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Abstract

Statistical modelling of data in real-world scenarios often require models that can

accommodate variability and dependence in a plethora of different ways. Within

the generalized linear modelling framework, various extended models are avail-

able to address these commonly found problems. In this context, goodness-of-fit

assessment is pivotal for ensuring reliable inferential results. This includes, but

is not limited to, graphical tools, which can be helpful when deciding whether a

data sample can be a plausible realisation of a fitted model. In this thesis, we fo-

cussed on the development of diagnostic measures and the comparison of different

modelling approaches, when applied to diverse types of data.

Initially, we present an overview of diagnostic analyses stemming from generalized

linear models, whilst illustrating different tools using two case studies from exper-

iments in ecology and agriculture. Then, we extend the graphical model selection

method known as half-normal plots with a simulated envelope. The simulated

envelope is such that, under a well-fitted model, the majority of points should

fall within its bounds. Nonetheless, closely related models tend to produce very

similar graphs. We propose a new distance-based framework that acts as an added

quantitative summary to the half-normal plot with a simulated envelope. This new

measure can effectively determine the most appropriate model when closely related

models are included. An extensive simulation study was carried out taking into

ix



Abstract

account many different scenarios. The results showed that the distance framework

exhibits robust performance in finding the true model and is comparable to BIC;

in some instances, it even displays superior efficacy.

Finally, we present a comparative analysis of different modelling frameworks ap-

plied to interval-censored longitudinal data, which is bounded in the interval (0, 1).

We considered three approaches, where the first and second involved mixed and

marginal models using a transformation of the interval-censored response, and

the third incorporated the interval-censored nature in the likelihood. We found

that the accounting for the interval-censored nature of the data improved model

goodness-of-fit. However, the conclusions drawn from all three approaches were

qualitatively similar.
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CHAPTER 1
Introduction

In this chapter we discuss the motivation behind the work presented in this thesis and

outline the content in the chapters included in the thesis.

Motivation
The word ecology comes from two Greek words, “oikos" meaning household and

“logos" meaning study (Odum et al., 1971). Thus ecology is the study of house-

hold, which includes investigating all the organisms, habitats and the processes

involved in sustaining life. The development of using science to understand organ-

isms and relationships between them and its surrounding have helped mankind to

understand many natural processes. This also involved using statistics to aid in

comprehending patterns in the behaviour of ecosystems. Data can be collected

from ecological experiments in natural or controlled environments. There are dif-

ferent types of data involved in modelling ecological process. The common ex-

amples include: counts, continuous, proportions, categorical, interval data, among

others. The statistical processes involved in modelling depends on the nature of

1



Chapter 1. Introduction

the data, the design of the experiment or observational study, and the research

questions. In the first part of this thesis we focus on modelling count data, while

later we turn our focus to longitudinal data.

Count data consists of discrete data points that reflect the occurences of an event in

a specified period of time or unit of space (Coxe et al., 2009). The basic modelling

strategy for count data involves using Poisson regression and extensions. The

Poisson model is an equidispersion model, i.e. it assumes that the variance is

equal to the mean. But when analysing real count data, especially in ecological

studies, it is very rare that the data is equidispersed (Harrison, 2014). Typically,

(1) the variability can be greater than predicted by the model which is known as

overdispersion; or (2) the variability can be lower than predicted by the model

which is known as underdispersion. Cases of underdispersion are not frequently

encountered in ecological studies measuring animal abundance, which typically

exhibit overdispersion. An example of a scenario where underdispersed data can

be observed is when analysing species richness.

The dispersion can be modelled in different ways within the generalized linear mod-

elling framework which is an extension to classical linear models (Nelder and Wed-

derburn, 1972). The generalized linear model stems from the exponential family

of distributions that gives the user flexibility to model the mean-variance relation-

ship with additional parameters to account for unexplained variance. Commonly

used extensions of the Poisson distribution within the generalized linear modelling

framework are the Negative binomial distribution and the Quasi-Poisson, which

itself is not a true probability model, since it only specifies first and second mo-

ments. Quasi-likelihood based models are also sensitive to differences in sample

size and highly skewed data. It should be noted that some models like the Nega-

tive binomial can only account for overdispersion, while the Quasi-Poisson can be

2
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used for modelling both overdispersion and underdispersion. A further scenario

that can occur in count data is the occurrence of an excess number of zero counts

that could lead to heavily skewed data, termed zero-inflation. In instances where

zero-inflation is incorrectly treated as overdispersion this could potentially lead

to incorrect estimation of model parameters, standard errors and incorrect speci-

fication of the distribution of the test statistics (Perumean-Chaney et al., 2013).

This could be handled by using appropriate models that can handle an excess

number of zero counts, such as the zero-inflated Poison and zero-inflated Nega-

tive Binomial distributions. The other scenarios of skewness in the data could be

dealt with by applying appropriate transformations and specifying more flexible

variance functions.

Model fitting is followed by checking whether the model we have fitted is adequate,

considering the assumptions and biological nature of the problem. The most com-

mon methods for assessing model goodness-of-fit involve using residual analysis

and graphical methods. The first paper presented in this thesis (Chapter discusses

tools and diagnostics for assessing goodness-of-fit in GLMs. The second paper

(Chapter 4) introduces a novel metric to assess goodness-of-fit of GLMs applied

to count data. We showcase the methodology using examples arising from studies

in 2.6 and 2.7.

The third paper (Chapter 5) focusses on exploring marginal and mixed modelling

frameworks (Verbeke et al., 1997) applied to longitudinal interval censored data,

and how these methodologies compare with interval-censored regression. Longitu-

dinal data is characterised by repeated measurements from a single subject. This

type of data is inherently correlated and can be modelled using marginal models

with different working correlation structures and by using random effects within a

mixed modelling framework. In the particular example dataset explored, the range

3
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of response variable is bounded between 0 and 1, therefore we use interval-censored

beta regression to model the data.

Thesis Outline
The remaining chapters of this thesis are organised as follows:

Chapter 2 discusses the five ecological case studies used in this thesis. This chapter

aims to provide a brief introduction to the examples explored in the subsequent

chapters. This will also include exploratory analysis. We intend to discuss the

original published source and provide information for interested parties who may

wish to fully reproduce the analysis in this thesis using these datasets.

Chapter 3 is a review chapter discussing the tools for assessing goodness-of-fit of

GLMs illustrated with two case studies in entomology. This chapter aims to give

a brief introduction to the exponential family and GLMs, and further delve into

the goodness-of-fit methods. We intends to give the reader a deep understanding

o residual analysis and a class of residual plots known as half-normal plots with

a simulated envelope. This is followed by discussing influence measures used in

statistical inference. We consider that this chapter will serve as a background

chapter for the subsequent chapters of this thesis. The first example in this chap-

ter examines the effect of an entomopathogenic nematode called Heterorhabditis

bacteriophora against a tick commonly found in cattle named Rhipicephalus un-

der laboratory and field conditions (Filgueiras et al., 2023a). The second example

discusses the usage of fungi as bioagents against plant parasites. These fungi are

used as a sustainable method against the chemical pesticides that poses potential

hazardous effects to the environment and human health (Silva et al., 2022a). The

chapter also discusses the motivation for a distance-based metric as an alternative

or a complementary step to half-normal plots.

4
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Chapter 4 introduces a novel distance-based framework based on half-normal plots

with a simulated envelope, and presents an extensive simulation study aimed at

evaluating its performance. This chapter aims to provide a good understanding

on the usability of the distance metric. The simulation framework setup assesses

the effectiveness of the distance metric as a model selection method in the cases

of mild and strong overdispersion, as well as cases of mild and strong zero infla-

tion. The modelling framework involves the Poisson and extensions of the Poisson

namely Negative Binomial distributions with quadratic and linear variance func-

tions, the Quasi-Poisson, and the Zero Inflated Poisson and Negative Binomial

models. This chapter also includes two example datasets to explore the applica-

tion of the suggested metric to real life cases. The first example investigates the

effect of soil dry mass as an environmental factor on the distribution of hunting

spiders (Smeenk-Enserink and Van der Aart, 1974). The second example consid-

ers the age frequency data of walleye fish from gillnet surveys in Canada (Mainguy

and Moral, 2021).

Chapter 5 evaluates the application of mixed and marginal models on interval

censored data and how that compares to interval censored regression in the context

of the beta distribution. It aims to give an introduction to the marginal and

mixed modelling approaches with a special focus on how correlated data are dealt

with in both cases. This chapter also aims to give the reader a brief review on

interval censored regression. This chapter is motivated by an example provided

in (Garzón-Barrero et al., 2016). The experiment focusses on evaluating the

efficacy of innovative sugarcane bagasse particle boards compared to traditional

Medium density particle boards. We considered different formulations for fixed

effects and random effects for mixed modelling and interval censored regression,

and used different correlation structures for the data in the marginal modelling

approach to analyse the data.
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Chapter 5 briefly discusses the results of the studies in each of the three chapters.

This section also explains the implications and the limitations of the work in

this thesis and further delves into the future directions and proposes new lines of

investigation.

All proposed methods in this thesis were implemented using R (R Core Team, 2022)

software and are accessible at the author’s Github1 via two public repositories. The

repository https://github.com/DARSHANAJAYA/Goodness-of-fit-Distance-m

etric and related to Chapters 3, 4, and repository https://github.com/DARSH

ANAJAYA/Fungi-study- relates to chapter 5. These repositories include all the

scripts to reproduce the analyses and the plots provided in the chapters.

1https://github.com/DARSHANAJAYA
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CHAPTER 2
Case Studies

In this chapter, we discuss the various case studies utilised as part of this thesis, provide

details as to their notable features, and provide links to where they are located for

practitioners interested in reproducing our work.

2.1 Introduction
In this thesis we examine five datasets; three of which involve count responses and

two involve continuous responses. We introduce a count dataset and a continuous

dataset to demonstrate modelling with GLMs and a graphical model selection

method known as half-normal plots in Chapter 3. In Chapter 4, we illustrate a

novel goodness-of-fit methodology using two count datasets. Finally, in Chapter 5

we explore the use of different modelling strategies when analysing a longitudinal

dataset with an ordinal response variable, which can be treated as continuous

and interval-censored. The datasets cconsidered in this thesis are comparitively

small and has no apparent skewness or zero inflation to be addressed in the model

specification.
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2.2. Biological control of ticks

2.2 Biological control of ticks
Rhipicephalus (Boophilus) microplus (Canestrini, 1888) (Acari: Ixo- didae), oth-

erwise known as cattle ticks, impose significant impact on beef and dairy cattle

husbandry by causing severe economic losses (Rodriguez-Vivas et al., 2018). The

species can be controlled via pesticides, however there are a number of reasons

to look for alternatives to chemical control. One of the reasons is that ticks may

develop high resistance to the chemicals as a consequence of repeated usage. Also,

the presence of chemicals in dairy products has also elevated the aversion to them

(Klafke et al., 2017). There is, therefore, a need for further research on biocontrol

agents that are safer for the environment. The application of entamopathogenic ne-

matodes (EPNs) has been identified to be an effective means of pest management.

The symbiotic relationship between the EPNs and the ticks allows for sustained

pest elimination. The contact of EPNs and ticks induces rapid septicemia and

leads to their mortality. At different developmental stages, there is a varied sus-

ceptibility of the ticks to the nematode infection and its been shown that engorged

females are more susceptible.

Filgueiras et al. (2023a) explored the susceptibility of ticks to the EPNs at different

engorgement levels and at different body weights and tick sizes. The impact of

different tick populations from different geographical locations was also evaluated.

The experimental setup consisted of a field trial with two groups comprising of

a treatment group and a control group. The treatment group was treated with

Heterorhabditis bacteriophora and the control group had no treatment. Each group

had sex replicates (plots) of Megathyrsus maximus grass, which provides an ideal

environment for the survival of R. microplus. The treatment was done by using

infected dead specimens of Tenebrio molitor larvae and prior to one week of the

start of the experiments the treatment groups were seperated and buried in the

soil at random points in each of the plots. The total number of ticks in each plot
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Mean Variance
Control NEPs Control NEPs
91.63 71.92 13003.55 46984.25

Table 2.1: Mean and Variance of Control group and NEPs for the ticks data

was counted weekly for a period of four weeks. The dataset includes 48 rows with

5 covariates. The five covariates are treatment, the number of blocks, number of

weeks, Number of ticks and an additional column that includes the cumulative

number of ticks.

Figure 2.1: Images of (a) Rhipicephalus (Boophilus) microplus male and (b) Rhipi-
cephalus (Boophilus) microplus female (Brites-Neto et al., 2015).

2.3 Sustainable management of parasitic

nematodes using bioagents – the ‘plant

height’ data
The microbial treatment of agricultural pests is on high demand, as it helps to

reduce resistance to chemical pesticides and aids in the sustainable management

of pest populations by improving the organic crop development (Eilenberg et al.,

9
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2001). The usage of natural enemies against the parasitic nematodes is benefi-

cial to human health by minimizing the utilization of chemical pesticides. These

low impact bio agents have narrow spectrum and higher selectivity for the hosts,

when compared to a broader spectrum selectivity exhibited by the chemical pesti-

cides. In this case study we considered filamentous fungi of the order Hypochreales.

Among these fungi, two soil-born cosmopolitan fungi, namely Purpureocillium

lilacinum and Pochonia chlamydosporia, are known for their pest controlling ca-

pabilities (De Souza et al., 2015). These two fungi are abundantly found in the

rhizosphere of the vegetation and secretes hydrolytic enzymes against the para-

sitic nematodes. They also have the added advantage of supporting plant growth

by establishing endophytic associations. So usage of fungal nematicides not only

helps in getting rid of parasitic nematodes but aid in the overall development of

the plant growth.

There are two different methods of mass production of the fungal propagules: by

solid or submerged fermentations. Solid fermentation is a low cost method that

uses less water with plenty of oxygen supply for the propagation of the fungal struc-

tures for the dissemination of the infection. Although this is a sustainable method

in producing aerial conidiophores2, it takes around 10 or 15 days to achieve high

sporulation with a higher risk of contamination due to the uncontrollable nature of

the environmental conditions (pH, water activity, aeration, nutrition levels). Sub-

merged fermentation method is a low cost method that has a considerably lower

risk of contamination and provides higher yield. This method also has an advan-

tage of shorter duration for propagation of submerged conidia which has different

structure and characteristics compared to aerial conidia. A notable fungal struc-

ture for the pest control named microsclerotium is of selective consideration as an

alternative to aerial conidium. These structures has added stability and resilience
2A specialized hyphal branch of some fungi that produces conidia.
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under field conditions and is also tolerant towards UV-B and heat when compared

to the latter.

Silva et al. (2022b) explored the properties of dried fungal propagules after sub-

merged fermentation. The experiment was conducted in a randomized block design

with ten replicates for each treatment. A total of six treatments were considered,

which included five fungal treatments and one control. This experiment was re-

peated three times at different time points under greenhouse conditions. The

treatment consisted of surface sterilisation using 70% ethanol followed by sodium

hypochlorite and further back to ethanol and distilled water. Following this, Ara-

bic gum was added as a coating to seeds of the common bean cv. ’IAC Milenío’.

The treatment was done using two isolates of P. chlamyhdosporia and three isolates

of P. lilacinum. The treated seeds were then placed on a filter paper to dry out

the excess water. In the final phase the seeds were potted with a combination of

soil and sand and kept in greenhouse conditions. These plants were watered daily

with tap water whenever required. After 45 days, the plants were removed from

the pots and the roots were cleaned from soil. Subsequently, the dry mass mea-

surements were carried out for the aerial part and the root part of the plants. The

dataset includes 180 rows and 4 columns. The 4 columns includes the treatment

considered, experiment, plant considered and the measured dry weight.

Figure 2.4 shows the distribution of dry weight measured in grams for two isolates

of P. chlamydosporia and three isolates of P. lilacinum, as well as the control

group.

Spider data
Smeenk-Enserink and Van der Aart (1974) examined the spatial distribution of

Alepecosa accentuata, a hunting spider species, found in the dune area ‘Meijendel’

11
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Figure 2.2: Purpureocillium lilacinum conidiophores, phialides and conidia.
(Source: https://www.adelaide.edu.au/mycology/fungal-description
s-and-antifungal-susceptibility/hyphomycetes-conidial-moulds/purpur
eocillium)

situated between the The Hague and Wassenaar in the Netherlands, and com-

pared it to environmental characteristics. These are considered to be non-specialist

predators, which means that they feed on multiple different species of prey. The

motivation for conducting this study included the need for unravelling the func-

tional differences in the predatory nature with the environmental characteristics,

such as soil dry mass. The study was conducted using a pitfall catch method

that gives insights to the density and movement of the spiders. One hundred pit-

fall traps were set up in four square-grid arrangements of 25 pitfalls each in the

Bierlap dune valley. The smallest distance between two pitfalls was 10m. Among

these, 28 pitfalls were selected and the water content in the soil was estimated
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2.4. Walleye data

Figure 2.3: Images of the fungus Pochonia chlamydosporia under light microscope.
(A) conidia and mycelium at 10× magnification, (B) chlamydospores at 40× mag-
nification (Oliveira et al., 2022).

gravimetrically. This experiment comes with challenges as a number of hunting

spider species can be found in the same area and the spatial separation of the

spiders is not very evident.

Figure 2.6 displays a scatter plot of soil dry mass and the number of spiders

belonging to the species Alepecosa accentuata found in the dune area of Meijendel,

collected in 28 pitfall traps.

2.4 Walleye data
To estimate instantaneous mortality of walleye (Sander vitreus) fish specimens in

Québec, Canada, fish were collected as a part of a large standardized gillnet provin-

cial monitoring program by the Service de la Faune Aquatique in 2012 (Mainguy

and Moral, 2021). The site of data collection was the Baskatong Reservoir near

the city of Mont Laurier. The gillnets considered comprised of eight panels with

increasing mesh sizes to facilitate capturing fish with a wide range of lengths. This

helps to reduce the catchability bias related to fish size and gives better estimates

of their age. The ages were evaluated based on the examination of year-increment
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Figure 2.4: Box plots of the dry weight variable measured in the ’plant height’
dataset for ten replicates of six different treatments: three isolates of P. lilacinum,
two isolates of P. chlamydosporia and a control.

annuli of the otoliths3 using a microscope. The age frequency data (Figure 2.7) is

also referred to as catch curve data and is typically overdispersed (Nelson, 2019).

The dataset consists of 99 observations with 3 columns (age of the fish, count of

the fishes, year considered).

2.5 Mold growth data
This dataset was obtained from a comparative study carried out by Garzón-Barrero

et al. (2016) to evaluate the effectiveness of a novel sugarcane-based bagasse par-

ticleboard when compared to the traditional medium density particle boards. The
3Annual growth increment of fish otoliths or earstone located behind the brain of the bony

fishes.
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Figure 2.5: Image of spider species Alepecosa accentuata.(Wikipedia contributors,
2021)

medium density particle boards are generally made from Pinus and Eucalyptus

trees. The increased demand of particle boards in the construction necessitates an

alternative for particle board manufacturing. One of the alternative options for

traditional particle boards is the sugarcane bagasse particle boards. The durability

of the particle boards are evaluated by quantifying the percentage of mold growth

in a controlled environment. The usage of an polyurethane resin adhesive as the

binding agent in the sugarcane based particle boards compared to synthetic resins

like phenolformaldehyde resins gives an added advantage of biodegradability. For

the experiment the sugarcane particle boards were manufactured under laboratory

conditions using a castor oil based polyurethane bicomponent resin as an adhesive.

The medium density particle boards were produced on an industrial scale using
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Figure 2.6: Number of hunting spiders of the species Alepecosa accentuata collected
in 28 pitfall traps versus soil dry mass.

Eucalyptus particles with urea formaldehyde resin. The percentage of mold growth

was measured in an ordinal scale with 11 levels, ranging from from 0 to 10, with

0 representing a rate of mold growth between 90% − 100%, 1 corresponding to

80% − 89%, 2 corresponding to 70% − 79%, and so on, with 10 corresponding to

0% mold growth. This data can be seen either as ordinal, or interval-censored and

bounded between 0% and 100%. The experiment was set up in a 2 × 2 factorial

design with two wooden materials(BCP, MDP) and two settings for the coating

(With coating, No coating) with six replicates, and the data was measured weekly

for a period of four weeks. Figure 2.9 displays the rate of mold growth over time

for all treatments in the experiment.
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Figure 2.7: Age distribution of walleye fish captured in 2012 by the Service de la
Faune Aquatique, in Québec, Canada.
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Figure 2.8: Experiment setup to evaluate the mold growth in a controlled envi-
ronment (Barrero, 2015).
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Figure 2.9: Rate of mold growth for two different materials (MDP, BCP)over a
period of 4 weeks for conditions of Face and coating for the boards.

.
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CHAPTER 3
Tools for Assessing

Goodness-of-fit of GLMs: Case

Studies in Entomology

In this chapter, we discuss the analysis of data that typically arise from entomologi-

cal studies using generalized linear models. We focus on techniques that can be used

to assess model goodness-of-fit, which is an important step in statistical modelling to

ensure the reliability of the inferences made. Specifically, we demonstrate the utility

of half-normal plots with a simulated envelope as a complementary tool for assessing

model assumptions. We illustrate the concepts with two examples, one involving count

responses and another involving continuous responses.

This chapter was published in Jayakumari, D., Hinde, J., Einbeck, J., Moral, R.A.

(2024) Tools for assessing goodness-of-fit of GLMs: Case studies in entomology. In

Moral, R.A., Godoy, W.A.C. (2024) Modelling insect populations in agricultural
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landscapes, Springer.

3.1 Introduction
Given a scientific hypothesis, an experiment or observational study can be carried

out to collect data that may confirm or provide evidence against the said hypothe-

sis. Statistical models represent an attempt to explain patterns of variation found

in a response variable through the use of specific distributional assumptions and

predictor variables. These patterns change depending on the nature of the re-

sponse. A useful model should be able to capture most of the relevant variation in

the data and distinguish between a true signal and noise, while at the same time

maintaining parsimony.

Consider the following multiple linear regression model:

Y ∼ N(µ, Inσ
2), (3.1)

µ = Xβ,

where Y = (Y1, . . . , Yn)⊤ is the vector of responses of dimension n, µ is the vector

of means, X is the n× p design matrix, β is the vector of regression coefficients of

dimension p, In is the n×n identity matrix and σ2 is the variance parameter. This

model makes three main assumptions: (i) the response variable is assumed to be

normally distributed; (ii) the means are allowed to differ across the Yis, according

to the specified linear model, however their variances are assumed to be the same

(σ2 for all Yi); and (iii) the responses are assumed to be independent (which under

the assumption of a normal distribution is implied from the diagonal covariance

matrix with Cov(Yi, Yj) = 0, for i ̸= j).
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When fitting model (3.1) to real data, it is important to assess whether the afore-

mentioned assumptions are met before treating any inferential results as reliable.

Assumption (i) can be checked in many different ways. We may assess it through

hypothesis testing using, for example, the Shapiro-Wilk test of normality based on

a standardised version of the model residuals Shapiro and Wilk (1965). We may

also carry out graphical assessments, that include quantile-quantile plots, which

will be discussed in detail in Section 3.4. Assumption (ii) can also be checked

through formal hypothesis tests, such as the Bartlett test for variance homogene-

ity Snedecor and Cochran (1989), and graphically, by looking at a plot of residuals

versus fitted values (see Figure 3.3 for examples). Frequently, assumption (iii) will

be deemed to be true or not based on the design of the experiment or observational

study, without resorting to formal hypothesis testing. Tests are available, but typ-

ically they are onl;y carried out when analysing longitudinal or time-series data,

which may be assumed to be correlated. For these cases, calculating the empirical

auto-correlation and partial auto-correlation functions is especially helpful.

Nevertheless, all assumptions discussed above can be summarised by a single dis-

tributional assumption, which is denoted by (3.1). If the distributional assumption

in (3.1) is true, then the observed data must be a plausible realisation of the es-

timated model N(µ̂, Inσ̂
2). In other words, theoretically we should be able to

generate the observed values of the response variable we obtained in the experi-

ment or observational study by simulating from our fitted model. Goodness-of-fit

assessment methods that rely on simulation (such as half-normal plots with a sim-

ulation envelope) are based on this principle. They involve simulating multiple

times from a fitted model and comparing the results obtained with the observed

response or a function of the response. This is especially useful in the context of

more general models (e.g. based on a wider family of probability distributions), for

which assumptions (i) and (ii) do not hold (and consequently carrying out tests for
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normality and homogeneity of variances would be pointless in this case). Note that

here we confine our attention to settings where the assumption (iii) of independent

responses is plausible by virtue of the form of data collection; more general data

structures may require model extensions, such as the mixed modelling framework

for multiple components of variation.

In entomological studies, it is often the case that non-normal continuous data

and discrete data (counts and proportions) are collected. For these types of data,

model (3.1) would not be suitable for analysis, and different distributional assump-

tions would be required. For instance, to analyse count data, the Poisson model is

one of many alternatives; to analyse proportion data, the binomial model could be

used; and gamma and inverse Gaussian models are able to flexibly accommodate

right-skewed data with positive support. These are all examples of generalized

linear models, for which many different extensions are also available.

There is a plethora of modelling options available for the analysis of entomological

data. In many cases, more than one distribution can suitably accommodate the

variability in the data. In Section 3.2, we provide a general definition and overview

of generalized linear models. Later, in Sections 3.3, ?? and 3.4, we present an

overview of goodness-of-fit assessment tools and techniques. We conclude by illus-

trating their use with real datasets in Section 3.5. All analyses and figures in this

chapter are generated using R R Core Team (2022).

3.2 Generalized Linear Models
The modelling of non-normal data could involve, as alternatives, distributions

belonging to the exponential family (EF) of distributions. The EF includes discrete

(e.g. Poisson, negative binomial, and binomial), as well as continuous (e.g. gamma

and inverse Gaussian) distributions, representing flexible alternatives to the normal
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distribution when modelling discrete, or continuous and strictly positive, or skewed

data in entomology.

The probability density function (pdf) of a random variable Y whose distribution

belongs to the EF of distributions can be written, in the canonical form, as

f(y; θ, ϕ) = exp
{
yθ − b(θ)

ϕ
+ c(y, ϕ)

}
, (3.2)

where b(·) and c(·) are functions of the dispersion parameter ϕ, the canonical

parameter θ and the data and dispersion, respectively.

The generalized linear model (GLM) is an extension to the classical linear model

where the response variable is assumed to follow a distribution which belongs to

the EF. By developing an inferential framework that encompassed distributions

belonging to the EF, Nelder and Wedderburn (1972) allowed for fitting GLMs

using a unified estimation process. It should also be noted that the exponential

family of distributions is often inadequate to represent observed response variables.

The GLM consists of three components:

1. Random component: this is the assumed distribution for the response vari-

able, which belongs to the EF. This component is termed ‘random’ because

it is a probability distribution that is used to model the variability in the

data.

2. Systematic component: takes the form of a linear predictor, which consists

of a linear combination of the predictor variables and unknown parameters.

It may be written as

η = Xβ,

where Xn×p is the design matrix and β is a p× 1 vector of regression coeffi-

cients.
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3.2. Generalized Linear Models

3. Link function: this links the random component to the systematic component

through a monotonic and differentiable function g(·) . Typically we aim to

link the parameter corresponding to the mean µ of the distribution to the

linear predictor through the transformation η = g(µ). As link functions

are invertible, we have that the mean µ = g−1(η) = g−1(Xβ) and so is

determined by the linear predictor. The link function that transforms the

mean µ to the natural parameter θ is known as the canonical link. Note

that using the canonical link corresponds to specifying a linear predictor for

the canonical parameter, which may, or may not, be desirable depending on

the substantive questions of interest. Table 3.1 presents six commonly used

EF distributions with their canonical link functions, the dispersion (or scale)

parameter, and the form of the variance function (discussed in subsequent

sections).

Distribution Representation g(µ) V (µ) ϕ
Normal (Gaussian) N(µ, σ2) µ 1 σ2

Gamma Gamma(µ, α) µ−1 µ2 α−1

Inverse Gaussian IG(µ, σ2) µ−2 µ3 σ2

Poisson Pois(µ) log(µ) µ 1
Negative binomial NB(µ, k) log

(
µ

µ+k

)
µ
(

µ
k

+ 1
)

k−1

Binomial Binom(m,π) log
(

µ
m−µ

)
µ
m

(m− µ) 1

Table 3.1: Representation, canonical link functions (g(µ)), variance functions
(V (µ)), and dispersion parameter (ϕ) for six commonly used distributions within
the generalized linear modelling framework. Here and throughout this chapter,
log denotes the natural logarithm (i.e. log base e).

The estimation of GLMs is typically done using the maximum likelihood (ML)

method. For the normal model, ML estimates are equivalent to the ones obtained

via ordinary least squares (which aims to minimise the sum of squared differences

between observed and fitted values). Under the assumed distribution, the ML
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3.2. Generalized Linear Models

estimates are the ones that maximise the likelihood function, that is the likeli-

hood of the observed data being generated by that distribution. Let f(yi; β, ϕ)

be the probability density or mass function distribution function for observation

i, where β is the vector of regression parameters to be estimated and ϕ is the

dispersion parameter of the assumed distribution. The likelihood function for a

single observation is defined as L(β, ϕ; yi) = f(yi; β, ϕ). Assuming observations

are independent, the overall likelihood for the full sample is given by the joint

probability density or mass function

L(β, ϕ; y) =
n∏

i=1
f(yi; β, ϕ).

To avoid numerical problems when working with likelihood functions, it is common-

place to work with the log-likelihood l(β, ϕ; y) = logL(β, ϕ; y) = ∑n
i=1 log f(yi; β, ϕ)

instead. Since logarithms are monotonic functions, the parameter values that

maximise l(·) will also maximise L(·). Therefore, the ML estimates will be the

parameter values that maximise l(·), i.e.

θ̂MLE = argmax
θ

l(θ; y),

where θ = (β⊤, ϕ)⊤.

The maximised log-likelihood value is used within different goodness-of-fit crite-

ria, and in some cases it can itself be used as a goodness-of-fit measure. When

comparing model fits, a higher value of the log-likelihood would indicate a bet-

ter reproduction of the observed data. However, a saturated model, for instance,

would reproduce every single observation; while the log-likelihood would be larger

than for a less complex model, saturated models overfit the data and are not flex-

ible enough to generate predictions for other sets of predictor values. Therefore,

selecting a model is a task that involves balancing flexibility and explainability.
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3.2. Generalized Linear Models

The residual deviance measure is defined as the difference between the log-likelihood

of the saturated model and log-likelihood of the fitted model (also called ‘current’

model), scaled by a factor of two, i.e., it conveys how far the model is from fully

reproducing the observed data. (Strictly speaking the deviance here is the scaled

deviance where the basic deviance is ϕ times this and for the EF gives a fitting

criteria that does not involve ϕ and plays the same role as the residual sum of

squares for the normal model. More recent usages tend to blur this distinction

and, of course, for models where ϕ = 1 it is not an issue, but in other models

the user needs to take care as to what version if being reported.) In GLM theory,

the deviance is an important measure, because by subtracting the residual (scaled)

deviances between two nested models, we obtain a statistic called ‘likelihood-ratio’

(since the difference between (scaled) deviances is equivalent to a ratio between

model likelihoods in the natural scale). It can be proven that likelihood ratios,

under the null hypothesis that the simplest model is most adequate to explain the

data, for a fixed or known value of the scale parameter ϕ, asymptotically follow

a χ2 distribution with the number of degrees of freedom equal to the difference

between the number of estimated parameters between the models being compared.

Now we briefly present the most commonly used EF models when analysing ento-

mological data, for which we provide examples of their probability density or mass

functions in Figure 3.1.

3.2.1 The Normal model

The normal distribution is the most commonly used distribution in statistics and

is widely used to model real life eventsWeisstein (2012). It is a continuous and

symmetric probability distribution, with a probability density function (pdf) given

by:
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3.2. Generalized Linear Models

Figure 3.1: Probability density/mass functions for six distributions belonging to
the exponential family. The top row shows the density of the continuous distribu-
tions for different sets of parameter values. The bottom row shows the probability
mass function of discrete distributions.

f(y) = 1√
2πσ

e− (y−µ)2

2σ2 , −∞ < y < ∞.

It is also known as the ‘Gaussian’ distribution as it was introduced by Carl Friedrich

Gauss in 1809. The distribution has two parameters (µ, σ) and is denoted by

N(µ, σ2) where µ ∈ (−∞,∞) is the mean and σ2 > 0 is the variance. The

density function of the normal distribution resembles a bell shape and is known

as the ‘bell curve’ and is centred around the mean µ. When µ = 0 and σ2 = 1

the distribution is known as the ‘standard normal’ distribution. It can be shown
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3.2. Generalized Linear Models

that approximately 68.2% of the area under the curve is contained in the interval

(µ±σ); approximately 95.4% of the area under the curve is contained in the interval

(µ ± 2σ); while approximately 99.7% of the area under the curve is contained in

the interval (µ ± 3σ), see Figure 3.2. The effect of different means and variances

can be seen in Figure 3.1(a).

The Central Limit Theorem, a key theorem in statistics, states that for a suf-

ficiently large sample of independent and identically distributed variables, the

sampling distribution of the mean is approximated by a normal distribution, no

matter the shape of the population distribution. This makes it possible for other

distributions to be approximated by a normal distribution, which makes it easier

to solve complex problems by using the properties of the normal distribution.

Referring to Equation 3.2 and rewriting the pdf of the normal distribution we

obtain:

f(y) = exp

yµ− µ2

2
σ2 − 1

2

(
y2

σ2 + log(2πσ2)
), −∞ < y < ∞;

which gives the canonical parameter θ = µ, the dispersion parameter ϕ = σ2,

b(θ) = θ2/2, and c(y, ϕ) = −1
2

(
y2

ϕ
+ log(2πϕ)

)
.
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Figure 3.2: The normal distribution pdf curve. We have that 68.2% of the area
under the curve falls between µ±σ, around 95.4% of the area falls between µ±2σ,
and approximately 99.7% of the area under the curve falls between µ± 3σ.

3.2.2 The Gamma model

The gamma distribution is generally seen in examples where the outcome is strictly

positive and skewed. Real life examples of the gamma distribution include the

modelling of rain fall Coe and Stern (1982), faults in the equipment maintenance

Van Noortwijk (2009), and insect populations Matis et al. (1992). It can be pa-

rameterised in different ways. It is common to use a shape parameter α > 0 and

a scale parameter β > 0, such that if Y ∼ Gamma(α, β) the pdf is given by

f(y;α, β) = yα−1e−βyβα

Γ(α) , y > 0, (3.3)

where Γ(·) is the gamma function, defined as

Γ(α) =
∫ ∞

0
yα−1e−ydy.

The gamma distribution may also be considered a generalised form of other dis-

tributions. For instance, when α = 1, it is reduced to the exponential distribution

with parameter β, i.e. a Gamma(1, β) distribution is equivalent to Exponential(β).

Moreover, a Gamma(ν/2, 1/2) distribution is equivalent to a χ2
ν distribution.
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3.2. Generalized Linear Models

For modelling purposes a more useful parameterisation is to use the mean µ. We

have that the expected value and variance are

E(Y ) = α

β
, Var(Y) = α

β2 .

Therefore, we may reparameterise the pdf (3.3) using µ = α/β, to obtain the

following exponential family pdf in canonical form:

f(y) = exp
{(

−y
µ

− log(µ)
)
α + α logα + (α− 1) log y − log(Γ(α))

}
, y > 0.

It is clear from above that the canonical parameter θ = −1/µ, and the dispersion

parameter ϕ = 1/α. This gives b(θ) = log(−1/θ), and

c(y, ϕ) = 1
ϕ

log
(

1
ϕ

)
+
(

1
ϕ

− 1
)

log y + log
(

Γ
(

1
ϕ

))
, y > 0.

See Figure 3.1(b) for different shapes of the gamma distribution.

3.2.3 The Inverse Gaussian model

The inverse Gaussian distribution is a continuous distribution similar to the gamma

distribution, but with a sharper peak and greater skewness Folks and Chhikara

(1978). It has a single mode and a long tail in the density function which helps

modelling data sets with extreme values. The name inverse Gaussian is related

to the fact that its cumulant generating function is the inverse of the Gaussian

distribution’s. The pdf of an IG(µ, σ2) distribution is given by

f(y) =
√

1
2πσ2y3 e

−(y − µ)2

2µ2σ2y , y > 0,

where µ ∈ (−∞,∞) is the mean and ϕ = σ2 > 0 is the dispersion parameter. We

have that E(Y ) = µ and Var(Y ) = µ3σ2.

We may re-write the pdf of the inverse Gaussian distribution in the canonical

exponential family form as

f(y) = exp
{(

− y

2µ2 + 1
µ

)
σ2 − 1

2

(
log(2πσ2y3) + 1

σ2y

)}
, y > 0,
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3.2. Generalized Linear Models

where we identify the canonical parameter θ = −1/2µ2, b(θ) =
√

−2θ, and

c(y, ϕ) = −1
2

(
log 2πy3ϕ+ 1

yϕ

)
.

For different shapes of the inverse Gaussian distribution, see Figure 3.1(c).

3.2.4 The Poisson model

Unlike a Normal distribution which is a continuous distribution, the Poisson dis-

tribution is a discrete probability distribution that is used to model data in the

form of counts for a specified interval of time (or space). Examples of data that

can be modelled using a Poisson distribution include the number of eggs laid by

insects over a specified period of time, or the number of insects counted per m2.

If Y has a Poisson distribution, we may write Y ∼ P(µ), and write its probability

mass function (pmf) is given by

f(y) = e−µµy

y! , y ∈ {0, 1, 2, . . .}

where µ > 0 is the mean parameter. A property of the Poisson distribution is

that the mean is equal to the variance, i.e. E(Y ) = Var(Y ) = µ, known as the

‘equi-dispersion’ property. A consequence of this is that the Poisson model is not

able to appropriately model data for which the variance is greater than the mean

(a phenomenon known as ‘over-dispersion’ Hinde and Demétrio (1998a)). Real

entomological data often exhibits over-dispersion, and therefore extensions of the

Poisson model would be more suitable for analysis, such as the quasi-Poisson,

negative binomial and Poisson-normal models Demétrio et al. (2014).

Re-writing the pmf in the canonical exponential family form we obtain:

f(y) = exp(y log µ− µ− log(y!)), y ∈ {0, 1, 2, . . .}.
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3.2. Generalized Linear Models

We can identify the canonical parameter θ = log µ, as well as the dispersion

parameter ϕ = 1. Moreover, b(θ) = µ, and c(y, ϕ) = − log(y!). See Figure 3.1(d)

for different shapes of the Poisson pmf.

3.2.5 The Negative Binomial model

The negative binomial distribution, also known as the ‘Pascal’ distribution, is the

distribution of the number of failures before the first k ∈ {1, 2, . . .} successes in

a sequence of independent Bernoulli trials4 with probability of success 0 ≤ π ≤

1. This distribution can also be expressed as a sum of k independent geometric

random variables, since the geometric distribution describes the number of failures

before the first success in a sequence of independent Bernoulli trials. The pmf of

the negative Binomial distribution is given by

f(y|µ, k) =
(
y + k − 1

y

)(
µ

µ+ k

)n (
k

µ+ k

)k

, y ∈ {0, 1, 2, . . .}

where E(Y ) = µ and ϕ = k−1 is the dispersion parameter. In this parameterisa-

tion the negative binomial distribution is in the EF and has a quadratic variance

function, given by Var(Y ) = µ+ µ2ϕ; we will refer to this parameterisation of the

negative binomial distribution as negbin-quad.

The negative binomial distribution can also be viewed as arising from a two-stage

model with a Poisson distribution where the parameter is assumed to follow a

gamma distribution, reflecting additional heterogeneity over the observed counts.

By considering different parameterisations of the gamma distribution we obtain

different parametric forms of the negative binomial. For fixed values of the mean

µ they are the same distribution but when we consider allowing the mean to

vary (as in regression models) they exhibit different mean-variance behaviour. In

particular, there is one variant with a linear variance function Var(Y ) = µ + µψ,
4A Bernoulli trial is an experiment with only two possible outcomes: ‘success’ or ‘failure’.
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referred to here as negbin-lin; but note that in this form the resulting negative

binomial model is not in the EF.

Depending on the data, either parameterisation can be the best choice to accom-

modate the extra variability. Note that these variance functions are inflated with

respect to the Poisson distribution, and we have that Var(Y ) > E(Y ), with a lim-

iting case of equi-dispersion obtained when the additional parameter ϕ, or ψ, is 0

(note that these correspond to a gammma distribution with zero variance, i.e. a

degenerate constant distribution, hence the reduction to the equi-dispersed Pois-

son distribution). Therefore, the negative binomial distribution can be considered

a one-parameter extension of the Poisson distribution for modelling overdispersed

counts. See Figure 3.1(e) for examples of pmf shapes for the negbin-quad distri-

bution.

3.2.6 The Binomial model

The number of successes out of m ∈ {0, 1, 2, . . .} independent Bernoulli trials with

same probability of success 0 ≤ π ≤ 1 follows binomial distribution, denoted as

Binom(m,π). The values assumed by a binomial random variable are discrete and

bounded between 0 and m, i.e. they can be referred to as ‘discrete proportions’.

In entomology, there are many cases where this type of data arises, such as in

experiments measuring the proportion of viable eggs, sex ratios, or dose-response

experiments where the focus is on mortality (or survival) of insects. The pmf of

the binomial distribution is given by

f(y) =
(
m

y

)
πy(1 − π)m−y, y ∈ {0, 1, . . . ,m}.

We have that E(Y) = mπ and Var(Y) = mπ(1 − π).

Re-writing the pmf of the binomial distribution in the canonical exponential family
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form we obtain

f(y) = exp
{
y log

(
π

1 − π

)
+ log

(
m

y

)
−m log(1 − π)

}
, y ∈ {0, 1, . . . ,m}.

We can identify the canonical parameter θ = log
(

π
1−π

)
= logit(π) and the disper-

sion parameter ϕ = 1. We also have b(θ) = −m log
(

1
1+eθ

)
, and c(y, ϕ) = log

(
m
y

)
.

The binomial model is naturally under-dispersed, since Var(Y ) = mπ(1 − π) =

E(Y )(1 − π) < E(Y ). In many applications, we may find that this mean-variance

relationship does not hold, and the variability in the data is greater than accommo-

dated by the standard binomial model. In such cases, extensions of the binomial

model can be used, such as the quasi-binomial, beta-binomial and logistic-normal

models Fatoretto et al. (2018). See Figure 3.1(f) for different shapes of the binomial

distribution pmf.

3.3 Residuals
Here we provide a brief introduction to different types of residuals used when

assessing goodness-of-fit and performing model selection.

Residuals can be considered as an information metric that gives an idea about how

well the specified model fits the data. They are based on the deviation between

fitted/predicted values from observed values. Since they can be used to detect

outliers and abnormalities in the data, they are considered an integral part of

exploratory analysis.

When working with the classical linear model (Eq. 3.1), different types of residuals

can be used to verify the assumptions of linearity, independence, homogeneity

of variances and normality, through either visual displays or formal hypothesis

testing. In this model we have the fundamental decomposition of an observation
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yi into its fitted value, ŷi, and the residual ri = yi − ŷi with

yi = ŷi + (yi − ŷi) = ŷi + ri

and moreover the vectors ŷ and r are orthogonal. Hence, a very useful and basic

form of diagnostic display is to plot residuals (r) versus fitted values (ŷ). This plot

can help to assess whether the assumptions of variance homogeneity and linearity

are met. An ideal plot would show the residuals distributed randomly around zero,

with no trend (Figure 3.3(a)). When the variance is not constant, one would see

changes in variability throughout the plot, such as the example in Figures 3.3(b)

and 3.3(d), where the variance changes proportionately with the fitted values.

When the linearity assumption is not met, the residuals versus fitted values plot

will show a trend or curve, rather than points distributed randomly around zero,

such as the examples in Figures 3.3(c) and 3.3(d).

Naturally, when working with other generalized linear models that are not the

normal model, we would not expect the assumption of constant variance to hold,

since some of the variance functions are proportional to the mean (Table 3.1).

However, the residuals and the fitted values still form the basic building blocks of

quantities of interest and useful displays. We now introduce the most commonly

used residual types. Note that the type of residuals used for the model selection

process should depend on the models considered, and the nature of the response

variable.

3.3.1 Raw Residuals

The raw residuals (ri) are defined as the difference between the observed data and

fitted/predicted values:

ri = yi − µ̂i ; i = 0, 1, 2, . . . , n (3.4)
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3.3. Residuals

Figure 3.3: Examples of patterns expected when looking at ‘residuals versus fit-
ted values’ plots for four different scenarios. (a) Constant variance and linearity
assumptions are met; (b) variance is not constant, but linearity assumption is
met; (c) plot shows a trend, therefore linearity assumption is not met, however
the variance seems to be constant; (d) neither the constant variance nor linearity
assumptions are met.

where yi is the observed value and µ̂i is the fitted value. Large |ri| shows a higher

discrepancy between the observed data and the predicted value, which may indicate

that either observation yi is an outlier under the distributional assumption or that

the model does not have a good fit, if that is the case for many observations.

Very small |ri| for many observations could indicate overfitting. However, this will

depend on the scale of the response variable. Moreover, in classical linear regression

the raw residuals should follow a normal distribution with zero mean and variance
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σ2 > 0. But in non-normal scenarios the raw residuals behave differently, and

may be asymmetric, and have non-constant variance. This is why it is better and

commonplace to use scaled versions of the residuals.

3.3.2 Pearson Residuals

The ‘Pearson residuals’ rP
i are defined as,

rP
i = yi − µ̂i√

V (µ̂i)
, (3.5)

which are the raw residuals scaled by the estimated standard deviation. This

formulation addresses the problem of non-constant variance; therefore under well-

fitted models rP
i should display a constant variance behaviour when plotted against

the fitted values.

The Pearson statistic X2 is calculated by summing the squared Pearson residuals,

i.e. X2 = ∑n
i=1(rP

i )2. It can be shown that 1/phi times this statistic , asymptot-

ically, follows a χ2 distribution with n − p degrees of freedom Jørgensen (2013).

This statistic can be used to test the goodness-of-fit of a GLM when the disper-

sion parameter ϕ is known. This is especially useful for the Poisson and binomial

GLMs, for which ϕ = 1, fixed. In the cases where ϕ is unknown Pearson residuals

can be misleading and should not be used. Under a well-fitted Poisson or binomial

GLM, we would expect X2 to be similar to n− p. If X2 >> n− p this may be an

indication that the variability in the data is larger than expected by the model,

and therefore extended models that accommodate extra-variability would be more

appropriate for analysis. But Pearson residuals are not ideal for spotting unusual

outliers or extreme values and can be sometimes misleading for discrete outcomes

and has to used with caution
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3.3.3 Deviance Residuals

The deviance residuals rD
i are associated with the concept of deviance D, which

is a measure that considers the departure of the fitted model from the saturated

model. The saturated model has as many as parameters as observations, and

reproduces all observed values exactly, i.e. µ̂i = ŷi = yi. This model clearly

overfits the data, however it is useful to quantify how far the fitted (or current)

model is from reproducing the data exactly. We may write

D = 2(l∗ − l),

where l∗ and l are the maximised log-likelihoods of the saturated and current

models, respectively. The deviance can be represented as the sum of the deviance

measures from each data point, such that D = ∑
d2

i , where di is the ith component

of deviance. The deviance residual rD
i is then given by

rD
i = sign(yi − µ̂i)

√
di.

Under a well-fitting model, the distribution of the deviance residuals approximates

a normal distribution, and they are a common choice for likelihood-based methods

Pierce and Schafer (1986).

3.4 Half-Normal Plots with a Simulated

Envelope
A quantile-quantile plot, q-q plot, is a graphical method used to compare the

distributions of two samples by plotting the quantiles against each other. This is

mainly employed in cases where we assume a distribution for a response variable

and would like to check if that is a reasonable assumption. The quantiles of the

theoretical distribution are plotted against the quantiles of the data and if the
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distributional assumption is reasonable, the points would fall on, or close to, the

identity line y = x (see Figure 3.4(a)).

A normal q-q plot compares the observed data against a normal distribution.

Figure 3.4 shows two q-q plots: in Figure 3.4(a) the theoretical model considered

is the normal model and the data is also simulated from the normal distribution.

The observed behaviour is similar to a y = x plot which means the assumed model

is reasonable. But from Figure 3.4(b) we conclude the assumed distribution is not

a good approximation for the data.

Figure 3.4: Quantile-quantile plots showing (a) agreement between an assumed
distribution and the sample distribution, and (b) disagreement (i.e. the assump-
tion is not a reasonable one).

Half-normal plots can be considered as an extension to the q-q plot where the

ordered absolute value of a model diagnostic (e.g. residuals, leverage, Cook’s dis-
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tance, etc.) is plotted against the expected order statistics of the half normal

distribution; these are particularly useful in smaller samples where the full nor-

mal plot can be rather sparse and natural sampling variation can be potentially

misleading. It is based on the statistical principle that if the assumptions and

the model fit are adequate, then theoretically we should be able to generate the

observed values of the response variable. It is a graphical method now primarily

used to identify outliers and assess distributional assumptions. The half-normal

plot was orginally introduced by Daniel Daniel (1959) for the analysis of facto-

rial experiments, especially those involving un-replicated designs. The paper also

introduces ‘guardrails’ for giving better interpretation of the results. A major revi-

sion to this method was proposed by Zahn (1975). Since then, several alternative

methods were introduced to reduce subjectivity.

If Y follows a Normal distribution, then |Y | follows a half-normal distribution Zahn

(1975), with pdf given by:

f(x) =
√

2
πσ2 e

− y2

2σ2 , y ≥ 0

The expected ordered statistics of the half-normal distribution, hereby referred to

as ‘half-normal scores’, are approximated by:

Φ−1
(
i+ n− 1

8
2n+ 1

2

)

where i is the i−th order statistic, 1 ≤ i ≤ n, and Φ−1(·) is the inverse of the

cumulative distribution function of the normal distribution de Andrade Moral et al.

(2017).

The application of half-normal plots as a model selection method is implemented

with an added simulated envelope as suggested by Atkinson (1985a) to aid inter-

pretability. To construct the plot, first, model diagnostics are calculated from the
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fitted model, the absolute value is taken and they are then sorted from minimum

to maximum. Second, 99, or more, simulated realisations of the response variable

are created from the fitted model, that is using the same model matrix and dis-

tributional assumptions and parameter values as given by the fitted model. The

next step is to fit the same model to these simulated responses and re-calculate

the same model diagnostics, take absolute values and sort them. The final step

is to form the envelope by computing the percentiles of interest for each order

statistic from the set of (99) simulated values together with the original real data

one. Typically the chosen percentiles are 2.5% and 97.5%. For this case, up to 5%

of the points (order statistic values) may fall outside of the envelope to indicate a

well-fitted model. If much more than 5% of the points lie outside of the envelope,

it means that the observed data is not a plausible realisation of the fitted model.

We present two sample half-normal plots with a simulated envelope for model

residuals in Figure 3.5. In Figure 3.5(a) all the residual points fall inside the

simulated envelope, which means that the model fits the data well, i.e. the data

is a plausible realisation of the assumed probability distribution. In Figure 3.5(b),

however, most residual points falls outside the envelope, which means that the

model is not a good fit for the data.

The half-normal plot with a simulated envelope is simple to interpret, however if

the estimation procedure for a model is time-consuming, it might be computation-

ally expensive to produce.

3.5 Examples

3.5.1 Biological control of ticks

To study the efficacy of biologically controlling ticks using nematodes in grasslands,

an experiment was set up in a randomised complete block design with six blocks in
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Figure 3.5: Half-normal plot with a simulated envelope for model residuals for
(a) a case where the model fits the data well, and (b) a case where with poor
goodness-of-fit.

a field of Megathyrsus maximus grass, in the state of Goiás, Brazil Filgueiras et al.

(2023b). The field was divided into six groups of two plots each, totalling twelve

plots. Within each group (block), one plot was treated with the entomopathogenic

nematode Heterorhabditis bacteriophara by introducing infected Tenebrio molitor

larvae one week before the experiment commenced, while the other plot received

no treatment (control). A day before the experiment commenced, six females of

the tick Rhipicephalus microplus were placed in each of the twelve plots. The total

number of ticks in each plot was observed after 1, 2, 3, and 4 weeks (Figure 3.6)

It seems that the control plots had larger numbers of ticks when compared to the

nematode-treated plots, apart from the first and second week in block 6, where

over 1,000 ticks were recovered after one week of experiment. This type of be-

haviour occurs in field experiments involving arthropods, where population sizes

and reproduction rates vary between plots. In this particular plot the ticks repro-

duced rapidly and their population exploded after one week. However, there is an
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Figure 3.6: Number of ticks of the species Rhipicephalus microplus recovered in
each of twelve plots in a field of Megathyrsus maximus grass. In six of these plots,
the entomopathogenic nematode Rhipicephalus microplus was introduced a week
prior to commencement of the experiment.

exponential decline after 1 week, which could reflect successful control of the tick

via the introduction of the entomopathogenic nematode.

Since the response variable consists of counts, the normal distribution is not suit-

able for analysis. The Poisson model is a reasonable starting point, since it is

suitable to analyse count data. We observe, however, that the variance is much

greater than the mean for all plots over time (Table 3.2). This indicates extra-

variability, or over-dispersion, and therefore extensions to the Poisson model could

be more appropriate to analyse this dataset.

Firstly, we ignore the time dependence between observations made on the same plot

at different occasions. We fit the normal, Poisson and negative binomial models to

the ticks data, using the same linear predictor, which included the effects of block,

treatment, week, and an interaction between treatment and week. The normal

model assumes variance homogeneity, and a quick glance at the residuals versus
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Treatment Week Mean Variance

Control

1 103.2 18831.77
2 35.3 2847.07
3 166.8 23544.17
4 61.2 2730.17

Nematode-treated

1 173.0 179159.20
2 36.0 7268.40
3 75.2 10187.37
4 3.5 73.50

Table 3.2: Mean and variance of the number of recovered Rhipicephalus microplus
ticks in plots treated or not with the entomopathogenic nematode Heterorhabditis
bacteriophara, over four weeks of observation.

fitted values plot (Figure 3.7) reveals that this assumption is not met. Moreover,

since the lower bound of the response variable is zero, there is an obvious lower

bound for the residuals as well. The lack-of-fit of the normal model is confirmed by

the half-normal plot with a simulated envelope for the raw residuals (Figure 3.8(a)).

The Poisson model fit is also not adequate according to the half-normal plot in

Figure 3.8(b), and this is due to the extra-variability in the data. The negative

binomial model, however, seems to fit the data well ((Figure 3.8(c)).

Figure 3.7: Residuals versus fitted values for the normal model fitted to the ticks
data.

The importance in assessing goodness-of-fit before drawing inferential conclusions

from a statistical model is enhanced when we look at the results presented in Ta-
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Figure 3.8: Half-normal plots with a simulated envelope for the (a) normal model
using raw residuals, (b) Poisson and (c) negative binomial models using deviance
residuals, fitted to the ticks data.

ble 3.3. According to the normal model, there are no significant effects of time

(weeks) or treatment (the entomopathogenic nematode) on the number of ticks

retrieved from the field, and therefore would lead researchers to conclude that

the nematode is inefficient in controlling the tick population size. This lack of

significance is due to the large variability in the data overall, which results in an

overestimation of the standard errors. The Poisson model, on the other hand,

detects a significant interaction between time and treatment. This is due to the

assumption of equi-dispersion, which results in the underestimation of the overall

variability of the data. Finally, the negative binomial model, which suitably incor-

porates the over-dispersion in the data, yields inferential results confirming that

the nematode is indeed efficient in controlling the pest and shows the interaction

to be unnecessary, indeed there is no evidence of any time effect.

3.5.2 Sustainable management of parasitic nematodes

using bioagents – the ‘plant height’ data

The use of microbial agents as pesticides has been shown to be a more sustainable

approach than chemical pesticides on agricultural pests. Silva et al. (2022b) carried
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Model Source d.f. Test statistic p−value

Normal
Week 3, 35 1.29 0.29
Treatment 1, 35 0.16 0.69
Week × Treatment 3, 35 0.52 0.67

Poisson
Week 3 1444.10 < 0.01
Treatment 1 57.14 < 0.01
Week × Treatment 3 638.18 < 0.01

Negative binomial
Week 3 3.76 0.29
Treatment 1 4.72 0.03
Week × Treatment 3 4.98 0.17

Table 3.3: Test statistics and associated p−values for the effects in the linear
predictor of the models fitted to the ticks data. F test statistics are used for
the normal model and likelihood-ratio χ2 statistics are used for the Poisson and
negative binomial models.

out an experiment where they assessed the effectiveness of using a filamentous fungi

of the order Hypocreales, namely two strains of Pochonia chlamydosporia and three

strains of Purpureocillium lilacinum as potential bioagents against plant parasitic

nematodes. Seeds of the common bean cultivar “IAC Milênio" were treated with

suspensions prepared using each fungal strain, as well as a negative control that

used only Arabic gum. The seeds were planted and ten potted plants were used for

each treatment as observational units. After 45 days, the height of the plants was

measured in cm. This experiment was repeated three times, totalling 30 plants

receiving each treatment.

The box plots in Figure 3.9 show that the plant height is very homogeneous across

treatments, especially for experiments 1 and 2. However, for experiment 3 it

appears that plants treated with P. lilacinum strain ESALQ2593 were slightly

taller, suggesting a significant interaction between experiments and treatments.

We fitted normal, gamma and inverse Gaussian models to the plant height data,

all including the effects of experiment, treatment, and the two-way interaction

between experiment and treatment in the linear predictor and response variable
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Figure 3.9: Box plots of the height for the ten plants within each experiment (each
panel numbered 1, 2 and 3) according to each treatment, which included a negative
control, two strains of Pochonia chlamydosporia (PC - ESALQ5405 and PC -
ESALQ5406), and three strains of Purpureocillium lilacinum (PL - ESALQ1744,
PL - ESALQ2482 and PL - ESALQ2593).

being the height of plant. We used the canonical link functions, i.e. identity for

the normal model, inverse for the gamma model, and g(µ) = 1/µ2 for the inverse

Gaussian model. From Table 3.4, we observe that while the gamma and inverse
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Gaussian models agree with respect to the significance of the two-way interaction

between experiment and treatment, the normal model yields a p-value larger than

0.05 for this effect (although close to the 5% significance threshold). The half-

normal plots with a simulated envelope indicate, however, that the normal model

is an inadequate representation of the data (Figure 3.10), and therefore inferential

results from this model should not be taken into account. On the other hand, the

gamma and inverse Gaussian models seem to fit the data well.

Model Source d.f. Test statistic p−value

Normal
Experiment 2, 162 42.82 < 0.01
Treatment 5, 162 1.13 0.35
Experiment × Treatment 10, 162 1.81 0.06

Gamma
Experiment 2, 162 45.41 < 0.01
Treatment 5, 162 1.16 0.33
Experiment × Treatment 10, 162 2.09 0.03

Inverse Gaussian
Experiment 2, 162 46.04 < 0.01
Treatment 5, 162 1.14 0.34
Experiment × Treatment 10, 162 2.25 0.02

Table 3.4: F test statistics and associated p−values for the effects in the linear
predictor of the models fitted to the plant height data.

Figure 3.10: Half-normal plots with a simulated envelope for the (a) normal, (b)
gamma, and (c) inverse Gaussian models fitted to the plant height data.
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3.6 Discussion
It is very uncommon to see linear relationships and in this chapter, we aimed to

present the generalized linear modelling framework, an extension of the classical

linear linear with a specific focus on the use of diagnostic analyses to assess model

goodness-of-fit, specifically through the use of the half-normal plot with a simu-

lated envelope. We demonstrated that the normal model is not the most suitable

option for analysis of discrete data, which is commonly found in entomological

studies. In terms of software, although we used R throughout the chapter, there

are other implementations of the models and techniques presented here through

SPSS, Python, SAS, among others. The focus here has been on a single response

variable; multivariate extensions to jointly model responses of interest are more

complicated, and subject of active research.
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CHAPTER 4
A goodness-of-fit diagnostic for

count data derived from

half-normal plots

Traditional methods of model diagnostics may include a plethora of graphical techniques

based on residual analysis, as well as formal tests (e.g. Shapiro-Wilk test for normality

and Bartlett test for homogeneity of variance). Goodness-of-fit diagnostics have also been

extended to other quantitative metrics, such as information criteria based on a model’s

likelihood. In this chapter we derive a new distance metric based on the half-normal

plot with a simulation envelope, a graphical model evaluation method, and investigate

its properties through simulation studies. One advantage of the proposed metric is that

it allows for the comparison between models that do and do not have a full likelihood.

This newly introduced distance metric quantitatively encompasses the model evaluation

principles and removes the subjective bias when closely related models are involved. We

validate the technique by means of an extensive simulation study carried out using count

data, and illustrate with a case study.
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This chapter is currently under review at Journal of Statistical Computation and

Simulation, and can be found as a pre-print at Darshana Jayakumari, Jochen

Einbeck, John Hinde, Julien Mainguy, Rafael de Andrade Moral. “A goodness-

of-fit diagnostic for count data derived from half-normal plots with a simulated

envelope.” arXiv:2405.05121v1

4.1 Introduction
Analyses of counts is ubiquitous to many research disciplines, being applied to a

broad range of applied areas; for instance, the number of patients admitted to

a hospital in a single day (Du et al., 2012), the progeny of insects in a biologi-

cal control experiment in entomology (Borges, 2013), or the number of different

animal species in a particular area in ecology (Cunningham and Lindenmayer,

2005). A first assumption when modelling count data typically involves the Pois-

son distribution (Hilbe, 2014). This single-parameter distribution only accounts

for equidispersion and this restrictive property may not properly accommodate

a count variable’s mean-variance relationship in practical situations (Richards,

2008). It is common practice, therefore, to use extensions of the Poisson distribu-

tion that allow for more flexible mean-variance modelling, accommodating over-

or under-dispersion Brooks et al. (2019), as well as excess zero counts (Hilbe and

Greene, 2007).

One of the goals of fitting a model to data is to carry out inference. However, for

inference about a fitted model to be reliable, goodness-of-fit tests and diagnostic

analyses should be carried out to ensure that the model represents an adequate

fit to the data (Ding et al., 2018). For example, residual plots can be constructed

by plotting a function of the residuals, typically a scaled version of the ordinary

residuals, against the predictors or fitted values (Tsai et al., 1998). Once a model

is deemed to be adequate, the inferential process typically involves hypothesis
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testing to compare nested models (through, e.g., likelihood-ratio tests) and assess

the effects of covariates, however non-nested model selection may also be carried

out by comparing measures of out-of-sample predictive performance, which include

information criteria (Anderson and Burnham, 2004).

Likelihood-based methods are omnipresent in statistical analyses involving para-

metric models. However, quasi-likelihood estimation of marginal models also rep-

resents a useful approach when the inferential objective lies in modelling the mean

of the data under an assumed variance-covariance structure. Examples of this

approach include quasi-Poisson and quasi-binomial models where the underlying

base variance function is scaled by a dispersion parameter ϕ > 0, thus accommo-

dating over- or under-dispersion (Ver Hoef and Boveng, 2007; Consul, 1990). This

is also applicable to generalized estimating equations (GEE), which allow for the

accommodation of complex dependencies in the data through prior specification of

the variance-covariance structure (Zeger et al., 1988), and multivariate covariance

generalized linear models (McGLM), which represent an extension to the GEE ap-

proach and allow the joint modelling of multiple responses (Bonat and Jørgensen,

2016).

The marginal modelling frameworks pose challenges in terms of nested and non-

nested model comparisons due to the impossibility of calculating a full likelihood

measure to be used either in direct hypothesis tests, or to compute likelihood-based

information criteria. This makes comparing similar, but separate, models a difficult

task, and in this context graphical methods represent a complementary approach

when attempting to assess model fit. One graphical technique that can be used to

assess empirically whether an observed data sample is a plausible realisation of a

fitted model is the half-normal plot with a simulation envelope Hinde and Demétrio

(1998b). The envelope indicates the expected variability under the assumed model
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and allows an assessment of the appropriateness of the model for the data at hand,

indicated by the observed diagnostic half-normal plot mostly lying withing the

envelope. It can be used to compare, for instance, the fit of Poisson and quasi-

Poisson models, even though a full likelihood can be computed for the former

model but not the latter (Moral et al., 2017).

In this chapter we address these model comparison issues by introducing a goodness-

of-fit metric based on distances calculated from half-normal plots with a simulated

envelope. We review the graphical technique, introduce our proposed distance

metric, and describe simulation studies to explore the approach in Section 4.2. We

present the results from the simulation studies in Section 4.3, and show the utility

of the proposed approach using two case studies in Section 4.4. Finally, we provide

a discussion and conclusions in Sections 4.5 and 4.6, respectively.

4.2 Methods

4.2.1 Half-normal plots with a simulated envelope

A QQ-plot is a graphical method used in ascertaining the distribution of a sample

by plotting the ordered sample quantiles versus a particular distribution’s theoret-

ical quantiles (Lodder and Hieftje, 1988). A normal QQ-plot is useful to identify

departures from normality. A half-normal plot is similar to the normal QQ-plot,

but it plots the ordered absolute values of the sample against the expected or-

der statistics of the half-normal distribution instead of the normal; this approach

is especially useful with smaller datasets. For a sample of size n, the expected

half-normal order statistics can be approximated by

Φ−1
(
i+ n− 1

8
2n+ 1

2

)
, i = 1, . . . , n,

where Φ−1 is the quantile function of the standard normal distribution.
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Atkinson (1985b) proposed the use of half-normal plots with any model-based

diagnostic statistics, as well as the addition of a simulated envelope to highlight

departures from what would be expected under the fitted model. The envelope

is such that, if the observed data is a plausible realisation of a fitted model, for

most diagnostic measures the sample values would fall within the bounds of the

simulated envelope. It does not constitute a hypothesis testing procedure, however

it is useful as an empirical method to detect outliers, poor goodness-of-fit, and

over- or under-dispersion when analysing counts or discrete proportions (Hinde

and Demétrio, 1998b), depending on the particular diagnostic statistic used. In the

cases of counts and proportions, for over dispersion the points falls systematically

above envelope and for underdispersion the points falls systematically below the

envelope.

The algorithm for constructing a 100(1 − α)% simulated envelope is as follows:

(i) Fit a model to the data and compute the ordered absolute values of a chosen

diagnostic statistic (e.g., Pearson residuals, Cook’s distances, or leverage

values).

(ii) Simulate different samples from the fitted model, using the same model ma-

trix and the distribution and parameter estimates from the fit in step (i).

Atkinson (1985b) suggests performing 19 simulations, but smoother envelopes

are obtained with more simulated samples. The hnp package for R uses 99

simulations as the default (Moral et al., 2017).

(iii) Re-fit the model to each simulated sample and compute, for each fit, the

ordered absolute values of the same diagnostic statistic used in step (i).

(iv) Compute the 100α/2 and 100(1 − α/2) percentiles over the set of simulated

model diagnostics for each order statistic to form the lower and upper bounds
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of the envelope, respectively. Typically, we take α = 0.05.

4.2.2 A distance measure derived from a half-normal plot

with simulated envelope

For illustration, Figure 4.1 displays three half-normal plots with a simulated enve-

lope from different models fitted to data simulated from a negative binomial model

with a quadratic variance function (NB-quad), i.e. from an overdispersed count

model. All simulation studies and case studies discussed here use Pearson resid-

uals for the production of the half-normal plots, however any type of diagnostic

can be used in practice. The points painted in red are the ones that are falling

outside the envelope. The first panel (a) shows the results from the true model,

and 95% all sample residuals are expected to fall within the simulated envelope.

Fitting a Poisson model (which assumes that the variance is equal to the mean),

the extra variability (over-dispersion) in the data cannot be accommodated, which

is evident from panel (b), with most of the sample residuals falling outside of the

envelope. Panel (c) is the half-normal plot for a quasi-Poisson model (variance ∝

mean), and while this model can account for some of the overdispersion, it is clear

that the linear variance function cannot fully account for the quadratic variance

function of the underlying model and a considerable number of points falls outside

the envelope.

Graphical goodness-of-fit assessment and model selection can be challenging in this

context when closely related models are considered. Moreover, likelihood-based

procedures and associated quantities are not available for marginal models such

as the quasi-Poisson, although pseudo-likelihoods are sometimes used, see Bonat

and Jørgensen (2016). However, it is possible to derive an objective metric d for

model selection based on the sample residual values and the simulated envelope.

A natural way of measuring how far the observed residuals are from the expected
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Figure 4.1: Half-normal normal plots with a simulated envelope for three different
models fitted to data simulated from a negative binomial model with a quadratic
variance function (NB-quad).

median behaviour is to use a quantity d given by

d =
n∑

i=1
di =

n∑
i=1

|ri −mi|p, (4.1)

where ri is the ith ordered absolute residual, mi is the median of the simulated

envelope corresponding to the ith residual, and p denotes the power used. Here, we

restrict to p ∈ {1, 2}, with p = 1 corresponding to the absolute difference between

the residual point and the median (corresponding to the L1 norm), and p = 2 to

the squared Euclidean distance.

4.2.3 Simulation studies

To study the properties of the proposed metric (4.1), we performed simulation

studies based on different underlying count distributions, including both overdis-

persion and zero-inflation. As we were interested in testing many distributions and

the whole exercise was computationally intensive, as each simulation the calcula-

tion of d requires further simulations for the formation of the simulated envelope,

to speed up computation time we used a single covariate model, i.e.

Yi ∼ D(µi, ϕ, ν)

g(µi) = β0 + β1xi
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where i = 1, . . . , n indexes the sample, g(·) is a link function (e.g. the log link

when D is Poisson) for the mean µi, ϕ is a dispersion parameter, and ν is a

zero-inflation parameter for the parent distribution D. We generated the val-

ues of the covariate xi using a standard normal distribution. We used three dif-

ferent sample sizes n ∈ {20, 50, 100} and 6 different parent distributions D ∈

{Poisson,Quasi-Poisson,NB-lin,NB-quad,ZIP,ZINB}, where NB-lin represents a

negative binomial model with a linear variance function V (µi) = µi + ϕµi, NB-

quad is the negative binomial with a quadratic variance function V (µi) = µi +ζµ2
i ;

where ζ = 1
ϕ

, ZIP is the zero-inflated Poisson model, and ZINB is the zero-inflated

negative binomial model (Ver Hoef and Boveng, 2007; Yau et al., 2003; Lambert,

1992). For the Poisson and ZIP models the dispersion is fixed, ϕ = 1; for the other

models we used ϕ ∈ {0.5, 7} to introduce scenarios of weak and strong overdisper-

sion, respectively. For the non zero-inflated models, ν = 0, i.e. no zero-inflation;

for the ZIP and ZINB models we used ν ∈ {0.2, 0.6} to introduce weak (20%) and

strong (60%) zero-inflation. Briefly, the zero inflation model is a mixture model

that consists of a count data model and a point mass function at zero. The zero

counts can arise from both the count data model and the point mass function. The

count data models can be Poisson or a Negative binomial model with quadratic

variance function, referred to as ZIP and ZINB, respectively.

We performed 1, 000 simulations for each scenario. For each simulation we gen-

erated a response variable y from the parent distribution, and fitted all 6 models

under consideration. For each model fit, we produced a half-normal plot with a

simulated envelope based on Pearson residuals:

rP
i = yi − ŷi√

V (µ̂i)

and calculated the distance metric (4.1), with ri ≡ rP
i , using p ∈ {1, 2}.

All computations were performed in R (R Core Team, 2024). We used the glm func-
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tion to fit the Poisson and quasi-Poisson models, and the glm.nb function from

package MASS (Venables and Ripley, 2002) to fit the NB-quad model, gamlss

function of package gamlss (Rigby and Stasinopoulos, 2005) to fit the NB-lin

model, and zeroinfl function of package pscl (Jackman, 2020) to fit the ZIP and

ZINB models. Half-normal plots were generated using the package hnp (Moral

et al., 2017) with envelopes based on 99 simulations.

All code used to produce the simulations is available at https://github.com/D

ARSHANAJAYA/Goodness-of-fit-Distance-metric.git.

4.3 Results
Given the simulation study design, the results are divided into twelve experiments

based on the different parent model considered. Results are presented in figures

consisting of three plots chosen to illustrate the relevance of the proposed distance

goodness-of-fit metric. Panel (a) shows a boxplot of the proposed distance metric

(4.1) on the log scale for the different fitted models. Figure 4.2 to Figure 4.4

include four fitted models (Poisson, quasi-Poisson, NB-lin, and NB-quad), while

Figures 4.5 and 4.A.4 have six fitted models (Poisson, quasi-Poisson, NB-lin, NB-

quad, ZIP, and ZINB). Panel (b) shows a bar plot illustrating the number of times

a particular fitted model has the distance metric computed to be the minimum in

a single simulation run, i.e. points towards a particular model. Panel (c) shows a

barplot representing the number of times a particular fitted model has the smallest

BIC value. Since the BIC cannot be calculated for models estimated via quasi-

likelihood methods, the quasi-Poisson model is omitted from this panel. All the

plots are faceted across two variables: sample size and the value of p. The best

performing model is expected to give the minimal value for the computed distance

metric in the case of panel (a) and highest frequency level for panels (b) and (c).

It should be noted that this methodology could be performed using a training-test
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data split to assess performance with unseen data; this is the subject of future

work. For illustration purposes we have chosen to only report five experiments in

this section; for the results from the other experiments please refer to Appendix

S1.

Simulation experiment 1

This simulation experiment assessed the effectiveness of the distance metric when

the parent model is an equidispersion one (Poisson). The inherent randomness

of the simulation causes the dataset to be not exactly equidispersed, but either

slightly overdispersed or underdispersed. While Figure 4.2(a) and Figure 4.2(b)

show that the quasi-Poisson model performs better than the competitor models

with the lowest distance value, although the BIC favours the (true) Poisson model

(Figure 4.2(c)) in experiment 1.
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Figure 4.2: Figures generated when the parent model is the Poisson.
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Simulation experiment 2

This experiment portrays the results when the parent model under consideration

is one that can accommodate overdispersion, a negative binomial model with a

linear variance function (NB-lin). The dispersion parameter chosen was 0.5 and is

deemed a case of mild overdispersion. The results show that the quasi-Poisson and

NB-lin perform the best, as is expected since both of these models have a linear

variance function. Figure 4.3(a) and (b) show that using the absolute differences

(equivalent to the L1 norm) improves the performance of the distance metric in

identifying the true parent model. In Figure 4.3(c) BIC favours the Poisson model

as the best-fitting one.
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Figure 4.3: Figures generated when the parent model is the NB-lin with a disper-
sion parameter value of 0.5.

Simulation experiment 3

This experiment illustrates the results when the parent model is a GLM with a

quadratic variance function (NB-quad), a model that can accommodate overdis-

persion. In this specific case, the dispersion parameter value is chosen to be 7 and
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is considered an instance of strong overdispersion. Figure 4.4(a) and (b) show that

the proposed goodness-of-fit diagnostic picks the best model as the parent model

at sample sizes of 50 and 100, which is in agreement with the BIC (Figure 4.4(c)).
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Figure 4.4: Figures generated when the parent model is the NB-quad with a
dispersion parameter value of 7.

Simulation experiment 4

Simulation experiment 4 involves a ZIP model as the parent model with a zero-

inflation parameter value of 0.2, a low level of zero-inflation. The results in Fig-

ure 4.5(a) and (b) show that the distance metric selects both the ZIP and ZINB

models as the best performing models. This likely occurs due to the randomness

in the simulated datasets where an inherent overdispersion can occur by chance

in the simulation. In Figure 4.5(c), BIC favours the parent model, rejecting the

additional complexity of the ZINB model.
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Figure 4.5: Figures generated when the parent model is the ZIP with a zero
inflation factor value of 0.2.

Simulation experiment 5

This experiment uses a ZINB model as the parent model with a dispersion parame-

ter value of 0.5, and zero inflation parameter value of 0.6, which provides a scenario

where the parent model is zero-inflated negative binomial with mild overdisper-

sion and high zero-inflation. Figures 4.6(a) and (b) show that the distance metric

shows better performance in selecting the true model when the squared Euclidean

distance is considered. In Figure 4.6(c), BIC favours the parent model as the true

model in all instances.

4.4 Case Studies
We now present the analysis of two case studies using the distance metric proposed

in equation (4.1) to aid goodness-of-fit assessment and model selection. All R code

and data are available at https://github.com/DARSHANAJAYA/Goodness-of-f

it-Distance-metric.git.

63

https://github.com/DARSHANAJAYA/Goodness-of-fit-Distance-metric.git
https://github.com/DARSHANAJAYA/Goodness-of-fit-Distance-metric.git


4.4. Case Studies

p = 1 p = 2

20 50 100 20 50 100

0

10

20

30

40

Sample size

ln
(d

)

Fitted models Poisson Quasi ZIP ZINB

Parent model: ZINB(φ = 0.5,ν =0.6)a

sample size: 100, p = 1 sample size: 100, p = 2

sample size: 50, p = 1 sample size: 50, p = 2

sample size: 20, p = 1 sample size: 20, p = 2

Quasi NB−linNB−quad ZIP ZINB Quasi NB−linNB−quad ZIP ZINB

0%
20%
40%
60%
80%

0%
20%
40%
60%
80%

0%
20%
40%
60%
80%

Model

%
 s

m
al

le
st

 d

b

0%

25%

50%

75%

NB−lin NB−quad ZIP ZINB
Model

%
 s

m
al

le
st

 B
IC

c

Figure 4.6: Figures generated when the parent model is ZINB with a with a zero
inflation factor value of 0.6 and a dispersion parameter value of 0.5.

4.4.1 Spider data

This dataset is from the paper by (Smeenk-Enserink and Van der Aart, 1974) and

is also included in the R package mvabund (Wang et al., 2012). We considered the

count of the hunting spiders from the species Alopecosa accentuata that were caught

in 100 pitfall traps (1-m radius) over a period of 60 weeks, taking the soil dry mass

as a covariate. The dataset consists of two columns and 28 rows. The response

variable considered is the count of the spiders and the covariate is the corresponsing

soil dry mass, and was log(x+1) transformed prior to model fitting. We fitted the

Poisson, quasi-Poisson, NB-lin, NB-quad, ZIP, and ZINB models. The half-normal

plots corresponding to the fitted models were constructed 100 times, of which one

is presented for each model in Figure 4.7. The process of producing the half-normal

plot 100 times is not necessary when employing this technique, however we do so

here to understand the degree of uncertainty of the distance metric in this case
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study. The median of the distance metric was estimated from the 100 iterations

and was used to assess the fit of the models considered (Table 4.1). The distance

metric favours NB-Lin for the squared Euclidean distance and ZINB for the L1

norm and this is explained as the estimated zero inflation parameter of the ZINB

model is 2.75×10−5, which can be considered meaningless and so close to no zero-

inflation. The principle of parsimony would favour NB-lin, and thus the proposed

distance metric shows that NB-lin captures the patterns in the data better than

the other models considered, which is in line with the BIC values. The estimates

of the soil mass from the summary of the NB-lin indicated that there is a higher

number of hunting spiders associated with a lower level of soil dry mass.
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Figure 4.7: Spider data: half-normal plots with a simulated envelope for the Pois-
son, quasi-Poisson, NB-lin, NB-quad, ZIP and ZINB models.

4.4.2 Walleye data

In this case study we used a subset of the catch curve data analysed by (Mainguy

and Moral, 2021). Catch-curve analyses relies on age frequencies to estimate the

instantaneous mortality of fish. We looked at the walleye (Sander vitreus) gillnet

65



4.4. Case Studies

p = 1 p = 2 BICMedian IQR SD Median IQR SD
Poisson 34.53 0.42 0.34 91.06 2.01 1.52 246.18
Quasi Poisson 2.66 0.29 0.22 0.71 0.19 0.16 -
NB - lin 2.20 0.17 0.12 0.33 .04 0.05 141.83
NB - quad 2.95 0.17 0.15 1.13 0.14 0.11 148.82
ZIP 13.16 0.34 0.28 14.21 0.64 0.43 194.09
ZINB 1.29 0.16 0.11 0.14 0.04 0.03 141.83

Table 4.1: Median, interquartile range(IQR) and standard deviation (SD) of the
distance metric (eq. 4.1) calculated with p = 1 and p = 2, obtained from 100
half-normal plots generated for six different models fitted to the spider data, and
associated BIC values.

survey data from the year 2012 from the Baskatong reservoir, Québec, Canada.

The response variable considered is the count of fish which is modelled according

to age fitted as a predictor variable, such that the rate at which counts decrease

with age can be used to estimate mortality. Here we fitted the same six models as

for the analysis of the spider data and produced 100 half-normal plots with a sim-

ulated envelope for each model fit (one is displayed for each model in Figure 4.8).

The median distance metric is shown in Table 4.2. Using the squared Euclidean

distance, the distance metric favours the NB-quad model, whereas for the L1 norm

it favours the ZINB model, with the NB-quad ranked closely. This result is not un-

expected since if the NB-quad provides a good fit, then the ZINB also should even

in the case zero-inflation is not present. For the walleye data, the zero-inflation

parameter is estimated as 1.42 × 10−6, which reflects very low or no zero-inflation.

The BIC favours the NB quad model.The inclusion of the extra zero-inflation pa-

rameter was penalised by the BIC since it did not sufficiently explain additional

variability in the data, and as such was the ZINB-quad was not selected over a

simpler model. This is in line with the findings from (Mainguy and Moral, 2021),

indicating the extra variability in the walleye data was best accommodated by

the NB-quad model. The proposed distance metric has an added advantage of
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p = 1 p = 2 BICMedian IQR SD Median IQR SD
Poisson 16.32 0.37 0.28 53.90 2.25 1.65 164.76
Quasi Poisson 7.12 0.36 0.25 12.02 0.98 0.77 -
NB - lin 1.21 0.25 0.19 0.13 0.08 0.07 104.99
NB - quad 1.098 0.17 0.13 0.13 0.06 0.05 93.78
ZIP 18.04 0.35 0.27 60.36 1.43 1.09 171.53
ZINB 2.57 0.31 0.23 0.35 0.09 0.07 101.35

Table 4.2: Median, interquartile range(IQR) and standard deviation (SD) of the
distance metric (eq. 4.1) calculated with p = 1 and p = 2, obtained from 100
half-normal plots generated for six different models fitted to the walleye data, and
associated BIC values.

avoiding subjective bias that is present in the graphical model selection method

apparent from this case study.
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Figure 4.8: Walleye data: half-normal plots with a simulated envelope for the
Poisson, quasi-Poisson, NB-lin, NB-quad, ZIP and ZINB models.

4.5 Discussion
This chapter focussed on defining a quantitative summary to the qualitative graph-

ical model selection and goodness-of-fit assessment method known as a half-normal
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plot with a simulated envelope. A simple and effective distance metric was intro-

duced that could capture how far the observed data deviates from the expected

behaviour according to the fitted model. We considered two forms of distances

through the power coefficient p and found that they were useful in differentiating

the fit of count data models with a linear variance function (quasi-Poisson or NB-

lin) and those with a quadratic variance function (NB-quad, ZINB). We carried

out further simulation studies to understand the effectiveness of adding a measure

of envelope width in the distance (4.1), as well as an extra penalty term when a

residual falls outside the envelope. However, these seemed to have no real impact

on the final conclusions, and therefore were not used in our formulation.It should

also be noted that large datasets may impact the results when simulated envelopes

are used in the context of GLMs. See the appendix for the alternative formulation

and results from the additional simulation studies.

When overdispersed counts are analysed, which corresponds to a commonly-encountered

situation in ecology (Richards, 2008), determining whether such extra variation

should be modelled as a linear or quadratic function of the mean is not trivial

(Ver Hoef and Boveng, 2007). When only applying a correction factor to the stan-

dard error through a quasi-Poisson approach (Knape, 2016), or quasi-binomial one

when modelling overdispersed discrete proportions instead (Bolnick et al., 2014),

this may sometimes be sufficient to account for the detected overdispersion and

then use the quasi-AIC to identify the best-fitting model. However, using a scaling

parameter to directly model how data are dispersed, such as the one used with

the NB-quad and NB-lin, may offer a better approach than relying on the former

(Hilbe, 2014). With the proposed distanced-based method described in this chap-

ter, identifying which of overdispersed model extensions provides a better fit to

the data can now be assessed on a similar basis from not only an adequacy (i.e.,

goodness-of-fit) perspective, but also to help with model selection to identify the
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model that should be retained for inferential purposes. As such, the proposed met-

ric which however only assesses the fit without accounting for model complexity,

can then be complemented with other commonly-used ones, such an information

criteria like the BIC that was used in this study as a complement to further fine-

tune the model selection process. It should also be noted that large datasets may

impact the results when simulated envelopes are used in the context of GLMs.

Future work arising from this study would be to explore the impact of a mis-

specified link function and missing covariates on the methodology and the be-

haviour of the proposed distance metric. Another area of research that could be

be further investigated are the response patterns when mixed models are included

in the study. Worm plots are diagnostic plots similar to half normal plots but also

helpful to identify the skewness in the data. This makes worm plots a good choice

for the implementation of distance metrics in the future.

4.6 Conclusion
The proposed distance metric framework provides a competitive goodness-of-fit

diagnostic to check the adequacy of count data models. This was validated by a

comprehensive simulation study that showed that our proposed metric is compara-

ble, or in some cases superior, to BIC in identifying the true model that generated

the data. It represents, therefore, a complementary approach in goodness-of-fit as-

sessment that adds an objective measure of fit when comparing half-normal plots

with a simulated envelope from competing models, especially when results are

similar and is particularly useful when likelihood-based methods are not available.
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Appendix

4.A Simulation results
This appendix displays the figures related to the simulation scenarios not presented

in the main body of text of the chapter.
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Figure 4.A.1: Figures generated when parent model is NB-lin with a with an
dispersion parameter value of 7. Panel (a) shows a boxplot of the base distance
considered in the log scale for the fitted model. Panel (b) shows the bar plot
illustrating the number of times a particular fitted model has the distance metric
computed to be the minimum in a single simulation. Panel (c) shows the barplot
demonstrating the number of times a particular fitted model has the BIC value
computed to be the minimum in a single simulation.
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Figure 4.A.2: Figures generated when the parent model is NB-quad with a dis-
persion parameter value of 0.5. Panel (a) shows a boxplot of the base distance
considered in the log scale for the fitted models. Panel (b) shows the bar plots
illustrating the number of times a particular fitted model has the distance metric
computed to be the minimum in a single simulation run. Panel (c) shows the
barplot demonstrating the number of times a particular fitted model has the BIC
value computed to be the minimum in a single simulation run.

The under dispersed data was generated by forcing the Poisson distribution to

halve the values produced by rpois function from the stats package to induce the

deisred mean-variance relationship. Among the models considered quasi- Poisson

model realises the underdispersed data and the distance metric also shows the

same.
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Figure 4.A.3: Figures generated when parent model is ZIP with a with zero infla-
tion factor value of 0.6. Panel (a) shows a boxplot of the base distance considered
in the log scale for the fitted models. Panel (b) shows the bar plots illustrating the
number of times a particular fitted model has the distance metric computed to be
the minimum in a single simulation run. Panel (c) shows the barplot demonstrat-
ing the number of times a particular fitted model has the BIC value computed to
be the minimum in a single simulation run.

4.B Reduced simulation setup using response

residuals
The appendix illustrates the results from a simulation setup consisted of using

ordinary residuals. We did a reduced simulation with 500 simulation to evaluate

the performance of using response residuals in the proposed distance metric.

4.C Simulation results using AIC
This appendix illustrates the plot results when another information criterion like

AIC is used. It has been shown the results are comparable to BIC and also the

proposed distance metric.
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Figure 4.A.4: Figures generated when parent model is ZINB with a with zero
inflation factor value of 0.2 and a dispersion parameter value of 7.Panel (a) shows
a boxplot of the base distance considered in the log scale for the fitted models.
Panel (b) shows the bar plots illustrating the number of times a particular fitted
model has the distance metric computed to be the minimum in a single simulation
run. Panel (c) shows the barplot demonstrating the number of times a particular
fitted model has the BIC value computed to be the minimum in a single simulation
run.

4.D Additional simulations
This appendix discusses an extension to the simulation study with two additional

actors integrated into the distance metric proposed in 4.2.3.

We constructed a statistic based on distances from the residual points to parts of

the envelope Ei = {x ∈ R|x ∈ (li, ui)}, namely the envelope median mi, upper (ui)

and lower (li) bounds. The statistic is given by:

d =
n∑

i=1
di =

n∑
i=1

(|ri −mi|)pg(bi)I(ri∈Ei)

f(wi)

where ri is the i−th ordered residual and g(bi) is a function of the distance of the
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Figure 4.A.5: Figures generated when parent model is ZINB with a with zero
inflation factor value of 0.2 and a dispersion parameter value of 0.5. Panel (a) shows
a boxplot of the base distance considered in the log scale for the fitted models.
Panel (b) shows the bar plots illustrating the number of times a particular fitted
model has the distance metric computed to be the minimum in a single simulation
run. Panel (c) shows the barplot demonstrating the number of times a particular
fitted model has the BIC value computed to be the minimum in a single simulation
run.

residual point to the boundary of the envelope:

bi =


ri − ui, if ri > ui

li − ri, if ri < li

The indicator function I(ri ∈ Ei) is equal to 1 if the residual point is contained

in the envelope and equal to 0 otherwise, therefore the penalty function g only

influences the metric if the point is outside of the envelope. The variable p can

take two different values depending on the value of p. When the value of p = 1, the

L1 norm is considered and for p = 2, the squared Euclidean distance is considered.

The function f(w) is the function for envelope width and acts as a scaling factor

and has been tested for three different variations:
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Figure 4.A.6: Figures generated when parent model is ZINB with a with zero
inflation factor value of 0.6 and a dispersion parameter value of 7. Panel (a) shows
a boxplot of the base distance considered in the log scale for the fitted models.
Panel (b) shows the bar plots illustrating the number of times a particular fitted
model has the distance metric computed to be the minimum in a single simulation
run. Panel (c) shows the barplot demonstrating the number of times a particular
fitted model has the BIC value computed to be the minimum in a single simulation
run.

• no scaling: f(w) = 1

• inverse linear scaling: f(w) = w

• squared inverse scaling: g(w) = w2

And we tested five different variations of g(b):

• constant/no penalty: g(b) = 1,

• unlimited linear increase: g(b) = α + γb,

• saturated increase (ratio): g(b) = α + γ1b

1 + γ2b
,
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Figure 4.B.1: Figures generated when parent model is Negative Binomial with
quadratic variance when the response residuals are considered. Panel (a) shows
a boxplot of the base distance considered in the log scale for the fitted models.
Panel (b) shows the bar plots illustrating the number of times a particular fitted
model has the distance metric computed to be the minimum in a single simulation
run. Panel (c) shows the barplot demonstrating the number of times a particular
fitted model has the BIC value computed to be the minimum in a single simulation
run.

• saturated increase (logistic): g(b) = α + γ

1 + exp −δ + (b− η) and

• saturated increase (hyperbolic tangent): g(b) = α + γ tanh δb.

The hyper-parameters α, β, γ, γ1, γ2, η and δ are assumed to be known and fixed.

The penalties are introduced to differentiate, for instance, residual points that are

close to either ui or li, but inside the envelope (and therefore expected under the

fitted model), from points barely outside of the envelope, which should be more

penalised, since that would not be expected under the fitted model most of the

time.

We carried out a simulation study with 1,000 simulated samples from each of three
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Figure 4.B.2: Figures generated when parent model is Poisson when the response
residuals are considered. Panel (a) shows a boxplot of the base distance considered
in the log scale for the fitted models. Panel (b) shows the bar plots illustrating the
number of times a particular fitted model has the distance metric computed to be
the minimum in a single simulation run. Panel (c) shows the barplot demonstrating
the number of times a particular fitted model has the BIC value computed to be
the minimum in a single simulation run.

sample sizes (20, 50, and 100) and three parent models (Poisson, negative binomial

with a quadratic variance function with strong and mild overdispersion, negative

binomial with a linear variance function with strong and mild overdispersion).

We fitted three models to each simulated sample (Poisson and negative binomial

with quadratic and linear variance functions), produced a half-normal plot with a

simulated envelope for the Pearson residuals and computed di.

4.D.1 Results

The results are shown as three barplots with each barplot corresponding to each

parent model. Each row in the bar plot shows the each of the g(b)′s considered

and each column denotes the sample sizes considered (20, 50, 100). Each bar in

78



4.D. Additional simulations

0%

25%

50%

75%

NB−lin NB−quad Poisson
Model

%
 s

m
al

le
st

 A
IC aic

NB−lin

NB−quad

Poisson

Figure 4.C.1: Figure shows the barplot when the parent model is Poisson, demon-
strating the number of times a particular fitted model has the AIC value computed
to be the minimum in a single simulation run.

the individual block corresponds to the combination of type of distance (p = 1: L1

norm, p = 2: squared Euclidean distance) and f(w)′s considered and the y axis

shows the log transformed sum of the distance values for each fitted model. The

fitted models are given in the legend; the distance metric values were calculated

for NB-lin, NB-quad and Poisson as parent models, respectively. It is clearly

evident from all barplots (Figure 4.D.1, Figure 4.D.2 and Figure 4.D.3) there is

no difference between the penalty functions (g(b)) in terms of performance. There

is negligible effect of scaling factor on the efficiency of the distance metric as it

does not provide an added ability in selecting the best performing model. The

reasons for the null performance of added factors is presumed to be because we

are recreating perfect scenarios where parent models are fitted to data generated
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Figure 4.C.2: Figure shows the barplot when the parent model is Negative Bino-
mial with a quadratic variance function with a dispersion value of 5, demonstrating
the number of times a particular fitted model has the AIC value computed to be
the minimum in a single simulation run.

by themselves or by closely related models. The poor performance of g(b) might

also be attributed to the small hyper-parameter values and since all the scenarios

are perfect there are only few residuals falling outside the envelope.
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Figure 4.C.3: Figure shows the barplot when the parent model is Negative Bino-
mial with a quadratic variance function with a dispersion value of 2, demonstrating
the number of times a particular fitted model has the AIC value computed to be
the minimum in a single simulation run.
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Figure 4.D.1: Figure generated when the parent model is the Poisson, every row
corresponds to function b that corresponds to the distance of the residual from
the simulated envelope, b considered(hyperbolic tangent,constant linear increase,
logistic function, constant/no penalty and ratio. Every bar in the plot consist of
combination of function w that corresponds to the distance between the lower and
upper envelope considered, w(one, w, w2) )
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Figure 4.D.2: Figure generated when the parent model is the NB-quad with a dis-
persion of 2, every row corresponds to function b that corresponds to the distance of
the residual from the simulated envelope, b considered(hyperbolic tangent,constant
linear increase, logistic function, constant/no penalty and ratio. Every bar in the
plot consist of combination of function w that corresponds to the distance between
the lower and upper envelope considered, w(one, w, w2)
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Figure 4.D.3: Figure generated when the parent model is the NB-lin with a disper-
sion of 5, every row corresponds to function b that corresponds to the distance of
the residual from the simulated envelope, b considered(hyperbolic tangent,constant
linear increase, logistic function, constant/no penalty and ratio. Every bar in the
plot consist of combination of function w that corresponds to the distance between
the lower and upper envelope considered, w(one, w, w2)
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CHAPTER 5
Mixed and marginal models

applied to interval-censored

bounded data

In this chapter, we discuss the analysis of a longitudinal dataset using mixed and

marginal modelling approaches. The study involves the evaluation of the percentage

of mold growth on two types of wooden boards in an ordinal scale. This is a compar-

ative study between the traditional medium-density particle board and the innovative

sugarcane bagasse-based boards. We employ mixed and marginal modelling approaches,

using a transformation of the ordinal responses, as well as an interval-censored approach.
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5.1 Introduction
In statistics, longitudinal data is characterised by measurements taken repeatedly

at different time points on the same experimental or observational unit (Verbeke

et al., 1997). Analysing this type of data gives the flexibility to understand the

evolution of processes over time, but comes with the challenge of appropriately ac-

commodating the possible correlation between the data collected within the same

experimental or observational unit. To do so, additional parameters need to be

included to account for the different correlation structures that help explaining

the overall variability in the data. The two types of modelling strategies adopted

to understand these data are the marginal modelling approach and the mixed

modelling approach (Fitzmaurice et al., 2008). Marginal modelling incorporates

correlation structures to account for the variability, whereas the mean response is

related to the covariates (Liu, 2015). Mixed modelling involves considering fixed

effects that explain the relationship between the response variable and the predic-

tor variables, and random effects that can accommodate the variability within a

group level. For this reason marginal modelling is also known as population-level

analysis as it gives population averaged results and mixed modelling is known as

subject-level analysis (Lee and Nelder, 2004).

In this chapter we applied subject-specific modelling to an interval-censored vari-

able. Interval-censored responses are observed when the exact response value is

unknown but an interval encompassing them is known. It occurs commonly in

survival analysis, where the response is the time until the occurrence of an event

of interest (Radke, 2003). In survival analysis the modelling of interval-censored

data includes using the proportional hazards model (Finkelstein, 1986), in which

the baseline distribution and regression parameters are fitted simultaneously by

maximum likelihood estimation. Another approach involves the application of

proportional odds method using the sieve maximum likelihood estimator (Huang
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and Rossini, 1997). The three most common approaches used for inference are

(1) maximum likelihood (Huang, 1996) (2) generalized estimating equations (Lin

et al., 1998); and the (3) imputation (Pan, 2000). Approach (1) involves specifying

differences of cumulative distribution functions in the likelihood to incorporate the

interval-censored data. It is well known in the literature that while this approach

is helpful, its pitfalls are reduced precision in the estimates (Gentleman and Geyer,

1994). Approach (2) comes with the limitation to assess the asymptotic validity

and the properties of the estimators, as well as their efficiency (Zhang and Sun,

2010). Approach (3) involves the use of multiple imputation methods to impute

the interval-censored data by sampling from the current estimate of the conditional

error (Wei and Tanner, 1991), or by imputing using a (semi-)parametric model

such as the Cox proportional hazards model (Pan, 2000).

The main objectives of this chapter are to give the reader a comparative analysis of

the results obtained from two different modelling techniques applied to longitudinal

data. We explored two of most common approaches for modelling longitudinal

data, namely marginal and mixed modelling frameworks, while at the same time

working with imputed data versus incorporating the interval-censored data directly

in the likelihood. The remainder of the chapter is organised as follows: Section 5.2

provides an overview of mixed and marginal modelling, interval censored data and

beta regression models. In Section 5.3 we describe the motivational study and

in Section 5.3.1 we outline the modelling strategies. In Section 5.4 we present

the results from the modelling. Finally, in Section 5.5 we provide a discussion of

results and future considerations.
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5.2 Overview of methods

5.2.1 Mixed and marginal model specifications

In this subsection we introduce the specification of mixed and marginal modelling

frameworks from a longitudinal data analysis perspective.

Let Yit be the response variable, and xit be the p × 1 vector of covariates at time

t for subject i where i = 1, . . . , K and t = 1, . . . , ni. For a marginal modelling

approach the marginal expectation is given by:

E(Yit) = µit.

We may assume a linear predictor for the mean

h(µit) = x⊤
itβ,

where h(·) is a monotonic and differentiable link function and β is the vector of

parameters of order p× 1. We also assume that

Var(Yit) = ϕV (µit)

where V (·) is the variance function.

For a mixed model, there is an additional term to account for the subject-specific

variations. The conditional expectation is given by

E(Yit|bi) = µit,

where the bi are assumed to be independent random effects, which are distributed

according to a specified probability distribution. We also have that

h(µit) = x⊤
itβ + z⊤

itb

and

Var(Yit|bi) = ϕV (µit)
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where zit is the design matrix for q random effects of order n × q and b is the

associated parameter vector of order q × 1.

One major difference between marginal and mixed models is that mixed models are

based on the assumption of a conditional probability distribution, i.e. Yit|bi ∼ D,

whereas marginal models make only first- and second-moment assumptions for Yit,

which does not include specifying a full probability distribution.

A key application of marginal modelling or population averaged models is in the

field of epidemiology where we compare two groups with different treatment ef-

fects. Mixed modelling is implemented when individual-level heterogeneity is ex-

amined (Hu et al., 1998).

5.2.2 Interval-censored data

Interval censoring occurs when the exact observed value is not known, but an in-

terval containing it § is known. It is a common phenomenon in survival analysis,

when typically we analyse the time T until the occurrence of an event of inter-

est. If the event happens between two known interval bounds, L and U , such

that L ≤ T ≤ U , this data is termed as interval censored. The most common

examples include clinical trials involving AIDS patients where the occurrences of

the viral and bacterial infections (Betensky and Finkelstein, 1999) with correlated

interval censored endpoints, or by using the day to day maintenance data from

machines (Han et al., 2024).

Right- and left-censored data could be considered as special instances of interval

censored data, where U = ∞ and L = −∞, respectively (Gómez et al., 2009).

An exactly observed data point happens when L = U . In practice, right censored

is seen more frequently than left censored and interval censored data. Interval

censored data is more prevalent in clinical studies and longitudinal studies. It is
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also possible to find all types of censoring in a single dataset (Zheng and Zelen,

2009). There are different methodologies in the literature to deal with censored

data. These methodologies include weighting, imputation, maximum likelihood,

and Bayesian methods (Lotspeich et al., 2024).

5.2.3 Beta regression

The beta distribution B can be used when the response variable values lie in the

(0, 1) interval. It is a very flexible distribution, with its probability density function

accommodating right-skewed, left-skewed, uniform and unimodal shapes (Cribari-

Neto and Zeileis, 2010). Its probability density function is given by:

f(y; p, q) = Γ(p+ q)
Γ(p)Γ(q)y

p−1(1 − y)q−1, 0 < y < 1

where p, q > 0 are shape parameters, and Γ(·) is the gamma function.

An alternative parameterisation, given by Ferrari and Cribari-Neto (2004), uses

the transformations µ = p
p+q

and ϕ = p+ q, yielding

f(y;µ, ϕ) = Γ(ϕ)
Γ(µϕ)Γ((1 − µ)ϕ)y

µϕ−1(1 − y)(1−µ)ϕ−1

where 0 < µ < 1 is the mean and ϕ > 0 the dispersion parameter.

Let Y1, . . . , Yn be a random sample, with

Yi ∼ B(µi, ϕi), i = 1, . . . , n.

The beta regression model is given by

g(µi) = ηi = x⊤
i β,

where β = (β1, . . . , βk)⊤ is a k×1 vector of unknown regression parameters (k < n),

xi = (xi1, . . . , xik)⊤ is the vector of covariates and g(·) : (0, 1) 7→ R is a link func-

tion. The most commonly used link functions are the logit, probit, complementary
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log-log, and Cauchy. Typically ϕi = ϕ, however it can also be modelled with co-

variates within a distributional regression approach (Stasinopoulos et al., 2017).

The variance of Y as a function of the mean and dispersion parameters is given by

Var(Yi) = µi(1 − µi)
1 + ϕi

.

5.3 Motivational study: the mold growth data
As an application related to agricultural sciences, we present a dataset obtained

by Garzón-Barrero et al. (2016). In this study, the researchers aimed to evaluate

the performance of an alternative sugarcane bagasse particle board (BCP) using

castor oil polyurethane resin, in comparison with commercial medium density wood

particle board (MDP), under natural and accelerated test conditions. A better

performance was considered when less mold infestation was found.

The experiment was carried out at the University of São Paulo, Animal Science

and Food Engineering Department, Pirassununga, state of São Paulo, Brazil. Sam-

ples of both materials were produced in laboratories following specific technical

standards recommended by Brazilian legislation. The experiment is a 2 × 2 fac-

torial experiment with 2 types of wood and 2 types of coating with six replicates.

The two types of wooden material considered are: (1) BCP (sugarcane bagasse

particle board) and (2) MDP(Medium density particle board). The two varia-

tions for the coating are: (1) With coating (2) No coating. In total, 48 pan-

els (24 of each material) were used in the study, with the following dimensions:

270mm×50mm×12mm (length, width, thickness). For each material the two dif-

ferent sides (called “faces") are considered (1 and 2). Here, we are considering only

the data from natural conditions, that is, the particle boards were evaluated after

12 months of exposure to natural weather in Pirassununga, and the response vari-

able observed was an ordinal scale reflecting the percentage of fungal infestation,
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measured weekly at four time points, totalling 192 observations. In the original

study, 11 ordinal categories were considered according to the perceived percentage

of mold growth: 0 (91% to 100%), 1 (81% to 90%), 2 (71% to 80%), 3 (61% to

70%), 4 (51% to 60%), 5 (41% to 50%), 6 (31% to 40%), 7 (21% to 30%), 8 (11%

to 20%), 9 (1% to 10%) and 10 (0%). The dataset consists of 192 observations

and 6 columns. The covariates considered are type of the material considered,

if there is a coating on the wooden board or not, number of replications, day of

the experiment considered, face of the wooden board and an ordinal variable that

indicates the percentage of mold growth.

More details about this study can be found in Garzón-Barrero et al. (2016).

5.3.1 Modelling strategies

We used three modelling strategies. Two of them involved transforming the or-

dinal response variable (equivalent to simple imputation of the interval-censored

response) and fitting mixed and marginal models, and one treated it as an interval-

censored response within a mixed modelling approach.

The transformation of the ordinal response involved two simple steps:

1. Impute categories with the midpoint of the interval they represent (e.g. cat-

egory 0 was transformed to 0.95, category 1 was transformed to 0.85, and so

on);

2. For category 10, which represents exactly 0%, the value used was 0.001,

to avoid numerical problems when estimating the models, since the beta

distribution does not allow for perfect zeros (and ones, but these are not

present in our transformed data).
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5.3.1.1 Approach 1: Mixed modelling of the transformed response

The first approach involved using a beta mixed modelling framework considering

the transformed response variable. In the maximal model, we included a random

intercept per experimental unit, since the multiple observations over time are cor-

related. We also included the effects of material type (BCP and MDP), coating

(yes and no), day of measurement (as a linear effect), all three two-way interac-

tions between these factors, and the three-way interaction between material type,

coating and day of measurement, all as fixed in the linear predictor. We used

a logit link, and assumed the random intercepts were normally distributed with

mean zero. This can be written as

Y ∗
ijkt|bi ∼ B(µijkt, ϕ)

log
(

µijkt

1 − µijkt

)
= β0 + β1dayt + β2coatingno

j + β3materialMDP
k + (5.1)

β4daytcoatingno
j + β5daytmaterialMDP

k + β6coatingno
j materialMDP

k +

β7daytmaterialMDP
k coatingno

j materialMDP
k

bi ∼ N(0, σ2
b )

where σ2
b is the variance associated with the random intercepts. Here, µijkt =

E(Y ∗
ijkt|bi) represents the conditional mean. The random intercepts bi are indexed

by the combinations of side and replicate within a treatment, totalling 2×6×2×2 =

48 groups.

This model was implemented using the gamlss package (Stasinopoulos et al., 2018)

for fitting generalised linear mixed models in R software (R Core Team, 2024).

The significance of the fixed effects was assessed via likelihood-ratio tests between

nested models.
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5.3.1.2 Approach 2: Marginal modelling of the transformed response

As stated before, the marginal model only makes first- and second-order moment

assumptions. The assumed mean structure was the same as in Equation 5.1 above,

with µijkt = E(Y ∗
ijkt) representing the marginal mean, instead of the conditional

one.

The marginal modelling considers the correlation between the observations in dif-

ferent pre-specified ways. Some of the correlation structures available are, for

instance, the independence structure, which assumes covariance between two ob-

servations is equal to zero; the autoregressive structure, which considers increasing

correlation between the adjacent timepoints and decreasing correlation as the dis-

tance between the timepoints increases. The correlation structure that involves

the most parameters to be estimated is the unstructured. This particular structure

assumes unique correlation between each pair of observations. However, the esti-

mates obtained through the generalized estimation equations (GEE) frameowork

are valid irrespective of the correlation structure used (Agresti, 2012).

Under the principle of parsimony, we used the exchangeable correlation structure,

which assumes that the correlations between all pairs of observations within the

same cluster (combinations of side and replicates) are the same. The exchangeable

correlation structure is also known as the “compound symmetry" structure (West

et al., 2022). For our case study, the exchangeable correlation structure for one

group (combination between face and replicate within a treatment) is given by

Cov(Yijkt, Yi′jkt) =

 1, i = i′

ρ, i ̸= i′

where ρ is the correlation between observations within the same group/cluster.

This model was implemented using glmgee function in the glmtoolbox (Vanegas
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et al., 2023) available in R.

5.3.1.3 Approach 3: Mixed modelling of the interval-censored

response

The third approach involved the beta mixed modelling framework applied to the

interval censored data. Now the conditional distributional assumption is made

for the original interval-censored response variable Yijkt, rather than for the trans-

formed variable Y ∗
ijkt. This model can be estimated via maximum likelihood, which

involves marginalising over the random intercepts. Let Yijkt be the observed re-

sponses, while Y u
ijkt and Y l

ijkt the upper and lower limits of the interval-censored

responses. Ignoring random effects, the likelihood for the beta regression with a

mix between uncensored and interval-censored responses is

L(µijkt, ϕ; y,yu,yl) =
∏

i,j,k,t

f(yijkt;µijkt, ϕ)δ
ijkt[F (yu

ijkt;µijkt, ϕ)−F (yl
ijkt;µijkt, ϕ)]1−δijkt ,

where δ is the censoring indicator, equal to 0 if an uncensored response is observed,

and to 1 if an interval-censored response is observed; f(·) is the density function

of the beta distribution, and

F (y;µ, ϕ) = Iy(µ, ϕ) = By(µϕ, ϕ(1 − µ))
B(µϕ, ϕ(1 − µ))

is the regularised incomplete beta function, with

By(µϕ, ϕ(1 − µ)) =
∫ y

0
t(µϕ−1)(1 − t)(ϕ(1−µ)−1)dt

the incomplete beta function and

B(µϕ, ϕ(1 − µ)) = Γ(µϕ)Γ(ϕ(1 − µ))
Γ(ϕ)

the complete beta function.
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To estimate the mixed model, the random effects need to first be marginalised.

Therefore, the likelihood becomes:

L(µijkt, ϕ; y,yu,yl) =
∏

i

∫ ∞

−∞

∏
j,k,t

f(yijkt;µijkt, ϕ)δ
ijkt ×

×[F (yu
ijkt;µijkt, ϕ) − F (yl

ijkt;µijkt, ϕ)]1−δijktg(bi;σ2
b )dbi,

where g(·) is the probability density function of the normal distribution. Be-

cause this integral has no analytic solution, numerical methods need to be used

to approximate it, such as penalised quasi-likelihood and the Laplace approxi-

mation (which approximate the integrand), or Gauss-Hermite quadrature (which

approximates the integral). Here, we use the penalised quasi-likelihood approach

as implemented in gamlss (Stasinopoulos et al., 2017).

The model was implemented using the interval-censored beta distribution cre-

ated using the gamlss.cens package (Stasinopoulos et al., 2018) for R software.

The significance of the fixed effects was assessed via likelihood-ratio tests between

nested models. For all analyses the zero values were substituted by 0.0001 and the

one values at the end of the intervals were substituted by 0.9999.

5.4 Results
In this section, we present and discuss the results for the motivational study, on

the resistance of two types of materials (one standard and other proposed) for

the manufacture of custom furniture, considering the three proposed methods. In

this context, the estimates of fixed parameters are presented in the Table 5.1,

considering the three modelling frameworks (mixed model with transformed and

interval-censored response, marginal model with transformed response), used for

data analysis
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Parameter Mixed model for Marginal model for Mixed model for
transformed response transformed response interval-censored response

β0 −4.82∗ (0.379) −4.56∗ (0.325) −4.19∗ (0.334)
β1 0.09∗ (0.018) 0.08∗ (0.012) 0.09∗ (0.016)
β2 2.91∗ (0.422) 2.61∗ (0.464) 2.81∗ (0.394)
β3 −0.65 (0.549) −2.24 (1.56) −0.45 (0.482)
β4 0.08∗ (0.022) 0.09∗ (0.017) 0.09∗ (0.021)
β5 −0.001 (0.028) 0.06 (0.052) −0.01 (0.024)
β6 2.66∗ (0.624) 4.09∗ (1.69) 2.37∗ (0.565)
β7 −0.07∗ (0.033) −0.13∗ (0.056) −0.06 (0.030)
σ2

b 0.128 − 0.152
ϕ 0.25 0.05 0.251
ρ − 0.029 −

Table 5.1: Parameter estimates (standard errors) from the three modelling strate-
gies used (mixed modelling for transformed and interval-censored responses, and
marginal modelling for the transformed response). The ∗ indicates significance at
a 5% level based on the Wald t-test for fixed effects.

Based on the models fitted to the data, the estimates of the fixed effects for the

three structures considered, as presented in the Table 5.1, are very close, with

some exceptions as can be observed for example for β̂3), whose point estimate is

relatively larger in the marginal model. An agreement on the significance of the

effects can also be observed using the Wald Test (∗) at a 5% level. In general, the

proximity of point estimates for fixed effects is expected when fitting marginal and

mixed models, but the same cannot be confirmed for precision statistics, such as

standard errors.

To understand the sensitivity of using transformation we used two more values

for transformation and got the estimates for mixed and marginal models. Ta-

ble 5.2 shows the estimates with the extreme values in data considered are

(0.0001, 0.9999), (0.001, 0.999), (0.01, 0.99) and Table 5.3 shows the same for the

marginal model. It is clear that first and second column have similar values

for marginal modelling framework than mixed modelling framework. But using

(0.01, 0.99) has very different estimate values compared to modelling frameworks

using (0.0001, 0.9999) and (0.001, 0.999)
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In practical terms, for the case study, it was found that the three-way interaction

between day, coating and material was significant for the models that considered

the transformed response, whereas it was not for the model considering the interval-

censoring. Aside from that, all three approaches identified the day × coating and

material × coating two-way interactions as significant at a 5% level.

Also, it is important to consider that, for the mixed modelling framework for the

transformed response, the mold growth increases over time, and when there is no

coating available for the medium density particle boards. This implies when there

is no coating available, the sugarcane bagasse based wooden board performs better

than the traditional medium density particle boards.

Parameter Mixed model for Mixed model for Mixed model for
value = 0.0001 value = 0.001 value = 0.01

β0 −4.82∗ (0.379) −4.4∗ (0.353) −3.71∗ (0.302)
β1 0.09∗ (0.018) 0.07∗ (0.017) 0.05∗ (0.014)
β2 2.91∗ (0.422) 2.45∗ (0.394) 1.71∗ (0.343)
β3 −0.65 (0.549) −0.61 (0.517) −0.37 (0.444)
β4 0.08∗ (0.022) 0.09∗ (0.02) 0.13∗ (0.018)
β5 −0.001 (0.028) 0.002 (0.026) −0.001 (0.022)
β6 2.66∗ (0.624) 2.64∗ (0.586) 2.43∗ (0.51)
β7 −0.07∗ (0.033) −0.08∗ (0.003) −0.08 (0.027)

Table 5.2: Parameter estimates (standard errors) from Mixed modelling techniques
using three different values for the extreme values of the transformed responses.
The ∗ indicates significance at a 5% level based on the Wald t-test for fixed effects.

Parameter Marginal model for Marginal model for Marginal model for
value = 0.0001 value = 0.001 value = 0.01

β0 −4.56∗ (0.325) −4.52∗ (0.31) −4.23∗ (0.02)
β1 0.08∗ (0.012) 0.08∗ (0.01) 0.067∗ (0.01)
β2 2.61∗ (0.464) 2.57∗ (0.95) 2.28∗ (0.38)
β3 −2.24 (1.56) −2.04 (1.36) −0.89 (0.52
β4 0.09∗ (0.017) 0.09∗ (0.02) 0.107∗ (0.015)
β5 −0.06 (0.052) 0.06 (0.05) −0.01 (0.02)
β6 4.09 (1.69) 3.89∗ (1.51) 2.75∗ (0.69)
β7 −0.13∗ (0.056) −0.12∗ (0.05) −0.08 (0.02)

Table 5.3: Parameter estimates (standard errors) from Marginal modelling tech-
niques using three different values for the extreme values of the transformed re-
sponses. The ∗ indicates significance at a 5% level based on the Wald t-test for
fixed effects.
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Figure 5.1: Worm plot of the normalised quantile residuals from the mixed model
applied to the transformed response (approach 1).

We considered a detrended Q-Q plot known as wormplots (Buuren and Fredriks,

2001) to evaluate model fit, since these are readily available within the gamlss

framework. A worm plot is a quantile-quantile plot that compares the theoretical

distribution of the residuals (in this case it is a normal distribution, in case the

model is well fitted to the data) with the empirical distribution of the observed

residuals. The data points form a worm-like string and for a well fitted model

the worm string should align with the horizontal line in the centre. The plot

(Figure 5.1) shows a reasonable fit for the model considered but there are some

deviations that indicate unaccounted variability.

From the marginal modelling framework, we also conclude that the sugarcane

bagasse particle boards perform better than the medium density particle boards
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when there is no coating available, which is consistent with the results from the

mixed modelling framework for both approaches.
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Figure 5.2: Residual analysis of the marginal fit for the dataset considering an
exchangeable correlation structure. The plot shows a constant variance for most
of the deviance residuals except for larger fitted values, which suggests a reasonably
well-fitted model.

Finally, a diagnostic analysis for the mixed model using interval-censored responses

is presented in Figure 5.3. The plot that shows a reasonable fit for the model as

the residual points are deviating away along the extremes but still close to the

horizontal axis along the centre. In comparison to the worm plot from from the

mixd model that uses transformed responses (Figure 5.1), the model considering

the interval-censored nature of the data presents an improved fit.

The fixed effect estimates for approach 3 shows that for every extra day there

is a significant increase in mold growth. The lack of coating also significantly

contributed to the increase in mold growth for the medium density particle board,

which is in alignment with the other two approaches.

In our application, the percentage of mold growth was observed in control con-

100



5.5. Discussion

ditions and this restricts the number of covariates used for modelling. In this

restricted scenario, the results for both modelling show that compared to tradi-

tional Medium density boards, sugarcane bagasse boards have lesser mold growth

when there is no coating on the wooden board.
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Figure 5.3: Worm plot for th mixed model using interval-censored data (approach
3).

5.5 Discussion
In this chapter we presented an alternative modelling strategy to log proportions

model for modelling interval-censored bounded responses, motivated by a case

study in agricultural engineering. The mixed model considering the interval-

censored data has an added advantage of incorporating the hierarchical nature

of the data while preserving the nature of the response variable. We emphasize

that the choice of modelling strategy should be strongly related to the objectives
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of the study and the nature of the observed data. Thus, if the problem in question

is prediction, the marginal model can be a good alternative, since it can provide

consistent point estimates regardless of the correlation structure. However, if the

data dispersion is high and if the objective, in addition to prediction, is to select

a better structure to accommodate such variability, marginal models may not be

a suitable alternative. The main contribution of this study includes using interval

censored beta regression that does not involve any transformation, which has been

shown to reduce the bias in the estimates and performed better when assessing

model fit using the diagnostic plots.

The challenges involved in this study included the difficulty in considering the

complex relationship between the covariates in the dataset. Future work includes

considering other correlation structures for the marginal models, using the Beta

inflated distribution and a Bayesian approach for modelling the interval-censored

data to allow for imputing the interval-censored data based on prior information.
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CHAPTER 6
Final Remarks

In this chapter, we review and summarise the work presented in this thesis, examine any

obstacles or difficulties encountered, and provide recommendations for future work.

In this thesis we proposed a goodness-of-fit diagnostic framework applied to count

responses from a generalized linear modelling framework perspective, as well as

modelling strategies applied to longitudinal data characterised by an interval-

censored bounded response. We also presented real life ecological and agricul-

tural case studies to discuss the proposed frameworks. Here we intend to give a

brief overview to the work presented in the previous chapters and discuss future

directions.

In the first part of this thesis we proposed a distance-based quantitative metric

as an extension to half normal plots with a simulated envelope to provide an ob-

jective model selection method. Unlike traditional information criteria such as

AIC and BIC, this model selection method is not constrained to the comparison

of full likelihood-based models. We showed that the proposed distance metric was
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efficient recovering the true model in simulation studies. We also demonstrated

the effectiveness of using the suggested metric in the context of mild and strong

overdispersion, and low and high zero inflation. The results shown were in agree-

ment with BIC, which is a commonly used information criterion. We noted that

the distance metric exhibited superior performance to BIC when the parent model

considered was the zero-inflated negative binomial for a strong overdispersion and

low zero inflation scenario.

Additionally, we showed that the distance metric is a reasonable selection alter-

native for smaller sample sizes, when compared to BIC. This is evident for the

case when the parent model considered was the NB-lin with mild overdispersion.

The only instance where the distance metric failed to recognise the parent dis-

tribution was when the parent model was the standard Poisson model. However,

this behaviour was not unexpected, because the Poisson model is the limiting case

of the model extensions used for comparison. The suggested distance metric was

tested for three sample sizes and two distance norms were considered. Among

the models considered the Quasi-Poisson was the only model that could possibly

accommodate underdispersion and the metric fared effectively in recognising the

best performing model in such instances. The main contribution of the distance

metric is to be able to provide a quantitative comparison between the performance

of quasi likelihood models and full likelihood models. If quasi models are not con-

sidered this still serves as a complementary extension to half normal plots and

model selection and adequacy assessment procedures.

An extension to the simulation study was done to consider other factors that could

potentially contribute to the distance metric’s performance. The two factors con-

sidered were the envelope width and a penalty based on the distance of the residual

from the envelope boundary when it falls outside the envelope. Three different
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functional configurations for the envelope width and five different configurations

for the distance of the residual from the envelope boundary were explored, how-

ever there was effectively no difference in performance when these features were

added to the distance metric. This behaviour was elucidated by our examination of

closely related models, whereby the probability of residuals extending beyond the

envelope is exceedingly low or negligible. The different functional configurations

of the distance of the residual from the envelope when the residual falls outside

of the envelope also exhibited no influence on the distance. The envelope width

and its functional configurations had an influence on the distance metric. However

the basic building block of the distance metric (based on the difference between

the residual and the median of the envelope) made a more pronounced impact on

overall performance.

Future directions to this work include considering mis-specified link functions mis-

specified models and highly skewed data. These models are expected to generate

more residuals outside the envelope and bring more definition to the addition of the

envelope width and the distance of the residual from the envelope to the distance

metric. The inclusion of mixed models would also be beneficial to see how random

effects may improve model fit and accommodate overdispersion. However, this

comes with the added complexity of determining different types of residuals to be

used. Another future direction would be to consider one-parameter distributions

to potentially avoid the bias of the number of parameters in the models considered.

Currently, we are in the process of adding the distance-based metric to the hnp

package (de Andrade Moral et al., 2017) as a summary output that aids goodness-

of-fit assessment using half-normal plots with a simulated envelope.

The final part of this thesis presented a comparative study of two modelling frame-

works applied to longitudinal data. We used two variations for a mixed modelling
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framework that considered random effects to account for the variability within a

group. The first variation included a transformation of interval-censored responses

from an ordinal scale, and the second variation employed no transformation and

directly accommodated the interval-censored nature of the response in the likeli-

hood. We also used a marginal modelling approach based on generalized estimat-

ing equations (GEE). Interestingly, our results were consistent across all modelling

techniques used. However, the mixed modelling approach that accommodated the

interval-censored response provided a better fit.

The model fit for all three methods indicates unaccounted variability and a com-

plex relationship between the covariates. However, each modelling approach ac-

commodated this variability in a different way. One challenge encountered was

how to compare goodness-of-fit of the three different approaches. For the mixed

modelling, one could use the distance metric proposed in the earlier part of this

thesis. However, simulating new responses from the GEE model fit is non-trivial

and an object of ongoing research.

All proposed methods in this thesis were implemented using R (R Core Team, 2022)

software and are accessible at the author’s Github5 via two public repositories. The

repository https://github.com/DARSHANAJAYA/Goodness-of-fit-Distance-m

etric and related to Chapters 3, 4, and repository https://github.com/DARSH

ANAJAYA/Fungi-study- relates to chapter 5. These repositories include all the

scripts to reproduce the analyses and the plots provided in the chapters.

5https://github.com/DARSHANAJAYA
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