectrum, the SIP-CARS difference peak heights vary rapidly when the sample has a large

number of vibrational resonances (e.g. biological tissues). The proximity of two or more resonances

with different values of ρ will result in an averaging of ρ when their separation is closer than the

probe laser linewidth or spectrograph resolution. This causes SIP-CARS spectra to have a highly

complex structure even when the Raman spectrum may not.

It is apparent from equation 10.19 that if ρ = 1
3 , the contrast in SIP-CARS vanishes since the

phase shift induced by a resonance is identical to that introduced by the NRB. Therefore, SIP-CARS

is expected to have higher contrast for materials with depolarized vibrations (ρ ≥ 0.75). SIP-CARS

is therefore highly useful for analysis of ordered materials such as crystals. In this case, the Raman

information and polarization information could easily be decoupled using known Raman spectra or

a separate measurement using conventional BCARS. When applied to biological materials that have

a combination of isotropic and anisotropic contents, the SIP-CARS signal should be analysed using

a data mining procedure such as ICA for example.

In this chapter, it was shown that using a novel approach, namely two sequentially acquired

orthogonal BCARS measurements, the 3-colour SIP-CARS method can obtain both Raman informa-

tion and polarization-sensitive information simultaneously. The efficacy and utility of this approach

is largely based on the sample. When isotropic samples with a low number density are studied, e.g.

pure liquids or crystals, the Raman and depolarization-based contrast could be fully decoupled for

use in material analysis using the approach shown in figure 10.5, or jointly used for identification of

an unknown substance using pattern recognition. This approach has the benefit of including more
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information than the Raman spectrum, which should enable a higher specificity in identification of

samples. When applied to complex biological samples, the mixing of the Raman and depolarization

ratio in the signal results in a rich contrast that is most easily analysed using feature extraction

methods such as PCA. In this work, the method was applied to hyperspectral imaging of fungal

spores and their associated hyphae.
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11. Conclusions

In this thesis we have explored Broadband CARS for imaging single eukaryotic cells, with a view to

demonstrating its clinical potential. The speed increase in imaging compared to spontaneous Raman

(SR) spectroscopy was known from the outset, but fast scan speeds are not the only important

factor for use in a clinical scenario. Other important factors are the specificity and sensitivity of the

measurement with respect to the problem. While it is commonly cited that the sensitivity of BCARS

is greater than SR due to the nonlinear response, this is only true for the most abundant resonant

species in biomolecules. In the fingerprint region, BCARS spectra are extremely weak, and the

added non-resonant background obscures the signal to the extent that it is virtually indistinguishable

from noise. Using methods based on deep-learning described in chapters 6 and 7, we believe this

issue has been largely surmounted in the non-biological case, based on our published works[22, 23].

These methods perform drastically better than the conventional methods such as the Kramers-Kronig

(KK) method in retrieving the Raman-like spectrum from a raw BCARS spectrum. In the case

of biological spectra, we have demonstrated, to the best of our knowledge, the first successful

classification of two eukaryotic cells using hyperspectral BCARS imaging in chapter 8. This work

utilised the KK method and a customised pre-processing step that was tailored to the problem.

In particular, cell-based spatial masking and scatter correction significantly reduced the level of

noise and scatter effects in training samples, and we noted that these likely contributed to the

high perceived quality of the Raman-like spectra obtained. The spectral quality in the form of the

resolution, SNR and bandwidth we obtained from single cells has not previously been achieved

with conventional or deep-learning NRB removal approaches. Further work related to this chapter

should focus on applying the deep-learning methods we have developed to this use-case in order

to test the ultimate limit of pixel dwell time in BCARS imaging for classification. Also, it is
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expected that testing the accuracy of the classification on more cell lines would be highly beneficial,

and if successful could open the possibility for high-throughput Raman cell mapping. Molecular

phenotyping of specific cells based on the Raman spectrum is likely to have the most impact for

low-dimensional problems, such as classifying a cell sample as cancerous or not. These problems

can be optimized to have a low false negative rate and could help in identifying diseases in the

early stages of progression. We suspect that as the number of classes in a multivariate statistical

model becomes larger, the accuracy of correctly identifying the cell type decreases. However, when

the problem is framed in an unsupervised context, distinct benefits arise, as described in chapter

9. In this chapter, we demonstrated the applicability of BCARS for high-speed identification of

different species in a cell sample. We did not classify each species, but rather segmented spectra

based on the retrieved Raman spectrum and then produced a pseudo-labelled image. This method

used a novel approach of a dimensionality reduction technique and a robust clustering algorithm to

reduce the image to a user-defined number of clusters. Using this method in a purely automated

approach, an oral cytology sample was then screened for the presence of an invasive pathogen.

Further quantitative variables that could help to identify the presence of the pathogen could be based

on a clustering metric such as the silhouette coefficient, or use a more advanced approach that aims

to classify the overall average cluster spectra. In a semi-automated manner, the approach we have

developed could be used to detect the number of identified species in a cytology sample, and if this

was greater than some threshold, it could notify a clinical expert for further investigation. Further

work related to this chapter should focus on verifying the diagnostic accuracy of the approach using

a gold standard method such as microscopic staining or immunofluorescence. After this validation,

a species with more than one pathogen species should enable the testing of scalability to more

complex disease presentations. A more in-depth analysis of the cluster vibrational spectra obtained

using a statistical classifier and feature importance analysis should enable targeting of the spectral

features that are contributing to the identification. This could aid in improving the imaging speed,

where a sub-region of the detector could be used, rather than the full spectral window. These further

tests should provide the necessary evidence for broader utility within the clinical context, and would

likely meet the standard for a journal publication.

During the experimental phase of completing chapter 9, our group also focussed on utilising
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BCARS in a flow cytometry modality. Early results of this work prompted a consideration for

duplicating the results of chapters 8 and 9 using suspended blood and oral samples. While the lack

of the spatial dimension in a flow setup might be seen as a disadvantage, it opens the possibility of

much higher throughput, since there is no mechanical motion involved. Loss of spatial information

would however preclude the possibility of image-based studies to verify the accuracy at the single

sample level(i.e. cell by cell), but other methods such as conventional flow cytometry could be used

subsequently, and the accuracy based on whole-sample statistical measures such as relative cell

frequencies. In our opinion, BCARS is highly suited to label-free flow cytometry, but the ability

to denoise and pre-process the signal is of paramount importance, as was shown throughout the

results chapters in this thesis. Also, for the phenotyping problem, consideration would need to be

given to the spatial heterogeneity of the Raman response in cells, which can easily be mitigated in a

hyperspectral image as shown in chapter 8 but in flow conditions requires focal volume averaging,

whether in real-time using an optical approach or afterwards using knowledge of each cell size.

In chapter 10, we demonstrated the first application of the hybrid NRB removal approach on

single fungal cells. This method, known as SIP-CARS was previously demonstrated to remove

the NRB and provide a coupled Raman and polarization spectrum of a sample. In our work,

we devised a novel acquisition and processing pipeline for SIP-CARS, whereby two sequential

hyperspectral images were obtained and processed to obtain the NRB-free signal. This contrasts

with a previous approach that used a simultaneous acquisition that was resolved into orthogonal

polarization components prior to imaging on the sensor. While much more experimentally stable,

this approach requires multi-track sensor acquisitions, preventing full use of the binning mode on the

sensor, which increases noise in the result. Our approach obtains two images, both using full vertical

binning, but does require two scans. We hypothesised that this drawback could be mitigated using

a second CCD after the dispersive element of the spectrograph, that resolved the two polarization

components simultaneously. Furthermore, in our application of SIP-CARS to imaging fungal cells, a

novel variance reduction procedure was developed that removed intra-acquisition variance between

polarization components that would have induced erroneous baselines in the final measurement.

This issue is highly specific to the dual acquisition approach, and thus had not been overcome

previously. Conventional scatter correction approaches also failed to preserve the extremely weak
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resonant features in each image when applied separately, thus requiring the new approach. In using

the orthogonal polarization components, the conventional BCARS image can also be computed.

This enabled decoupling of the depolarization spectrum from the Raman spectrum, which also has

not previously been demonstrated. The applications of this approach are in two main areas, (1)

in high-speed polarization imaging of complex microscopic structures such as biological tissues

and crystalline compounds, and (2) spectral classification using the coupled Raman-polarization

information that should complement the information present in a Raman spectrum with the bulk

polarization properties of samples. We suspect a definitive application which demonstrates an

improvement in contrast for imaging or detection specificity would provide enough data for a journal

article publication of this work.
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A. VECTOR-16 architecture
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Figure A.1: Architecture of VECTOR-16. Each block shows the output dimension at the edge. Skip
connections are shown as arrows paired between encoder convolutional outputs to decoder convolutional
inputs. Layers proceed from left to right and depth from top to bottom.
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B. VECTOR2 broadband spectra

Figure B.1: Retrieved Raman spectrum of glycerol, polymer and PMMA using the Kramers-Kronig
method[1] and VECTOR2. Also shown is the spontaneous Raman spectrum for each analyte. Spectra
were initially normalised using data >2500 cm-1, following which data to the left of the dashed vertical line
were scaled for clarity with scale values shown. No post-processing or denoising was performed after phase
retrieval in any case.
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Figure B.2: Retrieved Raman spectrum of polystyrene, ethanol and benzonitrile using the Kramers-Kronig
method and VECTOR2. Also shown is the spontaneous Raman spectrum for each analyte. Spectra were
initially normalised using data >2500 cm-1, following which data to the left of the dashed vertical line were
scaled for clarity with scale values shown. No post-processing or denoising was performed after phase
retrieval in any case.
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[11] I. W. Schie, J. Rüger, A. S. Mondol, A. Ramoji, U. Neugebauer, C. Krafft, and J. Popp, “High-

Throughput Screening Raman Spectroscopy Platform for Label-Free Cellomics,” Analytical

Chemistry, vol. 90, no. 3, pp. 2023–2030, 2018.

[12] D. Traynor, I. Behl, D. O’Dea, F. Bonnier, S. Nicholson, F. O’Connell, A. Maguire, S. Flint,

S. Galvin, C. M. Healy, C. M. Martin, J. J. O’Leary, A. Malkin, H. J. Byrne, and F. M. Lyng,

“Raman spectral cytopathology for cancer diagnostic applications,” Nature Protocols, vol. 16,

no. 7, pp. 3716–3735, 2021.

[13] J. Wen, T. Tang, S. Kanwal, Y. Lu, C. Tao, L. Zheng, D. Zhang, and Z. Gu, “Detection and

Classification of Multi-Type Cells by Using Confocal Raman Spectroscopy,” Frontiers in

Chemistry, vol. 9, no. April, pp. 1–8, 2021.

[14] G. Moore, G. Knight, and A. D. Blann, Haematology. Fundamentals of biomedical science,

Oxford University Press, 2016.

[15] K. Kong, C. Kendall, N. Stone, and I. Notingher, “Raman spectroscopy for medical diagnos-

tics - From in-vitro biofluid assays to in-vivo cancer detection,” Advanced Drug Delivery

Reviews, vol. 89, pp. 121–134, 2015.

[16] Y. J. Lee and M. T. Cicerone, “Vibrational dephasing time imaging by time-resolved broad-

band coherent anti-Stokes Raman scattering microscopy,” Applied Physics Letters, vol. 92,

no. 4, 2008.

[17] P. V. Kolesnichenko, J. O. Tollerud, and J. A. Davis, “Background-free time-resolved coherent

Raman spectroscopy (CSRS and CARS): Heterodyne detection of low-energy vibrations and

identification of excited-state contributions,” APL Photonics, vol. 4, no. 5, 2019.

190



Bibliography

[18] S.-H. Lim, A. G. Caster, and S. R. Leone, “Fourier transform spectral interferometric coherent

anti-Stokes Raman scattering (FTSI-CARS) spectroscopy,” Optics Letters, vol. 32, no. 10,

p. 1332, 2007.

[19] C. L. Evans, E. O. Potma, and X. S. Xie, “Coherent anti-Stokes Raman scattering spectral in-

terferometry: determination of the real and imaginary components of nonlinear susceptibility

χˆ(3) for vibrational microscopy,” Optics Letters, vol. 29, no. 24, p. 2923, 2004.

[20] J.-X. Cheng, L. D. Book, and X. S. Xie, “Polarization coherent anti-Stokes Raman scattering

microscopy,” Optics Letters, vol. 26, no. 17, pp. 1341–1343, 2001.

[21] C. W. Freudiger, W. Min, B. G. Saar, S. Lu, G. R. Holtom, C. He, J. C. Tsai, J. X. Kang,

and X. S. Xie, “Label-Free Biomedical Imaging with High Sensitivity by Stimulated Raman

Scattering Microscopy,” Science, vol. 322, no. 5909, pp. 1857–1861, 2008.

[22] Z. Wang, K. O’Dwyer, R. Muddiman, T. Ward, B. Hennelly, and C. H. Camp Jr., “VECTOR:

Very deep convolutional autoencoders for non-resonant background removal in broadband

coherent anti-Stokes Raman scattering,” Journal of Raman Spectroscopy, vol. 53, no. 6,

pp. 1081–1093, 2022.

[23] R. Muddiman, K. O’ Dwyer, C. H. Camp, and B. Hennelly, “Removing non-resonant

background from broadband CARS using a physics-informed neural network,” Analytical

methods : advancing methods and applications, vol. 15, no. 32, pp. 4032–4043, 2023.

[24] A. Smekal, “Zur Quantentheorie der Streuung und Dispersion,” Die Naturwissenschaften,

vol. 16, no. 31, pp. 612–613, 1928.

[25] C. V. Raman and K. S. Krishnan, “A New Type of Secondary Radiation,” Nature, vol. 121,

no. 3048, pp. 501–502, 1928.

[26] M. Harrand and R. Lennuier, “Exaltation of the intensity of certain bands in the Raman

spectra emitted from solids with an absorption band near the excitation wavelength,” C. R.

Hebd. Acad. Sci, vol. 223, pp. 356–357, 1946.

[27] E. V. Efremov, F. Ariese, and C. Gooijer, “Achievements in resonance Raman spectroscopy.

191



Bibliography

Review of a technique with a distinct analytical chemistry potential,” Analytica Chimica Acta,

vol. 606, no. 2, pp. 119–134, 2008.

[28] A. L. Schawlow and C. H. Townes, “Infrared and optical masers,” Physical Review, vol. 112,

no. 6, pp. 1940–1949, 1958.

[29] T. H. Maiman, “Stimulated Optical Radiation in Ruby,” Nature, vol. 187, no. 4736, pp. 493–

494, 1960.

[30] A. Javan, W. R. Bennett, and D. R. Herriott, “Population inversion and continuous optical

maser oscillation in a gas discharge containing a He-Ne mixture,” Physical Review Letters,

vol. 6, no. 3, pp. 106–110, 1961.

[31] S. P. S. Porto and D. L. Wood, “Ruby Optical Maser as a Raman Source,” Journal of the

Optical Society of America, vol. 52, no. 3, p. 251, 1962.

[32] P. A. Franken, A. E. Hill, C. W. Peters, and G. Weinreich, “Generation of optical harmonics,”

Physical Review Letters, vol. 7, no. 4, pp. 118–119, 1961.

[33] R. W. Terhune, P. D. Maker, and C. M. Savage, “Optical harmonic generation in calcite,”

Physical Review Letters, vol. 8, no. 10, pp. 404–406, 1962.

[34] W. Ng and E. Woodbury, “Ruby Laser Operation in Near IR,” Proceedings of the Institution

of Electronic and Radio Engineers, vol. 50, 1962.

[35] J. L. Koenig, “Raman spectroscopy of biological molecules: A review,” Journal of Polymer

Science: Macromolecular Reviews, vol. 6, no. 1, pp. 59–177, 1972.

[36] Z. Movasaghi, S. Rehman, and I. U. Rehman, “Raman spectroscopy of biological tissues,”

Applied Spectroscopy Reviews, vol. 42, no. 5, pp. 493–541, 2007.

[37] M. Fleischmann, P. J. Hendra, and A. J. McQuillan, “Raman spectra of pyridine adsorbed at

a silver electrode,” Chemical Physics Letters, vol. 26, no. 2, pp. 163–166, 1974.

[38] D. L. Jeanmaire and R. P. Van Duyne, “Surface raman spectroelectrochemistry: Part I.

Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode,”

192



Bibliography

Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, vol. 84, no. 1,

pp. 1–20, 1977.

[39] P. L. Stiles, J. A. Dieringer, N. C. Shah, and R. P. Van Duyne, “Surface-enhanced Raman

spectroscopy,” Annual Review of Analytical Chemistry, vol. 1, no. 1, pp. 601–626, 2008.

[40] J. R. Lombardi, R. L. Birke, T. Lu, and J. Xu, “Charge-transfer theory of surface enhanced

Raman spectroscopy: Herzberg-Teller contributions,” The Journal of Chemical Physics,

vol. 84, no. 8, pp. 4174–4180, 1986.

[41] E. C. Le Ru, E. Blackie, M. Meyer, and P. G. Etchegoint, “Surface enhanced raman scattering

enhancement factors: A comprehensive study,” Journal of Physical Chemistry C, vol. 111,

no. 37, pp. 13794–13803, 2007.

[42] L. Vázquez-Iglesias, G. M. Stanfoca Casagrande, D. Garcı́a-Lojo, L. Ferro Leal, T. A. Ngo,
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