
Semantic-Based Surrogate-Assisted

Neuroevolution for Neural Architecture

Search in Deep Neural Networks

Fergal Stapleton

Supervisor: Edgar Galván-López

A thesis submitted in fulfillment of the requirements

for the Ph.D. degree in Computer Science

Director of Institute: Andrew Parnell

Hamilton Institute

Maynooth University

Maynooth, Co. Kildare, Ireland

April 11, 2025

This thesis has been prepared in accordance with the PhD regulations of Maynooth

University and is subject to copyright. For more information see PhD Regulations

(December 2022).

Summary

Neuroevolution is a popular branch of Neural Architecture Search (NAS) that searches

for high-performing artificial neural network architectures using evolutionary algorithms.

Neuroevolution of deeper, more complex architectures, like deep neural networks, how-

ever, comes at a great computational cost, as often thousands of architectures need to be

trained and evaluated over numerous Graphical Processing Unit days. To address this,

research has turned to the use of Surrogate-Assisted Evolutionary Algorithms (SAEAs),

where less expensive surrogate models can be used to estimate the fitness of an archi-

tecture, without the need to fully train it, resulting in a substantial reduction in the

associated computational cost. Ultimately, SAEAs have emerged as a graceful response

to tackling computational intensive workflows, such as neuroevolution, however, some

notable limitations remain, such as, issues relating to high-dimensionality and complex

encoding strategies required in current surrogate-assisted neuroevolution methods.

In this thesis, we use a semantic-inspired method to adeptly handle these issues, which

in turn, is incorporated into a novel technique named Neuro-Linear Genetic Programming

(NeuroLGP). NeuroLGP evolves chain-structured topologies with a representation closely

aligned to how neural network architectures are naturally constructed. This allows us to

perform an in-depth analysis not only on the surrogate model robustness and architecture

performance, but also allows us to analyse how the internal makeup of our architectures

change during evolution. From this, we propose a new mechanism, named NeuroLGP-

MB, that is capable of evolving truly complex modern networks that exhibit multi-branch

connections. Our proposed SAEA approach was shown to not only be robust for both

NeuroLGP and NeuroLGP-MB but was also able to find high-performing individuals with

a substantial reduction in time.

i

Acknowledgements

I would like to thank my supervisor Edgar Galván who has given me incredible support

and guidance throughout my PhD and has helped me outline a path for a future career in

academia, I am truly grateful. It has been an awesome journey and I am looking forward

to our future collaborations.

I would like to thank my family for their support throughout my PhD, my parents Noel

and Eileen, brothers Mark and Alan, and my sister Anna for her endless encouragement,

with a special mention to the curious feline enigma that I refer to as “The Mister’. I

would also like to thank my uncle Lenny, who helped foster my pursuit of knowledge from

an early age, whether it be art, film or literature (...the finest of which can be found in

the ‘Library’ !). My friends Sean Hall (Rasher), Steven Bellew and Ronan Larkin. It’s

been a while since I’ve been back to Dundalk but I am looking forward to the next gig

or night out, or for any event that Rasher refers to as ‘aesthetic excellence’. I would

like to thank my housemates Eleni, Darshana and Alessandra, who were also a massive

support, especially in the final weeks before submitting my thesis. I would like to thank

the other members of the two households and friends: Akash and Neisha, Blake and Orla

(congrats, again!), YC, Johnny, Jason and Ahmed. Ye are all legends and it has been

awesome getting to know you.

I would also like to acknowledge the members of our research team, Pramit, Harish,

Fred and Dan, as well as our collaborators Leonardo Trujillo and Brendan Cody-Kenny,

your support has been incredible. I would also like to acknowledge everyone in the Hamil-

ton and SFI: Rosemary, Kate, Joanna, Janet, David Malone and Ken Duffy, who were a

massive help through-out. The rest of my friends and colleagues from the 2020 cohort at

Maynooth: Shauna, Chang, Nathan, Bill, Tzirath, Jonny and Amit. Everyone from the

various cohorts across MU, UL and UCD, both past and present, who I have talked to

and who offered support and of whom it would be to numerous to list. I would also like

to offer thanks to Ganesh and Senthil from Valeo, who mentored me during my industrial

placement.

ii

iii

Funding and Resources

• This publication has emanated from research conducted with the financial support

of Science Foundation Ireland under Grant number 18/CRT/6049. For the purpose

of Open Access, the author has applied a CC BY public copyright licence to any

Author Accepted. Manuscript version arising from this submission.

• The authors wish to acknowledge the Irish Centre for High-End Computing (ICHEC)

for the provision of computational facilities and support.

• The simulations in Chapter 6 were performed on the Luxembourg national super-

computer MeluXina. The authors gratefully acknowledge the LuxProvide teams for

their expert support.

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Research Goals . 2

1.3 Thesis Structure . 3

1.4 List of Publications . 5

1.4.1 Peer-reviewed Publications Pertinent to this Thesis 5

1.4.2 Peer-reviewed Publications Not Pertinent to this Thesis 5

2 Background 7

2.1 Evolutionary Algorithms . 7

2.2 Genetic Programming . 9

2.2.1 Tree-based Genetic Programming 9

2.2.2 Linear Genetic Programming . 11

2.2.3 Semantics in Genetic Programming 13

2.3 Surrogate-assisted Evolutionary Algorithm 15

2.3.1 Surrogate Model-based Optimisation 15

2.3.2 Kriging (Gaussian Processes) . 16

2.3.3 Kriging Partial Least Squares . 17

2.3.4 Phenotypic Distance Vectors . 18

2.4 Multi-objective Optimisation . 19

2.4.1 Multi-objective Optimisation . 19

2.4.2 Pareto Dominance . 19

2.4.3 The Non-dominated Sorting Genetic Algorithm II 21

2.4.4 The Strength Pareto Evolutionary Algorithm 2 21

2.4.5 Crowding Distance . 22

2.4.6 Multi-Objective Evolutionary Algorithm with Decomposition . . . 22

2.5 Deep Neural Networks . 26

2.5.1 Convolutional Neural Networks . 26

iv

CONTENTS v

2.5.2 Neuroevolution of Deep Neural Networks 27

2.5.3 Further Details on Parameters and Layers used in this Work . . . 29

3 Literature Review 31

3.1 A Brief History of Artificial Neural Networks and Evolutionary Algorithms 31

3.2 Neural Architecture Search . 33

3.3 Neuroevolution . 35

3.3.1 Artificial Neural Networks . 35

3.3.2 Deep Neural Networks . 36

3.4 Surrogate-Assisted Evolutionary Algorithms for Neuroevolution 38

3.5 Semantics in Genetic Programming and Phenotypic Distance 41

3.5.1 Semantics in Genetic Programming 41

3.5.2 Semantics and its Relevance to Surrogate-Assisted Neuroevolution 43

4 Semantic-based Metrics in Multi-objective Genetic Programming 44

4.1 Introduction . 46

4.1.1 Semantics in NSGA-II and SPEA-II 49

4.1.2 Semantics in MOEA/D . 50

4.2 Implementation Details . 51

4.3 Results . 55

4.3.1 Semantic Approaches for Pareto-based Optimisation 55

4.3.2 Semantic Approaches for Decomposition-based Optimisation . . . 59

4.4 Summary . 68

4.4.1 Summary of Results . 68

4.4.2 Discussion on Semantics and its Role in Neuroevolution 70

5 NeuroLGP-SM: A surrogate-assisted approach to Neuroevolution using

Linear Genetic Programming 72

5.1 Introduction . 73

5.2 Motivation . 76

5.2.1 Properties of Linear Genetic Programming 76

5.2.2 Limitation of Traditional Kriging Approach 78

5.3 Methodology . 80

5.3.1 NeuroLGP . 80

5.3.2 NeuroLGP with Surrogate Model (NeuroLGP-SM) 81

5.3.3 Genetic Operations and Repair Mechanism 83

5.4 Implementation Details . 84

5.5 Results . 87

5.5.1 Preliminary Analysis of the Baseline Model 87

CONTENTS vi

5.5.2 Comparison of Baseline, Surrogate and Expensive 88

5.5.3 Comparing our Results against the State-of-the-art 90

5.5.4 Analysis of the Surrogate Model 90

5.5.5 Analysis of Genotype . 95

5.5.6 Limitations of our Analysis . 98

5.6 Summary . 98

6 NeuroLGP-MB: Scaling Topological Complexity with a Pre-Selection

Surrogate Model 100

6.1 Introduction . 101

6.2 Methodology . 102

6.2.1 NeuroLGP-Multi-Branch . 102

6.2.2 Genetic Operations . 106

6.2.3 Surrogate Model with Pre-Selection 107

6.3 Implementation Details . 108

6.3.1 Datasets . 108

6.3.2 Scaling Complexity . 109

6.4 Results . 110

6.4.1 Discussion on Architectures Found 110

6.4.2 Performance Analysis . 111

6.4.3 Surrogate Analysis . 113

6.4.4 Time Analysis . 114

6.4.5 Network Depth and Complexity 116

6.4.6 Varying Epoch Length . 118

6.4.7 Discussion and Limitations . 119

6.5 Summary . 120

7 Conclusions 121

7.1 Original Contributions of this Thesis . 121

7.2 Conclusions on the use of SAEAs in Neuroevolution for NAS in DNNs . . 123

7.3 Limitations and Future Work . 124

A Appendix A 126

A.1 Additional Tables Relating to Chapter 4 126

A.2 Additional Comparison of Pay-off Tables for Chapter 4 126

A.3 Additional Images Relating to Chapter 4 127

CONTENTS vii

B Appendix B 146

B.1 Additional Figures Relating to Chapter 6 146

B.2 Example Configuration Files used in Chapters 5 and 6 146

Bibliography 154

List of Figures

2.1 Demonstrating the workflow of a typical EA. See text for details on each

step. 8

2.2 Demonstrating how crossover operation creates two offspring programs

through subtree crossover. 11

2.3 LGP example in C language. Reproduced from Brameier and Banzhaf’s

book ‘Linear Genetic Programming’ [10]. The original representation uses

registers to control the flow of data between a series of instructions which

are executed sequentially. 12

2.4 Demonstrating how crossover operation works in Linear Genetic Program-

ming. 12

2.5 Demonstrating an example of semantics in GP. Given a set of inputs (or

fitness cases) for x, semantics can be shown as the vector output of the GP

program. 14

2.6 Demonstrating the workflow of a typical evolutionary algorithm and the

interaction with a surrogate model. 15

2.7 Demonstrating dominated (blue) and non-dominated solutions (green) with

the aim of maximising objectives. Non-dominated solutions lie along the

Pareto front and represent the best set of solutions found so far for a given

MO problem. 20

2.8 Demonstrating the convolution process in a CNN architecture. At the

top, a kernel convolves values from a data source (i.e., pixel values of an

image), which subsequently, make up a filter map. At the bottom, a series

of kernels can be used to generate the convolutional layer. For simplicity’s

sake, integers have been used throughout this figure but it is important to

note that, typically, values would consist of real numbers. 28

2.9 Example topologies for chain-structured networks (left) and multi-branch

networks (right). Colour coding denotes layers of different types. 29

viii

LIST OF FIGURES ix

4.1 Demonstrating the semantic neighbourhood update. Stage 1 - 3 shows a

typical selection of parents and the subsequent generation of an offspring

individual (blue). Stages 4 - 6 show how the neighbourhood (solutions

close to A) is first ordered by the semantic similarity to the pivot (red),

as selected from the external archive (green), and how the more preferable

individual is replaced in a single replacement strategy. 53

4.2 Diagram illustrating search behaviour for both decomposition and Pareto

dominance-based approaches when maximising a solution. Numbers 1, 2

and 3 denote the typical spread of solutions in objective space at initial,

intermediate and latter generations respectively. The green triangle repre-

sents a typical pivot selection. 62

4.3 Solutions for every generation for the Ion dataset for WGT, TCH and

PBI approaches. Red cross symbols (’x’) denote pivot selections from the

external population for all generations for a single run. 66

4.4 Solutions for every generation for the Yeast1 dataset for WGT, TCH and

PBI approaches. Red cross symbols (’x’) denote pivot selections from the

external population for all generations for a single run. 67

4.5 Duplicate frequency of individuals at first Pareto Front for Yeast2 dataset

for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and

50, for a single run. Frequency is represented by the size of circles e.g., a

large circle denotes a large number of duplicates. 69

5.1 left: NeuroLGP psuedocode for python. right: Functional API example in

TensorFlow [11]. 80

5.2 Diagram of the NeuroLGP genotype-to-phenotype mapping. The pseu-

docode for the set of instructions (left-hand side) can be represented as

the genotype with effective and non-effective code (top) and produces the

resulting phenotype (bottom right-hand side) as a specific neural network

architecture. Note that the non-effective coding is not present in the phe-

notype. 81

5.3 Left: Diagram showing the interplay between a typical evolutionary al-

gorithm and a surrogate model approach. Right: The surrogate model

management strategy is shown on a more granular level. 83

5.4 Convergence plot for BreakHis ×400 for 8 runs and 30 epoches. Solid lines

represent mean training (red) and validation (blue) accuracies. 87

5.5 Accuracy of 6000 individuals (read text). 88

LIST OF FIGURES x

5.6 Fig. 5.6a through 5.6d plot violin plots, showing the distribution of accu-

racies of the architectures with the best fitness for each of the four data

sets across 8 runs. 89

5.7 Avg. MSE between predicted vs. actual fitness over 15 generations for

the surrogate approach. The relative stability shows the robustness of the

surrogate approach. 92

5.8 Predicted vs. actual accuracies (black points), for ×40, ×100, ×200, and
×400 datasets, shown in (a) – (d), respectively, across 8 independent runs

for the surrogate-assisted approach (NeuroLGP-SM). The red line denotes

where the accuracy for both predicted and actual are the same, where

points closer to this line are preferential. 93

5.9 Proportion of evolved network layers for initialisation (blue) and final gen-

erations for NeuroLGP-SM (green) and NeuroLGP (orange) for ×200, and
×400 datasets . 97

6.1 Demonstrating how gene silencing mechanism can be used to correct di-

mension error issues expressed by the chromosome. Effective code in red

denotes potential problem layers. The arrow points to the layer where com-

pilation failed. The left side of each chromosome represents the network

input i.e., where image data is fed into and the right of each chromo-

some represents network output i.e., global average pooling layer. On the

bottom, shows a chromosome where all effective code is blue, denoting a

compilable network. 106

6.2 Sample images of the BreakHis and Chest X-ray datasets based on origi-

nal resolutions. The BreakHis datasets (images on the right) incorporate

different magnification sizes (×40 and ×200) 108

6.3 Predicted vs. actual accuracies (black points), for BreakHis×40, ×200, and
Chest X-Ray datasets, shown in (a) – (f), respectively, across 4 independent

runs for the original surrogate-assisted approach and surrogate-PS). The

red line denotes where the accuracy for both predicted and actual are the

same, where points closer to this line are preferential. 115

6.4 Average number of layers for expensive, surrogate and surrogate-PS across

15 generation for BreakHis ×40 and BreakHis ×200 datasets 117

6.5 Average number of layers for expensive, surrogate and surrogate-PS across

15 generations for Chest X-Ray dataset 117

7.1 Comparison of the original NeuroLGP architecture (left, detailed in Chap-

ter 5) and NeuroLGP-MB architecture (right, detailed in Chapter 6). . . . 122

LIST OF FIGURES xi

A.1 Solutions for every generation for the Ion dataset for WGT, TCH and

PBI approaches. Red cross symbols (’x’) denote pivot selections from the

external population for all generations for a single run. 130

A.2 Solutions for every generation for the Spect dataset for WGT, TCH and

PBI approaches. Red cross symbols (’x’) denote pivot selections from the

external population for all generations for a single run. 131

A.3 Solutions for every generation for the Yeast1 dataset for WGT, TCH and

PBI approaches. Red cross symbols (’x’) denote pivot selections from the

external population for all generations for a single run. 132

A.4 Solutions for every generation for the Yeast2 dataset for WGT, TCH and

PBI approaches. Red cross symbols (’x’) denote pivot selections from the

external population for all generations for a single run. 133

A.5 Solutions for every generation for the Climate dataset for WGT, TCH and

PBI approaches. Red cross symbols (’x’) denote pivot selections from the

external population for all generations for a single run. 134

A.6 Solutions for every generation for the Glass dataset for WGT, TCH and

PBI approaches. Red cross symbols (’x’) denote pivot selections from the

external population for all generations for a single run. 135

A.7 Solutions for every generation for the Parkinson’s dataset for WGT, TCH

and PBI approaches. Red cross symbols (’x’) denote pivot selections from

the external population for all generations for a single run. 136

A.8 Solutions for every generation for the Wine dataset for WGT, TCH and

PBI approaches. Red cross symbols (’x’) denote pivot selections from the

external population for all generations for a single run. 137

A.9 Duplicate frequency of individuals at first Pareto Front for Ion dataset for

WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and 50,

for a single run. 138

A.10 Duplicate frequency of individuals at first Pareto Front for Spect dataset

for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and

50, for a single run. 139

A.11 Duplicate frequency of individuals at first Pareto Front for Yeast1 dataset

for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and

50, for a single run. 140

A.12 Duplicate frequency of individuals at first Pareto Front for Yeast2 dataset

for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and

50, for a single run. 141

LIST OF FIGURES xii

A.13 Duplicate frequency of individuals at first Pareto Front for Climate dataset

for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and

50, for a single run. 142

A.14 Duplicate frequency of individuals at first Pareto Front for Glass dataset

for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and

50, for a single run. 143

A.15 Duplicate frequency of individuals at first Pareto Front for Parkinson’s

dataset for WGT, TCH and PBI approaches for generations 1, 10, 20, 30,

40 and 50, for a single run. 144

A.16 Duplicate frequency of individuals at first Pareto Front for Wine dataset

for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and

50, for a single run. 145

B.1 Test #4, testing branching inputs . 147

B.2 Test #19, multiple sums, joining, 3 branches (complex topology) 148

B.3 Test #23, randomly generated . 149

List of Tables

4.1 Summary of the approaches and where they are used. In Chapter 4.3.2

SDO is also applied to MOEA/D to demonstrate the limitations of this

method. 48

4.2 Details on binary imbalanced classification data sets used in our research 54

4.3 Confusion Matrix . 54

4.4 Summary of parameters used in our experiments. 55

4.5 Average hypervolume (± std. deviation) and last run Pareto Front for

NSGA-II SDO, NSGA-II PSDO and NSGA-II SSC methods for Ion dataset

only. Each is compared against NSGA-II, results of which are found in

Table 4.6 . 56

4.6 Average hypervolume (± std. deviation) and last run Pareto Front for

NSGA-II and SPEA2 for 50 independent runs. 56

4.7 Payoff tables for canonical NSGA-II, NSGA-II SDO, NSGA-II PSDO and

NSGA-II SSC for each of the 6 data sets 57

4.8 Payoff tables for canonical SPEA2, SPEA2 SDO, SPEA2 PSDO and SPEA2

SSC for each of the 6 data sets. 58

4.9 Average (± standard deviation) hypervolume of evolved Pareto-approximated

fronts and PO fronts for MOEA/D over 50 independent runs. 61

4.10 Average (± standard deviation) hypervolume of evolved Pareto-approximated

fronts and PO fronts for the MOEA/D semantic-based method for SDO

with over 50 independent runs. Bold indicates better performance com-

pared to the baseline MOEA/D results reported in Table 4.9. 61

4.11 Average (± standard deviation) hypervolume of evolved Pareto-approximated

fronts and PO fronts for MOEA/D with WGT, TCH and PBI methods of

decomposition for 30 runs. 65

4.12 Average (± standard deviation) hypervolume of evolved Pareto-approximated

fronts and PO fronts for semantically ordered neighbourhoodMOEA/D

with WGT, TCH and PBI methods of decomposition for 30 runs. 65

xiii

LIST OF TABLES xiv

5.1 Summary of encodings, representations and skip connections of some of the

most notable Neuroevolutionary approaches. 78

5.2 Details of the classification data sets used in our research as well as prelim-

inary results for an initial surrogate model of 100 networks. A ’-’ indicates

the experiment did not complete within 48 hrs. 79

5.3 Flattened size conditions for fully connected layer. Additional handling is

done to remove layers if the flattened layer exceeds 1,500,000. 84

5.4 List of data augmentation techniques and parameters used. See [12], for

more details on each augmentation technique. 85

5.5 Details of the experimental setup for NeuroLGP method. 86

5.6 Accuracy results for approaches using BreakHis dataset (×40, ×100, ×200
and ×400). Results from this work are highlighted in boldface and are

presented in the last four rows (Where µ stands for mean and B stands for

best). Aug: Data augmentation, Ens: Ensemble, WSI: wholes slide image,

CNN: convolutional neural network, SVM: support vector machine, AE:

auto-encoder, DBN: deep-belief network. 91

5.7 Average MSE and Kendall’s Tau for different dataset magnifications. . . . 91

5.8 Average number of GPU hours per run for expensive and surrogate model.

The last column denotes the reduction in time for each of the 4 datasets. 94

6.1 Comparison of the original NeuroLGP architecture (left, detailed in Chap-

ter 5) and the new NeuroLGP-MB architecture (right, detailed in this

chapter). Graphs were generated using the open-source package Netron [13]. 103

6.2 Left: table showing the genotypic representation. Bold denotes effective

code. Registers have been colour coded with full explanation in the text.

Right: corresponding architecture for table on left. Following the effective

code in the table allows us to see how this graph is constructed. 105

6.3 Details on datasets in terms of number of training and test instances, phe-

notype vector size and image dimensions. Validation, test1 and test2 use

approximately the same number of instances. 109

6.4 Details of experimental setup for NeuroLGP method. 109

6.5 Comparison of the NeuroLGP-MB architecture (left) and the VGG16 (right,

detailed in this chapter). Graphs were generated using the open-source

package Netron [13]. 111

6.6 Results for average train, validation, test1 and test2, where the best indi-

vidual is selected from each run, across 4 runs, for each experiment type

for the BreakHis ×40, BreakHis ×200 and Chest X-Ray datasets. 112

LIST OF TABLES xv

6.7 Average MSE, Kendall’s Tau and R2 for different datasets. The naming

convention has been shortened for ease of reading, such that, the origi-

nal surrogate model is denoted as ‘Sur’ where the pre-selection method is

denoted as ‘Sur-PS’. 113

6.8 Average number of GPU hours per run for expensive, surrogate and surrogate-

PS models. The last two columns denote the reduction in time for surrogate

and surrogate-PS when compared against the expensive model. 116

6.9 Proportions of concatenation layer for elite population members in final

generation for expensive, surrogate and surrogate-PS, for BreakHis ×40,
BreakHis ×200 and Chest X-Ray datasets. Proportion values are between

0 and 1. 118

6.10 Average test2 accuracies for different initial epoch numbers during surro-

gate training, for the BreakHis ×40, BreakHis and ×200. 119

A.1 Average hypervolume (± std. deviation) and last run Pareto Front for

NSGA-II and SPEA2 for 50 independent runs. 127

A.2 Average hypervolume (± std. deviation) and last run Pareto Front for

NSGA-II SDO, NSGA-II PSDO and NSGA-II SSC methods. 128

A.3 Average hypervolume (± std. deviation) and last run Pareto Front for

SPEA2 SDO, SPEA2 PSDO and SPEA2 SSC methods. 129

B.1 Example configuration files for original NeuroLGP 150

B.2 Example configuration files for NeuroLGP-MB 152

B.3 Genotype-to-phenotype mapping of NeuroLGP-MB 153

1
Introduction

1.1 Motivation

Deep learning has had a transformative effect on society in the last number of years,

from the application of deep learning in large language models like ChatGPT [14], to its

application in autonomous vehicles [15] and for diagnostics in the health care sector [16],

to name just a few. Deep Neural Networks (DNNs) [17] are a specific type of neural

network used in deep learning, characterised by multiple layers that enable them to learn

complex patterns in the underlying input data.

Traditionally, DNNs required either some specialised expert knowledge in their con-

struction or random search approaches, however, attention has now turned to Neural

Architecture Search (NAS) as a means to find high-performing networks. There are a

number of different machine learning approaches for conducting NAS, such as one-shot

models [18] and reinforcement learning [19], but for this thesis we focus exclusively on

neuroevolution, a technique which uses Evolutionary Algorithms (EAs) [20] to evolve

DNN architectures. In this work we predominately evolve Convolutional Neural Net-

works (CNNs), which are often used to process structured grid data such as image data,

and are often used for tasks such as image classification or object detection, though we

look exclusively at image classification. CNNs apply kernels to extract important feature

information, like edges, textures, and patterns based on the input image data. For image

classification, a fully connected layer is then used to make a classification decision on the

extracted features and a final softmax layer can then be used to produce probabilities for

different classes.

One of the major challenges of neuroevolution is the extraordinary cost associated

with training networks for evaluation. For instance, with very large models, evaluating

even a single epoch comes with a considerable cost [21]. To this end, attention has turned

to using surrogate-assisted evolutionary algorithms (SAEAS) [22]. SAEAs can be used to

estimate the performance of neural network architecture, without the need to fully train

1

CHAPTER 1. INTRODUCTION 2

every network, by substituting the traditional expensive model with a more cost-effective

technique. In particular, interpolation-based surrogate modelling techniques have shown

much promise [23] [24].

Performance prediction of DNNs however often use genotypic information, i.e., infor-

mation on the physical characteristics of the network such as the layers, parameters and

so forth, to encode information to use with distance-based interpolation surrogate ap-

proaches [25]. A drawback, however, is that for complex topologies, such as multi-branch

networks, the genotypes of each network may differ by having varying dimension sizes

and as such require clever encoding strategies to compare genotypes, such as using graph-

edit distance [26], though such methods may be sub-optimal [23] [24]. Using phenotypic

information, however, has shown some promise [23] [27], although to date they have not

been applied to large networks like DNNs and issues around the dimensional limitations

of using phenotypic distances for interpolation remain.

Aligned to this notion of phenotypic distance is the use of semantic-based distance

metrics in Genetic Programming (GP) [28], which use the behaviour of a GP program

in order to create distance metrics. Likewise, using our knowledge of semantics, we de-

signed a surrogate-assisted evolutionary approach using a Linear Genetic Programming

(LGP) [10] approach to find a more cost-effective approach for neuroevolution. This

method, referred to as Neuro-Linear Genetic Programming (NeuroLGP) is capable of

evolving variable-length, chain-structured architectures. Using NeuroLGP, we performed

an in-depth analysis on the robustness of the surrogate model as well as the cost savings

in terms of time and energy, while addressing the aforementioned dimensional limitations.

Next, we scaled the topological complexity of possible networks by further enhancing the

encoding of our LGP approach. This new method, entitled NeuroLGP Multi-Branch

(NeuroLGP-MB), allowed our neuroevolution technique to search for architectures with

more modern characteristics such as multiple branches [29] and skip-connection [30].

Again, we performed an in-depth analysis of this novel approach.

1.2 Research Goals

The main research goals for this thesis are as follows:

(1) Demonstrate the validity and adaptability of using semantic-based distances in in-

trinsically different EA workflows, using multi-objective (MO) optimisation as a test

case, for their later use in SAEAs (2).

(2) Develop a robust and effective surrogate-assisted model management strategy cen-

tred around phenotypic distance vectors, based on our knowledge of semantic-based

CHAPTER 1. INTRODUCTION 3

distance metrics in (1), demonstrating significant time and energy saving when con-

sidering this surrogate approach.

(3) Address current dimensionality limitations of using traditional Kriging by consid-

ering for the first time Kriging Partial Least Squares [31] for neuroevolution, in

conjunction with (2).

(4) Develop a novel neuroevolution approach based on LGP, demonstrating that this

method is capable of creating architectures that are competitive with state-of-the-

art hand-crafted architectures.

(5) Demonstrate that our approach is still robust when our architecture is scaled from

a chain structure topology to a more complex multi-branch topology.

1.3 Thesis Structure

Chapter 2 details the background and general methodologies of this work. First, we detail

the evolutionary process of Evolutionary Algorithms and provide details on GP focusing

on Tree-based Genetic Programming, LGP and then provide a formal definition of Seman-

tics with an example of semantics in GP. Next, we detail surrogate-assisted evolutionary

algorithms focusing on Kriging and its variant Kriging Partial Least Squares (KPLS)

before defining the phenotypic distance vector used in this work. Next, we outline the

Multi-Objective (MO) frameworks used exclusively in Chapter 4, namely, detailing in

full how these algorithms work. Finally, we discuss DNNs, detailing the most important

concept around CNN architectures before discussing neuroevolution and the two main

architecture types in terms of their topology.

Chapter 3 details the relevant literature for this work. First, a brief, independent history

is given of EAs and artificial neural networks, highlighting major works from the last 70+

years. Next, we discuss NAS focusing on three of the major areas in this field. Focusing

explicitly then on neuroevolution, we look at major publications relating to neuroevolu-

tion of traditional artificial neural networks and then neuroevolution of DNNs. We then

discuss notable works relating to surrogate-assisted approaches for neuroevolution, before

finally, discussing works on semantics in GP and the closely aligned concept of pheno-

typic distance, detailing some relevant publications as they relate to surrogate-assisted

neuroevolution.

Chapter 4 provides a study on semantics in GP from a unique perspective, focusing on an

indirect semantic method centred on semantic-based distances, with the ultimate goal of

incorporating it into SAEAs for neuroevolution, as shown in Chapters 5 and 6. To do so,

CHAPTER 1. INTRODUCTION 4

we use MO optimisation as a test case, which uses intrinsically different EA frameworks

and, as such, highlights the adaptability and versatility of considering semantics-based

approaches on a whole. The semantic-based distance metrics we use help promote diver-

sity of solutions, which in turn help to improve evolutionary search. We provide a detailed

discussion at the end of this chapter on the applicability of semantic-based approaches

for SAEAs in neuroevolution.

Chapter 5 introduces the original NeuroLGP approach. Here we provide a further motiva-

tion for why we are considering linear genetic programming and motivation for consider-

ing KPLS. After detailing the NeuroLGP approach and the surrogate model management

strategy, we analyse our results from three experimental models: the baseline model,

which constructs network layers in a random order but maintains a repair mechanism

to ensure validity; the expensive model, which is the NeuroLGP approach where every

network is fully trained; and the surrogate model, which is the surrogate model variant

NeuroLGP-SM. We then perform an in-depth analysis of the surrogate model perfor-

mance, as well as an analysis of the genotype. Furthermore, we detail some limitations

of our approach.

Chapter 6 introduces the NeuroLGP-MB approach. First, we detail the encoding up-

dates that have been developed in order to integrate multi-branch connections for the

NeuroLGP-MB approach followed by a discussion on genetic operations that have been

developed to specifically address validity issues for networks that have negative dimension

or memory issues during compilation. We then detail a new surrogate variant that uses

a pre-selection design-of-experiments approach to select individuals from a larger pool

of individuals during initialisation. In the results section, we perform a similar analysis

to Chapter 5, with a focus on the new surrogate model variant, demonstrating that the

SAEA is robust and produces high-performing networks. We then analyse network depth

and topological complexity, before discussing the potential for further computational re-

duction by varying the number of initial epochs we use to train our surrogate model.

Chapter 7 details the original contributions of the thesis while drawing some conclusions

on the use of SAEAs in neuroevolution for NAS in DNNs. Finally, we conclude with a

discussion on some of the limitations while also discussing future work.

CHAPTER 1. INTRODUCTION 5

1.4 List of Publications

1.4.1 Peer-reviewed Publications Pertinent to this Thesis

Journal Articles

[1] Edgar Galván, Leonardo Trujillo, and Fergal Stapleton. Semantics in multi-

objective genetic programming. Applied Soft Computing, 115:108143, 2022

Conference Papers

[2] Edgar Galván and Fergal Stapleton. Semantic-based distance approaches in

multi-objective genetic programming. In 2020 IEEE Symposium Series on Compu-

tational Intelligence (SSCI), pages 149–156. IEEE, 2020

[3] Fergal Stapleton and Edgar Galván. Semantic neighborhood ordering in multi-

objective genetic programming based on decomposition. In 2021 IEEE Congress on

Evolutionary Computation (CEC), pages 580–587. IEEE, 2021

[4] Edgar Galván, Leonardo Trujillo, and Fergal Stapleton. Highlights of seman-

tics in multi-objective genetic programming. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion, pages 19–20, 2022

[5] Fergal Stapleton and Edgar Galván. Initial steps towards tackling high-dimensional

surrogate modeling for neuroevolution using kriging partial least squares. In Pro-

ceedings of the Companion Conference on Genetic and Evolutionary Computation,

GECCO ’23 Companion, page 83–84, New York, NY, USA, 2023. Association for

Computing Machinery

[6] Fergal Stapleton, Brendan Cody-Kenny, and Edgar Galván. Neurolgp-sm: A

surrogate-assisted neuroevolution approach using linear genetic programming. In

International Conference on Optimization and Learning (OLA), 2024

[7] Fergal Stapleton and Edgar Galván. Neurolgp-sm: Scalable surrogate-assisted

neuroevolution for deep neural networks. In 2024 IEEE Congress on Evolutionary

Computation (CEC), pages 1–8, 2024

1.4.2 Peer-reviewed Publications Not Pertinent to this Thesis

Journal Articles

[8] Edgar Galván and Fergal Stapleton. Evolutionary multi-objective optimisation

in neurotrajectory prediction. Applied Soft Computing, 146:110693, 2023

CHAPTER 1. INTRODUCTION 6

Conference Papers

[9] Fergal Stapleton, Edgar Galván, Ganesh Sistu, and Senthil Yogamani. Neu-

roevolutionary multi-objective approaches to trajectory prediction in autonomous

vehicles. In Proceedings of the Genetic and Evolutionary Computation Conference

Companion, GECCO ’22, page 675–678, New York, NY, USA, 2022. Association for

Computing Machinery

2
Background

In Chapter 2, we will cover the background information and core concepts that serve as

a foundation for later chapters. First, we give a general overview of Evolutionary Algo-

rithms (EAs), discussing some of the main paradigms within this field, as well as briefly

covering the main steps of an evolutionary algorithm (Chapter 2.1). Next, we delve into

a specific branch of EA known as Genetic Programming (GP) (Chapter 2.2), an approach

that seeks to evolve program trees to find candidate solutions for a given problem. We

also discuss Linear Genetic Programming (LGP), where programs are represented as a

linear sequence of instructions. Following on, we discuss Surrogate-Assisted Evolutionary

Algorithms (SAEAs), which are evolutionary-based approaches that make use of surrogate

models, which are cost-effective estimators for some more expensive optimisation function

(Chapter 2.3). Finally, we discuss Multi-Objective Optimisation (MOO) and then Deep

Neural Networks (DNN) (Chapters 2.4 and 2.5, respectively). The aim of MOO is to find

candidate solutions that maximise the fitness of more than one objective. DNNs are an

extension of artificial neural networks that use architectures that are capable of learning

more complex representations compared to more traditional artificial neural networks, in

particular, we discuss Convolutional Neural Networks (CNNs) that are often adopted in

image classification tasks.

2.1 Evolutionary Algorithms

EAs are a branch of search heuristics inspired by biological reproduction and are well-

established problem-solving approaches that are adept at handling problems with chal-

lenging features, such as discontinuities in the fitness landscape, multiple local optima,

non-linear interactions between variables, to name a few [20]. Furthermore, the popular-

ity of EAs can be attributed to their robust nature, flexibility, being assumption-free and

capable of focussing on more than one solution [32]. Broadly speaking, there are four main

groups which EAs can fall under; Genetic Algorithms [33], Evolutionary Strategies [34],

7

CHAPTER 2. BACKGROUND 8

Figure 2.1: Demonstrating the workflow of a typical EA. See text for details on each step.

Evolutionary Programming [35] and Genetic Programming [36]. However, the lines of

separability between these approaches have become less defined in recent years, owing to

the flexibility in how these approaches are constructed. Moreover, EAs are highly adapt-

able with other machine-learning (ML) approaches and have helped improve the design

and development of ML techniques, for instance, EAs can be used in hyper-parameter

optimisation. More recently, EAs have been widely used in neural architecture search for

Artificial Neural Networks (ANNs) [37], finding optimal architectures and hyperparame-

ters in a field commonly referred to as neuroevolution. EAs have also been used in the

training of DNNs, but to a lesser degree.

Typically, the evolutionary process, as demonstrated in Fig. 2.1, for an EA works

as follows: i) a population of randomly generated candidate solutions are initialised and

their fitness evaluated, ii) a selection process determines which individuals will be genet-

ically modified, iii) genetic operations are performed, changing the internal structure of

the candidate solutions, iv) a new population is generated by, first, taking a portion of

the population from before genetic operations were applied and, second, the newly gen-

erated individuals, which in turn will have their fitness evaluated, and v) the process is

repeated until some convergence criteria is met or the maximum number of generations

have occurred. The above description, particularly step iv), depends on whether the

methodology is steady-state or generational. In a steady-state approach technically there

are no generations, and genetic operations are performed on only one or two individuals

per iteration, whereas, in the case of a generational approach a large selection of the

CHAPTER 2. BACKGROUND 9

population is selected for genetic operations. In the case of steady-state an appropriate

replacement strategy must be employed to ensure convergence. In this work, we focus

exclusively on generational approaches.

Another key component of EAs is the genetic representation. There are two forms

of representation, the genotypic representation, which is some encoding of the problem

solution and the phenotypic representation which is a representation of the observed

solution itself. During the evolutionary process, the genotype is what will be altered

by our EA. In the context of neuroevolution, for instance, an EA might have a genotype

consisting of a bitstring, a program tree or a graph, but the phenotype will be the observed

solution, which in this case is the resulting neural network.

2.2 Genetic Programming

2.2.1 Tree-based Genetic Programming

Genetic programming (GP), popularised by Koza in the early 90s [36], is one of the

major paradigms of EAs [20], a branch of biological-inspired machine learning algorithms

that mimic evolution to solve optimisation problems. GP, in particular, evolves program

structures with the aim of finding candidate solutions to domain-specific tasks such as

classification or symbolic regression problems. Like many EAs, traditional tree-based GP

takes a population of initially randomised programs that are evolved over a set number

of generations via genetic operations known as selection, crossover and mutation, to find

candidate solutions to a pre-defined problem, where the ultimate goal is to find the best-

performing program for a given solution.

The program structure of tree-based GP consists of branching leafs and nodes, where

nodes may represent operators or functions and leafs represent variables or constants.

The possible set of instructions or values available to leafs and nodes are referred to as

the function set and terminal set, respectively. For instance, in a symbolic regression

problem F = {+,−, ∗,%} may represent the function set and T = {x,−1, 0, 1, 2} may

represent the terminal set. For a classification problem, the terminal set will also include

the features of a dataset, which is of particular relevance to our work on imbalanced

datasets as discussed in Chapter 4. Next, we discuss the steps involved in GP.

Initialise population

To start, we must first create an initial population of programs which we will work on.

Generally, programs are initialised to have random structures with some control over the

depth that the initial program tree has. Some initialisation techniques that control the

CHAPTER 2. BACKGROUND 10

depth of tree-like individuals are full, grow and ramped half-and-half [36]. If we define

the depth of a tree as the depth of its deepest leaf, then the full method initialises the

programs so that their leaves are all the same depth. The grow method on the other hand

terminates once terminals are filled for a subtree that has reached the maximum depth.

The ramped half-and-half method is a compromise between these two methods where half

the population is created using the full method and the other half with grow.

Fitness Evaluation

Fitness evaluation determines the fitness of any particular program within the population.

For example, in a binary classification problem, fitness evaluation is an indication of how

accurate that program is at correctly classifying a particular class. In a symbolic regression

problem, it is generally some measure of the difference between the candidate program

and the true program, given a set of test cases. For more details on particular problem

domains that can be explored using GP, see [36].

Selection

Selection is used to determine which individuals we wish to perform genetic operations

on. A common approach is to use Tournament Selection [20]. This approach works

by randomly selecting a small subset of the population and selecting one or two of the

best-performing individuals in terms of fitness, which in turn we will use to perform our

genetic operations on. Carefully selecting this subset size helps balance the diversity

of individuals while also helping to converge on better solutions. Many other selection

operators have been proposed in specialised literature such as wheel selection and rank

selection [20], but are not used in this thesis.

Crossover and Mutation

There are two main forms of genetic operation that alter the genetic structure of our

program, namely crossover and mutation. Conceptually, crossover is analogous to biolog-

ical sexual reproduction where the genetic material of an offspring is a composite of its

parents’ genetic material. Crossover is responsible for exploiting the search space while

mutation explores it. For example, with subtree crossover, a node (referred to as the

crossover point) for each copied parent program is randomly selected, then the child pro-

grams are created by first removing the subtrees of each parent below the crossover point,

and then swapping the subtrees at this point to effectively create two offspring. This is

demonstrated in Fig. 2.2.

Mutation operates on a single parent to produce offspring and as such no genetic

material is shared within the population. Mutation may occur on a single randomly

CHAPTER 2. BACKGROUND 11

Parent A Parent B Offspring A Offspring B

+ *

- -

*+

-x1

x1

x1

x1x3 x3x2 x2331 1 22

((2 - x3) + x1) ((1 - x1)*(3 + x2)) ((1 - x1)*(2 - x3))((3 + x2) + x1)

Crossover
Point

Crossover
Point

+ + -

Figure 2.2: Demonstrating how crossover operation creates two offspring programs
through subtree crossover.

selected leaf or node, as in the case of single-point mutation. Here if a node is selected

a primitive is swapped with a primitive of the same arity. Another example is subtree

mutation, where a node is selected and the subtree branching from that node is randomly

replaced with a new subtree.

Elitism

The above steps will loop until a set number of generations have been reached or until

some convergence criterion has been met (red diamond in Fig. 2.1). At each generation,

an elitism mechanism ensures that the best-performing individuals are retained into the

next generation. This ensures we are continually updating the population with better-

performing or equally good individuals. In the final generation, the best individual or

program can then be selected from the final generation and used to report the best solution

found so far.

2.2.2 Linear Genetic Programming

A variation of traditional tree-like GP is Linear Genetic Programming (LGP) [10]. Unlike

tree-based GP where the encoding encapsulates branching operations within the program

structure, LGP instead encodes a linear sequence of program instructions similar to how

assembly languages operate. As part of this encoding, LGP makes use of registers, which

are a type of computer memory for storing or manipulating data, while executing instruc-

tions, in a low-level programming context. The content of these registers are altered using

instruction operations.

There are three main components to instruction; an operand which performs a specific

function on one or more registers which store the result in a destination register. In

the case of 2-register instruction encoding, the operand operates on a single instruction

CHAPTER 2. BACKGROUND 12

void gp (r)

double r [8] ;

{ . . .

r [0] = r [5] + 71 ;

// r [7] = r [0] − 59 ;

i f (r [1] > 0)

i f (r [5] > 2)

r [4] = r [2] ∗ r [1] ;

// r [2] = r [5] + r [4] ;

r [6] = r [4] ∗ 13 ;

r [1] = r [3] / 2 ;

// i f (r [0] > r [1])

// r [3] = r [5] ∗ r [5] ;

r [7] = r [6] − 2 ;

// r [5] = r [7] + 15 ;

i f (r [1] <= r [6])

r [0] = s i n (r [7]) ;

}

Figure 2.3: LGP example in C lan-
guage. Reproduced from Brameier and
Banzhaf’s book ‘Linear Genetic Pro-
gramming’ [10]. The original represen-
tation uses registers to control the flow
of data between a series of instructions
which are executed sequentially.

Parent A

Parent B

Offspring A

Offspring B

Offspring A

Offspring B

ii) Swap segments (green hatching) between parent A and B to
create offspring A and B.

i) First select crossover points (grey arrows) at random from code.
These points will be used to denote segment ends for crossover.

iii) Ensure input and output registers of effective code (blue arrows)
match, performing point mutation if necessary.

Figure 2.4: Demonstrating how crossover operation works in Linear Genetic Program-
ming.

CHAPTER 2. BACKGROUND 13

and for a 3-register instruction encoding operates on two instructions (i.e., consider an

add function that adds two numbers, where each number is stored in its own register

with an additional destination register). Fig. 2.3 highlights an example of LGP written

in C code, where r[i] denotes the ith register. This example contains both effective

and non-effective lines of code, where effective lines of code represent lines that will

be compiled and executed and the non-effective lines of code are commented out and

subsequently not compiled. Each line of code is executed imperatively. The register

r[0] is a specially designated register for the final output of the program. In the case of

conditional statements, like the IF statement, if the condition has not been met then the

code within the IF statement can be treated as non-effective.

Many of the concepts outlined in Chapter 2.2.1 can still be used with this type of

representation (LGP)1, albeit now genetic operations in LGP work by either modifying

these registers or the instructions that operate on them. In Fig. 2.4, we demonstrate

how crossover works within the context of LGP. The representation denotes a sequence

of effective code (light blue) and non-effective code (light grey). In our work, we perform

crossover specifically on effective code only and the segments that are swapped (green

hatching) use point mutation to ensure resulting offspring are executable by linking them

to corresponding effective sections of the code base. We can see from Fig. 2.2, that both

the representation and genetic operations contrast significantly between LGP and tree-

based GP. There are a number of properties that make LGP appealing for neuroevolution,

such as the interpretability of solutions or the ease at which to employ crossover and

mutation, but for a full discussion, please see Chapter 5.2.

2.2.3 Semantics in Genetic Programming

Semantics can be seen as the behaviour of a GP program [1, 38]. This behaviour is the

output of a GP program when executed on a set of fitness cases. Fig. 2.5 demonstrates

this concept. We can see that for a number of fitness cases x, as shown in the table on

the right, we get an output vector that represents the semantics for the program tree as

shown on the left. Following [39], let p ∈ P be a program from a given programming

language P . The program p will produce a specific output p(in) where input in ∈ I. The

set of inputs I can be understood as being mapped to the set of outputs O which can be

defined as p : I → O.

Def 1. Semantic mapping function is a function s : P → S mapping any program p

from P to its semantics s(p), where we can show the semantic equivalence of two programs;

s(p1) = s(p2) ⇐⇒ ∀ in ∈ I : p1(in) = p2(in)
�� ��2.1

1The original LGP work [10] uses a steady-state methodology but in this work, we use generational-
based methodologies exclusively.

CHAPTER 2. BACKGROUND 14

x

x3
((3 - x) * x)

Input output
 0.0 0.00
 0.5 1.25
 1.0 2.00
 1.5 2.25

Semantics = [0.00, 1.25, 2.00, 2.25, 2.00]

-

*

 2.0 2.00

Figure 2.5: Demonstrating an example of semantics in GP. Given a set of inputs (or
fitness cases) for x, semantics can be shown as the vector output of the GP program.

The definition, as presented in Eq. 2.1, produces three important and intuitive prop-

erties of semantics:

(1) Every program has only one semantics attributed to it.

(2) Two or more programs may have the same semantics.

(3) Programs that produce different outputs have different semantics.

In Def. 1, we have not given a formal representation of semantics. In what follows,

semantics will be represented as a vector of output values which are executed by the pro-

gram under consideration using an input set of data. For this representation of semantics,

we need to define semantics under the assumption of a finite set of fitness cases, where a

fitness case is a pair comprised of a program input and its respective program output I

× O. This allows us to define the semantics of a program as follows:

Def 2. The semantics s(p) of a program p is the vector of values from the output set

O obtained by computing p on all inputs from the input set I:

s(p) = [p(in1), p(in2), ..., p(inl)]
�� ��2.2

where l = |I| is the size of the input set.

Now that we have a formal definition of semantics within the context of GP we can dis-

cuss how it relates to phenotypic distance vectors, which in turn can be used in surrogate

modelling and neuroevolution in whole, as discussed in Chapter 2.3.

CHAPTER 2. BACKGROUND 15

Figure 2.6: Demonstrating the workflow of a typical evolutionary algorithm and the
interaction with a surrogate model.

2.3 Surrogate-assisted Evolutionary Algorithm

2.3.1 Surrogate Model-based Optimisation

In this work, the aim of a surrogate model [22], also referred to as a meta-model, is to

sufficiently approximate an estimate of the fitness values of a potential solution, while

reducing the run time of the evolutionary process, compared to the run time of using

the real fitness function alone. This requires that the surrogate model is well-posed and

requires a robust model management strategy, otherwise, the EA may converge to a false

optimum [22]. The surrogate model management strategy is responsible for adequate

sampling of data to ensure the surrogate model is well-informed, using model validation

to ensure the surrogate model makes accurate predictions, and model updating to ensure

new samples are continually supplied to refine the surrogate model during optimisation.

Fig. 2.6 shows the interaction between a typical EA and a surrogate model. The steps

are as follows: firstly, some initial modelling is performed based on randomly selected

individuals or based on some design of experiment techniques; secondly, after the initial

modelling, the surrogate model can be used to estimate the fitness of individuals within

the EA; thirdly, we select individuals which we will choose to fully evaluate, based on an

acquisition function, to better inform the accuracy of our surrogate model and lastly, we

update the surrogate model based on the previously selected individuals as part of the

overall model management strategy.

CHAPTER 2. BACKGROUND 16

Typically, the surrogate model differs from the parent model, in that, instead of being

trained directly on data relating to the problem domain, the surrogate model is trained off

the design of the parameter space. Here, the goal is to identify and further explore regions

of this design space that will produce preferable parameters. As such, interpolation-based

approaches may be used to simulate the regions of the parameter space, such as Gaussian

processes, commonly referred to as Kriging. Another benefit to the Kriging approach is

that it allows for estimates of the uncertainty of predictions.

2.3.2 Kriging (Gaussian Processes)

Kriging is an interpolation-based technique that assumes spatial correlation exists between

known data points, based on the distance, and variation between these points. We aim

to use observations y = [y(x(1)), y(x(2)), ...y(x(n))] to help estimate an unknown function

value ŷ(x∗) for the unknown data x∗, where n is the number of known data points in the

training data and x is a 1× d dimensional vector. More specifically, x(j) = [x
(j)
1 , . . . , x

(j)
d]

is the jth training point of a 1 × d vector for j = 1, . . . , n training points, where X is

the matrix [x(1)T , . . . , x(n)T] and is a collection of all training samples for the surrogate

model, where T denotes the transpose.

A kernel function k(·) is used to express the spatial correlation between two samples

xi and x
′
i as shown in Eq. 2.3.

k(x, x′) = σ2
d∏

i=1

exp(−θi(D(xi, x
′
i)))

= σ2
d∏

i=1

exp(−θi(xi − x′i)
2)

�� ��2.3

where the θ hyperparameters control the rate at which the correlation decays to zero

between xi and x
′
i and σ2 is how much a process varies from expected performance, and

D is the distance between xi and x
′
i. The θ hyperparameters are determined using the

Maximum Likelihood (ML) estimator, this however, leads to a significant drawback when

considering high-dimensional data, which is discussed in more detail in Chapter 2.3.3.

The θ hyperparameters are crucial in measuring the correlation between the sample

points. While it is possible to use isotropic kernels, i.e., a kernel that uses a singular θ

hyperparameter, an assumption needs to be made that each element or feature of the

training points ought to have the same length scale. On the other hand, anisotropic

kernels allow for feature-specific length scales. In other words, for an anisotropic kernel,

the θ hyperparameters account for the varying relevance of features within each training

point, or, more explicitly, θi determines the sensitivity of the kernel for the i-th feature

CHAPTER 2. BACKGROUND 17

in the training points. In the context of a classification problem, our features relate to

the probability value for a particular class.

From the covariance kernels, we can generate a best linear unbiased predictor for

ŷ(x∗), given by the observations y, and is shown in Eq. 2.4,

ŷ(x∗) = f(x∗)T β̂ + rTx∗XR−1(y − Fβ̂)
�� ��2.4

where f(x∗) = [f1(x
∗), . . . , fm(x∗)]T is an 1 × m vector of basis functions, F =

[f(x(1)), . . . , f(x(n))]T is an n × m matrix, β is the vector of generalised least-square es-

timates of β = [β1, . . . , βm]T , R is an n × n matrix of of the pairwise covariances of all

training samples X such that R = [rx(1)X . . . rx(n)X]. Notably, rx∗X = [rx∗x(1) , . . . , rx∗x(n)]T

is a 1×n vector and can be understood as covariance vector between the new observation

and all the training samples X. More generally, rxx′ is the correlation kernel between x

and x′ and relates back to the kernel function k as previously defined in Eq. 2.3, with

Eq. 2.5

k(x, x′) = σ2r(x, x′) = rxx′
�� ��2.5

2.3.3 Kriging Partial Least Squares

The popularity of the Kriging method stems from its ability to accurately simulate com-

putationally expensive processes while also giving an estimate of the predictive error,

however, a major drawback of Kriging is that for high-dimensional data, the method

itself becomes computationally expensive to perform. This is due, firstly, to the size of

the covariance matrix becoming large as the number of sample points increases, which

subsequently needs to be inverted. Secondly, to further compound the issue, the hyper-

parameters θ need to be estimated, which requires the covariance matrix to be inverted

several times. Eq. 2.6 shows the ML for θ

logML(θ) = −1

2
[n ln

1

n
(y − F (F TR−1(θ)F)−1F TR−1(θ)y)T

× R−1(θ)(y − F (F TR−1(θ)F)−1F TR−1(θ)y)) + ln detR(θ)]

�� ��2.6

For a more comprehensive derivation of the logML equation please refer to the [31]. The

key takeaway, however, is that concerning Eq. 2.6, R−1 requires multiple inversions and

has a cost of O(n3) associated with it, where n is the number of sample points (individuals

in the training data). Kriging Partial Least Squares (KPLS) seeks to address the issue of

high-dimensionality by effectively reducing the number of parameters calculated [31]. It

does so using Partial Least Squares (PLS) which projects the high-dimensional data into

a lower dimension using principal components.

CHAPTER 2. BACKGROUND 18

The PLS approach works by finding a linear relationship between input variables and

output variables by projecting the input variable into a new space using principal com-

ponents. More specifically, the principal components are effectively linear combinations

of the input variables and represent the new coordinate system, obtained by rotating the

original system with axes, x1, . . . , xd. There are three main steps for the KPLS approach,

i) PLS is used to define weight parameters w, ii) a new covariance kernel is created using

the PLS weights that reduce the number of hyper-parameters and iii) the parameters are

then optimised. Eq. 2.7 details the KPLS covariance kernel

k(x, x′) = σ2
h∏

l=1

d∏
i=1

exp(−θl(w
(l)
i xi − w

(l)
i x′i)

2)
�� ��2.7

where w are rotated principal directions which maximise the covariance and are a measure

of how important each principal component is. The number of principal components h

is much less than m which allows for the substantial increase in performance associated

with KPLS. For full details of the method, see [31].

2.3.4 Phenotypic Distance Vectors

The use of phenotypic information derived from neural networks, discussed in detail in

Chapter 5, can be extremely beneficial in creating distance metrics for use in surrogate

modelling [23, 27]. We will discuss in Chapter 4, and have already discussed in Chap-

ter 2.2.3, the importance of semantics in Genetic Programming. In particular, we have

learned how diversity can be promoted by carefully adopting semantics in GP. This has

led to a considerable increase in performance in GP [1]. We have demonstrated how

semantic-based vectors can be successfully used in surrogate models to correctly estimate

fitness values of individuals without explicitly evaluating them through the use of a fitness

function. We will discuss this in detail in Chapters 5 and 6.

In the context of neuroevolution, we can define a solution sample x as having the

semantic or phenotypic behaviour of the ith program such that xi = s(pi), where the

semantics s(p) of a program p is the vector of values from the output. From Eq. 2.3, we

can now then define our distance D as a phenotypic distance, represented in Eq. 2.8 as

D(xi, xj) = D(s(pi), s(pj)))
�� ��2.8

where the distance metric is dependent on the outputs of each network. In this work,

we use the convention established by Stork et al. [27], where the x is a flattened vector

containing the output of the nodes at the final softmax layer for all data instances. As

such, our phenotypic distance vector length is given as the number of images of the

validation dataset × the number of classes. Further reduction of the semantic vectors

CHAPTER 2. BACKGROUND 19

was not considered in this work, however, it should be noted that since the dense layer

outputs two probability values the second value is implicitly known based on the first.

As such, it should be possible to reduce the vector by half for a two-class problem and,

if we generalise, by (n-1) × the number of fitness cases for n classes. Importantly, this

approach can be extended to any deep learning model architecture that can have its

output represented in vectorised form, such as transformers, however, further research

would be required to determine the limitations and scalability of applying this approach

to other deep learning approaches.

2.4 Multi-objective Optimisation

2.4.1 Multi-objective Optimisation

In a multi-objective optimisation (MO) problem, one optimises with respect to multiple

goals or objective functions. Thus, the task of the algorithm is to find acceptable so-

lutions by considering all the criteria simultaneously. This can be achieved in various

ways, where keeping the objectives separate is the most common. This form keeps the

objectives separate and uses the notion of Pareto dominance. In this way, Evolutionary

MO (EMO) [40–42] offers an elegant solution to the problem of optimising two or more

conflicting objectives. The aim of EMO is to simultaneously evolve a set of the best

tradeoff solutions along the objectives in a single run.

2.4.2 Pareto Dominance

In general terms, a multi-objective problem aims to find a solution that either maximises

or minimises a number of objectives. In the case of maximisation, this can be represented

mathematically as

max(f1(x), f2(x), ..., fk(x)) s.t. x ∈ X,
�� ��2.9

where X represents the feasible solution set, fi(x) represents the ith objective function

for the feasible solution x and k ≥ 2. In general, there is no single solution that will fully

maximise all objective functions. A candidate solution is Pareto dominant if its fitness

is better or equal for all objectives and is strictly preferred by at least one in the search

space. This can be formally represented by

Si ≻ Sj ↔ ∀m[(Si)m ≥ (Sj)m] ∧ ∃k[(Si)k > (Sj)k]
�� ��2.10

where (Si)m is the ith solution for objective m and Si ≻ Sj denotes that solution i is

non-dominated by solution j. A candidate solution is considered Pareto optimal if is not

CHAPTER 2. BACKGROUND 20

A

B

Pareto Front

Feasible
Search Space

Figure 2.7: Demonstrating dominated (blue) and non-dominated solutions (green) with
the aim of maximising objectives. Non-dominated solutions lie along the Pareto front and
represent the best set of solutions found so far for a given MO problem.

dominated by any other candidate solution. In other words, if none of the objectives can

be improved within the current set of candidate solutions without degrading at least one

of the other objectives it can be considered Pareto optimal. For MO problems, there

may exist a number of non-dominated solutions. The set of non-dominated candidate

solutions for an MO problem is referred to as the first Pareto front when represented in

objective space. Fig. 2.7 demonstrates the concept of dominated (blue dashed lines) and

non-dominated (green dashed lines) solutions for a maximisation problem. We can see

that solution B is dominated by solution A since A has a higher fitness for both f1(x)

and f2(x) (black dashed line) and as such meets the condition set out in Eq. 2.10. In this

example, the set of non-dominated solutions lie on the boundary of the feasible search

space (green region). In other words, there exists no other solutions which will dominate

this set and as such they are considered Pareto optimal.

In practice it is not always possible to do an exhaustive search for the true Pareto

optimal set and as such this is something we seek to approximate instead. Pareto domi-

nance relation is an integral part of MOEAs and has allowed practitioners and researchers

to form important metrics in the selection process of these algorithms.

CHAPTER 2. BACKGROUND 21

2.4.3 The Non-dominated Sorting Genetic Algorithm II

The Non-dominated Sorting Genetic Algorithm II (NSGA-II) [43] uses the Pareto dom-

inance relationship as its primary mechanism for selecting solutions to be retained into

future generations. It does so by sorting non-dominated solutions based on their domi-

nance rank. More formally, the dominance rank D(Si) is determined by the number of

individuals that dominate Si in the population. In mathematical terms, this is represented

in Eq. 2.11 as the cardinality of the set |.| such that,

D(Si) = |{j|j ∈ Pop ∧ Sj ≻ Si}|
�� ��2.11

In this sense, each individual may be assigned a rank and individuals of the same rank

will belong to the same front FD. For instance, individuals which have D(Si) = 0 (i.e.,

are dominated by no other individual) will belong to front F0, individuals which have

D(Si) = 1 will belong to the second front F1 and so forth. As such, preferable Pareto

fronts consist of lower-ranked individuals with the same rank. A new population is then

generated from these fronts, where the new population size is the same size as the original

parent population size.

Since the original population size is unlikely to be exactly filled by the last front, a

secondary sort is required to select individuals from the last front and is based on the

crowding distance operator. The crowding distance is the sum of Manhattan distances

between the nearest neighbours of an individual under consideration [44]. Crowding

distance is discussed in more detail in Chapter 2.4.5. NSGA-II is one of the most popular

and still widely used EMO approaches.

2.4.4 The Strength Pareto Evolutionary Algorithm 2

Both Dominance rank and Dominance count are used in the Strength Pareto Evolution-

ary Algorithm 2 (SPEA-2) [45]. Dominance count calculates how many individuals a

candidate solution dominates. The higher the dominance count the better.

Dcount(Si) = |{j|j ∈ Pop ∧ Si ≻ Sj}|
�� ��2.12

Leading on from the Eq. 2.12 we can get a measure of raw fitness R(i), by summing the

dominance count of all individuals as seen in Eq. 2.13;

R(i) =
∑

j∈Pop, Sj≻Si

Dcount(Sj)
�� ��2.13

An R(i) value of 0 corresponds to an individual which is non-dominated and an R(i) value

that is high corresponds to an individual which is dominated by many other individuals,

CHAPTER 2. BACKGROUND 22

as such the raw fitness should be minimised.

2.4.5 Crowding Distance

Solutions are ranked relative to each other according to a metric known as the crowding

distance. The crowding distance is used to compare any pair of solutions in search space

and is used in NSGA-II and SPEA2 as Pareto Dominance alone only acts as a partial

order of the solutions. The crowding distance calculation is comprised of three parts;

• Initialise the distance d to zero.

• Set the boundary solutions to ∞. These solutions are always selected due to this

constraint.

• Calculate the average distance differences for an individual against its two nearest

neighbours using the Manhattan distance, shown in Eq. 2.14:

d = d+
|f (k)

r+1 − f
(k)
r−1|

|f (k)
max − f

(k)
min|

�� ��2.14

where k denotes the objective in question and r is the index for the current individual,

where r + 1 and r − 1 reference its two nearest neighbours, assuming individuals are

sorted in increasing order of their fitness for their respective objective. Solutions with the

highest crowding distance are considered better solutions, in other words, the algorithm

preferences localities along the Pareto front which are more sparsely populated with so-

lutions than those which are more dense. In this manner the crowding distance resolves

which solutions to retain when programs produce very similar fitness values.

2.4.6 Multi-Objective Evolutionary Algorithm with Decomposition

The Multi-Objective Evolutionary Algorithm with Decomposition (MOEA/D) [46] works

by decomposing a multi-objective optimisation problem into a number of scalar optimi-

sation sub-problems, where each sub-problem exploits a different region of the objective

space via weights [46]. These scalar optimisation sub-problems are defined by the scalar

optimisation function g, which under the canonical approach uses a grid-based distribu-

tion of weight vectors λj , as seen in Eq. 2.15, where j = 1, 2...m and
∑

λj = 1, such

that

λj ∈
{
0,

1

H
,
2

H
...
H

H

}
for j = 1, 2...m

�� ��2.15

CHAPTER 2. BACKGROUND 23

where H is an integer value determining the distribution of weights. In other words, for

each objective, each element λj is one of {0, 1
H , 2

H ...HH } based on the parameter H. In the

two-objective case, from Eq. 2.16 we have

λi
j =

(
i

H
, 1− i

H

)
, i = 0, 1, 2, ...,H

�� ��2.16

where i is an index of H and helps ensure our weight vectors are equally spaced. In the

three-objective case, weight vectors are generated from a simplex lattice. The neighbour

solutions are selected based on the Euclidean distance between the weights in terms of

the objective space.

A core mechanism of the decompositional approach is the neighbourhood structure,

where genetic operations and the selection process occur within neighbourhoods of closely

related sub-problems. In this way, the neighbourhood structure controls the exploration

and exploitation properties of the algorithm.

Canonical aggregation functions

In the original paper by Zhang et al. [46], three scalarisation decomposition methods

were proposed: Weighted sum, Tchebycheff and Penalty-based Boundary Intersection

(PBI), each with their corresponding scalar optimisation functions gws, gtch and gpbi,

respectively. We briefly discuss each of these.

Weighted Sum

The scalar optimisation of gws is given by Eq. 2.17

max(gws(x|λ)) =
m∑
j=1

λjfj(x)
�� ��2.17

subject to x ∈ Ω

where j = {1, 2...m} is the dimensions of the objective space, fi is the objective function,

Ω is the decision (variable) space and x is the variable to be optimised.

Tchebycheff

The scalar optimisation of gtch is given by Eq. 2.18

min(gtch(x|λ)) = max
1≤j≤m

{λ|fj(x)− zj |}
�� ��2.18

The ideal point zj represents the best objective function value for fj found in the

population thus far.

CHAPTER 2. BACKGROUND 24

Penalty-based Boundary Intersection (PBI)

The scalar optimisation of gpbi is given by Eq. 2.19

min(gpbi(x|λ)) = d1 + θd2
�� ��2.19

where,

d1 =
||(f(x)− z)Tλ||

||λ||
, d2 = ||(f(x)− (z − d1

λ

||λ||
)||

�� ��2.20

where θ is a predefined penalty parameter set by the user.

Algorithm

The steps involved in the canonical MOEA/D version are detailed in Alg. 1, as well as

the procedure for the standard neighbourhood update approach in Alg. 2. The individual

steps involved in these are given below in more detail below.

Step 1: Initialisation.

Step 1.1) Initialise external population EP = ∅.

Step 1.2) Calculate the Euclidean distance between any two weight vectors and find

the T closest weight vectors to each respective weight vector. For each i = {1, 2, ..., N},
set B(i) = {i1, i2, ..., iT }, where B(i) can be understood as a neighbourhood reference

table of indices and where λi1 , λi2 , ..., λiT are the T closest weight vectors to i.

Step 1.3) Randomly create the initial population x1, x2...xN and calculate initial fit-

ness value F (xi), where F (x) is the transpose of (f(x1), ..., f(xN)).

Step 2: Apply genetic operations and search for solutions.

Step 2.1) Select two indices k and l randomly from the neighbourhood reference table

B(i) and generate new offspring y from parents xk and xl by applying crossover and

mutation genetic operations.

Step 2.2) Update z such that for each j = {1, 2, ...,m} if zj < fj(y), then set

zj = fj(y). In the case where the objective is to minimise F (x), then this inequality is

reversed.

Step 2.3) Update the neighbouring solutions for the jth case such that j ∈ B(i), if

g(y|λj , z) ≥ g(xj |λj , z), then let xj = y and calculate new fitness F (y).

CHAPTER 2. BACKGROUND 25

Algorithm 1 Cannonical MOEA/D

1: Λ = {λi1 , λi2 , ..., λiN } ▷ Create weight vectors
2: P = {x1, x2, ..., xN} ▷ Initialise population
3: for each λi ∈ Λ do
4: B(i) = {i1, i2, ..., iT } ▷ Define reference table
5: end for
6: repeat
7: for each i ∈ {1, 2, ..., N} do
8: k, l← Return random parent indices from B(i)
9: y ← Generate child program from xk and xl

10: P = Standard Update(y, i), which calls Alg. 2
11: end for
12: EP ← Remove non-dominated solutions based on P
13: until Stopping criteria is met
14: return EP ▷ The non-dominated solutions from EP

Algorithm 2 Standard Update

1: for each j ∈ B(i) do
2: if g(y|λj , z) ≥ g(xj |λj , z) then
3: xj = y ▷ Allows for multiple replacements to occur
4: end if
5: end for

Step 3: Fill external population and termination.

Step 3.1) EP is filled with non-dominated solutions across all generations, where newly

dominated solutions at each generation are removed. When the stopping criterion is

satisfied, the non-dominated solutions of EP are outputted; otherwise, Step 2 is repeated

until the stopping criteria is satisfied.

Solution search as determined by each of the decomposition methods controls which

population members are updated. In the standard update (Step 2.3), each program from

the current population is updated with the child program. Since each index j from the

neighbourhood reference table is checked multiple times against the child program this

might lead to multiple replacements within the specified neighbourhood. As such under

the standard update, duplication of programs can occur at a generational level.

One way to alleviate this duplication is to break out of the loop after the first re-

placement has occurred. Such an approach would immediately reduce the amount of

duplication occurring at each generation, though subsequently there is no guarantee that

the most beneficial replacement would have occurred. To facilitate this pitfall, such an

approach would need to order the neighbourhood prior to undergoing the solution search.

CHAPTER 2. BACKGROUND 26

2.5 Deep Neural Networks

The origins of DNNs [17] stem from the study of Artificial Neural Networks (ANNs),

where traditional ANNs were inspired by the neural connections and functionality of

animal brains and consist of interconnected nodes, or artificial neurons, which produce

real-valued activations that feed to subsequent nodes. The strengths of these values are

controlled by weights which are tuned over time, such that the network can learn a specific

task. In this type of architecture, rows of adjacent nodes are referred to as layers and any

layer between the input and output nodes of a network is referred to as a hidden layer.

The idea behind deep learning stems from work like Hinton et al. [47], who sought to

improve the learning capabilities of these networks by introducing much greater numbers

of artificial neurons and increasing the number of hidden layers to help abstract much

deeper underlying representations of the raw data. There are a number of different types

of DNN architecture such as Convolutional Neural Networks (CNNs) [48], Deep Belief

Networks [47], Autoencoders [49] and Recurrent Neural Networks [50], but in this work

we focus primarily on CNNs as discussed in greater detail in Chapter 2.5.1.

2.5.1 Convolutional Neural Networks

CNNs were ground-breaking in helping to establish deep learning architectures and have

successfully been applied to numerous domains such as face detection [51], image classi-

fication [52], speech recognition [53], natural language processing [54] and recommender

systems [55]. CNNs have shown an incredible ability to process data that has been con-

structed in a grid-like fashion. Typically, the network architecture is represented as a

series of layers represented in a grid structure, where each layer is composed of an array

of units. Without considering the operations involved, on a basic level, information can

then be passed from a neighbourhood of units of one layer to the next. This concept was

directly inspired by Hubel and Wiesels [56] work relating to the perceptron and animal

visual cortex [57]. Furthering this idea, the basic principle of a CNN is to convolve a

series of filters or kernels over a layer to produce feature maps, which extract important

feature information from the input. Typically, the greater the number of feature maps

the more a model will be able to learn complex representations.

Fig. 2.8 demonstrates this principle, a series of n kernels is used to generate n feature

maps to make a convolutional layer. Each kernel is represented by an array of weights.

The weights are trained using traditional back-propagation methods such as the gradient

descent process [50, 58]. The corresponding layer for each of these kernels is referred to

as a convolution layer. In the early stages of the network, the resulting feature maps

produced by the convolutional layer primarily capture linear patterns, such as edges and

textures. For example, with image data, a feature map may capture linear information

CHAPTER 2. BACKGROUND 27

as a result of object borders or changes in colours. One way to add in non-linearity is

by using rectifier functions such as ReLu [59] or TanH [58]. Introducing non-linearity

allows the network to learn more complex representations and patterns within the data,

as such, feature maps deeper in the network will capture more abstract patterns. Also,

certain activation functions like ReLu can help mitigate the vanishing gradient problem by

avoiding saturated values that can occur with other activation functions, such as sigmoid

or tanh. Furthermore, the ReLu function helps make the gradient sparser by converting

negative values in a feature map to zero. Additionally, through a process of sub-sampling

or down-sampling, it is possible to reduce the dimensionality of the data as it progresses

through the various layers, helping to reduce the number of features to learn. This can be

controlled by the kernel size or by using specific pooling layers to handle. Some examples

of pooling layers are max pooling and average pooling. Furthermore, dropout layers may

be employed along with other regularization techniques, to help prevent overfitting during

training [60].

2.5.2 Neuroevolution of Deep Neural Networks

In this section, we will detail some of the most important considerations when considering

neuroevolution. In this work, we look specifically at evolving Deep Neural Network archi-

tectures and use traditional stochastic gradient descent for weight training, a technique

which is often referred to as Evolutionary Neural Architecture Search (ENAS). While

the nomenclature may often deviate as to when to use neuroevoluion or ENAS, we have

chosen to use the more general umbrella term of neuroevolution as the analysis and con-

ditions for weight training are not fully explored in this thesis nor does the surrogate

methodology stringently require a specific weight update mechanism.

First, we formally define the goal of the neuroevolution process, based on the definition

of a CNN architecture by Sun et al. [25], as seen in Eq. 2.21, such that

argmax
λ

F(Aλ,Dtrain,Dtest), λ ∈ Λ
�� ��2.21

where F represents the fitness of the architecture in terms of its performance, A is the

neural network architecture, Dtrain and Dtest are the datasets for the training and test

sets respectively, and λ is the set of architecture parameters, such as the layers, hyperpa-

rameters and weights from the total parameter space Λ. As such our evolutionary process

is concerned with finding the set of λ in order to find the architecture with the maximum

fitness. As mentioned, in this work we are only considering layers for the evolutionary

process, such as the convolutional and pooling layers discussed in the previous section as

well as different hyperparameter settings for these layers, where the weights are trained

using back-propagation.

CHAPTER 2. BACKGROUND 28

2 3 1 5

2 6 1 4

3 8 6 1

1 2 1 3

0 1 0

2

0 1 0
23 9

24 14

0 1 0

1 1 1

0 1 0

2 3 1 5

2 6 1 4

3 8 6 1

1 2 1 3 20 18

0 1 0

1 1 1

0 1 0
20

2 3 1 5

2 6 1 4

3 8 6 1

1 2 1 3

0 1 0

1 1 1

0 1 0
20 18

25 17

Kernel

1st Kernel

nth Kernel

1st Filter Map

nth Filter Map

Convolutional Layer

0
0

Filter Map

Data source (i.e., image)

Figure 2.8: Demonstrating the convolution process in a CNN architecture. At the top, a
kernel convolves values from a data source (i.e., pixel values of an image), which subse-
quently, make up a filter map. At the bottom, a series of kernels can be used to generate
the convolutional layer. For simplicity’s sake, integers have been used throughout this
figure but it is important to note that, typically, values would consist of real numbers.

CHAPTER 2. BACKGROUND 29

Input Input

Output Output

Conv

Pooling

Conv

Dropout

Conv Conv

Pooling Pooling

Conv

Dropout

Chain-structured Architecture Multi-branch Architecture

Figure 2.9: Example topologies for chain-structured networks (left) and multi-branch
networks (right). Colour coding denotes layers of different types.

Another important consideration is the topological search space of potential architec-

tures. There are two2 main topologies to consider. The first example is chain-structured

topologies. In Fig. 2.9, and on the left-hand side we can see an example of this topology.

Here the architecture is represented as a sequence of layers, where the output of one layer

directly feeds into next. As such, in terms of graph theory, the maximum degree a node

(i.e., a layer) can have is two, since its edge will at most connect with a previous layer and

the next layer. While the layers in this diagram have been colour-coded by their type it

is important to note any layer of the same type (same colour) may have differing hyper-

parameters in a real architecture. The second example is that of a multi-branch topology

as seen on the right-hand side. Even though only a single branch is represented in this di-

agram there may be numerous branches and skip connections, allowing for many degrees

at each node, ultimately resulting in much more complex network topologies compared

to chain-structured topologies.

2.5.3 Further Details on Parameters and Layers used in this Work

Below is a list of the evolvable parameters for the neuroevolution approach in Chapters 5

and 6, giving details on their use in each case. The configuration files in Appendix B,

shown in Tables B.1 and B.2 detail the specifics for each chapter, where there is a notable

increase in potential parameters from Chapter 5 to 6. Certain parameters are not evolved

or adapted, for instance, in all our experiments we use Adaptive moment estimation

2some publications will also specify cellular, hierarchical and macro search spaces, however, in most
cases, these are also multi-branch topologies [61].

CHAPTER 2. BACKGROUND 30

(Adam) [62] as an optimiser and He initialisation [63] to initialise the weights. As such,

in the below list, we will only focus on parameters that are adaptable.

• Convolutional Layers: The mechanism for the convolutional layer [58], is dis-

cussed in detail in section 2.5.1, however, important parameters to highlight are the

number of filters, which are the number of filters in the convolution and the kernel

size which determines the size of the convolution window. As mentioned, activation

functions such as ReLu [59] and TanH [58] are used, which help reduce or add in

non-linearity. The stride i.e., the number of pixels/values that the convolutional

window iterates over. Additionally, an l2-norm kernel regulariser is also available,

which adds a penalty factor that can help reduce overfitting.

• Pooling layers: Maximum and average pooling are two available layers which can

be evolved in this work. These are both reduction techniques, where a pooling

window operates over the feature map and creates a down-sampled image based

on the pixel/value information within that window. For maximum pooling, the

maximum value is taken for all the values within the pooling window and for average

pooling the average value is taken. Important parameters here are the stride i.e.,

the number of pixels/values the pooling window traverses over the feature map by,

and the size of the pooling layer.

• Batch Normalisation: The batch normalisation layer [64], takes the inputs from

one layer and normalises them before passing to the next layer and was originally

designed to mitigate internal covariant shift. Momentum is a parameter relating to

batch normalisation and helps alleviate noise in gradient updates.

• Dropout: The dropout layer [60], is a regularisation technique that masks a ran-

dom selection of neurons within the network and can help prevent overfitting. The

percentage of neurons dropped out is the key parameter of this layer.

3
Literature Review

In this chapter we cover some of the most relevant works relating to this thesis. Firstly,

we give a brief history of Evolutionary Algorithms (EAs) and Artificial Neural Networks

(ANNs) (Chapter 3.1). This section details some of the major developments in each

field, albeit in an independent context. Next, we discuss some of the most popular ma-

chine learning approaches for implementing Neural Architecture Search (NAS), looking

at Reinforcement Learning (RL), One-shot models and EAs (Chapter 3.2). Following

on, we cover some of the major seminal works in neuroevolution, focusing first on early

approaches that evolved both the weights and/or architecture of traditional neural net-

works before discussing more recent works that evolve the architectures of deeper more

complex networks (Chapter 3.3). We then discuss surrogate-assisted evolutionary algo-

rithms for neuroevolution with a particular focus on performance prediction approaches

(Chapter 3.4). Finally, we discuss some of the major works in semantic and phenotypic

distance. The latter two areas are closely related and while the study of semantics within

genetic programming is well established, the use phenotypic distance vectors, particularly

for their adoption in neuroevolution of DNNs is quite novel (Chapter 3.5).

3.1 A Brief History of Artificial Neural Networks and Evolution-

ary Algorithms

The study of EAs and ANNs both draw inspiration from nature. In the case of EAs,

many of the underlying principles are inspired by biological evolution, while with ANNs

inspiration is drawn from neuroscience, specifically the functionality of the animal brain.

It is important to note that both fields developed independently from each other with

some of the most significant foundational breakthroughs occurring in the 1960s, leading

through to the modern day. First, we will discuss some of the major early works of

each field independently before then discussing how EAs can be used for evolving ANN

architectures later in the chapter.

31

CHAPTER 3. LITERATURE REVIEW 32

The groundwork for the mathematical principles of ANNs stems from the study of

human cognition, where one of the earliest works, by McCullock and Pitts [65], proposed

the idea of an artificial neuron. Following on, Rosenblatt’s seminal work relating to the

Perceptron was the first physical computational example of an ANN [66]. Many compo-

nents of this work are still present in modern neural networks, such as the input, hidden

and output layers that consist of interconnected neurons and their associated weights. In

this early work, an effective method for updating weights had yet to be developed and as

such was only suitable for linearly separable data, however, later developments, such as

the adoption of backpropagation overcame this issue [50].

In fact, backpropagation would play a critical role in the development of deeper ANNs.

LeCun [48] demonstrated how the techniques could be used during the classification of

handwritten zip codes, using images rather than the feature vectors of previous work [67].

Furthermore, this seminal work details how feature maps can be convolved over each

image to extract important feature information which is then fed into fully connected

layers. This type of neural network, known as a Convolutional Neural Network (CNN),

had first been developed by Fukushima [68], drawing inspiration from the work of Hubel

and Wiesel on the animal visual cortex [56], however the adoption of backpropagation

marked a significant step forward for the development of deep neural networks.

A short summary of other major ANN developments include but are not limit to,

Recurrent Neural Networks (RNN) [50], which are particularly well suited to sequential

data, Long-short Term Memory (LSTM) [69], which are a form of RNN but are capa-

ble of learning longer term dependencies within the sequential data, Restricted Boltzman

Machines (RBN), which are a form of stochastic neural network designed to learn a proba-

bility distribution based on its inputs, Deep Belief Networks [47], which use stacked RBNs

within its architectures and, AutoEncoders [49], which have an encoding-decoding archi-

tecture, where input sequence data is encoded to a embedded space before being decoded

as an output sequence and, Transformers [70], which again used an encoding-decoding

architecture but use a multi-headed attention mechanism to encapsulate dependencies

within the embedded space and have seen a surge in interest in recent years due to their

use in large language models.

Similarly, an early breakthrough in the field of EAs was by Fogel et al. [35], known

as Evolutionary Programming (EP). They proposed a method for evolving finite-state

machines over time, with the aim of predicting output sequences based on input sequences

to the finite-state machine. Closely related are Evolutionary Strategies (ES) [71], where

traditionally, the real-valued representations are evolved. In both techniques, mutation

is the main operator for altering individuals for future generations, whereas the crossover

operator is seldom used in ES and is generally absent in EP.

In the 1970’s Holland [72] introduced Genetic Algorithms (GAs) and further popu-

CHAPTER 3. LITERATURE REVIEW 33

larised by Goldberg [33]. With GAs the candidate solution is now an encoded represen-

tation of the problem solution, using binary strings known as the chromosome, where

genetic operations alter this encoded structure directly. Crossover operations often play

a much more significant role in GAs and this representation is suitable for both discrete

and combinatorial search spaces.

While Cramer [73] adapted concepts from GAs in order to evolve short computer

programs, in a technique that is known as Genetic Programming (GP), it was not until

later, in the 1990s, that the approach was popularised by Koza, who produced his seminal

work relating to GP [74]. With GP, the idea is to evolve programs, such that they find

candidate solutions to a problem without the need to have been explicitly programmed

by a user. In GP the chromosome uses a tree-based encoding as opposed to the binary

string typically found in GAs. GP is suitable for complex optimisation problems and has

been shown to produce human competitive results [75].

EP, ES, GA and GP constitute the four-main paradigms of EAs. Other variations of

EAs techniques or meta-heuristics inspired by EAs, which have been developed over the

years, which include, but are not limited to Differential Evolution (DE) [76], a population-

based approach that uses the scaled differences of vectors to optimise toward a solution,

Particle Swarm Optimisation [77] which is similar to DE in terms of its evolutionary pro-

cess but the mechanics of which are inspired by swarm behaviour, Grammatical evolu-

tion [78] which is similar to GP but uses production rules based on Backus-Naur grammar

definition, Cartesian Genetic Programming [79] that derives its name from its grid-based

encoding that can be used to represent directed-acyclic graphs and Linear Genetic Pro-

gramming (LGP) [10] which is used to evolve computer programs, where programs within

the population are defined using sequences of register and operands. Both traditional GP

and LGP are described in full detail in Chapter 2.2.

3.2 Neural Architecture Search

This chapter section serves as an overview for some of the main machine learning ap-

proaches that have been applied to NAS. Thus far, the following fields have seen some of

the most interest over the years.

Reinforcement Learning: With RL-based approaches the idea is that the RL

method acts as a decision-making agent responsible for sampling high-quality networks

from the search space of all possible architectures. In most cases, the architectures are

generated as a sequence of actions based on this agent. These actions are responsible for

the overall architecture of the network, and a reward signal, which is some measure of the

architecture performance can be used to update the agent and subsequently maximise the

expected value. For example, Zoph and Le [19] used an RNN as a decision-making agent

CHAPTER 3. LITERATURE REVIEW 34

responsible for constructing a DNN architecture. With RL, often these architectures are

composed of cells or blocks, which are predefined sub-architectures that may be reused

throughout the overall architecture [80], though cellular-based search is not limited to

reinforcement learning. It has been noted that other approaches have seen more interest

in recent years [61].

One Shot Models: These approaches use a single over-parameterised supernet,

where sub-graphs represent different candidate architectures. As such, the search is con-

ducted over a predefined search space represented by the supernet. Additionally, one-shot

models often use weight sharing to help reduce the training time associated with other

approaches [18]. One of the earliest one-shot methods was developed around the NASNet

search space [18]. This approach makes use of a cellular-based implementation, consist-

ing of two types of cells: a normal cell and a reduction cell. The normal cell contains

layers where the feature size input and output are the same size. The reduction cell is

responsible for decreasing the resolution of the input data. This was soon followed by

DARTS [81] which made some significant steps forward for one-shot type architecture.

Firstly, DARTS relaxes the discrete search space of the supernet, by using softmax, allow-

ing for optimisation in a continuous search space, secondly, this approach uses gradient

descent to optimise the weights, discussed in Chapter 2.5.1, and thirdly, operations are

performed on the edges of the graphs rather than the nodes. Many of the one-shot ar-

chitecture search spaces now use benchmarks, for example, NASBench-101 [82], which is

compatible with popular datasets like CIFAR-10 [83] and ImageNet [84]. While one-shot

models have the advantage of often being many orders of magnitude faster than RL and

EA approaches it has been noted in some studies that performance wise they often only

perform marginally better or similar compared to random search [85,86].

Evolutionary Algorithms: EAs can be used to evolve an encoded representation of

the underlying neural network architecture over time. Many of these approaches differ in

the specifics of how the evolutionary process is implemented [37], but typically offspring

architectures are generated from parent architectures where genetic operations will alter

their structure, for example, the number of layers, and subsequently, these offspring are

retained based on the quality of there fitness. This technique of using EAs is typically re-

ferred to as neuroevolution. Originally, interest centred on evolving both network weights

as well the network architecture [87, 88] but within the last two decades research in neu-

roevolution has focused more so on architecture, since evolving weights for DNNs is com-

putationally prohibitive. One of the major transitionary works between weight-focused

and architecture-focused neuroevolution, was NeuroEvolution of Augmenting Topologies

(NEAT) by Stanley and Miikkulainen, as this work was later adapted to architecture-

focused neuroevolution [89–91]. NEAT and its variants will be discussed in greater detail

in the next sections.

CHAPTER 3. LITERATURE REVIEW 35

There are other approaches to NAS to be aware of, such as Bayesian Optimisation [92],

Hill Climbing [93], and Monte Carlo Tree Search [94, 95], to name a few, but will not be

discussed in detail in this thesis. For the remainder of this chapter, we will focus mainly

on evolution-based techniques for NAS but for more details, the 2018 survey paper by

Elsken [80] and more recent 2023 paper by White et al. [61] cover some of the major

topics and innovations for NAS in recent years.

3.3 Neuroevolution

3.3.1 Artificial Neural Networks

Two of the earliest examples of using EAs to evolve neural network architecture were

by Miller et al. [96] and Harp et al. [97], both published in 1989. While earlier works

had considered using GAs to evolve weights [98], these works are two of the first to

consider evolving the connections between neurons and hence alter the overall topology

of the networks. Another early example of applying EAs for neuroevolution was by

Whitley et al. [87]. In this work, they investigated two experimental types. Firstly,

they investigate the use of GAs rather than the standard back-propagation technique,

in order to evolve neural network weight connections using both binary and real-valued

representations. Secondly, they use GAs to evolve connectivity patterns to find neural

network architectures, in this scenario using back-propagation to update the weights.

Yao and Liu [99] proposed Evolutionary Programming-Net (EPNet) a method which

uses EP to evolve both the weights and architecture of a network simultaneously. No-

tably, an emphasis is put on the network behaviour during evolution, maintaining a

behavioural link through parents and offspring through partial training, as well as node-

splitting techniques. By applying a systematic approach to mutation they help reduce

destructive properties of randomised mutations. Another important aspect of this work

is that the learned weights and architectures are inherited into the next generation, akin

to Lamarckian evolution.

NeuroEvolution of Augmenting Topologies (NEAT), proposed by Stanley and Miikku-

lainen, is one of the most popular and groundbreaking approaches for Neuroevolution in

ANNs [88]. The approach evolves not only the architecture structure (or topology) but

also the connection weights and as such is an example of a direct encoding approach, i.e.,

all the network parameters are encoded within the genome. NEAT works by a process

of complexification where initial architectures are uniformly structurally simple and are

gradually built up to become more complex with time. Complexification has a strong

foundation in biology where biological genomes experience growth via a process known as

gene duplication. Gene duplication copies parental genes into the offspring genome more

CHAPTER 3. LITERATURE REVIEW 36

than once, resulting in redundant genes that express the same proteins.

3.3.2 Deep Neural Networks

By the mid to late 2000s research in neuroevolution began to shift towards deeper network

architectures. For instance, NEAT was further extended where the first major approach to

tackle deeper networks was HyperNEAT by Stanley et al. [89], which exploits reoccurring

patterns in the data by using connective Compositional Pattern Producing Networks

(CPNNs) to produce larger networks [89] [100]. DeepNEAT, proposed by Miikkulainen

et al. [90] extends the concept of NEAT where now each gene no longer represent single

neurons but individual layers of DNNs (referred to as modules). Each node consists of a

table of binary or real values for the hyperparameters and determine the type of layer at

that node, as well as its properties. The edges of the graph now represent how layers are

connected rather than how individual neurons are connected (and their weights). The

final DNN is constructed via traversing the graph, replacing each node with its respective

layer. The authors provide a criticism of DeepNEAT, in that the resulting topologies can

be unconventional and complex. As such, the same authors provide an extension of this

approach known as CoDeepNEAT [90], using the coevolution of population blueprints

(network connection templates) and a population of modules. While the original authors

do not provide source code, a Keras implementation has recently been developed [100].

Also of note, is the work of Desell [91] who adapted NEAT to work specifically on CNNs

using volunteered computing. The author’s approach made use of both mutation and

crossover, but with specific mutation operators for manipulating edge connections. This

work is notable in that it demonstrates the ability to scale neuroevolution to large-scale

distributed computing environments with notable results on the MNIST dataset [101].

Some drawbacks of their approach are that it could not incorporate pooling layers and

was restricted to two-dimensional convolutional layers.

A well-known neuroevolution approach is GeneticCNN [102] by Xie and Yuille. This

approach uses binary encoded strings to represent the connections between a series of

convolutional layers. The architecture makes use of what the authors call stages, where the

encoded set of CNN layers are followed by fixed pooling layers. These stages are chained

together to comprise the overall architecture. As such, only a subset of the architecture is

evolved where each stage is responsible for finding interesting micro-architectures within

the overall network. This approach therefore is limited by its genotypic representation

to a large domain of potential structures. The authors note that other modules such as

Maxout and Inception models cannot be found using this approach.

Recently, Z. Shuai et al. [103] proposed an approach that makes use of a type-free

search space composed of cells and organs. Cells are composed of a core module with

CHAPTER 3. LITERATURE REVIEW 37

affiliate modules directly related to that core module and organs are responsible for higher

level functionality such as feature extraction or classification. For example, a cell may be

composed of convolutional layer with an affiliated ReLu and pooling layer and an organ

may be composed of several cells each containing convolutional layers but with differing

affiliate modules. They conducted their experiments on a variety of convolutional neural

networks (CNN), general adversarial networks and long short-term networks.

Sun et al. [104] proposed the EvoCNN algorithm which uses a variable-length encod-

ing to search for CNN architectures of potentially optimal depth. This approach also

incorporates a novel weight encoding strategy, that efficiently searches for initial weight

connections using just the mean and standard deviation of a Gaussian distribution, using

a low number of epochs, to begin with. Upon completion, the best-fit model is then deeply

trained. As such, this approach efficiently initialises the weights, while at the same time

also searching for optimal architectures. As mentioned, EvoCNN uses variable-length

encoding [104], whereas Genetic-CNN is somewhat fixed by the number of stages selected

and the length of the binary string encoding. EvoCNN in a sense uses ‘blocks’ to generate

sequences of layers. The genetic operations of mutation and crossover then operate on

these blocks. Interestingly, the crossover operation works by swapping blocks between

parents thus producing offspring of the same size and as such is an example of uniform

crossover. The architectures instead ‘grow’ in size based on some predefined probability

where a new block is randomly assigned.

Neuroevolution has also been expanded to look at transformer-based architectures.

Yang Xiu and Yongjie Ma proposed an evolutionary NAS approach using an improved

transformer block as well as being capable of handling multiple branches. The ‘batch

free normalisation transformer’ block avoids problems associated with small batch size

and degradation of performance if there is a covariance shift between training and test

data. The ‘multi-branch’ block uses a multi-path topology which allows the architecture

to branch to sub architectures with differing scales and complexity. A survey by Chitty-

Venkata et al. [105] details some of the recent advancements in NAS for transformers,

including RL, One-shot and EA approaches.

To date, there are few works that use Genetic Programming (GP) [106] in the encoding

for neuroevolution for DNNs. Suganuma et al. [107] used Cartesian Genetic Program-

ming [108] to design CNN architectures. In CGP a 2-dimensional grid of nodes is used

as the genetic representation, where the grid structure can be used to define a directed

acyclic graph. The genotype consists of integers where each gene encodes information

regarding the type and connections between each of the nodes. The design adopts highly

functional modules (i.e., ConvBlock and ResBlock) to search architectures efficiently. Ad-

ditionally, this representation by design allows for skip connections and multiple branches.

The authors note that the representation is fixed-length, but that the size of the networks

CHAPTER 3. LITERATURE REVIEW 38

varies since not all nodes are connected at once.

Assunção et al. [109] introduced a new approach, Deep Evolutionary Network Struc-

tured Representation (DENSER), that makes use of GA to adapt the macro structure

of the architecture, represented as a sequence of units, where each unit may be respon-

sible for a layer, training or data-augmentation. Each unit then represents a starting

non-terminal symbol for the expansion of a Dynamic Structured Grammatical Evolu-

tion (DSGE) level genotype. The DGSE level is therefore responsible for parameters,

either represented as ranges or closed sets of different possibilities. Later Assunção et

al. [110, 111] further improved this approach, entitled Fast-DENSER, such that is could

now incorporate skip connections as well as offering a significant time improvement over

the original. They demonstrate that they could get a similar performance to the previous

DENSER approach by increasing the rate of mutation while lowering the number of eval-

uations from 10,000 to just 750. The authors noted an average test accuracy of 91.46%

on CIFAR-10 making their approach competitive with state-of-the-art.

3.4 Surrogate-Assisted Evolutionary Algorithms for Neuroevolu-

tion

In this section, we will discuss works mainly relating to surrogate-assisted evolutionary

algorithms (SAEA) for neuroevolution with a particular focus on performance prediction.

In some of the below works [112] [113], an explicit evolution technique may not be present

but rather the authors instead focus on the specifics of the surrogate modelling technique.

These works have been included regardless, due to their relevance to this work as a whole.

Before discussing these works in more detail there are some important surveys on surrogate

modelling we would like to draw attention to. An old, but still highly relevant survey

on surrogate models by Jin [22], covers some of the fundamental aspects of surrogate-

assisted EAs, such as surrogate model management strategies and acquisition functions. A

more recent 2023 survey by Khaldi and Draa [114], covers more state-of-the-art concepts,

such as considering the computational complexity of a surrogate model when performing

neuroevolution. Furthermore, a 2022 survey by Liu et al, [115] considers computationally

efficient approaches to NAS while also detailing recent advances specifically for surrogate

assisted evolutionary NAS. Next, we will cover some of the most relevant works.

A key advantage of using surrogate models for neuroevolution is that they can be used

as performance predictors for ANNs. Performance prediction can be categorised into two

branches: (i) approaches that infer the performance of unseen networks based on spe-

cific characteristics of previously evaluated networks and which typically have been fully

trained, for example end-to-end performance predictors [25,116,117], and (ii) approaches

that instead used partially trained information to predict the future performance of a

CHAPTER 3. LITERATURE REVIEW 39

network, for example using learning curve based prediction [112,118].

A major work that falls into the first category is the End-to-End Performance Predic-

tor (E2EPP) [25] proposed by Sun et al. This approach uses an offline surrogate model

based on random forests to search for optimal CNN architectures. The CNN is cleverly

encoded such that it maps to a numerical decision variable, which can then be processed

by a random forest surrogate. This approach alleviates restrictions found in other ap-

proaches such as assuming a smooth learning curve and not requiring large amounts of

training. The authors approach was shown to speed up fitness evaluations while also

achieving the best performance compared to other peer performance predictors.

Another example is the work of Greenwood and McDonnell [117], who proposed a

grammar-based approach which generates a tensor representation of variable-length DNN

topologies. An advantage of using formal grammar as a representation is that they can

be designed to ensure validity of models by describing the space of allowable topologies.

Their approach modifies the DeepNeat algorithm first proposed by Miikkulainen [90].

The modelling strategy of this work is designed around a two-phase approach. Firstly,

during the initialisation phase, the DeepNeat algorithm is used to evolve the population

of neural networks and these models are used to formulate the surrogate. Secondly,

the active learning phase is implemented where new networks are evaluated using the

surrogate model, which uses a single LSTM layer with 20 hidden units, followed by a 30

unit linear layer with ReLU activation function. Additionally, a subset of networks that

are fully trained and evaluated to further inform and improve the surrogate model. They

noted a five times improvement in compute time.

In another example, Fan and Wang [119] used unsupervised learning approach using

a network embedding strategy using Graph2vec [120] to build a surrogate-assisted neu-

ral architecture search (SAENAS-ES) model. Graph2vec works by training a skip-gram

model to get an architecture embedding by predicting if an architecture substructure, or

sub-graph, exists and then asserts that architectures with more similar substructures are

closer in the embedding space. The resulting embeddings can be then fed to a surrogate

model, RankNet [121], to evaluate the architectures. Results for SAENAS-ES on three

NASBench and DARTS search spaces demonstrated that the surrogate model with an

embedding strategy performed as well or better than other approaches.

Approaches falling into the second category, i.e., methods that use partially trained

information, include the Freeze-Thaw Bayesian Optimization (FBO) technique proposed

by Swersky et al. [112]. It uses Bayesian optimization to decide if a partially trained

network should be trained to completion. The fundamental idea is that, in practice, a

human expert is quickly able to assess if a network is likely to result in poor performance

and as such can decide to halt training. Based on this notion the authors designed an

approach that at its core is a form of performance prediction, where Bayesian Optimisation

CHAPTER 3. LITERATURE REVIEW 40

is used to determine whether a particular partially trained network will yield preferable

results compared to other networks. Unlike E2EPP, this approach does require a smooth

learning curve which can be hampered if different learning rates are considered. Of

interest, is that the FBO approach relies on the behaviour, rather than the structure of

the network in order to decide which networks to evaluate.

Other developments relating to learning curve-based prediction are the work of Baker

et al. [113], who used a subset of validation accuracies as time series information, along

with network features such as architecture parameters and hyperparameters, to build

sequential regression models to predict learning curves. Yan et al. [122] developed a

learning curve extrapolation framework by developing NAS-Bench-x11, a surrogate NAS

benchmark that outputs the entire training information of each network. This framework

is capable of incorporating many single and multi-fidelity NAS approaches, including

evolutionary-based algorithms like regularised evolution [123].

Other approaches have taken a more indirect approach for performance prediction,

some which use surrogate modelling specifically or other ML approaches for similar ef-

fect. For instance, Gaier et al. [24] devised a kernel-based surrogate model to use with

NEAT [88] referred to as Surrogate-assisted NEAT. To overcome the limitation of variable-

length genotypes, they exploited a distance metric inherent in the NEAT algorithm. This

distance metric which is known as the ‘compatibility distance’ was originally designed to

help promote diversity amongst the network topologies through speciation. Within this

work they also use it as a distance metric to use for Gaussian Processes. The authors

note a motivating factor behind using this distance metric rather than one based solely on

the structure of the architecture, is that, for differing topologies, constructing a static or

consistent parameter space is difficult and as such using standard metrics like Euclidean

distance may not be feasible with Kriging. They demonstrated that they were able to

achieve similar performance to NEAT with much fewer evaluations.

Likewise, Yuan et al. [124] employed a random forest-based performance prediction

approach to pre-select offspring aiming to select individuals which ought to be high-

performing. One major benefit of this method is that since the offspring are fully evalu-

ated, the approach naturally avoids inaccurate predictions. In addition to using perfor-

mance prediction, the authors incorporate weight inheritance and proposed an efficient

backbone structure based on custom blocks inspired by the lightweight MobileNetV3 ar-

chitecture [125]. While this approach does not refer to the random forest predictor as a

surrogate model directly, nevertheless, this approach shows the effectiveness of considering

performance prediction at various stages of the evolutionary process.

CHAPTER 3. LITERATURE REVIEW 41

3.5 Semantics in Genetic Programming and Phenotypic Dis-

tance

3.5.1 Semantics in Genetic Programming

The range of problem domains for GP are wide and this form of EA has been found

to be beneficial for problems with varying degrees of complexity, for example, problems

with multiple local optima [126]. Furthermore, EAs are well suited for highly complex

problems including the automatic configuration of deep neural networks’ architectures and

their training (an in-depth recent literature review in this emerging research area can be

found in [127]). However, despite the well-documented effectiveness of canonical GP, there

are well-known limitations of these methods, as found through the study of properties of

encodings, [128, 129], and research is ongoing into finding and developing approaches to

improve their overall performance. One such area is the study of semantics which has

seen a dramatic increase in interest over the last years given that it has been consistently

reported to be beneficial in GP search, ranging from the study of geometric operators [130],

including the analysis of indirect semantics [28,131]. While most of the following works are

directly related to Chapter 4, they also offer a significant understanding of the potential

impacts of considering phenotypic distances in neuroevolution.

Even though researchers have proposed a variety of mechanisms to use the semantics

of GP programs to guide a search, it is commonly accepted that semantics refers to the

output of a GP program once it is executed on a data set (also known as fitness cases

in the specialised GP literature). Semantics can be classified into two main categories:

indirect or direct. Indirect semantic approaches refer to approaches that indirectly in-

crease semantic diversity by acting on the syntax of GP individuals. Direct semantic

approaches adapt genetic operators to work directly on the semantics of GP individu-

als. The semantic methods detailed in this thesis focus exclusively on indirect semantic

methods.

The work conducted by McPhee et al. [132] paved the way for the proliferation of

indirect semantics works. In their research, the authors studied the semantics of subtrees

and the semantics of context (the remainder of a tree after the removal of a subtree). In

their studies, the authors pointed out how a high proportion of individuals created by the

widely used 90-10 crossover operator (i.e., 90%-10% internal-external node selection pol-

icy) are semantically equivalent. That is, the crossover operator does not have any useful

impact on the semantic GP space, which in consequence leads to a lack of performance

increase as evolution continues.

Uy et al. [133] proposed four different forms of applying semantic crossover operators

on real-valued problems (e.g., symbolic regression problems). To this end, the authors

CHAPTER 3. LITERATURE REVIEW 42

measured the semantic equivalence of two expressions by measuring them against a ran-

dom set of points sampled from the domain. If the resulting outputs of these two expres-

sions were close to each other, subject to a threshold value called semantic sensitivity,

these expressions were regarded as semantically equivalent. In their experimental design,

the authors proposed four scenarios. In their first two scenarios, Uy et al. focused their

attention on the semantics of subtrees. More specifically, for Scenario I, they tried to

encourage semantic diversity by repeating crossover for a number of trials if two subtrees

were semantically equivalent. Scenario II explored the opposite idea of Scenario I. For

the last two scenarios, the authors focused their attention on the entire trees. That is,

for Scenario III Uy et al. checked if offspring and parents were semantically equivalent.

If so, the parents were transmitted into the following generation and the offspring were

discarded. The authors explored the opposite of this idea in Scenario IV (children seman-

tically different from their parents). They showed, for a number of symbolic regression

problems, that Scenario I produced better results compared to the other three scenarios.

The major drawback with the Uy et al. [133] approach is that it can be computational

expensive, since it relies on a trial mechanism that attempts to find semantically different

individuals via the execution of the crossover operator multiple times. To overcome this

limitation, Galván et al. [134] proposed a cost-effective mechanism based on the tourna-

ment selection operator to promote semantic diversity. More specifically, the tournament

selection of the first parent is done as usual. That is, the fittest individual is chosen from

a pool of individuals randomly picked from the population. The second parent is chosen

from a pool of individuals that are semantically different from the first parent and but is

also the fittest individual from that pool. If there is no individual semantically different

from the first parent, then the tournament selection of the second parent is performed

as usual. The proposed approach resulted in similar, and in some cases better, results

compared to those reported by Uy et al. [28, 133] without the need of a trial and error

(expensive) mechanism.

Forstenlechner et al. [135] proposed two semantic operators, Effective Semantic (ES)

Crossover for Program Synthesis and ES Mutation for Program Synthesis. Program

synthesis operates on a range of different data types as opposed to those that work in

a single data type such as real-valued cases [136] and Boolean values [134]. The main

elements considered by the authors were the metrics used to determine semantic similarity,

named partial change, used in the first instance, and any change, used only if the first

failed to be satisfied to avoid using standard crossover. In their results, the authors

reported that a semantic-based GP system achieved better results in 4 out of 8 problems

used in their studies.

Alternative to indirect semantic approaches, direct semantic approaches have also gar-

nered attention within the GP community. Based on strong theoretical foundations [137],

CHAPTER 3. LITERATURE REVIEW 43

Moraglio et al. [130] proposed new semantic-based geometric operators, which rather than

only considering the syntactic relationship between parent and offspring, instead directly

consider the semantic relationship. This relationship is captured using semantic distance

and allows offspring to inherit desirable properties from their parents. Furthermore, the

mapped semantic fitness landscape results in a conal landscape, which is beneficial to

convergence for the evolutionary process.

3.5.2 Semantics and its Relevance to Surrogate-Assisted Neuroevolution

Despite an abundance of literature detailing the benefit of semantics in genetic program-

ming 3.5.1, to date, there have been relatively few works that have been implemented or

made a direct connection between semantics and phenotypic distance for neuroevolution.

Nevertheless, we will demonstrate in greater detail how semantics can be used to inform

surrogate models in Chapters 4 - 6.

Santos et al. [138] proposed a novel approach that makes use of semantics in neuroevo-

lution. They do so by using Geometric Semantic Genetic Programming, in conjunction

with a neuroevolutionary approach called Semantic Learning Machines (SLM) [139]. With

SLM, mutation works by adding a random network to a parent network. Barring the in-

put layer, connections can only flow from the parent to the random network, as such

allowing the parent network to retain its semantic information. Their approach is also

notable for its efficiency, capable of finding reasonable performing networks on the scale

of GPU minutes as opposed to GPU hours or days.

Hagg et al. [23], made a connection between semantic distances in GP and phenotypic

distances within the context of surrogate-assisted evolutionary algorithms for neuroevo-

lution, in that, semantics distance can be understood as a distance of the outputs of GP

individuals, determined with the same measure that is used in the fitness function, while

phenotypic distances may also derive from the fitness function but not necessarily. Simi-

larly, Stork et al. [27] extended CGP to use a surrogate-assisted neuroevolution approach

that uses phenotyic distance vectors to estimate fitness. A limitation of Stork’s work

is the scalability of using Kriging on high-dimensional data. For instance, our recent

work highlighted that traditional approaches such as the Kriging approach suffer from

high-dimensionality [5] and may not be suitable for DNN architectures. In Chapter 5, we

discuss this limitation at length, proposing a more suitable surrogate model management

strategy for handling larger phenotypic distance vectors, and propose a new surrogate

model variant entitled NeuroLGP-SM [6,7]

4
Semantic-based Metrics in Multi-objective Genetic

Programming

The following papers summarise the work outlined in this chapter.

• Edgar Galván and Fergal Stapleton. Semantic-based distance approaches in multi-

objective genetic programming. In 2020 IEEE Symposium Series on Computational

Intelligence (SSCI), pages 149–156. IEEE, 2020

• Edgar Galván, Leonardo Trujillo, and Fergal Stapleton. Semantics in multi-

objective genetic programming. Applied Soft Computing, 115:108143, 2022

• Edgar Galván, Leonardo Trujillo, and Fergal Stapleton. Highlights of semantics

in multi-objective genetic programming. In Proceedings of the Genetic and

Evolutionary Computation Conference Companion, pages 19–20, 2022

• Fergal Stapleton and Edgar Galván. Semantic neighborhood ordering in multi-

objective genetic programming based on decomposition. In 2021 IEEE Congress on

Evolutionary Computation (CEC), pages 580–587. IEEE, 2021

44

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 45

Semantic diversity in Genetic Programming (GP) is a diversity-preserving measure

based on the outputs (behaviour) of a GP program and has proven to be highly beneficial

in evolutionary search. We have witnessed a surge in the number of scientific works in

the area, starting first in discrete spaces [132, 140, 141] and moving then to continuous

spaces [133]. The vast majority of these works, however, have focused on single-objective

genetic programming paradigms. Therefore, the study of semantics in multi-objective

(MO) GP has been limited, an issue we address in this chapter, though it is not the

central focus. In its origins, MO started with näıve approaches such as using a sum of

elements in the fitness function, very often with associated weights [142]. Nowadays, how-

ever, one can say that there are two major approaches for conducting MO optimisation.

Firstly, one can use the Pareto dominance relationship to directly search for the Pareto

optimal front or secondly, one can decompose the multi-objective problem into multiple

single-objective sub-problems. As such, the focus of this chapter is to demonstrate the

adaptability and robustness of semantics for when we later consider its use in surrogate-

assisted neuroevolution, using multiple different semantic-based distance metrics, while

considering its novel application to two inherently different EA workflows: i) Pareto-based

and ii) Dominance-based.

i) Pareto-based: We conduct a comparison of three different forms of semantics in

Pareto-based MOGP. Firstly, Semantic Similarity-based Crossover (SSC), is borrowed

from single-objective GP [28], where the method has consistently been reported benefi-

cial in evolutionary search. We also study two other methods, dubbed Semantic-based

Distance as an additional criteriOn (SDO) [38] and Pivot similarity SDO (PSDO) [2].

We empirically and consistently show how by naturally handling semantic distance as an

additional criterion to be optimised in MOGP leads to better performance when com-

pared to canonical methods and SSC. Both semantic distance-based approaches make use

of a pivot, which is a reference point from the sparsest region of the search space and it

was found that both individuals which were semantically similar, and those which were

semantically dissimilar to this pivot were beneficial in promoting diversity. Moreover, we

also show how the semantics defined in single-objective optimisation does not necessarily

lead to a better performance when adopted in MOGP.

ii) Dominance-based: First, we discuss the limitations of using the above semantic

distance-based approaches in dominance-based MOEA/D, which suffer as a result of the

localised neighbourhood structure that is particular to MOEA/D. Then, we show, for

the first time, how we can naturally promote semantic diversity in MOEA/D in GP us-

ing semantic neighbourhood ordering (SNO), an approach that is designed specifically

to tackle these limitations. The SNO approach helps select semantically preferable indi-

viduals within each MOEA/D neighbourhood by ordering them based on their semantic

distance from individuals from the sparsest region of the archived Pareto front [3].

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 46

While semantics in the context of GP, is often associated with promoting diversity,

it is important to highlight that program semantics itself is often a vector representation

of the output of the program tree, given a set of inputs (or fitness cases), and signifies

the behaviour of the program tree rather than its syntactic structure. In this chapter,

program semantics are used to create distance metrics to help promote diversity. How

these distance metrics are used depends greatly on the framework being employed or the

specific nature in which semantics will be used to promote diversity. In the following

chapters, inspired by the use of semantic distance-based metrics, we again use the notion

of semantics to build distance vectors (in some literature this is synonymous to pheno-

typic distance vectors [27]) but in this context, these vectors will be used to impute the

performance of partially trained networks for use within a surrogate-assisted framework

for neuroevolution. In this work, this method of imputing performance based on these

vectors is referred to as semantic-based surrogate-assisted neuroevolution, as discussed in

Chapters 5 and 6.

4.1 Introduction

Genetic Programming (GP) [36] is a powerful Evolutionary Algorithm (EA) [20] that

has been successfully applied in a variety of challenging problems including finding the

automatic configuration of modern neural networks [37, 127] and energy-based prob-

lems [143, 144]. Despite the popularity of GP and its proven effectiveness in the face

of challenging problem features such as deceptiveness and multiple local optima [126], it

is also well-known that canonical GP has some limitations and researchers have developed

new approaches to make it more reliable. To this end, researchers have focused their at-

tention on neutrality [37,145–149], locality [128,129,150], reuse of code [151], to mention

some research topics.

One of the most popular elements studied by GP researchers during recent years

is semantics, with many works reporting substantial improvements in GP performance

achieved by encouraging semantic diversity during evolutionary runs. While multiple

definitions of semantics have been proposed in the GP community, it is commonly accepted

that semantics refers to the output of a GP program when it is executed on a (training)

data set (also known as fitness cases).

Semantics can be classified into one of two main categories: indirect or direct. Indirect

semantic approaches refer to those that act on the syntax of GP individuals to indirectly

increase semantic diversity. On the other hand, direct semantic approaches refer to those

mechanisms that adapt genetic operators to work directly on the semantics of GP in-

dividuals. Both types of approaches have benefits and limitations. This work focuses

on indirect semantic-based approaches. A formal treatment and more comprehensive

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 47

overview of semantics is given in Chapter 2.2.3.

To date, the use of semantics has been limited to a single-objective context. As such,

we will outline four semantic approaches that can be used in a multi-objective context.

A summary of the four semantics approaches used in this chapter is as follows:

Semantic Similarity-based Crossover (SSC). This method was first proposed by Uy et

al. [28] in the context of single-optimisation GP. This method uses a computationally

expensive procedure by applying crossover between two parents multiple times using

semantic diversity as a criteria in the selection process.

Semantic-based Distance as an additional criteriOn (SDO). This is a method which

originates as an improvement to the crowding distance operation as proposed by

Galván et al. [38]. This method uses a reference point or pivot from the sparsely

populated region of the search space and computes the semantic distance between

this pivot and every individual. This distance is optimised as an additional criterion

in Evolutionary Multiobjective Optimisation (EMO).

Pivot similarity Semantic-based Distance as an additional criteriOn (PSDO). It is a

method which is a variation of SDO but instead prefers solutions that are semanti-

cally similar to the pivot as proposed by Galván et al. [2].

Semantic Neighbourhood Ordering (SNO). This method first proposed by Stapleton et

al. [3], again uses a reference point or pivot from the sparsely populated region of

the external archive, which represents the best solutions found so far. Solutions

are ordered based on their semantic similarity to these sparse regions and single

replacement is incorporated in the neighbourhood update to help retain diverse

candidate solutions that explore discontinuous regions of the Pareto front.

Broadly speaking, there are two major framework implementations of MO: Pareto-

based approaches, which use the dominance relationship to find non-dominated solutions

that represent the Pareto front (see Chapters 2.4.2, 2.4.3 and 2.4.4 for details) and

decomposition-based which decomposes the multi-objective problem into multiple scalar

objective sub-problems which are solved in tandem (see Chapter 2.4.6 for details). Ta-

ble 4.1 offers a brief taxonomy of the semantic methods and their corresponding MOGP

frameworks and optimisation strategies. It should be noted that SDO is also applied to

MOEA/D to demonstrate the limitations of this method.

Based on these two implementations we will conduct an in-depth analysis of semantic

approaches in MO optimisation. Firstly, a comparison is performed using various seman-

tic approaches specifically for two Pareto-based approaches: the Non-dominated Sorting

Genetic Algorithm II (NSGA-II) [152] and the Strength Pareto Evolutionary Algorithm

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 48

Semantic Approach MOGP Framework Optimisation Strategy

SSC NSGA-II & SPEA2 Pareto-based
SDO NSGA-II & SPEA2 Pareto-based
PSDO NSGA-II & SPEA2 Pareto-based
SNO MOEA/D Dominance-based

Table 4.1: Summary of the approaches and where they are used. In Chapter 4.3.2 SDO
is also applied to MOEA/D to demonstrate the limitations of this method.

(SPEA2) [45]. For the Pareto-based implementations, the semantics approaches are SSC,

SDO and PSDO, the results and analysis of which are discussed in Chapter 4.3.1.

Next, we will turn our attention to a decomposition approach: Multi-objective Evo-

lutionary Algorithm with Decomposition (MOEA/D) [46]. When discussing MOEA/D

specifically, we highlight a limitation found in Pareto-based distance metrics, using SDO,

and propose a novel approach, SNO, for using semantic distance in the context of decom-

position as discussed in greater detail Chapter 4.1.2 and the analysis and results of which

are discussed in greater detail in Chapter 4.3.2.

For the Pareto-based implementations, we demonstrate that it is possible to natu-

rally incorporate semantics in MOGP leading to a better performance. Furthermore, we

demonstrate the robustness of the proposed method by using two different forms of com-

puting semantic distance, used in SDO and PSDO, leading to similar results by these

two methods, and demonstrates how a widely successful form of semantics used in single-

objective GP does not necessarily yield good results in MOGP.

For the decomposition-based implementation, we perform similar experiments with

the SDO approach. Our analysis reveals that these metrics perform poorly compared

to the Pareto-based approach. An in-depth discussion offers a strong motivating factor

as to why these approaches fail for decomposition-based approaches, a limitation which

derives from how the internal mechanism of MOEA/D works. Based on this limitation, we

propose a new way to naturally incorporate semantic distances into MOEA/D methods

in GP, specifically using the Weighted Sum, Tchebycheff and Penalty-based Boundary

Intersection methods. Our proposed semantic-based method yields as good or better

results on the average hypervolume of evolved Pareto-approximated fronts, Pareto optimal

fronts as well as reducing dramatically the same number of solutions in the objective space.

To the best of our knowledge, this is the first study of semantics in MOEA/D.

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 49

4.1.1 Semantics in NSGA-II and SPEA-II

Semantic Similarity-based Crossover MOGP

To incorporate semantics, in a MOGP paradigm, we first use the Semantic Similarity-

based Crossover (SSC) originally proposed by Uy et al. [28] which, to the best of our

knowledge, has been exclusively used in single-objective GP.

To use SSC in single-objective GP, a semantic distance must be computed first. Using

Def. 2 from Chapter 2.2.3, this distance is obtained by computing the average of the

absolute difference of values for every in ∈ I between parent and offspring. If the distance

value lies within a range, defined by one or two threshold values, then crossover is used

to generate offspring. Because this condition may be hard to satisfy, the authors tried

to encourage semantic diversity by repeatedly applying crossover up to 20 times. If after

this, the condition is not satisfied, then crossover is executed as usual. The crossover

operation is explained in Chapter 2.2.1.

SSC made a notable impact in GP, showing, for the first time, how semantic diversity

can be promoted in continuous search spaces, with several subsequent papers following

along this line [38,134,153]. We incorporate SSC in NSGA-II and SPEA2. However, the

performance increase reported when adopting SSC in single-objective optimisation is not

observed in MOGP, as we shall see in Chapter 4.3.1.

Semantic Distance as an additional criteriOn (SDO)

In this method, the crowding distance as discussed in Chapter 2.4.5 is replaced by a

semantic-based crowding distance. A pivot p is selected as the individual in the first

Pareto front which is furthest away from all other individuals v in that front. This

distance is calculated using the crowding distance as discussed in Chapter 2.4.5. Once

we have the pivot, we can compute the semantic differences of the pivot against all the

other individuals in the population. Upper and lower semantic similarity bounds denoted

as UBSS and LBSS, respectively, are used to promote semantic diversity within a range

as shown in Eq. 4.1 or via a single bound as like in Eq. 4.2.

d(p, vj) =

l∑
i=1

1 if LBSS ≤ |p(ini)− vj(ini)| ≤ UBSS
�� ��4.1

d(p, vj) =
l∑

i=1

1 if |p(ini)− vj(ini)| ≥ UBSS
�� ��4.2

The semantic-based crowding distance can also be used as an additional criterion to op-

timise. With the majority and minority classes (these benchmark problems are discussed

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 50

later in this chapter) serving as the first two objectives to optimise semantic distance is

also treated as a third objective.

Pivot similarity Semantic-based Distance as an additional criteriOn (PSDO)

In Chapter 4.1.1 we discussed SDO which calculates the semantic distance between each

individual and a pivot. To this effect, Equations 4.1 and 4.2 were used to determine

if the semantic difference between a pivot and the individuals fall within a predefined

range. This calculation naturally preferences programs which are semantically dissimilar

to the pivot. However, given that the pivot is picked from the most sparse region of the

search space this individual ought to be the most diverse as such an update a proposed

update in the distance calculation is given in Equations 4.3 and 4.4, where the summed

values is now taken away from the number of fitness cases. This method is referred to

as Pivot similarity Semantic-based Distance as an additional criteriOn (PSDO) and uses

Equations 4.3 and 4.4 in lieu of distances shown in Equations 4.1 and 4.2.

d(p, vj) = l −
l∑

i=1

1 if LBSS ≤ |p(ini)− vj(ini)| ≤ UBSS
�� ��4.3

d(p, vj) = l −
l∑

i=1

1 if |p(ini)− vj(ini)| ≥ UBSS
�� ��4.4

4.1.2 Semantics in MOEA/D

Semantic Neighbourhood Ordering (SNO)

Similar to how previous semantic distance-based approaches have calculated semantic

distance, this proposed method also makes use of a pivot [2,38]. Alg. 3 largely follows the

steps outlined in Chapter 2.4.6 as seen in Alg. 1, however, two additional lines have been

added (Alg. 3: Line 7-8). First, the crowding distance is calculated from the external

population (Alg. 3: Line 7). The pivot is selected as an individual from the sparsest

region from the non-dominated solutions of the external population EP (Alg. 3: Line 8).

The external population EP represents non-dominated solutions across all generations,

where newly dominated solutions at each generation are removed, as discussed in Chap-

ter 2.4.6. The semantic distance is calculated as the absolute difference between the pivot

p as selected from the external population EP and every individual v from the standard

population P using Eq. 4.5

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 51

d(p, v) =
∑
i=1

1 if |p(ini)− v(ini)| < UBSS
�� ��4.5

As such, individuals that are semantically similar to the pivot will have a larger distance

than those which are dissimilar. For the sake of simplicity, a single upper bound is chosen,

referred to as Upper Bound Semantic Similarity (UBSS) and is used as a threshold value

for the semantic similarity between the pivot and the individual under consideration. The

use of bounds in continuous spaces is common to quantify semantic diversity as profusely

used in the specialized literature [2, 38,136].

The pseudocode for this approach, entitled Semantically Ordered Update (Alg. 4) re-

places the standard update (Step 2.3 in Chapter 2.4.6) of the original MOEA/D approach

and is called in Line 12 of Alg. 3. More specifically, the population is first subsetted us-

ing the neighbourhood reference table B(i) and the population P (Alg. 4: Line 2). The

semantic distances are computed between the pivot and each individual in the neigh-

bourhood and these distances are assigned to each individual in the subsetted population

NP (Alg. 4: Line 3). The neighbourhood is then sorted such that the most semantically

dissimilar individuals are checked first (Alg. 4: Line 4). Once a preferable update occurs

(Alg. 4: Line 7), the individual is replaced by the child program (Alg. 4: Line 8), the

subroutine then exits (Alg. 4: Line 9) and the next child program is evaluated.

This process is visually represented in Fig 4.1, broken into six stages. Stages 1 - 3, show

the typical selection of parents and the subsequent generation of an offspring individual

(blue). Stages 4 - 6, demonstrate Alg. 4, showing how the neighbourhood (solutions close

to A) are first ordered by the semantic similarity to the pivot (red), as selected from the

external archive (green), and shows how the more preferable individual is replaced in a

single replacement strategy.

4.2 Implementation Details

The use of benchmark problems has allowed the research community to test, validate

and explain a plethora of evolutionary algorithms. In this work, we also adopt well-

known, robust and tested benchmark problems used in other studies [154, 155] that will

allow us to (i) test the algorithms used in this work, (ii) to use well-defined metrics that

allow us to compare one method against another one, (iii) to allow us to explain why

one particular method behaves better than others, (iv) to draw sound conclusions on the

results reported in the following sections. Thus, for this study, the impact of semantics

in MOGP are analysed using several unbalanced binary classification problems, taken

from the UCI Machine Learning repository [156]. Table 4.2, adapted from [154], gives the

details of all datasets used in this work. These classification problems have various degrees

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 52

Algorithm 3 Semantically Ordered MOEA/D

1: Λ = {λi1 , λi2 , ..., λiN } ▷ Create weight vectors
2: P = {x1, x2, ..., xN} ▷ Initialize population
3: for each λi ∈ Λ do
4: B(i) = {i1, i2, ..., iT } ▷ Define reference table
5: end for
6: repeat
7: CD1 ← crowding distance(EP)
8: pivot← furthest point(CD1)
9: for each i ∈ {1, 2, ..., N} do

10: k, l← Return random parent indices from B(i)
11: y ← Generate child program from xk and xl

12: P = update(y, i, pivot)
13: end for
14: EP ← Remove non-dominated solutions based on P
15: until Stopping criteria is met
16: return EP ▷ The non-dominated solutions from EP

Algorithm 4 Semantically Ordered Update

1: for each i ∈ T do
2: NP ← Subset population using B(i) and P
3: NP ← compute semantics(pivot,NP)
4: B(k)← sort(B(i), NP)
5: end for
6: for each j ∈ B(k) do
7: if g(y|λj , z) > g(xj |λj , z) then
8: xj = y ▷ Single replacement
9: return ▷ Exit subroutine

10: end if
11: end for

of class imbalance, from 1:3 to 1:130, for the Ion and the Abal2 data set, respectively. The

50-50% training/test sets also vary in size, with some having substantially more instances

(Abal2 has around 2,100 instances) to relatively low numbers of instances (Spect has

around 133 instances, where around 27 are from the minority class). Moreover, these

data sets range from low dimensionality (Yeast1 has 8 features) to high dimensionality

(Ion has 34 features). Finally, our data sets include binary and real-valued features. Thus,

these data sets represent class imbalance problems of various degrees of difficulty, size,

dimensionality and types of features reasonably well. Moreover, we carefully choose these

benchmark problems so that our evaluations on the four semantic-based methods (SSC,

SCD, SDO and SNO) and the three EMO approaches (NSGA-II, SPEA2 and MOEA/D)

are not problem dependent.

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 53

Pivot

Parent 1

Parent 2

Offspring

1

2

3

Stage 3Stage 2Stage 1

Stage 6 (Alg. 2: line 8)Stage 5 (Alg. 2: line 7)Stage 4 (Alg. 2: line 4)

A A A

A A A

Archive

Figure 4.1: Demonstrating the semantic neighbourhood update. Stage 1 - 3 shows a
typical selection of parents and the subsequent generation of an offspring individual (blue).
Stages 4 - 6 show how the neighbourhood (solutions close to A) is first ordered by the
semantic similarity to the pivot (red), as selected from the external archive (green), and
how the more preferable individual is replaced in a single replacement strategy.

The terminal and function sets used in this work are as follows. The terminals are

the problem features. The function set contains the most common arithmetic operators,

namely F = {+,−, ∗, /}, where the division operator is protected by returning the nu-

merator when the denominator has a value of zero. The models evolved by GP map each

input pattern in a dataset to a single output value. When the output of a GP model is

greater than, or equal to, zero the pattern is labelled as part of the minority class, and it

is labelled as a majority class pattern, otherwise.

The common way to measure fitness in a classification task is to use the overall clas-

sification accuracy: for binary classification, the four possible cases are shown in Ta-

ble 4.3. Assuming the minority class is the positive class, the accuracy is given by Acc

= TP+TN
TP+TN+FP+FN , where TP are the true positives, TN are the true negatives, FP are

the false positives and FN are the false negatives. The drawback of using Acc alone is

that it rapidly biases the evolutionary search towards the majority class [154] and other

metrics like F1 score can bias optimization by failing to balance the trade-off of precision

and recall. A better approach is to treat each class ‘separately’ using a MO approach.

Two objectives considered are thus the true positive rate, given by TPR = TP
TP+FN , and

the true negative rate given by TNR = TN
TN+FP . They measure the distinct accuracy for

the minority (TPR) and majority class (TNR), respectively.

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 54

Table 4.2: Details on binary imbalanced classification data sets used in our research

Data set Number of examples Imb. Features
Total Positive Negative Ratio No. Type

Ion 351 126 (35.8%) 225 (64.2%) 1:3 34 Real
Spect 267 55 (20.6%) 212 (79.4%) 1:4 22 Binary
Yeast1 1482 244 (16.5%) 1238 (83.5%) 1:6 8 Real
Yeast2 1482 163 (10.9%) 1319 (89.1%) 1:9 8 Real
Abal1 731 42 (5.75%) 689 (94.25%) 1:17 8 Real
Abal2 4177 32 (0.77%) 4145 (99.23%) 1:130 8 Real
Climate 540 46 (8.5%) 494 (91.5%) 1:12 18 Real
Glass 214 70 (32.7%) 144 (67.3%) 1:3 10 Real
Parkinson’s 197 48 (24.6%) 147 (75.4%) 1:4 22 Real
Wine 178 59 (33.1%) 119 (66.9%) 1:3 12 Real

Table 4.3: Confusion Matrix

Predicted positive Predicted negative

Actual positive True Positive (TP) False Negative (FN)

Actual negative False Positive (FP) True Negative (TN)

The experiments were conducted using a generational approach. Tree size was con-

trolled by using a maximum number of nodes or a maximum final depth, whatever happens

first. When a child tree exceeds any of these, the offspring is generated again until these

conditions are satisfied. The parameters used are shown in Table 4.4. These include the

use of different bounds, defined as Upper Bound Semantic Similarity (UBSS) = {0.25,
0.50, 0.75, 1.0} values and Lower Bound Semantic Similarity (LBSS) = {0.001, 0.01, 0.1}
values, to compute the semantic distances defined in Eqs. 4.1, 4.2, 4.3 and 4.4. This

results in conducting a thorough analysis: for each of the semantic-based approaches and

for each of the datasets used, we have 161 independent results, each being the result of

50 independent runs. To obtain meaningful results, we carried out an extensive empirical

experimentation (29,400 independent runs in total)2. On the other hand, only a single

UBSS value is used for the semantic neighbourhood approach leading to less independent

runs being tested (this gives a total of 1,440 independent runs)3.

14 values for UBSS and 4 cases for LBBS: 3 values and 1 case where LBSS is not defined.
250 independent runs, 6 datasets, 3 semantic-based MOGP approaches (SSC, SCD, SDO), 16 different

combinations of values for UBSS and LBSS, 2 canonical EMO methods (NSGA-II, SPEA2).
330 independent runs, 8 data sets, 3 semantic-based MOEA/D approaches and 3 canonical MOEA/D

methods (the Weighted Sum, Tchebycheff and Penalty-based Boundary Intersection.

Table 4.4: Summary of parameters used in our experiments.

Parameter Value

Population Size 500
Generations 50
Type of Crossover 90% internal nodes, 10% leaves
Crossover Rate 0.60
Type of Mutation Subtree
Mutation Rate 0.40
Initialisation Method Ramped half-and-half
Initialisation Depths:
Initial Depth 1 (Root = 0)
Final Depth 5

Maximum Length 800 nodes
Maximum Final Depth 8
Independent Runs 50 (Ch. 4.3.1), 30 (Ch. 4.3.2)
Neighbourhood size 20
Scalar Optimisation { Weighted Sum, Tchebycheff & PBI }
PBI Theta Value 0.1
Semantic Thresholds UBSS = {0.25, 0.5, 0.75, 1.0}
(Ch. 4.3.1) LBSS = {-, 0.001, 0.01, 0.1}
Semantic Thresholds (Ch. 4.3.2) UBSS = 0.5

4.3 Results

4.3.1 Semantic Approaches for Pareto-based Optimisation

SSC, SDO and PSDO: Comparison

In order to compare the approaches used in this work, we use the hypervolume of the

evolved Pareto approximations as a performance measure [157]. For bi-objective prob-

lems, as the binary highly unbalanced classifications problems used in this work are, the

hypervolume of a set of points in objective space, using reference point (0, 0), is easily

computed as the sum of the areas of all non-overlapping rectangles fitted under each

point. The reference point (0, 0) is required for the hypervolume calculation and as we

wish to maximise each of the objectives we select this point as the lowest value that either

the TPR or TNR can take. The hypervolume was chosen because it is one of the most

widely used performance indicators in the EMO literature and it allows us to compare

the performance of EMO approaches. Furthermore, we also computed the accumulated

Pareto-optimal (PO) front with respect to 50 runs: the set of non-dominated solutions

after merging all 50 Pareto-approximated fronts.

In our work, we use payoff tables to demonstrate which semantic approach (SSC,

SDO or PSDO) is significantly better than its canonical form. The motivation behind

using these payoff tables is to easily summarize the vast amounts of results obtained.

To demonstrate this, Table 4.5 which contains just a single dataset for NSGA-II (Ion

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 56

Table 4.5: Average hypervolume (± std. deviation) and last run Pareto Front for NSGA-II
SDO, NSGA-II PSDO and NSGA-II SSC methods for Ion dataset only. Each is compared
against NSGA-II, results of which are found in Table 4.6

Hypervolume
Average PO Front
UBSS UBSS

LBSS 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

NSGA-II SDO

– 0.860 ± 0.033+ 0.869 ± 0.037+ 0.869 ± 0.033+ 0.845 ± 0.057+ 0.948 0.958 0.962 0.950
0.001 0.817 ± 0.087+ 0.819 ± 0.104+ 0.857 ± 0.057+ 0.861 ± 0.047+ 0.942 0.957 0.954 0.958
0.01 0.825 ± 0.084+ 0.843 ± 0.073+ 0.861 ± 0.045+ 0.861 ± 0.038+ 0.946 0.956 0.957 0.944
0.1 0.846 ± 0.070+ 0.848 ± 0.068+ 0.844 ± 0.075+ 0.864 ± 0.044+ 0.950 0.956 0.953 0.960

NSGA-II PSDO

– 0.794 ± 0.100 0.811 ± 0.084 + 0.823 ± 0.091 0.795 ± 0.105 0.904 0.932 0.945 0.939
0.001 0.867 ± 0.035+ 0.874 ± 0.029+ 0.880 ± 0.036+ 0.873 ± 0.045+ 0.959 0.952 0.965 0.945
0.01 0.852 ± 0.050+ 0.867 ± 0.051+ 0.880 ± 0.031+ 0.867 ± 0.050+ 0.947 0.950 0.944 0.949
0.1 0.853 ± 0.062+ 0.869 ± 0.048+ 0.875 ± 0.051+ 0.872 ± 0.049+ 0.941 0.951 0.956 0.938

NSGA-II SSC

– 0.761 ± 0.108 0.749 ± 0.161 0.763 ± 0.152 0.744 ± 0.137 0.941 0.937 0.951 0.949
0.001 0.765 ± 0.134 0.753 ± 0.124 0.699 ± 0.188 0.803 ± 0.103 0.954 0.935 0.928 0.946
0.01 0.760 ± 0.125 0.751 ± 0.123 0.710 ± 0.161 0.802 ± 0.104 0.947 0.929 0.928 0.947
0.1 0.775 ± 0.095 0.738 ± 0.184 0.746 ± 0.141 0.778 ± 0.099 0.957 0.951 0.945 0.936

Table 4.6: Average hypervolume (± std. deviation) and last run Pareto Front for NSGA-II
and SPEA2 for 50 independent runs.

Dataset
NSGA-II SPEA2

Hypervolume Hypervolume
Average PO Front Average PO Front

Ion 0.766 ± 0.114 0.938 0.786 ± 0.094 0.948
Spect 0.534 ± 0.024 0.647 0.544 ± 0.032 0.659
Yeast1 0.838 ± 0.011 0.876 0.838 ± 0.008 0.877
Yeast2 0.950 ± 0.009 0.976 0.946 ± 0.015 0.978
Abal1 0.847 ± 0.058 0.961 0.832 ± 0.078 0.960
Abal2 0.576 ± 0.122 0.842 0.544 ± 0.147 0.834

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 57

Table 4.7: Payoff tables for canonical NSGA-II, NSGA-II SDO, NSGA-II PSDO and
NSGA-II SSC for each of the 6 data sets

Ion

NSGA-II SDO PSDO SSC
NSGA-II - 0 0 0
SDO 16 - 2 15
PSDO 13 3 - 14
SSC 0 0 0 -

Spect

NSGA-II SDO PSDO SSC
NSGA-II - 0 0 0
SDO 16 - 8 16
PSDO 16 3 - 15
SSC 0 0 0 -

Yeast1

NSGA-II SDO PSDO SSC
NSGA-II - 0 0 0
SDO 16 - 2 16
PSDO 16 1 - 16
SSC 0 0 0 -

Yeast2

NSGA-II SDO PSDO SSC
NSGA-II - 0 0 0
SDO 16 - 2 16
PSDO 16 4 - 16
SSC 0 0 0 -

Abal1

NSGA-II SDO PSDO SSC
NSGA-II - 0 0 0
SDO 12 - 10 12
PSDO 6 1 - 7
SSC 0 0 0 -

Abal2

NSGA-II SDO PSDO SSC
NSGA-II - 0 0 2
SDO 12 - 1 15
PSDO 16 7 - 16
SSC 0 0 0 -

dataset), will be used to fully explain the process, but in the Appendix, the full tables,

containing six datasets (Ion, Spect, Yeast1, Yeast2, Abal1 and Abal2) for both NSGA-II

and SPEA2, have been reproduced (Tables A.2 and A.3). Before discussing the payoff

tables we will first discuss how to interpret the results as shown in Tables 4.6 (results

yielded by canonical EMO approaches) and 4.5 (results obtained by semantic-based EMO

approaches on the Ion dataset).

As such, Table 4.5 reports both, the average hypervolume over 50 runs (columns 2-5,

from left to right) and also the hypervolume of the accumulated PO front with respect to

all 50 runs (columns 6-9). To obtain a statistically sound conclusion, a series of Wilcoxon

rank-sum tests were run on the average hypervolume results. To account for the problem

of multiple comparisons that arose from testing the canonical method 16 times for each

data set, a Bonferroni correction α
m = 3.125 × 10−3 was used where α = 0.05. These

statistically significant differences are highlighted in boldface, to easily distinguish from

non-significant results. Moreover, in this table, the symbols “+” and “–”, indicate that

the results of a given semantic-based approach are significantly better or worse than those

found by the canonical NSGA-II (Table 4.6), using the Wilcoxon rank-sum test.

We can now compare the semantic-based methods, introduced in Section 4.1.1, against

their corresponding canonical EMO algorithms. As previously discussed, due to the signif-

icant amount of results obtained and shown in the appendix, we summarised our findings

in a series of payoff matrices to show which strategies have significantly better values or

‘wins’ vs. the other methods. These payoff matrices are shown in Tables 4.7 and 4.8 for

semantic-based methods using NSGA-II and SPEA2, respectively.

The payoff tables can be read as follows: the strategies of the row index are compared

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 58

Table 4.8: Payoff tables for canonical SPEA2, SPEA2 SDO, SPEA2 PSDO and SPEA2
SSC for each of the 6 data sets.

Ion

SPEA2 SDO PSDO SSC
SPEA2 - 0 0 0
SDO 16 - 0 16
PSDO 16 0 - 16
SSC 0 0 0 -

Spect

SPEA2 SDO PSDO SSC
SPEA2 - 0 0 0
SDO 14 - 0 16
PSDO 16 0 - 16
SSC 0 0 0 -

Yeast1

SPEA2 SDO PSDO SSC
SPEA2 - 0 0 0
SDO 16 - 1 16
PSDO 16 0 - 16
SSC 0 0 0 -

Yeast2

SPEA2 SDO PSDO SSC
SPEA2 - 0 0 0
SDO 16 - 0 16
PSDO 16 0 - 16
SSC 0 0 0 -

Abal1

SPEA2 SDO PSDO SSC
SPEA2 - 0 0 0
SDO 16 - 0 16
PSDO 13 0 - 13
SSC 0 0 0 -

Abal2

SPEA2 SDO PSDO SSC
SPEA2 - 0 0 0
SDO 15 - 0 16
PSDO 16 0 - 16
SSC 0 0 0 -

against the strategies of the column index and for each LBSS and UBSS setting which is

significantly better for the column strategy counts as one ‘win’ towards the count. For

example, SDO vs. NSGA-II for the Ion data set is significantly better for all settings

of LBSS and UBSS (as seen in Table 4.5 originally, columns 2-5, highlighted in bold)

and as such has 16 ‘wins’ overall (top left-hand side of Table 4.7). Likewise, PSDO vs.

NSGA-II for the Ion data set is significantly better for 13 settings of LBSS and UBSS

(columns 2-5, highlighted in bold), and SSC vs. NSGA-II is not significantly better for

any (columns 2-5, here no values have been highlighted in bold). The payoff tables have

been colour-coded as such with solid black denoting that the strategy is the best overall

in terms of the number of ‘wins’ and light grey being the worst overall.

Given our understanding of the payoff tables, we can explain the results in full. The

two methods that use semantic distance as a criteria strategy, SDO and PSDO, outper-

formed their respective canonical counterparts (NSGA-II and SPEA2) with the exception

of Abal1 which had a large number of settings that produced no significant difference in

the hypervolume averages for canonical NSGA-II. Additionally for Abal1, NSGA-II SDO

had the greatest number of wins over other strategies and results for NSGA-II PSDO were

comparatively mixed. We can see that SSC did not provide any ‘wins’ over NSGA-II.

If we look at SPEA2 we see the same general trend; both SDO and PSDO outperform

the canonical SPEA2 approach and SCC does not produce any wins over the canonical

SPEA2 approach. In Appendix A, we provide a detailed comparison, looking specifically

at comparing the three semantic approaches to each other, as seen in the payoff tables,

however, the main takeaway is that the semantic distance-based approaches, SDO and

PSDO, produce better results when compared to their canonical counterparts.

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 59

4.3.2 Semantic Approaches for Decomposition-based Optimisation

SDO in MOEA/D: Limitations

To highlight some of the limitations of the SDO approach we also look at a decompo-

sition approach known as Multi-Objective Evolutionary Algorithm with Decomposition

(MOEA/D) [46]. As previously discussed, SDO uses a pivot which is selected from the

sparsest region of the Pareto front and preferences individuals that have the greater se-

mantic distance from that point. With MOEA/D we decompose the optimisation problem

into a set of scalar optimisation problems (see Chapter 2.4.6 for details). A scalar opti-

misation function g, along with a uniform distribution of weight vectors λi are used to

define each sub-problem. It is important to note that each sub-problem relies only on

neighbouring sub-problems for evolution, that is crossover, mutation and selection only

occur for individuals within a given neighbourhood. In the original MOEA/D approach,

three aggregation approaches are discussed, namely the Weighted sum, Tchebycheff and

Penalty-based Boundary Intersection (PBI) approach. To demonstrate that our approach

is best suited to Pareto dominance-based approaches, we use one of these three MOEA/D

methods. As such, the Tchebycheff approach4 was selected as (i) it does not require any

additional parameters, unlike the PBI approach and (ii) since it tended to perform as well

as or better than the Weighted Sum approach in preliminary baseline tests. The scalar

optimisation of the Tchebycheff approach is explained in Chapter 2.4.6.

Only one additional step is required to implement the SDO approach in MOEA/D.

The inclusion of this step can occur at any stage prior to implementing the aggregation and

selection process but after mutation and crossover operations have been performed. Since

the dominance relation is not naturally used in the MOEA/D algorithm, we instead create

a dummy population. That is, the parent and offspring populations are joined together

and the pivot is derived from this joint population as is the case of the framework used in

our NSGA-II and SPEA2 approaches. Once the semantic distances have been calculated,

this joint population is discarded and the MOEA/D algorithm works as expected.

Using the same six datasets from Chapter 4.3.1, the average and accumulated hy-

pervolumes results for the canonical MOEA/D approach are produced in Table 4.9 and

results for the SDO approach are produced in Table 4.10. A fixed neighbourhood size of

20 was used for all experiments. A Friedman test is used to test the null hypothesis that

the median performance of all groups in the same block are the same. We reject the null

hypothesis at the α = 0.01 significance level5, concluding that the median performance

4Later, in Chapter 4.3.2 all three methods are compared when analysing the semantic neighbourhood
ordering approach.

5The use of a Friedman test and different significance levels for alpha stems from this analysis coming
from the journal article in Applied Soft Computing [2]. The SDO data used is the same in both papers.
Using a Wilcoxon text with higher significance for alpha leads to similar analysis.

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 60

for all groups differs. When we perform multiple comparisons against the baseline re-

sults (using MOEA/D only), from Table 4.9, and each of the SDO configurations, from

Table 4.10, we found that the baseline method outperformed the SDO method.

In Table 4.10 when looking at the average and accumulated hypervolumes, barring

Abal2, we can see that none of the datasets produces better results for SDO when com-

pared to their respective canonical results, shown in Table 4.9. In fact, it was found that

for these data sets the canonical approach performed better. The results for Abal2, high-

lighted in boldface, are performing better for all UBSS and LBSS values. The seemingly

conflicting results are due to the high level of variance in the canonical results, where the

standard deviation is ± 0.100. This unexplained variance is accounted for in the Friedman

test.

To understand why MOEA/D fails to produce similar results to NSGA-II and SPEA2

when using SDO, it is important to highlight how these algorithms differ in terms of

searching for solutions in objective space. Both NSGA-II and SPEA2 rely on the domi-

nance relationship to sort preferential solutions to be retained, MOEA/D instead decom-

poses the multi-objective problem into sub-problems and each sub-problem is assigned

a weight vector which represents a specific direction or location for that particular sub-

problem to be optimised to. The weight vectors are typically initialised so that they are

evenly distributed, with the ultimate aim of producing a representative spread of solutions

in objective space. Fig. 4.2 illustrates the distinction between decomposition (left-hand

side diagram) and Pareto dominance (right-hand side diagram) based approaches. Both

diagrams have three numbered regions separated by a dashed line. Region 1 represents

the initially randomised solutions, Region 2 represents the solutions midway through op-

timisation and Region 3 represents solutions towards the end of the optimisation process

when maximising a potential solution.

On the left diagram, solutions have been colour-coded to highlight how they optimise

towards particular localities in the objective space. For simplicity’s sake, only 3 neigh-

bourhoods have been represented and we will assume these three neighbourhoods are from

a subset of a much larger set of neighbourhoods such that none of the individuals in each

neighbourhood overlap. Each neighbourhood has been colour-coded with blue, yellow and

red circles. Even though the solutions are initially mixed in objective space (left diagram,

Region 1), as the optimisation progresses, newly produced offspring will converge towards

their respective locations in objective space based on the initial weighting (left diagram,

Region 2). In the final stages, the offspring will likely converge on a single point, leading

to duplication of solutions (left diagram, Region 3).

In the Pareto dominance approach (right diagram, Region 1), the selection process

is determined by the dominance relation. For simplicity’s sake, only non-dominated so-

lutions with dominance Rank 0 have been highlighted (purple circle) along with the

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 61

Table 4.9: Average (± standard deviation) hypervolume of evolved Pareto-approximated
fronts and PO fronts for MOEA/D over 50 independent runs.

Dataset
MOEA/D

Hypervolume
Average PO Front

Ion 0.823 ± 0.031 0.932
Spect 0.537 ± 0.024 0.652
Yeast1 0.837 ± 0.008 0.877
Yeast2 0.945 ± 0.013 0.978
Abal1 0.808 ± 0.097 0.959
Abal2 0.602 ± 0.100 0.798

Table 4.10: Average (± standard deviation) hypervolume of evolved Pareto-approximated
fronts and PO fronts for the MOEA/D semantic-based method for SDO with over 50
independent runs. Bold indicates better performance compared to the baseline MOEA/D
results reported in Table 4.9.

Hypervolume
Average PO Front
UBSS UBSS

LBSS 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

MOEA/D SDO

Ion

– 0.689 ± 0.039 0.702 ± 0.038 0.708 ± 0.032 0.691 ± 0.030 0.848 0.847 0.850 0.850
0.001 0.753 ± 0.032 0.738 ± 0.038 0.727 ± 0.033 0.729 ± 0.031 0.885 0.879 0.866 0.860
0.01 0.747 ± 0.039 0.725 ± 0.035 0.735 ± 0.036 0.727 ± 0.031 0.906 0.880 0.872 0.859
0.1 0.749 ± 0.033 0.749 ± 0.035 0.734 ± 0.033 0.734 ± 0.032 0.885 0.892 0.865 0.869

Spect

– 0.472 ± 0.028 0.474 ± 0.027 0.474 ± 0.024 0.473 ± 0.024 0.601 0.604 0.599 0.585
0.001 0.439 ± 0.047 0.441 ± 0.038 0.461 ± 0.040 0.458 ± 0.030 0.597 0.589 0.612 0.575
0.01 0.456 ± 0.040 0.436 ± 0.050 0.447 ± 0.037 0.447 ± 0.035 0.588 0.582 0.611 0.609
0.1 0.451 ± 0.051 0.444 ± 0.043 0.453 ± 0.033 0.449 ± 0.028 0.603 0.588 0.606 0.578

Yeast1

– 0.748 ± 0.036 0.743 ± 0.037 0.746 ± 0.030 0.749 ± 0.032 0.848 0.845 0.846 0.843
0.001 0.764 ± 0.030 0.767 ± 0.035 0.776 ± 0.028 0.781 ± 0.027 0.850 0.848 0.850 0.852
0.01 0.755 ± 0.040 0.765 ± 0.034 0.764 ± 0.028 0.768 ± 0.031 0.847 0.847 0.848 0.849
0.1 0.758 ± 0.032 0.754 ± 0.041 0.743 ± 0.037 0.755 ± 0.037 0.846 0.846 0.840 0.844

Yeast2

– 0.833 ± 0.075 0.846 ± 0.064 0.825 ± 0.067 0.825 ± 0.060 0.968 0.959 0.958 0.956
0.001 0.772 ± 0.092 0.800 ± 0.080 0.833 ± 0.077 0.859 ± 0.075 0.960 0.959 0.968 0.969
0.01 0.778 ± 0.091 0.771 ± 0.073 0.794 ± 0.087 0.801 ± 0.083 0.957 0.952 0.963 0.960
0.1 0.770 ± 0.083 0.778 ± 0.081 0.755 ± 0.086 0.766 ± 0.076 0.950 0.948 0.953 0.953

Abal1

– 0.705 ± 0.087 0.707 ± 0.099 0.700 ± 0.100 0.698 ± 0.110 0.938 0.927 0.932 0.941
0.001 0.719 ± 0.072 0.736 ± 0.089 0.765 ± 0.068 0.794 ± 0.066 0.920 0.928 0.931 0.944
0.01 0.678 ± 0.078 0.722 ± 0.073 0.738 ± 0.076 0.769 ± 0.068 0.882 0.908 0.899 0.936
0.1 0.678 ± 0.086 0.672 ± 0.086 0.692 ± 0.066 0.720 ± 0.080 0.898 0.894 0.884 0.895

Abal2

– 0.672 ± 0.061 0.665 ± 0.046 0.666 ± 0.053 0.658 ± 0.075 0.844 0.840 0.836 0.851
0.001 0.666 ± 0.042 0.660 ± 0.041 0.676 ± 0.043 0.676 ± 0.034 0.851 0.829 0.852 0.838
0.01 0.666 ± 0.035 0.664 ± 0.035 0.676 ± 0.044 0.663 ± 0.039 0.846 0.834 0.849 0.815
0.1 0.672 ± 0.046 0.661 ± 0.036 0.652 ± 0.040 0.656 ± 0.046 0.850 0.831 0.830 0.828

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 62

f2

f1

f2

f1

3.

1.

2.

3.

1.

2.

Figure 4.2: Diagram illustrating search behaviour for both decomposition and Pareto
dominance-based approaches when maximising a solution. Numbers 1, 2 and 3 denote the
typical spread of solutions in objective space at initial, intermediate and latter generations
respectively. The green triangle represents a typical pivot selection.

dominated solutions with dominance rank greater than 0 (orange circle). Under the as-

sumption that diversity is actively being promoted, as the optimisation progresses, the

solutions will become more evenly spread with the dominated solutions reducing over

time and subsequently more non-dominated solutions being assigned within the popula-

tion (right diagram, Regions 2 and 3).

This illustrated behaviour allows for an intuitive distinction between the search mech-

anism in the Pareto dominance-based algorithms and the decomposition algorithm. In

the Pareto dominance-based approach new solutions are free to occupy any location in the

objective space as long as they satisfy the dominance relationship and crowding distance

criteria, and therefore these algorithms search the objective space globally. However, in

the MOEA/D algorithm, the search is localised, for a given sub-problem in conjunction

with its weights and once the algorithm converges the diversity of solutions are constrained

by the initialised weights.

Given that the pivot behaves as a point of semantic attraction, it is possible to show

how this is problematic: the semantic relationship between individuals in a specific neigh-

bourhood and the pivot may not provide beneficial updates as the selection process is

determined by the aggregation function (Tchebycheff approach in this example), which

behaves as a localised search mechanism when the neighbourhood size is small relative to

the overall population size. In other words, assuming the neighbourhood is far away from

the pivot, the direction a particular sub-problem in objective space is being optimised

towards, will likely not correspond to the direction of attraction to the pivot in semantic

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 63

space and as such the aggregation function negates any benefit from drawing a semantic

relationship to the pivot. To get an intuitive understanding of this, if we look at the left

diagram of Fig. 4.2, we can see that if the pivot (green triangle) is always selected in the

bottom left neighbourhood (red circles), then it will not be possible to draw individu-

als to this neighbourhood from the other neighbourhoods (blue and yellow circles) and

subsequently using the semantic relationship between the pivot and these individuals is

redundant. Furthermore, as the algorithm converges, the number of duplicates in each

neighbourhood increase significantly meaning the semantic distance will be the same for

all individuals in a particular neighbourhood.

While each individual sub-problem engages in a localised search of the objective space,

when we consider all sub-problems in unison MOEA/D is effectively searching globally.

The real issue arises from the trade-off of exploitation versus exploration when selecting

the neighbourhood size relative to the population size and specifically its incompatibility

when using a pivot in this manner. Selecting a neighbourhood size of 20 was required in

the baseline models to garner reasonable results (i.e., preferencing local search rather than

global exploration) and when we compare Tables 4.6 (results using NSGA-II and SPEA2)

and 4.9 (results using MOEA/D), we can see these results are comparatively similar.

If we increased the neighbourhood size so that it was substantially larger, this would

likely improve exploration and make the pivot mechanism more effective, however, doing

so would come at the cost of the exploitative aspects of the algorithm. It is, however,

important to note, that using semantic distance can still be useful in decomposition

approaches when we operate internally within the neighbourhood structure.

SNO in MOEA/D: Hypervolume

Next, we look at the results for the semantic neighbourhood ordering approach in

MOEA/D, which overcomes the limitation as discussed previously in this chapter. In

this chapter, we use four of the same datasets as before, but aba1l and abal2 have been

dropped due to i) the run time associated with these datasets and ii) the higher level

of variance found in the canonical MOEA/D made drawing sound conclusions somewhat

more difficult in the SDO comparison. These two datasets have been replaced with four

new datasets; Climate, Glass, Parkinson’s and Wine, shown in Table 4.2.

Tables 4.11 and 4.12 report the average hypervolume over 30 independent runs for

the external population. We also computed the accumulated Pareto optimal (PO) front

for 30 runs from the external population, that is the set of non-dominated solutions after

merging all 30 Pareto-approximated fronts. These results were gathered for both the

canonical MOEA/D framework (Table 4.11) and for the framework which incorporates

the semantic neighbourhood ordering (Table 4.12), as outlined in Chapter 4.1.2. The

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 64

Weighted Sum (WGT), Tchebycheff (TCH) and Penalty-based Boundary Intersection

(PBI) scalar optimisation functions were tested and for each framework, with only the

majority and minority classes being considered for objectives. In order to obtain a sta-

tistically sound conclusion, the Wilcoxon rank-sum test was run with a significance level

of α = 0.05 on the average hypervolume results. The statistically significant differences

between the two frameworks are highlighted in boldface in each of the respective tables.

A row-wise comparison for each of the data sets shows that the semantically ordered ap-

proach for Ion, Climate and Glass produced significantly better results when compared

to the canonical approach for the hypervolume averages, barring the WGT approach for

Glass, which while larger, was not significant. Wine had no statistical change in this re-

gard. The canonical approach was universally better only in the case of the Spect dataset

when compared against the other three methods. We will explain these results in more

detail in the following section. The results for Yeast1, Yeast2 and Parkinson’s datasets,

are mixed, however, when a result was statistically significant for these datasets, the dif-

ference in hypervolume between the canonical and semantic approaches was typically less

than 0.01, whereas the results for the other datasets the difference in hypervolume was

generally greater.

At a more granular level, when comparing the semantic ordered approach against

its canonical form, there are 3 out of 8 (Ion, Climate, Glass) instances where WGT is

significantly better, there are 3 out of 8 instances (Ion, Climate, Glass) where TCH is

significantly better, and 4 out of 8 instances (Ion, Yeast2, Climate, Glass) where PBI is

significantly better. Let’s turn our attention, to when the canonical approach outperforms

the semantic ordered approach. We can see that there are 3 out of 8 instances where

WGT is significantly better, 1 out of 8 instances (Spect) where TCH is significantly

better, and 3 out of 8 (Spect, Yeast1 and Parkinson’s) where PBI was significantly better

in the canonical form. The accumulated PO front largely conforms with the average

hypervolume results, having as good or better performance for the semantic method,

although some notable decreases were observed for Climate (TCH and PBI). In general,

TCH performs as well or better for the semantic ordering approach with WGT and PBI

showing mixed results depending on the datasets.

SNO in MOEA/D: Analysis Of Objective Space

We have seen some promising results when promoting diversity in MOEA/D algorithms.

In other cases, the results are mixed, where canonical MOEA/D methods perform better

in a few data sets. To better understand this, we perform a detailed analysis in the

objective space. This is shown in Fig. 4.3 and Fig. 4.4.

The left-hand plots show the canonical approach while the right-hand plots show

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 65

Table 4.11: Average (± standard deviation) hypervolume of evolved Pareto-approximated
fronts and PO fronts for MOEA/D with WGT, TCH and PBI methods of decomposition
for 30 runs.

Data set
WGT TCH PBI

Hypervolume Hypervolume Hypervolume
Average PO Front Average PO Front Average PO Front

Ion 0.819 ± 0.032 0.926 0.840 ± 0.034 0.934 0.817 ± 0.038 0.921
Spect 0.537 ± 0.029 0.641 0.538 ± 0.028 0.635 0.536 ± 0.025 0.648
Yeast1 0.835 ± 0.007 0.867 0.838 ± 0.010 0.874 0.836 ± 0.006 0.873
Yeast2 0.951 ± 0.009 0.973 0.948 ± 0.008 0.975 0.939 ± 0.024 0.976
Climate 0.664 ± 0.082 0.898 0.645 ± 0.084 0.866 0.603 ± 0.094 0.788
Glass 0.781 ± 0.051 0.903 0.807 ± 0.051 0.925 0.810 ± 0.048 0.917

Parkinson’s 0.810 ± 0.041 0.941 0.788 ± 0.054 0.932 0.779 ± 0.048 0.942
Wine 0.960 ± 0.026 1.000 0.959 ± 0.031 1.000 0.954 ± 0.037 0.999

Table 4.12: Average (± standard deviation) hypervolume of evolved Pareto-approximated
fronts and PO fronts for semantically ordered neighbourhood MOEA/D with WGT,
TCH and PBI methods of decomposition for 30 runs.

Data set
WGT TCH PBI

Hypervolume Hypervolume Hypervolume
Average PO Front Average PO Front Average PO Front

Ion 0.840 ± 0.026 0.932 0.854 ± 0.018 0.927 0.849 ± 0.020 0.937
Spect 0.523 ± 0.020 0.605 0.517 ± 0.021 0.605 0.520 ± 0.021 0.615
Yeast1 0.829 ± 0.006 0.863 0.832 ± 0.006 0.874 0.834 ± 0.005 0.873
Yeast2 0.946 ± 0.009 0.972 0.946 ± 0.009 0.972 0.949 ± 0.009 0.972
Climate 0.774 ± 0.056 0.906 0.730 ± 0.088 0.909 0.763 ± 0.068 0.908
Glass 0.799 ± 0.044 0.907 0.831 ± 0.037 0.916 0.834 ± 0.046 0.923

Parkinson’s 0.803 ± 0.035 0.917 0.802 ± 0.040 0.916 0.814 ± 0.034 0.928
Wine 0.961 ± 0.019 0.999 0.965 ± 0.021 0.997 0.958 ± 0.023 0.998

the semantic approach. For the semantic approach, the selected pivots in the external

population for every generation are displayed and denoted with red cross symbols (‘x’).

All plots are from the same single-seeded run and have been selected randomly to avoid

having a biased analysis of results. We focus our attention on the Ion (Fig. 4.3) and

Yeast1 (Fig. 4.4) data sets. The rest of the images associated with this analysis have been

produced in full in Appendix A, with Fig. A.1 - A.8. In general, the additional datasets

conform to this analysis, although, with the Climate and Glass dataset, for this particular

run, it is less visually clear.

SNO in MOEA/D: Analysis Of Duplication

We can see by comparing the canonical method for the Ion data set (Fig. 4.3, left-hand

column) that there are a number of discontinuous regions along the border of the feasible

space. For instance, a notably large region can be observed in the bottom-right-hand

corner of the TCH approach (left-middle). These areas of sparsity correspond to the

pivot selection, with the pivot being selected at either the beginning or end of where

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 66

Ion

Figure 4.3: Solutions for every generation for the Ion dataset for WGT, TCH and PBI
approaches. Red cross symbols (’x’) denote pivot selections from the external population
for all generations for a single run.

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 67

Yeast1

Figure 4.4: Solutions for every generation for the Yeast1 dataset for WGT, TCH and PBI
approaches. Red cross symbols (’x’) denote pivot selections from the external population
for all generations for a single run.

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 68

these discontinuities occur. When we look at the solutions produced for the same data

set but now using the semantic-based method and using the same MOEA/D algorithm,

right-hand column, we can see that discontinuities observed in the canonical method are

no longer as prevalent. In contrast, if we look at the Yeast1 (Fig. 4.4) data set no such

region are observed.

This analysis allows for an intuitive understanding of why the semantic ordering

method produced better results for some data sets which make use of an ideal point

over others. Data sets that had a relatively smooth boundary along the feasible search

space tended to perform better for the canonical method, whereas the data sets that

tended to have irregular spacing or discontinuities along the feasible search space tended

to perform better for the semantic method. In short, based on the datasets we have

tested, areas of the objective space which demonstrate discontinuities, tend to have indi-

viduals selected for the pivot and in turn these regions appear to be better explored in

the semantic approach.

To demonstrate how the semantic ordering method maintains a lower level of dupli-

cation compared to canonical MOEA/D, the external population has been output for

Yeast2 data sets at generations 1, 10, 20, 30, 40 and 50 as seen in Fig. 4.5. It is important

to note that typically these duplicates are removed from canonical MOEA/D as part of

Step 3.1 as described in Chapter 2.4.6. The chosen data set is indicative of the general

duplication pattern exhibited by all data sets, the rest of which have been included in

Appendix A, Fig A.9- A.16. The left-hand column of plots shows results yielded by the

canonical method for WGT, TCH and PBI respectively and the right-hand column of

plots shows results yielded by the semantic-based method for WGT, TCH and PBI, re-

spectively. The size of each marker represents the number of candidate solutions found at

that point in the objective space and as such is an indication of the frequency of duplica-

tion. For the semantic ordered approach, duplication does not occur as readily but for the

canonical approach, there is significant duplication. This detrimental effect is, however,

nicely handled by our proposed semantic-based method that encourages diversity.

4.4 Summary

4.4.1 Summary of Results

This work showcases the benefits of incorporating semantics in MOGP, namely, its ability

to help promote diversity of solutions. Firstly, we looked at semantics in the context of

Pareto-based approaches NSGA-II and SPEA2. Here, we found that two semantic-based

distance approaches (SDO and PSDO) proved to be significantly better than canonical

NSGA-II and SPEA2 methods and that SSC, a method continuously reported to be

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 69

Yeast2

Figure 4.5: Duplicate frequency of individuals at first Pareto Front for Yeast2 dataset for
WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and 50, for a single run.
Frequency is represented by the size of circles e.g., a large circle denotes a large number
of duplicates.

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 70

beneficial in single-objective GP, was not able to outperform the canonical approaches for

the challenging imbalance datasets tested that we tested.

This led to an important insight into semantic distance-based approaches, in that our

analysis shows there is a tendency for these approaches to preference programs that were

semantically very similar and also semantically very dissimilar relative to the pivot. The

pivot represents an individual from the most sparse region of the search space and can

be considered the most divergent relative to the other programs in the population, as

such it makes sense that these programs would be preferenced. Additionally, the more

semantically diverse programs will produce significantly different outputs, which in turn,

ought to also be preferenced.

Next, we demonstrated that the SDO approach which was found to be beneficial

in Pareto-based MO optimisation did not translate over to decomposition-based MO

optimisation. More specifically, we highlighted key differences between the Pareto-based

approaches (NSGA-II and SPEA2) and a decomposition-based approach (MOEA/D), that

makes Pareto-based approaches fundamentally incompatible with the semantic-distance

metrics, as they were first proposed.

From this, we developed a new approach, Semantic Neighbourhood Ordering, adapting

the notion of semantic distance metrics to be used specifically within a decomposition-

based context. We have demonstrated for the first time how semantics can be natu-

rally incorporated into MOEA/D, specifically using the scalar optimisation techniques

of Weighted Sum, Tchebycheff and Penalty-based Boundary Intersect methods. The

approach reduces the duplication of solutions in objective space, while simultaneously

allowing a systematic approach for offspring to compete with neighbourhood individuals

based on semantics. For the datasets tested, it was found that for data sets with discon-

tinuous or irregular boundaries along the feasible search space the semantic-based method

produced significantly better results in terms of the hypervolume averages for the Pareto-

approximated fronts. Again, for the datasets tested, for the boundaries of smooth search

spaces, the methods performed as well or better for the TCH approach with only the

WGT and PBI methods producing significantly mixed results. Further studies are neces-

sary to determine additional ways in which to incorporate semantics into decomposition

approaches, but this work offers the first natural approach to implementing semantics in

MOEA/D.

4.4.2 Discussion on Semantics and its Role in Neuroevolution

The focus of this chapter was to demonstrate the effectiveness of using semantics in GP,

serving as a test case for the robustness of semantic-based distance methods on a whole,

since we will adapt semantic-based distance metrics for their use in surrogate-assisted

CHAPTER 4. SEMANTIC-BASED METRICS IN MOGP 71

neuroevolution in Chapters 5 and 6. To be more specific, we used semantic-based dis-

tance metrics to promote diversity, in a MO context, where previous works have focused

almost exclusively in a single objective domain. We have demonstrated how beneficial

it can be to use semantics during the evolutionary process for both Pareto-based and

decomposition-based MO optimisation. It is important to note that the underlying mech-

anisms of how these optimisation techniques work are inherently different but regardless,

semantic distances could be adapted for use in both scenarios. In general, the use of se-

mantics in different single and multi-objective frameworks demonstrates the adaptability

of incorporating semantics into different EA workflows.

Beyond this, there are a number of other beneficial properties of semantics we will

discuss in more detail. For instance, even though we looked exclusively at tree-based GP,

it is possible to use semantic information in other GP paradigms such as LGP [158] and

grammar-guided GP [159]. Furthermore, the benefits of semantics are not just limited to

only promoting diversity but can be extended to other aspects of the evolutionary process

such as guiding search [130]. Another very important property of semantics, as was the

case in this chapter, is that the size of the semantic vectors can be made equal to the

number of fitness cases. In the case of binary classification, this will mean the vector is

the size of the partition of the dataset. This is important for two reasons: (i) the vector

size is invariant to the structure of the GP programs, where relatively short program trees

will still produce an output vector the same size as longer program trees. (ii) having a

consistent semantic vector size allows us to use these vectors with standard Euclidean

distance metrics. The ramifications for the above aspects is that not only can we consider

using semantics for surrogate-assisted neuroevolution that use distance-based imputation

but also if we use a GP-based representation for our architectures, then we can impute

the fitness of variable-length architectures.

To summarise, with neuroevolution, one of the major drawbacks is the computational

expense associated with training a single individual network. To address this issue, in

the following chapters, we will show how semantic vectors can be used to build distance

metrics within surrogate-assisted evolutionary algorithms. More specifically, we will use

these vectors to help impute the fitness for partially trained networks based on phenotypic

distance vectors, which are a form of semantic distance vector. Ultimately, the insights

gained from using semantics in GP play a significant role in the motivation for thinking

about neuroevolution within a semantic-based context.

5
NeuroLGP-SM: A surrogate-assisted approach to

Neuroevolution using Linear Genetic Programming

The following papers summarises the work outlined in this chapter.

• Fergal Stapleton and Edgar Galván. Initial steps towards tackling high-dimensional

surrogate modeling for neuroevolution using kriging partial least squares. In Pro-

ceedings of the Companion Conference on Genetic and Evolutionary Computation,

GECCO ’23 Companion, page 83–84, New York, NY, USA, 2023. Association for

Computing Machinery

• Fergal Stapleton, Brendan Cody-Kenny, and Edgar Galván. Neurolgp-sm: A

surrogate-assisted neuroevolution approach using linear genetic programming. In

International Conference on Optimization and Learning (OLA), 2024

• Fergal Stapleton and Edgar Galván. Neurolgp-sm: Scalable surrogate-assisted neu-

roevolution for deep neural networks. In 2024 IEEE Congress on Evolutionary

Computation (CEC), pages 1–8, 2024

72

CHAPTER 5. NEUROLGP-SM 73

Evolutionary Algorithms (EAs) can play a crucial role in the architectural configura-

tion and training of Artificial Deep Neural Networks (DNNs), a process which is known

as neuroevolution. However, neuroevolution is hindered by its inherent computational

expense. The most computationally intensive aspect lies in evaluating the fitness func-

tion of a single EA candidate solution. One way to address this challenge is to employ

Surrogate-assisted EAs (SAEAs). While a few SAEAs approaches have been proposed in

neuroevolution, none have used semantics distances at their core for truly large DNNs.

Drawing inspiration from Genetic Programming semantics, as discussed in Chapter 4, we

use phenotypic distance vectors, which are vectors consisting of the final layer outputs of a

DNN. Previously, we demonstrated how semantics could be used to improve the diversity

of solutions during evolution, however, now we will focus on using semantic information

to impute the fitness of partially trained DNNs within a SAEA.

To this end, these vectors are used to train a surrogate modelling technique known

as Kriging Partial Least Squares (KPLS), an approach that is effective in handling these

large vectors in the context of estimating θ hyperparameters, making them suitable for

search. Our proposed approach, named Neuro-Linear Genetic Programming surrogate

model (NeuroLGP-SM), efficiently and with a high degree of accuracy estimates DNN

fitness without the need for complete evaluations. NeuroLGP-SM demonstrates competi-

tive or superior results compared to 12 other methods, including NeuroLGP without SM,

convolutional neural networks, support vector machines, and autoencoders. For compar-

ison purposes, we also code and use a baseline approach incorporating a repair mecha-

nism, a common practice in neuroevolution. Notably, the baseline approach surpasses

the renowned VGG-16 model in accuracy. Given the computational intensity inherent

in DNN operations, a singular run is typically the norm. To evaluate the efficacy of our

proposed approach, we conducted 96 independent runs spanning a duration of 4 weeks.

Significantly, our methodologies consistently outperform the baseline, with the SM model

demonstrating superior accuracy or comparable results to the NeuroLGP approach. Addi-

tionally, it is worth noting that NeuroLGP-SM exhibits a 25% reduction in computational

requirements and is also 25% more energy-efficient than its NeuroLGP counterpart. This

efficiency advantage adds to the overall appeal of our proposed NeuroLGP-SM in opti-

mising the configuration of large DNNs.

5.1 Introduction

Evolutionary Algorithms (EAs) [20] have proven to be effective in both the crafting of

architectures and hyperparameter optimisation of Deep Neural Networks (DDNs) [57].

This application is commonly known as neuroevolution, a widely explored field high-

lighted by the abundance of scientific publications and impactful outcomes [37], and have

CHAPTER 5. NEUROLGP-SM 74

been applied to numerous problem domains, such as autonomous vehicles [8] and face

recognition [160]. The pursuit of optimal DNN architectures has led to the use of various

methodologies, including EAs [37], reinforcement learning [19], and more, however, a sig-

nificant challenge persists across these methods: the substantial computational resources

required to identify high-performing networks.

The rise of GPU-accelerated hardware has helped alleviate some of this computational

cost, however, a significant proportion of research in DNNs is based on incremental im-

provements on DNN algorithms for benchmark problems [161], where there is a significant

correlation between network complexity for incremental gains in terms of additional per-

formance. In fact, when looking at very large models of hundreds of billions of parameters,

it can cost millions of dollars for a single iteration [21]. This energy consumption is fur-

ther compounded when considering population-based neuroevolutionary techniques which

require many networks to be trained and evaluated in order to find suitable architectures.

One way to address this significant issue is with the use of surrogate-assisted evolu-

tionary algorithms (SAEAs). SAEAs can be used to estimate the fitness of DNNs without

the need to fully train each network. In particular, surrogate modelling strategies that

employ Bayesian optimisation have shown much promise [21]. However, a major challenge

remains in how best to deal with the surrogate representation. For instance, using geno-

type information to build surrogates often requires complex encoding strategies [25], and

in some instances, constructing adequate distance metrics to compare different network

topologies is not feasible [27]. Using phenotypic information on the other hand has shown

some promise [23, 27], but a challenge remains in scaling to deeper and more complex

networks which inherently requires a high-dimensional representation [5].

In this work, we analyse a novel population-based Neuroevolutionary technique, re-

ferred to as Neuro-Linear Genetic Programming (NeuroLGP), and its surrogate model

variant NeuroLGP-SM [6]. Using a robust model management strategy, we use pheno-

typic distance vectors to estimate the performance of partially trained DNNs. These

vectors are comparatively large for the optimisation problem at hand [5] and, as such,

we incorporate an approach that is designed for handling high-dimensional data, known

as Kriging Partial Least Squares (KPLS). This approach allows for a novel and scalable

surrogate-assisted technique that is skilfully adept at handling neuroevolution of DNNs

and to the the best of our knowledge, this method of surrogate-assisted neuroevolution

of DNNs has not been studied before.

The aim of this study is to apply Surrogate-assisted Evolutionary Algorithms (SAEA)

in neuroevolution, using Kriging Partial Least Squares (KPLS) on phenotypic distance

vectors inspired by Genetic Programming Semantics [28]. The core aspects of this study

have been summarised below:

CHAPTER 5. NEUROLGP-SM 75

(1) Baseline model: We implement and validate a baseline model employing a re-

pair mechanism, a strategy frequently utilised in neuroevolutionary methods. This

model surpasses the well-established VGG-16 model, setting a high-performance

benchmark for comparison with our proposed approaches.

(2) Representation: We introduce an innovative representation based on Linear Ge-

netic Programming (LGP) [10], termed NeuroLGP, facilitating the automatic dis-

covery of well-performing DNNs that outperform the baseline model. The Neu-

roLGP approach is employed to compute the fitness of the entire population and

serves as an excellent method to compare against a surrogate model (SM).

(3) Model management strategy: This approach remains invariant to varying net-

work topologies and robust to data augmentation techniques. Consequently, we can

train our networks with a significantly reduced number of instances while maintain-

ing the ability to generalise effectively to unseen data.

(4) High-dimensionality: To address the challenge of high-dimensional data and en-

able the use of a SM to reduce computational demands in neuroevolution, we employ

Kriging Partial Least Squares [31]. The fusion of this technique with NeuroLGP

results in our second proposed approach referred to as NeuroLGP-SM. This ap-

proach consistently identifies DNNs that perform similarly to those discovered by

NeuroLGP, simultaneously reducing fitness evaluations and training time required

for these DNNs. In our previous work [5], we identified that it was not possible to

use the original Kriging approach to this end.

(5) Performance Metrics: We employ three well-defined metrics to assess the predic-

tive capabilities of NeuroLGP-SM in terms of model fitness. These results align with

the competitive or superior performance of our NeuroLGP-SM approach compared

to 12 popular techniques, including convolutional neural networks, autoencoders,

and support vector machines, across four challenging classification tasks.

(6) Efficient Fitness Estimation: We demonstrate the accurate estimation of DNN

fitness values without full evaluations through our proposed approach, NeuroLGP-

SM, employing KPLS on phenotypic distance vectors.

(7) Energy and Time Consumption Analysis: We provide a reliable formula to

gauge the energy consumption of our approaches, revealing that NeuroLGP-SM is

∼25% more efficient compared to its counterpart that does not use surrogate models.

Additionally, we show that similarly run time is reduced by ∼25%.

(8) Encoding for Analysis: Through clever encoding, we allow easy access to analyse

CHAPTER 5. NEUROLGP-SM 76

the internal structures of the architectures, enabling us to conduct an in-depth

analysis of the networks discovered by our proposed approaches.

In the following chapter, we provide a motivation for why we consider LGP as an

approach to integrate into neuroevolution. For instance, LGP allows for variable topol-

ogy, where a number of neuroevolutionary approaches are fixed. Furthermore, we provide

a short preliminary analysis that highlights the limitations of traditional Kriging for

surrogate-assisted neuroevolution, namely, that the traditional Kriging approach is com-

putationally expensive when considering high-dimensional phenotypic distance vectors.

5.2 Motivation

5.2.1 Properties of Linear Genetic Programming

In evolutionary algorithms, the genotype of an individual plays a significant role in encod-

ing all the relevant properties to evolve. An ill-posed representation may lack sufficient

information to effectively solve a problem. Furthermore, an overly complex representation

may in itself be wasteful or fail to solve the problem entirely. Some common represen-

tations come in the form of binary strings like in the case of Genetic Algorithms (GA)

or tree-like representations in Genetic Programming (GP) [36]. The suitability of the

representation is dependent on the problem domain, for instance, the problem domain of

symbolic regression is particularly well encapsulated by the tree-like representation of GP.

To date, the use of GP for neuroevolution has been underexplored. A 2021 survey [106],

highlighted that less than 7% of encodings use GP for representation in neuroevolution,

while the majority of encodings, with over 50%, belong to GAs.

Prior to this work, to the best of our knowledge, Linear Genetic Programming (LGP)

is an approach that has not been used for neuroevolution. Representation in LGP is

based upon a sequence of instructions for an imperative programming language or ma-

chine code, where the linear program structure is evolved as opposed to the tree-like

structure of canonical GP [10]. In its original form, there are two motivating factors for

why researchers would want to use LGP. Firstly, most computer architectures execute

programs as a linear sequence of instructions being executed at regular time-steps and

secondly, computers are not capable of naturally running tree-based representations un-

less aided by interpreters or compilers [162]. The former point is interesting to note since

the construction of DNN architectures often involves the stacking of layers in a linear and

sequential fashion. In particular, the output of a given layer is intended as the input of the

next. Therefore, the stacking of layers can be considered as a step-by-step construction

that can follow an imperative paradigm.

CHAPTER 5. NEUROLGP-SM 77

When considering encoding for neuroevolution, there are a number of important con-

siderations. To start, we can broadly categorise the type of encoding into two main

categories [163]; direct and indirect encoding. A direct encoding approach encodes all

properties of the network, such as the nodes and connections into the genetic represen-

tation, doing so explicitly. Definitions may differ slightly, but indirect encoding instead

either reuses genetic information multiple times within the genome or the genome contains

generational rules [164] [104]. It has been noted [165], in nature the genome likely encodes

general rules for connectivity, rather than the genome encoding the wiring explicitly, as a

result of a genomic bottleneck, or limitation in the size of what can be encoded into the

animal genome [165]. To some extent, indirect approaches mimic this concept as nodes

and connections are not explicitly encoded, as such, there may be a strong biological

justification for considering indirect methods.

Also of interest, is whether the encoding allows for fixed or variable-length architec-

tures. Variable-length encoding is an important concept in neural architecture search as it

allows the evolutionary process to search for shallower or deeper networks. The LGP ap-

proach allows for variable-length encoding through the crossover operation. With a fixed

topology the network length cannot grow beyond a certain depth. While this approach

can be beneficial in ensuring architectures remain compact, it can also be sub-optimal if

deeper networks are desired.

Another important consideration is whether the approach is capable of encoding skip-

connections and branching connections, which are often beneficial for ANN performance.

In GAs, this typically requires embedding rules within the genotype to handle but with

graph-based GP methods like Cartesian Genetic Programming (CGP) [166] and LGP

this can be handled explicitly by the representation. However, a comparison between

graph-based CGP and graph-based LGP highlighted a major difference between the two

approaches [167]. In CGP the connectivity to previous nodes in the layer is controlled by

a level back parameter which defined a priori and as such is not controlled by the evolu-

tionary process. While this may be suitable for scenarios where a general architecture is

understood or preferred, when exploring variable-length or multi-branch architectures this

can be limiting. LGP, on the other hand, does not have this parameter and connectivity

is controlled by the evolutionary process itself. In Chapter 6, we detail a multi-branch

and skip-connection representation in more detail.

Table 5.1 summarises some key encodings and representations for Neuroevolution.

Two survey papers [37, 163], offer a more comprehensive analysis of neuroevolutionary

encodings and representations. To summarise, the LGP approach has the following as-

pects which are desirable for neuroevolution:

• The proposed approach uses indirect coding which has a strong biological inspira-

CHAPTER 5. NEUROLGP-SM 78

Table 5.1: Summary of encodings, representations and skip connections of some of the
most notable Neuroevolutionary approaches.

Approach Encoding Representation Representation Type Skip/Branching

CGP-CNN [107] Direct GP Fixed-length Yes
EvoCNN [104] Indirect GA Variable-length No
GeneticCNN [102] Direct GA Fixed-length Yes
DeepNEAT [90] Direct GA Variable-length Yes
CoDeepNEAT [90] Indirect2 GA Variable-length Yes
HyperNEAT [89] Indirect GA Variable-length Yes
NeuroLGP Indirect GP Variable-length Yes3

1 This has been defined as indirect due to using mean and std to update weights.
2 Although the general encoding is direct, the co-evolved population of templates adds
modularity, as such we have defined this as indirect.
3 This has not been implemented in this chapter but is inherently possible based on the
representation.

tion and allows us to encapsulate a complex representation of the network without

explicitly encoding every parameter.

• LGP is implicitly variable-length in design. This can allow the neuroevolutionary

process to find deeper architectures if required.

• LGP has examples using both a typical linear crossover (which can lead to in-

creased program length) and homologous crossover (which does not increase pro-

gram length). Carefully balancing the type of crossover applied can help alleviate

bloat [162].

• Some representations (for example CGP-CNN [107]) drop crossover altogether and

only consider mutation, therefore the role of crossover in GP-based neuroevolution

is yet to be explored fully.

• The data flow of LGP allows for a directed graph-like structure. This should allow

LGP to be exploited to not only encode skip connections but also multi-branch

connections (discussed in Chapter 6).

5.2.2 Limitation of Traditional Kriging Approach

A major impediment in the use of Surrogate-Assisted Evolutionary Algorithms (SAEAs)

in neuroevolution is the computational power still required when using well-known SAEA

approaches, such as the use of the Kriging method. In Chapter 2.3.3, we discuss this

limitation in detail but in short, the computational cost of estimating the θ hyperparam-

eters is O(m3) where m is the surrogate model sample size using the traditional Kriging

approach. A novel workaround to this limitation is to subset the surrogate model samples

CHAPTER 5. NEUROLGP-SM 79

Table 5.2: Details of the classification data sets used in our research as well as preliminary
results for an initial surrogate model of 100 networks. A ’-’ indicates the experiment did
not complete within 48 hrs.

Dataset Brief description Pheno. dist. KPLS Kriging
vector (HH:MM:SS) (HH:MM:SS)

Iris 3 classes (Type of Iris plant) 336 00:00:25 01:52:38
Yeast 2 classes (Protein sequence) 1338 00:02:24 -
Ecoli 8 classes (Localization site) 2016 00:01:09 -
Abalone 2 classes (Number of rings) 6264 00:10:38 -

from a larger archive, as proposed in [27]. The authors’ results were promising for subset

sizes of 25 to 200. However, it is likely for more complex networks such as DNNs, with

larger search spaces, the surrogate may require larger sample sizes in order to be well

informed.

As a preliminary analysis, we focused on traditional ANN architectures of just a

few layers to highlight the limitations of the Kriging approach. An important part of

the surrogate model management strategy is the model initialisation as highlighted in

Fig 2.6. On initialisation, each individual representing an ANN is trained for a limited

number of epochs4. This results in using the behaviours of the networks. That is, we

generate a phenotypic distance vector, similar to the work by Stork et al. [27], where

the vector contains the output of the nodes at the final layer for all data instances. We

use the Kriging and Kriging Partial Least Squares (KPLS) method, by employing the

Surrogate Modelling Toolbox (SMT) [170], to estimate the fitness values of the subset of

the population by feeding these vectors.

To test the efficiency of our methods, we use data sets from the UCI machine learning

repository [171]. All experiments were run on Intel Xeon Gold 6148. Table 5.2 summarises

the preliminary results, showing the time taken to construct an initial population of 100

fully trained networks that are then used to construct the surrogate model. The third

column, in Table 5.2, denotes the phenotype vector length. Larger phenotype vectors

result in higher dimensional data for the surrogate model to train on. A dash symbol

(-) indicates the experiment did not complete within 48 hours. We can see that based

on the last two columns it is infeasible to use the Kriging approach for these datasets

while for the KPLS approach, the times would be more than sufficient. This preliminary

analysis shows the use of common SAEA techniques such as Kriging cannot be used in

neuroevolution due to the high dimensional data normally required for neuroevolution.

We have taken the initial steps to show that this can be addressed by using the KPLS

method.

4A CGPANN variant, called dCGPANN [168,169] was used to initialise the individuals, creating random
architectures and allows stochastic gradient descent to train our networks, but beyond this initial step,
individuals were not further evolved. For the rest of this work, the NeuroLGP approach is employed.

CHAPTER 5. NEUROLGP-SM 80

1 de f neuroLGP (. . .)
2 {
3 r [0] := Conv(r [1])
4 // r [4] := BatchNorm(r [3])
5 r [5] := MaxPool (r [0])
6 r [0] := BatchNorm(r [5])
7
8 . . .
9 }

input = tf.keras.Input(shape=(imput dim))

x = tf.keras.layers.Conv2D(32, 3, ...)(input)
x = tf.keras.layers.BatchNormalization()(x)
x = tf.keras.layers.MaxPooling2D(3)(x)
x = tf.keras.layers.BatchNormalization()(x)

output = tf.keras.layers.Dense(x)
model = tf.keras.Model(output)

Figure 5.1: left: NeuroLGP psuedocode for python. right: Functional API example in
TensorFlow [11].

5.3 Methodology

5.3.1 NeuroLGP

The original LGP encoding is based on the concept of using registers, which are units of

computer memory storage for manipulating data while executing instructions, in a low-

level programming context. The content of these registers are altered using instruction

operations. There are three main components to instruction; an operand which performs

a specific function on one or more registers which store the result in a destination register.

In the case of 2-register instruction encoding the operand operates on a single instruction

and for a 3-register instruction encoding operates on two instructions. The left of Fig. 5.1

highlights an example of LGP written in C code, where r[i] denotes the ith register. This

example contains both effective and non-effective lines of code, where the non-effective

lines of code are commented out and subsequently not compiled. Each line of code is

executed imperatively. The register r[0] is a specially designated register for the final

output of the program. With the NeuroLGP approach, instead of using registers to

store small amounts of data, we instead use the idea of registers as pointers to much

larger amounts of data. As such, the registers instead control the flow of the initial

and intermediary data from each outputted layer of our evolvable DNN. The right of

Fig. 5.1, demonstrates how the expected representation would look in TensorFlow, where

the general form of this code is similar to the figure on the left.

To understand how this representation can be useful for the case of neuroevolution,

some example code in TensorFlow is given to demonstrate the imperative nature of defin-

ing models as seen in the right of Fig. 5.1. This code demonstrates an example of a model

definition using the functional API from TensorFlow. On Lines 3, 5 and 6, to the left

of the assignment, a variable x will hold the outputs of each statement and for Lines

5 – 6, to the right of the assignment, x is passed to each layer. As such, the variable

x holds transient data which updates as each line is executed. The aim is to replace x

using abstract or virtual registers (i.e r[0], r[1], r[2] ...etc), where the x variables to the

CHAPTER 5. NEUROLGP-SM 81

left of the assignment are represented using a destination register and values to the right

represent registers to be operated on. Line 4 is not executed. It is important to note the

dense layer, as demonstrated on the right, is not part of the genotype and as such is not

evolved. As such, only the feature extraction portion of the architecture is evolved.

Traditionally, in LGP, registers can be of different types (input registers, calculation

registers and constant registers). In this work, each register is referencing the intermediary

inputs of each neural network layer, i.e. the information that is fed to each network

operation and so, in this regard, each register is treated as input registers (though it may

be useful to have special registers specifically for handling skip connections and multiple

branches). While this may seem wasteful in terms of memory, multiple registers are only

used in the genotypic representation and when calculating the fitness, the number of

effective registers can be reduced as part of a repair process. Likewise, the non-effective

code can also be removed at the same time. As such, the phenotypic representation of

the network will not only be much simpler than the genotypic representation, but also

much smaller. Fig.5.2 demonstrates the genotype-to-phenotype mapping.

Non-effective Code
Effective Code

NeuroLGP Pseudo Code

Cancer Data

Malignant

Benign

Convolutional
Max Pooling
Batch Normalization
Flattened Layer
Softmax

Figure 5.2: Diagram of the NeuroLGP genotype-to-phenotype mapping. The pseudocode
for the set of instructions (left-hand side) can be represented as the genotype with effective
and non-effective code (top) and produces the resulting phenotype (bottom right-hand
side) as a specific neural network architecture. Note that the non-effective coding is not
present in the phenotype.

5.3.2 NeuroLGP with Surrogate Model (NeuroLGP-SM)

To identify individuals requiring full evaluation, we use the Expected Improvement (EI)

criteria [172]. EI guides the selection of candidate solutions for evaluation by estimating

the improvement over the current best solution. This enables us to prioritise solutions

CHAPTER 5. NEUROLGP-SM 82

from areas in the search space expected to exhibit the most significant improvement. The

calculation of EI is shown in Eq. 5.1,

EI =

{
(f̂(x)− f(x∗))Φ(Z) + σ(x)ϕ(Z) if σ(x) > 0

0 if σ(x) = 0

Z =
f̂(x)− f(x∗)

σ(x)

�� ��5.1

where f̂(x) is the model’s predicted performance of the surrogate for the phenotypic

distance vector x, where f(x∗) is the best-known value of the objective function so far

(in this case maximum) and Φ and ϕ are the cumulative distribution function (CDF) and

probability density function (PDF) of the standard normal distribution, respectively.

Fig. 5.3 summarises the surrogate model management strategy. The left-hand side of

the figure shows the interplay between the evolutionary algorithm and the surrogate model

as previously shown in Fig. 2.6, however, we have highlighted the steps controlled by the

model management strategy (dark blue dashed-line). The right side of the plot looks at the

model management strategy at a more granular level. To simplify the diagram the initial

modelling section has been dropped, but is important to note that we inform our surrogate

model with randomly generated individuals prior to running through the EA loop. The

diagram has been annotated with five key steps (dark blue text). The annotations are: (i)

Split: first, the population is split with a 40/60 split for individuals to be fully evaluated

vs. the partially trained individuals, respectively, (ii) Estimate fitness: the fitness is

estimated using the KPLS approach as informed by the previous generation, (iii) Add

data: the phenotypic distance vector for the fully evaluated portion of the population is

added to the surrogate training data (note: the phenotypic distance vector is taken before

the full fitness evaluation), (iv) Extract data and train: the phenotypic distance vectors

are collectively used to train the KPLS approach as detailed in Chapter 2.3.3, and (v)

Calculate EI: the EI criteria is calculated for the incoming population of individuals.

A 40/60 split was chosen for the expensive portion of the surrogate model (expensive

proportion = 0.4 in Table 5.5), i.e., 40% of individuals are used to re-inform the surrogate

model each generation (including the previous surrogate training data). The ratio of full

to partial evaluations would be roughly 50% (the initial generation is fully evaluated),

which allows for hypothetical best potential time saving of ∼50%, however, given that

the neural networks require compiling and initial training of 10 epochs, we expect this

to be lower. Also, there is a notable tradeoff that needs to be considered when selecting

an appropriate split, firstly, that we need enough full evaluations to ensure the surrogate

model is well-informed but also that enough time is saved to warrant justification for

using the surrogate model.

CHAPTER 5. NEUROLGP-SM 83

Figure 5.3: Left: Diagram showing the interplay between a typical evolutionary algorithm
and a surrogate model approach. Right: The surrogate model management strategy is
shown on a more granular level.

5.3.3 Genetic Operations and Repair Mechanism

The mutation operator we use in this work mutates either a single input or output register

or the operand. The mutation operator works on both effective code and non-effective

code. Additionally, we make use of a novel effective crossover operator. This operator

selects two crossover points from the effective sections of the parent code and then transfers

segments to create offspring. While the ends of each segment contain effective code, the

code within the segment may be non-effective. A further point, mutation repair is applied

at either segment end to ensure input and output registers match after crossover has been

applied. In other words, the output register of the parent code will be the same as the

input register of the crossover segment at the first crossover point and then the output

register of the segment will be the same as the next register of the remaining portion of

the parent at the second crossover point, ensuring that the newly transferred segment is

effective and that there are no downstream changes to the effective code of the remaining

parent segment. Ultimately, this results in always producing a valid network.

A repair mechanism is incorporated when performing the genotype-to-phenotype map-

ping to ensure models are compilable. There are several conditions for incorporating a

repair mechanism, but it is important to note that in each case, the repair is only per-

formed on the effective code by either inserting or deleting a specific layer.

• When there is no effective code in the genotype, we perform a single effective mu-

tation inserting a single convolutional layer from our feature list.

• It is possible for the program to compile without a convolutional layer at the start

CHAPTER 5. NEUROLGP-SM 84

Flattened Size Condition Dropout Dense Layer

< 25, 000 0.2 512 units (ReLU)

< 50, 000 0.2 256 units (ReLU)

< 100, 000 0.2 128 units (ReLU)

> 1, 500, 000 - -

Table 5.3: Flattened size conditions for fully connected layer. Additional handling is done
to remove layers if the flattened layer exceeds 1,500,000.

(i.e., Max pooling, dropout, etc). We add an effective insertion of a convolutional

layer before any layer that does not match this criteria.

• When the input data dimensions are too low or if the number of data-reducing op-

erations exceeds the dimensions of the data, the neural network will fail to compile,

we remove layers iteratively until the model is valid.

• If the input data dimensions are too high or if the number of data-reducing opera-

tions are too few, our flattened layer can be composed of an arbitrarily large number

of nodes. Furthermore, adding further fully-connected layers can cause the models

to become prohibitively expensive to evaluate, as such, we put additional conditions

in to check and add a fully-connected layer before the final softmax layer if certain

conditions have been met The size of the fully connected layer is dependent on the

number of parameters from the CNN portion of the architecture and has been sum-

marised in Table 5.3. It is important to note that unlike the previous repairs, this

is not directly encoded in the genotype as the fully connected layer is not evolved.

5.4 Implementation Details

The Breast Cancer Histopathological Image Classification (BreakHis) [173] is a binary

classification dataset consisting of microscopic images containing 2,480 benign and 5,429

malignant tumours, where images were obtained as four different magnifications (×40,
×100, ×200 and ×400) and are split into four individual datasets for this work. Each

image consists of 64x64 pixels (down-scaled resolution from 700x460 pixels) and 3-channel

RGB with 8-bit depth in each channel. The split for training, validation, test1 and test2

is approximately (63.5%, 12.5%, 12.5%, 12.5%), where the first three splits conform to

a ratio of (70:15:15), conforming to the general training/test split as seen in other ap-

proaches [174]. The first three splits are used purely for training and evaluating networks

and the last split is retained for an unbiased analysis of the evolutionary process. In other

words, test1 is withheld from the context of the individual neural networks but is used

for fitness evaluation for the evolutionary process and test2 is the withheld dataset for

CHAPTER 5. NEUROLGP-SM 85

Parameter Value Description

Rescale 1./255 Scale pixel values

Rotation range 30 Degree range for random rotations

Width shift range 0.1 Fraction shift of total width

Height shift range 0.1 Fraction shift of total height

Shear range 0.2 Change perception

Zoom range 0.2 Image zoom

Horizontal flip True Randomly flip images horizontally

Fill mode nearest Pixel fill criteria

Table 5.4: List of data augmentation techniques and parameters used. See [12], for more
details on each augmentation technique.

the entire evolutionary process. The dataset is imbalanced and the synthetic minority

oversampling technique [175] is used to up-sample the minority class. Additionally, a

number of data augmentation techniques have been employed as shown in Table 5.4.

The genotype consists of both effective and non-effective code, where the feature

extraction portion of the architecture is evolved. Table 5.5 details the mutation and

crossover rates, segment lengths for crossover operation, as well as minimum and max-

imum chromosome lengths (defined as program length in table). Distances/lengths are

based on effective length except for the minimum and maximum chromosome lengths

which consider the full chromosome length. Only the most salient information has been

included in this table, full details of the configuration files, including additional details

on the setup and a full list of evolvable layers have been included in Appendix B in

Tables B.1.

Redundancy was not explicitly handled during evolution, i.e., where many genotypes

produce the same network architecture (phenotype). However, a relatively high mutation

rate is used in this work and operates on both effective and non-effective code. Approxi-

mately 1/5th of the code is effective by the end of a run (15 genes are effective for a max

genotype of 70) and due to the low number of registers used, mutation on non-effective

code had a relatively high chance of becoming effective as a result. No significant amount

of duplicate networks were found by the end of each run.

Initial epoch and epoch numbers were selected based on network convergence. Fig. 5.4

shows an example of the convergence plots for training and validation accuracy for

BreakHis ×400 dataset for 30 epochs across 8 runs. The general trend of training and

validation converging was seen across all datasets by 30 epochs. An initial epoch number

of 10 was chosen as it was found that in general the networks had not converged by this

point, but also that there should be some level of correlation between the networks’ per-

formance at this epoch and the final epoch. Something that is not considered in this work

is the use of a stopping criteria and for consistency, a set epoch number was considered

CHAPTER 5. NEUROLGP-SM 86

Category Attribute Value

SURROGATE
METHOD KPLS
INITIAL EPOCH NUM 10
INITIAL SURROGATE POPSIZE 30
EXPENSIVE PROPORTION 0.4

EXPERIMENTAL SETUP
GEN SIZE 15
POP SIZE 50
ELITE PERCENTAGE 0.2
SELECTION TYPE: tournament,

SIZE: 5,
NUMBER OF TOURNAMENTS: 1

CROSSOVER RATE: 0.3
TYPE: linear,
DISTANCE OF CROSSOVER POINTS: 5,
MINIMUM PROGRAM LENGTH: 2,
MAXIMUM PROGRAM LENGTH: 70,
MAXIMUM SEGMENT LENGTH: 5,
MAXIMUM DIFFERENCE IN SEGMENT LENGTH: 3

MUTATION RATE 0.9
MAX REGISTER 6
EPOCH NUM 30

Table 5.5: Details of the experimental setup for NeuroLGP method.

across all datasets. Future work could consider using stopping criteria or using an adap-

tive measure for considering initial epoch number. Later, in Chapter 6.4.6 an analysis of

varying epoch number is considered with an updated version of the NeuroLGP approach.

We employ three approaches to investigate the validity and quality of our proposed

surrogate-assisted neuroevolution model. These are:

(1) A baseline approach which is similar to a random search approach, in that, it struc-

tures the network architecture layers in a random order. These networks are not

evolved but are repaired in line with the repair mechanism as discussed in Section

5.3.3. All networks are fully trained to the full number of epochs (30 epochs).

(2) The expensive approach, which uses a novel encoding to evolve the structure of our

networks, training to the full number of epochs as outlined in Chapter 5.3.1 (Pop.

size = 50, Gen. size =15).

(3) The surrogate approach where we integrate the surrogate modelling strategy, as

outlined in Chapter 5.3.2, into the expensive approach. The surrogate model is

informed using partially trained networks (10 epochs) for 60% of the population

size.

Experiments were conducted using Kay supercomputer provided by the Irish Centre

for High-End Computing (ICHEC). Experiments were run in parallel, with each run

CHAPTER 5. NEUROLGP-SM 87

0.6

0.7

0.8

0.9

0 10 20 30
Epochs

A
cc

ur
ac

y
Train
Validation

Train
Validation

Figure 5.4: Convergence plot for BreakHis ×400 for 8 runs and 30 epoches. Solid lines
represent mean training (red) and validation (blue) accuracies.

assigned to a single Nvidia Tesla V100 GPU with 16GB RAM. Additionally, each run has

access to a 20-core 2.4 GHz Intel Xeon Gold 6148 (Skylake) CPU processor which is used

during training of the surrogate model portion of the surrogate approach. Overall, the

expensive approach took ∼28 GPU days and the surrogate approach ∼21 GPU days, for

8 runs across the 4 datasets.

5.5 Results

5.5.1 Preliminary Analysis of the Baseline Model

The baseline in our approach makes use of a random search over the feature extrac-

tion portion of our network architecture with a set of repair operations to ensure the

architecture can be compiled. Typical network sizes from this approach ranged from

∼20K to ∼12.5M parameters with the baseline. For example of VGG-16 has ∼40M pa-

rameters [176]. Fig. 5.5 shows the distribution of accuracy values for the baseline, for

magnification ×200, for all networks across 8 runs (750 individuals per run, 6000 indi-

viduals overall). It is important to point out that across all 8 runs, every model found

by the baseline was valid and compilable. Slight peaks at 0.33 and 0.66 represent poor-

performing networks that classify all the data as a single class. We can see that despite

a tailed distribution to the left, the vast majority of individuals are centred around the

median peak of 0.83. Additionally, the performance of VGG-16 is also shown in the figure

with an accuracy of 0.87, which was verified in our own experiments and documented

CHAPTER 5. NEUROLGP-SM 88

0.2 0.4 0.6 0.8 1.0

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Validation accuracy (0.0 to 1.0)

N
or

m
al

iz
ed

 d
en

si
ty

0.87
VGG16

Figure 5.5: Accuracy of 6000 individuals (read text).

in other work [177]. The main takeaway is the baseline approach can find competitive

architectures to compare against the surrogate and expensive approaches.

5.5.2 Comparison of Baseline, Surrogate and Expensive

A comparison is conducted between the three experiments as outlined in Section 5.4

for the BreakHis dataset. The violin plots in Fig. 5.6(a-d) plot the accuracies of the

best individual in terms of fitness, for each run, for the ×40, ×100, ×200 and ×400
magnifications, respectively. For reference, if we were to look at baseline as an example

(left-hand side in each plot of Fig. 5.6), then the individuals shown in these plots represent

individuals found at the far right of the density plot in Fig. 5.5. Initially, we ran the three

models for 4 runs only, which took approximately 40 GPU days in total. It should be

noted that in neuroevolution the norm is usually to do a single run. The initial results

showed a tendency for the surrogate and expensive models to outperform the baseline

model for the ×40, ×100 and ×400 models, however for ×200 the surrogate and expensive

underperformed. It was decided to extend this, to 8 runs totalling 80 GPU days in all.

The updated results are represented here in the violin plots, where again we can see

that in the case of ×40 and ×100 magnification, the surrogate (green) and expensive

(blue) models tend to outperform the baseline (red) model. Results are more mixed

when we look at ×200 but are markedly improved over the initial set of 4 runs. The

×400 magnification appears somewhat mixed, however, with more runs, ×400 may have

more separation for surrogate and expensive models over the baseline given there are few

better-performing individuals above the 92% mark. Comparing surrogate and expensive

models in particular, an important observation can be made, in that for all magnifications

CHAPTER 5. NEUROLGP-SM 89

0.84

0.88

0.92

0.96

Baseline Surrogate Expensive

A
c
c
u

ra
c
y

BreakHis Magnification x40

(a)

0.80

0.85

0.90

0.95

Baseline Surrogate Expensive

A
c
c
u

ra
c
y

BreakHis Magnification x100

(b)

0.85

0.90

0.95

1.00

Baseline Surrogate Expensive

A
c
c
u

ra
c
y

BreakHis Magnification x200

(c)

0.89

0.90

0.91

0.92

0.93

Baseline Surrogate Expensive

A
c
c
u

ra
c
y

BreakHis Magnification x400

(d)

Figure 5.6: Fig. 5.6a through 5.6d plot violin plots, showing the distribution of accuracies
of the architectures with the best fitness for each of the four data sets across 8 runs.

they have similar accuracies. Given the distribution of the models are not fully separable,

we will focus on analysing the best individuals across all runs, before providing a limited

statistical analysis focusing on the surrogate and expensive models in section 5.5.3.

The accuracies for the best-performing individuals across all runs for the baseline,

surrogate and expensive models are listed respectively as such; for the ×40 magnification

the accuracies are 0.889, 0.913 and 0.930; for the ×100 magnification are 0.869, 0.903

and 0.916; for the ×200 magnification are 0.946, 0.970 and 0.960 and finally for the ×400
magnification are 0.914, 0.925 and 0.925. In no instance did the baseline produce the

best-performing individual. For the ×40 and ×100 magnifications, the expensive model

produced the best-performing individual. For the ×200 magnification the surrogate model

produced the best-performing individual and the ×400 magnification has a tie for the

best-performing individual. In summary, while on average our surrogate and expensive

models are as good as or better than the baseline, when we consider the best-performing

individuals across all runs the surrogate and expensive models are better.

CHAPTER 5. NEUROLGP-SM 90

5.5.3 Comparing our Results against the State-of-the-art

Table 5.6 summarises approaches that have used the BreakHis data set from the last few

years, including our proposed approaches. Most of these works have been taken from

a comprehensive 2020 review paper [174]. For fair comparison, we have selected works

that also do not use transfer learning as these represent manually crafted networks that

have zero pre-training. Furthermore, many of these approaches use specialised feature

extraction and pre-processing steps for histopathological data. As such, our goal is not

necessarily to outperform previous state-of-the-art works, but rather to show that our

neuroevolutionary technique can achieve similar results to hand-crafted architectures,

even without specialised knowledge of the problem domain.

Looking at the last four columns from the right, we list the accuracies for the various

magnifications. The last four rows correspond to our proposed approaches: NeuroLGP

and its surrogate-assisted variant (NeuroLGP-SM). We can see that our results are in

good accordance with the other works, in some cases outperforming other approaches.

Notably, the results yielded by our two approaches on the ×200 magnification are very

competitive in terms of accuracy.

If we turn our attention to specifically comparing the surrogate and expensive models,

we can see that each has very similar performances. For instance, the mean values (third

and fourth last lines from bottom), the surrogate and expensive models are typically

within 0.2% of each other and for the best (last two lines) the surrogate and expensive

models are within 1-2%. For each dataset, a Wilcoxon rank-sum test was run with

a significance level of α = 0.05 to determine if the distributions of the surrogate and

expensive differ and we concluded that they do not. In other words, this indicates the

surrogate and expensive models are performing as well as each other, however, it should

be noted our analysis is somewhat limited by the low run number.

5.5.4 Analysis of the Surrogate Model

Model Fitness

We use three metrics to determine how well our surrogate model performs in terms of

predicting the fitness of our partially trained models. Firstly, we use the Mean Squared

Error (MSE) between the predicted fitness and actual fitness. Values closer to 0 indicate

our surrogate model is accurate in predicting fitness. Secondly, Kendall’s Tau is used

to measure the correlation between the predicted fitness and the actual fitness [104] and

accounts for the monotonic relationship between these fitnesses, i.e., a non-monotonic

trend will lower Kendall’s Tau. A coefficient value of -1 indicates a perfect negative

correlation, while a coefficient of +1 indicates a perfect positive correlation. Values close

to 0 would indicate no discernible correlation. When considering all runs, a mean value

CHAPTER 5. NEUROLGP-SM 91

Table 5.6: Accuracy results for approaches using BreakHis dataset (×40, ×100, ×200 and
×400). Results from this work are highlighted in boldface and are presented in the last
four rows (Where µ stands for mean and B stands for best). Aug: Data augmentation,
Ens: Ensemble, WSI: wholes slide image, CNN: convolutional neural network, SVM:
support vector machine, AE: auto-encoder, DBN: deep-belief network.

Work Preprocessing Patch/slide Model Training/Test ×40 ×100 ×200 ×400
Gupta [178] None WSI Ens. 70% / 30% 88.9 88.9 88.9 88.9
Sharma [179] Mixed WSI Ens. Not specified 81.7±2.8 81.2±2.7 80.7±3.4 81.5±3.1
Nahid [180] None WSI CNN Not specified 94.4 95.93 97.19 96
Nahid [181] K-Mean Clustering WSI CNN Not specified 85 90 90 90
Karthiga [182] K-Mean Clustering WSI SVM Not specified 93.3 93.3 93.3 93.3
Pratiher [183] Gray Scale, Aug. WSI AE Not specified 96.8 98.1 98.2 97.6
Badejo [184] None WSI SVM 70% / 30% 91.1 90.7 86.2 84.3
Nahid [185] Contrast Enhance WSI DBN 70% / 30% 88.7 89.06 88.84 87.67
Das [186] Resize (370x230) (224x224) CNN 80% / 20% 89.52 85.3 88.6 88.4
Kumar [187] Stain Normalisation (64x64, 32x32) CNN 70% / 30% 82±2.8 86.2±4.6 84.6±3.0 84±4.0
Aswathy [188] Mixed WSI SVM 90% / 10% 89.1 89.1 89.1 89.1
NeuroLGP (µ) Resize (64x64), Aug. WSI CNN See Section 5.4 89.7±2.1 0.872±3.0 92.6±2.1 90.8±1.0
NeuroLGP-SM (µ) Resize (64x64), Aug. WSI CNN See Section 5.4 89.8±1.4 0.873±1.8 92.8±2.4 91.0±0.7
NeuroLGP (B) Resize (64x64), Aug. WSI CNN See Section 5.4 93 91.6 96 92.5
NeuroLGP-SM (B) Resize (64x64), Aug. WSI CNN See Section 5.4 91.3 90.3 97 92.5

Table 5.7: Average MSE and Kendall’s Tau for different dataset magnifications.

Metric
Magnification Size

×40 ×100 ×200 ×400
MSE 0.0037 0.0017 0.0014 0.0009
Kendall’s Tau 0.6019 0.6791 0.6225 0.5647
R2 0.5026 0.6665 0.7079 0.7786

close to 0 would indicate our surrogate model is performing poorly while a mean value

closer to 1 would indicate an ideal-performing surrogate model for Kendall’s Tau. Thirdly,

the R2 score [189], again measures the correlation between the predicted fitness and the

actual fitness and ranges from -∞ to 1, but is insensitive to monotonic relationships and

is a measure of how much variance in the data is explained by the prediction model. R2

scores close to 1 would represent a model which perfectly fits the data.

Table 5.7 summarises the effectiveness of the surrogate model for each of the datasets.

The low MSE values, as seen in the first row, show a relatively low error between the

predicted and actual fitness across the four datasets. The Kendall’s Tau values range

from 0.5647 to 0.6791, indicating a strong positive correlation between the actual and

predicted fitness. We can see that for ×40 we have R2 of 0.5026 indicating a moderate

level of fit being captured by the surrogate model while for ×100, ×200 and ×400, we
have R2 values of 0.6665, 0.7079 and 0.7786. There is also a general trend showing the R2

score increasing with higher magnifications. This may be a result of more noise/artefacts

present in the lower magnification images, making it more difficult for the surrogate model

to predict based on the network outputs but further studies would be required to confirm

this. Overall, the quality of fit and performance of the surrogate models based on the

CHAPTER 5. NEUROLGP-SM 92

0.0025

0.0050

0.0075

0 5 10 15
Generation

A
ve

ra
g

e
 M

S
E

group

x100
x200
x40
x400

Average MSE per generation for Neuro−LGP approach

Figure 5.7: Avg. MSE between predicted vs. actual fitness over 15 generations for the
surrogate approach. The relative stability shows the robustness of the surrogate approach.

three metrics is very strong for each dataset.

Next, we plot the average MSE per generation to get an idea of how the predictive

capability of the surrogate approach changes over time as seen in Fig. 5.7. MSE values that

either decrease or remain stable are preferable, as increasing MSE values would indicate

our surrogate model is losing its predictive capability as new individuals are introduced.

We can see that after an initial drop in average MSE from the first couple of generations

(x-axis), while there are some fluctuations in the average MSE, in general values remain

relatively stable, demonstrating the robustness of our surrogate.

Fig. 5.8 details the quality of fit in terms of how well the predicted accuracies relate

to the actual accuracies. In each figure, values closer to the red diagonal line, represent

individuals that have a better quality of fit. We can see that the higher the accuracy the

closer our predicted values are to the red line. This is a by-product of the surrogate model

management strategy we employ. In essence, we are less concerned with the accuracies

of poorer-performing models, instead, we have taken a more greedy approach favouring

models that are better performing.

Fig. 5.8a informs us why the ×40 magnification slightly under-performed in terms

of the metrics as shown in Table 5.7. We can see that for the predicted values, on the

y-axis, there are quite several individuals predicted to have ∼80% accuracy when the

actual accuracies for these individuals range from 30-80%, as shown on the x-axis (green

rectangle). A deeper dive into the results data (not shown here) revealed that this was a

CHAPTER 5. NEUROLGP-SM 93

result of one particularly bad-performing run and was not present in the other 7 runs.

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Actual

P
re
d
ic
te
d

(a) ×40

●●
●

●
●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

● ●●

● ●

●●
●●

●
●

●

● ●

●●

●
●

●

●●

●

●

● ●

●

●

●

●

●●●●●●●●●●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●●●●●●●●●
●

●
●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●
●

●
●

● ●

●●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●●●●●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●●●●

●

●

●

● ●●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
● ● ●

● ●
●●

●

●

●

●
●

●

●●●●●●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●
●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●●●
●

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Actual

P
re

di
ct

ed

(b) ×100

●●●●●

●

●●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●
●

●

● ●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●
●●
●
●

●

●
●
●

●

● ●

●

●
● ●

●
●

●

●

●

●

● ●

●

●

●
●
●
●

●●

●
●●●

●

●
●

●

●
●

●

● ●

●

●●●●●●●●●
●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

● ●●

● ●

●

●●
●

●

●
●●

●
●●●

●
●

●

●

●

●

●
●●

● ●
●

●

●

●

●

●
●

●

●●
●

●
●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●

●●●

●

●
●

● ●

●

●
●

●

●

●

●

●
●

●

●● ●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●●
●

●

●

●
●

●

●

●

●

●●●
●●●●●●●

●

●

●

●
●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●

●

●

●
●●

●

●

●
●●

●

●

●

●

●

●
●

●

●
●

●●●●●●●●●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●
● ●

●

●

●
●

●

●

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Actual

P
re

di
ct

ed

(c) ×200

●

●
●

●

●

●●

●

●●

●

●●
●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●
●

●

●●●

●
●

●●

●●

●

●
●●●

●●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●

●

●

● ●
●

●

●●●●●●●●●●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●● ●

●

●●●●●●●●●●

●

●

●

●●
●

●
●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●● ●

●

●●
●●●●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●●
●

●●
●

●

●●
●

●

●

●

●

●

●

●●

●

●●
●●

●
●

●
●

●●●

●●●

●●●

●●●
●

●●

●●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●●●●●●●●●●

●

●

●

●
●

●
●

●

● ●

●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
X0

X
1

(d) ×400

Figure 5.8: Predicted vs. actual accuracies (black points), for ×40, ×100, ×200, and ×400
datasets, shown in (a) – (d), respectively, across 8 independent runs for the surrogate-
assisted approach (NeuroLGP-SM). The red line denotes where the accuracy for both
predicted and actual are the same, where points closer to this line are preferential.

Time Analysis

Table 5.8 shows a comparison between the expensive and surrogate model in average

runtime per GPU hour, in the second and third columns respectively. Of note is that the

surrogate model typically is an order of magnitude higher for standard deviation, meaning

there is greater variance associated with runtime for the surrogate model approach. The

CHAPTER 5. NEUROLGP-SM 94

Table 5.8: Average number of GPU hours per run for expensive and surrogate model.
The last column denotes the reduction in time for each of the 4 datasets.

Average GPU hours per run

Mag. Expensive (hrs) Surrogate (hrs) Reduction
Mean Std Mean Std Time

×40 21.3 ± 0.2 15.9 ± 0.7 25.3%
×100 22.7 ± 0.1 16.6 ± 0.7 26.7%
×200 22.4 ± 0.1 16.8 ± 0.8 24.9%
×400 20.0 ± 0.1 15.3 ± 0.6 23.8%

last column shows the percentage in terms of time saved using the surrogate model over

the expensive model. In general, we can see that given the parameters selected, we roughly

save 25% in terms of GPU hours. Overall, if we consider the total time it took to run

8 runs for all 4 datasets, the expensive models took ∼28 GPU days and the surrogate

models ∼21 GPU days, saving approximately ∼7 GPU days in all.

Energy Consumption Analysis

We perform a comparison of the estimated energy consumption of the surrogate and the

expensive models using the Green-algorithm by Lannelongue et al. [190]. Eq. 5.2 is used

to get this estimate,

E = rt ∗ (Pc ∗ U + Pm) ∗ PUE ∗ PSF
�� ��5.2

where E is the energy consumed in KW/h, rt is the runtime, Pc is the power draw for

the computing cores and depends on the CPU/GPU model, U is the usage factor and

determines how much of the core is in use, Pm is the power draw for the memory. PUE is

the Power Usage Efficiency and is a measure of how much additional energy is needed to

operate the data centre. PSF is the Pragmatic Scaling Factor and can be used to estimate

the performance when multiple runs are taken into consideration. A conservative PUE

value of 1.67 was used, which represents the worldwide average power usage PUE across

all data centres [190]. For simplicity, PSF was kept as 1 as we are interested in the

average runtime rather than the cumulative runtime.

The real usage factor was minimal for both the surrogate and the expensive models,

even during training for the surrogate model and additionally, the CPU energy consump-

tion is negligible compared to that of the GPU, so we have reported just the energy saved

by the GPU, overall 2.79 KW/h are saved using the surrogate model. Considering the

total energy saved across all 4 magnifications for 8 runs each, we save approximately 89.28

KW/h: 25% less energy is consumed using the surrogate approach. This is comparatively

CHAPTER 5. NEUROLGP-SM 95

similar to the time saving of ∼25%, as such, there is a relative one-to-one saving in both

energy and time when using the surrogate model.

5.5.5 Analysis of Genotype

Figs. 5.9 (a - d) show the proportions of various genes for the four magnifications ×40,
×100, ×200 and ×400, respectively. Initial proportions (blue) represent the proportions

of specific genes at initialisation (first generation). The surrogate (green, NeuroLGP-

SM) and expensive (orange, NeuroLGP) models are also represented and denote the

proportions in the final generation across all 8 runs. The comparison we make will aim to

show how the proportions of the surrogate and expensive for specific layers change from

initialisation (i.e., we compare green and orange proportions against blue).

For the initial proportions, genes were proportioned based on their functional group-

ing. The four groups are dropout, batch normalisation, pooling, and convolutional layers.

As such, each group makes up a quarter of the initial population and are subsequently

divided again by specific genes. For instance, as there are 6 convolutional layer genes we

divide 0.25
6 to get the proportion for each convolutional layer.

Turning our attention to the surrogate and expensive models, we can see general

trends in how the various gene groupings change by the final generation shown in green

and orange for the NeuroLGP-SM and NeuroLGP, respectively. For instance, the dropout

layer proportions sizes tend to decrease significantly by the final generation in the surro-

gate and expensive models. Similarly, the proportion of batch normalisation layers tends

to increase. The pooling layers are more specific to the dataset. For instance, for ×100
and ×200 there is an increase specifically for the max pooling layer. On the other hand,

for ×400 there is a general decrease, albeit the two models differ on the specific pooling

layer they decrease. Again, for the convolutional layers there is a more specific trend for

particular datasets. While there are some slight increases and decreases in proportion

size for ×40, ×100 and ×200, for ×400 there are notable increases in proportion sizes for

×400 for convolutional layers using a 3×3 filter (Fig. 5.9d, CONV 32 3x3, CONV 64 3x3

and CONV 128 3x3).

Some of these trends are unsurprising, we would expect that the proportion of dropout

layers would be less, for instance, as CNN architectures are not as prone to overfit-

ting [191]. It would seem that the decrease in pooling layers in the ×400 is being com-

pensated by an increase in convolutional layers, in other words, some of the dimension

reduction is being handled by the convolutional layers rather than the pooling. Further

research could investigate how these proportions change relative to different resolution

sizes. Interestingly, while in many cases the change in proportions are consistent for both

the surrogate and expensive, in some instances the proportion sizes differ significantly,

CHAPTER 5. NEUROLGP-SM 96

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Proportion

CONV_32_3x3

CONV_32_5x5

CONV_64_3x3

CONV_64_5x5

CONV_128_3x3

CONV_128_5x5

AVGPOOL_2x2

MAXPOOL_2x2

BATCH_NORM_99

BATCH_NORM_9

DROPOUT_0.1_SEED0

DROPOUT_0.2_SEED0
Ge

ne
Proportion of Unique Values for Breakhis x40

Initial Proportions
NeuroLGP-SM
NeuroLGP

(a) Breakhis ×40 dataset

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Proportion

CONV_32_3x3

CONV_32_5x5

CONV_64_3x3

CONV_64_5x5

CONV_128_3x3

CONV_128_5x5

AVGPOOL_2x2

MAXPOOL_2x2

BATCH_NORM_99

BATCH_NORM_9

DROPOUT_0.1_SEED0

DROPOUT_0.2_SEED0

Ge
ne

Proportion of network layers for Breakhis x100
Initial Proportions
NeuroLGP-SM
NeuroLGP

(b) Breakhis ×100 dataset

CHAPTER 5. NEUROLGP-SM 97

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Proportion

CONV_32_3x3

CONV_32_5x5

CONV_64_3x3

CONV_64_5x5

CONV_128_3x3

CONV_128_5x5

AVGPOOL_2x2

MAXPOOL_2x2

BATCH_NORM_99

BATCH_NORM_9

DROPOUT_0.1_SEED0

DROPOUT_0.2_SEED0
Ge

ne
Proportion of network layers for Breakhis x200

Initial Proportions
NeuroLGP-SM
NeuroLGP

(c) Breakhis ×200 dataset

0.000 0.025 0.050 0.075 0.100 0.125 0.150 0.175 0.200 0.225
Proportion

CONV_32_3x3

CONV_32_5x5

CONV_64_3x3

CONV_64_5x5

CONV_128_3x3

CONV_128_5x5

AVGPOOL_2x2

MAXPOOL_2x2

BATCH_NORM_99

BATCH_NORM_9

DROPOUT_0.1_SEED0

DROPOUT_0.2_SEED0

Ge
ne

Proportion of network layers for Breakhis x400
Initial Proportions
NeuroLGP-SM
NeuroLGP

(d) Breakhis ×400 dataset

Figure 5.9: Proportion of evolved network layers for initialisation (blue) and final gener-
ations for NeuroLGP-SM (green) and NeuroLGP (orange) for ×200, and ×400 datasets

CHAPTER 5. NEUROLGP-SM 98

for instance, CONV 64 5x5 as seen in ×400. This is likely a result of solutions converg-

ing at different local optima, however, further analysis of the fitness landscape would be

beneficial in gaining more insight.

5.5.6 Limitations of our Analysis

While a single run is the norm in terms of neuroevolution, we endeavoured to perform as

many runs as possible, to add better confidence to our analysis. While we ran individual

runs in parallel, both the surrogate and expensive approaches, for 8 runs each and for

the 4 datasets, the total runtime amassed ∼80 GPU days. To conduct a full statistical

analysis we would require another +80 GPU days of experimentation.

Furthermore, there are a number of aspects of LGP which are not covered in this

Thesis but are beneficial for neuroevolution or are worth investigating further:

• LGP has both effective and non-effective portions of code within the genome. The

non-effective portions of code (or Introns) would be interesting to study from the

perspective of neutrality, an area which has yet to be explored in Neuroevolution [37,

127].

• LGP allows for control branches. This may allow for more complex design rules to

be incorporated. Such rules may be important if we wish to design networks which

use complex conditional-based workflows, for example, Mixture-of-Experts based

architectures that use conditional computation [192]

5.6 Summary

In this Chapter, we demonstrate a novel surrogate-assisted neuroevolutionary approach,

named Neuro-Linear Genetic Programming LGP surrogate model (NeuroLGP-SM). This

approach makes use of Kriging Partial Least Squares (KPLS) to estimate the fitness of

partially trained Deep Neural Networks (DNNs) using phenotypic distance vectors in a

high-dimensional context. While phenotypic distance vectors have previously been used

for traditional Artificial Neural Networks (ANNs) of only a few layers, their use in surro-

gate modelling for DNNs marks a significant leap forward in tackling high-dimensionality

in neuroevolution. Our surrogate model management strategy makes use of a novel neu-

roevolutionary approach inspired by LGP, entitled NeuroLGP which allows us to evolve

compact, robust and variable-length architectures.

We demonstrate that our approach is competitive or superior to other state-of-the-art

handcrafted networks. Furthermore, our neuroevolution approach was shown to out-

perform a competitive baseline for both the expensive (NeuroLGP) and surrogate-based

variant (NeuroLGP-SM) using four magnification subsets of the BreakHis dataset when

CHAPTER 5. NEUROLGP-SM 99

considering the best individuals across all runs. Using 3 metrics, in addition to visual

analysis of quality of fit plots, we demonstrate the robustness of our surrogate model

management strategy showing that our surrogate model not only accurately estimates

the fitness of individuals but remains consistent over time and for all 4 datasets. We

demonstrate that the proposed surrogate approach is 25% more efficient in terms of en-

ergy consumption and in terms of time saved, compared to a expensive variant that does

not use surrogacy. Additionally, due to the unique encoding properties of our NeuroLGP

approach, we can easily analyse the internal structures of the architectures, giving greater

insight into the favourable components of the discovered architectures.

6
NeuroLGP-MB: Scaling Topological Complexity

with a Pre-Selection Surrogate Model

In the previous chapter, we detailed a surrogate-assisted approach for neuroevolution in-

spired by LGP. In this chapter, we make some significant changes to our neuroevolution

approach such that we can now encode branching and skip connections into our archi-

tecture allowing for much more complex topologies to be found. This is one of the key

ingredients of modern DNNs. A strong motivating factor for why we wish to increase the

complexity and search space is to demonstrate the applicability of the phenotypic dis-

tance approach to more challenging architecture structures. Furthermore, we introduce a

new surrogate variant which uses a pre-selection method and was found to outperform a

competitive baseline, the expensive model consisting of full evaluations and the previous

surrogate variant for the BreakHis ×40 and ×200 datasets while performing similarly for

a Chest X-Ray dataset.

In addition to performing a comparison of the four models in terms of their accuracy,

we analysed the robustness of the new surrogate model variant and reported on the

time savings. Remarkably, even though there is a significant overhead in evaluating

individuals for the pre-selection method there was still a significant time saving ranging

from 11.8 - 16.6% compared to the expensive model across the three datasets. We then

perform an analysis of the depth and complexity on the elite members of the population

demonstrating that deeper and relatively narrow networks are preferred. Finally, we

analyse the effect of changing the initial epoch number for informing our surrogate model.

It was found that a time saving of ∼41.5% was possible over the expensive model with

just a single epoch, while maintaining relatively good accuracy, however, this came at the

expense of the robustness of the surrogate model.

100

CHAPTER 6. NEUROLGP-MB 101

6.1 Introduction

In the preceding decades, EAs [20] have attracted considerable attention as viable search

mechanisms for the automatic configuration of DNNs [57], either by evolving their net-

work topologies, hyperparameters and/or weights. The aim of this evolutionary process,

referred to as neuroevolution [37], is to find high-quality network architectures based on

their performance which are typically attained by some measure of fitness relative to the

problem domain, such as classification accuracy in classification problems.

One of the primary challenges to performing neuroevolution effectively is the signifi-

cantly high computational overhead required in finding high-quality solutions. It has been

noted, that for large DNN models, the cost of training a single epoch can be very expen-

sive, where this issue is further compounded when many networks are required to train,

as is the case in neuroevolution [21]. Another key challenge is finding a suitable evolution-

ary representation for finding complex architectures. Multi-branch and skip-connection

architectures were popularised with models like googLeNet [29] and DenseNet [193], re-

spectively and can help diversify how feature information is handled within DNN archi-

tectures, help improve their generalisation ability and help stabilise gradients [194], to

name just a few benefits.

To this end, we propose an update to our original surrogate-assisted approach, Neu-

roLGP (see Chapter 5), such that we move from a chain-based topology to a multi-branch

topology, with this new update referred to as NeuroLGP Multi-Branch (NeuroLGP-MB).

As discussed in Chapter 5, one of the major challenges in distance-based surrogate-assisted

neuroevolution is comparing networks with different topologies. While distance metrics

can be created to compare such topologies using genotypic information, i.e, information

pertaining to the structure of the architecture itself, these methods require clever encod-

ing strategies for variable-length architectures. Moving to graph-based topologies further

complicates the issue as the genotypic representations would require graph-edit metrics

to compare distances [26], which can be computationally inefficient to calculate for larger

graphs [24,195].

The core aspects of this study and major developments over the original NeuroLGP,

discussed in Chapter 5, have been summarised below:

• The original NeuroLGP representation has been updated from a chain-structured

representation to a multi-branch representation, now referred to as NeuroLGP-MB,

increasing the topological complexity and increasing the overall search space of

potential architectures.

• Furthermore, the new NeuroLGP-MB approach has improved operations for han-

dling invalid networks as a result of memory or architecture size constraints, have

CHAPTER 6. NEUROLGP-MB 102

been introduced. This approach attempts to silence problematic genes without de-

stroying or significantly changing the chromosome.

• A new variation of the surrogate model has been introduced that uses an enhanced

Design of Experiments (DoE) that pre-selects individuals to make up the first gen-

eration of our EA.

• An analysis was done on the elite members of the population, looking at how depth

and complexity changed over time.

• An analysis was performed by varying epochs for the surrogate model, gaining

insight into the potential time saving as well as offering a discussion on other aspects

of varying epoches.

6.2 Methodology

6.2.1 NeuroLGP-Multi-Branch

In Chapter 5.3, we detailed the first version of the NeuroLGP approach. The new version

Neuro-Linear Genetic Programming Multi-Branch (NeuroLGP-MB) extends our previous

NeuroLGP approach to work with multiple branching connections by introducing the

use of concatenation layers. Fig. 6.1 shows a comparison between the type of networks

that can be produced by NeuroLGP and NeuroLGP-MB. On the left, shows a sequential

network that is constructed in a linear fashion, as can be considered an example of a chain-

structured topology. On the right, shows a multi-branch-based topology, demonstrating

the types of networks capable of being produced by NeuroLGP-MB. This approach makes

full use of the LGP paradigm, as even though the genotype can still be considered linear,

the phenotypic representation can be used to create a Directed Acyclic Graph (DAG) and

hence is capable of creating branching connections. The main implementation difference

is that we extend the 2-register representation to a 3-register representation.

In this representation, the concatenation layer serves as a function of arity 2 (in other

words, 3-register operand). In Fig. 6.2, we demonstrate how branching connections are

constructed from the genotype (table on the left) and the resulting architecture (figure

on the right). The rules for connecting edges of the graph are interpreted by traversing

from the final layer to the first, represented by the descending index on the left column.

The reasoning here is that multiple branches may connect to the same register at a later

point and require special handling (discussed in more detail later). Register r[0] is a

special register that is used to denote the final output of the architecture and its first

occurrence in the ‘out’ column, using the bottom-up approach when looking at the table,

allows us to see that it first occurs at index 1 (dark blue). We can now determine the next

CHAPTER 6. NEUROLGP-MB 103

?×64×64×3

conv2d_input

Conv2D

kernel〈5×5×3×32〉
bias〈32〉

Activation

AveragePooling2D

BatchNormalization

gamma〈32〉
beta〈32〉
moving_mean〈32〉
moving_variance〈32〉

MaxPooling2D

MaxPooling2D

BatchNormalization

gamma〈32〉
beta〈32〉
moving_mean〈32〉
moving_variance〈32〉

Dropout

Flatten

Dropout

Dense

kernel〈1568×512〉
bias〈512〉

Activation

Dropout

Dense

kernel〈512×2〉
bias〈2〉

Activation

dense_1

?×128×128×3

input_layer

MaxPooling2D

BatchNormalization

gamma〈3〉
beta〈3〉
moving_mean〈3〉
moving_variance〈3〉

Dropout

Conv2D

kernel〈5×5×3×128〉
bias〈128〉

Activation

Dropout MaxPooling2D

shape shape

SlicingOpLambda SlicingOpLambda

maximum

resize resize

Concatenate

BatchNormalization

gamma〈131〉
beta〈131〉
moving_mean〈131〉
moving_variance〈131〉

GlobalAve…Pooling2D

Dense

kernel〈131×2〉
bias〈2〉

Activation

dense

Table 6.1: Comparison of the original NeuroLGP architecture (left, detailed in Chapter 5)
and the new NeuroLGP-MB architecture (right, detailed in this chapter). Graphs were
generated using the open-source package Netron [13].

CHAPTER 6. NEUROLGP-MB 104

layer by looking at the input at index 1 (r[2] in ‘In 1’ column, dark blue) and seeing

where it next occurs in the ‘out’ column, by moving up the table. This register next

occurs in the ‘out’ column at index 6, which corresponds to the CONCAT layer which

is our concatenation layer. From here, we can see that we have two input layers (r[1]

in ‘In 1’ column, cyan and r[3] in ‘In 2’ column, magenta). These represent branching

connections that correspond to Line 8 and 9, as r[1] is next found in ‘out’ of Line 9 and

r[3] is next found in ‘out’ of Line 8. Since r[2] in ‘In 1’ column on Line 8 does not

correspond to any proceeding outputs, it is determined to have terminated on this line

and, as such, will connect straight to the input (terminating register denoted by a star

symbol). This terminates the magenta branch. Line 9 connects to Line 16 via register

r[5]and then terminates on r[6], thus ending the cyan branch.

If we look at the diagram on the right, we can see how this process can represent

the branching connections or a real architecture. Following the graph on the right-hand

side, directly after the input layer, we see that we have a convolutional layer followed

by a dropout layer. This corresponds to the cyan branch (Lines 16 and 9). Similarly,

on the right we see the max pool layer after the input layer. This corresponds to the

magenta branch (Line 8). Both these branches merge on the concatenation layer (Line 6,

the black layers are used to denote operations to ensure dimensionality is correct and is

not encoded in the genotype). Finally, the concatenation layer is followed by the batch

normalisation layer before connecting to the global average pooling layer which is not

part of the encoding. Earlier it was mentioned that multiple branches may connect on

the same register. For instance, if r[5] was changed to r[2] on Line 16, then the

input from Line 8 would no longer be terminating and the cyan and magenta branches

would merge on the convolutional layer on Line 16 instead. In fact, many branches may

reconnect on the same layer or at various layers throughout the chromosome.

In this work we use concatenation layers exclusively and have been popularised in such

networks such as GoogleNet [29], InceptionV3 [196] and DenseNet [193]. Other popular

architectures such as ResNet [30] use summation layers. While summation layers have

not been encoded in this work it is still possible to use the NeuroLGP framework to

encode these types of networks. Furthermore, the aforementioned concatenation-based

architectures often use some form of modularity, such as repeating pre-defined blocks,

using the same layers in each block, containing convolutions, activations, normalization,

and pooling. These pre-defined blocks have not been encoded in the NeuroLGP, however

it is possible to encode these. Nevertheless, the types of architectures found in NeuroLGP

exhibit many features of these networks, such as two or more convolution layers stacked

together, followed by a pooling layer, followed by a dropout layer before repeating into an-

other stack of convolutional layers. The concatenation layers can occur at any point along

the architecture pipeline, allowing for a diverse range of potential network topologies.

CHAPTER 6. NEUROLGP-MB 105

Operand Register

Idx Layer Out In 1 In 2
17 CONV 64 3x3 NOL2 r1 r0
16 CONV 128 5x5 KR00... r5 r6*
15 DROPOUT 0.3 SEED0 r4 r1
14 AVGPOOL 3x3 2 r1 r1
13 CONV 64 5x5 KR00001 r4 r2
12 CONV 128 3x3 KR01.̇. r4 r1
11 CONV 64 3x3 KR00001 r1 r5
10 BATCH NORM 75 r1 r5
9 DROPOUT 0.5 SEED0 r1 r5
8 MAXPOOL 3x3 2 r3 r2*
7 CONV 64 3x3 KR01 r5 r5
6 CONCAT r2 r1 r3
5 CONV 64 5x5 KR00001... r0 r5
4 AVGPOOL 5x5 2 r4 r2
3 CONV 128 5x5 KR01 r3 r0
2 CONV 32 3x3 KR00001... r1 r1
1 BATCH NORM 1 r0 r2

?×128×128×3

?×128×128×3

input_layer

Conv2D

kernel〈5×5×3×128〉
bias〈128〉

Activation

Dropout MaxPooling2D

shape shape

SlicingOpLambda SlicingOpLambda

maximum

resize resize

Concatenate

BatchNormalization

gamma〈131〉
beta〈131〉
moving_mean〈131〉
moving_variance〈131〉

GlobalAveragePooling2D

Dense

kernel〈131×2〉
bias〈2〉

Activation

dense

Table 6.2: Left: table showing the genotypic representation. Bold denotes effective code.
Registers have been colour coded with full explanation in the text. Right: corresponding
architecture for table on left. Following the effective code in the table allows us to see
how this graph is constructed.

CHAPTER 6. NEUROLGP-MB 106

Fixed
Chromosome

Output

Output

Original
Chromosome

Input

Input

Problem Gene

Figure 6.1: Demonstrating how gene silencing mechanism can be used to correct dimension
error issues expressed by the chromosome. Effective code in red denotes potential problem
layers. The arrow points to the layer where compilation failed. The left side of each
chromosome represents the network input i.e., where image data is fed into and the right
of each chromosome represents network output i.e., global average pooling layer. On
the bottom, shows a chromosome where all effective code is blue, denoting a compilable
network.

6.2.2 Genetic Operations

A number of additional changes have been implemented in NeuroLGP-MB. The original

approach used a repair mechanism to ensure the first layer was always a convolutional

layer, however, it is possible to compile networks with other layer types and still create

valid networks, as such, this part of the repair mechanism has been removed to allow

for less biased architectures to be found. The flattened structure layer in the original

NeuroLGP approach has also been removed and replaced with a Global Average Pooling

layer. The motivation here is that the size of the flattened layer in terms of the number

of neurons was dependent on the total number of parameters and, as such, the dense

layer could change dramatically depending on the number of parameters. With a Global

Average Pooling Layer, this restriction is alleviated. Furthermore, by using a Global

Average Pooling Layer the evolved networks will become more architecture-dependent.

The repair mechanism has been simplified in NeuroLGP-MB over the original version,

where we use a more targeted approach inspired by epigenetics. While there are more

extensive epigenetic-inspired operators in the literature [197, 198], our goal here is to

replace the more destructive repair operator of NeuroLGP-MB with a simplified targeted

mutation of the output register of the problem gene. During network compilation an

error may be thrown for a specific layer, or problem gene, which will cause a negative

dimension error. While this layer may be the cause of the dimension error, it may very well

be that any previous layer or a combination of previous layers are the root cause. While

iteratively removing these layers will solve the issue it can have the effect of drastically

changing the chromosome up until that point. Another approach is to change the gene

expression at that layer, thus silencing one or more of the genes up until that point

CHAPTER 6. NEUROLGP-MB 107

within the chromosome. This is akin to gene silencing in reverse genetics [199]. Fig. 6.1

demonstrates this concept of gene silencing as a repair mechanism.

The mutation operator has been updated such that is will mutate an individual mul-

tiple times. The reasoning here is that a large portion of the code is ineffective and, as

such, mutating just a single time reduces the likelihood that an individual will change

significantly. Additionally, other approaches have noted that when considering neuroevo-

lution techniques where there are a low number of evaluations, having a high mutation

rate can be beneficial [110]. Another update is the inclusion of a by-group mutation op-

eration specifically for the operand. This will attempt to mutate an individual using the

same group type. For instance, a mutation on a convolutional layer will always result in

another convolutional layer, a dropout layer will always result in another dropout layer

etc. No major change has been made to the crossover operator, as crossover still operates

on effective portion of the code, however, crossover has the potential to alter the topology

of the network if a concatenation layer lies within the crossover segment. Details of the

crossover operator are discussed in Chapter 5.3.3.

6.2.3 Surrogate Model with Pre-Selection

Along with the baseline, expensive and surrogate models, we have included a variant which

uses a pre-selection mechanism referred to as surrogate-PS. Surrogate models will often use

Design-of-Experiments (DoE) as part of their modelling strategies. Popular examples of

DoE methods include Latin Hypercube sampling and random sampling techniques [200].

Our particular modelling strategy is by design, greedy in nature, that is, we use individuals

that we expect to give us the greatest improvement as training samples for our surrogate

model. As such, we have focused on a sampling technique that selects the best individuals

from an external population that is then used to inform both the initial surrogate model

and populate the first generation of our EA.

The pre-selection method works as follows: (i) an external population is created that

consists of P individuals we will sample from, (ii) we partially train these individuals to the

same level as the initial epoch level of the surrogate, in other words, these individuals are

only partially trained, (iii) we then select the top N individuals from P such that N < P

and where N is the same size as the initial population for our EA (iv) finally, we extract

the phenotypic distance vectors from these individuals and subsequently fully train them.

We then initialise our surrogate model with these individuals, where subsequently they

make up the initial population of our EA. From here, the surrogate modelling strategy is

the same as outlined in Chapter 5.3.2. In our experiments we use an external population

size that is 5 times the size of the initial population, the initial epoch number is 10 and

the full epoch number is 30.

CHAPTER 6. NEUROLGP-MB 108

Chest X-Ray

BreakHis x40

BreakHis x200

Figure 6.2: Sample images of the BreakHis and Chest X-ray datasets based on original
resolutions. The BreakHis datasets (images on the right) incorporate different magnifica-
tion sizes (×40 and ×200)

6.3 Implementation Details

6.3.1 Datasets

The Breast Cancer Histopathological Image Classification (BreakHis) [173] is a binary

classification dataset consisting of microscopic images as previously discussed in Chap-

ter 5.4, however for this chapter we look specifically at two magnifications (×40 and ×200)
using a larger image resolution of 128x128 pixels (again using a down-scaled resolution

from the original 700x460 pixels), with a 8-bit 3-channel RGB depth. Included as well,

is the Chest X-Ray binary classification dataset for patients with pneumonia [201], origi-

nally consisting of 5,232 images, with 3,883 depicting images with pneumonia and 1,349

as normal. The images have been down-scaled to 128x128 pixels with a single grey-scale

channel (from an original resolution of 1240×840). Fig. 6.2 shows examples of the image

data used in their original resolutions. The same data-augmentation techniques and up-

sampling techniques are used as previously outlined in Chapter 5.4. Table 6.4 details the

mutation and crossover rates, segment lengths for crossover operation, the initial chro-

mosome lengths and minimum and maximum chromosome lengths (defined as program

length in the table). Distances/lengths are based on effective length except for the dis-

tance of crossover points, the minimum and maximum chromosome lengths and initial

chromosome length which consider the full chromosome length. Only the most salient in-

formation has been included in this table, full details of the configuration files, including

additional details on the setup and a full list of evolvable layers have been included in

Appendix B in Tables B.2. Experiments were run on Luxembourg’s national MeluXina

supercomputer using NVIDIA A100-40 GPU, which has 40GB of RAM available.

CHAPTER 6. NEUROLGP-MB 109

Dataset # Train # Test2 Pheno. Size Dimension

BreakHis ×40 1472 298 596 (128x128x3)

BreakHis ×200 1518 298 596 (128x128x3)

Chest X-Ray 3620 587 1174 (128x128x1)

Table 6.3: Details on datasets in terms of number of training and test instances, phenotype
vector size and image dimensions. Validation, test1 and test2 use approximately the same
number of instances.

Category Attribute Value

SURROGATE
METHOD KPLS
INITIAL EPOCH NUM 10
INITIAL SURROGATE POPSIZE 30 (150 for Surrogate-PS)
EXPENSIVE PROPORTION 0.4

EXPERIMENTAL SETUP
GEN SIZE 15
POP SIZE 30
ELITE PERCENTAGE 0.2
SELECTION TYPE: tournament,

SIZE: 5,
NUMBER OF TOURNAMENTS: 1

CROSSOVER RATE: 0.8
TYPE: linear,
DISTANCE OF CROSSOVER POINTS: 80,
MINIMUM PROGRAM LENGTH: 2,
MAXIMUM PROGRAM LENGTH: 100,
MAXIMUM SEGMENT LENGTH: 7,
MAXIMUM DIFFERENCE IN SEGMENT LENGTH: 7

MUTATE TIMES 5
MUTATION RATE 0.5
MUTATION OPERAND ONLY RATE 0.3
MAX REGISTER 6
INIT. CHROMOSOME LENGTH 30
EPOCH NUM 30

Table 6.4: Details of experimental setup for NeuroLGP method.

6.3.2 Scaling Complexity

The above approach has been scaled in complexity in three ways. First, in terms of the

phenotypic dimension size, second in terms of the search space by including additional

layer types and third by increasing the topological complexity of possible neural networks.

In Fig. 6.2, we demonstrate how we have scaled the phenotypic vector to a higher dimen-

sion by including the Chest X-ray dataset which has a phenotypic distance vector size

of 1174, which is approximately twice the size of the phenotypic distance vector size of

BreakHis ×40 and ×200. In traditional Kriging there would be a substantial barrier to

increasing dimensions of this size as discussed in Chapter 5.2.

For the second approach, the number of available layers have been increased signif-

icantly. Some of the changes include the inclusion of TanH activation for convolutional

CHAPTER 6. NEUROLGP-MB 110

layers, a greater selection of hyperparameter settings for dropout, batch normalisation

(in terms of momentum), regularisation, a greater variety of stride and kernel size for

pooling layers and the option for no regularisation. The full details of these changes can

be seen in Appendix B by comparing Tables B.1 and B.2, where Table B.1 details the

configuration data used in Chapter 5 for the NeuroLGP approach and Table B.2 details

the configuration data for NeuroLGP-MB.

Thirdly, we scale the complexity of the topology space. Prior to running any exper-

iments, we ensured that our approach was robustly building each graph. To do this we

generated 35 chromosomes, using a mixture of hand-crafted design and random generation

to ensure that graphs of varying degrees of complexity were being generated. Fig. B.1,

B.2 and B.3 sown in Appendix B represent a selection of these test architecture, showing

the complexity of some of the topologies capable of being created. Some of the test cases

include, but are not limited to layers that will branch to multiple edges with testing of up

to degree 5 for some nodes, multiple concatenation layers within the same chromosome,

concatenation layers occurring directly after the initial input, multiple branches occur-

ring directly after a concatenation layer, to name a few. In some of these cases, special

handling was required to ensure models were valid, for instance, if a concatenation layer

occurs directly after the input we must ensure that the input layer splits and rejoins with

both branches or determine if only a single branch will connect with the input.

6.4 Results

6.4.1 Discussion on Architectures Found

Fig. 6.5 shows a typical example of a portion of NeuroLGP-MB architecture (left) as

seen in the final generation and a portion of a VGG16 architecture (right). VGG16

has been chosen as a reference as it has previously been used on the BreakHis dataset

before [186]. VGG16 does not contain branching connections, but we can see some of the

typical characteristics that we often see in CNN architectures such as 2-3 convolutional

layers followed by a pooling layer. This pattern was observed in many of the networks

produced by NeuroLGP but often there was a batch normalisation layer in between as

seen on the left of Fig. 6.5.

Some additional characteristics of the architectures found by the NeuroLGP approach

were batch normalisation layers occurring directly after the input layer. It is important to

note, other than rescaling and data augmentation no preprocessing was done on the input

data. Potentially, batch normalisation helps with variability in the contrast and brightness

of the histopathological images but further analysis would be required to determine this.

There was also a tendency in some networks to have a greater number of pooling layers

CHAPTER 6. NEUROLGP-MB 111

Table 6.5: Comparison of the NeuroLGP-MB architecture (left) and the VGG16 (right, de-
tailed in this chapter). Graphs were generated using the open-source package Netron [13].

and dropout just before the global average pooling layer at the end of the architecture

pipeline.

6.4.2 Performance Analysis

Table 6.6 summarises the results for the BreakHis ×40, BreakHis ×200 and Chest X-Ray

for each of the three experiments, including training, validation, test1 and test2, where

the best individual is selected from each run and averaged across 4 runs. Test2 is of

particular interest as this represents the with-held dataset from the entire evolutionary

process (test1 is used to determine the fitness of each network and is used by our EA

but is only withheld within the context of each individual network). The table is read

as follows: the first column represents the dataset that is being considered, the second

column denotes the particular experiment type and the subsequent columns represent the

training, validation, test1 and test2 datasets, respectively. Test2 is of particular interest

as this represents the with-held dataset from the entire evolutionary process.

A motivation for including training accuracy is to get an idea of how well the training,

in general, correlates with test2 accuracy. For instance, if we have a low training accuracy

CHAPTER 6. NEUROLGP-MB 112

Dataset Experiment Train Val Test1 Test2

BreakHis ×40
Baseline 0.822 ± 0.018 0.862 ± 0.026 0.837 ± 0.022 0.887 ± 0.012
Expensive 0.897 ± 0.032 0.894 ± 0.037 0.873 ± 0.038 0.907 ± 0.029
Surrogate 0.865 ± 0.054 0.898 ± 0.032 0.873 ± 0.044 0.904 ± 0.029
Surrogate-PS 0.907 ± 0.061 0.910 ± 0.032 0.889 ± 0.040 0.919 ± 0.032

BreakHis ×200
Baseline 0.944 ± 0.017 0.883 ± 0.033 0.890 ± 0.008 0.897 ± 0.014
Expensive 0.941 ± 0.021 0.912 ± 0.024 0.911 ± 0.013 0.930 ± 0.030
Surrogate 0.935 ± 0.044 0.890 ± 0.035 0.905 ± 0.011 0.919 ± 0.031
Surrogate-PS 0.964 ± 0.010 0.923 ± 0.025 0.909 ± 0.020 0.939 ± 0.010

Chest X-Ray
Baseline 0.796 ± 0.119 0.894 ± 0.016 0.914 ± 0.020 0.912 ± 0.015
Expensive 0.856 ± 0.107 0.895 ± 0.023 0.920 ± 0.030 0.917 ± 0.016
Surrogate 0.863 ± 0.051 0.900 ± 0.018 0.914 ± 0.018 0.909 ± 0.021
Surrogate-PS 0.865 ± 0.067 0.906 ± 0.011 0.921 ± 0.006 0.914 ± 0.014

Table 6.6: Results for average train, validation, test1 and test2, where the best individual
is selected from each run, across 4 runs, for each experiment type for the BreakHis ×40,
BreakHis ×200 and Chest X-Ray datasets.

and low test2 accuracy, this may indicate a degree of underfitting. Conversely, if we have a

high training accuracy and lower test2 accuracy, this may indicate overfitting. In general,

the differences are within the range of ± 0.03, with a notable exception of the Chest X-

Ray dataset, where the training set accuracy is substantially lower than the test2 set. In

this case, the Baseline approach has the lowest training accuracy of 0.796, however, this

may be a result of the relatively high variance 0.119. Regardless, this seems to suggest

that every experiment type is to some extent underfitting the Chest X-Ray dataset.

Looking specifically at test2 for the four experiment types for BreakHis ×40 we can

see that on average the expensive, surrogate and surrogate-PS accuracies are higher than

the Baseline. Of these methods, surrogate-PS has the highest accuracy on average with

0.919 ± 0.032 vs. 0.887 ± 0.012, 0.907 ± 0.029 and 0.904 ± 0.029, for baseline, expensive

and surrogate models, respectively. Again if we look at BreakHis ×200 we can see that

surrogate-PS outperforms the other methods with an accuracy of 0.939±0.010 vs. 0.897±
0.014, 0.930 ± 0.030 and 0.919 ± 0.031, for baseline, expensive and surrogate models,

respectively. In the case of Chest X-Ray we can see that the accuracies are all relatively

similar, 0.912±0.015, 0.917±0.016, 0.909±0.021 and 0.914±0.014, for baseline, expensive,
surrogate and surrogate-PS, respectively. For context, Kermany et al. [202], note a 92.8%

accuracy on the test set for a transfer-based learning architecture, however, it should be

noted in our work we use a different training, validation and test split than that of the

original dataset [201]. Regardless, we can see that the baseline is performing competitively

with the state-of-the-art. In general, we can say, with the exception of Chest X-Ray the

surrogate-PS approach has the highest accuracy.

CHAPTER 6. NEUROLGP-MB 113

Table 6.7: Average MSE, Kendall’s Tau and R2 for different datasets. The naming
convention has been shortened for ease of reading, such that, the original surrogate model
is denoted as ‘Sur’ where the pre-selection method is denoted as ‘Sur-PS’.

Metric
Datasets

×40 ×200 Chest X-Ray
Sur Sur-PS Sur Sur-PS Sur Sur-PS

MSE 0.0067 0.0035 0.0017 0.0031 0.0372 0.0173
Kendall’s Tau 0.6536 0.6480 0.6480 0.7435 0.6298 0.6790
R2 0.6239 0.6185 0.9373 0.7458 0.4536 0.6082

6.4.3 Surrogate Analysis

Three metrics are used to determine how well the surrogate model performs in predicting

the fitness of our partially trained models: (i) the Mean Squared Error (MSE) gives a

measure of how accurate our model is in terms of predicting fitness where values close to 0

are preferable, (ii) Kendall’s Tau is used to measure the correlation between the predicted

fitness and the actual fitness [104], where values close to 0 indicates no correlation, -1

a perfect negative correlation, +1 a perfect positive correlation, and (iii) the R2 score

again measures the correlation between the predicted fitness and the actual fitness, but

is insensitive to monotonic relationships unlike Kendall’s Tau and ranges from -∞ to 1

and is a measure of how much variance in the data is explained by the prediction model,

where values closer to 1 are preferable.

Table 6.7 summarises the effectiveness of both the surrogate model and the pre-

selection surrogate model for each of the datasets for the 3 metrics. If we compare

the metrics for the base surrogate and pre-selection variants against each other (sur vs.

sur-PS), we can see that, on the surface, the metrics tend to vary as to which is prefer-

able, for instance, if we look at ×40 we can see that surrogate-PS has a lower MSE of

0.0035 vs. 0.0067 but the Kendell’s Tau and R2 are preferable for the surrogate model

with 0.6536 vs. 0.6480 and 0.6239 vs. 0.6185. Only in the case of Chest X-Ray do the

metrics seem to be consistently preferable. These results are unsurprising, to some de-

gree, if we consider the mechanism for how the surrogate model is informed. Even though

the pre-selection model is informing our surrogate with better solutions, this does not

mean that the correlation between the phenotypic distance vector and actual fitness will

be improved. Later, in Chapter 6.4.6, we look into how changing correlation by varying

epoch size affects surrogate model performance. The main takeaway for now is that the

performance of the surrogate-PS model is in general comparable to the surrogate model.

Now, if we focus specifically on the datasets we can see that then Kendall’s Tau and

R2 values show a relative moderate to high correlation, with values typically above 0.6

(with the exception of Chest X-Ray surrogate model that has a R2 value of 0.4536). The

CHAPTER 6. NEUROLGP-MB 114

MSE values are low (preferable) for BreakHis ×40 and BreakHis ×200, however for Chest
X-Ray the MSE values are an order of magnitude higher. Next, we will look specifically

at the predicted vs. actual accuracy plots, which detail the quality of fit.

Fig. 6.3 details the quality of fit in terms of how well the predicted accuracies relate

to the actual accuracies, where in each subplot, values closer to the red diagonal line,

represent individuals that have a better quality of fit. The first column relates to the

surrogate model (Fig. 6.3a, 6.3c, 6.3e) and the right column relates to the surrogate-

PS model (Fig. 6.3b, 6.3d, 6.3f). We can see that our previous analysis of the metrics

conforms with the plots, in that, there is a relatively moderate to high correlation between

the predicted vs. actual accuracy, however, we can see there is a much higher degree of

variance with Chest X-Ray. Of particular interest is there is a notable separation between

the best-performing individuals (green rectangle) and individuals with an accuracy of

less than 0.83 in Fig 6.3f. We can also see that these individuals lie very close to the

red line indicating a high surrogate performance for the individuals. Our analysis from

Chapter 6.4.2, demonstrated that the baseline, performed competitively with the other

three methods, managed to find networks comparable with the state-of-the-art. What is

likely occurring in Fig 6.3f is that because such high-performing individuals are sampled

in the pre-selection stage, then subsequently the surrogate-PS model struggles to find

better-performing individuals to re-inform the surrogate model. In general, we can see

that in the surrogate model for BreakHis ×40 and BreakHis ×200 is adequately predicting.

For Chest X-Ray a higher initial epoch number may be required in order to gain a better

estimate of the performance.

6.4.4 Time Analysis

Table 6.8 shows a comparison between the expensive, surrogate and surrogate-PS model

in average runtime per GPU hour, in the second, third and fourth columns respectively.

We can see that there is a relatively high variance in the number of GPU hrs of the

surrogate and surrogate-PS models, but both approaches are significantly faster than the

expensive model. If we look at the percentage reduction compared to the expensive model

(last two columns), we can see that the percentage saves for the original surrogate model

ranges from 23.2 - 28.7% across the three datasets. However, if we look at the surrogate-

PS model, considering the significant overhead in evaluating individuals for this method

(150 individuals trained to 10 epochs), there was still a significant time saving ranging

from 11.8 - 16.6%. Based on the results of Chapter 6.4.2, where the surrogate-PS model

was found to perform the best for BreakHis ×40 and BreakHis ×200, there is a clear

advantage in considering the surrogate-PS model.

CHAPTER 6. NEUROLGP-MB 115

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Actual

P
re

di
ct

ed

(a) Sur ×40

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Actual

(b) Sur-PS ×40

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Actual

(c) Sur ×200

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Actual

(d) Sur-PS ×200

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Actual

(e) Sur Chest X-Ray

0.4

0.6

0.8

1.0

0.4 0.6 0.8 1.0
Actual

(f) Sur-PS Chest X-Ray

Figure 6.3: Predicted vs. actual accuracies (black points), for BreakHis ×40, ×200, and
Chest X-Ray datasets, shown in (a) – (f), respectively, across 4 independent runs for the
original surrogate-assisted approach and surrogate-PS). The red line denotes where the
accuracy for both predicted and actual are the same, where points closer to this line are
preferential.

CHAPTER 6. NEUROLGP-MB 116

GPU hours per run % Reduction

Dataset Exp (hrs) Sur (hrs) Sur-PS (hrs) Sur (%) Sur-PS (%)

BreakHis ×40 25.46 ± 0.05 19.55 ± 0.23 21.45 ± 0.24 ∼23.2 ∼15.8
BreakHis ×200 27.32 ± 0.02 20.42 ± 0.74 22.77 ± 0.30 ∼25.3 ∼16.6
Chest X-Ray 21.13 ± 0.02 14.86 ± 0.16 18.63 ± 0.13 ∼29.7 ∼11.8

Table 6.8: Average number of GPU hours per run for expensive, surrogate and surrogate-
PS models. The last two columns denote the reduction in time for surrogate and surrogate-
PS when compared against the expensive model.

6.4.5 Network Depth and Complexity

Fig. 6.4 shows the change in average number of layers of the elite population across

15 generations, for BreakHis ×40 and BreakHis ×200 datasets. The elite population

represents individuals that have been retained, as such, representing the best individuals

and allows us to analyse how the depth of networks vary across generations. The elite

population is 20% of the total population size for all datasets. Looking at Fig. 6.4, we can

see that in both datasets, surrogate-PS (red line) tends to generate individuals with the

largest number of layers, or greatest depth, followed by the expensive (blue line) and then

the surrogate (green line). These results show that as the accuracy in each generation

increases the depth of the networks found also increases.

Fig. 6.5 again shows the change in the average number of layers, focusing now on the

Chest X-Ray dataset. We can see that on average the number of layers is not changing

over time for the expensive, surrogate and surrogate-PS models. There may be a number

of contributing factors as to why the depth does not increase. There is a strong indication

from our previous analysis that random sampling, akin to the baseline model, is capable

of finding competitive networks, in other words, the fitness landscape of the Chest X-

Ray may be relatively uncomplicated where shallower networks perform well. Potentially,

initialising the networks with a larger depth may improve the search capability for Chest

X-Ray. Another possibility is to increase the maximum segment lengths during crossover

to see if larger segments will result in more growth.

Next, we perform an analysis of the topological complexity of the network. While the

number of parameters are often used to denote network complexity, in this analysis we

focus primarily on topological complexity. To this end, we define complexity based on

the layers that result in nodes (i.e., layers) of more than degree 2 (i.e., have more than

2 edges). In traditional NeuroLGP, all layers will have a single input and output and

as such will at most have degree 2. On the other hand, in NeuroLGP-MB if we have a

concatenation layer, then this will mean that we will have at least two nodes that have

degree three (two nodes as a result of the layer in which the branch occurs and the layer

in which the branch reconnects). While this does not give us an exact measure of the

CHAPTER 6. NEUROLGP-MB 117

0 2 4 6 8 10 12 14
Generation

6

8

10

12

14

16

Av
er

ag
e

of

 L
ay

er
s (

el
ite

)

BreakHis x40
Expensive
Surrogate
Surrogate-PS

0 2 4 6 8 10 12 14
Generation

6

8

10

12

14

16

Av
er

ag
e

of

 L
ay

er
s (

el
ite

)

BreakHis x200
Expensive
Surrogate
Surrogate-PS

Figure 6.4: Average number of layers for expensive, surrogate and surrogate-PS across 15
generation for BreakHis ×40 and BreakHis ×200 datasets

0 2 4 6 8 10 12 14
Generation

6

8

10

12

14

16

Av
er

ag
e

of

 L
ay

er
s (

el
ite

)

Chest X-Ray
Expensive
Surrogate
Surrogate-PS

Figure 6.5: Average number of layers for expensive, surrogate and surrogate-PS across 15
generations for Chest X-Ray dataset

width of the neural network, it does give us some indication of the overall topological

complexity.

As the concatenation layer is the contributing factor in determining network topologi-

cal complexity, we perform an analysis of their proportions relative to the elite population

members in the final generation specifically. Table 6.9 shows the proportions of concate-

nation layers. In each case, the initial proportions of concatenation layers were set at 0.1.

We find, that on average, there does not appear to be any specific relationship across

experiment types or between final depth with complexity. For instance, if we look at

BreakHis ×200 for the surrogate model we can see that the proportion is 0.3, or 1 in 33

layers. Given that the final generation on average has ∼10 layers (with 6 elite members

per run) then approximately 1 in every 3 elite members will have a concatenation layer

per run on average. Conversely, if we look at BreakHis ×200 for the surrogate-PS model

we can see that the proportion is 0.12, or approximately 1 in 8 layers. Given that the final

CHAPTER 6. NEUROLGP-MB 118

Concatenation Proportions

Dataset Expensive Surrogate Surrogate-PS

×40 0.06 0.07 0.04

×200 0.06 0.03 0.12

Chest X-ray 0.12 0.11 0.06

Table 6.9: Proportions of concatenation layer for elite population members in final gen-
eration for expensive, surrogate and surrogate-PS, for BreakHis ×40, BreakHis ×200 and
Chest X-Ray datasets. Proportion values are between 0 and 1.

generation on average has ∼12 layers (with 6 elite members per run) then approximately

each elite member will have ∼1.5 concatenation layers per run on average.

However, a deeper dive reveals that specific runs had a higher degree of concatenation

layers than others. This is understandable to some degree, as a model in a specific run

with no concatenation layers but which is the best-performing individual, is less likely to

produce offspring with a high number of concatenation layers and vice versa. In general,

this analysis would indicate that during evolution there is a particular focus on depth,

with a tendency to find deeper networks which are relatively less topologically complex.

Despite this, we find that some experiments were preferencing concatenation layers for

certain runs. Future work could look at promoting concatenation layers, as well as other

branching operations through mutation and crossover.

6.4.6 Varying Epoch Length

Table 6.10 shows the test2 accuracy for varying initial epoch numbers of surrogate training

for the BreakHis ×40 and BreakHis ×200. For instance, if we look at column 3 named

‘Epoch 1’ this refers to the performance of the surrogate model if the phenotypic vector is

obtained only after the first epoch. In the case of ‘epoch 3’ and ‘epoch 10’ the phenotypic

vector is retained after the third and tenth epoch respectively. All other parameters are

kept consistent such as the proportion of the population to inform the surrogate and in

each case, the full number of epochs is 30.

Focusing specifically on MSE, Kendalls’s Tau and R2 (first, second and third rows for

each dataset) we can see that in general epoch 10 has the better performance, i.e., MSE

closer to 0 and Kendalls’s Tau and R2 closer to 1. However, for epochs 1 and 3, MSE and

Kendall’s Tau vary as to which metrics are preferable. The R2 tends to have the most

dramatic drop when epoch size is decreased as seen on the third row for each dataset.

Interestingly, the decrease in epoch size does not necessarily correspond to a drop in

accuracy which can be seen on the fourth row for each dataset in Table 6.10. It is likely

that the higher level of uncertainty is helping to retain networks that have the potential to

be high-performing once evolved, however, more analysis would be required to determine

CHAPTER 6. NEUROLGP-MB 119

if this is the case. What is important to note though, is that lower epoch numbers, are

not generally better, for instance in the case of epoch 3 where BreakHis ×40 had the

lowest average accuracy of 0.888± 0.018, compared to epoch 1 and 10, 0.914± 0.020 and

0.904 ± 0.029, respectively. Knowing the exact number of epochs to train a surrogate

model a priori is one of the limitations of surrogate modelling and although the models

have a relatively high accuracy for lower epochs, in general, we can say that it is more

robust to ensure there is a high correlation between the predicted vs. actual accuracies

to ensure consistency.

Finally, we look at the percentage of time saved over the expensive model as seen on

the fifth row for each dataset in Table 6.10. We can see that training for 3 epochs saves

roughly ∼36% over the expensive model for both models, while training for just a single

epoch saves ∼41.5% for both models. This demonstrates that varying epoch numbers can

have a dramatic effect on time saved over expensive models. However, as mentioned this

comes at the expense of the robustness of the surrogate model.

Initial Epoch for Surrogate Training

Dataset Result Epoch 1 Epoch 3 Epoch 10

BreakHis ×40

MSE 0.0109 0.0049 0.0067
K. Tau 0.5724 0.5240 0.6536
R2 0.4467 0.5189 0.6239
Acc. 0.914 ± 0.020 0.888 ± 0.018 0.904 ± 0.029
Time ∼ 41.5% ∼ 36.9% ∼ 23.2%

BreakHis ×200

MSE 0.0128 0.0147 0.0017
K. Tau 0.6377 0.5709 0.6272
R2 0.1703 0.3065 0.9373
Acc. 0.907 ± 0.034 0.940 ± 0.012 0.919 ± 0.032
Time ∼ 41.5% ∼ 35.2% ∼ 25.3%

Table 6.10: Average test2 accuracies for different initial epoch numbers during surrogate
training, for the BreakHis ×40, BreakHis and ×200.

6.4.7 Discussion and Limitations

While a single run is the norm in terms of neuroevolution, again as was the case with

the experimentation in Chapter 5, we sought to perform as many runs as possible to add

validity to our analysis. In total, we amassed ∼20 GPU days across 4 runs for the various

experiments. It should be noted that while our experimentation relating to Chapter 5

and this chapter are computationally expensive for a modest budget, the number of

full evaluations for our DNN architectures is relatively low at 1800 evaluations for the

expensive model (450 per run) and 456 evaluations for the surrogate models (114 per

run), where other approaches report 1000s of GPU days or 10,000s of evaluations [80,85].

CHAPTER 6. NEUROLGP-MB 120

The predictive performance of the surrogate model is linked to how correlated the

phenotypic distance vector is with the classification accuracy after the initial number of

epochs. A limitation here is knowing the ideal epoch to initially train a priori is difficult,

however future work could investigate using correlation metrics between the predicted

versus the actual dataset during runtime. Furthermore, the predictive curve for each

network will change for different architectures, for instance, the Freeze-thaw Bayesian

Optimisation technique tackles this by allowing a start-stop mechanism for choosing which

networks to allow to run [112].

Recent developments have been made in analysing the topological complexity of neural

networks [203]. While neural network complexity is often defined in terms of the number

of parameters, analysing the graph structures of DNNs could grant researchers a more

holistic way of describing neural network architectures. In our work, we looked at the

proportion sizes of concatenation layers but in the future, we would like to study the

graph structures in more detail.

6.5 Summary

Multi-branch topologies for the neuroevolution of DNNs can be a challenging prospect for

distance-based surrogate models when considering the structure of the architecture alone.

In this work, we adapt our previous neuroevolution technique, referred to as the origi-

nal NeuroLGP approach, which strictly uses a chain-structured topology, so that it now

encodes a multi-branch topology. This new approach, named NeuroLGP multi-branch

(NeuroLGP-MB) has further been adapted with an update to the surrogate-assisted ap-

proach such that it used a pre-selection method to better initialise the surrogate model.

We tested our new approach on BreakHis ×40, BreakHis ×200 and Chest X-Ray

dataset, using four models: a baseline, expensive, surrogate and the new surrogate-PS

model. We found that the new pre-selection variant produced the best networks on

average for BreakHis ×40 and BreakHis ×200. Interestingly, the Chest X-Ray dataset

produced results that were similar across all models. We found that in general, the new

surrogate-PS was also robust like the original surrogate approach, while also maintaining

a time advantage over the expensive model with an 11.8 - 16.6% time reduction compared

to the expensive model. An analysis of the depth and topological complexity revealed the

preference for deeper networks that are not overly topologically complex. Furthermore,

our analysis of varying initial epoch numbers to inform the surrogate model revealed that

if we relax the robustness of our model management strategy we can improve the time

saving from∼25% to∼41.5% for the BreakHis datasets, while still finding high-performing

individuals.

7
Conclusions

In this thesis, we have developed a semantic-based surrogate-assisted neuroevolution ap-

proach for evolving DNN architectures. Neuroevolution is an incredibly computationally

expensive process, where thousands of network evaluations are often required, taking

many GPU days and weeks to complete. Surrogate-Assisted Evolutionary Algorithms

(SAEAs) are a viable and effective way of considerably reducing this cost. In particular,

we have focused on a semantic-based approach which has many properties that make it

suitable for the task of surrogate modelling. For example, since semantics is based on the

behaviour of the neural network architecture rather than its structure and since it also

produces fixed-size vectors, it allows us to naturally compare architectures of different

topologies rather than using encodings of the network architecture. Throughout this the-

sis, we have provided an in-depth analysis of the robustness of our surrogate modelling

technique while also detailing its ability to effectively estimate the fitness of DNN archi-

tectures. In this chapter, we will focus on summarising the original contributions of this

thesis, offer conclusions on the use of SAEAs in neuroevolution for NAS in DNNs, and

discuss the limitations and future work.

7.1 Original Contributions of this Thesis

In this thesis, we developed a method to incorporate semantics into a SAEA in neuroevo-

lution for neural architecture search (NAS). To achieve this we have:

• Demonstrated the robustness of considering semantic-based distance metrics for

promoting diversity in GP, using multiple MO frameworks as a test case. This work

ultimately served as a foundation for considering semantics in surrogate modelling.

• Pointed out how traditional surrogate-based optimisation, such as Kriging, is unsuit-

able in neuroevolution for NAS in DNNs due to the high-dimensional data required

for this task.

121

CHAPTER 7. CONCLUSIONS 122

Figure 7.1: Comparison of the original NeuroLGP architecture (left, detailed in Chapter 5)
and NeuroLGP-MB architecture (right, detailed in Chapter 6).

• Incorporated more ad-hoc surrogate-based optimisation techniques that graciously

manage high-dimensional data. Specifically, we incorporated Kriging Partial Least

Squares (KPLS) [31] in surrogate-assisted neuroevolution for NAS in DNNs.

• Using a suitable approach, named Neuro-Linear Genetic Programming (NeuroLGP)

that allows us to achieve two important aspects: (i) a representation that allows us

to carry out some analysis such as the evolution of building blocks in DNNs, and (ii)

the use of semantics (or behaviour of programs as referred in genetic programming).

To the best of our knowledge, this is the first time LGP has been used to evolve

neural network architectures.

• Introduced NeuroLGP Multi-Branch (NeuroLGP-MB) that scaled the topological

complexity of the original NeuroLGP approach, to be in line with more modern

architectures, by encoding multi-branch and skip connections into the genotype.

Fig. 7.1 shows fragments of the types of architectures capable of being produced by

the original NeuroLGP left) and NeuroLGP-MB (right).

• We used three metrics to analyse the robustness of our surrogate model along with

a visual analysis of performance, detailing the high correlation between surrogate

estimated individuals and their corresponding true fitness.

• We demonstrated a significant time and energy reduction of the surrogate model over

an expensive model that required all networks to be fully evaluated. Furthermore,

we demonstrated that when using a pre-selection method for the surrogate model,

CHAPTER 7. CONCLUSIONS 123

we not only maintained a competitive time reduction but increased the average

accuracy over the expensive model.

• We demonstrated that the method is competitive with state-of-the-art hand-crafted

architectures when tested on a number of different diagnostic image datasets.

7.2 Conclusions on the use of SAEAs in Neuroevolution for NAS

in DNNs

In this work, we focus specifically on Kriging, which is one of the most popular and

widely used SAEAs and relies on spatial interpolation to estimate the unsampled regions

of the search space. However, there are considerable caveats to using traditional Kriging

for neuroevolution: (i) Kriging is known to struggle with high-dimensional data due to

the intense computational cost arising from the numerous matrix inversions that are

required to adequately estimate parameters. (ii) Kriging requires fixed-size vectors for

comparison. If using genotypic information then this can be problematic as some encoding

of the network architecture is required. For instance, metrics such as graph-edit distance

can be used but are inefficient for large graphs [24, 195]. (iii) Surrogate models require

robust model management strategies to ensure that, not only is the training data for the

surrogate model adequately correlated with the real data, but also that there are enough

training samples to inform the surrogate model.

In this thesis, we have made an attempt to overcome some of these issues. Specifically,

we have done the following:

• To begin with, we started our research by using NeuroLGP. This approach, fully

detailed in Chapter 5, allows us to codify the building blocks of a deep neural

network. It also allowed us to incorporate semantics, in the same manner as adopted

by the genetic programming community when dealing with indirect semantics. This

is particularly important because the semantics of individuals representing DNNs are

used for the KPLS, which is suitable for high-dimensional data necessary to deal with

truly large DNNs. We have discovered that semantic outputs are suitable for KPLS,

allowing for an accurate estimate of the performance of our DNNs architectures. We

concluded that incorporating semantics into neuroevolution for NAS in SAEAs is

feasible by leveraging relatively large vector-stored semantic information, similar to

how indirect semantics are used in genetic programming.

• Owing to the use of semantics, we used a fixed-size vector representation based on

phenotypic information. This, in turn, allows us to naturally compare architectures

which are variable-length in nature and which have graph-based topologies, without

CHAPTER 7. CONCLUSIONS 124

the need for specialised encoding, as discussed in Chapters 5 and 6, respectively.

This representation enables its application to state-of-the-art surrogate models while

searching for truly deep and modern neural network architectures.

• As already mentioned, we performed an in-depth analysis of the surrogate model

robustness using three metrics, but further to that, we analysed the effect of chang-

ing the initial epoch number, which controls when our semantic information is used

to inform the surrogate model. Interestingly, we found that reducing epoch num-

bers led to a substantial reduction in time, while still maintaining high-performing

individuals, though this came at the expense of the robustness of the model. We

can conclude that while balancing robustness and time saved in our model is a key

consideration, our approach is nevertheless able to find high-performing individuals

in many settings.

• Additionally, our surrogate approach requires a relatively low number of full evalu-

ations. Often thousands of evaluations are required to find high-performing archi-

tectures with neuroevolution. This is an important consideration as it can further

help reduce the cost of performing neuroevolution for NAS.

7.3 Limitations and Future Work

• It has been noted that other NAS approaches often will perform analysis using a

single run [37], which in turn can lead to issues in terms of reproducability [85].

This limitation is a result of the inherent computational cost of NAS as a whole,

for example, across Chapters 5 and 6 we amassed over ∼100 GPU days for our

experimentation alone, not counting the significant development and testing time

that was required to ensure the validity of our approach. Despite this, we strove

to perform as many runs as possible under a modest budget and offered a limited

statistical analysis in Chapter 5.5.3.

• Future work will look at scaling dataset size to benchmark problems like CIFAR-

10 [83] and ImageNet [84], where there are 10,000s of data instances and have a

larger number of classes. A challenge remains with considering phenotypic distance

vector sizes as the size increases linearly relative to the number of classes, so this

would need to be taken into consideration.

While it would be beneficial to do a comparison with other NAS approaches, given

the expensive nature of the experimentation, this was outside the scope of this

thesis. Regardless, the surrogate model management strategy should be applicable

CHAPTER 7. CONCLUSIONS 125

to other NAS approaches and future research could investigate its potential benefits

in this context.

• The approach outlined in this thesis focused mainly on CNN architectures, however,

the surrogate model management strategy is applicable to other types of DNN archi-

tectures as long the output vector size remains fixed, for example, AutoEncoder [49]

or Transformer [70] architectures could be investigated in the future. Furthermore,

other aspects of the architecture could be explored in terms of their behavioural

output, for instance, architectures that use embedding spaces.

• As discussed in Chapter 5, there are aspects of LGP that were not fully explored

within this thesis but could offer future insight. For instance, the LGP genome

contains both effective and non-effective portions of code within the genome. This

would be interesting to study from the perspective of neutrality, an area which has

yet to be explored in neuroevolution [37,127]. Additionally, LGP allows for control

branches, which could allow for more complex design rules to be incorporated, which

may be beneficial for exploring Mixture-of-Experts based architectures that use

conditional computation [192].

• To date, surrogate-assisted neuroevolution has mainly focused on single-objective

optimisation. Future work could consider MO optimisation. It would be interesting

to explore how our proposed approaches behave under both Pareto dominance-

based approaches such as NSGA-II and the like as well as decomposition-based

methods such as MOEA/D. It is also possible to consider MO within the surrogate

framework, such as using MO for in-fill sampling using uncertainty and fitness as

objectives [119].

• By demonstrating the effectiveness of semantic-based surrogate-assisted neuroevolu-

tion of DNNs, we could now consider using semantics with the NeuroLGP approach

in other ways, for example, in promoting diversity, which has yielded better results

in GP compared to when it is absent during evolutionary search.

A
Appendix A

A.1 Additional Tables Relating to Chapter 4

Tables A.2 and A.3 report, for each problem defined in Table 4.2 both, the average

hypervolume over 50 runs and also the hypervolume of the accumulated PO front with

respect to all 50 runs. To obtain a statistically sound conclusion, a series of Wilcoxon

rank-sum tests were run on the average hypervolume results. To account for the problem

of multiple comparisons that arose from testing the canonical method 16 times for each

data set, a Bonferroni correction α
m = 3.125 × 10−3 was used where α = 0.05. These

statistically significant differences are highlighted in boldface in Table A.2 (this shown in

the appendix). Moreover, in this table, the symbols “+” and “–”, indicate that the results

of a given semantic-based approach are significantly better or worse, respectively, than

those found by the canonical NSGA-II (Table A.1), all the above based on the Wilcoxon

rank-sum test. For ease of comparison, Table A.1 has been reproduced in the appendix

but was originally included in Chapter 4.3.1.

A.2 Additional Comparison of Pay-off Tables for Chapter 4

In Chapter 4.3.1 we provide a detailed comparison against the canonical approaches of

NSGA-II and SPEA-II compared against the three semantics approaches, SDO, PSDO

and SSC (shown in Tables 4.7 and 4.8). We have included here an additional comparison

between the semantic approaches.

If we consider just SDO vs. PSDO, results tend to be mixed. NSGA-II PSDO pro-

duced more wins for certain data sets like Yeast2 and Abal2 when compared with NSGA-II

SDO but under-performed for Spect and Abal1. Typically when NSGA-II PSDO out-

performed against NSGA-II SDO, it was for a specific LBSS or UBSS setting. For in-

stance, three of the wins associated with Spect were a result of keeping UBSS constant at

1.0 with LBSS values of (0.001, 0.01, 0.1). NSGA-II PSDO performed significantly worse

most often when LBSS was undefined except for Abal1 where the results were reversed,

126

Table A.1: Average hypervolume (± std. deviation) and last run Pareto Front for NSGA-
II and SPEA2 for 50 independent runs.

Dataset
NSGA-II SPEA2

Hypervolume Hypervolume
Average PO Front Average PO Front

Ion 0.766 ± 0.114 0.938 0.786 ± 0.094 0.948
Spect 0.534 ± 0.024 0.647 0.544 ± 0.032 0.659
Yeast1 0.838 ± 0.011 0.876 0.838 ± 0.008 0.877
Yeast2 0.950 ± 0.009 0.976 0.946 ± 0.015 0.978
Abal1 0.847 ± 0.058 0.961 0.832 ± 0.078 0.960
Abal2 0.576 ± 0.122 0.842 0.544 ± 0.147 0.834

i.e when LBSS was undefined PSDO performed as good or significantly better but was

significantly worse for 10 of the other LBSS settings.

We now turn our attention to SPEA2 and its variants. When considering Table 4.8,

there was little or no significant difference when comparing SPEA2 SDO and SPEA2

PSDO strategies with only SPEA2 SDO vs. SPEA2 PSDO in Yeast1 producing 1 ‘Win’.

From this we can conclude that both methods, SDO and PSDO, that treat semantic

distance as an additional criterion to be optimised perform similar and yield consistently

better results to SSC. This latter method is based on the notion of single-objective GP

adapted to MOGP, showing that the benefits observed in SOGP are depleted in MOGP.

A.3 Additional Images Relating to Chapter 4

This appendix contains additional images for relating to Chapter 4, which covers Semantic

Neighbourhood Ordering in MOEA/D. For ease of readability canonical images have been

arranged on the left-hand side and semantic ordering images have been on the right-hand

side.

APPENDIX A. APPENDIX A 128

Table A.2: Average hypervolume (± std. deviation) and last run Pareto Front for NSGA-
II SDO, NSGA-II PSDO and NSGA-II SSC methods.

Hypervolume
Average PO Front
UBSS UBSS

LBSS 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

NSGA-II SDO

Ion

– 0.860 ± 0.033+ 0.869 ± 0.037+ 0.869 ± 0.033+ 0.845 ± 0.057+ 0.948 0.958 0.962 0.950
0.001 0.817 ± 0.087+ 0.819 ± 0.104+ 0.857 ± 0.057+ 0.861 ± 0.047+ 0.942 0.957 0.954 0.958
0.01 0.825 ± 0.084+ 0.843 ± 0.073+ 0.861 ± 0.045+ 0.861 ± 0.038+ 0.946 0.956 0.957 0.944
0.1 0.846 ± 0.070+ 0.848 ± 0.068+ 0.844 ± 0.075+ 0.864 ± 0.044+ 0.950 0.956 0.953 0.960

Spect

– 0.591 ± 0.027+ 0.593 ± 0.025+ 0.594 ± 0.023+ 0.600 ± 0.019+ 0.684 0.679 0.689 0.694
0.001 0.562 ± 0.021+ 0.558 ± 0.025+ 0.561 ± 0.019+ 0.560 ± 0.016+ 0.668 0.653 0.660 0.644
0.01 0.564 ± 0.025+ 0.560 ± 0.023+ 0.566 ± 0.024+ 0.559 ± 0.016+ 0.672 0.650 0.669 0.643
0.1 0.563 ± 0.022+ 0.563 ± 0.024+ 0.567 ± 0.018+ 0.561 ± 0.024+ 0.664 0.658 0.655 0.658

Yeast1

– 0.850 ± 0.006+ 0.849 ± 0.008+ 0.849 ± 0.006+ 0.849 ± 0.006+ 0.881 0.881 0.882 0.881
0.001 0.845 ± 0.007+ 0.847 ± 0.006+ 0.848 ± 0.004+ 0.848 ± 0.005+ 0.879 0.882 0.879 0.880
0.01 0.848 ± 0.006+ 0.849 ± 0.005+ 0.848 ± 0.005+ 0.850 ± 0.005+ 0.881 0.881 0.879 0.881
0.1 0.847 ± 0.005+ 0.848 ± 0.005+ 0.848 ± 0.005+ 0.850 ± 0.005+ 0.878 0.879 0.879 0.883

Yeast2

– 0.961 ± 0.007+ 0.961 ± 0.007+ 0.960 ± 0.008+ 0.962 ± 0.007+ 0.978 0.979 0.979 0.979
0.001 0.959 ± 0.008+ 0.958 ± 0.007+ 0.961 ± 0.006+ 0.961 ± 0.006+ 0.981 0.978 0.979 0.978
0.01 0.955 ± 0.009+ 0.959 ± 0.007+ 0.960 ± 0.009+ 0.961 ± 0.007+ 0.979 0.980 0.979 0.978
0.1 0.958 ± 0.009+ 0.960 ± 0.007+ 0.961 ± 0.007+ 0.962 ± 0.006+ 0.978 0.978 0.981 0.979

Abal1

– 0.849 ± 0.081 0.862 ± 0.087 0.847 ± 0.089 0.849 ± 0.085 0.964 0.970 0.966 0.967
0.001 0.892 ± 0.051+ 0.905 ± 0.036+ 0.907 ± 0.036+ 0.906 ± 0.034+ 0.970 0.968 0.969 0.971
0.01 0.908 ± 0.038+ 0.900 ± 0.056+ 0.919 ± 0.022+ 0.919 ± 0.026+ 0.969 0.973 0.970 0.972
0.1 0.910 ± 0.037+ 0.911 ± 0.046+ 0.912 ± 0.049+ 0.916 ± 0.031+ 0.970 0.972 0.969 0.970

Abal2

– 0.591 ± 0.102 0.623 ± 0.138 0.634 ± 0.115 0.617 ± 0.137 0.862 0.878 0.881 0.873
0.001 0.729 ± 0.070+ 0.722 ± 0.063+ 0.709 ± 0.080+ 0.735 ± 0.074+ 0.877 0.870 0.879 0.885
0.01 0.721 ± 0.067+ 0.725 ± 0.075+ 0.721 ± 0.074+ 0.723 ± 0.066+ 0.881 0.879 0.884 0.880
0.1 0.724 ± 0.076+ 0.739 ± 0.065+ 0.736 ± 0.063+ 0.756 ± 0.065+ 0.888 0.883 0.886 0.890

Better (+) / Worse (-) 22 / 0 22 / 0 22 / 0 22 / 0
Same (=) / NSS 0 / 2 0 / 2 0 / 2 0 / 2

NSGA-II PSDO

Ion

– 0.794 ± 0.100 0.811 ± 0.084 + 0.823 ± 0.091 0.795 ± 0.105 0.904 0.932 0.945 0.939
0.001 0.867 ± 0.035+ 0.874 ± 0.029+ 0.880 ± 0.036+ 0.873 ± 0.045+ 0.959 0.952 0.965 0.945
0.01 0.852 ± 0.050+ 0.867 ± 0.051+ 0.880 ± 0.031+ 0.867 ± 0.050+ 0.947 0.950 0.944 0.949
0.1 0.853 ± 0.062+ 0.869 ± 0.048+ 0.875 ± 0.051+ 0.872 ± 0.049+ 0.941 0.951 0.956 0.938

Spect

– 0.552 ± 0.020+ 0.546 ± 0.022+ 0.555 ± 0.022+ 0.554 ± 0.017+ 0.648 0.665 0.638 0.640
0.001 0.550 ± 0.026+ 0.562 ± 0.025+ 0.561 ± 0.025+ 0.592 ± 0.026+ 0.661 0.670 0.658 0.706
0.01 0.550 ± 0.025+ 0.563 ± 0.026+ 0.558 ± 0.025+ 0.583 ± 0.020+ 0.649 0.675 0.667 0.669
0.1 0.551 ± 0.023+ 0.560 ± 0.024+ 0.557 ± 0.025+ 0.593 ± 0.020+ 0.666 0.664 0.678 0.682

Yeast1

– 0.846 ± 0.006+ 0.846 ± 0.005+ 0.847 ± 0.005+ 0.848 ± 0.006+ 0.864 0.868 0.871 0.869
0.001 0.849 ± 0.006+ 0.848 ± 0.005+ 0.850 ± 0.007+ 0.850 ± 0.005+ 0.873 0.868 0.871 0.869
0.01 0.850 ± 0.005+ 0.849 ± 0.007+ 0.850 ± 0.006+ 0.851 ± 0.006+ 0.870 0.874 0.872 0.872
0.1 0.850 ± 0.006+ 0.850 ± 0.005+ 0.850 ± 0.005+ 0.851 ± 0.006+ 0.876 0.873 0.872 0.870

Yeast2

– 0.957 ± 0.007+ 0.959 ± 0.007+ 0.957 ± 0.009+ 0.959 ± 0.007+ 0.973 0.978 0.976 0.978
0.001 0.960 ± 0.010+ 0.962 ± 0.005+ 0.964 ± 0.005+ 0.962 ± 0.008+ 0.976 0.976 0.978 0.977
0.01 0.962 ± 0.006+ 0.962 ± 0.006+ 0.962 ± 0.005+ 0.962 ± 0.006+ 0.977 0.975 0.974 0.975
0.1 0.964 ± 0.006+ 0.960 ± 0.010+ 0.963 ± 0.005+ 0.961 ± 0.007+ 0.976 0.976 0.977 0.975

Abal1

– 0.890 ± 0.051+ 0.881 ± 0.070+ 0.885 ± 0.046+ 0.884 ± 0.058+ 0.959 0.966 0.961 0.952
0.001 0.861 ± 0.079 0.848 ± 0.073 0.877 ± 0.078+ 0.864 ± 0.075 0.962 0.957 0.962 0.959
0.01 0.864 ± 0.067 0.858 ± 0.076 0.865 ± 0.070 0.873 ± 0.066 0.967 0.959 0.962 0.962
0.1 0.858 ± 0.082 0.887 ± 0.061+ 0.864 ± 0.074 0.860 ± 0.075 0.963 0.968 0.962 0.955

Abal2

– 0.704 ± 0.083+ 0.699 ± 0.072+ 0.706 ± 0.069+ 0.711 ± 0.076+ 0.826 0.859 0.874 0.858
0.001 0.725 ± 0.070+ 0.743 ± 0.079+ 0.745 ± 0.060+ 0.733 ± 0.075+ 0.859 0.871 0.854 0.877
0.01 0.741 ± 0.086+ 0.735 ± 0.074+ 0.724 ± 0.070+ 0.728 ± 0.069+ 0.873 0.867 0.870 0.873
0.1 0.743 ± 0.061+ 0.723 ± 0.073+ 0.719 ± 0.088+ 0.722 ± 0.063+ 0.877 0.847 0.846 0.851

Better (+) / Worse (-) 20 / 0 22/ 0 21 / 0 20 / 0
Same (=) / NSS 0 / 4 0 / 2 0 / 3 0 / 4

NSGA-II SSC

Ion

– 0.761 ± 0.108 0.749 ± 0.161 0.763 ± 0.152 0.744 ± 0.137 0.941 0.937 0.951 0.949
0.001 0.765 ± 0.134 0.753 ± 0.124 0.699 ± 0.188 0.803 ± 0.103 0.954 0.935 0.928 0.946
0.01 0.760 ± 0.125 0.751 ± 0.123 0.710 ± 0.161 0.802 ± 0.104 0.947 0.929 0.928 0.947
0.1 0.775 ± 0.095 0.738 ± 0.184 0.746 ± 0.141 0.778 ± 0.099 0.957 0.951 0.945 0.936

Spect

– 0.525 ± 0.025 0.532 ± 0.029 0.537 ± 0.020 0.535 ± 0.029 0.633 0.634 0.634 0.634
0.001 0.530 ± 0.029 0.539 ± 0.030 0.542 ± 0.023 0.540 ± 0.025 0.651 0.635 0.638 0.654
0.01 0.535 ± 0.029 0.537 ± 0.027 0.541 ± 0.027 0.540 ± 0.028 0.655 0.633 0.658 0.651
0.1 0.532 ± 0.029 0.531 ± 0.026 0.534 ± 0.027 0.533 ± 0.022 0.632 0.641 0.635 0.635

Yeast1

– 0.819 ± 0.041 0.829 ± 0.023 0.835 ± 0.014 0.834 ± 0.017 0.874 0.875 0.878 0.878
0.001 0.825 ± 0.031 0.834 ± 0.029 0.834 ± 0.019 0.826 ± 0.039 0.877 0.877 0.877 0.877
0.01 0.827 ± 0.027 0.835 ± 0.016 0.836 ± 0.019 0.830 ± 0.030 0.874 0.877 0.877 0.879
0.1 0.831 ± 0.027 0.828 ± 0.034 0.831 ± 0.028 0.835 ± 0.014 0.879 0.876 0.876 0.875

Yeast2

– 0.950 ± 0.013 0.948 ± 0.010 0.945 ± 0.032 0.947 ± 0.009 0.978 0.977 0.978 0.977
0.001 0.946 ± 0.013 0.944 ± 0.028 0.947 ± 0.013 0.950 ± 0.011 0.976 0.976 0.977 0.979
0.01 0.947 ± 0.014 0.944 ± 0.024 0.946 ± 0.015 0.949 ± 0.012 0.978 0.978 0.978 0.978
0.1 0.948 ± 0.014 0.948 ± 0.012 0.946 ± 0.009 0.947 ± 0.016 0.978 0.978 0.977 0.977

Abal1

– 0.844 ± 0.084 0.839 ± 0.083 0.834 ± 0.070 0.824 ± 0.099 0.963 0.967 0.962 0.962
0.001 0.851 ± 0.062 0.812 ± 0.086 0.845 ± 0.077 0.844 ± 0.079 0.964 0.961 0.959 0.967
0.01 0.850 ± 0.076 0.833 ± 0.091 0.829 ± 0.096 0.836 ± 0.090 0.972 0.957 0.959 0.963
0.1 0.869 ± 0.064 0.838 ± 0.083 0.844 ± 0.075 0.834 ± 0.084 0.963 0.965 0.965 0.962

Abal2

– 0.521 ± 0.121 0.532 ± 0.103 0.529 ± 0.128 0.511 ± 0.118- 0.810 0.802 0.841 0.801
0.001 0.561 ± 0.082 0.534 ± 0.102 0.542 ± 0.104 0.502 ± 0.161 0.823 0.865 0.829 0.820
0.01 0.494 ± 0.147 0.536 ± 0.114 0.533 ± 0.134 0.547 ± 0.123 0.844 0.826 0.841 0.850
0.1 0.513 ± 0.132- 0.549 ± 0.120 0.514 ± 0.112 0.532 ± 0.131 0.806 0.820 0.785 0.831

Better (+) / Worse (-) 0 / 1 0 / 0 0 / 0 0 / 1
Same (=) / NSS 0 / 23 0/ 24 1 / 23 0 / 23

APPENDIX A. APPENDIX A 129

Table A.3: Average hypervolume (± std. deviation) and last run Pareto Front for SPEA2
SDO, SPEA2 PSDO and SPEA2 SSC methods.

Hypervolume
Average PO Front
UBSS UBSS

LBSS 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0

SPEA2 SDO

Ion

– 0.859 ± 0.031+ 0.869 ± 0.029+ 0.862 ± 0.034+ 0.865 ± 0.047+ 0.951 0.952 0.950 0.961
0.001 0.858 ± 0.041+ 0.852 ± 0.075+ 0.870 ± 0.055+ 0.874 ± 0.055+ 0.946- 0.955 0.952 0.956
0.01 0.837 ± 0.097+ 0.851 ± 0.077+ 0.875 ± 0.032+ 0.863 ± 0.049+ 0.956 0.951 0.953 0.959
0.1 0.852 ± 0.071+ 0.856 ± 0.053+ 0.873 ± 0.035+ 0.862 ± 0.038+ 0.947 0.949 0.952 0.950

Spect

– 0.591 ± 0.020+ 0.599 ± 0.021+ 0.597 ± 0.018+ 0.595 ± 0.022+ 0.678 0.688 0.686 0.695
0.001 0.569 ± 0.021+ 0.565 ± 0.024+ 0.566 ± 0.023+ 0.563 ± 0.023+ 0.668 0.666 0.672 0.658
0.01 0.568 ± 0.023+ 0.567 ± 0.024+ 0.564 ± 0.025+ 0.563 ± 0.023+ 0.666 0.674 0.664 0.658
0.1 0.566 ± 0.023+ 0.560 ± 0.020 0.567 ± 0.027+ 0.561 ± 0.022 0.666 0.654 0.673 0.658

Yeast1

– 0.850 ± 0.007+ 0.850 ± 0.006+ 0.849 ± 0.008+ 0.849 ± 0.004+ 0.882 0.881 0.881 0.881
0.001 0.848 ± 0.006+ 0.847 ± 0.007+ 0.848 ± 0.004+ 0.850 ± 0.006+ 0.880 0.883 0.880 0.883
0.01 0.848 ± 0.006+ 0.847 ± 0.006+ 0.850 ± 0.005+ 0.850 ± 0.005+ 0.881 0.880 0.882 0.879
0.1 0.847 ± 0.005+ 0.849 ± 0.006+ 0.848 ± 0.005+ 0.849 ± 0.006+ 0.879 0.882 0.880 0.882

Yeast2

– 0.962 ± 0.007+ 0.962 ± 0.006+ 0.962 ± 0.006+ 0.963 ± 0.008+ 0.979 0.979 0.979 0.977
0.001 0.958 ± 0.008+ 0.960 ± 0.007+ 0.960 ± 0.005+ 0.960 ± 0.005+ 0.980 0.979 0.979 0.977
0.01 0.959 ± 0.008+ 0.961 ± 0.007+ 0.961 ± 0.005+ 0.962 ± 0.007+ 0.979 0.980 0.978 0.978
0.1 0.961 ± 0.007+ 0.961 ± 0.007+ 0.960 ± 0.007+ 0.964 ± 0.007+ 0.980 0.979 0.979 0.980

Abal1

– 0.875 ± 0.059+ 0.868 ± 0.081+ 0.875 ± 0.059+ 0.873 ± 0.069+ 0.965 0.974 0.968 0.972
0.001 0.895 ± 0.061+ 0.911 ± 0.031+ 0.905 ± 0.044+ 0.903 ± 0.036+ 0.974 0.973 0.972 0.972
0.01 0.903 ± 0.038+ 0.906 ± 0.042+ 0.901 ± 0.048+ 0.910 ± 0.039+ 0.966 0.969 0.972 0.974
0.1 0.888 ± 0.067+ 0.918 ± 0.032+ 0.910 ± 0.046+ 0.916 ± 0.027+ 0.974 0.970 0.968 0.967

Abal2

– 0.620 ± 0.148 0.633 ± 0.124+ 0.651 ± 0.146+ 0.630 ± 0.138 0.874 0.861 0.879 0.876
0.001 0.717 ± 0.069+ 0.709 ± 0.079+ 0.722 ± 0.083+ 0.733 ± 0.075+ 0.868 0.883 0.886 0.891
0.01 0.706 ± 0.084+ 0.720 ± 0.067+ 0.726 ± 0.067+ 0.747 ± 0.070+ 0.884 0.880 0.877 0.887
0.1 0.732 ± 0.064+ 0.733 ± 0.066+ 0.749 ± 0.063+ 0.737 ± 0.081+ 0.880 0.876 0.883 0.877

Better (+) / Worse (-) 23 / 0 23 / 0 24 / 0 22 / 0
Eq. (≡) / NSS 0 / 1 0/ 1 0 / 0 0 / 2

SPEA2 PSDO

Ion

– 0.864 ± 0.038+ 0.861 ± 0.032+ 0.865 ± 0.031+ 0.868 ± 0.034+ 0.926 0.932 0.921 0.922
0.001 0.852 ± 0.076+ 0.857 ± 0.055+ 0.872 ± 0.033+ 0.869 ± 0.036+ 0.872 0.895 0.846 0.893
0.01 0.880 ± 0.036+ 0.864 ± 0.041+ 0.857 ± 0.068+ 0.871 ± 0.036+ 0.955 0.922 0.944 0.905
0.1 0.856 ± 0.056+ 0.874 ± 0.034+ 0.866 ± 0.03+ 0.874 ± 0.034+ 0.931 0.921 0.830 0.900

Spect

– 0.595 ± 0.028+ 0.599 ± 0.020+ 0.595 ± 0.020+ 0.602 ± 0.025+ 0.669 0.670 0.664 0.657
0.001 0.563 ± 0.028+ 0.568 ± 0.020+ 0.570 ± 0.022+ 0.565 ± 0.021+ 0.670 0.621 0.623 0.607
0.01 0.569 ± 0.027+ 0.565 ± 0.021+ 0.566 ± 0.023+ 0.562 ± 0.022+ 0.628 0.620 0.599 0.610
0.1 0.567 ± 0.025+ 0.563 ± 0.022+ 0.564 ± 0.022+ 0.562 ± 0.022+ 0.632 0.633 0.606 0.620

Yeast1 – 0.849 ± 0.006+ 0.849 ± 0.005+ 0.850 ± 0.006+ 0.849 ± 0.006+ 0.874 0.875 0.867 0.872
0.001 0.847 ± 0.005+ 0.847 ± 0.007+ 0.848 ± 0.006+ 0.847 ± 0.005+ 0.867 0.868 0.865 0.865
0.01 0.847 ± 0.005+ 0.848 ± 0.006+ 0.849 ± 0.006+ 0.849 ± 0.006+ 0.865 0.864 0.864 0.865
0.1 0.848 ± 0.006+ 0.849 ± 0.006+ 0.849 ± 0.007+ 0.849 ± 0.006+ 0.863 0.866 0.867 0.871

Yeast2

– 0.961 ± 0.008+ 0.951 ± 0.007+ 0.962 ± 0.008+ 0.963 ± 0.007+ 0.979 0.977 0.978 0.975
0.001 0.956 ± 0.010+ 0.959 ± 0.005+ 0.958 ± 0.005+ 0.960 ± 0.008+ 0.977 0.975 0.977 0.975
0.01 0.959 ± 0.006+ 0.960 ± 0.006+ 0.960 ± 0.005+ 0.963 ± 0.006+ 0.973 0.976 0.973 0.976
0.1 0.960 ± 0.006+ 0.958 ± 0.010+ 0.963 ± 0.005+ 0.964 ± 0.007+ 0.975 0.972 0.975 0.974

Abal1

– 0.858 ± 0.067 0.840 ± 0.097 0.855 ± 0.082 0.869 ± 0.073+ 0.962 0.954 0.962 0.958
0.001 0.888 ± 0.048+ 0.890 ± 0.059+ 0.902 ± 0.045+ 0.905 ± 0.037+ 0.964 0.958 0.958 0.965
0.01 0.893 ± 0.049+ 0.908 ± 0.043+ 0.913 ± 0.046+ 0.917 ± 0.026+ 0.957 0.959 0.967 0.949
0.1 0.912 ± 0.031+ 0.904 ± 0.053+ 0.916 ± 0.033+ 0.919 ± 0.027+ 0.953 0.963 0.962 0.958

Abal2

– 0.655 ± 0.104+ 0.621 ± 0.121+ 0.662 ± 0.107+ 0.647 ± 0.117+ 0.863 0.864 0.866 0.862
0.001 0.720 ± 0.061+ 0.717 ± 0.066 0.715 ± 0.067+ 0.726 ± 0.059+ 0.861 0.818 0.840 0.850
0.01 0.698 ± 0.080+ 0.716 ± 0.070+ 0.723 ± 0.077+ 0.728 ± 0.091+ 0.862 0.869 0.837 0.839
0.1 0.727 ± 0.064+ 0.723 ± 0.063+ 0.752 ± 0.061+ 0.741 ± 0.086+ 0.834 0.791 0.834 0.837

Better (+) / Worse (-) 23 / 0 23 / 0 23 / 0 24 / 0
Same (=) / NSS 0 / 1 0 / 1 0 / 1 0 / 0

SPEA2 SSC

Ion

– 0.724 ± 0.157 0.767 ± 0.081 0.743 ± 0.120 0.764 ± 0.100 0.935 0.924 0.939 0.939
0.001 0.747 ± 0.173 0.767 ± 0.121 0.755 ± 0.155 0.790 ± 0.101 0.951 0.936 0.934 0.947
0.01 0.741 ± 0.172 0.765 ± 0.117 0.757 ± 0.147 0.790 ± 0.101 0.955 0.942 0.940 0.947
0.1 0.787 ± 0.106 0.782 ± 0.108 0.778 ± 0.124 0.787 ± 0.119 0.939 0.942 0.956 0.961

Spect

– 0.521 ± 0.045 0.536 ± 0.021 0.543 ± 0.028 0.533 ± 0.027 0.639 0.648 0.657 0.650
0.001 0.533 ± 0.028 0.536 ± 0.022 0.530 ± 0.035 0.536 ± 0.021 0.644 0.659 0.634 0.634
0.01 0.530 ± 0.027 0.534 ± 0.029 0.535 ± 0.023 0.538 ± 0.028 0.648 0.644 0.636 0.660
0.1 0.537 ± 0.021 0.542 ± 0.025 0.536 ± 0.034 0.533 ± 0.028 0.640 0.650 0.641 0.645

Yeast1

– 0.824 ± 0.030 0.824 ± 0.042 0.831 ± 0.020 0.828 ± 0.030 0.877 0.876 0.877 0.874
0.001 0.826 ± 0.029 0.824 ± 0.062 0.828 ± 0.025 0.833 ± 0.017 0.877 0.875 0.876 0.877
0.01 0.830 ± 0.020 0.829 ± 0.033 0.832 ± 0.021 0.832 ± 0.020 0.874 0.876 0.876 0.876
0.1 0.828 ± 0.032 0.836 ± 0.015 0.830 ± 0.028 0.836 ± 0.014 0.875 0.877 0.877 0.876

Yeast2

– 0.950 ± 0.010 0.947 ± 0.011 0.950 ± 0.010 0.951 ± 0.010 0.977 0.976 0.978 0.979
0.001 0.947 ± 0.015 0.947 ± 0.010 0.948 ± 0.011 0.948 ± 0.010 0.978 0.977 0.978 0.976
0.01 0.948 ± 0.012 0.948 ± 0.013 0.943 ± 0.022 0.950 ± 0.010 0.978 0.979 0.977 0.978
0.1 0.944 ± 0.024 0.943 ± 0.017 0.947 ± 0.010 0.945 ± 0.015 0.976 0.977 0.975 0.975

Abal1

– 0.831 ± 0.071 0.856 ± 0.088 0.822 ± 0.080 0.851 ± 0.061 0.960 0.960 0.966 0.961
0.001 0.812 ± 0.094 0.854 ± 0.082 0.836 ± 0.076 0.847 ± 0.065 0.963 0.965 0.966 0.963
0.01 0.819 ± 0.098 0.824 ± 0.106 0.841 ± 0.070 0.851 ± 0.063 0.969 0.965 0.964 0.962
0.1 0.844 ± 0.083 0.833 ± 0.088 0.853 ± 0.095 0.837 ± 0.090 0.965 0.967 0.963 0.965

Abal2

– 0.548 ± 0.120 0.500 ± 0.139 0.515 ± 0.137 0.532 ± 0.107 0.819 0.790 0.815 0.802
0.001 0.515 ± 0.135 0.518 ± 0.125 0.541 ± 0.111 0.521 ± 0.127 0.812 0.829 0.836 0.807
0.01 0.537 ± 0.105 0.500 ± 0.163 0.527 ± 0.152 0.521 ± 0.095 0.820 0.817 0.816 0.816
0.1 0.561 ± 0.111 0.556 ± 0.094 0.516 ± 0.142 0.558 ± 0.098 0.840 0.838 0.838 0.838

Better (+) / Worse (-) 0 / 0 0 / 0 0 / 0 0 / 0
Eq. (≡) / NSS 0 / 0 0/ 0 0 / 0 0 / 0

APPENDIX A. APPENDIX A 130

Ion

Figure A.1: Solutions for every generation for the Ion dataset for WGT, TCH and PBI
approaches. Red cross symbols (’x’) denote pivot selections from the external population
for all generations for a single run.

APPENDIX A. APPENDIX A 131

Spect

Figure A.2: Solutions for every generation for the Spect dataset for WGT, TCH and PBI
approaches. Red cross symbols (’x’) denote pivot selections from the external population
for all generations for a single run.

APPENDIX A. APPENDIX A 132

Yeast1

Figure A.3: Solutions for every generation for the Yeast1 dataset for WGT, TCH and PBI
approaches. Red cross symbols (’x’) denote pivot selections from the external population
for all generations for a single run.

APPENDIX A. APPENDIX A 133

Yeast2

Figure A.4: Solutions for every generation for the Yeast2 dataset for WGT, TCH and PBI
approaches. Red cross symbols (’x’) denote pivot selections from the external population
for all generations for a single run.

APPENDIX A. APPENDIX A 134

Climate

Figure A.5: Solutions for every generation for the Climate dataset for WGT, TCH and PBI
approaches. Red cross symbols (’x’) denote pivot selections from the external population
for all generations for a single run.

APPENDIX A. APPENDIX A 135

Glass1

Figure A.6: Solutions for every generation for the Glass dataset for WGT, TCH and PBI
approaches. Red cross symbols (’x’) denote pivot selections from the external population
for all generations for a single run.

APPENDIX A. APPENDIX A 136

Parkinson’s

Figure A.7: Solutions for every generation for the Parkinson’s dataset for WGT, TCH
and PBI approaches. Red cross symbols (’x’) denote pivot selections from the external
population for all generations for a single run.

APPENDIX A. APPENDIX A 137

Wine

Figure A.8: Solutions for every generation for the Wine dataset for WGT, TCH and PBI
approaches. Red cross symbols (’x’) denote pivot selections from the external population
for all generations for a single run.

APPENDIX A. APPENDIX A 138

Ion

Figure A.9: Duplicate frequency of individuals at first Pareto Front for Ion dataset for
WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and 50, for a single run.

APPENDIX A. APPENDIX A 139

Spect

Figure A.10: Duplicate frequency of individuals at first Pareto Front for Spect dataset
for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and 50, for a single
run.

APPENDIX A. APPENDIX A 140

Yeast1

Figure A.11: Duplicate frequency of individuals at first Pareto Front for Yeast1 dataset
for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and 50, for a single
run.

APPENDIX A. APPENDIX A 141

Yeast2

Figure A.12: Duplicate frequency of individuals at first Pareto Front for Yeast2 dataset
for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and 50, for a single
run.

APPENDIX A. APPENDIX A 142

Climate

Figure A.13: Duplicate frequency of individuals at first Pareto Front for Climate dataset
for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and 50, for a single
run.

APPENDIX A. APPENDIX A 143

Glass

Figure A.14: Duplicate frequency of individuals at first Pareto Front for Glass dataset
for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and 50, for a single
run.

APPENDIX A. APPENDIX A 144

Parkinson’s

Figure A.15: Duplicate frequency of individuals at first Pareto Front for Parkinson’s
dataset for WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and 50, for
a single run.

APPENDIX A. APPENDIX A 145

Wine

Figure A.16: Duplicate frequency of individuals at first Pareto Front for Wine dataset for
WGT, TCH and PBI approaches for generations 1, 10, 20, 30, 40 and 50, for a single run.

B
Appendix B

B.1 Additional Figures Relating to Chapter 6

Fig. B.1 B.2 and B.3 are three examples of graphs created to test the NeuroLGP-MB

approach from a list of 35. A key aspect in designing these tests was i) to ensure that the

expected graph matched the genotype and ii) to ensure that graphs of suitable complexity

were being tested. For instance, in each of these examples multiple concatenation layers

are tested, with varying degrees at each concatenation node as well as varying degrees at

the node in which the branch occurs. For instance, in Fig. B.1 the input layer has degree

three as its edges branch into three different layers.

B.2 Example Configuration Files used in Chapters 5 and 6

The configuration files for the original NeuroLGP-V1 and NeuroLGP-MB are shown in

Tables B.1 and B.2 respectively. Of note is the vast increase in potential layers and

hyperparameters for NeuroLGP-MB over NeuroLGP. Furthermore, Table B.3 shows the

genotype-to-phenotype mapping of functions to their corresponding layers and hyperpa-

rameters from Table B.2. In the case of the concatenation layer their is special handling

and as such has not been included in this table. Additionally, there is special handling

for the initial layer to ensure weight initialisation is specified.

146

APPENDIX B. APPENDIX B 147

?×128×128×3 ?×128×128×3

?×128×128×3

input_layer

Conv2D

kernel〈3×3×3×128〉
bias〈128〉

Activation

AveragePooling2D

shape shape

SlicingOpLambda SlicingOpLambda

maximum

resize resize

Concatenate

Conv2D

kernel〈5×5×131×128〉
bias〈128〉

Activation

Dropout MaxPooling2D

shape shape

SlicingOpLambda SlicingOpLambda

maximum

resize resize

Concatenate

BatchNormalization

gamma〈131〉
beta〈131〉
moving_mean〈131〉
moving_variance〈131〉

GlobalAveragePooling2D

Dense

kernel〈131×2〉
bias〈2〉

Activation

dense

Figure B.1: Test #4, testing branching inputs

APPENDIX B. APPENDIX B 148

?×128×128×3

input_layer

Dropout

MaxPooling2D

AveragePooling2D

Conv2D

kernel〈5×5×3×32〉
bias〈32〉

Activation

AveragePooling2D

BatchNormalization

gamma〈32〉
beta〈32〉
moving_mean〈32〉
moving_variance〈32〉

Conv2D

kernel〈5×5×3×32〉
bias〈32〉

Activation

AveragePooling2D Dropout

shape shape

SlicingOpLambda SlicingOpLambda

maximum

resize resize

Concatenate

shape shape

SlicingOpLambda SlicingOpLambda

maximum

resize resize

Concatenate

shape shape

SlicingOpLambda SlicingOpLambda

maximum

resize resize

Concatenate

Conv2D

kernel〈3×3×99×32〉
bias〈32〉

Activation

shape shape

SlicingOpLambda SlicingOpLambda

maximum

resize resize

Concatenate

Conv2D

kernel〈3×3×64×32〉
bias〈32〉

Activation

MaxPooling2D

GlobalAveragePooling2D

Dense

kernel〈32×2〉
bias〈2〉

Activation

dense

Figure B.2: Test #19, multiple sums, joining, 3 branches (complex topology)

APPENDIX B. APPENDIX B 149

?×128×128×3

?×128×128×3 ?×128×128×3

input_layer

Dropout

shape shape

SlicingOpLambda SlicingOpLambda

maximum

BatchNormalization

gamma〈3〉
beta〈3〉
moving_mean〈3〉
moving_variance〈3〉

resize resize

Conv2D

kernel〈5×5×3×128〉
bias〈128〉

Activation

Conv2D

kernel〈3×3×3×64〉
bias〈64〉

Activation

Concatenate Dropout

shape shape

BatchNormalization

gamma〈128〉
beta〈128〉
moving_mean〈128〉
moving_variance〈128〉

SlicingOpLambda SlicingOpLambda AveragePooling2D

maximum Dropout

resize resize

BatchNormalization

gamma〈128〉
beta〈128〉
moving_mean〈128〉
moving_variance〈128〉

Concatenate

Conv2D

kernel〈3×3×128×64〉
bias〈64〉

Activation

shape shape

SlicingOpLambda SlicingOpLambda

maximum

resize resize

Concatenate

GlobalAveragePooling2D

Dense

kernel〈134×2〉
bias〈2〉

Activation

dense

Figure B.3: Test #23, randomly generated

APPENDIX B. APPENDIX B 150

Category Attribute Value

PROBLEM DOMAIN
PROBLEM TYPE Neuroevolution
PROBLEM CODE breakhis40
DATA SOURCE None
INPUT DIMENSIONS (64, 64, 3)

OPTIMIZATION
ALGORITHM singleObjNeuroLGP
NUMBER OF OBJECTIVES 1
OBJECTIVE 1 mse

SURROGATE
METHOD KPLS
INITIAL EPOCH NUM 10
INITIAL SURROGATE POPSIZE 30
EXPENSIVE PROPORTION 0.4

EXPERIMENTAL SETUP
EXP ID 003
RESULTS PATH D:/Main/GitHub/GenProgMO/results/
EXPERIMENT TYPE surrogate
DATA GENERATOR true
GEN SIZE 15
POP SIZE 30
ELITE PERCENTAGE 0.2
SELECTION TYPE: tournament,

SIZE: 5,
NUMBER OF TOURNAMENTS: 1

CROSSOVER RATE: 0.3
TYPE: linear,
DISTANCE OF CROSSOVER POINTS: 5,
MINIMUM PROGRAM LENGTH: 2,
MAXIMUM PROGRAM LENGTH: 70,
MAXIMUM SEGMENT LENGTH: 5,
MAXIMUM DIFFERENCE IN SEGMENT LENGTH: 3

MUTATION RATE 0.9
MAX REGISTER 6
CHROMOSOME LENGTH 70
EPOCH NUM 30

PRIMITIVE SETUP
FUNCTION CONV 32 3x3

CONV 32 5x5
CONV 64 3x3
CONV 64 5x5
CONV 128 3x3
CONV 128 5x5
AVGPOOL 2x2
MAXPOOL 2x2
BATCH NORM 99
BATCH NORM 9
DROPOUT 0.1 SEED0
DROPOUT 0.2 SEED0

Table B.1: Example configuration files for original NeuroLGP

APPENDIX B. APPENDIX B 151

Category Attribute Value

PROBLEM DOMAIN
PROBLEM TYPE Neuroevolution
PROBLEM CODE BreakHis40 128
DATA SOURCE None
INPUT DIMENSIONS (128, 128, 3)

OPTIMIZATION
ALGORITHM singleObjNeuroLGP
NUMBER OF OBJECTIVES 1
OBJECTIVE 1 mse

SURROGATE
METHOD KPLS
INITIAL EPOCH NUM 10
INITIAL SURROGATE POPSIZE 30
EXPENSIVE PROPORTION 0.4

EXPERIMENTAL SETUP
EXP ID 660
RESULTS PATH D:/Main/GitHub/GenProgMO/results/
EXPERIMENT TYPE surrogate
DATA GENERATOR true
GEN SIZE 15
POP SIZE 30
ELITE PERCENTAGE 0.2
SELECTION TYPE: tournament,

SIZE: 5,
NUMBER OF TOURNAMENTS: 1

CROSSOVER RATE: 0.8
TYPE: linear,
DISTANCE OF CROSSOVER POINTS: 80,
MINIMUM PROGRAM LENGTH: 2,
MAXIMUM PROGRAM LENGTH: 100,
MAXIMUM SEGMENT LENGTH: 7,
MAXIMUM DIFFERENCE IN SEGMENT LENGTH: 7

MUTATE TIMES 5
MUTATION RATE 0.5
MUTATION OPERAND ONLY RATE 0.3
MAX REGISTER 6
CHROMOSOME LENGTH 30
EPOCH NUM 30

PRIMITIVE SETUP
FUNCTION CONV 32 3x3 KR00001

CONV 32 5x5 KR00001
CONV 64 3x3 KR00001
CONV 64 5x5 KR00001
CONV 128 3x3 KR00001
CONV 128 5x5 KR00001
CONV 32 3x3 NOL2
CONV 32 5x5 NOL2
CONV 64 3x3 NOL2
CONV 64 5x5 NOL2
CONV 128 3x3 NOL2
CONV 128 5x5 NOL2
CONV 32 3x3 KR00001 TANH
CONV 32 5x5 KR00001 TANH
CONV 64 3x3 KR00001 TANH
CONV 64 5x5 KR00001 TANH
CONV 128 3x3 KR00001 TANH
CONV 128 5x5 KR00001 TANH

++++++ ++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++

APPENDIX B. APPENDIX B 152

++++++ ++++++++++++++++++++++++ ++++++++++++++++++++++++++++++++++

Category Attribute Value

PRIMITIVE SETUP (cont′d)
FUNCTION CONV 32 3x3 KR01

CONV 32 5x5 KR01
CONV 64 3x3 KR01
CONV 64 5x5 KR01
CONV 128 3x3 KR01
CONV 128 5x5 KR01
CONV 32 3x3 KR01 TANH
CONV 32 5x5 KR01 TANH
CONV 64 3x3 KR01 TANH
CONV 64 5x5 KR01 TANH
CONV 128 3x3 KR01 TANH
CONV 128 5x5 KR01 TANH
AVGPOOL 2x2
MAXPOOL 2x2
AVGPOOL 3x3
MAXPOOL 3x3
AVGPOOL 5x5
MAXPOOL 5x5
BATCH NORM 99
BATCH NORM 9
BATCH NORM 75
BATCH NORM 6
BATCH NORM 45
BATCH NORM 3
BATCH NORM 1
BATCH NORM 01
DROPOUT 0.1 SEED0
DROPOUT 0.2 SEED0
DROPOUT 0.3 SEED0
DROPOUT 0.4 SEED0
DROPOUT 0.5 SEED0
CONCAT

Table B.2: Example configuration files for NeuroLGP-MB

APPENDIX B. APPENDIX B 153

Genotype-to-Phenotype Mapping

Function Layer

CONV 32 3x3 KR00001 Conv2D(32, (3, 3), kernel regularizer=l2(0.0001), activation=’relu’)

CONV 32 5x5 KR00001 Conv2D(32, (5, 5), kernel regularizer=l2(0.0001), activation=’relu’)

CONV 64 3x3 KR00001 Conv2D(64, (3, 3), kernel regularizer=l2(0.0001), activation=’relu’)

CONV 64 5x5 KR00001 Conv2D(64, (5, 5), kernel regularizer=l2(0.0001), activation=’relu’)

CONV 128 3x3 KR00001 Conv2D(128, (3, 3), kernel regularizer=l2(0.0001), activation=’relu’)

CONV 128 5x5 KR00001 Conv2D(128, (5, 5), kernel regularizer=l2(0.0001), activation=’relu’)

CONV 32 3x3 NOL2 Conv2D(32, (3, 3), activation=’relu’)

CONV 32 5x5 NOL2 Conv2D(32, (5, 5), activation=’relu’)

CONV 64 3x3 NOL2 Conv2D(64, (3, 3), activation=’relu’)

CONV 64 5x5 NOL2 Conv2D(64, (5, 5), activation=’relu’)

CONV 128 3x3 NOL2 Conv2D(128, (3, 3), activation=’relu’)

CONV 128 5x5 NOL2 Conv2D(128, (5, 5), activation=’relu’)

CONV 32 3x3 KR00001 TANH Conv2D(32, (3, 3), kernel regularizer=l2(0.0001), activation=’tanh’)

CONV 32 5x5 KR00001 TANH Conv2D(32, (5, 5), kernel regularizer=l2(0.0001), activation=’tanh’)

CONV 64 3x3 KR00001 TANH Conv2D(64, (3, 3), kernel regularizer=l2(0.0001), activation=’tanh’)

CONV 64 5x5 KR00001 TANH Conv2D(64, (5, 5), kernel regularizer=l2(0.0001), activation=’tanh’)

CONV 128 3x3 KR00001 TANH Conv2D(128, (3, 3), kernel regularizer=l2(0.0001), activation=’tanh’)

CONV 128 5x5 KR00001 TANH Conv2D(128, (5, 5), kernel regularizer=l2(0.0001), activation=’tanh’)

CONV 32 3x3 NOL2 TANH Conv2D(32, (3, 3), activation=’tanh’)

CONV 32 5x5 NOL2 TANH Conv2D(32, (5, 5), activation=’tanh’)

CONV 64 3x3 NOL2 TANH Conv2D(64, (3, 3), activation=’tanh’)

CONV 64 5x5 NOL2 TANH Conv2D(64, (5, 5), activation=’tanh’)

CONV 128 3x3 NOL2 TANH Conv2D(128, (3, 3), activation=’tanh’)

CONV 128 5x5 NOL2 TANH Conv2D(128, (5, 5), activation=’tanh’)

CONV 32 3x3 KR01 Conv2D(32, (3, 3), kernel regularizer=l2(0.1), activation=’relu’)

CONV 32 5x5 KR01 Conv2D(32, (5, 5), kernel regularizer=l2(0.1), activation=’relu’)

CONV 64 3x3 KR01 Conv2D(64, (3, 3), kernel regularizer=l2(0.1), activation=’relu’)

CONV 64 5x5 KR01 Conv2D(64, (5, 5), kernel regularizer=l2(0.1), activation=’relu’)

CONV 128 3x3 KR01 Conv2D(128, (3, 3), kernel regularizer=l2(0.1), activation=’relu’)

CONV 128 5x5 KR01 Conv2D(128, (5, 5), kernel regularizer=l2(0.1), activation=’relu’)

CONV 32 3x3 KR01 TANH Conv2D(32, (3, 3), kernel regularizer=l2(0.1), activation=’tanh’)

CONV 32 5x5 KR01 TANH Conv2D(32, (5, 5), kernel regularizer=l2(0.1), activation=’tanh’)

CONV 64 3x3 KR01 TANH Conv2D(64, (3, 3), kernel regularizer=l2(0.1), activation=’tanh’)

CONV 64 5x5 KR01 TANH Conv2D(64, (5, 5), kernel regularizer=l2(0.1), activation=’tanh’)

CONV 128 3x3 KR01 TANH Conv2D(128, (3, 3), kernel regularizer=l2(0.1), activation=’tanh’)

CONV 128 5x5 KR01 TANH Conv2D(128, (5, 5), kernel regularizer=l2(0.1), activation=’tanh’)

BATCH NORM 99 BatchNormalization(momentum = 0.99)

BATCH NORM 9 BatchNormalization(momentum = 0.9)

BATCH NORM 75 BatchNormalization(momentum = 0.75)

BATCH NORM 6 BatchNormalization(momentum = 0.6)

BATCH NORM 45 BatchNormalization(momentum = 0.45)

BATCH NORM 3 BatchNormalization(momentum = 0.3)

BATCH NORM 1 BatchNormalization(momentum = 0.1)

BATCH NORM 01 BatchNormalization(momentum = 0.01)

AVGPOOL 2x2 1 AveragePooling2D(pool size=(2, 2), strides=1)

MAXPOOL 2x2 1 MaxPooling2D(pool size=(2, 2), strides=1)

AVGPOOL 2x2 2 AveragePooling2D(pool size=(2, 2), strides=2)

MAXPOOL 2x2 2 MaxPooling2D(pool size=(2, 2), strides=2)

AVGPOOL 3x3 1 AveragePooling2D(pool size=(3, 3), strides=1)

MAXPOOL 3x3 1 MaxPooling2D(pool size=(3, 3), strides=1)

AVGPOOL 3x3 2 AveragePooling2D(pool size=(3, 3), strides=2)

MAXPOOL 3x3 2 MaxPooling2D(pool size=(3, 3), strides=2)

AVGPOOL 3x3 3 AveragePooling2D(pool size=(3, 3), strides=3)

MAXPOOL 3x3 3 MaxPooling2D(pool size=(3, 3), strides=3)

AVGPOOL 5x5 1 AveragePooling2D(pool size=(5, 5), strides=1)

MAXPOOL 5x5 1 MaxPooling2D(pool size=(5, 5), strides=1)

AVGPOOL 5x5 2 AveragePooling2D(pool size=(5, 5), strides=2)

MAXPOOL 5x5 2 MaxPooling2D(pool size=(5, 5), strides=2)

AVGPOOL 5x5 3 AveragePooling2D(pool size=(5, 5), strides=3)

MAXPOOL 5x5 3 MaxPooling2D(pool size=(5, 5), strides=3)

DROPOUT 0.1 SEED0 Dropout(0.1, seed=0)

DROPOUT 0.2 SEED0 Dropout(0.2, seed=0)

DROPOUT 0.3 SEED0 Dropout(0.3, seed=0)

DROPOUT 0.4 SEED0 Dropout(0.4, seed=0)

DROPOUT 0.5 SEED0 Dropout(0.5, seed=0)

Table B.3: Genotype-to-phenotype mapping of NeuroLGP-MB

Bibliography

[1] Edgar Galván, Leonardo Trujillo, and Fergal Stapleton. Semantics in multi-

objective genetic programming. Applied Soft Computing, 115:108143, 2022.

[2] Edgar Galván and Fergal Stapleton. Semantic-based distance approaches in multi-

objective genetic programming. In 2020 IEEE Symposium Series on Computational

Intelligence (SSCI), pages 149–156. IEEE, 2020.

[3] Fergal Stapleton and Edgar Galván. Semantic neighborhood ordering in multi-

objective genetic programming based on decomposition. In 2021 IEEE Congress on

Evolutionary Computation (CEC), pages 580–587. IEEE, 2021.

[4] Edgar Galván, Leonardo Trujillo, and Fergal Stapleton. Highlights of semantics in

multi-objective genetic programming. In Proceedings of the Genetic and Evolution-

ary Computation Conference Companion, pages 19–20, 2022.

[5] Fergal Stapleton and Edgar Galván. Initial steps towards tackling high-dimensional

surrogate modeling for neuroevolution using kriging partial least squares. In Pro-

ceedings of the Companion Conference on Genetic and Evolutionary Computation,

GECCO ’23 Companion, page 83–84, New York, NY, USA, 2023. Association for

Computing Machinery.

[6] Fergal Stapleton, Brendan Cody-Kenny, and Edgar Galván. Neurolgp-sm: A

surrogate-assisted neuroevolution approach using linear genetic programming. In

International Conference on Optimization and Learning (OLA), 2024.

[7] Fergal Stapleton and Edgar Galván. Neurolgp-sm: Scalable surrogate-assisted neu-

roevolution for deep neural networks. In 2024 IEEE Congress on Evolutionary

Computation (CEC), pages 1–8, 2024.

[8] Edgar Galván and Fergal Stapleton. Evolutionary multi-objective optimisation in

neurotrajectory prediction. Applied Soft Computing, 146:110693, 2023.

[9] Fergal Stapleton, Edgar Galván, Ganesh Sistu, and Senthil Yogamani. Neuroevo-

lutionary multi-objective approaches to trajectory prediction in autonomous ve-

hicles. In Proceedings of the Genetic and Evolutionary Computation Conference

Companion, GECCO ’22, page 675–678, New York, NY, USA, 2022. Association

for Computing Machinery.

[10] Markus Brameier and Wolfgang Banzhaf. Linear genetic programming, volume 1.

Springer, 2007.

154

BIBLIOGRAPHY 155

[11] Mart́ın Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng Chen, Craig

Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu Devin, Sanjay Ghe-

mawat, Ian Goodfellow, Andrew Harp, Geoffrey Irving, Michael Isard, Yangqing

Jia, Rafal Jozefowicz, Lukasz Kaiser, Manjunath Kudlur, Josh Levenberg, Dande-

lion Mané, Rajat Monga, Sherry Moore, Derek Murray, Chris Olah, Mike Schuster,

Jonathon Shlens, Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vin-

cent Vanhoucke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete Warden,

Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng. TensorFlow:

Large-scale machine learning on heterogeneous systems, 2015. Software available

from tensorflow.org.

[12] François Chollet et al. Keras. https://keras.io, 2015.

[13] Lutz Roeder. Netron: Visualizer for neural network, deep learning and machine

learning models., 2022.

[14] OpenAI. Gpt-4 technical report, 2024.

[15] Yifang Ma, Zhenyu Wang, Hong Yang, and Lin Yang. Artificial intelligence appli-

cations in the development of autonomous vehicles: A survey. IEEE/CAA Journal

of Automatica Sinica, 7(2):315–329, 2020.

[16] Geert Litjens, Clara I Sánchez, Nadya Timofeeva, Meyke Hermsen, Iris Nagtegaal,

Iringo Kovacs, Christina Hulsbergen-Van De Kaa, Peter Bult, Bram Van Ginneken,

and Jeroen Van Der Laak. Deep learning as a tool for increased accuracy and

efficiency of histopathological diagnosis. Scientific reports, 6(1):26286, 2016.

[17] Yann LeCun, Y. Bengio, and Geoffrey Hinton. Deep learning. Nature, 521:436–44,

05 2015.

[18] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V. Le. Learning trans-

ferable architectures for scalable image recognition. CoRR, abs/1707.07012, 2018.

[19] Barret Zoph and Quoc V. le. Neural architecture search with reinforcement learning.

arXiv preprint arXiv:1611.01578, 2016.

[20] Agoston E. Eiben and J. E. Smith. Introduction to Evolutionary Computing.

Springer Verlag, 2003.

[21] Gaurav Menghani. Efficient deep learning: A survey on making deep learning

models smaller, faster, and better. ACM Computing Surveys, 55(12):1–37, 2023.

[22] Yaochu Jin. Surrogate-assisted evolutionary computation: Recent advances and

future challenges. Swarm and Evolutionary Computation, 1(2):61–70, 2011.

https://keras.io

BIBLIOGRAPHY 156

[23] Alexander Hagg, Martin Zaefferer, Jörg Stork, and Adam Gaier. Prediction of

neural network performance by phenotypic modeling. In Proceedings of the Genetic

and Evolutionary Computation Conference Companion, pages 1576–1582, 2019.

[24] Adam Gaier, Alexander Asteroth, and Jean-Baptiste Mouret. Data-efficient neu-

roevolution with kernel-based surrogate models. In Proceedings of the genetic and

evolutionary computation conference, pages 85–92, 2018.

[25] Yanan Sun, Handing Wang, Bing Xue, Yaochu Jin, Gary G. Yen, and Mengjie

Zhang. Surrogate-assisted evolutionary deep learning using an end-to-end random

forest-based performance predictor. IEEE Transactions on Evolutionary Computa-

tion, 24(2):350–364, 2019.

[26] Alberto Sanfeliu and King-Sun Fu. A distance measure between attributed rela-

tional graphs for pattern recognition. IEEE transactions on systems, man, and

cybernetics, (3):353–362, 1983.

[27] Jörg Stork, Martin Zaefferer, and Thomas Bartz-Beielstein. Improving neuroevo-

lution efficiency by surrogate model-based optimization with phenotypic distance

kernels. In International Conference on the Applications of Evolutionary Computa-

tion (Part of EvoStar), pages 504–519. Springer, 2019.

[28] Nguyen Quang Uy, Nguyen Xuan Hoai, Michael O’Neill, R. I. McKay, and Edgar

Galván-López. Semantically-based crossover in genetic programming: application

to real-valued symbolic regression. Genetic Programming and Evolvable Machines,

12(2):91–119, 2011.

[29] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir

Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going

deeper with convolutions. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 1–9, 2015.

[30] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning

for image recognition. In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 770–778, 2016.

[31] Mohamed Amine Bouhlel, Nathalie Bartoli, Abdelkader Otsmane, and Joseph Mor-

lier. Improving kriging surrogates of high-dimensional design models by partial

least squares dimension reduction. Structural and Multidisciplinary Optimization,

53:935–952, 2016.

[32] Agoston E. Eiben and Jim Smith. From evolutionary computation to the evolution

of things. Nature, 521:476–482, 05 2015.

BIBLIOGRAPHY 157

[33] David E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learn-

ing. Addison-Wesley, 1989.

[34] Hans-Georg Beyer and Hans-Paul Schwefel. Evolution strategies –a comprehensive

introduction. Natural Computing: An International Journal, 1(1):3–52, May 2002.

[35] Lawrence J. Fogel, Alvin J. Owens, and Michael J. Walsh. Artificial intelligence

through simulated evolution. John Wiley & Sons, 1966.

[36] John R. Koza. Genetic Programming: On the Programming of Computers by Means

of Natural Selection. MIT Press, Cambridge, MA, USA, 1992.

[37] Edgar Galván and Peter Mooney. Neuroevolution in deep neural networks: Current

trends and future challenges. IEEE Transactions on Artificial Intelligence, 2:476–

493, 2021.

[38] Edgar Galván and Marc Schoenauer. Promoting semantic diversity in multi-

objective genetic programming. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 1021–1029, 2019.

[39] Tomasz P. Pawlak, Bartosz Wieloch, and Krzysztof Krawiec. Semantic backpropa-

gation for designing search operators in genetic programming. IEEE Transactions

on Evolutionary Computation, 19(3):326–340, 2014.

[40] Carlos A. Coello Coello. Evolutionary multi-objective optimization: a historical

view of the field. IEEE Computational Intelligence Magazine, 1(1):28–36, Feb 2006.

[41] Carlos A. Coello Coello. A comprehensive survey of evolutionary-based multiobjec-

tive optimization techniques. Knowledge and Information Systems, 1(3):269–308,

1999.

[42] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary Algorithms.

John Wiley & Sons, Inc., New York, NY, USA, 2001.

[43] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMT Meyarivan. A fast

and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Transactions on Evolu-

tionary Computation, 6(2):182–197, 2002.

[44] Hermann Minkowski. Geometrie der zahlen. BG Teubner, 1910.

[45] Eckart Zitzler, Marco Laumanns, and Lothar Thiele. Spea2: Improving the strength

pareto evolutionary algorithm. Technical report, Swiss Federal Institute of Tech-

nology Zurich (ETH), 2001.

BIBLIOGRAPHY 158

[46] Qingfu Zhang and Hui Li. Moea/d: A multiobjective evolutionary algorithm based

on decomposition. IEEE Transactions on evolutionary computation, 11(6):712–731,

2007.

[47] Geoffrey E. Hinton, Simon Osindero, and Yee-Whye Teh. A fast learning algorithm

for deep belief nets. Neural Comput., 18(7):1527–1554, July 2006.

[48] Yann LeCun, Bernhard Boser, John S Denker, Donnie Henderson, Richard E

Howard, Wayne Hubbard, and Lawrence D Jackel. Backpropagation applied to

handwritten zip code recognition. Neural computation, 1(4):541–551, 1989.

[49] Mark A Kramer. Nonlinear principal component analysis using autoassociative

neural networks. AIChE journal, 37(2):233–243, 1991.

[50] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. Learning repre-

sentations by back-propagating errors. nature, 323(6088):533–536, 1986.

[51] Henry A. Rowley, Shumeet Baluja, and Takeo Kanade. Neural network-based

face detection. IEEE Transactions on pattern analysis and machine intelligence,

20(1):23–38, 1998.

[52] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. Imagenet classification

with deep convolutional neural networks. Commun. ACM, 60(6):84–90, May 2017.

[53] Ossama Abdel-Hamid, Abdel-rahman Mohamed, Hui Jiang, Li Deng, Gerald Penn,

and Dong Yu. Convolutional neural networks for speech recognition. IEEE/ACM

Transactions on audio, speech, and language processing, 22(10):1533–1545, 2014.

[54] Ćıcero dos Santos and Máıra Gatti. Deep convolutional neural networks for senti-

ment analysis of short texts. In Proceedings of COLING 2014, the 25th International

Conference on Computational Linguistics: Technical Papers, pages 69–78, Dublin,

Ireland, August 2014. Dublin City University and Association for Computational

Linguistics.

[55] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton,

and Jure Leskovec. Graph convolutional neural networks for web-scale recommender

systems. In Proceedings of the 24th ACM SIGKDD International Conference on

Knowledge Discovery & Data Mining, KDD ’18, page 974–983, New York, NY,

USA, 2018. Association for Computing Machinery.

[56] David H. Hubel and Torsten N. Wiesel. Receptive fields, binocular interaction

and functional architecture in the cat’s visual cortex. The Journal of physiology,

160(1):106, 1962.

BIBLIOGRAPHY 159

[57] Yann LeCun, Yoshua Bengio, and Geoffrey Hinton. Deep learning. Nature,

521(7553):436–444, 2015.

[58] Yann Lecun, Léon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient-based

learning applied to document recognition. In Proceedings of the IEEE, pages 2278–

2324, 1998.

[59] Vinod Nair and Geoffrey E. Hinton. Rectified linear units improve restricted boltz-

mann machines. In Proceedings of the 27th international conference on machine

learning (ICML-10), pages 807–814, 2010.

[60] Nitish Srivastava, Geoffrey E. Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan

Salakhutdinov. Dropout: a simple way to prevent neural networks from overfitting.

The journal of machine learning research, 15(1):1929–1958, 2014.

[61] Colin White, Mahmoud Safari, Rhea Sukthanker, Binxin Ru, Thomas Elsken, Arber

Zela, Debadeepta Dey, and Frank Hutter. Neural architecture search: Insights from

1000 papers. arXiv preprint arXiv:2301.08727, 2023.

[62] Diederik Kingma and Jimmy Ba. Adam: A method for stochastic optimization.

International Conference on Learning Representations, 12 2014.

[63] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into recti-

fiers: Surpassing human-level performance on imagenet classification. In Proceedings

of the IEEE international conference on computer vision, pages 1026–1034, 2015.

[64] Sergey Ioffe. Batch normalization: Accelerating deep network training by reducing

internal covariate shift. arXiv preprint arXiv:1502.03167, 2015.

[65] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent

in nervous activity. The bulletin of mathematical biophysics, 5:115–133, 1943.

[66] Frank Rosenblatt. Principles of neurodynamics: Perceptrons and the theory of brain

mechanisms, 1961.

[67] John Denker, W. Gardner, Hans Graf, Donnie Henderson, R. Howard, W. Hubbard,

Lawrence D. Jackel, Henry Baird, and Isabelle Guyon. Neural network recognizer

for hand-written zip code digits. Advances in neural information processing systems,

1, 1988.

[68] Kunihiko Fukushima. Neocognitron: A self-organizing neural network model for a

mechanism of pattern recognition unaffected by shift in position. Biological cyber-

netics, 36(4):193–202, 1980.

BIBLIOGRAPHY 160

[69] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Com-

put., 9(8):1735–1780, nov 1997.

[70] A Vaswani. Attention is all you need. Advances in Neural Information Processing

Systems, 2017.

[71] Ingo Rechenberg. Evolutionsstrategien. In Simulationsmethoden in der Medizin

und Biologie: Workshop, Hannover, 29. Sept.–1. Okt. 1977, pages 83–114. Springer,

1978.

[72] John H. Holland. Adaptation in natural and artificial systems: An introductory

analysis with applications to biology, control, and artificial intelligence. U Michigan

Press, 1975.

[73] Nichael Lynn Cramer. A representation for the adaptive generation of simple se-

quential programs. In Proceedings of the 1st International Conference on Genetic

Algorithms, pages 183–187, 1985.

[74] JohnR. Koza. Genetic programming as a means for programming computers by

natural selection. Statistics and Computing, 4, 06 1994.

[75] Erik Goodman. The 2023 humies awards. ACM SIGEVOlution, 16(3):1–4, 2023.

[76] Rainer Storn and Kenneth Price. Differential evolution – a simple and efficient

heuristic for global optimization over continuous spaces. Journal of Global Opti-

mization, 11(4):341–359, 1997.

[77] James Kennedy and Russell Eberhart. Particle swarm optimization. In Proceedings

of ICNN’95 - International Conference on Neural Networks, volume 4, pages 1942–

1948 vol.4, 1995.

[78] Michael O’Neill and Conor Ryan. Grammatical evolution. IEEE Transactions on

Evolutionary Computation, 5(4):349–358, 2001.

[79] Julian F. Miller et al. An empirical study of the efficiency of learning boolean

functions using a cartesian genetic programming approach. In Proceedings of the

genetic and evolutionary computation conference, volume 2, pages 1135–1142, 1999.

[80] Thomas Elsken, Jan Hendrik Metzen, and Frank Hutter. Neural architecture search:

A survey. Journal of Machine Learning Research, 20(55):1–21, 2019.

[81] Hanxiao Liu, Karen Simonyan, and Yiming Yang. Darts: Differentiable architecture

search. In International Conference on Learning Representations, 2018.

BIBLIOGRAPHY 161

[82] Chris Ying, Aaron Klein, Eric Christiansen, Esteban Real, Kevin Murphy, and

Frank Hutter. Nas-bench-101: Towards reproducible neural architecture search. In

International conference on machine learning, pages 7105–7114. PMLR, 2019.

[83] Alex Krizhevsky, Geoffrey E. Hinton, et al. Learning multiple layers of features

from tiny images, 2009.

[84] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet:

A large-scale hierarchical image database. In 2009 IEEE conference on computer

vision and pattern recognition, pages 248–255. Ieee, 2009.

[85] Kaicheng Yu, Christian Sciuto, Martin Jaggi, Claudiu Musat, and Mathieu Salz-

mann. Evaluating the search phase of neural architecture search. arXiv preprint

arXiv:1902.08142, 2019.

[86] Antoine Yang, Pedro M. Esperança, and Fabio M. Carlucci. Nas evaluation is

frustratingly hard. In International Conference on Learning Representations, 2020.

[87] Darrell Whitley, Timothy Starkweather, and Christopher Bogart. Genetic algo-

rithms and neural networks: Optimizing connections and connectivity. Parallel

computing, 14(3):347–361, 1990.

[88] Kenneth O. Stanley and Risto Miikkulainen. Evolving neural networks through

augmenting topologies. Evol. Comput., 10(2):99–127, June 2002.

[89] Kenneth O. Stanley, David B. D’Ambrosio, and Jason Gauci. A hypercube-based

encoding for evolving large-scale neural networks. Artificial life, 15(2):185–212,

2009.

[90] Risto Miikkulainen, Jason Liang, Elliot Meyerson, Aditya Rawal, Daniel Fink,

Olivier Francon, Bala Raju, Hormoz Shahrzad, Arshak Navruzyan, Nigel Duffy,

et al. Evolving deep neural networks. In Artificial intelligence in the age of neural

networks and brain computing, pages 293–312. Elsevier, 2019.

[91] Travis Desell. Large scale evolution of convolutional neural networks using volunteer

computing. In Peter A. N. Bosman, editor, Genetic and Evolutionary Computation

Conference, Berlin, Germany, July 15-19, 2017, Companion Material Proceedings,

pages 127–128. ACM, 2017.

[92] Kevin Swersky, David Duvenaud, Jasper Snoek, Frank Hutter, and Michael A Os-

borne. Raiders of the lost architecture: Kernels for bayesian optimization in condi-

tional parameter spaces. arXiv preprint arXiv:1409.4011, 2014.

BIBLIOGRAPHY 162

[93] Thomas Elsken, Jan-Hendrik Metzen, and Frank Hutter. Simple and efficient ar-

chitecture search for convolutional neural networks, 2017.

[94] Martin Wistuba. Finding competitive network architectures within a day using uct.

arXiv preprint arXiv:1712.07420, 2017.

[95] Linnan Wang, Yiyang Zhao, Yuu Jinnai, Yuandong Tian, and Rodrigo Fonseca.

Neural architecture search using deep neural networks and monte carlo tree search.

In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages

9983–9991, 2020.

[96] Geoffrey F Miller, Peter M Todd, and Shailesh U Hegde. Designing neural networks

using genetic algorithms. In ICGA, volume 89, pages 379–384, 1989.

[97] Steven Harp, Tariq Samad, and Aloke Guha. Designing application-specific neural

networks using the genetic algorithm. Advances in neural information processing

systems, 2, 1989.

[98] David J Montana, Lawrence Davis, et al. Training feedforward neural networks

using genetic algorithms. In IJCAI, volume 89, pages 762–767, 1989.

[99] Xin Yao and Yong Liu. A new evolutionary system for evolving artificial neural

networks. IEEE transactions on neural networks, 8(3):694–713, 1997.

[100] Jonas da Silveira Bohrer, Bruno Iochins Grisci, and Marcio Dorn. Neuroevolution

of neural network architectures using codeepneat and keras, 2020.

[101] Li Deng. The mnist database of handwritten digit images for machine learning

research. IEEE Signal Processing Magazine, 29(6):141–142, 2012.

[102] Lingxi Xie and Alan Yuille. Genetic cnn. In Proceedings of the IEEE international

conference on computer vision, pages 1379–1388, 2017.

[103] Zhenhao Shuai, Hongbo Liu, Zhaolin Wan, Wei-Jie Yu, and Jun Zhang. A self-

adaptive neuroevolution approach to constructing deep neural network architectures

across different types. Applied Soft Computing, 136:110127, 2023.

[104] Yanan Sun, Bing Xue, Mengjie Zhang, and Gary G. Yen. Evolving deep convolu-

tional neural networks for image classification. IEEE Transactions on Evolutionary

Computation, 24(2):394–407, 2019.

[105] Krishna Teja Chitty-Venkata, Murali Emani, Venkatram Vishwanath, and Arun K

Somani. Neural architecture search for transformers: A survey. IEEE Access,

10:108374–108412, 2022.

BIBLIOGRAPHY 163

[106] Gustavo-Adolfo Vargas-Hakim, Efren Mezura-Montes, and Hector-Gabriel Acosta-

Mesa. A review on convolutional neural network encodings for neuroevolution.

IEEE Transactions on Evolutionary Computation, 26(1):12–27, 2021.

[107] Masanori Suganuma, Shinichi Shirakawa, and Tomoharu Nagao. A genetic pro-

gramming approach to designing convolutional neural network architectures. In

Proceedings of the Genetic and Evolutionary Computation Conference, GECCO ’17,

page 497–504, New York, NY, USA, 2017. Association for Computing Machinery.

[108] Julian F. Miller. Cartesian genetic programming: its status and future. Genetic

Programming and Evolvable Machines, 21(1):129–168, 2020.

[109] Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro.

Evolving the topology of large scale deep neural networks. In Mauro Castelli, Lukas

Sekanina, Mengjie Zhang, Stefano Cagnoni, and Pablo Garćıa-Sánchez, editors, Ge-

netic Programming, pages 19–34, Cham, 2018. Springer International Publishing.

[110] Filipe Assunção, Nuno Lourenço, Penousal Machado, and Bernardete Ribeiro. Fast

denser: Efficient deep neuroevolution. In european conference on genetic program-

ming, pages 197–212. Springer, 2019.

[111] Filipe Assunção, Nuno Lourenço, Bernardete Ribeiro, and Penousal Machado. Fast-

denser: Fast deep evolutionary network structured representation. SoftwareX,

14:100694, 2021.

[112] Kevin Swersky, Jasper Snoek, and Ryan Prescott Adams. Freeze-thaw bayesian

optimization. arXiv preprint arXiv:1406.3896, 2014.

[113] Bowen Baker, Otkrist Gupta, Ramesh Raskar, and Nikhil Naik. Accelerating neural

architecture search using performance prediction. arXiv preprint arXiv:1705.10823,

2017.

[114] Mohammed Imed Eddine Khaldi and Amer Draa. Surrogate-assisted evolutionary

optimisation: a novel blueprint and a state of the art survey. Evolutionary Intelli-

gence, pages 1–31, 2023.

[115] Shiqing Liu, Haoyu Zhang, and Yaochu Jin. A survey on computationally efficient

neural architecture search. Journal of Automation and Intelligence, 1(1):100002,

2022.

[116] Boyang Deng, Junjie Yan, and Dahua Lin. Peephole: Predicting network perfor-

mance before training. arXiv preprint arXiv:1712.03351, 2017.

BIBLIOGRAPHY 164

[117] Bryson Greenwood and Tyler McDonnell. Surrogate-assisted neuroevolution. In

Proceedings of the Genetic and Evolutionary Computation Conference, pages 1048–

1056, 2022.

[118] Tobias Domhan, Jost Tobias Springenberg, and Frank Hutter. Speeding up au-

tomatic hyperparameter optimization of deep neural networks by extrapolation of

learning curves. In Twenty-fourth international joint conference on artificial intel-

ligence, 2015.

[119] Liang Fan and Handing Wang. Surrogate-assisted evolutionary neural architecture

search with network embedding. Complex & Intelligent Systems, 9(3):3313–3331,

2023.

[120] Annamalai Narayanan, Mahinthan Chandramohan, Rajasekar Venkatesan, Lihui

Chen, Yang Liu, and Shantanu Jaiswal. graph2vec: Learning distributed represen-

tations of graphs. arXiv preprint arXiv:1707.05005, 2017.

[121] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,

and Greg Hullender. Learning to rank using gradient descent. In Proceedings of the

22nd international conference on Machine learning, pages 89–96, 2005.

[122] Shen Yan, Colin White, Yash Savani, and Frank Hutter. Nas-bench-x11 and the

power of learning curves. Advances in Neural Information Processing Systems,

34:22534–22549, 2021.

[123] Esteban Real, Alok Aggarwal, Yanping Huang, and Quoc V. Le. Regularized evolu-

tion for image classifier architecture search. In The Thirty-Third AAAI Conference

on Artificial Intelligence, AAAI 2019, The Thirty-First Innovative Applications of

Artificial Intelligence Conference, IAAI 2019, The Ninth AAAI Symposium on Ed-

ucational Advances in Artificial Intelligence, EAAI 2019, Honolulu, Hawaii, USA,

January 27 - February 1, 2019, pages 4780–4789. AAAI Press, 2019.

[124] Gonglin Yuan, Bing Xue, and Mengjie Zhang. An evolutionary neural architecture

search method based on performance prediction and weight inheritance. Information

Sciences, page 120466, 2024.

[125] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing

Tan, Weijun Wang, Yukun Zhu, Ruoming Pang, Vijay Vasudevan, et al. Search-

ing for mobilenetv3. In Proceedings of the IEEE/CVF international conference on

computer vision, pages 1314–1324, 2019.

[126] Agoston E. Eiben and Jim Smith. From evolutionary computation to the evolution

of things. Nature, 521:476–482, 28 May 2015.

BIBLIOGRAPHY 165

[127] Edgar Galván. Neuroevolution in deep learning: The role of neutrality. arXiv

preprint arXiv: 2102.08475, 2021.

[128] Edgar Galván-López, James McDermott, Michael O’Neill, and Anthony Brabazon.

Defining locality in genetic programming to predict performance. In Proceedings

of the IEEE Congress on Evolutionary Computation, CEC 2010, Barcelona, Spain,

18-23 July 2010, pages 1–8, 2010.

[129] Edgar Galván-López, James McDermott, Michael O’Neill, and Anthony Brabazon.

Defining locality as a problem difficulty measure in genetic programming. Genetic

Programming and Evolvable Machines, 12(4):365–401, 2011.

[130] Alberto Moraglio, Krzysztof Krawiec, and Colin G. Johnson. Geometric semantic

genetic programming. In Carlos A. Coello Coello, Vincenzo Cutello, Kalyanmoy

Deb, Stephanie Forrest, Giuseppe Nicosia, and Mario Pavone, editors, PPSN (1),

volume 7491 of LNCS, pages 21–31. Springer, 2012.

[131] Edgar Galván-López, Efrén Mezura-Montes, Ouassim Ait ElHara, and Marc Schoe-

nauer. On the use of semantics in multi-objective genetic programming. In Julia

Handl et al., editors, Parallel Problem Solving from Nature – PPSN XIV: 14th In-

ternational Conference, Edinburgh, UK, September 17-21, 2016, Proceedings, pages

353–363. Springer, 2016.

[132] Nicholas Freitag McPhee, Brian Ohs, and Tyler Hutchison. Semantic building blocks

in genetic programming. In Proceedings of the 11th European conference on Genetic

programming, EuroGP’08, pages 134–145, Berlin, Heidelberg, 2008. Springer-Verlag.

[133] Quang Uy Nguyen, Xuan Hoai Nguyen, and Michael O’Neill. Semantic aware

crossover for genetic programming: the case for real-valued function regression. In

Genetic Programming: 12th European Conference, EuroGP 2009 Tübingen, Ger-

many, April 15-17, 2009 Proceedings 12, pages 292–302. Springer, 2009.

[134] Edgar Galván-López, Brendan Cody-Kenny, Leonardo Trujillo, and Ahmed Kattan.

Using semantics in the selection mechanism in genetic programming: A simple

method for promoting semantic diversity. In Proceedings of the IEEE Congress on

Evolutionary Computation, CEC 2013, Cancun, Mexico, June 20-23, 2013, pages

2972–2979, 2013.

[135] Stefan Forstenlechner, David Fagan, Miguel Nicolau, and Michael O’Neill. Towards

effective semantic operators for program synthesis in genetic programming. In Pro-

ceedings of the Genetic and Evolutionary Computation Conference, GECCO ’18,

pages 1119–1126, New York, NY, USA, 2018. ACM.

BIBLIOGRAPHY 166

[136] Nguyen Quang Uy, Michael O’Neill, Nguyen Xuan Hoai, Bob Mckay, and Edgar

Galván-López. Semantic Similarity Based Crossover in GP: The Case for Real-

Valued Function Regression, pages 170–181. Springer Berlin Heidelberg, Berlin,

Heidelberg, 2010.

[137] Alberto Moraglio and Riccardo Poli. Topological Interpretation of Crossover, pages

1377–1388. Springer Berlin Heidelberg, Berlin, Heidelberg, 2004.

[138] Frederico JJB Santos, Ivo Gonçalves, and Mauro Castelli. Neuroevolution with box

mutation: An adaptive and modular framework for evolving deep neural networks.

Applied Soft Computing, page 110767, 2023.

[139] Ivo Gonçalves, Sara Silva, and Carlos M Fonseca. Semantic learning machine: a

feedforward neural network construction algorithm inspired by geometric semantic

genetic programming. In Progress in Artificial Intelligence: 17th Portuguese Con-

ference on Artificial Intelligence, EPIA 2015, Coimbra, Portugal, September 8-11,

2015. Proceedings 17, pages 280–285. Springer, 2015.

[140] Lawrence Beadle and Colin G Johnson. Semantically driven mutation in genetic

programming. In 2009 IEEE Congress on Evolutionary Computation, pages 1336–

1342. IEEE, 2009.

[141] Lawrence Beadle and Colin G. Johnson. Semantically driven crossover in genetic

programming. In Proceedings of the IEEE Congress on Evolutionary Computation,

CEC 2008, June 1-6, 2008, Hong Kong, China, pages 111–116. IEEE, 2008.

[142] William B Langdon and Riccardo Poli. Foundations of genetic programming.

Springer Science & Business Media, 2013.

[143] Edgar Galván-López, Tom Curran, James McDermott, and Paula Carroll. Design

of an autonomous intelligent demand-side management system using stochastic op-

timisation evolutionary algorithms. Neurocomputing, 170:270–285, 2015.

[144] Edgar Galván-López, Adam Taylor, Siobhán Clarke, and Vinny Cahill. Design of an

automatic demand-side management system based on evolutionary algorithms. In

Proceedings of the 29th Annual Symposium on Applied Computing, SAC ’14, pages

525 – 530, Gyeongju, Korea, 26-28 March 2014. ACM.

[145] Edgar Galván-López and Riccardo Poli. Some steps towards understanding how

neutrality affects evolutionary search. In Thomas Philip Runarsson, Hans-Georg

Beyer, Edmund K. Burke, Juan Juli’an Merelo Guerv’os, L. Darrell Whitley, and

BIBLIOGRAPHY 167

Xin Yao, editors, Parallel Problem Solving from Nature - PPSN IX, 9th Interna-

tional Conference, Reykjavik, Iceland, September 9-13, 2006, Procedings, volume

4193, pages 778–787. Springer, 2006.

[146] Edgar Galván-López, Stephen Dignum, and Riccardo Poli. The effects of con-

stant neutrality on performance and problem hardness in GP. In Michael O’Neill,

Leonardo Vanneschi, Steven M. Gustafson, Anna Esparcia-Alcázar, Ivanoe De

Falco, Antonio Della Cioppa, and Ernesto Tarantino, editors, Genetic Program-

ming, 11th European Conference, EuroGP 2008, Naples, Italy, March 26-28, 2008.

Proceedings, volume 4971 of Lecture Notes in Computer Science, pages 312–324.

Springer, 2008.

[147] Riccardo Poli and Edgar Galván-López. On the effects of bit-wise neutrality on

fitness distance correlation, phenotypic mutation rates and problem hardness. In

Christopher R. Stephens, Marc Toussaint, Darrell Whitley, and Peter F. Stadler, ed-

itors, Foundations of Genetic Algorithms, pages 138–164, Berlin, Heidelberg, 2007.

Springer Berlin Heidelberg.

[148] Riccardo Poli and Edgar Galván-López. The effects of constant and bit-wise neu-

trality on problem hardness, fitness distance correlation and phenotypic mutation

rates. IEEE Trans. Evolutionary Computation, 16(2):279–300, 2012.

[149] Edgar Galván-López, Riccardo Poli, Ahmed Kattan, Michael O’Neill, and Anthony

Brabazon. Neutrality in evolutionary algorithms... what do we know? Evolving

Systems, 2(3):145–163, 2011.

[150] Edgar Galván-López, James McDermott, Michael O’Neill, and Anthony Brabazon.

Towards an understanding of locality in genetic programming. In Proceedings of the

12th Annual Conference on Genetic and Evolutionary Computation, GECCO ’10,

pages 901–908, New York, NY, USA, 2010. ACM.

[151] Edgar Galván-López, Riccardo Poli, and Carlos A. Coello Coello. Reusing code

in genetic programming. In Maarten Keijzer, Una-May O’Reilly, Simon M. Lucas,

Ernesto Costa, and Terence Soule, editors, Genetic Programming, 7th European

Conference, EuroGP2004, Coimbra, Portugal, April 5-7, 2004, Proceedings, volume

3003 of Lecture Notes in Computer Science, pages 359–368. Springer, 2004.

[152] Kalyanmoy Deb, Amrit Pratap, Sameer Agarwal, and TAMTMeyarivan. A fast and

elitist multiobjective genetic algorithm: Nsga-ii. IEEE transactions on evolutionary

computation, 6(2):182–197, 2002.

BIBLIOGRAPHY 168

[153] Krzysztof Krawiec and Tomasz Pawlak. Locally geometric semantic crossover: a

study on the roles of semantics and homology in recombination operators. Genetic

Programming and Evolvable Machines, 14:31–63, 2013.

[154] Urvesh Bhowan, Mark Johnston, Mengjie Zhang, and Xin Yao. Evolving diverse

ensembles using genetic programming for classification with unbalanced data. IEEE

Transactions on Evolutionary Computation, 17(3):368–386, 2012.

[155] Urvesh Bhowan, Mengjie Zhang, and Mark Johnston. Multi-objective genetic pro-

gramming for classification with unbalanced data. In Ann Nicholson and Xiaodong

Li, editors, AI 2009: Advances in Artificial Intelligence, pages 370–380, Berlin,

Heidelberg, 2009. Springer Berlin Heidelberg.

[156] Arthur Asuncion, David Newman, et al. Uci machine learning repository, 2007.

[157] Carlos A. Coello Coello, Gary B. Lamont, and David A. Van Veldhuizen. Evolu-

tionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary

Computation). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.

[158] Zhixing Huang, Yi Mei, and Jinghui Zhong. Semantic linear genetic programming

for symbolic regression. IEEE Transactions on Cybernetics, 2022.

[159] Stefan Forstenlechner. Program synthesis with grammars and semantics in genetic

programming. PhD thesis, University College Dublin, 2019.

[160] Shuchao Deng, Zeqiong Lv, Edgar Galván, and Yanan Sun. Evolutionary neural ar-

chitecture search for facial expression recognition. IEEE Transactions on Emerging

Topics in Computational Intelligence, 7(5):1405–1419, 2023.

[161] Waseem Rawat and Zenghui Wang. Deep convolutional neural networks for image

classification: A comprehensive review. Neural computation, 29(9):2352–2449, 2017.

[162] Riccardo Poli, William B. Langdon, and Nicholas Freitag McPhee. A field guide

to genetic programming. Published via http://lulu.com and freely available at

http://www.gp-field-guide.org.uk, 2008. (With contributions by J. R. Koza).

[163] Yuqiao Liu, Yanan Sun, Bing Xue, Mengjie Zhang, Gary Yen, and Kay Tan. A

survey on evolutionary neural architecture search. IEEE transactions on neural

networks and learning systems, PP, 08 2021.

[164] Paul Templier, Emmanuel Rachelson, and Dennis G Wilson. A geometric encod-

ing for neural network evolution. In Proceedings of the Genetic and Evolutionary

Computation Conference, pages 919–927, 2021.

BIBLIOGRAPHY 169

[165] Anthony M Zador. A critique of pure learning and what artificial neural networks

can learn from animal brains. Nature communications, 10(1):1–7, 2019.

[166] Julian F. Miller. Cartesian Genetic Programming, pages 17–34. Springer Berlin

Heidelberg, Berlin, Heidelberg, 2011.

[167] Garnett Wilson and Wolfgang Banzhaf. A comparison of cartesian genetic pro-

gramming and linear genetic programming. In European Conference on Genetic

Programming, pages 182–193. Springer, 2008.

[168] Dario Izzo, Francesco Biscani, and Alessio Mereta. Differentiable genetic program-

ming. In Genetic Programming: 20th European Conference, EuroGP 2017, Ams-

terdam, The Netherlands, April 19-21, 2017, Proceedings 20, pages 35–51. Springer,

2017.

[169] Marcus Märtens and Dario Izzo. Neural network architecture search with differen-

tiable cartesian genetic programming for regression. In Proceedings of the genetic

and evolutionary computation conference companion, pages 181–182, 2019.

[170] Mohamed Amine Bouhlel, John T. Hwang, Nathalie Bartoli, Rémi Lafage, Joseph

Morlier, and Joaquim R. R. A. Martins. A python surrogate modeling framework

with derivatives. Advances in Engineering Software, page 102662, 2019.

[171] Dheeru Dua and Casey Graff. UCI machine learning repository, 2017.

[172] Donald R Jones, Matthias Schonlau, andWilliam JWelch. Efficient global optimiza-

tion of expensive black-box functions. Journal of Global optimization, 13:455–492,

1998.

[173] Fabio Alexandre Spanhol, Luiz S Oliveira, Caroline Petitjean, and Laurent Heutte.

Breast cancer histopathological image classification using convolutional neural net-

works. In 2016 international joint conference on neural networks (IJCNN), pages

2560–2567. IEEE, 2016.

[174] Yassir Benhammou, Boujemaa Achchab, Francisco Herrera, and Siham Tabik.

Breakhis based breast cancer automatic diagnosis using deep learning: Taxonomy,

survey and insights. Neurocomputing, 375:9–24, 2020.

[175] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer.

Smote: synthetic minority over-sampling technique. Journal of artificial intelligence

research, 16:321–357, 2002.

[176] Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for

large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.

BIBLIOGRAPHY 170

[177] Silvia Cascianelli, Raquel Bello-Cerezo, Francesco Bianconi, Mario L Fravolini,

Mehdi Belal, Barbara Palumbo, and Jakob N Kather. Dimensionality reduction

strategies for cnn-based classification of histopathological images. In Intelligent

Interactive Multimedia Systems and Services 2017 10, pages 21–30. Springer, 2018.

[178] Vibha Gupta and Arnav Bhavsar. An integrated multi-scale model for breast

cancer histopathological image classification with joint colour-texture features. In

Computer Analysis of Images and Patterns: 17th International Conference, CAIP

2017, Ystad, Sweden, August 22-24, 2017, Proceedings, Part II 17, pages 354–366.

Springer, 2017.

[179] Mukta Sharma, Rahul Singh, and Mahua Bhattacharya. Classification of breast

tumors as benign and malignant using textural feature descriptor. In 2017 Ieee

international conference on bioinformatics and biomedicine (bibm), pages 1110–

1113. IEEE, 2017.

[180] Abdullah-Al Nahid and Yinan Kong. Histopathological breast-image classification

using local and frequency domains by convolutional neural network. Information,

9(1):19, 2018.

[181] Abdullah-Al Nahid, Mohamad Ali Mehrabi, Yinan Kong, et al. Histopathological

breast cancer image classification by deep neural network techniques guided by local

clustering. BioMed research international, 2018, 2018.

[182] R Karthiga and K Narasimhan. Automated diagnosis of breast cancer using wavelet

based entropy features. In 2018 Second international conference on electronics,

communication and aerospace technology (ICECA), pages 274–279. IEEE, 2018.

[183] Sawon Pratiher and Subhankar Chattoraj. Diving deep onto discriminative ensem-

ble of histological hashing & class-specific manifold learning for multi-class breast

carcinoma taxonomy. In ICASSP 2019-2019 IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 1025–1029. IEEE, 2019.

[184] Joke A. Badejo, Emmanuel Adetiba, Adekunle Akinrinmade, and Matthew B.

Akanle. Medical image classification with hand-designed or machine-designed tex-

ture descriptors: a performance evaluation. In Bioinformatics and Biomedical Engi-

neering: 6th International Work-Conference, IWBBIO 2018, Granada, Spain, April

25–27, 2018, Proceedings, Part II 6, pages 266–275. Springer, 2018.

[185] Abdullah-Al Nahid, Aaron Mikaelian, and Yinan Kong. Histopathological breast-

image classification with restricted boltzmann machine along with backpropagation.

Biomedical Research, 29(10):2068–2077, 2018.

BIBLIOGRAPHY 171

[186] Kausik Das, Sailesh Conjeti, Abhijit Guha Roy, Jyotirmoy Chatterjee, and Deb-

doot Sheet. Multiple instance learning of deep convolutional neural networks for

breast histopathology whole slide classification. In 2018 IEEE 15th International

Symposium on Biomedical Imaging (ISBI 2018), pages 578–581. IEEE, 2018.

[187] Kundan Kumar and Annavarapu Chandra Sekhara Rao. Breast cancer classification

of image using convolutional neural network. In 2018 4th International Conference

on Recent Advances in Information Technology (RAIT), pages 1–6. IEEE, 2018.

[188] MA Aswathy and M Jagannath. An svm approach towards breast cancer classifica-

tion from h&e-stained histopathology images based on integrated features. Medical

& biological engineering & computing, 59(9):1773–1783, 2021.

[189] Atharv Bhosekar and Marianthi Ierapetritou. Advances in surrogate based mod-

eling, feasibility analysis, and optimization: A review. Computers & Chemical

Engineering, 108:250–267, 2018.

[190] Löıc Lannelongue, Jason Grealey, and Michael Inouye. Green algorithms: quanti-

fying the carbon footprint of computation. Advanced science, 8(12):2100707, 2021.

[191] Sungheon Park and Nojun Kwak. Analysis on the dropout effect in convolutional

neural networks. In Computer Vision–ACCV 2016: 13th Asian Conference on

Computer Vision, Taipei, Taiwan, November 20-24, 2016, Revised Selected Papers,

Part II 13, pages 189–204. Springer, 2017.

[192] Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geof-

frey Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated

mixture-of-experts layer. arXiv preprint arXiv:1701.06538, 2017.

[193] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger. Densely connected

convolutional networks. In 2017 IEEE Conference on Computer Vision and Pattern

Recognition (CVPR), pages 2261–2269, 2017.

[194] Guoping Xu, Xiaxia Wang, Xinglong Wu, Xuesong Leng, and Yongchao Xu. Devel-

opment of skip connection in deep neural networks for computer vision and medical

image analysis: A survey. arXiv preprint arXiv:2405.01725, 2024.

[195] Kaspar Riesen and Horst Bunke. Approximate graph edit distance computation by

means of bipartite graph matching. Image and Vision computing, 27(7):950–959,

2009.

[196] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbigniew Wo-

jna. Rethinking the inception architecture for computer vision. In Proceedings of

BIBLIOGRAPHY 172

the IEEE conference on computer vision and pattern recognition, pages 2818–2826,

2016.

[197] Daniel H. Stolfi and Enrique Alba. Epigenetic algorithms: A new way of building

gas based on epigenetics. Information Sciences, 424:250–272, 2018.

[198] William La Cava, Thomas Helmuth, Lee Spector, and Kourosh Danai. Genetic

programming with epigenetic local search. In Proceedings of the 2015 Annual Con-

ference on Genetic and Evolutionary Computation, pages 1055–1062, 2015.

[199] Gunter Meister and Thomas Tuschl. Mechanisms of gene silencing by double-

stranded rna. Nature, 431(7006):343–349, 2004.

[200] Ronald L Iman and Michael J Shortencarier. Fortran 77 program and user’s guide for

the generation of latin hypercube and random samples for use with computer mod-

els. Technical report, Sandia National Lab.(SNL-NM), Albuquerque, NM (United

States), 1984.

[201] Daniel Kermany, Kang Zhang, Michael Goldbaum, et al. Labeled optical coherence

tomography (oct) and chest x-ray images for classification. Mendeley data, 2(2):651,

2018.

[202] Daniel S Kermany, Michael Goldbaum, Wenjia Cai, Carolina CS Valentim, Huiying

Liang, Sally L Baxter, Alex McKeown, Ge Yang, Xiaokang Wu, Fangbing Yan, et al.

Identifying medical diagnoses and treatable diseases by image-based deep learning.

cell, 172(5):1122–1131, 2018.

[203] Bastian Rieck, Matteo Togninalli, Christian Bock, Michael Moor, Max Horn,

Thomas Gumbsch, and Karsten Borgwardt. Neural persistence: A complex-

ity measure for deep neural networks using algebraic topology. arXiv preprint

arXiv:1812.09764, 2018.

	Introduction
	Motivation
	Research Goals
	Thesis Structure
	List of Publications
	Peer-reviewed Publications Pertinent to this Thesis
	Peer-reviewed Publications Not Pertinent to this Thesis

	Background
	Evolutionary Algorithms
	Genetic Programming
	Tree-based Genetic Programming
	Linear Genetic Programming
	Semantics in Genetic Programming

	Surrogate-assisted Evolutionary Algorithm
	Surrogate Model-based Optimisation
	Kriging (Gaussian Processes)
	Kriging Partial Least Squares
	Phenotypic Distance Vectors

	Multi-objective Optimisation
	Multi-objective Optimisation
	Pareto Dominance
	The Non-dominated Sorting Genetic Algorithm II
	The Strength Pareto Evolutionary Algorithm 2
	Crowding Distance
	Multi-Objective Evolutionary Algorithm with Decomposition

	Deep Neural Networks
	Convolutional Neural Networks
	Neuroevolution of Deep Neural Networks
	Further Details on Parameters and Layers used in this Work

	Literature Review
	A Brief History of Artificial Neural Networks and Evolutionary Algorithms
	Neural Architecture Search
	Neuroevolution
	Artificial Neural Networks
	Deep Neural Networks

	Surrogate-Assisted Evolutionary Algorithms for Neuroevolution
	Semantics in Genetic Programming and Phenotypic Distance
	Semantics in Genetic Programming
	Semantics and its Relevance to Surrogate-Assisted Neuroevolution

	Semantic-based Metrics in Multi-objective Genetic Programming
	Introduction
	Semantics in NSGA-II and SPEA-II
	Semantics in MOEA/D

	Implementation Details
	Results
	Semantic Approaches for Pareto-based Optimisation
	Semantic Approaches for Decomposition-based Optimisation

	Summary
	Summary of Results
	Discussion on Semantics and its Role in Neuroevolution

	NeuroLGP-SM: A surrogate-assisted approach to Neuroevolution using Linear Genetic Programming
	Introduction
	Motivation
	Properties of Linear Genetic Programming
	Limitation of Traditional Kriging Approach

	Methodology
	NeuroLGP
	NeuroLGP with Surrogate Model (NeuroLGP-SM)
	Genetic Operations and Repair Mechanism

	Implementation Details
	Results
	Preliminary Analysis of the Baseline Model
	Comparison of Baseline, Surrogate and Expensive
	Comparing our Results against the State-of-the-art
	Analysis of the Surrogate Model
	Analysis of Genotype
	Limitations of our Analysis

	Summary

	NeuroLGP-MB: Scaling Topological Complexity with a Pre-Selection Surrogate Model
	Introduction
	Methodology
	NeuroLGP-Multi-Branch
	Genetic Operations
	Surrogate Model with Pre-Selection

	Implementation Details
	Datasets
	Scaling Complexity

	Results
	Discussion on Architectures Found
	Performance Analysis
	Surrogate Analysis
	Time Analysis
	Network Depth and Complexity
	Varying Epoch Length
	Discussion and Limitations

	Summary

	Conclusions
	Original Contributions of this Thesis
	Conclusions on the use of SAEAs in Neuroevolution for NAS in DNNs
	Limitations and Future Work

	Appendix A
	Additional Tables Relating to Chapter 4
	Additional Comparison of Pay-off Tables for Chapter 4
	Additional Images Relating to Chapter 4

	Appendix B
	Additional Figures Relating to Chapter 6
	Example Configuration Files used in Chapters 5 and 6

	Bibliography

