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All the genuine, deep delight of life is in showing people the mud-pies
you have made; and life is at its best when we confidingly recommend
our mud-pies to each other’s sympathetic consideration.

— J. M. Thorburn






Abstract

Institution theory is the abstract study of logical systems using category
theory. The theory has expanded since the ’80s to encompass and relate
a wide range of concrete logical systems. But inducting particular logical
systems into the theory can be tiresome—often straightforward, but
repetitive, technical, and prone to error. Worse, such work suffers from
the very problem which motivates abstraction: we find ourselves proving
the same things over and over again.

In this thesis we will describe a framework for easing the process
of constructing institutions and verifying their properties. The goal is
primarily to expedite the verification of those proof obligations most com-
monly involved in constructing institutions. We start by encoding the
institution for first-order predicate logic, turning later to the semantics
for the Event-B modelling method. We then explore a particular logic
combination of Event-B and linear temporal logic, as well as some inter-
esting institution-independent constructions that enable generic logic
combinations and translations—all of which will serve as useful work in
its own right, but also as a demonstration of the framework.
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Tsolomitis’s New Computer Modern,* the script font is STIX Two,®
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Introduction and Motivation

In this chapter, we’ll motivate the research and explain our approach.
We’ll outline the rest of the thesis, which properly begins in CHAPTER 2.

1.1 Research Summary

Institutions capture the abstract notion of ‘logical system’. Introduced by
Joseph Goguen and Rod Burstall, they have a reasonably long history by
now, making their first official appearance in [GB84] and fleshed out in
[GB92]. Their mathematical history goes back even further to Goguen
and Burstall’s semantics for Clear [BG79] and K. Jon Barwise’s axioms
for abstract model theory [Jon74], in which a proto-satisfaction condition
appears as the ‘translation axiom’. Institution theory allows us to study
logical systems in the general case, and by showing that particular logical
systems are institutions we may import all of the benefits of the general
theory.

A ‘logical system’ provides a syntax for writing down certain sorts of
sentences, as well as a way to interpret the meaning of those sentences.
For example: temporal logic eases reasoning about time; modal logic
eases reasoning about counterfactuals; linear logic eases reasoning about
resources; Hoare logic eases reasoning about imperative programming
languages; the list goes on. It is common in the literature to find minor
variations on these logics, so that we do not just have one “Temporal
Logic’, but really a family of logics that all reason about temporal proper-
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ties in slightly different ways. This has the effect of ballooning the total
number of distinct logical systems out there in the literature.

A key observation of Goguen and Burstall in [GB92] was that certain
results common in applications are actually independent of the particular
logic. If so, and if institutions are the right abstraction of ‘logical system’,
then we expect these general results to be true of institutions with only
minimal extra assumptions.

Another advantage is that institutions put logic translation front and
center, allowing us to formally relate multiple similar logics, to impute
a semantics to one logic via translation into another more established
logic, or even to state semantics-preserving translations from one logic
into another, permitting the reuse of existing theorem provers to check
the veracity of translated sentences.

Much of the motivation for this work is in Marie Farrell’s thesis [Farl7],
in which she defines an institution—and therefore a semantics—for
Event-B. An important goal, successfully achieved, was to prove that her
institution for Event-B, called EVT, satisfied the amalgamation property.
This showed that EVT supports important modularisation constructs.

But constructing institutions by hand and proving their satisfaction
conditions, much less using them in practice, can be anything from te-
dious to onerous—a task reserved for those few experts who know in-
stitution theory intimately, preventing wider adoption. To address this
problem, we formalise the theory of institutions in the Coq proof as-
sistant [Coq23]. The central research question is this: How can we best
harness Coq to ease the process of constructing institutions and verifying
their properties?

This thesis contributes a formalisation of the theory of institutions
in Coq, which also serves as a framework for the future development
of institutions in an interactive proof assistant. First, we prove the sat-
isfaction condition for a key institution: first-order predicate logic with
equality, FOPEQ, the first such machine-assisted proof of which we
are aware. Much of the machinery we develop to prove this turns out
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to be of great general use, in no small part because many institutions
are either similar to or directly build upon FOPEQ. This means we can
make relatively short work of EVT and it’s logical core ACT which we
define in CHAPTER 4. Better still; because EVT and ACT are based on
a rather generic notion of ‘variable update’, the proofs involved for their
satisfaction conditions turn out to be of general use for any institution
in which there appears a designated set of state variables—this includes
LTL and MacEVT, two institutions that we will define in CHAPTER 5.
The framework was not altogether trivial to develop, but with the founda-
tional work done, we have hopes that it can be easily and fruitfully iterated
upon.

We tested a range of potential new institutions in this framework, the
majority of which do not appear in this thesis because they were faulty for
one reason or another —and we were able to identify those faults quickly
within the framework. The speed of development of new institutions
has increased dramatically. And though the framework still needs work
to become more generally useful, especially to those without a lot of
experience with Coq, I believe that it is only a matter of time.

1.1.1 Publications

There are a number of peer-reviewed publications related to this work.
The first is a 4 page ABZ 2021 conference paper [Rey21] which gives
a very brief overview of our formalisation of Farrell’s institution for
Event-B in Coq. The next is a 16 page TASE 2022 conference paper
[RM22] which gives much more details about the formalisation of first-
order logic in Coq, containing elements of the second, third, fourth, and
final chapters of this thesis. We expanded on this in a 2024 SCP journal
paper [RM24]. The work in CHAPTER 5 is new and has not yet been
published anywhere.
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1.2 Related Work

Though the goals of the thesis broadly have been heretofore unexplored
in the literature, there is a wealth of related ideas.

Related formalisations We build directly on the work done by Emmanuel
Gunther, Alejandro Gadea, and Miguel Pagano formalising multi-sorted
universal algebra in Agda [GGP18]. We also note some other work in
this direction in Coq by Venanzio Capretta [Cap99], by Gianluca Amato,
Marco Maggesi, Maurizio Parton and Cosimo Perini Brogi [Ama+20],
as well as Andreas Lynge and Bas Spitters [LS19]. Our approach most
resembles Gunther’s but deviates to enable a particular implementation
of quantifiers.

Alternatives to institutions One alternative to institutions for the se-
mantics of imperative programming languages is Unifying Theories of
Programming (UTP) [H]J98], based on set theory and first-order logic.
This sounds somewhat specific for the stated goals of the thesis, but
programs and specifications do not really represent a difference in kind
as much as a difference in degree—specifications are typically loose con-
straints on an execution trace, and programs are typically tight constraints
on an execution trace. Event-B, the tool that forms a key example in
CHAPTERS 4 & 5, is based on a similar conception of programs and
specifications; a central feature of Event-B is its support for syntactical
machine refinement from ‘abstract’ machines (‘specifications’) to ‘con-
crete’ machines (‘programs’) [Abrl0]. While this could be a sensible
approach to a semantics for Event-B, we are doing more than just form-
alising a semantics for Event-B.

Alternativesto Coqg The Coq proof assistant [Coq23] is a popular choice
for formalising programming language semantics—and as indicated, pro-
gramming languages are not so different from logics as far as institutions
are concerned. It is based on a dependent type theory called the calculus
of inductive constructions [CH88], which allows for elegant representa-
tions of complicated mathematical objects.
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We considered Isabelle/HOL as an alternative to Coq; the book Con-
crete Semantics [NK14] is a textbook on Isabelle where the second part fo-
cuses on formalising the syntax and semantics of programming languages.
There are multiple formalisations of category theory in Isabelle/HOL,
for example [OKe04]. There is even Isabelle/UTP [FZW15], a mech-
anisation of UTP in Isabelle/HOL. We ultimately went with Coq due
to its dependent type system and the more convincing and complete
formalisations of category theory—but there is of course no reason why
Isabelle/HOL would not work.

Other proof assistants worth mentioning are Agda [Agd], which has
better support for dependently typed programming but no tactic lan-
guage; Lean [dMou+15], which is based on a very similar type theory
to Coq but which is much newer and less mature than Coq; and the
experimental Arend proof assistant [Are] for homotopy type theory.

Logical frameworks such as Dedukti® or Twelf,® both based on the
AlI-calculus [CDO07], can be used to express theories and logics—but it
seems to me that we need to be able to express the logics themselves as
objects for manipulation (specifically institutions), and it is not clear that
these frameworks are any advantage in that regard over Coq. Interaction
between our developments and Dedukti, however, would certainly be a
topic for future consideration.

There is also Florian Rabe’s scalable module system for mathemat-
ical theories, MMT, a ‘mathematical knowledge management’ system
[RK13]. But this is more of a system for expressing and representing
logical frameworks in a uniform setting than a tool that can help us to
show that the representations themselves are sound.

Alternatives to Wiegley’s category theory library Institutions are based on
category theory, so it is important that we build on existing work form-
alising category theory in Coq. We use John Wiegley’s category theory
library [Wiel4], but there are many others—most notably the category
theory developments in the Cog-HoTT library'® based on homotopy type
theory [UFP14]. These developments are excellent, but the biggest ad-
vantage of Wiegley’s library is that it is axiom free, meaning we’re free
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to add whatever axioms we think we need as long as they are consistent
with the Coq kernel. The homotopy type theory developments assume
the univalence axiom, which contradicts axioms we use here, namely

uniqueness of identity progfs. More on that in SECTION 2.2.3.

1.3 Validity of Machine-Assisted Proofs

Proof assistants are software, and like all software prone to error. Bugs
in Coq are caught and fixed all the time. Some surely lurk there still.
How then are we to trust that the proof checker is correct? And even
if we do trust it, how can we be sure that the encoding of mathematics
in the proof assistant accurately models mathematical reality? We must
not believe the fantasy that we can encode a mathematical statement in a
proof assistant, see that the proof checker declares it correct, and assume
that the corresponding natural language fact is true.

Proof assistants are just that: assistants. There is no way to expunge
humans from the verification and validation process. Trust in a proof
assistant is not blind but collaborative—we work wst/ the assistant to
achieve a peculiar approximation of certainty. But since we nevertheless
regard certification by a proof assistant as somehow increasing our cer-
tainty, we must be deferring a degree of real work to it. We are trusting
to some extent that it upholds its end of the deal. Does it?

If Coq can be trusted for any reason, especially compared to other
interactive proof assistants, it is because it has been well-tested.* It is
one of the most popular proof assistants out there—and with so many
experts relying on it for its correctness, bugs in the system are caught
and fixed quickly. There is even the MetaCoq project which formalises
Coq itself within Coq [Soz+20].

Well and good, but bugs remain, or so we must assume. How does
this avoid vitiating work done in Coq? We must ask whether our proofs

*This is discussed in [Rog+22]. It might seem besides the point—we can either
trust it (because it’s correct) or we can’t (because it’s not)—but trust is a function of
what we know and not what 75, and more eyeballs means more opportunities to spot
problems. There can be no absolute certainty here since we are comparing an idea with
its representation. We should take all the evidence we can get.
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leverage those bugs in a meaningful way. This is a bigger problem for auto-
mated proof assistants than interactive ones because automated systems
may typically choose freely among the available reasoning principles.
Suppose I add a contradiction to my list of axioms:

Axiom oops : V (A : Prop), A A -A. 1.3.1

Many automated provers will quickly discover that they can dramatic-
ally simplify their proofs by employing this remarkable axiom! But in an
interactive setting, there’s no reason to believe that we might by mere
virtue of this axiom’s existence accidentally prove falsehoods. We per-
fectly well understand that this axiom introduces an inconsistency, and
we’re in the driver’s seat, so we avoid it. Moreover, when writing proofs
we often know that something is wrong when a conclusion seems to not
‘really follow’ from the assumptions. Humans require not just proofs,
but reasons, and proofs that leverage contradictions are often bereft of
reasons.

This example is artificial, but consider this example of a real bug in
Agda. In Agda 2.5.3, irrelevant projections made it possible to prove
true = false [Gil+19]." But the derivation of this inconsistency is some-
what delicate, so it is hard to see how many existing developments in
Agda could possibly leverage it or inconsistencies akin to it in their own
proofs unless they make very heavy and complex use of irrelevant pro-
jections. And even so, does that imply that their work is unsalvagable,
relying crucially upon such an inconsistency? It’s possible, but unlikely.

The more serious problem in my view is that of encoding. We do
not deal directly with mathematical reality in a proof assistant, we deal
with its representation in a formal system —in Coq’s case, a dependent
type theory. Consider sets. In type theory, sets are not primitives, so we
must represent them using type-theoretic machinery. Usually, but not
always, a set S C U is represented by its membership predicate, since
predicates have a natural representation as type families S : U — Prop,
where € S in set theory is written S(z) in type theory. But is this

TSee also this GitHub issue: github.com/agda/agda/issues/543.
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really the same object? If we prove something for such a type family,
have we proved it for its ‘equivalent’ set? If not, what can we say we’ve
proved? Does this representation import all of the baggage of sets? Can
we distinguish sets and classes? Do we need to? More generally, if a
statement involving sets is true in Coq, is its ‘equivalent’ statement in
set theory true too? These issues of encoding are quite serious, and we
will deal with them as they arise in the thesis. (See [Barl0] for a set-
theoretical model of the calculus of constructions, which goes some way
to investigating the questions posed above, and see SECTION 2.2 fora
more detailed discussion of the relationship between set theory and type
theory.)

For now let’s say this: Our encoding will try to be more relaxed in
general —we assume very little about the components that make up the
theory. We only assume what we need to prove the results we are inter-
ested in, while still retaining the basic shape of the theory. This helps to
make the formalisation believable. If I assume much fewer things than
necessary to flesh out the full mathematical object, then it is much easier
for me to believe that what is true for the representation is true for the
mathematical object.

There’s one more modelling decision worth discussing. Any embed-
ding of an object logic in a proof assistant (the meta-logic) can be shallow
or deep. A shallow embedding represents the object logic’s sentences
directly as sentences in the meta-logic. A deep embedding represents
the object logic’s sentences as data in the meta-logic. Shallow embed-
dings are simpler to implement than deep embeddings—we get semantic
interpretation of sentences ‘for free’ since we are representing object
sentences directly in the model —but make it very difficult to prove meta-
theorems about the logic. We are quite directly interested in proving
metatheorems about the object logics, so we choose a deep embedding.
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1.4 How to Read This Thesis

This thesis is written in such a way that it should be possible to jump
around as you wish. Every chapter except CHAPTER 6 builds directly
on the previous chapter. Of course, if you are so inclined, I would re-
commend reading it start to finish, but I'm not so naive as to believe that
anyone besides my thesis examiners and a select few dedicated proofread-
ers will do that. (I appreciate your sacrifice.) Your time is valuable and I
encourage you to pick around.

There is an index on page 139 as well as special indices for mathemat-
ical symbols and Coq tactics on pages 133 and 135 respectively.

Almost everything in the thesis has been labelled, including every
single code listing—though not every listing is explicitly referenced in
the text. Since there are many—many—listings in this thesis, I had to
invent a less obtrusive method of captioning:

Fixpoint factorial (n : nat) : nat := 1.4.1

match n with

| @ =>1
| S k =>5S k * factorial k
end.

Notice the small number on the top right? This will be referenced as
LISTING 1.4.1, with a numbering system independent of definitions,
theorems, etc. If you’re reading this in a PDF reader, any text set in
small-caps is a clickable cross-reference.

There are occasional references to the GitHub repository where all
the work is stored:

https://github.com/ConorReynolds/cog-institutions/tree/thesis

Those references look like this: Core/Basics.v#L24. If you're reading
this in a PDF reader, this text is hyperlinked to the repository. If not,
interpret this as the instructions ‘navigate to line 24 in the file Basics.v in
the directory theories/Core’. Make sure you navigate to the ‘thesis’ tag,
otherwise the code there may not reflect the code in the thesis.


https://github.com/ConorReynolds/coq-institutions/tree/thesis
https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Core/Basics.v#L24
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Everything else has been done in a conventional manner and doesn’t
require explanation. I’ll give a brief synopsis of the thesis now so you can
skip ahead to whatever takes your fancy.

CHAPTER 2 Mathematical background— category theory, institution
theory, universal algebra, dependent type theory. If you’re comfortable
with all of these topics then I certainly encourage you to skip (or at least
skim) most of this chapter and return to it as needed.

CHAPTER 3 Covers the basics of the formalisation and encodes the
institution for first-order logic in Coq called FOPEQ), including a proof of
its satisfaction condition. Develops most of the proof techniques required
for the remainder of the thesis.

CHAPTER 4 Builds upon the previous chapter to construct a simplified
institution for Event-B called ACT, including a proof of its satisfaction
condition. Introduces a few more proof techniques for working with
institutions with state.

CHAPTER 5 Iterates on the ideas so far introduced and constructs
an institution combining a bespoke linear temporal logic with Event-B
using a duplex construction and a novel institution for Event-B called
MacEVT, which directly encodes the machine semantics of Event-B.

CHAPTER 6 Discusses some interesting institution-independent con-
structions, formalises some institution-independent model theory, the
amalgamation property, deductive systems for institutions, etc. This
chapter is part concrete results and part speculation about future direc-
tions, and shows (we hope) the full scope of what is possible within the

framework.

CHAPTER 7 Concludes the thesis and discusses more speculative fu-

ture research directions.
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Mathematical Background

The required mathematical background for this thesis is not so extensive.
For completeness, we record it here and refer back to it later.

We will cover basic category theory in SECTION 2.1. Then we dis-
cuss the relevant differences between set theory and type theory in SEC-
TION 2.2. Institutions will be defined in SECTION 2.3, followed by
universal algebra and first-order logic in SECTION 2.4. Feel free to skip
this chapter and return as needed.

2.1 Category Theory

The category-theoretic prerequisites for most of this thesis are relatively
light, requiring only basic knowledge of categories, functors, and natural
transformations. I recommend Emily Rieh!’s freely available Category
Theory in Context [Riel7] or Steve Awodey’s Category Theory [Awol0]
for a more detailed account.

If you are not familiar with category theory, it might help to think of
categories, functors, and natural transformations in the terms outlined
in Joseph Goguen’s ‘Categorical Manifesto’ [Gog91]. Therein Goguen
describes various ‘categorical dogmas’—informal heuristics which can
help to identify appropriate applications of categorical concepts, and
which also double up as useful mental models of those concepts. We will
paraphrase the relevant dogmas as appropriate.
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2.1.1 Definition [Riel7]. A category 6 consists of a collection of objects
and a collection of morphisms, such that:

« Eachmorphism f has a domain object a and codomain object b, written
f: a = b. We will write dom(f) = a and cod(f) = b.

« For each object a there is an identity morphism 1, : @ — a.

« For any morphisms f : a — band g : b — ¢, with cod(f) =
dom(g), there is a composite morphism go f : a — c.

These data are subject to the following laws:

o Identity:Forany f : a — b,wehave lyo f = fol, = f.
o Composition: The composites f o (g o h) and (f o g) o h are equal.

Each kind of mathematical object generally corresponds to a category
consisting of those objects and structure-preserving morphisms between
them —sets and set-functions, groups and group homomorphisms, sig-
natures and signature morphisms (as we will soon see), and so on.

The expression £ € € means that z is an object of ‘6. When the
category is clear, we will write f : @ — b for a morphism in ‘6 from a
to b; when it is not clear, we will write f € homg(a, b). We will not use
the diagrammatical order f 5 g = g o f of function composition since
the presentation is not thereby improved.

Two standard categories appear throughout the paper—the category
Set of all sets and set-functions, and the category Cat of all (small) cat-
egories and functors between them.

2.1.2 Definition [Riel7]. A functor F' : ‘€ — & between categories ‘€
and 9 consists of

« anobject F'z € D for each object z € 6; and
« amorphism F(f) : Fa — Fb for each morphism f : a — b,

subject to the following laws:

o ldentity: F(1,) = 1p,.
o Composition: F(go ) = F(g) o F(f).
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Functors are mappings between categories that preserve the categor-
ical structure. It may be best in this context to think of a functor from
the category of z’s into the category of y’s as a construction of y’s over
x’s [Gog91]. For example, later on we will define a ‘sentence functor’
from a category of signatures to Set, which will give us two things: the
set of sentences built over any given signature, and a way to lift signature
morphisms to sentence morphisms that preserve the sentence structure.

2.1.3 Definition [Riel7]. A natural transformationn : F' = G between
functors F',G : 6 — D consists of a collection of morphisms 7, :
Fa — Gain D for each a € 6, such that, forany f : a — bin 6, the
following diagram commutes.

Fa —=% Ga

of e

Fb —— Gb
i
The n, : Fa — Ga are called the components of .

Natural transformations represent a relationship or mapping between
two functors (constructions). We will see natural transformations much
later in CHAPTERS 5 & 6 when we discuss institution morphisms. The
simplest context to see them in action is with duplex institutions, dis-
cussed in SECTION 5.6. More complex categorical constructions will
be defined as we need them.

2.2 Set Theory and Type Theory

The implied (or explicit) foundation for much practical mathematics is
set theory. Institution theory is no exception. But since we intend to
encode institutions in a dependent type theory, in which the notion of
‘set’ is not basic, we should explain how to translate some set-theoretic
constructions to type theory. Mike Shulman’s blog post on this topic is
a good introductory read [Shul3]. Further information can be found in
the homotopy type theory book [UFP14].
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Set theory and its accompanying logic can be thought of as a formal
deductive system with a single judgement: ‘A is true’, or ‘A has a proof’
[UFP14]. Note that the judgement ‘A is true’ is distinguished from the
proposition A—the first is a statement in the metalanguage outside the
deductive system, but the second is a statement in the deductive system
itself. Type theory, however, has two judgements: a : T, meaning ‘a has
the type T° and a = b : T, meaning ‘a and b are definitionally equal
terms of type 1. We will discuss them in turn.

2.2.1 Set membership and typing judgements
What does z € S mean informally? That depends. Suppose I write
Letn € N.

This is a declaration that n is a natural number. It is not a proposition
that can be true or false. But now suppose £ C Nis the set of all even
numbers, and I write

Ifn € Ethenn+1 ¢ E.

Here ‘n € E’ is a proposition. It can be true or false.
ZFC set theory does not distinguish these usages—all membership
is propositional. For instance, consider the following statement:

Vn € N. P(n)

ZFC set theory regards membership here as a predicate, so that this really
means ‘for all things n, if n is a natural number, then P(n)’. But type
theory and structural set theory would regard this sentence as asserting
that P is a property of all natural numbers, and which is perhaps senseless
to apply to objects that are not natural numbers. So in type theory, the
declaration n € N is translated as the judgement n : N, which means
that n has the type N. The propositional form n € E' regards the subset
E C Nasapredicate £ : N — Prop and evaluates it at n—that is,
n € Fis equivalent to E(n).
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The blurring of these uses can complicate formalisation efforts for
subfields of mathematics that make heavy use of set-theoretic language,
such as institution theory and model theory. We will rarely use the set
membership symbol ‘€’ and the typing judgement symbol *:’ interchange-
ably, but confusion should not result anyway—most of us are used to the
implicit dual usage of the set membership symbol.

2.2.2 Propositional and judgemental equality

In the same way that type theory separates the set-theoretic notion of
membership into two distinct concepts, it has two notions of equality split
along similar lines—one definitional, one propositional. Definitional or
Judgemental equality is, unsurprisingly, true ‘by definition’, but it’s better
thought of as metatheoretical equality living outside the formal system in
question. This kind of equality is written x = y. It does not make sense
to ask if z = y is true in the internal language of type theory, but it (or
its negation) may be assumed in the metalanguage.

Propositional equality, however, is type theory’s internal notion of
equality. It is represented by a type called the identity type, written

ldg: A—>A—-U

where U is a universe of types. If a term p inhabits the type Id 4 (z, y),
it means that z and y are propositionally equal, and p is usually thought
of as a ‘proof” that x and y are equal, or as ‘evidence’ of their equality.
Instead of Id 4 (z, y) we will write z = 4 y, or simply x = y if the types
are clear from context. To prove that two objects are equal using type
theory, we must form the judgement p : £ = y by constructing the proof
term p using the internal rules of type theory. (We’ll see how this works
in SECTION 3.1.2.)

The identity type is defined like any other inductive type. The sole

refl : H(a =a)

a:A

introduction rule is
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This rule allows us to construct the reflexive proof refl, : a = a for
any @ : A.* The induction principle for the identity type encodes the
notion of indiscernibility of identicals. It says that for every type family
P : A — U, there is a function

eq_rect,: H (x =y) = P(z) = P(y)
(z,y:A)

which is defined by induction to be
eq_rect ,(z, z, refl,, ) = ¢ (2.1

The shorthand for eq_rect ,(z,y,p,t) in Coq is rew [P] p in t, or
simply rew p in ¢ if the type family P can be inferred from context. We
will use this notation from now on. This is the mechanism by which pro-
positional equalities can be used to perform rewrites. This principle of
the indiscernibility of identicals, encoded in eq__rect, is what enables us
to substitute equals for equals in type theory.

This information will be important to keep in mind for later. To see
the immediate relevance of this information, go to SECTION 3.1.2. The
examples there will be useful for understanding the preceding discus-
sion—but before you go, keep in mind the following common notation
for identity proofs: If p : = y then we’ll write p~! : y = z for the
reverse proof. If ¢ : y = zis another proof, then we’ll write p-q : = = 2,
encoding transitivity. The Coq notations are respectively eq_sym p and
eq_trans p g, which will occasionally appear in Coq proofs (like for
example LISTINGS 3.3.7 & 4.3.5).

2.2.3 Axioms in type theory

This is a practical formalisation effort, so we will adopt many axioms
common in type theory with no scruples. None of the following are

*A common presumption is that the members of a type are exactly those obtained
by repeatedly applying constructors, which if true would imply that refl is the only
possible identity proof. While true for simpler types like N, this is false for the identity
type Id. See [UFP14, §5.8] for a discussion on this point. It is better in general to think
of a type’s constructors as freely generating its elements.
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possible to prove in an intensional type theory like Coq’s CIC, but all are
consistent with the Coq kernel and each other. The main assumptions

are—

o Dependent function extensionality—proving f = g for functions f, g :
[1,., B(x) amounts to proving, for all  : A, that f(z) = g(z).

o Invariance by substitution of reflexive equality proofs—givent : A, and
aproof p : * = x, we have { = rew p in t. This is equivalent to
the axiom of uniqueness of reflexive identity proofs, which says that any
p : x = x is itself propositionally equal to refl .. We will refer to this
axiom as UIP.

o Proof irrelevance—for any proposition p : Prop and proofs a, b : p,
there is a proof @ = b; that is, all proofs of a proposition are equal.
This is stronger than the preceding axiom and used sparingly, but it’s
occasionally more practical.

The latter two axioms contradict the univalence axiom of homotopy type
theory [Gil+19]. It has rarely been practical to avoid their use, but we
have tried anyway in places to test compatibility with homotopy type
theory should that become a relevant concern for us.

For those unfamiliar with type theory the last axiom listed above may
seem a kind of nonsense. What can it possibly mean for two proofs of a
proposition to be equal? How can we consistently say that any two such
proofs are equal?

In type theories, a proposition P is just a certain kind of type, and a
proof is a term of that type. If ¢ : P is a term of type P then a fortiori P
is true, since that is precisely what it means for a proposition to be true
in type theory—it is inhabited by a term; it has a proof. Since proofs of
propositions are terms like any other, they can appear in data structures.
It is not uncommon to construct dependent pairs (x, p) where  is some
value and p is a proof involving x. Let’s provide an explicit example.
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Consider the problem of defining non-empty lists in type theory. One
way to represent them is as the type of all pairs (£, p), where £ is a regular
list which may be empty, but p is a proof that £ is in fact not empty. How
should we decide if two non-empty lists are equal? Usually, to prove
(a,b) = (c,d), we need to prove both a = cand b = d. But in the
case of the non-empty list, it is sufficient to prove a = c because the
second component, the proof] is just there to certify that the lists are
not empty. It’s irrelevant to the question. But we can’t simply ignore
the proof component. So the next best alternative is to declare that all
proofs of the same proposition are equal —that is the principle of proof
irrelevance. That way (£, p) = (¢’, p”) requires us to prove £ = £’ alone,
with p = p’ true by fiat.

2.3 Institution Theory

Institutions are based on category theory. Return to SECTION 2.1 for
the necessary prerequisites if you are not familiar.

2.3.1 Definition [GB84]. An institution consists of

« acategory Sig of signatures;

« asentence functor Sen : Sig — Set;

« amodel functor Mod : Sig°®® — Cat; and

« a semantic entailment relation Fy, C |[Mod(X)| x Sen(X) for each
¥ € Sig,

such that, for any signature morphism ¢ : ¥ — Y’ any sentence
¢ € Sen(X), and any model M’ € Mod(X’), the satisfaction condition
holds:

M by, Sen(o)(@) iff Mod(o)(M’) by ¢

ensuring that a change in signature induces a consistent change in the
satisfaction of sentences by models.

A functor F' : € — 9 can allow us to imagine that morphisms in
‘6 are also valid morphisms of & which preserve some structure. This
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permits the unambiguous use of a signature morphism o : ¥ — X’ to
act on sentences and models without mentioning the ambient functor.
Hence we will write o(¢) for Sen(c)(¢), and M | _for Mod(o)(M).
The components of an institution can be split into two broad types:
signatures and sentences encode syntactical information; models and the
semantic entailment relation encode semantic information. We can also
split them along ‘logical’ lines: signatures and models are the non-logical
data; sentences and the semantic entailment relation are the logical data.
By ‘logical’ we mean that the data involves truth or falsity. The number
‘three’ and the sentence ‘Pass the salt’ are not logical insofar as they can-
not be true or false or do not involve deciding truth or falsity. Something
like ‘2 + 2 = 5’ or ‘My dog is asleep’, however, are logical in this sense
and can be true or false. (Wilfred Hodges calls these ‘declarative sen-
tences’ [HodO1, §2].) Thus we have our succinct description of the four

components —
non-logical  logical
syntax  Sig Sen
semantics  Mod E

But what about the satisfaction condition?

The category of signatures does not just contain signatures; it also
contains signature morphisms. These morphisms, on their face, repres-
ent a simple change in notation. But in practice they are key enablers
of a wide range of more complex logic translations, such as institution
morphisms and comorphisms. Such translations can make precise the
intuitive notion that propositional logic is contained in predicate logic,
itself contained in first-order logic, and even to enable logic combinations.

It also gives rise to the satisfaction condition, which is an account of how
the four previously introduced components ought to interact under trans-
lation. Consider a sentence ¢ € Sen(X) and a model M’ € Mod(X’).
In the presence of a signature translation o : ¥ — Y| there are two
possibilities—either apply the signature translation to the sentence ¢
and ask if M’  o(yp), or apply the signature translation to the model
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M’ and askif M| (. The satisfaction condition says that it doesn’t
matter—they are logically equivalent. The following picture might help.

Y’ M Es o(p)
P M/| ':2 (72

(o

The situation is sometimes given by the aphorism
Truth is invariant under change of notation [GB92]

but this can be a little misleading—really we want to say that the meaning
of the sentences should be preserved by signature translation. Moreover,
the satisfaction condition asserts that the meaning of a sentence does not
depend on the context in which it appears [ST11]. This is actually false
for some logical systems, but is true for the logical systems considered

in this thesis.

2.4 First-Order Predicate Logic

In this section we’ll provide a formal account of multi-sorted universal al-
gebra and first-order predicate logic in preparation for a formal encoding
in Coq in CHAPTER 3. See Sannella and Tarlecki’s Foundations of Al-
gebraic Specification [ST11, Chapter 1 and §4.1] for an extended account,
and see [Hod93, Chapter 1] for another presentation of similar material
in a single-sorted setting. We will only focus on what we need for the
formalisation.
First, some preliminary mathematical definitions.

2.4.1 Definition [ST11]. An S-indexed set X is a family of sets indexed
by S. This is formally a function X : § — Set which defines for each
s € Saset X(s), which we denote X .

2.4.2 Definition. The set of all finite sequences of elements from a set A

is denoted List(A). This set comes equipped with the usual constructors
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nil : List(A) and cons : A — List(A) — List(A). The ith element of
alist £, where 0 < ¢ < len(¥), is written ;.

Now we’re ready to define first-order signatures.

2.4.3 Definition [ST11). A first-order signature is a 3-tuple (S, F, P)
where S'is a set of sorts, Fis a (List(S) x S)-indexed set of function

symbols, and %P is a List(.S)-indexed set of predicate symbols.

A sort is a label attached to data which describes what kind of data it
is. In modern parlance, a sort is a type, but we will not call them types to
avoid confusion with types in type theory.

A function symbol F' € F,, , is said to have arity w and result sort
s; a predicate symbol P € R is said to have arity w and no result sort.
Arities in single-sorted contexts are natural numbers which denote the
number of arguments a function or predicate symbol has, but in a multi-
sorted context we additionally need to specify the sorts of the arguments.

Since the signature is usually clear from context, we will write F' :
[ I, w; — s for function symbols,and P : J]. w; — Prop for predicate
symbols. If a function symbol C has arity nil and result sort s, then it is
called a constant symbol and we denote it C : s.

Here Prop has no semantic import, it’s merely a syntactic marker for
a predicate symbol to distinguish it from function symbols. In [ST11],
predicate symbols are written P : Hl wy, but this clashes a little with
the notation for constant symbols and seems to suggest that P is a tuple.

Let’s make this concrete with an example. Let stack_sig be a simple
signature consisting of the handful of symbols required to describe a stack
data structure. It has two sorts elem and stack; three function symbols

empty : stack
push : elem x stack — stack

pop : stack — stack
and a single predicate symbol

isEmpty : stack — Prop
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Note that although these symbols and their sorts suggest a meaning, none
has been given. They can’t be ‘used’ because they are symbols and have
no meaning. We are free to choose what the symbols mean as long as
the meanings are congruent. Each such choice is called an algebra or
[first-order model.

2.4.4 Definition [ST11). An algebra A for a signature ¥ = (S, F, P)
consists of three functions (A, Afess Apreas) > all of which we denote
by A, each respectively interpreting the sorts, function symbols, and

predicate symbols as sets, functions, and predicates:

o foranysort s € S, A(s) is a set, which we typically denote A,;
o forany F' € &,, ;, we have A(F) : A,, X --x A, — Ag;and
o forany P € &, we have A(P) C A, X -+ X A, .

Note that, following [ST11], we allow empty carrier sets.

2.4.5 Definition [ST11]. An algebra homomorphism h : A — B between
two X-algebras A and B is a function b : Hs A, — B satisfying, for
any F' € &, ; (with |w| = n) and valuesa, : A, ,...,a, : A, ,

hA(F)(ay, - ;a,)) = B(F)(h(ar), .., h(an))

Consider again our running example stack_sig. We could interpret
the sort elem as the set N of natural numbers, and the sort stack as
the set List(N) of lists of natural numbers. We could then interpret the
function symbols empty, push, and pop as the usual functions on lists:

nil  : List(N)
cons : N x List(N) — List(N)
tail : List(N) — List(N)

The predicate symbol isEmpty can be interpreted as the predicate
{s | s = nil} C List(N)

The next step is to explain how to form more complex terms out of

the symbols of a signature.
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2.4.6 Definition [ST11]. A setof variables for asignature ¥ = (S, F, P)
is an S-indexed set. Given some ambient pool of variables X, we will
write x : stomeanz € X, mirroring the notation for constant symbols.

2.4.7 Definition [ST11]. A term over a signature 2 = (S, F, P) with
variables in X is defined inductively as follows.

« Avariable z € X, is a term of sort s.

« A constant symbol C' € F  is a term of sort s.

o Let w be a list of sorts such that |w| = nand n > 0. Given terms
t1 ¢ wy, ..., t, : w,and afunction symbol F' € F,, , the expression
F(ty,...,t,)is aterm of sort s.

Continuing with our running example, let  : elem and s : stack be
two variables. Both

push(z, s) : stack
and push(z, push(z,s)) : stack

are valid terms of sort stack, but pop(z) is not, for example, since z has
the wrong sort.

All that remains is to define the syntax and semantics of first-order
sentences. The definition we provide here is deliberately simplified since
we will be able to give a much more precise account in SECTION 3.6.

2.4.8 Definition [ST11]. Let X = (S, F, P) be a signature. The sen-
tences of first-order logic are built from the logical symbols =, —, =, A,
V, V, 3. The atomic sentences are

« u = v for terms u and v with the same sort; and
« P(t,...,t,) for any predicate symbol P € P, and terms ¢; : w,.

The sentences in general are defined inductively as follows:

 Any atomic sentence ¢ is a sentence.
 The expressions ¢, ¢ — 1, d A, ¢V Y, V. ¢ and Iz. ¢, for any
sentences ¢, 1 and variable x, are all sentences.
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We can now write sentences like Vz. Vs. pop(push(z,s)) = s.
We’ll defer an account of the semantics until SECTION 3.6.

But we are not quite done. There is one bit of structure we have failed
to account for, and which characterises the institutional approach—the
signature morphism.

2.4.9 Definition [ST11]. LetX = (S, F, P)and X' = (S', F', P’)
be two signatures. A signature morphism o : ¥ — ¥’ consists of a
function 0, : S — S’, which will usually be written o, as well as a
pair of functions

O funes * H *O;w,s — ‘G}:a/(w),a(s)

w,s

Upreds : H gbw — gbo{(w)

respectively mapping sorts, function symbols, and predicate symbols, in
such a way that the sorts are translated consistently with o,,,.. We define
o (w) as the action of 0, on each of the sorts in w. In general we will
write o for any of the three components of a signature morphism since it
will not cause confusion.

The existence of signature morphisms obligates us to explain how
terms, algebras, and sentences are accordingly translated. Term and sen-
tence translations are intuitively straightforward—they are direct liftings
of signature morphisms and preserve the term and sentence structures.
It’s not necessary to define them here; instead I recommend taking a
look at LISTINGS 3.6.18 & 3.7.5 for term and sentence translations
respectively. That leaves us to define reduct algebras.

2.4.10 Definition [ST11]. Let X and X’ be signatures, let o : ¥ — 3’
be a signature morphism, and let A’ be a 3’-algebra. The reduct algebra
A’| isa X-algebra defined at each component of the algebra tobe A’ o 0.

This definition is worth explaining. Algebras (DEFINITION 2.4.4)
are best thought of as functions providing a denotation for the symbols
in a signature—as functions from symbols to ‘real’ mathematical objects.



2.4. First-Order Predicate Logic 25

In the presence of a change in signature o : ¥ — X, a ¥-algebra can
interpret symbols in X by first applying o and interpreting the resulting
Y.’-symbol; hence we ‘precompose’ A’ by o to obtain a 3-algebra. Note
that the direction is reversed; signature morphisms ¢ : ¥ — 3’ map
Y.’ -algebras to Y-algebras. Now is a good time to note the contravariance
of the model functor in the definition of an institution: if & : ¥ — ¥’
then Mod(o) : Mod(X’) — Mod(X).

By this point, we deserve a more interesting example. Let’s consider
the relationship between boolean logic and what we’ll call ‘NAND logic’,
in which the only boolean operator is A, defined as Az, y. =(z A y).

Let boolsig be a signature for boolean logic containing a single sort
bool and the usual boolean data and functions—two constant symbols
bT (true) and bF (false), and three function symbols A (AND), V (OR),
— (NOT). Let nandsig be a signature with a single sort nbool, two con-
stant symbols nT (true) and nF (false), and a function symbol A (NAND).
Suppose further that we have an infinite pool of variables z, y, z, ... us-
able in either signature.

It’s well known that the NAND operator is ‘functionally complete’,
meaning that it can simulate all the other boolean operators. This fact is
generally expressed as a list of equations.

e T =IAZ
czANy=(zAYy)A(zAy)
czVy=(xAz)A(yAy)

If we first construct a NAND algebra A with the standard semantics,
then a boolean algebra can be given as the reduct A|a of that algebra
along the signature morphism ¢ indicated by the list of equations above.
Let’s describe this in more detail.

First, note that any signature Y. determines a derived signature [ST11,
Definition 1.5.13] TS(X) in which the function symbols are replaced
with terms, and in which the ‘arity’ of a term is given by the sorts of
the free variables in that term. For example, z A y can be thought of
as a function symbol in the derived signature with arity [nbool, nbool],
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the sorts of « and y. We can hence construct a signature morphism
o : boolsig — TS(nandsig) like so:

Osoris = { bool > nbool }
Ofuncs = 1T = nT,
bF > nF,
B rAc,
A (zAy) A (zAy),
Vie (zAz)A(yAy)}

apredx = @

Furthermore, since a derived signature TS(X) can be interpreted by a
3J-algebra by simply evaluating the term (look ahead to LISTING 3.6.11
for the details in Coq, but they are exactly as expected), the reduct A|0
is precisely a boolsig-algebra with the right semantics—as long as we
believe in the correctness of the translation. For example, here is the
rough idea of how =bT would be interpreted by such a reduct:

(A| )(=bT) = A(nT AnT) = true A true = false

This example, and all the other examples we have seen so far, will be
made precise in Coq in SECTION 3.6.5.

It’s possible to give quite a bit more detail about everything so far intro-
duced. Any such relevant details will appear later in their proper context.
The concepts we have introduced so far are sufficient to define the in-
stitution FOPEQ for first-order predicate logic with equality. The next
chapter is dedicated to constructing this object in Coq.
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An Institution for First-Order Logic

In this chapter we will encode the institution for first-order logic out-
lined in CHAPTER 2 in Coq and prove its satisfaction condition. We’ll
cover some common constructions in the formalisation and familiarise
ourselves with how to read mathematics and proofs in Coq.

We’ve formalised all the work presented here in Cog."' We iterate on
a formalisation of universal algebra in Agda [GGP18] and depend on a
formalisation of category theory by John Wiegley [Wiel4]. The work in
this chapter first appeared in a much abridged form in [RM22].

3.1 The Coq Proof Assistant

Coq is an interactive proof assistant for higher-order logic based on a
dependent type theory called the calculus of inductive constructions (CIC).
Dependent type theories allow for elegant representations of complex
mathematical objects such as those found in category theory, institu-
tion theory, and universal algebra. Coq is a popular choice for studying
the semantics of programming languages. Adam Chlipala’s Certified Pro-
gramming with Dependent Types [Chl13] and the Sofiware Foundations
series, particularly volumes one and two [Pie+23a; Pie+23b], are text-
books containing material specifically in aid of studying the foundations
of programming languages in Coq. The CompCert compiler for a subset
of C is developed and verified in Coq [Ler09], and such work requires
representing the syntax and semantics of C in Coq. What we are doing
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here is not unlike formalising programming languages—institutions can
represent programming language semantics directly such as the institu-
tions FPL or IMP (both from [ST11, §4.1] and respectively denoting
simple functional and imperative languages) and indeed the institution
we will define later in SECTION 5.3.

We will assume some basic familiarity with Coq syntax for the re-
mainder of this thesis. The notation we use should be readable even to
those unfamiliar with Coq. Nevertheless, we’ll discuss some common
constructions used in proofs throughout the thesis. Be sure to consult the
tactic index on page 135 if you are unfamiliar with Coq’s tactic language.

If you would like to follow along with some of the simpler examples
that do not depend on our developments but would rather not install
Coq, I recommend jsCogq.

https://coq.vercel.app/scratchpad.html

I can also recommend Adam Chlipala’s Certified Programming with De-
pendent Types [Chl13] as a good, fast introduction to Coq, especially since
many of the techniques explained there appear in this thesis.

3.1.1 Mathematical notation in Coq

Type theoretic concepts are represented differently in Coq compared
to standard mathematical writing. Dependent products or functions are
represented by Vz : X. P(z) in Coq but by

[[P()
z: X

in mathematical notation. Similarly, dependent sums are represented by
Jz : X. P(x) in Coq but by

Z P(x)

in mathematical notation. This means that one should read V in Coq
notation as describing a dependent function and not as literally meaning
‘for all’ in the common logical sense; and similarly that 3 refers to a
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dependent sum and not just ‘there exists’. This is listed in the notation
index on page 133.

3.1.2 Common constructions and their meanings in Coq

Rewriting with a propositional equality Recall that we discussed in SEC-
TION 2.2.2 the distinction between internal and external notions of
equality in type theory, with the internal notion referred to as ‘propos-
itional equality’. We commonly want to use an equality p : £ = yto
rewrite a term involving x into a term involving y, and Coq’s tactic sys-
tem makes this simple and intuitive. Consider the following illustrative
example, proving for all n : N thatn = 3 impliesn + 1 = 4.

Proposition silly (n : nat) : 3.1.1
n=3->n+1=4,
Proof.
intros p. (* p : n = 3 %)
rewrite p. (* n + 1 =4 « 3+ 1 =4 %)
reflexivity. (* equal by computation *)
Defined.

Recall that we can only prove a = b in type theory by constructing a
proof term with the type a = b. This implies that Coq’s tactic language
is explicitly constructing such a term. Because we have closed the proof
with Def1ined, we can see the proof term Coq constructed.

silly = 3.1.2
A(n :nat) (p : n=3),
eq_ind 3 (A k : nat, k + 1 = 4) eq_refl n p*

Here eq_ind takes five arguments.”* The first and fourth can be ignored
since they are the left- and right-hand side respectively of the equality
p~! : 3 = n. Thesecond argument is the type family P(k) = k+1 = 4,
which points to the ‘subject’ of the rewrite, and the final argument is the
proof term p~ ! that we are using to rewrite the goal. The third argument,

*eq_ind and eq_rect are the same thing—the only difference is that the type
family argument must have the type A — Prop rather than A — Type.
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eq_refl, is the term whose type we are rewriting. Note that here eq__refl
actually has the type 3 + 1 = 4—and the reason it may have that type is
because 3 + 1 and 4 are judgementally equal. So the term above may be

rewritten in our notation as
rewp lin(eq_refl:3+1=4):n+1=4

In sum, the proof term says: Letn : Nand p : n = 3. We know that
3 + 1 = 4 by reflexivity (i.e. eq_refl : 3 + 1 = 4), and hence we may
construct rew p— L in (eq_refl : 3+ 1 = 4) : n + 1 = 4. Since we
have constructed a term of type n + 1 = 4, we’re done.

Rewrites always construct proof objects of the form rew p in ¢. Some-
times these rewrites appear in unexpected places. Let’s consider a typical
such example. Later on we will define firsz-order terms in Coq; such terms
will have a type of the form Term (A, T"),, where I is a list of sorts. We
will define a term translation which lifts a signature morphism to the
level of terms. This transformation, specialised to the identity signature
morphism, will ‘do nothing’, as expected. But the type of the resulting
term will be Term(A, map id I') and not Term(A,T"),. Since these
types are not judgementally equal, we cannot even state the equality
id(t) = t. But since the types are propositionally equal, we may instead
write

id(t) = rew [Term(A4,—),]pint

where p : I' = map id I. This can now be proved normally, and we will
do soin SECTION 3.7.

Constructing terms with tactics  We just saw that Coq’s tactic language
constructs proof terms that would otherwise be tedious to write out
ourselves. But since there is no difference in Coq between a proof and
any other value, we can also use Coq’s tactic language to construct any
value at all. This is sometimes more convenient, especially when the
types of values become complicated, or when it’s not known what details
should be supplied yet.

Let’s consider the example of constructing dependent records. De-
pendent records are n-tuples where subsequent terms may depend on
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previous ones. There is not really any such distinction in written math-
ematics between ‘dependent’ and ‘non-dependent’ tuples, so it may be
best to think of them as tuples with named fields. They are denoted like

SO—

{l 3.1.3
fieldl := valuel ;
field2 := value2 ;

|}

We will commonly construct dependent records via Coq’s tactic language
rather than providing the terms directly. To do this, we can write—

unshelve refine {| 3.1.4
fieldl := _ ;
field2 := _ ;

[}.

- (* construct valuel x*)

- (* construct value2 x*)
Another common (and more concise) way to do this is to simply write—

unshelve esplit. 3.1.5
- (* construct valuel x)

- (* construct value2 x)

This is useful when we do not wish to name the fields, but has the minor
disadvantage of hiding the value which is being constructed from the
reader.

3.2 Representing Institutions

An institution can be described directly as a dependent record in Coq.
The reader should compare the following with the mathematical defini-
tion, DEFINITION 2.3.1.

Class Institution := { 3.2.1
Sig : Category ;
Sen : Sig — SetCat ;
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Mod : Siglop — Cat ;

interp : V (X : Sig), Mod £ -> Sen X -> Prop
where "M = " := (interp _ M @) ;

sat : V (£ 2' : Sig) (o : £ ~> %') (¢ : Sen £) (M' : Mod %'),
M' &= fmap[Sen] o ¢ <-> fmap[Mod] o M' E ¢

The category-theoretic definitions and notations used above come from
John Wiegley’s category theory library [Wiel4]. The notation should be
self-explanatory. The institution can often be inferred from context, but
for situations where it needs to be made explicit, we use the following

notations —

Notation "Sig[ I ]" := (Sig (Institution :
Notation "Sen[ I ]" := (Sen (Institution :
Notation "Mod[ I ]" := (Mod (Institution :
Notation "sat[ I ]" := (sat (Institution :

I)). 3.2.2
I)).
I)).
I)).

Before we begin constructing FOPEQ®, we need to explain three crucial
concepts and their role in the formalisation: indexed types, heterogen-

eous lists, and type theory’s identity type.

3.3 Indexed Types

We presented value-indexed sets in SECTION 2.4. Indexed types in Coq
look similar and are represented by a type family J — U, where Jis the
index type and ¥ is a universe of types.

A good example of an indexed type is a vector. Vectors are like lists,
but the length of the list is visible at the type level.

Inductive Vec A : nat -> Set := 3.3.1
| VNil : Vec A ©
| vCons : V. n, A -> Vec An ->Vec A (S n).

This defines a family of types— one for each natural number. The term
v : Vec(nat)s, for instance, is a vector of length 3 containing exactly
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three values of type nat. The constructors for this type guarantee that
any constructed vector with type Vec(A),, has length n.

There is another way to encode this type which ‘demotes’ the index
to the value level.

Definition Vec A := { x : list A x nat | len (fst p) = snd p }. 3.3.2

Let’s call this the non-indexed representation. To construct a value of
Vec(A), we construct a pair x = (¢, n) where £is a list and n is a natural
number denoting its length. The list need not actually have that length,
so we must also provide a proof p : len £ = n. Carrying this proof
around is the cost of moving to a non-indexed representation.

There are advantages and disadvantages to each representation, which
we need not get into for the purposes of this discussion. The important
point is this: When we moved from an indexed to non-indexed repres-
entation, the information which was encoded at the type level became
something like a well-definedness proof at the value level.

But sometimes moving to a non-indexed representation does not ob-
ligate us to carry any proofs around. Consider the function symbol type
F : List(S) — S — U. Normally we’d write F' € &, ; to mean that
F' has arity w and result sort s. But we can instead write F' € & and in-
sist that & come with an associated function funsig : & — List(S) x S.
This representation suffers from none of the issues of the non-indexed
vector type since it is impossible for the value and its index to ‘disagree’,
and since they can’t disagree we do not need to carry around a proof
that they agree. One simply declares a function symbol with a given name
and type. Note that in the formalisation we will split funsig into two
functions ar : F — List(S) and res : F — S, respectively mapping
function symbols to their arity and result sort.

Let’s describe the situation more generally in set-theoretic terms. An
indexed family of sets is a function S : J — Set, and so to obtain an
‘element’ of such a family, we must first have in mind an index j € J.
The informal ‘z € S” means that there is some j € Jsuch that z € S;.
The dependency is important—we need to know the index before we can
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even denote the set S; containing . This dependency can be reversed
by instead providing a set

$=U{(@9) |z €5} (3.1)
jeJ
and a function f : § — J defined by (z, j)  j.
This alternative encoding of function and predicate symbols is men-
tioned in [ST11, §1.2], but it is not pursued further. We call such data
‘tagged’ and represent it as follows.

Record Tagged T := { 3.3.3
tagged_data :> Type ;
get_tag :> tagged_data -> T ;

}.

This type exactly appears in, for example, Andrej Bauer, Philipp G. Hasel-
warter and Peter LeFanu Lumsdaine’s work on a general representation
of dependent type theories in Coq [BHL20], but they use it to represent
indexed families in the traditional sense. We reverse the position of data
and index.

For many data types, we use the representation A : Tagged(J)
in place of the indexed type A : J — U, demoting the index to the
value level. For function symbols, the symbols themselves are contained
in tagged_ data and the ar and res functions are combined in get_ tag.
Since it will not introduce confusion, we will continue to use the notation
F € #, , to denote a function symbol with arity w and result sort s.

There are trade-offs associated with this choice of encoding. For us, it
crucially enables a significantly more straightforward description of sums
and products of signatures, which will be important for constructing
pushouts of signatures and for eventually proving the amalgamation prop-
erty for key institutions like FOPEQ and EVT. (We explain pushouts
and amalgamation later on in SECTION 6.4.) But one big drawback is
that we lose some flexibility. Terms in a given signature can be thought of
as ‘function symbols’ with ‘arities’ given by the variable context. This al-
lows us to regard a term such as push(z, y) as a function symbol roughly
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equivalent to Az, y. push(z, y). We get this for free with indexed types
but we need to explicitly perform the transformation indicated in (3.1)
to get it working with the tagged representation.

To further motivate this type, we will discuss tagged morphisms.
Morphisms of tagged data are just regular functions on the data, but
that function must be consistent with the ambient morphism on tags.
More specifically, given a translation of tags ¢, a tagged morphism
f + X =45 Y'is constrained to translate the data such that tag(f(z)) =
t(tag(z)). This condition, specialised to function symbols, is precisely
the condition that a morphism of function symbols should translate the
function’s arity and result sort consistently with a morphism on sorts.
Tagged morphisms are defined in Coq as follows.

Definition tagged_morphism 3.3.4
[AB : Type] (t : A -> B) (X : Tagged A) (Y : Tagged B) :=
{f:X->Y | Vx: X, get_tag (f x) = t (get_tag x) }.

The condition on a tagged morphism f : X — Y'is a sort of com-
mutativity lemma. We will give the lemma an explicit name so that it is
easy to apply in later contexts. (The function proj2_sig gets the second
component of a dependent pair.)

Definition tagged_morphism_commutes 3.3.5
[AB : Type] [t : A -> B] [X Y]
: V (f : tagged_morphism t X Y) (i : X),
Y (fi) =t (X 1) :=
@proj2_sig _ _.

There are lots of useful things we can prove about this type. First, we
will introduce what we will from now on refer to as an equality lemma—
a list of explicit conditions for proving equality of two objects of a par-
ticular type. Tagged morphisms consist of a function and a coherence
proof —and therefore by proof irrelevance (recall the discussion in SEC-
TION 2.2.3) they are equal if the functions are equal. We encode this
reasoning explicitly as follows.
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Lemma tagged_morphism_eq {T1 T2 X Y} {t : T1 -> T2} 3.3.6
(f g : tagged_morphism t X Y)
: projl_sig f = projl_sigg > f = g.
Proof.
intros H. destruct f, g.
apply subset_eq_compat, H.
Qed.

We will apply this lemma whenever our goal is an equality of two tagged
morphisms.

We also define composition for tagged morphisms, with the proof
lifted right out of [BHL20].

Definition tagged_morphism_compose 3.3.7
[ABC: Type] [g : B ->C] [fi: A->B] [XY Z]
(g : tagged_morphism g Y Z) (f : tagged_morphism fi X Y)
¢ tagged_morphism (g o fi) X Z.
Proof.
exists (g o f).
intros. refine (eq_trans _ _).
* apply tagged_morphism_commutes.
* apply f_equal. apply tagged_morphism_commutes.
Defined.

Though this appears to be an odd way to prove this lemma, it is import-
ant that the proof term is constructed this way— presuming we do not
eliminate it with proof irrelevance. The proof term looks like this:

(A x @ X, 3.3.8

eq_trans (tagged_morphism_commutes g (f x))

(f_equal g (tagged_morphism_commutes f x)))

Later onin SECTION 3.5 we will discuss why we might want to construct
proof terms in such a manner.

3.4 Heterogeneous Lists

Suppose we have at hand a function A : S — U interpreting sorts as
Coq types and a function symbol F' : w — s, where w is a list of sorts
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and s is a sort. We need to construct the type
Ay, = Ay, == Ay — A (3.2)

or something equivalent. A type such as this can be defined directly by
case analysis on w.

Fixpoint Curried {J : Type} (A : J -> Type) ws : Type := 3.4.1
match w with
| [1=>As
| 3 :: js => A j -> Curried A js s
end.

But this type synonym is surprisingly cumbersome to work with, for reas-
ons we will indicate in SECTION 3.6.3. We need a different approach.

Gunther ez al. in their paper formalising universal algebra in Agda
[GGP18] identified heterogeneous lists as a promising candidate. A sim-
ilar definition to Gunther’s exists in Certified Programming with Dependent
Types by Adam Chlipala [Chl13].

What is a heterogeneous list? Lists are normally homogeneous insofar
as they contain elements of the same type—as in DEFINITION 2.4.2. By
contrast, keterogeneous lists—henceforth A-lists—can contain elements
of different types. There are lots of simple ways to define h-lists, but they
are often not useful. For example, the heterogeneity requirement is easy
to meet by simply hiding type information, but we need more control —
we need to know exactly the type of each of the elements of the h-list.
Here is the definition in Coq.

Context (3 : Type) (A : J -> Type). 3.4.2

Inductive HList : list J -> Type :=
| HNil : HList []
| HCons : V {j js}, A j -> HList js -> HList (j :: js).

Inductive member (j : J) : list J -> Type :=
| HZ : V {js}, member j (j :: js)
| HS ¢ V {j' js}, member j js -> member j (j' :: js).
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The h-list type comes with another inductive type member which can
be thought of as a ‘typed’ natural number. A ‘number’ n : member x ¢
can be thought of as a constructive proof that x appears in the list £ at
index n. It’s used to index h-lists in the following way:

Equations nth [j js] (v : HList A js) : member j js -> A j := 3.4.3
nth (HCons x _ ) HZ = X
nth (HCons _ xs) (HS m) := nth xs m .

The cog-equations plugin [Soz10] provides the ‘equations’ syntax
above—it can handle many of the difficulties of dependent pattern match-
ing for us. We will use the following notations for h-lists:

Infix ":::" := HCons : hlist_scope. 3.4.4
Notation "( )" := HNil : hlist_scope.

Notation "( x )" := (HCons x HNil) : hlist_scope.

Notation "( x 3y ;3 .. 3 z )" :=

(HCons x (HCons y .. (HCons z HNil) ..)) : hlist_scope.

The point of h-lists is that they allow us to construct the type
> A= A, (3.3)
1EW
which is an uncurried form of (3.2). In fact, (3.2) and (3.3) are completely
interconvertible via the following generic curry and uncurry functions.

Equations curry {3 : Type} {A : J -> Type} {w s} 3.4.5
(F : HList Aw -> A's) : Curried Aw s :=
curry (w := []) F :=F () ;
curry (w := _::_) F := A x, curry (A xs, F (x ::: xs)) .

Equations uncurry {J : Type} {A : J -> Type} {w s}
(F : Curried A w s) : HList Aw -> A s :=
uncurry (w := []) F () :=F ;

uncurry (w := _::_) F (x ::: xs) := uncurry (F x) xs .

As an example, let’s consider what HList values look like. Recall the
running example stack_sig we introduced in SECTION 2.4. Let J =
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{elem,stack}, let w = [elem, stack, elem], and let A : J — U be
a function interpreting the sorts as types, defined by elem - N and
stack > List(N). Then (2, [3,4],0) would be a valid term of type
HList(A, w).

Operations on h-lists are similar to those for lists. A full list can be seen
on the GitHub repository at Core/HList.v, but we’ll explicitly mention
the most common one: reindexing. The idea is that we have the following
equivalence of types

HList(A o f,w) = HList(A, map f w)
and we can define two functions that will convert these types.

Fixpoint reindex 3.4.6

{3 K : Type} (f : I -> K)
{A : K-> Type} {js : list J} (v : HList (A o f) js)
: HList A (map f js) :=

match v with

[ O =0

| a::: v => a ::: reindex f v'

end.

Equations reindex'
{J K : Type} (f : J -> K)
{A : K-> Type} {w : list 3} (v : HList A (map f w))
: HList (A o f) w :=
reindex' f (w := []) () := () ;

reindex' f (w := _::_) (x ::: Xxs) :=

X ::: reindex' f xs .

Reindexing also has the following important relationship to hmap (which
is the equivalent of map for h-lists) which turns up later in the proof of
LISTING 3.7.24.

Lemma hmap_reindex [A B : K -> Type] 3.4.7
(f:3->K) (g :Vk, Ak ->BKk) "(v: HList (A o f) w)
: hmap g (reindex f v) = reindex f (hmap (g o f) v).


https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Core/HList.v
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3.5 A Closer Look at the Identity Type

Martin Hoffmann and Thomas Streicher in [HS98] suggest that the
identity type has the structure of a groupozd. This structure turns out to
be very useful for us.

3.5.1 Definition. A groupoid is a category in which every morphism is
an isomorphism —that is, for any morphism f : a — b there exists a
morphism g : b — a such that f o g = id, and g o f = id}. A groupoid
morphism is a functor between two groupoids.

The analogy here is to think of identities p : @ = basarrowsa — bin
the groupoid. We won’t be very detailed or precise about this analogy—
see [UFP14, §2.1] in particular for more details. We will focus only on
the salient points. We will also indicate the names for these constructions
in Cogq, referring back to this section later when necessary.

All morphisms are isomorphisms Each proof p : @ = b corresponds to
aproof p~! : b = a, the symmetric proof. This is eq_sym p in Coq,
notated p”.

Morphisms can be composed Two proofsp : a = bandq : b = ccan
be ‘concatenated’ to form the transitive proof p - ¢ : a = c. This is
eq_trans p qin Cogq.

Functions are functors  Any function f : A — Bbehaves functorially on
identity proofs. That is to say, there is an operation ap f takingp:a =1b
to ap,(p) : f(a) = f(b). This encodes the reasoning that functions
respect equality and is denoted f__equal f pin Cogq.

Type families are fibrations 1f P : A — U is a fibration then—by ana-
logy to classical homotopy theory—it induces a ‘path lifting’ operation,
mapping each morphism p : @ = b to a morphism

transport?(p, —) : P(a) — P(b)

We’ve seen this already as the property of indiscernibility of identicals in
SECTION 2.2. This is written eq_rect a b p in Coq with the shorthand
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rew p in (—). We will occasionally use the notation p, : P(a) — P(b)
outside of a Coq context when the type family is clear.

By virtue of these observations, the identity type satisfies many useful
properties. Simple examples include p » p~1 = refl, but let’s also list
some more complicated ones.

3.5.2 Lemma [UFP14]. Let P,Q : A — U be type families, letx,y : A
andp:z =y,let f:[] (a:A) P(a) — Q(a) be a dependent function,
andlett : P(z). Then

transport®(p, f,(t)) = f,(transport®(p, t))

3.5.3 Lemma [UFP14]. Let P : B — U beatype family,let f : A - B
be a function, letz,y : Aandp : = y,andlett : P(f(z)). Then

transport™/(p,t) = transport(apf(p),t)

3.5.4 Lemma [UFP14]. Let f: A— Bandp: x = y. Then

ap,(p™") = (apy(p)) ™

Now recall that eq_rect computes in the sense indicated by (2.1) in
SECTION 2.2. If we can simplify using any one of the facts above (or
the many more, since this is just a sample) then we can make progress in
proofs involving the explicit manipulation of identity proofs. This will
become relevant to us in SECTION 3.7, specifically in LISTING 3.7.10.

3.6 First-Order Logic in Coq

This section details the translation of the mathematical concepts defined
in SECTION 2.4 into Coq. These translations are occasionally nontrivial.
Keep in mind the notes in SECTION 2.2, which we will reference as
needed.
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3.6.1 First-order signatures

First-order signatures (DEFINITION 2.4.3) are represented by a record,
mirroring the mathematical definition exactly, and making use of the
tagged data we defined in SECTION 3.3.

Record Signature := { 3.6.1
Sorts : Type ;
Funcs : Tagged (list Sorts * Sorts) ;
Preds : Tagged (list Sorts) ;

As promised in SECTION 1.3, and giving some context to the discussion
in SECTION 2.2, we will quickly discuss some issues of encoding now
that they are relevant. We have represented a set of sorts as a type—any
type at all. The set-theoretic definition of first-order signatures given in
DEFINITION 2.4.3 presumes only that the sorts form a set and do not
impose any further conditions. In practice a set of sorts is usually finite
but the definition does not judge.

It is unclear which definition is more permissive—though it is hard
to see how either could be substantially more permissive than ‘any type’
and ‘any set’. The correspondence here is not one-to-one, because types
do not correspond one-to-one with sets, but it is close —sets are the basic
objects of set theory, and types are (one of) the basic objects of type
theory; and indeed, types are meant to capture a specific sense of setin a
manner claimed to be closer to what is informally meant in mathematical
practice. (Again, see SECTION 2.2 and [Shul3] for a more detailed
discussion about this.)

Let’s continue the encoding with the example signature stack_sig
from SECTION 2.4. First, write out the basic symbols—

Inductive stack_sorts := elem | stack. 3.6.2
Inductive stack_funcs_names := empty | push | pop.
Inductive stack_preds_names := qis_empty.

and then give each function and predicate symbol a type.
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Definition stack_funcs := {| 3.6.3
tagged_data := stack_funcs_names ;
get_tag F :=

match F with

| empty => ([1, stack)

| push => ([elem; stack], stack)
| pop => ([stack], stack)

end ;
[}.
Definition stack_preds := {|
tagged_data := stack_preds_names ;
get_tag P :=

match P with
| is_empty => [stack]
end ;

[}.

This data can be packed into a signature.

Definition stack_sig : Signature := {| 3.6.4
Sorts := stack_sorts ;
Funcs := stack_funcs ;
Preds := stack_preds ;

[}.

3.6.2 First-order models

First-order models, also known as algebras (DEFINITION 2.4.4), need
to interpret the sorts of a signature as Coq types and the function and
predicate symbols as Coq functions and predicates with the right types.
Recall the h-lists we defined in LISTING 3.4.2.

Record Algebra % := { 3.6.5
interp_sorts :> Sorts I -> Type ;
interp_funcs F : HList interp_sorts (ar F) -> 1dinterp_sorts (res F) ;

interp_preds P : HList interp_sorts (arP P) -> Prop



44 An Institution for First-Order Logic

Algebras are regarded as mapping symbols in the signature to objects in
the real mathematical universe. Since that universe is in our case Coq’s
type theory, then they must map sorts to type-theoretic types, function
symbols to Coq functions between those types, and predicate symbols
to Coq predicates, i.e. Coq functions with codomain Prop.

Let’s define the algebra for stack_sig outlined in SECTION 2.4. It
turns out the curried representation outlined in SECTION 3.4 is useful
for constructing concrete algebras in a readable way since it allows us to
directly use standard library functions from Coq—though we must be
explicit about the types since Coq cannot infer them for us.

Definition stack_nat_is (s : Sorts stack_sig) : Type := 3.6.6
match s with
| elem => nat
| stack => list nat

end.
Local Notation stack_fn := (Curried stack_nat_is) (only parsing).
Local Notation stack_args := (HList stack_nat_is) (only parsing).

Definition stack_nat_if (F : Funcs stack_sig)
: stack_args (ar F) -> stack_nat_is (res F) :=

uncurry match F with

| push => List.cons : stack_fn [elem; stack] stack
| pop => @List.tl nat : stack_fn [stack] stack

| empty => List.nil : stack_fn [] stack

end.

We get no such niceties for predicate symbols, though the definition of
new predicates directly with cog-equations is usually straightforward.

Equations stack_nat_is_empty 3.6.7
(args : stack_args [stack]) : Prop :=
stack_nat_is_empty ( s ) := s = [].

Definition stack_nat_ip (P : Preds stack_sig)
: HList stack_nat_is (Preds stack_sig P) -> Prop :=
match P with
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| is_empty => stack_nat_is_empty

end.

3.6.3 First-order terms

There are so far only minor differences from Gunther’s work in Agda
[GGP18]. The first major deviation is in the definition of variables
(DEFINITION 2.4.6) and terms (DEFINITION 2.4.7), which we gather
into a single inductive type.

Inductive Term X I : Sorts X -> Type := 3.6.8
| var s : member s I -> Term s
| term F : HList Term (ar F) -> Term (res F).

Recall that we defined a term of sort s as either a variable = : sorasafunc-
tion symbol F' € F,, , ‘applied’ to a list of terms ¢; : wy, ..., t,, : Wy,
written F'(tq, ..., t, ). But variables are best represented not by mem-
bers of an indexed set, which can be difficult to control, but instead by
what we might call ‘dependent de Bruijn indices’. Chlipala discusses this
idea in [Chl13, Chapter 9]. The reasons will be discussed in their proper
place in SECTION 3.6.4 when we encode quantifiers. We will also defer
examples of first-order terms until then because they are best understood
in that context.

Note that the difficulties of the Curried representation are now much
more apparent—term F'could not have the type

Curried Term (ar F') (res F))

since, in the first place, constructors cannot have a variable number of
arguments, but also because Coq has no mechanism by which to conclude
that the type of the fully applied constructor is Term (res F').
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3.6.4 The semantics for first-order logic

We can now start to build the syntactic and semantic structure of first-
order sentences—see FOL/Sentence.v and Institutions/InsFOPEQ.v for
the full details. The syntax is as follows.

Inductive FOL : list (Sorts %) -> Type := 3.6.9
| Forall ''s : FOL (s :: ) -> FOL I

| Exists T's : FOL (s :: ) -> FOL I

| Equal T's : Term X s -> Term X s -> FOL I

| Pred T P : HList (Term £ T) (arP P) -> FOL I

We omit the other connectives since their definitions are straightforward.
The quantifiers, however, require some explanation.

Syntactically, a quantifier accepts as argument a sentence in which
at least one variable may appear free and binds it. Recall that first-order
variables were defined as typed de Bruijn indices into a list of sorts. This
list of sorts is called a context. A context contains information about how
many free variables there can be and what sorts they have. For example,
if 1 is a sentence with context s:: I, then it may have at least one free vari-
able at index 0 with the sort s—it may have more if I' is non-empty. The
variable need not actually appear in the sentence; the sentence True,
for example, has no free variables, but can have a nonempty context.
Quantifiers Q take sentences like 9 with a nonempty context s :: I and
construct a new sentence Q. ¥ with context I" (one fewer free variables).
Syntactically, at least, this is what it means to bind a variable. Note that
quantifiers always bind the first free variable listed, but this is not a seri-
ous limitation because the order in which the free variables are listed in
the context does not matter. Formally, we have the following syntactic

formation rule:
s=I'F¢

TFQ, ¢
To interpret a first-order sentence, we must decide what the logical sym-
bols mean and what values the free variables will get. If 6 is an ‘environ-
ment’ providing values for the variables in I', then we denote the semantic


https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/FOL/Sentence.v
https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Institutions/InsFOPEQ.v
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interpretation of a sentence ¢ with free variables from I" by an algebra A
with environment 6 by A E ¢. Precisely, in the case of the quantifiers,
we have

A Forall () iff forallz € A, wehave A %9 ¢
A £ Exists,(¢) iff there exists z € A, such that A %9 ¢

The idea then is to collect the values bound in Coq with the right types
into a h-list so that, when evaluation of the sentence structure is finished
and it comes time to interpret the variables, the values can be passed to
the right locations. This setup makes the definition of the semantic en-
tailment relation relatively painless. (The triple-colon operator denotes
the cons function for h-lists.)

Fixpoint interp_fol 3.6.10
(A : Algebra X) (¢ : FOL 2 T) (6 : HList AT) : Prop :=
match ¢ with
Forall s y => V x : A s, interp_fol Ay (x ::: 0)
Exists s gy => 3 x : A s, interp_fol Ay (x ::: 0)

I

I

| Equal u v => eval_term A u 6 = eval_term A v ©

| Pred P ts => dinterp_preds A P (map_eval_term A ts 6)
I

end

We have not defined the term evaluation function yet, so we will do so
now. It is verbose but uncomplicated.

Equations eval_term (A : Algebra %) (t : Term X I s) 3.6.11
: HList AT -> A s := {
eval_term _ (var i) 6 := HList.nth 6 i ;
eval_term A (term F args) 0 :=
interp_funcs A F (map_eval_term A args 6)
} where map_eval_term (A : Algebra %) (args : HList (Term X ') w)
: HList AT -> HList A w := {
~ =0
map_eval_term A (t ::: ts) 0 :=

map_eval_term _ ()

eval_term A t 6 ::: map_eval_term A ts 6
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On variables, it looks up the right value in the environment. On terms, it
interprets the function symbol with the given algebra and calls itself on
the function symbol’s arguments.

The mutually-defined map__eval_term appears redundant. It should
just be the result of mapping eval_term over the arguments—and in-
deed, we can prove it:

Lemma map_eval_term_hmap 3.6.12
{Z : Signature} (A : Algebra Z) {I' : Ctx X} {w : Arity X}
(args : HList (Term X I') w) (env : HList (interp_sorts A) I') :

map_eval_term A args env = hmap (A _ t, eval_term A t env) args.

The reason the mutual definition is necessary is because, without it, Coq
cannot prove that any argument to eval_term structurally decreases.
Since we have the proof in LISTING 3.6.12, little is lost. Other mutual
definitions appearing in this thesis will have similar auxiliary lemmas,
such asin LISTING 3.6.18.

Let’s consider some an example to see how the pieces fit together. We
will encode the first-order sentence Vz, s. pop(push(z, s)) = s.

Local Notation stack_term := (term (X := stack_sig)). 3.6.13
Local Notation stack_pred := (Pred (X := stack_sig)).

Local Notation x, := HZ.

Local Notation x, := (HS x,).

Definition example_sentence, : FOL stack_sig [] :=
Forall (Forall (
Equal (stack_term pop ( stack_term push { var x, ; var x; ) ))

(var x1))).

This works like a standard de Bruijn representation. To find which vari-
able is bound by which quantifier, walk back through the representation
and count the quantifiers until you reach the number equal to the variable.
For example, x4 above is bound by the first quantifier. The proof of this
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follows trivially by computation—and it should, since by computation
this sentence is equal to the Coq proposition Vz, s. tl (z :: s) = s.

Theorem example_correct,; : stack_nat = example_sentence;. 3.6.14

Proof. cbn; reflexivity. Qed.

A more detailed derivation would show the intermediate steps of this
process, but the basic transformation works like this:

stack_nat E example_sentence, 3.6.15

- VYV x s, interp_fol stack_nat
(Equal (stack_term pop ( stack_term push ( var x,; var x; ) ))
(var x;))

(s; x)

- V x s, eval_term stack_nat
(stack_term pop ( stack_term push ( var x,; var x; ) ))
(s; x)

= eval_term stack_nat (var x;) {( s; x )
- VYV x s, uncurry tl
( uncurry cons ( nth { s; x ) Xx,5 nth { s; x ) x; ) )

= nth ( s; x ) x;

-» V xs, tlL (x :: s) =s

We have presented everything required so far besides signature morph-
isms and related constructions. This is where things get trickier.

3.6.5 Signature morphisms, reduct algebras, term translations

Signature morphisms (DEFINITION 2.4.9) are characteristic of the in-
stitutional approach. In Coq, they are represented by the tagged morph-
isms we introduced in SECTION 3.3.

Definition lift_ty [A B] (f : A -> B) (£ : list A x A) := 3.6.16
(map f (fst 2), f (snd 2)).

Record SigMorphism X X' := {

on_sorts :> Sorts X -> Sorts X' ;
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on_funcs : tagged_morphism (lift_ty on_sorts) (Funcs ) (Funcs %') ;

on_preds : tagged_morphism (map on_sorts) (Preds %) (Preds ')

Nothing terribly surprising is happening here. With signature morphisms
defined, we can define reduct algebras (DEFINITION 2.4.10), which

are a bit more complicated.

Definition ReductAlgebra (A' : Algebra ') : Algebra X. 3.6.17
refine {|
interp_sorts s := interp_sorts A' o 0 ;

interp_funcs F 6 :=
rew _ in interp_funcs A' (on_funcs o F) (rew _ in reindex o 8) ;
interp_preds P 6 :=
interp_preds A' (on_preds o P) (rew _ in reindex o 6) ;
|}; rewrite tagged_morphism_commutes; auto.
Defined.

Recall the reindexing function from SECTION 3.4. The reason we need it
is because the type of §is HList(A’ oo, ar F'), which is a ¥-environment,
but we need it to be HList(A’, ar(o(F'))), which is a ¥’-environment.
This involves two stages—reindexing converts HList(A’ o o, ar F) to
HList(A’, map o (ar F')), and the rewrite uses tagged morphism com-
mutativity to convert that to HList(A’, ar(o(F"))).

Term translations are not completely trivial but pose no problems. To
define it we will need to also define a reindexing function for the member
type we defined in SECTION 3.4.

Fixpoint reindex_member 3.6.18
{3 K} {j Js?
(f : J -> K) (m : member j js)
: member (f j) (map f js) :=
match m with
| HZ => HZ
| HS m' => HS (reindex_member f m')

end.

Equations? on_terms
{Z X' : Sdignature} {I : Ctx X} (o : SignatureMorphism X ')
[s : Sorts 2] (t : Term X2 I's) : Term X' (map o IN) (o s) := {
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on_terms o (var i) := var (reindex_member o i) ;
on_terms o (term F args) :=
rew _ in term (on_funcs o F)
(rew [HList (Term X' (map o ))] _ in map_on_terms o args)
}
where map_on_terms {X X' : Sdignature} {I : Ctx X} {w : Arity 2}
(o : SignatureMorphism % %') (args : HList (Term X I) w)
: HList (Term X' (map o IN)) (map o w) := {
map_on_terms o () := () ;
map_on_terms o (t ::: ts) := on_terms o t ::: map_on_terms o ts
}.
Proof.
all: rewrite tagged_morphism_commutes; reflexivity.
Defined.

Term translations only involve a reindexing of members in the variable
case. The term case involves applying o to the function symbol and then
recursively applying it to each subterm, subject to some simple rewrites.

As an example of reduct algebras, let’s encode the NAND logic ex-
ample at the end of SECTION 2.4. First, we require the concepts of
‘tagged terms’ and ‘derived signature morphisms’.

Definition TaggedTerm X 3.6.19
: Tagged (list (Sorts Z) * Sorts IZ) := {|
tagged_data := { x & Term £ (fst x) (snd x) } ;
get_tag t := projTl t ;
3.

This explicitly pairs a term with its arity and result sort such that it
becomes tagged. This allows it to stand in place of the function symbols
in a signature.

Next, we need derived signature morphisms. These are like regular
signature morphisms, but the target for the morphism on function sym-

bols is tagged terms.

Record SignatureMorphism® (X I' : Sdignature) : Type := { 3.6.20
on_sorts? :> Sorts I -> Sorts X' ;
on_funcs?
tagged_morphism (lift_ty on_sorts?) (Funcs I) (TaggedTerm I') ;

on_preds®
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tagged_morphism (map on_sorts?) (Preds I) (Preds %I') ;

But once we have the concept of derived signatures, derived signature
morphisms can be trivially converted into regular signature morphisms
with a derived signature target.

Definition TermSignature (X : Signature) : Signature := {| 3.6.21
Sorts := Sorts I ;
Funcs := TaggedTerm % ;
Preds := Preds X ;

3.

Local Notation TS := TermSignature.

Definition collapse_derived {X X' : Signature}

4 : SignatureMorphism? I ')

(o
: SignatureMorphism X (TS Z') := {|
on_sorts := on_sorts? og¢ : Sorts ¥ -> Sorts (TS I') ;

on_funcs := @on_funcs? ¥ ' o¢ ;

on_preds := @on_preds? ¥ 3' o¢ ;

[}.

Finally we can encode the term translation indicated at the end of SEC-
TION 2.4. The most important component converts boolean function
symbols to NAND function symbols.

Local Notation nt := (term (X := nand_sig)). 3.6.22

Equations b2n_funcs (F : Funcs bool_sig)
: Term nand_sig (map idmap (ar F)) (res F) :=
b2n_funcs NOT := nt NAN
b2n_funcs IMP := nt NAN
b2n_funcs OR nt NAND

D ( var x, ; var x; ) ;
D

(
( var x; ; nt NAND ( var x, ; var x, ) ) ;
( nt NAND ( var x, ; var x; )
5 nt NAND ( var x, ; var X, ) ) ;
b2n_funcs AND := nt NAND ( nt NAND ( var x, ; var X, )

;5 nt NAND ( var x; ; var X, ) ) ;
b2n_funcs bTRUE := nt nTRUE () ;

b2n_funcs bFALSE := nt nFALSE () .
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This induces a derived signature morphism bool_to_nand®. Now note
that any algebra automatically induces an algebra for its derived signature

in the following sense.

Definition alg_to_tsalg {X} 3.6.23
(M : Algebra %) : Algebra (TermSignature %) := {|
interp_sorts := interp_sorts M : Sorts (TermSignature %) -> Type ;
interp_funcs F args := eval_term M (projT2 F) args ;
interp_preds P args := dinterp_preds M P args ;
[}-

This means that the boolean algebra bool_alg is simple to define, as-
suming that we have defined the NAND algebra nand_alg.

Definition bool_alg : Algebra bool_sig := 3.6.24
ReductAlgebra (collapse_derived bool_to_nand?)
(alg_to_tsalg nand_alg).

The full details can be seen at Examples.v#L157.

3.7 Proofs for First-Order Logic

We now have everything we need to start proving that FOPEQ is an
institution. There are broadly four things to prove: that signatures and
signature morphisms form a category, that the sentence and model con-
structions do in fact induce functors into their respective categories Set
and Cat—and finally the satisfaction condition. Almost all proofs revolve

around signature morphisms.

3.7.1 The category of signatures

Let’s begin by proving that signatures and signature morphisms form a
category. (The obligations are listed in DEFINITION 2.1.1.) This will
allow us to introduce some common proof techniques in a simple context.
We won’t show all the proofs here, just those that best represent the most
important ideas.


https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Examples.v#L157
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Two important proofs are the left and right identities for composition
for signature morphisms: f o id = fandidof = f. We will apply
the same technique as we did near the end of SECTION 3.3, providing
an explicit equality lemma that lists sufficient conditions for equality of
signature morphisms.

Lemma eq_signature_morphism (o o' : SignatureMorphism X ') 3.7.1
(p : on_sorts 0 = on_sorts g')
(q : rew [A f, tagged_morphism (lift_ty f) (Funcs X) (Funcs 2')] p
in (@on_funcs _ _ o) = @on_funcs _ _ o')
(r : rew [A f, tagged_morphism (map f) (Preds %) (Preds Z')] p
in (@Qon_preds _ _ 0) = @on_preds _ _ ¢')
0 =0'".
Proof.
destruct o, o'; cbn 1in x.
now destruct p, q, r.
Qed.

We can see by the lemma that in order to prove o = ¢’, we need three
proofs—the first is that the two signature morphisms are equal on sorts,
the second is that they are equal on function symbols given that they are
equal on sorts, and the third is that they are equal on predicates given
that they are equal on sorts.

In this particular case, this is exactly what happens by default if one
simply unfolds definitions and applies Coq’s built-in f__equal tactic. We
opt for a more explicit approach for consistency and because it’s easier
to generalise and modify if necessary. Furthermore, since no unfolding
is required, it should be easier incorporate into an automated decision
procedure. (To see more interesting examples of equality lemmas, either
return to SECTION 3.3 or skip ahead to SECTION 4.4.) Here is how we
use this lemma to prove the left identity law for first-order signatures.

Theorem id_left_FO0Sig (o : SignatureMorphism X X') : 3.7.2
comp_FO0Sig (id_F0Sig 2') o = o.
Proof.

unshelve eapply eq_signature_morphism; auto;
now apply tagged_morphism_eq.
Qed.
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The lemma generates three cases; the first case is proved by reflexivity,
and since the two tagged morphisms involved are equal by computation,
the remaining two cases are discharged immediately after applying the
relevant lemma.

Associativity of composition is proved by precisely the same basic
decision procedure.

Lemma comp_assoc_FO0Sig 3.7.3
(A B CD : Signature)
(h : SignatureMorphism C D)
(g : SignatureMorphism B C)
(f : SignatureMorphism A B) :
comp_FO0Sig h (comp_FO0Sig g f) = comp_FO0Sig (comp_FO0Sig h g) f.
Proof.
unshelve eapply eq_signature_morphism; auto;
now apply tagged_morphism_eq.
Qed.

The remaining proofs are either trivial or similar to the previous two. All
that is left is to pack the definition up into a category.

Definition FOSig : Category. 3.7.4
refine {|
obj := Signature ;
hom := SignatureMorphism ;
homset := Morphism_equality ;
id := id_FOSig ;
compose := @comp_FO0Sig ;
compose_respects := _ ;
id_left := @id_left_FOSig ;
id_right := @id_right_FO0Sig ;
comp_assoc := comp_assoc_FO0Sig ;
comp_assoc_sym := comp_assoc_sym_F0Sig ;
|}; repeat dintro; congruence.
Defined.

The leftover proofs discharged at the end by congruence are from the
compose_respects setoid requirement. Normally one can choose the
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sort of equivalence that morphisms in a category will use—we choose
standard type-theoretic equality, effectively ignoring setoids, and we will
continue to do so for the remainder of the thesis. This is also the last
time we will show the packing of proofs and definitions into a single
object, since it takes up far too much space and adds very little to the
presentation.

3.7.2 The sentence functor

The first-order sentence functor is simple to define. The component on
objects is just the sentence construction itself, given in LISTING 3.6.9.
The component on signature morphisms is as follows.

Equations? fmap_FOPEQ {I' : Ctx A} (o : A ~{ FOSig }~> B) : 3.7.5
FOPEQ A I ~{ SetCat }~> FOPEQ B (map o IN) :=
fmap_FOPEQ ¢ (Forall y) := Forall (fmap_FOPEQ o y) ;
fmap_FOPEQ o (Exists y) := Exists (fmap_FOPEQ o y) ;
fmap_FOPEQ o (Pred P args) := Pred (on_preds o P)

(rew _ in map_on_terms o args) ;
fmap_FOPEQ ¢ (And a B) := And (fmap_FOPEQ o a) (fmap_FOPEQ o B) ;
fmap_FOPEQ o (Or a B) Or (fmap_FOPEQ o a) (fmap_FOPEQ o B) ;
[...]

Proof. now rewrite tagged_morphism_commutes. Defined.

We just need to prove the functor laws (recall DEFINITION 2.1.2). Here
is the statement of the first law.

Theorem fmap_id_FO0Sen : V (¢ : FOPEQ X IN), 3.7.6
fmap_FOPEQ (id_FOSig X) ¢ = rew [FOPEQ X] (map_id M)A 1in o.

This is the first time we have had to prove an equality of the form u =
rew p in v. Some technique is necessary to explicate here. Proceeding
by induction on ¢ gives us a challenging first case. The problem is that
the identity proofs appearing in the inductive hypothesis and conclusion
prevent us from progressing. Let’s explicitly show the proof state in Coq.
Everything above the dashed line is part of the context, everything below
the dashed line is the goal. Picture a world without identity proofs:
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IHe : fmap_FOPEQ (id_FO0Sig X) ¢ = ¢ 3.7.7

(1/1)

Forall (fmap_FOPEQ (id_FO0Sig %) o) Forall ¢

This would follow trivially by rewriting with the induction hypothesis.
But instead we must prove:

IHe : fmap_FOPEQ (id_FO0Sig ) ¢ = 3.7.8
rew [FOPEQ X] (map_id (s :: IN))" 1in ¢

(1/1)
Forall (fmap_FOPEQ (id_FO0Sig %) ¢) =
rew [FOPEQ X] (map_id IN)” 1in Forall ¢

Where to begin? Let’s rewrite using the inductive hypothesis first.

Forall (rew [FOPEQ X] (map_id (s :: )" in @) = 3.7.9
rew [FOPEQ X] (map_id )" 1in Forall ¢

But now what?

Recall from SECTION 3.5 that identity proofs have a sort of groupoid
structure that can be abused in proofs involving them. Some important
consequences were listed in that section. Those facts are encoded in
Coq’s standard libraries under the following names.

Lemma map_subst [A] [P Q : A -> Type] 3.7.10
(f : V x, Px ->Q x)
[x y] (H: x=y) (t : P x) :
rew Hin f x t = fy (rew H in t).

Lemma rew_map
[AB] (P : B -> Type) (f : A -> B)
[x yl] (H: x=1y) (t : P (fx)):
rew [P o f] H in t = rew f_equal f H 1in t.

Lemma eq_sym_map_distr
[AB] (f:A->B) [xyl (p:x=y):
f_equal f (p”) = (f_equal f p)~r.
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This gives us some tools for manipulating goals involving identity proofs.
For example, after applying map_subst to the goal we get

Forall (fmap_FOPEQ (id_FOSig %) ¢) = 3.7.11
Forall (rew [FOPEQ I o cons s] (map_id M)A 1in @)

which can be simplified further by f__equal (the tactic, not the term):

fmap_FOPEQ (id_FOSig X) ¢ = 3.7.12
rew [FOPEQ X o cons s] (map_id IN” 1in ¢

Now we can apply rew__map to obtain

rew [FOPEQ X] (map_id (s :: )" in ¢ = 3.7.13
rew [FOPEQ X] f_equal (cons s) (map_id NA in ¢

and finally eq_sym_map_distr to obtain

rew [FOPEQ X] (map_id (s :: )" in ¢ = 3.7.14
rew [FOPEQ X] (f_equal (cons s) (map_id IN))” 1in ¢

These terms are equal as long as we can prove
map_id (s :: ') = f_equal (cons s) (map_id IN) 3.7.15

There are two ways to do this: the first is just to apply proof irrelevance —
simply assert that any two propositions are equal and be done with it.
The second way to do it is to re-prove map_id in such a way to make it
true (and provable), which is the approach we took. Either way, the proof
is now complete.

But that was just one case. Most of the other cases are similar to this
one, except for the case on equality of terms. We need an analogous
lemma for terms which asserts that the identity signature morphism has
no effect.
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Definition on_terms_id Z 's (t : Term Z ' s) : 3.7.16
on_terms (id_FO0Sig ) t =
rew [A T, Term £ I s] (map_id )" 1in t.

This is not so easy to prove. The problem now is not so much to do with
the identity proofs, but with the induction principle Coq generated for the
Term type—it’s too weak. Inspecting the induction principle Term_ind
generated by Coq reveals that it is missing a crucial hypothesis in the
term case which asserts the induction predicate P : Hj A; — Prop
for each element of that term’s arguments. This means that we are stuck
proving goals with only the following to work with:

F : Funcs X 3.7.17
args : HList (Term £ ') (fst (Funcs X F))

(1/1)

It is obviously difficult to prove much of anything without an inductive
hypothesis. We therefore need to write a custom induction principle. We
will first need to define HForall, which asserts a predicate P for each
element of a h-list.

Context [J : Type]. 3.7.18
Context [AB C : J -> Type].

Fixpoint HForall
(P : VY 3j, Aj -> Prop)
{js : list 3} (v : HList A js) : Prop :=

match v with

| ) => True
| x ::: xs => P _ x A HForall P xs
end.

With that defined, we can form a new induction principle for terms, called
term_ind’.

Context (X : Signature) (I : Ctx ). 3.7.19
Context (P : Vs, Term £ ' s -> Prop).
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Hypothesis var_case : ¥V s (m : member s '), P s (var m).
Hypothesis term_case :
V (F : Funcs %) (args : HList (Term X I') (ar F)),
HForall P args -> P (res F) (term F args).

Equations term_ind' (t : Term Z 's) : P s t := {
term_ind' (var i) := var_case _ i ;
term_ind' (term F args) := term_case F args (map_term_ind' args)

}

where map_term_ind' (args : HList (Term X I') w) : HForall P args := {
map_term_ind' () := I ;

map_term_ind' (t ::: ts) := conj (term_ind' t) (map_term_ind' ts)

The full proof of this fact is still somewhat delicate, even with this new
and improved induction principle. Here it is in full:

Definition on_terms_id X 's (t : Term 2 ' s) : 3.7.20
on_terms (id_FOSig 2) t = rew [A T, Term X I s] (map_id IMN)" 1in t.
Proof.
induction t using term_ind'.
- simp on_terms. rewrite (map_subst (A _, var)).
now rewrite reindex_member_-id.
- simp on_terms.
simpl on_funcs.
rewrite map_on_terms_hmap; chn.
rewrite reindex_id; cbn. rewrite rew_compose.
revert H; simplify_eqs; intros H.
setoid_rewrite (projl (map_ext_HForall _ _ _) H).
case eqgH; cbn.
now rewrite hmap_id.
Qed.

There are many facts used here which we have not mentioned before.
The facts about h-lists and about reindexing member can be found in
Basics/HList.v, FOL/Algebra.v, and Institutions/InsFOPEQ.v. The lemma
rew_compose expresses the fact that g, (p,(t)) = (p -+ q).(t).


https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Basics/HList.v
https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/FOL/Algebra.v
https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Institutions/InsFOPEQ.v
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3.7.3 The model functor

Mercifully, the model reduct functor is much simpler to construct and
the proofs are very straightforward. Recall the definition of algebra homo-
morphism (DEFINITION 2.4.5). This is represented as follows.

Class AlgHom (h : Vs, A s -> B s) := 3.7.21
alg_hom_commutes : V (F : Funcs X) (args : HList A (ar F)),
h (res F) (interp_funcs A F args) =
interp_funcs B F (hmap h args)

We did not do so in SECTION 2.4, but we can define identities and

composition for homomorphisms easily.

Definition AlgebraHom [X] (A B : Algebra ) := 3.7.22
{ h | AlgHom A B h }.

Lemma eq_alghom [X] (A B : Algebra %) (f g : AlgebraHom A B)
(p: 'f="g) : f=g.

Proof.
destruct f, g; cbn in p.
now apply subset_eq_compat.

Qed.

Definition id_alghom [Z] (A : Algebra %) : AlgebraHom A A.
exists (A _, ddmap).
repeat intro; rewrite hmap_id; auto.

Defined.

Definition comp_alghom [X] (A B C : Algebra %)

(f : AlgebraHom B C) (g : AlgebraHom A B) : AlgebraHom A C.
Proof.

exists (A s x, fs ("gsx)).

repeat intro; rewrite hmap_hmap, (proj2_sig g), (proj2_sig f); auto.
Defined.

This is sufficient to define the category of algebras. The proofs are not
worth repeating here —they can be found at Institutions/InsFOPEQ.v.
The model functor itself only really requires two lemmas (which we
do not prove here).


https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Institutions/InsFOPEQ.v
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Lemma reduct_id (X : Signature) (A : Algebra %) : 3.7.23
ReductAlgebra (id_FOSig %) A = A.

Lemma reduct_comp {A B C : FOSig}
(g : B~>C) (f:A~>B) (M: Algebra C) :
ReductAlgebra (comp_FO0Sig g f) M =
ReductAlgebra f (ReductAlgebra g M).

3.7.4 The satisfaction condition

The satisfaction condition for first-order logic can be distilled into a single
lemma.

3.71 Lemma. Let o : ¥, — X, be a signature morphism, let ¢; be
a X;-term with ¥;-context I';, and let A, be a X,-algebra. Let 0 :
HList(Aj|_,T';) be a valuation of the variables in I';. Then

A3 (0(ty)) = (Aa] )0 (t1)

Since 6 is a h-list, the action of ¢ on @ is just a reindexing; hence
we obtain () : HList(Ay, map o I';) —now a ¥,-environment. The
specific requirement generated by the proof of satisfaction for one of the
atomic sentences, t; = t,, is

A EO (a(ty =ty)) iff (A| ) E® (t; =t) (¥)

Compeare this with the definition of satisfaction in DEFINITION 2.3.1.
Notice that LEMMA 3.7.1 is a strict strengthening of (x), since it shows
in fact that the terms under analysis are equal when interpreted. In fact
LEMMA 3.7.11s a strict strengthening of the satisfaction condition for
first-order logic when restricted to equality of terms. We can make this
fact much more obvious by understanding it as a technically complete
presentation of a fact which we should certainly hope is true:

(Aeo)(t) = A(a(t))

So we do not just have the satisfaction condition—a mere logical equival-
ence—but something much stronger: syntactical equality of sentences.
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The statement of the lemma in Coq is as follows.

Lemma helper_eval_term_reduct 3.7.24
(X 2' : FOSig) (A' : Algebra ')
(0 : 2 ~>2'") {Fs} (t: Term XTI s) env :
eval_term (ReductAlgebra g A') t env =

eval_term A' (on_terms o t) (reindex o env).

The proof can be found at Institutions/InsFOPEQ.v#L340. It is a little
finicky, but otherwise can be proved directly from what we have done
thus far. Finally, the proof of the satisfaction condition itself, which is
very long, can be found at Institutions/InsFOPEQ.v#L482. I hope you will
agree that it is mostly uncomplicated besides the facts presented here.

With FOPEQ completely constructed, we have done most of the hard
work. Many institutions—and more than just those considered here—
either build directly on FOPEQ or otherwise use the basic constructions
and proofs comprising it. We will se the fruits of this labour in the next
chapter.


https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Institutions/InsFOPEQ.v#L340
https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Institutions/InsFOPEQ.v#L482




— FOUR ——

An Institution for Event-B

In this chapter, we will describe and formalise an institution for Event-B
in Coq—or rather, a simplified version, a ‘core’ institution consisting
only of first-order logic and variable-update statements. We prove its
satisfaction condition and identify the most important facts involved. The
work in this chapter first appeared in a much abridged form in [RM22].

4.1 A Short Description of the Event-B Language

For more details, see Thai Son Hoang’s summary of the Event-B lan-
guage in [RT13, Appendix A] and Jean-Raymond Abrial’s book on Event-B
[Abrl0]. Event-B is a formal language for describing and modelling dis-
crete state-transition systems. Event-B models consist of contexts and

machines. Contexts contain only first-order data— carrier sets, constants,
axioms, theorems. Machines consist of state variables and a list of events.
Each event describes an update to the state and may only fire under cer-
tain conditions on the state, given by the event’s guard. Events with true

guards in some state are said to be enabled in that state. There are two

special events: an nstialisation event, which sets the initial state of the

machine, and the skzp event, which does nothing. A machine may have a

list of snvariants, which are state predicates that must be true at initial-
isation and remain true after any event is executed. The ‘operation’ of a

machine goes like this—

1. Initialise the state of the machine.
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2. Nondeterministically choose an enabled event and execute it.
3. Repeat step 2 indefinitely.

Event-B models are not really executed, however, since they are only
models—they just describe the behaviour of a machine at varying levels
of abstraction.

Each Event-B machine generates a list of proof obligations which
must be satisfied. In the following, let v and v” be the pre- and post-
state variables, let x be the input variables for an event, let K be the
initialisation predicate, let I be the invariant predicate, let G be the
guard, and let BA be the before-after predicate representing the action
of the event. The most important examples of Event-B proof obligations

arc—

o Invariant establishment —the initialisation event should set the state
variables to values which make the invariants true. This is written

K@) FI() (IE)

o Invariant preservation—the invariants should remain true after each
event is executed. This is written

I(v), G(x,v), BA(z,v,v") - I(v') (IP)

But the main appeal of Event-B is its support for syntactical machine re-
finement. The basic notion of ‘refinement’ originated, as far as I can tell,
in Dijkstra’s 1968 paper on constructive approaches to program correct-
ness [Dij68]. The idea as it appears in modern writing is to begin with a
specification for a program and introduce details step-by-step, eventually
arriving at a concrete program that can be executed and that adheres
to the original specification. Event-B provides explicit support for this
process—it generates proof obligations that ensure concrete machines
are in fact valid refinements of the abstract machines. Such obligations

are generated by gluing invariants.

* * *
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Prior to Marie Farrell’s work on an institution for Event-B [Farl7], there
was no formal semantics for Event-B. The proof obligations outlined
above can be regarded as a ‘semantics’ for Event-B, in the same way
that first-order proof rules can be regarded as providing a semantics for
first-order logic. But there is a much more obvious semantics one can
outline for an Event-B machine, as we have done at the beginning of this
section. Event-B models don’t ‘do’ anything but they do specify a range
of possible concrete machines, and therefore can constrain bekaviours
or execution traces. (We will return to this concept in CHAPTER 5.) A
semantics for Event-B should reflect the more basic literal meaning of
the syntax.

An important result that Farrell proved was the amalgamation prop-
erty—meaning that Event-B can in principle support the modularisation
constructs it currently lacks. It means, roughly, that models for combined
signatures can themselves be put together from models for the individual
signatures. For example, if A and B are signatures and C = AN Bis
a signature consisting of the symbols shared by both, then models for
A U B are given by combining models for A and B individually, as long
as the models agree on the common symbols C. (This will be defined
precisely in DEFINITION 6.4.2.)

The institution we will discuss in this chapter shares most of the
important features of Farrell’s EVT, but removes features that were
unimportant for proving the satisfaction condition. We do this because
it simplifies the presentation, retains most of the work involved, and
because it is a useful generalisation of EVT. This institution is not just
useful for modelling Event-B, but potentially any logical system which is
based on the notion of variable update, like TLA* [Lam99].

We will therefore not encode Farrell’s EVT directly for fear of need-
lessly distending this chapter. We will only discuss Farrell’s construction
to compare it to the constructions we detail here. Besides, we have en-
coded EVT already—see [Rey21] for that.
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4.1.1 Event-B machine example: traffic lights

We’ll quickly define the standard traffic lights example to give a flavour
of the Event-B language. It consists of two state variables cars_go and
peds_go, three invariants, and five events including one initial event.
The notation should be self-explanatory. (But note that this is not quite
how Event-B appears in the Rodin tool.)

machine traffic_lights 4.1.1

variables cars_go, peds_go

invariants
@invl: cars_go € BOOL
@inv2: peds_go € BOOL
@inv3: - (cars_go = true A peds_go = true)

events
initialisation
begin @actl: cars_go := false
@act2: peds_go := false

end

set_cars_go
when @grdi: peds_go = false
then @actl: cars_go := true

end

set_peds_go
when @grdi: cars_go = false
then @actl: peds_go := true

end

set_cars_stop

then @actl: cars_go := false
end

set_peds_stop

then @actl: cars_go := false

end
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The two state variables are declared and constrained to be booleans in
the first and second invariants. The primary invariant is inv3, which says
that it must not be the case that cars_go and peds__go are true at once.

This is not a remotely plausible model of any real set of traffic lights,
but it does capture the key abstract requirement that a set of traffic lights
must satisfy: cars and pedestrians must not go at once. Details can be
introduced through refinement while retaining this basic requirement
through gluing invariants. First, the new machine will need a context
providing the colours red and green for the lights.

context ctx 4.1.2
sets colours
constants red, green
axioms
@axml: partition(colours, {red}, {green})

end

Now, here is a possible refinement of the traffic_lights machine.

machine traffic_lights_r1 4.1.3
refines traffic_lights

sees ctx

invariants
@invl: peds_colour € {red, green}
@inv2: cars_colour € {red, green}
@inv3: button_pushed € BOOL
@inv4: peds_go = true < peds_colour = green

@inv5: cars_go = true < cars_colour = green

events
initialisation
begin @actl: cars_colour := red
@act2: peds_colour := red

end

set_peds_green refines set_peds_go
when @grdl: cars_colour = red
@grd2: button_pushed = true
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then @actl: peds_colour := green
@act2: button_pushed := false

end

set_peds_red refines set_peds_stop
begin @acti: peds_colour := red

end

set_cars_green refines set_cars_go
when @grdl: peds_colour = red
then @actl: cars_colour := green

end

set_cars_red refines set_cars_stop
begin @actl: cars_colour := red

end

press_button
begin @acti: button_pushed := true

end

The invariants inv4 and inv5 are the gluing invariants—they ensure that
cars and pedestrians go if and only if their respective lights are green.
This, combined with the original invariant inv3 in the traffic_lights
machine, ensures that the refinement preserves the old invariant—if we
can prove it, of course.

4.2 A Simplified Institution for Event-B

The institution we will describe in this section is similar to Farrell’s, but
without event names. We focus only on the description of variable up-
dates via assignments of the form x := E. These assignments will be
translated as equations " = E, where E is an expression involving only
‘unprimed’ variables. The unprimed variables represent the state of the
machine ‘before’ the assignment, and the primed variables represent the
state of the machine ‘after’ the assignment. There will be two types of as-
signments: snitialisation and event assignments. Initialisation assignments
only mention primed variables and serve, unsurprisingly, to initialise the
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state. Event assignments mention both primed and unprimed variables
and describe updates to the state.

Stripped in this way, the sentences in this institution represent two-
state predicates. It is akin to Leslie Lamport’s temporal logic of actions,
but without the temporal operator (], meaning ‘forever’ [Lam99; Pnu77],
and modelled not against a behaviour—i.e. an execution trace—but
against a single pair of states. It represents a minimal core in which we
may talk about assignment, or ‘actions’ in Lamport’s terminology. Hence
we will call this institution ACT for the purposes of this thesis. This
institution went by the name mEVT in our [RM22] but was changed
to emphasise the general character of ACT. Similar institutions to ACT
appear in [Kna+15] and [Ros+21, §3.1].

Before we start defining ACT’s components, we need to introduce a
few standard first-order constructions. One such standard construction
in institution theory is the signature extension ¥ — ¥ + X. We can add
a set of variables X to a signature 3 by adding them directly into the

signature as constant function symbols.

4.2.1 Definition. Let X = (S, F, P) be a first-order signature and let
X be an S-indexed set. The extension of ¥ by X is a first-order signature
3 4+ X which is equal to 3 everywhere except on the constant function
symbols; ¥ + X has constant symbols F; ; + X, foreach s € S.

We can extend algebras in much the same way. An algebra for a signa-
ture of the form ¥ + X consists exactly of a 3-algebra and a valuation

X — A.

4.2.2 Definition. Let X = (S, F, P) be a first-order signature and let A
be a Y-algebra. Let X be an S-indexed set of variablesandletf : X — A
be a valuation of variables. The expansion of Aby fisa (X + X)-algebra
A?® which behaves like A on symbols from ¥ and takes variables z € X,
to f(x) € A,.

Let’s now define signatures and signature morphisms for ACT.



72 An Institution for Event-B

4.2.3 Definition. An ACT-signature 3. is a 3-tuple (2, X, X’) where
¥ is a first-order signature and X and X’ are Sorts(X)-indexed sets
containing respectively unprimed and primed variables, such that the
function (—)” : X — X’ mapping variables to their primed counter-
parts is an equivalence. From now on, in all cases where not otherwise
specified, any ACT-signature 3, is given by (%, X, X7).

Notice that the variables are not pooled into one set, but separated.
Despite appearances to the contrary, there is no difference between this
presentation of variables and Farrell’s. In Farrell’s EVT, where there is
only one set X of variables, one can always retrieve the primed version
of a variable z. That implies that the set contains variables z, y, 2, ...
and their primed counterparts x’,y’, 2’ ... and that there is a partial
function (—)” : X — X defined only on unprimed variables that maps
each unprimed variable to its primed counterpart. Here, we simply make
these facts explicit.

General functions on sorted values often have an underlying signature
morphism. In those situations the arrow will be written A —— B. The
most common example is a morphism of variables, as we will see next.

4.2.4 Definition. An ACT-signature morphism o : f)l — 22 consists
of a first-order signature morphism o : ¥; — 3, and two variable
morphisms on_vars : X; —— X, and on_vars’ : X; — X/ such
that the following diagram commutes.

on_vars

— X5

-] ler
X1 —— X5
on_vars
This commutativity condition can also be characterised by the equa-
tion on_vars’(z’) = (on_vars(x))’.

4.2.5 Definition. Let S bean ACT signature and let A be a X-algebra. A

~

3-state is a valuation of variables 0 : Hs X, — A,. Normally the sort
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is left implicit and we just write § : X — A. We will sometimes call
Y.-states ‘valuations’ or ‘environments’,

4.2.6 Definition. A S-model M is a 3-tuple (A, 0,60’), where Aisa X-
algebraand @ : X — Aand @’ : X’ — A are valuations of variables.

The sentences for ACT are very simple and correspond to the two
cases noted in the previous section. Note that FOSen(X) denotes the
set of all first-order 3-sentences.

4.2.7 Definition. Let S be an ACT-signature. A S-sentence is either an
initialisation sentence Init(¢) where ¢ € FOSen(X 4+ X’), or an event
sentence Event(¢) where ¢ € FOSen(X + X + X’).

To illustrate what we have so far, consider the following example. A
model for a (X + X + X’)-sentence consists of a 3-algebra A and two
states @ : X — Aand @ : X’ — A. One possible model for the
sentence ' = x + 1 consists of the usual algebra for natural numbers,
a pre-state { z - 2}, and a post-state { ' — 3 }. One possible model
for the sentence 8" = push(z, s) consists of an algebra for a stack of
characters, a pre-state {z > e,s > [v,t]}, and a post-state {s’
[e, v, t] }. Here, 2" can consistently be assigned anything. If we wish to
avoid this, we can assume that sentences 1 which don’t mention a primed
variable z” are really shorthand for ¥ A (2’ = z).

Now we can define the semantic entailment relation for ACT.

4.2.8 Definition. Let 3 be an ACT-signature,let M = (A,0,0") a >-
model, and let 1) an ACT-sentence. We define M [ 1 by cases—

« ME Init(¢) if A% £ ¢;and
« Mk Event(¢) if A% £ ¢

This is as simple as it can possibly get—the only simpler representa-
tion might be to collapse the initial and event distinction entirely, which
doesn’t seem necessary. All that remains is to encode everything in Coq
and prove the satisfaction condition.
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4.3 Formalising ACT in Coq

Since ACT builds directly on FOPEQ), we have far less work to do than
for FOPE®. We rely on a couple of major first-order constructions. First,
we will define ACT state variables, which are represented as tagged data

with decidable equality.

Record Vars % := { 4.3.1
tvars :> Tagged (Sorts %) ;
vars_dec : EqDec (tagged_data tvars) eq ;

Variable morphisms are just a specialisation of the tagged morphisms of
SECTION 3.3.

Definition var_morphism (o : Sorts A -> Sorts B) 4.3.2

(X : Vars A) (Y : Vars B) := tagged_morphism o X Y.

Then we define the following class.

Class Primed [Z] (X Y : Vars X) := { 4.3.3
prime : var_morphism id{FOSig} X Y ;
unprime : var_morphism id{F0Sig} Y X ;
p_unp : V'y : Y, prime (unprime y) =y ;

unp_p : V x : X, unprime (prime x) = x ;

This encodes the information that X and Yare equivalent as types. ACT-
signatures (DEFINITION 4.2.3) are then represented exactly as they
are given mathematically.

Record EvtSignature := { 4.3.4
base :> Signature ;
vars : Vars base ;
vars' : Vars base ;

prime_rel : Primed vars vars' ;

For ACT signature morphisms (DEFINITION 4.2.4), we can define
on_vars’ in terms of on_vars to simplify matters.
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Record EvtSigMorphism (X X' : EvtSignature) : Type := { 4.3.5
on_base :> SignatureMorphism X %' ;

on_vars : var_morphism on_base (vars X) (vars %')

Definition on_vars' (o : EvtSigMorphism X ')
var_morphism ¢ (vars' Z) (vars' Z').
Proof.

refine (exist

(A x, prime (on_vars o (unprime x))) _); intros.
refine (eq_trans _ _). { apply var_morphism_commutes. }
refine (eq_trans _ _). { apply var_morphism_commutes. }
apply f_equal, var_morphism_commutes.

Defined.

The proof for on_vars’ might look a little strange, but proving it exactly
like this is useful in situations where the structure of the proof term
matters—recall the discussion in SECTION 3.5.

Signature extensions (DEFINITION 4.2.1) are easy to define—recall
that we wanted to treat the variables like constant function symbols and
take their sum.

Definition SigExtension (X : FOSig) (X : Vars X) : FOSig := {| 4.3.6
Sorts := Sorts % ;
Funcs := tagged_sum (Funcs X) (as_constant_funcs X) ;
Preds := Preds % ;

[}-

Valuations of variables (DEFINITION 4.2.5) are internally referred to
as ‘environments’ and are defined as follows.

Definition Env [X] (X : Vars X) (A : Sorts X -> Type) := 4.3.7
V (x ¢ X), A (get_tag x).

We noted in DEFINITION 4.2.5 that when we write X — A we mean

[[. X, — A,, but with our representation of indexed types (recall
S

SECTION 3.3) it is more precisely

H Atag(a:)
z: X

We will still write X — A for clarity.
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Environments, like algebras, are retracted along signature morphisms,
and the retraction is just precomposition. Let § : Y — M be a valuation
and f : X — Y'be a variable morphism. The precomposition § o f
should have the type X — M o g, but instead has the type

[ M(rag(£()))
z: X

This type is not the right shape to be an environment. Recall however
that tag(f(z)) = o(tag x) by the coherence condition for the tagged
morphism f. Hence the above is propositionally equal to

[[ M(o(tag)) = [[(M o 0)(tagz))

z: X z: X
which is the type we expect for an environment X — M o o. The full
definition is hence—

Definition retract_env 4.3.8
[A B : FOSig] [X : Vars A] [Y : Vars B]
[M : Sorts B -> Type]
(o0 : A ~>B) (f : var_morphism ¢ X Y) (6 : Env Y M)
: Env X (M o 0) :=
A x, rew (proj2_sig f x) in 6 (f x).

The most important part of an algebra expansion (DEFINITION 4.2.2)1is
given by the following function—no other part of the algebra is changed.
The environment 6 interprets the variables and the algebra interprets
everything else.

Equations alg_exp_funcs {ZX : FOSig} {X : Vars } 4.3.9
(A : Algebra ) (0 : Env X A) (F : Funcs (SigExtension X X) )
: HList (interp_sorts A) (ar F) -> dinterp_sorts A (res F) :=
alg_exp_funcs _ _ (inr C) := A _, 6 C ;
alg_exp_funcs _ _ (inl F) := 1dinterp_funcs A F .

ACT-models (DEFINITION 4.2.6) and ACT-sentences (DEFINI-
TION 4.2.7) also offer no surprises.
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Record EvtModel X := { 4.3.10
base_alg :> Algebra % ;
env : Env (vars ) base_alg ;
env' : Env (vars' %) base_alg ;

}.

Inductive EVT Z : Type := 4.3.11

| Init : FOSen (SigExtension X (vars' X)) -> EVT Z
| Event : FOSen (SigExtension X (vars X @ vars' X)) -> EVT I.

Finally, the semantic entailment relation for ACT (DEFINITION 4.2.8)
defers directly to entailment for FOPEQ.

Definition 1interp_evt (M : EvtModel %) (¢ : EVT X) : Prop := 4.3.12
match ¢ with
| Init y =>
AlgExpansion (base_alg M) (env' M) E y
| Event y =>
AlgExpansion (base_alg M) (join_envs (env M) (env' M)) E y

end.

Here, join_envs stitches two valuations § : X — Aandf’ : X' — A
(with the same target) into a valuation (§ + 6’) : X + X’ — A. The
definition is simple.

Definition join_envs 4.3.13
{Z : FOSig} {X X' : Vvars X} {M : Algebra %}
(6 : Env X M) (8" : Env X' M) : Env (X ®@ X') M :=
A x, match x with
| inl x => 6 x
| inr x => 8' x

end.

With the basic concepts defined we can move on to the proofs.

4.4 Proofs for ACT

Recall in SECTION 3.3 that we introduced explicit equality lemmas.
Their merits will become much more apparent in this section.
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To prove, for example, that two ACT signature morphisms are equal,
we need to prove that they are equal componentwise —the first-order
signature morphisms must agree everywhere, as must the two variable
morphisms. The usual strategy is to unfold definitions, split products,
and apply the f__equal tactic. But this produces a strange set of subgoals
that happen to be difficult to prove. What’s the problem?

Let’s write out the equality lemma explicitly, as we have done before.

Lemma eq_evtsigmorphism 4.4.1
(X ' : EvtSignature) (o o' : EvtSigMorphism X X')
(p : on_base o = on_base ¢')
(g ¢ rew [A f, var_morphism f (vars X) (vars X')] p
in on_vars o = on_vars d')

0 =0'.

Notice that in order to state the proof g, we need to know p is true first.
The crucial observation is that p is a stronger assumption than we need
to state ¢. The function f in the type family argument to eq_ rect is a full
first-order signature morphism, but the only component that participates
is the operation on sorts. We therefore only need to know that o and ¢’
agree on sorts in order to state . We can add that as an extra assumption
p’ and state ¢ in terms of p’ instead.

Lemma eq_evtsigmorphism 4.4.2
(X ¥' : EvtSignature) (o o' : EvtSigMorphism X ')
(p' : on_sorts o = on_sorts g')
(p : on_base 0 = on_base o')
(g : rew [A f, var_morphism f (vars Z) (vars X')] p'
in on_vars 0 = on_vars o')

0 =0'.

This lemma is true, and we can prove it easily with UIP.

Using this equality lemma, it’s trivial to prove that ACT signatures
and signature morphisms form a category. As an example, the left identity
law is discharged by the following.

unshelve eapply eq_evtsigmorphism; cbn. 4.4.3

* reflexivity.
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* apply 1id_left_FOSig.
* apply var_morphism_left_did.

In fact this is just what we would have expected to prove should the com-
plex structure of the types have not hindered progress. The equality
lemma requires us to prove three subgoals, and each subgoal has a proof
already. Since the proof of p’ is refl, eq_rect computes away in the third
branch of the proof and we can proceed as usual. All proofs for the ACT
signature category are discharged in much the same way.

Next, we will explain how to turn ACT signature morphisms into
FOPEQ signature morphisms of extended signatures. (This is what an
ACT signature morphism ‘really is’—a first-order signature morphism
of signatures extended by variables.) We will call this a ‘flattening’ and

define it as follows.

Definition flatten_morphism 4.4.4
{Z, ¥, : FOSig} (o : Z; ~> %,)
{X; ¢ Vars %,} {X, : Vars 2,}
(v : var_morphism o X; X,)
SigExtension X, X, ~> SigExtension X, X,.

Proof.
refine {|
on_sorts := on_sorts o ;
on_funcs := _ ;
on_preds := on_preds O ;
3.

unshelve esplit.
- 1dintros F. destruct F as [F | x].
* left. exact (on_funcs o F).
* right. exact (v x).
- dntros F. destruct F as [F | x]; cbn.
* apply tagged_morphism_commutes.
* unfold lift_ty. f_equal.
apply tagged_morphism_commutes.
Defined.

Another important construction involves stitching together two variable
morphisms with the same underlying signature morphism. It’s simple to

define and the coherence proofs are easy.
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Definition varmap_sum [A B] [X Y Z W] 4.4.5
(o : Sorts A -> Sorts B)
(f : var_morphism o X Z)
(g : var_morphism o Y W)
: var_morphism o (X ® Y) (Z & W).
Proof.
refine (exist _ (A x, match x with
| inl x => 4inl (f x)
| inr x => {dnr (g x)
end) _); dintros.
destruct x; cbhn.
- rewrite <- (proj2_sig f _); reflexivity.
- rewrite <- (proj2_sig g _); reflexivity.
Defined.

Before we look at the proof of satisfaction for ACT directly, we will note

the following important observation.

Lemma varmap_sum_join [A B : EvtSig] (o : A ~> B) M' : 4.4.6

retract_env ¢ (varmap_sum o (on_vars g) (on_vars' o))

(join_envs (env M') (env' M')) =

join_envs (env (fmap[EvtMod] o M')) (env' (fmap[EvtMod] o M')).
Proof.

unfold retract_env; funext x;

destruct x; simplify_eqs; auto.
Qed.

This proves that (§ + 6')[ ., = 0] + 6’| , which might look a little
surprising. In fact, retracting along variable morphisms is the same as
taking the reduct of the underlying algebra by the ambient signature
morphism, as the following lemmas demonstrate.

Lemma varmap_retract [A B : EvtSig] (o : A ~> B) M' : 4.4.7
retract_env ¢ (on_vars g) (env M') = env (fmap[EvtMod] ¢ M').

Proof. reflexivity. Qed.

Lemma varmap_retract' [A B : EvtSig] (o : A ~> B) M'
retract_env o (on_vars' o) (env' M') = env' (fmap[EvtMod] o M').

Proof. reflexivity. Qed.
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The final and most important lemma is the following. The proof proceeds
more-or-less by computation.

Lemma expand_retract_eq {A B : FOSig} (o : A ~> B) 4.4.8
{M' : Mod[INS_FOPEQ] B} {X : Vars A} {X' : Vars B}
{6' : Env X' M'} {v : var_morphism o X X'} :
AlgExpansion (ReductAlgebra o M') (retract_env o v 8') =
ReductAlgebra (flatten_morphism o v) (AlgExpansion M' 8').
Proof.
unfold AlgExpansion, ReductAlgebra, flatten_morphism; f_equal.
funext F 0. destruct F; cbn in *; auto.
unfold retract_env. simplify_eqs. destruct eqH. now simplify_eqgs.
Qed.

Loosely it says that expansion and reduction ‘commute’. More precisely:

4.4.1 Lemma. Let o : 3; — X4 be a first-order signature morphism,
let f : X; —— X, be a variable morphism, let A, be a ¥,-algebra, and
let 6, : X5 — A, be a valuation of variables. Then

o 92
(142|0)92 T= (4, )|U+f

This lemma is useful not just for ACT, but for other institutions we
will define in CHAPTER 5.

The proof of satisfaction itself proceeds by two cases, both of which
are essentially the same, and both of which rely on the satisfaction condi-
tion for FOPEQ, LISTING 4.4.6, LEMMA 4.4.1 (which was encoded
in LISTING 4.4.8), with f instantiated to different maps in each.

Definition INS_EVT : Institution. 4.4.9
Proof.
refine {|
Sig := EvtSig ;
EvtSen ;
Mod := EvtMod ;

Sen :

interp := @interp_evt ;
sat := _ ;

|}; dntros.

induction @; split; dintros.
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(* Init case *)

- apply expand_retract_iff; auto.

- apply expand_retract_iff; auto.

(* Event case *)

- apply expand_retract_iff in H; unfold dinterp_evt, "E".
now rewrite varmap_sum_join 1in H.

- apply expand_retract_iff. unfold interp_evt, "E" din H.
now rewrite varmap_sum_join.

Qed.

That completes the institution ACT.

The hope is that the story of ACT proves something about how straight-
forward defining institutions based on the components of first-order logic
can be. And with both FOPEQ and ACT defined, any institutions based
on ‘FOL with state’ should be simple to describe, even if they do not
have any explicit formal relationship with them. That is what we will

endeavour to show in the next chapter.



— FIVE ——

Logic Combinations: Event-B and LTL

With first-order logic, state, and basic state-updates encoded, we’re now
well-placed to iterate on these ideas. In this chapter we’ll define a new
institution for Event-B called MacE VT—which will directly encode the
semantics for an Event-B machine—and prove its satisfaction condition
in Coq. We will also encode an institution for linear-time temporal logic
(LTL) in Coq called LTL, then discuss and evaluate a logic combination
of MacEVT and LTL using a duplex construction.

5.1 Introduction and Motivation

Event-B models are generally focused on safety properties— ‘something
bad never happens’—rather than liveness properties— ‘something good
eventually happens’ [Lam77]. But there is some appetite for more general
liveness properties in Event-B—plenty has been written by (for instance)
Thai Son Hoang and Jean-Raymond Abrial [HA11] and Steve Schneider
et al. [Sch+14] about such properties. Indeed, the ProB animator and
model checker for Event-B have supported LTL properties for some
time now [DLP16]. In this chapter, we will connect Event-B and LTL
at the institution level to formally ground the logic combination of the
two. Before we discuss the formal combination, let’s get a general sense
of what the combination might look like. (Skip ahead to SECTION 5.2
for formal definitions of the LTL concepts discussed in this section.)
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Linear temporal logic is generally defined over traces and is there-
fore well-suited to specifying properties of machines. In SECTION 5.2
we will define an institution for LTL, unsurprisingly called LTL, which
will make this precise. We are specifically interested in modelling the
following important kinds of liveness properties for Event-B (adapted
from [HA11]):

G([req] — F[ack]) (5.1)

meaning that, whenever the event req is executed, the event ack must
eventually be executed —when a request is issued the machine eventually
responds.*

In Farrell’s thesis [Farl7], Event-B machines are presentations over
EVT (see DEFINITION 6.1.2). The sentences of EVT represent single
events, and their models consist only of a pre- and post-state. But it does
not seem to me possible to express the meanings of LTL sentences against
such amodel. What can F ¢—which says that ¢ is eventually true—mean
if we can only see a pre-state and a post-state? LTL sentences relate to
the entire trace, whereas EVT sentences are concerned only with a single
step from a pre-state to a post-state. Put another way, LTL sentences are
more similar to machines than events. I therefore suspect that a direct
logic combination of EVT and LTL at the level of institutions should not
be possible without some undignified contortion.

One way to link the two is to create a new institution for Event-B
in which the sentences are not events, but machines. The motivation
is simple: LTL sentences and Event-B machines alike constrain whole
execution traces, and since the signatures and models are very similar
(as we’ll see), we should be able to construct a duplex combination of
the two institutions. This even allows us to reintroduce invariants, so
far neglected, in a more natural context. While an invariant ¢ could be
modelled as a separate ‘machine’ that performs no actions and simply
monitors the state (so that we need no special syntax to represent it), it

*The globally operator G is often paired with the future or finally operator F in this
manner to say that a particular liveness property is satisfied infinitely often — ‘something
good will always eventually happen’.
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can be more naturally encoded as the LTL sentence G ¢. This suggests
that LTL could stand in as a more sophisticated invariant language for
Event-B. In place of simple first-order invariants, one can have any LTL
sentences whatsoever.

Over the next few sections we will define the institutions LTL (SEC-
TION 5.2) and MacEVT (SECTION 5.3), then encode them in Coq and
prove their satisfaction conditions (SECTIONS 5.4 & 5.5).

5.2 The Institution for Linear-time Temporal Logic

We will use a standard presentation of the syntax and semantics for finite-
trace LTL, similar to Grigore Rosu’s presentation in [Ros18], but we
will build LTL over FOL, so that any first-order predicate involving the
state variables is a valid LTL sentence. We will encode LTL state vari-
ables as constant function symbols in FOL, just like we did for ACT. We
will provide the definitions quickly since we will formalise it in Coq in
SECTION 5.5.

We present a finite-trace LTL for a couple of reasons, the foremost
being for validation of the resulting construction via examples, but also
because finite-trace LTL is useful in its own right for model checking
and runtime verification. Implementing an infinite-trace LTL would be a
simple task given the work to follow by replacing non-empty lists with
functions N — (X — A), for example.

While it is possible to describe LTL sentences over an arbitrary insti-
tution using a similar trace semantics (see SECTION 6.6), this version
is less useful for us in the immediate term—though it might be possible
to recover the technique by specifying a general ‘institution with state-
variables’.

5.2.1 Definition. An LTL signature consists of a first-order signature
3 and a set of state variables X. These are just like ACT signatures
(DEFINITION 4.2.3) but without primed variables.
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5.2.2 Definition. An LTL signature morphism is a pair (o, on_vars)
where o : ¥ — ¥ is first-order signature morphism and on_vars :
X — X’ is a variable morphism.

5.2.3 Definition. LTL sentences are given by the following grammar:

¢ ::=FOL(Y) [true | =¢ [ ¢V ¢ | Xp|pU ¢

where X and U are the standard next and until operators, —, A, V are the
usual propositional connectives (at the LTL level) and v is a first-order
sentence.

5.2.4 Definition. An LTL model consists of a first-order algebra A and a
non-empty trace 7 : NEList(X — A).

5.2.5 Definition. Let A be the underlying first-order algebra. The se-
mantics for LTL, 7 = ¢, is defined as follows: First, 7 k= true is always
true. Now let 7/ = (e;j, S;)icz+ be the truncation of 7 with the first
J elements dropped.

mE FOL(v) if A™M E«

TE —«o if mE aisfalse

TEaVp if tEaormE/f

TEXa if length(r) =lor7! E «

mEaUB if 7k aforalli,or there is some 4 such that 7t = 3

and 7/ E a forall j < i.

The semantics defined here is weak. Notice that 7w = X 1) is vacuously
true if there is no next state, and that 7 £ « U (3 can be true even if 8
never becomes true, so long as « holds globally.

Define false = —true. The until operator subsumes the globally
and finally operators, which can be defined as Gty = ) U false and
F 4 = — G —). These can also be defined directly rather easily, but it
lengthens the proof of satisfaction to include them.
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5.3 The Institution of Machines

The institution of machines will be called MacEVT. As with LTL, we’ll
provide most of the definitions quickly and without much commentary
since it will be defined more precisely in Coq in SECTION 5.4.

5.3.1 Definition. A status is a label given to an event which describes
its convergence properties. It is one of {ordinary < anticipated <
convergent }.

Statuses determine convergence properties for events. Ordinary events
have no convergence properties. Convergent events must eventually col-
lectively cede control—each convergent event must strictly decrease a
shared variant expression V' € N. Anticipated events are similar but
more relaxed, and must only avoid increasing the variant. The idea is
that anticipated events will be shown to converge in a later refinement
[RT13, Appendix A].

5.3.2 Definition. A MacEVT signature is a 2-tuple & = (3, E), where
5 = (%, X, X’) is an ACT signature and F is a status-indexed set of
event names, not including the initial event.” As usual, as a matter of
notation, indices will be inherited by subobjects; for example, E; is the

set of event names of the signature ;.

5.3.3 Definition. A MacEV'T signature morphism is a pair (7, f) where
o: f)l — 22 is an ACT signature morphism and f : F, — E; isan
event morphism. Notice that the event-name morphism runs against the
direction of the ACT signature morphism, a fact that will be discussed
in more detail in SECTION 5.9.

5.3.4 Definition. A MacEVT sentence is a pair {¢;,i;, ¢) which consists
of an initialisation sentence ¢y, : FOSen(X + X) and a function

¢: E— FOSen(¥+ X + X)

"The initial event does not really function as an ‘event’ in the way other events do,
so in this chapter by ‘event’ we will generally mean ‘non-initial event’
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which we will denote ¢, = ¢(e). The idea is that each event name is
assigned exactly one first-order sentence representing the event’s guard

and action.

5.3.5 Definition. A MacEV'T model is a triple (A, sg, m), where Ais a
first-order algebra, sy : X — A is an initial state, and

™= (ei’ 3i)i€Z+

is an execution trace, where each s, : X — Aisastateand eache; : F

is a event.

The semantics for machines will defer to entailment for first-order
logic at each time step.

5.3.6 Definition. Let q¢ : X’ — X be the unpriming function. We’ll
consider first an auxiliary relation E° C Mod(X) x Sen(X) which
depends on a given ‘current state’ s : X — A.If 77 is empty then

7J % ¢ is true vacuously. If not, then 77 ° ¢ evaluates to
A59(s5°0) | ¢, and Tt ES ¢
Full satisfaction = C Mod(X) x Sen(X) is therefore defined as
A% Fpoppg Pinit and  TE ¢

A trace models a machine if the initial state is consistent with the
machine’s initial event, and if the state is stepped consistently with the
events in the machine.

The next two sections will formalise the preceding developments in
Coq, but if you want some examples for the constructions so far intro-
duced in this chapter, skip ahead to SECTION 5.7.

5.4 Machines in Coq

The code for this section can be found at Institutions/Machine.v.
A status is either ordinary, anticipated, or convergent.
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Inductive Status := ordinary | anticipated | convergent. 5.4.1

Machine signatures are ACT signatures with events, and the status of
an event is just its tag.

Record MachineSignature := { 5.4.2
evt_sig :> EvtSig ;
events : Tagged Status ;

Definition status [XZ] (e : events X) : Status :=

get_tag e.
Sentences and models are also trivial to state.

Context (X : MachineSignature). 5.4.3
Context (A : Mod[INS_FOPEQ] (evt_sig %)).

Let X := vars (evt_sig Z).

Let X' := vars' (evt_sig %).

Definition MachineSen : Type :=
FOSen (SigExtension (evt_sig X) X') *
(events X -> FOSen (SigExtension (evt_sig X) (X @ X')))%type.

Definition MachineMod : Type :=
Env X A x list (events I * (Env X A))%type.

The semantic interpretation relation is debatably simpler to read in Coq
than the account given in DEFINITION 5.3.6. Judge for yourself.

Fixpoint dinterp_machine_tail 5.4.4
(st : Env X A)
(models : list (events I * (Env X A)))
(machine : events ¥ -> FOSen (SigExtension (evt_sig Z) (X & X')))
{struct models}
Prop :=
match models with
| [1 => True
| (e, st') :: rest =>
AlgExpansion A

(join_envs st (retract_env id{FO0Sig} unprime st'))
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= machine e
A dinterp_machine_tail st' rest machine

end.

Definition 1dinterp_machine
(model : MachineMod)
(machine : MachineSen)
¢ Prop :=
AlgExpansion A (retract_env id{FO0Sig} unprime (fst model))
E fst machine
A dinterp_machine_tail (fst model) (snd model) (snd machine).

End Machine.

Event morphisms have only one condition: they must preserve the or-

dering on statuses.

Record EventMorphism (X X' : MachineSignature) : Type := { 5.4.5
event_mor :> events I -> events X' ;

preserves_status_order : V e, status e = status (event_mor e) ;

Definition MachineSigMor (X X' : MachineSignature) :=
((Z ~> 2') * (EventMorphism X' Z))%type.

The remaining constructions and proofs for MacEVT are not of any
technical interest. We apply the same techniques we did for the previous
institutions and we use the same basic lemmas we devised for ACT. The
proof of satisfaction for machines is at Institutions/Machine.v#L287. The
proof is long, but it’s not complicated, though it could stand to be greatly
simplified.

Let’s press on and encode LTL in Cogq.

5.5 LTL in Coq

LTL signatures, signature morphisms, models, and sentences, are all

easy to define.
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Record LTL_Sdignature : Type := { 5.5.1
base :> FOSig ;

vars : Vars base ;

Record LTL_SigMor (X X' : LTL_Signature) : Type := {
on_base :> ¥ ~> X' ;

on_vars : var_morphism on_base (vars X) (vars X') ;

Record LTL_Model (X : LTLSig) := {
base_alg : Mod[INS_FOPEQ] X ;
trace : list (Env (vars X) base_alg) ;

Inductive LTLSentence : Type :=

| FOLSen : FOSen (SigExtension X (vars X)) -> LTLSentence
| Or : LTLSentence -> LTLSentence -> LTLSentence

| Not : LTLSentence -> LTLSentence

| Next : LTLSentence -> LTLSentence

| Until : LTLSentence -> LTLSentence -> LTLSentence.

The basic category-theoretic proofs can be found at Institutions/LTL.v.
As with MacE VT, repeating the proofs here would be wasteful of space.

We also defined a library for non-empty lists, defined inductively as
follows.

Inductive NEList (A : Type) : Type := 5.5.2
| Last : A -> NEList A
| Cons : A -> NEList A -> NEList A.

There are many ways to represent non-empty lists—this is the most
direct, but unfortunately requires us to redefine a basic list theory for
non-empty lists (see Core/NEList.v).

To state the semantic interpretation function, we need to compute all
‘tails’ of a trace. The function tails defined below does this—for example,
tails [1, 2, 3] would be [[1, 2, 3], [2, 3], [3]]-

Fixpoint tails [A : Type] (£ : NEList A) : NEList (NEList A) := 5.5.3
match £ with


https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Institutions/LTL.v
https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Core/NEList.v
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| Last a => Last (Last a)
| Cons x xs => Cons £ (tails xs)

end.

The function tails satisfies the following relationship with map:

Lemma tails_map [A B] (f : A ->B) £ : 5.5.4
tails (map f £) = map (map f) (tails 2).

Finally, we need to be able to partition the trace at a natural number
index to define the semantic interpretation for the until operator. This
is unproblematic for lists since (bounded) natural numbers correspond
naturally to positions in a list. (A natural number 7 is equivalent to a list
of units of length n.) For non-empty lists, the functions must take at least
one element and leave behind at least one element.

Fixpoint firstn [A] (n : nat) (€ : NEList A) : NEList A := 5.5.5
match n with
| @] 1=>
match £ with
| Last x => Last x
| Cons x _ => Last x
end
| S no =>
match £ with
| Last x => Last x
| Cons a 20 => Cons a (firstn no £0)
end

end.

Fixpoint skipn [A] (n : nat) (& : NEList A) : NEList A :=
match n with
| 0 => ¢
| S no =>
match £ with
| Last x => Last x
| Cons _ 20 => skipn no 20
end

end.
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We can prove that under the condition 1 < n < length(¥), these two
functions partition the list. We will use these functions exclusively under
this condition.

Lemma partitions [A] (£ : NEList A) (n : nat) : 5.5.6
1 <n < length £ -> £ = firstn n £ ++ skipn n £.

To ensure the semantic interpretation function is correct, we will dis-
tinguish the case where (3 holds immediately and then handle the case
where o holds in at least one state and 3 thereafter, since that allows us
to isolate the case where the trace is partitioned into two non-empty lists.

Now we can define the semantic interpretation function.

Fixpoint dinterp_LTL_aux [X : LTLSig] (A : Mod[INS_FOPEQ] %) 5.5.7
(mt : NEList (Env (vars X) A))
(g : LTLSen X) {struct y} : Prop :=
match y with
| FOLSen a => AlgExpansion A (NEList.hd m) F a
| or a B => dnterp_LTL_aux A m a V interp_LTL_aux A m
| Not a => - dnterp_LTL_aux A m a
| Next a =>
match m with
| Last _ => True
| Cons _ rest => 1dinterp_LTL_aux A rest a
end
| Until a B =>
NEList.Forall (A m', dnterp_LTL_aux A m' a) (NEList.tails m)
V dinterp_LTL_aux A m B
v (3 (n : nat),
1 = n < NEList.length m A
interp_LTL_aux A (NEList.skipn n m) B A
NEList.Forall (A m%, dnterp_LTL_aux A n' a)
(NEList.tails (NEList.firstn n m)))
end.

Compare this with the mathematical definition, DEFINITION 5.2.5.
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5.5.1 The satisfaction condition for LTL

Surprisingly few additional facts are required to prove the satisfaction
condition for LTL. The main lemmas revolve around the functions firstn
and skipn, used in LISTING 5.5.7 to define LTL’s semantic interpreta-
tion function. Both commute with map f:

Lemma firstn_map [A B] (f : A ->B) n 2 : 5.5.8
firstn n (map f £) = map f (firstn n 2).

Lemma skipn_map [A B] (f : A ->B) n 2 :
skipn n (map f &) = map f (skipn n 2).

The only other interesting lemmas involve properties of quantification
over list items. We encourage you to take a look at the proof yourself in
Institutions/LTL.v.

With MacEVT and LTL now defined, we can explain how to combine
them using a duplex construction.

5.6 Duplex Combination of LTL and MacEVT

The type of combination we’ll describe here is very simple in nature, but
requires some technical definitions.

Recall first the definitions of functor (DEFINITION 2.1.2) and nat-
ural transformation (DEFINITION 2.1.3). We need to define sustitution
semi-morphisms and duplex institutions. Since we’re working with mul-
tiple institutions, standard institution constructions will be indexed by
the particular institution. Both of the following definitions appear in
CHAPTER 6 but we copy them here.

6.3.1 Definition [ST11]. Let & and J be institutions. An sustitution semi-
morphism p : F —  consists of a functor y>® : Sig, — Sigg and a
natural transformation pM°¢ : Mody = Mod g0 pe.

6.3.2 Definition [ST11]. Given an institution semi-morphism y :  —
I, a duplex institution F plus J via p has the following components:


https://github.com/ConorReynolds/coq-institutions/tree/thesis/theories/Institutions/LTL.v
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« Signatures are those from .

« Given X € Sig, sentences are either X-sentences in ., or they are
p(3)-sentences in J, with the latter sometimes written as 1) via p.

« Models are those from .

« The satisfaction relation is defined to be M 7 ¢ for F-sentences ¢,
and pu(M) hi(z) 1 for 1) via .

The duplex construction comes ‘for free’ once we have defined the
appropriate institution semi-morphism. This is part of the appeal of the
duplex construction.

Institution semi-morphisms and duplex institutions are simple to
define in Coq, and we will do so in SECTION 6.3, specifically L1ST-
ING 6.3.1. We will not repeat the Coq encoding here.

In this context, we should think of a duplex construction as a non-
interacting ‘sum’ of two institutions—though it is a little different from
a sum in the sense that the left- and right-hand sides of the construction
play different roles. Let’s consider the case of Event-B and LTL. Both
machines and LTL sentences can be checked against machine traces, the
former requiring a trace interleaving states and event names, and the
latter requiring only states. There is a clear intuition that we should be
able to use both MacE VT machines and LTL sentences to constrain the
same trace—only the LTL sentences will not pay any attention to the
event names. This syntactical mediation is facilitated by an institution
semi-morphism from MacEVT to LTL. The functor taking MacEVT
signatures to LTL signatures forgets the event names, and the natural
transformation of models removes the event names from the trace. The
functor is defined as follows.

Definition MacEVT2LTL_Sig : Sig[MacEVT] — Sig[LTL]. 5.6.1
unshelve refine {|
fobj ¥ := {|
LTL.base := base (evt_sig ) ;
LTL.vars := vars (evt_sig ) ;
(B
fmap := A AB o, _ ;

|}; cbn in *; repeat dntro.
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(* construct fmap x)
- unshelve esplit.
+ exact (on_base (fst 0)).
+ exact (@on_vars _ _ (fst 0)).
(* omitted proofs x)
Defined.

The natural transformation is defined as follows.

Definition MacEVT2LTL_Mod : 5.6.2
Mod[MacEVT] = Mod[LTL] o MacEVT2LTL_Sig’op.
unshelve esplit; repeat 1intro.
- unshelve esplit; intros.
(* define the algebra and trace mapping *)
+ unshelve esplit; cbn in *.
* exact ("1 H).
* exact (fst ("2 H) :: map snd (snd ("2 H))).
+ exact f.
(* omitted proofs x*)
Defined.

And thus we have our duplex institution EvtLTL.

Definition EvtLTL_semi : InsSemiMorphism MacEVT LTL := {| 5.6.3
us_sig := MacEVT2LTL_Sig ;
us_mod := MacEVT2LTL_Mod ;

[}.

Definition EvtLTL : Institution :=
Duplex MacEVT LTL EvtLTL_semi.

To forestall any premature celebrations, we should see if this institution
really captures what we intended.

5.7 Evaluation of EvtLTL

Let’s consider a quick example to see what we’re working with. We will
adapt the cars-on-a-bridge example from the Event-B manual.’? Let’s
suppose we’re working with a signature for natural numbers with the

usual interpretation containing whatever constants and operations we
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happen to need—let’s say any amount of natural number literals, addition
(4), and subtraction (—) for now. Let {d : nat,n : nat} be the state
variables.* The initial event is nn := 0. The other two events are

inc 2 whenn < dthenn:=n+1

dec = whenn >0thenn:=n—1
This can be written as the following MacE VT sentence:

mac = (n =0,{inc (n<d)A (' =n+1),
dec—> (n>0)A (R =n—1)})

An example (finite) trace that models this sentence would be

tr = ({n+0,d 3}, ((inc,{n1,d 3}),
(inc,{n+—2,d— 3}),
(dec,{n > 1,d— 3}),
(dec,{n 0,d — 3})))

To check that ¢r = mac, we just need to prove the following proposition.

(0=0)
AO<3)A1=0+1)
ALI<3)A@2=1+1)
A2Z>0)A1=2—1)
A1>0)A(0=1+1)

A big problem, however, is that this machine is missing its invariant,
which is
0<n<d

We can add this invariant by additionally asserting the LT L-sentence

inv = G(0 <mn < d)viap

*Actually in the original example d is a constant symbol and 72 is a state variable. We
can add d to the first-order signature to enforce this distinction, but it’s not particularly
relevant for the example.
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using the institution semi-morphism p : MacEVT — LTL constructed
in the last section. Thus the presentation { mac, inv} forms the ma-
chine and its invariant. We can get fancier and assert that n becomes 3
eventually, F(n = 3), or that n becomes 0 infinitely often, G F(n = 0),
and so on.

But the sky is sadly not the limit. Recall the characteristic liveness
property (5.1) that we were interested in,

G([req] — F[ack])

meaning that, whenever the req event happens, the ack event will even-
tually happen. This is not possible to express because MacEVT and LTL
are not really ‘combined’ in an interesting way—they are merely adja-
cent. LTL sentences can’t mention events because LTL does not know
anything about events.

To solve this problem, we could create a new institution that combines
the sentences of LTL and Event-B directly and prove its satisfaction
condition, but this seems like more work than necessary. Another simpler
solution is to create a new version of LTL and tune it to work well with
MacEVT. We'll discuss this solution now.

5.8 LTL with Labels

Thai Son Hoang ez al. in [Hoa+16] indicate a grammar for LTL, the same
one presented by Daniel Plagge and Michael Leuschel in [PL10] and
which is used by the ProB tool.

¢ = true | [¢] | enabled(e) | =6 | p A ¢ | pU ¢ | X

This grammar adds two sentences to the usual list— [e], meaning that
the event e just happened in the current state, and enabled(e), meaning
that the event e is enabled (i.e. its guard is true) in the current state.

We will modify this grammar to make sure everything works in the
context we’re employing it. In particular, we will replace the mention of
events E with event predicates E — Prop and we will not for now con-
sider enabledness of events, since it requires some heavier machinery—
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specifically, passing an event name’s guard (a FOPEQ@ sentence) through
the signatures and pairing them with labels.

The reasoning for replacing event names with event-name predicates
will be discussed in SECTION 5.9, but for now we will just show that this
works and enables the right sort of duplex construction. The institution
we will construct is called LLTL. It is exactly the same as LTL except in
the respects to follow.

The signatures for LLTL add labels to LTL signatures, which will be
a type with decidable equality.

Record LLTL_Signature := { 5.8.1
base :> FOSig ;
vars : Vars base ;

labels : DecType ;

We will add the following sentence to the grammar of LTL.

Executed : (labels X -> bool) -> LLTLSentence 5.8.2

The argument is a decidable label predicate. Probably the most common
predicates will check if a particular event or set of events occurred. (But
any predicate will work, of course.)

Fixpoint one_of (£ : 1list (labels %)) : labels Z -> bool := 5.8.3
A 1', match £ with
| [1 => false
| T :: rest =>
if "2 (labels %) 1 '
then true

else one_of rest 1
end.

Definition only (1 : labels %) : labels X -> bool :=
one_of [1]

In this case, the example sentence (5.1) would be written

G([only(req)] — F([only(ack)]))
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The satisfaction condition for LLTL is exactly the same as for LTL —the
additional case is trivial.

This institution can be combined with MacEVT using a duplex con-
struction in much the same way described in SECTION 5.6. The only
difference is that event names are not dropped from the models and are
instead ‘mapped to’ labels. Since we found it useful to require LLTL
labels to have decidable equality, we would need to enforce decidable
equality for event names as well.

5.9 An Extended Footnote: The Problem of Data Variance

In Farrell’s EVT, sentences were pairs of event names and first-order
sentences. There’s no prima facie reason why we could not have done the
same—in fact, that was the original plan. But there are problems with
this plan.

Let’s suppose we want to model a set m of sentences of the form
(e, @) against a machine trace. There are at least two problematic syn-
tactical possibilities—

1. What happens if m contains two sentences (e, ¢ ) and (e, ¢5) with
the same event name?

2. What happens if m contains no sentence of the form (e, ¢) for some
particular event e?

This is a particular instance of a common situation, where syntactically
distinct things are not really distinct semantically. We would normally
want to say that the first instance is the same as (e, ¢; A ¢) and that
the second is (e, true). But it’s generally not a good idea to represent
something permissively and posit ad hoc equivalences between distinct
syntactical things. This is sometimes unavoidable—see SECTION 6.4
for a discussion of what to do in such cases—but not here.

There are at least two options. Let’s start with the worse one: contort-
ing the semantic interpretation relation to ignore syntactical differences.
We can cover both of the above possibilities in one stroke without chan-
ging the syntax by iterating though the trace 7 and asking at each
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if
\/ (e=fstm,) A A™M™i £ ¢ (%)
(e;p)em
This works, but it’s clumsy.

The second and better solution is to fix the syntax. Notice that what
we are describing with the conditions above is precisely a correspondence
between event names and their actions and guards—i.e. a total function
from event names to sentences. This ensures that each event name is
accounted for (by the definition of ‘total’), resolving the first problem,
and that each event name has exactly one associated sentence that we can
retrieve by simple function application (by the definition of ‘function’),
resolving the second problem, without the need for the somewhat silly
disjunction (). This is one reason why we choose to represent machines
as functions from event names to sentences.

The other reason relates to an even more fundamental problem with
the ‘machines as sets of sentences’ conception: Models can no longer
be traces ({e;, ¢;));- Why? Because the event names would appear in
covariant position in both the sentences and the models, requiring an
intolerably strict notion of signature morphism.

What do we mean by ‘covariant position’? The notion of variance
drawn upon here is akin to the concept of variance in category theory,
but also akin to subtyping relations in programming language theory. If a
type constructor is a functor of some description, we can ask how arrows
in the source category are lifted to arrows in the target category—does
the functor preserve or reverse the direction of arrows? We’ll say that
a type constructor 7'is covariant if arrows a — b are lifted to arrows
T, — Ty, and contravariant if the same arrow is lifted to T, — T,. For
example, the list type is covariant because arrows f : a — b are lifted
to map f : List(a) — List(b), but the type constructor A t. t — cis
contravariant since f : @ — b would be lifted to precomposition

Ag.gof:(b—c)— (a—c)

as we have seen many times in the model functors we have discussed. In
type constructors with multiple parameters (like (—), the arrow type)
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the type might be covariant in one parameter but contravariant in another.
To distinguish these cases, we describe the parameter as respectively
appearing in covariant or contravariant position.

Back to the problem at hand: A signature morphism f : 0 — T
operating on 7-models must be able to map 7-states to o-states—which it
may do by retraction—but also 7-events to o-events, which it can only do
if the mapping on event names is reversed with respect to the direction
of the signature morphism. This precludes the use of sets of pairs (e, ¢)
for MacEVT sentences unless the signature morphism can also map
o-events to T-events. Allowing both requires the signature morphism
to be a bijection on event names, which is far too strong a requirement.
In general, the types of the sentences and models must have opposing
variance in the position of the event name type.

The problem is that when we try to combine MacEVT and LLTL,
if we were to stick with the sentences [e] and enabled(e), we run into
precisely the same problem again. That’s why we replace the event names
in LLTL with event-name predicates—it places event names appearing
in the sentences in opposing variance to their position in the models.

We’ve so far introduced and formally encoded six institutions: FOPEQ,
ACT,LTL, LLTL, MacEVT, and EvtLTL. The relationships between
these institutions are apparent. But we have not so far developed many
tools to relate them, nor have we made any attempt to show that they
satisfy interesting or useful general properties of logical systems. That
will be the subject of the next chapter.



— SIX ——

Institution-Independent Constructions

Our focus up to now has been on constructing specific key institutions.
Besides the duplex construction in CHAPTER 5 we have scarcely hinted
at institution-independent constructions. We will devote our attention
to such constructions in this chapter.

What we call an ‘institution-independent’ construction is any con-
struction in which we speak of an arbitrary institution .7, possibly satisfy-
ing so-and-so properties. It is here that we take the top-down approach
of universal logic: What is it we can say about institutions in general?
What general constructions are possible? Can we encode them in Coq?

We’ll begin by proving some simple facts about institutions and se-
mantic consequence in SECTION 6.1. Then we will encode institution
morphisms in SECTION 6.2 and duplex institutions in SECTION 6.3.
Next we discuss the amalgamation property in SECTION 6.4, entail-
ment systems for institutions in SECTION 6.5, and some foundation-
independent logics in SECTION 6.6.

Most of the code for this chapter can be found in Institutions.v.

6.1 Institution-Independent Model Theory

In this section, we’ll prove a simple but important result—that semantic
consequence is preserved by signature translation.

6.1.1 Theorem [ST11]. Let ¥ be an institution and let f : ¢ — Tbe a
signature morphism in .¥. Let ¥ be a set of .f-sentences and let ) be an
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F-sentence. Then

VU k1 implies f(P)IE f(v)

The symbol ‘|’ denotes semantic consequence and roughly means that
the sentence v ‘follows from’ U. We will make this notion precise in Coq,
but first we will need to encode some basic set theory and model theory.

6.1.1 Set theory in Coq

We’ll rely on the Coq.Sets.Ensembles definition for sets, which regards
a set of elements of type T'as a predicate T' — Prop, as we discussed
in SECTION 2.2. To that we will add the following definitions—the
notation should be self-explanatory.

Context [X Y : Type]. 6.1.1

Definition set_preimage (f : X -> Y) (S : SetOf Y) : SetOf X :=
{x:X// fxe€sl.

Definition set_image (f : X -> Y) (S : SetOf X) : SetOf Y :=
{y:Y//3Ix: X, x€SATFfx=y]}.

Notation "f '-1r'm ;=

(set_preimage f) (at level 5, format "f -*'") : sets_scope.

We adopt the axiom of extensional equality of sets and present it in the
following more useful form.

Theorem set_ext (S T : SetOf X) : 6.1.2
(Vx, x €S <>x€T) ->S=T.

Proof.
intros H.

apply Extensionality_Ensembles.
split; intros ? ?; apply H; auto.
Qed.

We also prove the following useful theorem.
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Theorem set_mem_preimage (f : X -> Y) S a : 6.1.3
a € f-'' S <> f a€S.

Proof. firstorder. Qed.

That is all the set theory we will need for this chapter.

6.1.2 Basic model theory

With some set-theoretic basics defined, we fix an institution .¥ and define
some very basic concepts in model theory.

6.1.2 Definition [ST11]. A X-presentation in J for some 3 € Sig;isa
pair (X, @), where  is a set of X-sentences.

Presentations pair off the signature with the set of sentences, but for
the rest of this section we will work with the set of sentences only (since
the signature will be fixed). We will occasionally still refer to this as a
presentation.

6.1.3 Definition [ST11]. Let o be a signature.

« Let ® be a set of o-sentences. The models of ®, denoted Mod(®), is
a set consisting of all o-models satisfying all sentences in ®.

o Let M be a set of o-models. The theory of M, denoted Th(M),is a
set consisting of all o-sentences satisfied by all models in M.

o The closure of set of o-sentences @ is Cl(®) = Th(Mod(P)).

o The closure of a set of o-models M is Cl(M) = Mod(Th(M)).

o A set of sentences P is closed if & = CI(P).

Note that the sentence closure CI(®) contains all sentences that fol-
low semantically from the sentences in ®. This concept is used to define

semantic consequence.

6.1.4 Definition [ST11]. A sentence ¢ is a semantic consequence of a set
of sentences @, written ® |F ¢, if ¢ € CI(P).
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Let’s define semantic consequence in Coq. We will encode everything
in DEFINITIONS 6.1.3 & 6.1.4 in order of appearance. The definitions
above and in Coq should be compared directly.

Context [I : Institution] [o : Sig]. 6.1.4

Definition presentation o := (SetOf (Sen 0)).
Definition model_class o := (SetOf (Mod 0)).

Definition modelsof (W : presentation g) : SetOf (Mod o) :=
{m:Modo//Vy, gy eV ->mEuy ;.

Definition theoryof (M : model_class o) : SetOf (Sen o) :=
{9 :Seno // VmmEM->mEo 7.

Definition closure_sen (¥ : presentation o) :=
theoryof (modelsof V).

Definition closure_mod (M : model_class o) :=
modelsof (theoryof M).

Definition semantic_consequence [0]
(® : presentation o) (¢ : Sen o) :=

¢ € closure_sen o.

Definition closed (¥ : presentation o) :=

W = closure_sen V.

Local Infix "=" := semantic_consequence.

Now we can prove that signature translation preserves semantic con-
sequence. Let’s first indicate a proof on paper. An alternative proof can
be found in [ST11, §4.2], Proposition 4.2.9.

Proof of THEOREM 6.1.1. By definition, f(®) IF f(¢) is true if| for all
M € Mod(f(®)),wehave M E f(y). So, (1) Let M € Mod(f(®)).
We aim to prove M £ f(¢). (2) By satisfaction this is equivalent to
proving M| f E ¢. (3) Since @ |F ¢, the foregoing is true if M | s €
Mod(®). (4) By definition, M|f € Mod(®) is true if and only if for
ally € ®, we have M| f = 1, (5) which by satisfaction is equivalent
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to M E f(1). (6) Since by assumption® M € Mod(f(®)), we are
done. O

The encoding in Coq corresponds exactly with the handwritten proof
above. The steps above have been linked with the roughly equivalent
reasoning step in Cogq.

Lemma preserves_consequence 6.1.5
(f : 0 ~> 1) (P : presentation g) (¢ : Sen o) :

® = @ -> set_image (fmap[Sen] f) ® = fmap[Sen] f o.
Proof.

(* 1 %) dintros H m H1.

(* 2 *) rewrite sat.

(* 3 *) apply H.

(* 4 %) 1dintros y H2.

(* 5

(* 6
Qed.

*) rewrite <- sat.

*x) apply H1l. exists y. auto.

The proof involves only basic tactics and reasoning steps, and requires
few overall background facts—some set theory (which is really predicate
logic), some propositional reasoning, and the satisfaction condition. A
custom tactic could automate this proof.

It also reasons backwards, which is not typical for handwritten proofs.
My own mathematical education implicitly emphasised forward reason-
ing—working from assumptions to conclusion—since that is the natural
direction in which reasoning is metaphorically conceptualised as ‘going’.
But proof assistants like Coq are better suited to backward reasoning,
working from conclusion to assumptions: notice that all tactics in the
above proof directly manipulate the goal and not the hypotheses. Coq
supports both forms of reasoning, and we will see how to encode forward
reasoning in Coq in just a moment.

First, note that preservation of consequence by a signature morphism
[, as we have just proved, is equivalent to f( Cl(®)) C CI(f(®P)). This
form is sometimes more useful and is encoded in Coq as follows.

Lemma alt_preserves_consequence 6.1.6

(f : o ~> 1) (P : presentation o) :
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set_image (fmap[Sen] f) (closure_sen ®)

c closure_sen (set_image (fmap[Sen] f) ®).

We will use this version in the following and final example, where we will
prove that whenever @ is closed, f = (®) is closed too. This is Corollary
4.2.12in [ST11, §4.2]—the proof below closely matches the proof given
there (and shows how to conduct forward reasoning in Coq).

Lemma corollary_4_2_12 (f : o ~> 1) (®' : presentation 1) : 6.1.7
closed ®' -> closed ((fmap[Sen] f)-* ®').
Proof.

(* suppose @' is closed .. *)
intros H. unfold closed in H.
(* deal with implicit reverse case *)
apply set_ext. intros ¢. split. { apply closure_superset. }
(x let ¢ € CUL(f1(®")) .. *)
intros H'.
(* first notice that .. x)
assert (hypo,; :
set_image (fmap[Sen] f) ((fmap[Sen] f)-'' ®') < ®').
{ intros y HO. repeat destruct HO. rewrite <- Hl. apply HO. }
assert (hypo,
closure_sen (set_image (fmap[Sen] f) ((fmap[Sen] f)-*' ®'))
c closure_sen '),

{ apply (closure_preserves_order _ _ hypo,). }

(* now, by proposition 4.2.9 (consequence preservation) x)
assert (hypo,
fmap[Sen] f ¢ €
closure_sen (set_image (fmap[Sen] f) ((fmap[Sen] f)-'' @'))).

apply alt_preserves_consequence.
rewrite <- set_mem_preimage.
exists ¢; auto.

}

rewrite <- H in hypo,.

assert (final : fmap[Sen] f ¢ € ®'). { apply hypo,. assumption. }

(* have f(p) € @®'; hence ¢ € f1(®') x)
rewrite set_mem_preimage. exact final.
Qed.
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The pattern is to assert intermediary claims and then to justify them
with proofs in braces following them. (There’s more detail about how
this tactic works in the tactic index on page 135.)

The simplicity of these proofs gives us reason to believe that a com-
prehensive formalisation of the work in [ST11] could be only a matter
of time. Note also that the proofs here are explicit for demonstrative
purposes. It seems likely that an automated prover —like CogHammer
[CK18] utilising a first-order prover such as Vampire [RV02] or cvc5
[Bar+22]—could discharge many of these proofs automatically.

6.2 Institution Morphisms

There are three broad kinds of institution morphisms: semi-morphisms,
morphisms, and comorphisms. These morphisms are crucial for Aetero-
geneous specification, in which multiple logics are used in tandem to specify
a system.

« Institution semi-morphisms are used to define duplex institutions, as
we have seen already in CHAPTER 5 and which we will see again in
the next section.

« Institution morphisms explain how a more complex institution builds
on a simpler one.

« Institution comorphisms explain how to encode the sentences of a
more complex institution in a simpler one; or alternatively they can

express a kind of institution inclusion.

All of these concepts are defined in [ST11, Chapter 10]. It is straight-
forward to give full definitions for these concepts in Coq, and the Coq
definitions mirror exactly the mathematical definitions. Recall that func-

tors use ‘—’, while natural transformations use ‘=".
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Record InsSemiMorphism (I I' : Institution) := { 6.2.1
us_sig : Sig[I] — Sig[I'] ;
pus_mod : Mod[I] = Mod[I'] o us_sighop

}.
Record InsMorphism (I I' : Institution) := {
p_sig :> Sig[I] — Sig[I'] ;
pu_sen : Sen[I'] o p_sig = Sen[I] ;
p_mod : Mod[I] = Mod[I'] o p_siglop ;
M_sat : VI Muy',
M E p_sen X g' <-> u_mod T M = y'
}.
Record InsComorphism (I I' : Institution) := {
p_sig :> Sig[I] — Sig[I'] ;
p_sen : Sen[I] = Sen[I'] o p_sig ;
p_mod : Mod[I'] o p_sighop = Mod[I] ;
p_sat : V Z M' o,
p_mod X M' E @ <-> M' E p_sen X ¢
}.

We’ve encoded an institution semi-morphism already in SECTION 5.6.
We could in the future relate FOPEQ® and ACT directly via an institution
comorphism inclusion, however another (perhaps better) idea would be
to show formally the straightforward fact that FOPE® ‘encodes’ ACT
via a comorphism ACT — FOPEQ. Institutions which can be formally
encoded in first-order logic, in a manner that is semantics-preserving,
would have access to a wide range of automatic theorem provers. Such
a translation is often not direct, in which case we may need to encode
institutions of theories [Dia22, §4.a] and theoroidal comorphisms.

6.3 Duplex Institutions

A duplex institution is probably the simplest kind of institution combin-
ation. It relies only on the existence of an institution semi-morphism

between the two institutions.
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6.3.1 Definition [ST11]. Let & and J be institutions. An sustitution semi-
morphism p : F — J consists of a functor p>® : Sig, — Sig:/j and a
natural transformation pM°¢ : Mody = Mod g0 pe.

6.3.2 Definition [ST11]. Given an institution semi-morphism y :  —
I, a duplex institution F plus J via p has the following components:

« Signatures are those from .

« Given X € Sigg, sentences are either X-sentences in ., or they are
p(X)-sentences in J, with the latter sometimes written as 1) via p.

« Models are those from .

o The satisfaction relation is defined to be M 7 ¢ for F-sentences ¢,

and pu(M) hi(z) 1 for 1) via p.

The idea of a duplex institution is simple: If you have two separate
institutions with similar signatures and models, then specifications can
intuitively include sentences from both institutions side-by-side. The
‘similarity’ of the signatures and models is captured by an institution
semi-morphism between the two institutions.

For this definition to make sense, the satisfaction condition must hold.
This is left as an exercise for the reader in [ST11], but for those readers

who have made it this far, we will spoil the fun by proving it in Coq.

Definition Duplex [I I'] 6.3.1
(M : InsSemiMorphism I I') : Institution.
unshelve refine {|
Sig := Sigl[I] ;
Sen := CoprodSetFunctor Sen[I] (Sen[I'] o us_sig W) ;
Mod := Mod[I] ;
interp T My :=
match y with
| intly =>MEyY
| inr g => ps_mod p T M E y
end ;
|}; repeat dintro.
destruct @; cbn.

- apply sat.



112 Institution-Independent Constructions

- now rewrite <- naturality, sat.
Defined.

The proof follows from the naturality of the natural transformation "¢
and satisfaction for the base institutions.

Given two institutions and an institution semi-morphism between
them, we get a duplex construction for free. We used this in CHAPTER 5
to combine an institution for LTL with an institution for Event-B, both
given a trace semantics. See in particular SECTION 5.6.

6.4 Properties of Institutions

Most concrete institutions are not merely institutions, but also satisfy
some interesting or useful properties that can be expressed abstractly
using the language of institution theory. We are particularly interested
in the amalgamation property. But before defining amalgamation, we will
need to define pushouts.

6.4.1 Definition [Awol0]. The pushout of arrows f : C — A and
g : C — Bisan object denoted A LI~ B with two arrows

mIA—)AI_ICB
inr: B— AlUqsB

such that inl o f = inr o g and such that A LI B is universal with this
property—that is, given another object X and arrows inl’ : X — A and
int’ : X — B satisfying the same condition, there is a unique arrow
u: AlUgs B — Xsuchthatinl’ = woinlandinr’ = w o inr. This
situation can be summarised by the following diagram.
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C——B

Such universality conditions identify objects up to unique isomorph-
ism—i.e. the arrow u : A Lo B — X above is an isomorphism. This
means that once we construct a pushout of two objects, we know that
the constructed pushout is the unique such pushout up to isomorphism.

In Set, pushouts are quotients of disjoint unions—suppose there are
three sets A, B, and C; the pushout of functions f : C — A and
g : C — Bis the quotient (A + B)/~, where inl(f(c)) ~ inr(g(c))
forall c € C,and whereinl : A — A+ Bandinr: B — A+ Bare
the standard inclusions. In the situation where C'is regarded as common
to A and B (perhaps even C = A N B) then the pushout identifies
copies of elements of C that appear in the disjoint union. Regarded as
topological spaces, this construction is like pasting two spaces together
(or the same space to itself)) along a subspace.

In our situation where we consider pushouts of signatures, C often
plays the role of symbols ‘common’ to both A and B; the pushout iden-
tifies copies of those symbols appearing in the signatures A and B so
that they do not appear twice in the union. This would be particularly
undesirable here because the models would then be permitted to give
different interpretations to the ‘same’ symbols.

We are now ready to define amalgamation.

6.4.2 Definition [ST11]. Let ¥ be an institution. The Sig-diagram
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/

¥, 25 %

UIT Tag

Y — Y
admits amalgamation if

« for any 3;-model M; and ¥5-model M, such that M, |0_1 = M2|02,
there is a unique X’-model M, called the amalgamation of M, and
M, suchthat M’| , = My and M’| , = M,.

T2

o1
o for any Y;-model morphism f; : M;; — Mj, and ¥y-model
morphism fy : My; — My, such that f1|01 = f2|02, there is a

unique Y’-model morphism f’ : M; — M, called the amalgama-
tion of f; and fo, suchthat f'| , = f; and f'| , = fo.
g1 g2

We further say that .f has the amalgamation property if all pushouts in Sig
exist and all pushout diagrams admit amalgamation.

A sufficient condition for an institution  to admit amalgamation is
Semi-exactness.

6.4.3 Definition. An institution  is semi-exact if all pushouts exist in
Sig; and the model functor Mody : Sigf;p — Cat preserves pushouts.

While we have yet to explore proving that the institutions we have
defined satisfy the amalgamation property, part of our development was
explicitly designed to support it. Recall in SECTION 3.3 that we repres-
entindexed typesnotas A : J — U butasapair (A : U, tag: A — J).
This makes coproducts—and hence pushouts—substantially easier to
construct.

Definition SigSum : FOSig := {| 6.4.1
Sorts := Sorts A + Sorts B ;
Funcs := {|
tagged_data := Funcs A + Funcs B ;
get_tag F :=
match F with
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| inl F => (map inl (fst (get_tag F)), 1inl (snd (get_tag F)))
| inr F => (map inr (fst (get_tag F)), 1inr (snd (get_tag F)))
end ;
[T
Preds := {|
tagged_data := Preds A + Preds B ;
get_tag P :=
match P with
| inl1 P => map inl (get_tag P)
| inr P => map 1inr (get_tag P)
end ;
[}
[3.

But computing pushouts seems somewhat more difficult. A pushout in
type theory seems as if it must be the quotient type or setoid (A + B) /~
where inl(f(c)) ~ inr(g(c)).

In written mathematics one gets away with treating rather coarse
equivalences as if they were true equalities; for example, we are permitted
in virtually all cases to substitute the fraction 1/2 for 2/4 or vice versa,
despite the fact that they are presented differently. Then we simply rule
out nonsense operations on fractions like f(p/q) = p + g which depend
on the way in which the fraction is presented—that is, operations on
fractions must be well-defined.

In type theory, if we encode Q in the usual way, as Z x (Z\{0}), then
1/2 and 2/4 are distinct objects that we nevertheless want to consider
‘equivalent’. We cannot simply insist axiomatically that 1/2 = 2/4—
that is a contradiction—so instead we define an equivalence relation on
Q and only worry about whether fractions are equivalent and whether
operations on fractions are well-defined with respect to this equivalence.
This seems no different from the set-theoretic encoding, but syntax and
representation is important in type theory, and there is unfortunately a
considerable cost in using such quotient types everywhere. Equality in
type theory has a number of useful properties that arbitrary equivalences
do not. For example, we lose general substitution—we cannot always
write 1/2 in place of 2/4, unless we can explicitly prove that the relev-
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ant context cannot distinguish them. We therefore do not choose this
approach.

Alternatively, if Coq had native support for higher inductive types
(HITs), we could define pushouts like this, in the following pseudo-Coq
syntax [nLa23].

Inductive hpushout {A B C : Type} 6.4.2
(f: C->A) (g:C->B) : Type :=

| inl : A -> hpushout f g

| inr : B -> hpushout f g

| glue : ¥V c : C, inl (f ¢) == 1inr (g c).

Fortunately, it is possible to approximate HITs in Coq using a ‘hack’
involving private inductive types."* Private inductives allow unsafe op-
erations local to their defining module and prevent unsafe operations
outside it, relying only on what the author has provided—generally a
custom induction principle. The idea is to axiomatise the higher equival-
ences and provide a custom induction principle involving that equival-
ence, while preventing the user from doing standard case analysis and
breaking things outside the module. That rules out common Coq tac-
tics like induction, destruct, case, and so on. The following definition
showcases the technique and might suffice for our purposes.

Private Inductive Pushout {A B C : Type} 6.4.3
(f: C->A) (g:C->B) : Type :=

| pinl : A -> Pushout f g

| pinr : B -> Pushout f g.

Arguments pinl {A B C f g}.
Arguments pinr {A B C f g}.

Axiom pglue :
Vv {ABC : Type}
{f :C->A} {g: C-> B}
(c = C),
pinl (f := f) (f c) = pinr (g := g) (g c).

Definition pushout_ind
{ABC : Type} {f : C->A} {g: C -> B}
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(P : Pushout f g -> Type)

(u : Va, P (pinl a))

(v : YV b, P (pinr b))

(p : Vc, rew pglue c inu (fc) =v (g c))
: V x, P x.

Proof. destruct x; auto. Defined.

Axiom pushout_ind_pglue :
vV {ABC : Type} {f : C -> A} {g : C -> B}
(P : Pushout f g -> Type)
(u : ¥V a, P (pinl a))
(v : ¥V b, P (pinr b))
(p : Vc, rew pglue c in u (f c)

v (g ),
V ¢, f_equal_dep _ (pushout_ind P u v p) (pglue c) = p c.

Not nearly as neat as LISTING 6.4.2, but it works. The axiom pglue
is precisely the identity inl o f = inr o g from DEFINITION 6.4.1.
Of course this is inconsistent with Coq if we allow typical reasoning
employing disjointness of constructors, since for HI'Ts constructors are
often not disjoint—precisely the situation we are in.

Signature pushouts are simple to encode using this definition. In fact,
the construction is nearly identical to the coproduct in LISTING 6.4.1.

Definition SigPushout : FOSig. 6.4.4
refine {|
Sorts := Pushout (on_sorts f) (on_sorts g) ;
Funcs := {|

tagged_data := Pushout (on_funcs f) (on_funcs g) ;

(B
Preds := {|
tagged_data := Pushout (on_preds f) (on_preds g) ;
33
3.
(* proofs omitted x)
Defined.

We omit the proofs, but they can be found at FOL/Amalgamation.v#L40.
Defining amalgamation proper for FOPEQ involves explicitly construct-
ing the amalgamated algebra, which we have not yet done—but once it
is done, ACT, EVT, and MacEVT should soon follow. Evaluating this
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approach against the more traditional setoid approach may be the subject
of future work.

6.5 Entailment Systems

José Meseguer defines an entailment system for an arbitrary institution in
[Mes89], and Ridzvan Diaconescu gives a slightly different presentation
of the same concept in [Dia22], which we will define here.

6.5.1 Definition. An entailment relation for an institution ¥ is any bin-
ary relation Fy; C 9P(Seng(X)) x Seng(X) satisfying the following
conditions.

e« Ifo €I'thenI F .
o IfT"Fy ¢pforeachy) € IV, and IV b5, ¢, then T b .
o« IfT' k5 ¢, thenforany o : ¥ — X', 0(T) by o(p).

In Cogq, entailment relations can be directly represented by the follow-

ing class.

Context {I : Institution}. 6.5.1
Context (R : V X : Sig[I], list (Sen[I] Z) -> Sen[I] X -> Prop).

Local Notation '"I' + ¢" := (R _ T ¢) (at level 5).

Class EntailmentRel := {
entailment_axiom_1 : V X T (¢ : Sen ), Ino I > T+ ¢ ;
entailment_axiom_2 : V X ' ' (¢ : Sen ),
List.Forall Ay, T y) " >0+ ->TF o ;
entailment_axiom_3 : V (X %' : Sig[I]) (o : £ ~> 2') T o,
N~ ¢ -> (map (fmap[Sen] o) N ~ (fmap[Sen] o @) ;

Expressing specific entailment relations as an inductive type, with one
constructor per proof rule, is a standard technique in Coq. Here’s a
subset of a homebrewed sequent calculus I've been using for testing. It
is essentially the standard classical sequent calculus but with some extra
rules added to make some proofs simpler to express.
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Inductive FOPEQ_entails : 6.5.2
list (FOPEQ A ctx) -> 1list (FOPEQ A ctx) —-> Prop :=
triviality : v I, I+ []

I

| top_R VITA, THFOLT :: A

| bot_L : VI A, FOL_LF :: T A

| hypothesis VIiAa, a::TTkFa::A

| reorder_hyp : YT Aab,a::b::TTA->b:a::lkFA
| cycle_hyp ViAa, N++ [al] A ->a::THFA

| weakening ViAa, THA->a::THFA

| contr_1 VIiAa,a::a::THA->a::THFA

| contr_r ViAa, THa:ta::A->TFa: A

| and_.11 : VI Aab,a::T—A->Andab::THA
| and_12 : VI Aab,b::TA->Adab :: T HFA
| and_el : VI Aab, THAndab :: A->TFa::A
| and_e2 : VI Aab, TAndab :: A->TkFb::A

| or_cri : VIAab, T'Ha::A->THOrab::A
| or_r2 :YvIrAab, THb::tA->TFOrabz::A

where "I = ¢" := (FOPEQ_entails I ¢).

Given an entailment system —whether or not we prove that it is an ‘entail-
ment system’ as we have just defined it—we can easily express important
properties like soundness. In first-order logic, this is the condition that
for any set of sentences I', if I' I 9 then I' F 1), i.e. the entailment
system proves only true statements with respect to the semantics. We
can more-or-less directly write this in Cogq.

Theorem fol_soundness (I : list (Sen A)) (¢ : Sen A) : 6.5.3
M= ¢ -> list_to_set I = ¢o.

One significant advantage of the deep-encoding approach to this formal-
isation is that it easily enables us to express propositions of this kind.

It would be an interesting future project to prove this and related
soundness conditions in Coq. Especially interesting would be a meta-
theoretical correctness proof for Event-B’s proof system with respect
to its trace semantics, or a proof that Event-B’s syntactical refinement
mechanisms correspond to model-theoretic refinement.
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6.6 Foundation-Independent Logics

In this section we’ll show how to build a few different parameterised
institutions, in which the ‘underlying’ institution is not specified.

6.6.1 Foundation-Independent Linear-Temporal Logic

The most common form of LTL, propositional LTL, is in some sense
built ‘over’ propositional sentences. But the choice of propositional logic
as a base is somewhat arbitrary—indeed, our version of LTL is built over
first-order logic. Can we replace FOPEQ by an arbitrary institution .f in
the definition of an institution for LTL? If so, how useful is the resulting
construction?

We can use an arbitrary institution .¥ as the ground logic for LTL,
called LTL(¥). In this section we’ll describe the construction and its
formalisation in Coq. This construction appears in [ST11] and we con-
struct it here to demonstrate the simplicity of the construction in the

framework.

6.6.1 Theorem. Let J be an institution. There is an institution LTL(¥)
with the following components.

Signatures are those from .J.
Models are N — Modg(0o).
Sentences are the usual LTL connectives.

Semantic entailment is also as usual but defers to f-entailment for

ground sentences.

The idea is to pick a different f-model per time step and interpret the
ground sentences using that model.

Let’s be more precise about these constructions. The sentences are
defined as usual.

Context [I : Institution]. 6.6.1

Inductive fobj_LTL (X : Sig[I]) : Type :=
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| ltl_sen : Sen[I] X -> fobj_LTL

| ttl_true : fobj_LTL

| Ttl_conj : fobj_LTL -> fobj_LTL -> fobj_LTL
| 1tl_neg : fobj_LTL -> fobj_LTL

| Ttl_next : fobj_LTL -> fobj_LTL

| Ttl_until : fobj_LTL -> fobj_LTL -> fobj_LTL.

The interpretation of the sentences is similar to what we described in
CHAPTER 5, with one major difference—the entire model can change
at every time step, rather than just a designated set of state variables. As
before, we define a more general auxiliary relation.

Fixpoint interp_LTL_aux 6.6.2
(M : LTL_Mod %) (¢ : LTL_Sen %) (j : nat) {struct ¢} : Prop :=
match ¢ with
1tl_true => True
ltl_sen y => M j F y
1tl_conj w,; w, => interp_LTL_aux M y; j A interp_LTL_aux M y, j

1tl_next y => dinterp_LTL_aux My (j + 1)
Ttl_until gy, gy, =>
1k : nat, k =2 j
A dinterp_LTL_aux M y, k

I
I
I
| Ttl_neg y => - dinterp_LTL_aux M y j
I
I

A (Vi :nat, j =i Ai<k->-dinterp_LTL_aux M y, 1)
end.

A full proof of the satisfaction condition is as follows. All cases can be
discharged nearly automatically.

Definition LTL_sat_aux 6.6.3
(0 : 2 ~>2') (p : LTL_Sen %) (M' : LTL_Mod ')
V j : nat, interp_LTL_aux M' (fmap[LTL_Sen] o ¢) j
<-> 1dinterp_LTL_aux (fmap[LTL_Mod] o M') o j.

Proof.

induction @; cbn in *; dntuition.

all: split_hypos; exists x; intuition.
Qed.

The tactic split__hypos recursively searches for most valid applications
of the destruct tactic and applies it.
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It’s hard to say how useful this institution is since the entire first-order
model can change at every time step. Such anarchy is rarely desirable.
It seems more useful to designate only a subset of the symbols in the
signature as changeable over time, as we did in SECTION 5.2.

That said, it could be possible to study properties of LTL in general
by studying LTL(¥)—or if not LTL(¥), which may be somewhat of a
toy example, then some richer conception of the essence of linear tem-
poral logic. What assumptions must be made about .# in order to prove
interesting properties for LTL(.¥), for example?

6.6.2 Foundation-Independent Modal Logic

Another interesting construction is MDL(.¥), a generic modal logic over
an arbitrary institution. This is even easier to define than LTL(.¥). The
signatures are inherited directly from .. The sentences are as follows.

Inductive fobj_Modal {I : Institution} (X : Sig[I]) : Type := 6.6.4
| modal_sen : Sen X -> fobj_Modal

| modal_neg : fobj_Modal -> fobj_Modal

| modal_box : fobj_Modal -> fobj_Modal.

The models are Kripke structures consisting of a type of ‘worlds’, an
initial world, an accessibility relation s > s’ between worlds, and an
F-model for each world.

Record KripkeStructure 6.6.5
{I : Institution} (X : Sig[I]) : Type := {
world : Type ;
initial_world : world ;
transition : crelation world ;

world_models : world -> Mod % ;

Notation "s =~ s'" := (transition s s') (at level 80).

We define an auxiliary semantic entailment relation by asserting that (i)
is true in world s if 7 is true in all worlds s’ accessible from s.
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Fixpoint 1interp_Modal_aux 6.6.6

{I : Institution} {X : Sig[I]}
(M : Modal_Mod %) (¢ : Modal_Sen %)
(s : world M) {struct ¢} : Prop :=

match ¢ with

| modal_sen y => world_models M s = y

| modal_neg y => - dinterp_Modal_aux M y s

| modal_box y => V s', s » s' -> interp_Modal_aux M y s'

end.

The satisfaction condition is trivial, discharged entirely by automatic
tactics.

Definition sat_modal 6.6.7
{I : Institution} {X X' : Sig[I]}
(o : £ ~>%2') (¢ : fobj_Modal %) (M' : KripkeStructure I ')
: Vs : world M', interp_Modal_aux M' (fmap_Modal o ¢) s
<-> 1dinterp_Modal_aux (fmap_Modal_Mod X' Z o M') ¢ s.
Proof.

induction @; split; cbn; tdintuition.
Qed.

The same questions asked of LTL(¥) can be asked here: What can we
prove about MDL(¥)? What assumptions must be made about ¥ to
guarantee good properties for MDL(.f)?

While there aren’t many concrete results in this chapter, it should give
a flavour of what will be possible to achieve with the framework in both
the near and long term. There are certainly more possibilities than those
described here.






— SEVEN ——

Conclusions and Future Work

Let’s summarise the contributions of the thesis.

1. We introduce and motivate the work in CHAPTER 1 and cover most of
the relevant mathematical background for the thesis in CHAPTER 2.

2. We encode the institution for first-order predicate logic with equality,
FOPEQ, in Coq in CHAPTER 3, introducing some important con-
cepts and proof techniques along the way, culminating in the proof of
its satisfaction condition in SECTION 3.7.4.

3. We encode the institution ACT in CHAPTER 4 —a moderately sim-
plified form of EVT which we iterate upon in subsequent chapters—
and prove its satisfaction condition over the course of SECTION 4.4.

4. In CHAPTER 5, we first encode three different institutions: MacEVT
in SECTION 5.4, LTL in SECTION 5.5,and LLTL in SECTION 5.8.
We then construct duplex institutions out of these building blocks,
combining Event-B and LTL in different ways, finishing with the even-
tual duplex combination of MacEVT and LLTL in SECTION 5.8
which captures almost everything we want from such a combination.
We indicate the work necessary to encode everything in full.

5. We discuss a number of institution-independent constructions in
CHAPTER 6 and in each section indicate some ways to expand on
those basic constructions. We cover institution-independent model
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theory, institution morphisms, duplex institutions, pushouts and am-
algamation, entailment systems, and a pair of foundation-independent
logics.

Even though in CHAPTER 6 we already discussed at some length vari-
ous constructions we encoded that extend the framework, we will now
discuss some more speculative future directions.

Completing unfinished work and extending existing work

Some work remains unfinished. In the immediate future we want to prove
the amalgamation property for FOPEQ, ACT, EVT and MacEVT. A
systematic encoding of the work in Sannella and Tarlecki’s book [ST11]
would follow further in the future, extending the work in CHAPTER 6,
and alongside this we could develop and explicitly encode proof tech-
niques for institutions in Coq— perhaps even leading to proof automation
for institutions.

More work on Event-B

We want to make the representation of Event-B in Coq more explicit.
For example, there’s no separation of guards and actions at the level of
MuacEVT sentences. This prevents certain useful syntactical transform-
ations and makes it difficult to encode Event-B’s proof rules, which must
distinguish between guard and action.

If we could encode Event-B’s proof rules, we should be able to prove
that syntactical machine refinement tracks model-theoretic refinement
with respect to the MacEVT semantics. Specifically I think it’s most
important to show that syntactical machine refinement implies model
theoretic refinement—a kind of soundness proof for Event-B’s most
important feature.

Finally, tie-ins with Peter Riviére, Neeraj Kumar Singh and Yamine
Ait-Ameur’s EB4EB framework [RSA22] would also be fruitful. In fact,
a collaboration with their research group has already been funded by
EPSRC, in which we will investigate the relationship between our and
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Riviere’s approach to Event-B semantics, leading hopefully to a proof
(in Coq) that EVT or MacE VT semantics can be formally connected to
EB4EB.

More work on the framework’s foundations

We mentioned in CHAPTER 6 that we’re considering homotopy type
theory as a new foundation for this work. Homotopy type theory’s higher
inductive types seem a natural syntactical presentation for many other-
wise problematic concepts, such as pushouts (see SECTION 6.4). We
could always replace all types (or most types) with setoids, but this would
require a not insignificant overhaul of the work done. It’s hard to judge
how practical such a change would be, since the explicit support for
homotopy type theory in Coq is still limited.

Coq’s extraction mechanism

It’s possible to extract OCaml, Haskell, or Scheme code from Coq code.
For our purposes, the rough idea would be to extract certain certified
semantics-preserving syntactical transformations encoded in Coq. Of
course in practice the extraction does not guarantee anything about the
correctness of the extracted code, but it’s a great start.

This has not been explored in any real depth, but I suspect that there
are a number of problems. Unfortunately, dependent typing gets in the
way. Recall the terms defined in DEFINITION 2.4.7 and encoded in Coq
in LISTING 3.6.8. Since Coq’s code extraction targets are programming
languages that do not have dependent type systems or ways to represent
complex proof objects, the job of the extraction mechanism is partially to
identify and throw away information that is not computationally relevant.
But this is not always clear: take first-order terms as an example. It is
not clear to Coq which parts of the term data type are computationally
relevant, and hence extraction of terms and term translations includes a
lot of junk.
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By contrast, let’s consider a perfectly legitimate alternative definition
for terms in Cogq.

Inductive Term' X : Type :=
| var (n : nat)
| term (F : Funcs %) (args : list (Term' Z)).

Arguments var [X].

Arguments term [X].

Inductive Term_WF {X I'} : Sorts X -> Term' X -> Prop :=
| wf_var n' s : nth_error ' n = Some s -> Term_WF s (var n)
| wf_term F args :

List.Forall2 Term_WF (ar F) args

-> Term_WF (res F) (term F args).

Definition Term £ T's := { t : Term' ¥ | @Term_WF X I s t }.

This first encodes terms as plain simply-typed data—something one
could easily encode in a programming language without dependent types,
like Haskell. This alone is of course insufficient because terms could be ill-
formed in a number of ways —allowing for example the formation of mani-
fest nonsense like push(pop). Thus we pair it with a well-formedness
condition Term_WF which captures precisely the propositional (i.e.
computationally irrelevant) content of the dependently typed definition
for terms. Functions on terms will separately construct ¢ : Term and a
proof p : Term_WF ¢, and extraction will retain only the construction
of ¢ and erase the proof.

But this representation is not without its drawbacks, chief among
them that terms are no longer well formed by construction in the same
way as before. It’s hard to say which approach is better suited for this
project, but it could be worth exploring.

Add more institutions

Only a handful of institutions have been encoded so far. A particularly
important institution to encode is CASL [Ast+02], since it captures
much of what FOPEQ) alone does not while remaining sufficiently gener-
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ally useful. Further institution combinations, more complex than those
developed in CHAPTER 5, would be fruitful to encode—CSP-CASL
[Rog06], for example, and all the institutions defined in the process.
Deciding on an economic way to encode these institutions and their
relationships will constitute a significant challenge.

Much further in the future, the framework could become a fully formal
basis for Till Mossakowski, Christian Maeder, and Klaus Liittich’s HETS
tool [MMLO7] for heterogeneous specification.'*
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FOPEQ

EVT
ACT
MacEVT
LTL
LLTL

Set
Cat

A5 B

Symbols

dependent product or function
dependent sum or pair
transitivity of identity proofs
inverse of identity proof

signature category

sentence functor

model functor

semantic entailment relation

institution for first-order predicate logic
with equality

institution for Event-B

institution of variable updates

institution for Event-B with trace semantics
institution for LTL

institution for LTL with labels

category of sets
category of (small) categories

morphism involving signature morphism o






Coq Tactics

reflexivity

Proves a goal of the form a = b if a and b are definitionally equal.

cbn, simpl

Simplifies the goal if possible—cbn is more common.

intros
If the goal is of the form [[ , B(a) or A — B, introducea : A
to the context and replace the goal with B(a) or B respectively.
rewrite H

If H is an equality @ = b then this tactic will find free occurrences
of a in the goal and replace them with b. Can optionally supply an
arrow to determine the direction of rewriting.

f_equal

Converts a subgoal of the form f(x) = f(y) into x = y; that s, it
encodes the fact that x = yimplies f(z) = f(y). This is not the
same as the term f__equal, even though they have the same name.

destruct H

Breaks apart the hypothesis H and generates a subgoal for each
constructor of the type of H (think case analysis).

induction H

Similar to destruct but also generates an induction hypothesis if
possible.
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exact H

Proves the goal if the hypothesis H has the type of the goal.

apply H
Tries to match the conclusion of H with the goal and, if it can,
replaces the goal with the premises of H (or proves the goal if H
has no premises).

eapply H
Same as apply but creates existential variables when Coq cannot
automatically instantiate variables.

unshelve eapply H

Like eapply but unshelves any shelved subgoals generated by eapply,
turning them into explicit subgoals. This is the most common way
that we use the eapply tactic.

refine H

Like exact but allows the term H to have ‘holes’, represented by
underscores. Generates a subgoal for each hole which cannot be
inferred from the context and ‘shelves’ subgoals that appear in
other subgoals.

unshelve refine H
Like refine but unshelves any shelved subgoals generated by refine,
turning them into explicit subgoals. This is the most common way
that we use the refine tactic.

split
If the goal is a product A X B, generates two subgoals, one for A
and one for B.

esplit

Same as split but introduces (and shelves) existential variables
rather than failing when they cannot be instantiated.
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unshelve esplit

Like esplit but unshelves the existential variables shelved by esplit.

exists x
Instantiates a goal 3¢ : T'. G with = : T, replacing the current
subgoal with G[t := z].
assert P
Adds a hypothesis H : P to the current subgoal and adds a new
subgoal to prove P before the current subgoal.
cut P
Identical to assert but places the new subgoal to prove P after
the current subgoal. This tactic is used when you want to defer
justifying the assumption P till after the main goal is proved.
simplify_eqs
Automatic tactic which tries to simplify goals of the form rew pin t.
Handy if it works, but if it doesn’t we resort to manual methods.
tacl; tac2

Run tacl, then run tac2 on all subgoals generated by tacl.

auto, congruence, easy, intuition, firstorder

Various automatic tactics.

Proof bullets, used to organise proofs with many subgoals.

{ .1

The opening brace focuses the first goal and the closing brace
closes it. This is mainly useful in combination with tactics like

assert, in which you usually write ‘assert P. { * }’ where *xisa
proof of P.
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